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Abstract

Quantum computing has emerged as a promising technology that can perform certain tasks

exponentially faster than classical computers. Despite the potential for quantum computers

to revolutionize the field of computing, the development of fault-tolerant quantum computers

remains a critical challenge. Moore’s Law has accurately predicted the exponential growth in

the capacity of classical computers, with transistor capacity doubling roughly every year. This

prediction, established in the 1960s, held true until the early 2010s. However, the emergence

of quantum computers raises questions about how to predict the rate of development these

technologies.

This work presents a novel approach using machine learning to extend classical Moore’s

Law into a quantum Moore’s Law. Unlike previous attempts, which relied on limited quan-

tum computer data, this model incorporates historical classical transistor data to predict qubit

capacities. This thesis proposes a novel approach to forecasting the future capacities of super-

conducting qubits and gate speeds using machine learning.

The proposed model builds upon Moore’s Law and its predictions for the transistor capac-

ity of classical computers. First, it establishes a polynomial relationship between the number

of qubits and the number of classical transistors. Then, it trains a machine learning model to

predict the number of classical transistors for future years. This prediction is used in conjunc-

tion with the established relationship to estimate the number of qubits for a given year. The

same methodology is applied on data on the best achieved classical computations per second

values to predict the speed of execution of quantum gates in the future.

The findings indicate that the proposed model outperforms previously proposed methods in

predicting qubit capacities, suggesting an improved method for predicting the future capacities

of superconducting qubits and gate speeds based on the relationship between qubit and classical

transistor capacities. Using a data-driven approach, the model can incorporate new data as

quantum milestones are achieved.

In this study, we present a novel approach to predicting the growth of quantum computing
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by extending and evolving classical Moore’s Law using machine learning. Our proposed model

makes use of historical information on classical transistors to estimate recent qubit capacities

more accurately than earlier studies, showing improved prediction accuracy in comparison to

previous work. The proposed model provides valuable insight into the potential trajectory of

quantum computing technology if Moore’s Law continues to hold in this domain.

Summary for Lay Audience

Quantum computing has the potential to revolutionize computing by performing tasks much

faster than classical computers. However, developing fault-tolerant quantum computers is a

major challenge. While Moore’s Law accurately predicted the growth of classical computers,

the emergence of quantum computers raises questions about how to predict their development.

This study presents a novel approach that combines machine learning with historical classical

transistor data to forecast the capacities of quantum computers. The proposed model estab-

lishes a relationship between the number of qubits and classical transistors and uses machine

learning to predict future transistor capacities. This prediction is then used to estimate the

number of qubits for a given year. The same approach is applied to predict the speed of quan-

tum gate execution. The results show that this model outperforms previous methods, providing

more accurate predictions of qubit capacities. By incorporating new data as quantum mile-

stones are achieved, the model can continuously improve its predictions. This study offers

valuable insights into the potential growth of quantum computing if Moore’s Law continues to

apply in this domain. The proposed model extends and evolves classical Moore’s Law using

machine learning, leveraging historical information on classical transistors to estimate recent

qubit capacities more accurately. Overall, this approach provides a promising method for pre-

dicting the future capacities of superconducting qubits and gate speeds in quantum computing.

Keywords: Moore’s Law, quantum computing, quantum computer, quantum algorithms,

qubits, quantum gate speed
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Chapter 1

Introduction

Quantum computers have garnered significant attention for their ability to perform specific

tasks in cryptography, quantum chemistry, and combinatorial optimization that are believed

to be infeasible for classical computers. Quantum computers differentiate themselves from

classical computers by operating over quantum bits (qubits) in place of classical bits. Qubits

are capable of processing information through quantum mechanics, allowing for the solution

of certain problems at an exponentially faster rate than classical computers.

Despite the potential for quantum computers to revolutionize the field of computing, the

development of fault-tolerant quantum computers remains a critical challenge. Such systems

are essential for practical applications but are not yet available. However, the current state-of-

the-art quantum computer, IBM Osprey, is a significant achievement, with a remarkable 433

qubits, in contrast to its predecessor, IBM Eagle, which had only 127 qubits.

With the advancement of more powerful quantum computers, there is an expectation that

efficient algorithms and solutions that were once thought to be impossible will become at-

tainable, leading to transformative developments in various fields of science and technology.

However, there are still significant obstacles to overcome in terms of scalability, stability, and

error correction. Consequently, further research is necessary to develop practical applications

that can exploit the potential of quantum computing fully.

The progress of the capacity of classical computers over the years have been well predicted

by Moore’s Law. According to this law, the transistor capacity of classical computers will

1
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Figure 1.1: Historical transistor capacities.

roughly double every year, giving rise to an exponential growth in the power of the best clas-

sical computer over the years. Quite surprisingly, this prediction, made in the mid 60s, have

been consistent even until early 2010s. This can be seen in Figure 1.1.

However, with the advent of quantum computers, there is a debate to be had on how we

incorporate these machines into the standard Moore’s Law framework; are quantum computers

devices that are too different from classical computers hence requiring a completely different

version of Moores Law to predict the qubit capacities moving forward? Or can we view quan-

tum computers as natural evolution of classical computers and thus somehow predict qubit

capacities using extensions of Moores Law for classical computers?

In this work, we try to answer this question in a novel model. We use machine learning to

extend and evolve classical Moore’s Law into a quantum Moores Law with surprisingly good

prediction capabilities. Unlike previous attempts at qubit capacity prediction and quantum

Moores law, all of which have used only a handful of data pertaining to quantum computers

that we have had until today, we have managed to incorporate the classical transistor data of

yesteryears to built a model which is more accurate in predicting the qubit capacites of the last

few years. Moreover, we observe that the qubit capacities that IBM predicts in the coming years

are much higher than our predictions, which could mean that the growth of quantum computers
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could be fundamentally shifting from the standard Moore’s Law in the coming years.

The general structure of our predictive model is as follows: we first learn a polynomial

relationship between number of qubits and number of classical transistors. Then, we train a

machine learning model that can predict the transistor capacity of any future year measured as

the number of classical transistors capable of fitting on an integrated circuit. This prediction is

then fed to the learnt functional relationships to get our prediction of the number of qubits for

the year in question, To further demonstrate the power of this model, we also predict the speed

of execution of quantum gates in the coming years, by making use of data pertaining to best

classical computations per second values that we have achieved over the years.

This thesis is organized as follows: In Chapter 2, we begin with a comprehensive back-

ground review that establishes the foundational knowledge for the rest of the paper. We start by

introducing the basic concepts of quantum computing, including a technical explanation of how

quantum computing operates. We then move on to discuss fault-tolerant quantum computers,

explaining the critical role of fault tolerance in realizing practical quantum computing. We con-

tinue by reviewing key quantum algorithms, specifically Shor’s and Grover’s algorithms, which

hold a pivotal role in the field of quantum computing. We then examine a variety of quantum

computing technologies, including gate-based ion trap processors, gate-based superconducting

processors, photonic processors, neutral atom processors, Rydberg atom processors, and quan-

tum annealers. Next, we explore potential applications of quantum computing, highlighting

demonstrations of quantum supremacy and discussing the limitations of near-term practical

quantum advantage. We also elucidate the significance of qubits and gate speeds, crucial for

understanding our subsequent discussions. Lastly, we touch on machine learning, providing

context for some of the methods we employ later in the paper.

In Chapter 3, we conduct a review of the related work in estimating quantum computer

capacities and recent advancements in quantum algorithms.

In Chapter 4, we explain our approach to predicting qubit capacities, including a thorough

explanation of the Elastic Net Regression model and its pessimistic variant. We also detail the
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process of training, validation, and testing. This Chapter concludes with a Chapter on applying

to methodology to gate speeds with a slight modification.

In Chapter 5, we provide a detailed analysis of our findings concerning qubits and gate

speeds. We also include a sub-chapter for discussion, where we address pertinent questions

such as whether it’s fair to assume that qubits will follow the same growth function as the

number of transistors, how current hardware limitations and technological advancements may

influence the future of quantum computing, and whether it’s appropriate to envision a ”Quan-

tum Moore’s Law”.

Finally, Chapter 6 concludes paper by summarizing our results and their implications. We

follow this with a Chapter on potential future work, suggesting potential avenues for further

research in this area.

1.1 Main Contributions of the Thesis

This research introduces a unique methodology that leverages machine learning to evolve the

conventional Moore’s Law into a quantum analog. Unlike preceding strategies which depended

on scarce quantum computer data, this model employs historical data from classical transistor

development to forecast qubit capacities. The aim of this thesis is to pioneer a novel tech-

nique for predicting future superconducting qubits’ capacities and gate speeds utilizing ma-

chine learning.

The suggested model is an extension of Moore’s Law and its forecasts concerning the tran-

sistor capacity of classical computers. Initially, it sets up a polynomial correlation between

the number of qubits and the count of classical transistors. Then, a machine learning model

is trained to estimate the count of classical transistors for subsequent years. This estimated

number is paired with the already defined correlation to calculate the quantity of qubits for a

particular year. The identical method is used to analyse data from the highest recorded classical

computations per second values to forecast future quantum gate execution speeds.
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The outcomes indicate that the presented model surpasses prior techniques in forecasting

qubit capacities, hinting at an enhanced method to predict the future capabilities of supercon-

ducting qubits and gate speeds based on the relationship between qubit and classical transistor

capacities. The model, adopting a data-driven strategy, can integrate new data as quantum

milestones are reached.

In this investigation, we introduce an innovative methodology for forecasting the evolution

of quantum computing by evolving and expanding classical Moore’s Law using machine learn-

ing. Our suggested model leverages historical data from classical transistors to better estimate

contemporary qubit capacities, demonstrating superior prediction accuracy compared to ear-

lier studies. The proposed model offers crucial insights into the possible direction of quantum

computing technology, assuming Moore’s Law persists in this field.



Chapter 2

Background

Chapter 2 serves as a foundational review, providing essential background knowledge for the

remainder of the paper. It covers various aspects, starting with an introduction to the funda-

mental concepts of quantum computing, followed by an exploration of fault-tolerant quantum

computers and their role in practical quantum computing. Key quantum algorithms, such as

Shor’s and Grover’s algorithms, are discussed, along with an examination of different quan-

tum computing technologies. The chapter also delves into potential applications of quantum

computing, including demonstrations of quantum supremacy, while addressing the limitations

of near-term practical quantum advantage. The importance of qubits and gate speeds is em-

phasized, and a brief overview of machine learning is provided to contextualize subsequent

discussions in the paper.

2.1 Quantum Computing

A quantum computer is a machine that takes advantage of quantum mechanical properties,

using these characteristics through unique hardware. The fundamental unit of data in quan-

tum computing is the quantum bit or qubit, capable of existing in a superposed state of two

”base” states, thereby possessing the ability to inhabit both states at once. This unique fea-

ture facilitates the development of quantum algorithms capable of performing calculations at a

6
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significantly faster rate than our current computers, as these devices lack the ability to harness

the attributes of quantum mechanics. The construction of high-quality qubits has been difficult

due to quantum decoherence, a phenomenon that induces disruptions in computations when a

qubit is inadequately shielded from its surrounding environment. Despite these hurdles, quan-

tum computers have the potential to efficiently solve many problems that no classical computer

could solve in any feasible amount of time — a feat known as ”quantum supremacy”.

2.1.1 Technical Background to Quantum Computing

A pure quantum state is denoted by a vector |ψ⟩ ∈ Cd with the constraint that its norm is equal

to 1, i.e., || |ψ⟩ || = 1. The vector |ψ⟩ represents a pure quantum state in a vector space. Here,

|ψ⟩ ∈ Cd denotes that |ψ⟩ belongs to a complex vector space of dimension d. The double vertical

bars || |ψ⟩ || signify the norm (magnitude) of the vector. In classical computing, a bit can take on

values in the set {0, 1}, representing logical values. Similarly, in quantum computing, a qubit is

capable of adopting any state |ψ⟩ ∈ C2. The standard basis vectors in C2, represented as

|0⟩ =

10
 |1⟩ =

01
 , (2.1)

correspond to the classical logical states 0 and 1. The notation {0, 1} represents a set of

possible values for classical bits. Similarly, the vector space C2 denotes the space of possible

quantum states for a qubit. The standard basis vectors |0⟩ and |1⟩ are defined using column

vectors, representing quantum states analogous to classical logical values.

The state of a system composed of n qubits is described using state vectors in the tensor

product space spanned by {|ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ | ∀ |ψ1⟩ , . . . , |ψn⟩ ∈ C
2}. The tensor product

symbol ⊗ is used to indicate the combination of multiple quantum states to describe a system of

n qubits, so the set notation |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ | ∀ |ψ1⟩ , . . . , |ψn⟩ ∈ C
2 represents the space

of composite states for an n-qubit system. This space, denoted as C2n
, characterizes an n-qubit
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quantum system. The notation C2n
signifies the complex vector space that characterizes an

n-qubit quantum system. This vector space encompasses all possible states the system can

assume and is of dimension 2n. Thus, a complete description of such a system requires 2n

complex numbers.

Quantum gates acting on n qubits are defined as unitary operators on C2n
. Common 1 and

2 qubit quantum gates include

X =

0 1

1 0

 , Y =

0 −i

i 0

 , Z =

1 0

0 −1

 , (2.2)

H =
1
√

2

1 1

1 −1

 , S =

1 0

0 i

 , CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (2.3)

Just as boolean functions can be constructed using elementary classical gates like AND,

OR, and NOT, any n-qubit quantum gate can be constructed (approximated) using these 1 and

2 qubit quantum gates.

2.2 Fault-Tolerant Quantum Computers

The pursuit of fault-tolerant quantum computing represents a significant global endeavor to

establish viable, market-ready quantum computing systems. This theoretical framework con-

tends with the immense power of existing classical computing. The fundamental premise of

fault-tolerant quantum computing is to protect qubits from quantum errors introduced by im-

perfect control or environmental interferences through the use of Quantum Error Correction

(QEC). A crucial aspect lies in the design of quantum circuits, ensuring that both QEC and

encoded logic operations are implemented in a manner that prevents errors from propagating
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throughout the quantum circuits. Once individual qubits attain a satisfactory accuracy level

such that QEC corrects more errors than are generated, the likelihood of errors causing a fail-

ure in the computation decreases thereby facilitating the implementation of complex quantum

algorithms (Paler, [22]).

Error correction strategies partially depend on the use of extra qubits for error prevention,

a concept often referred to as redundancy. Essentially, a single logical qubit’s information

is distributed across multiple physical qubits. In the event of an error in one physical qubit,

this can be detected and rectified by comparing it with the other qubits. In simpler terms, the

more qubits you use to protect the information in a single logical qubit, the less likely it is

that errors will disrupt the computation. This process takes advantage of redundancy and error

detection/correction which work best when there are plenty of qubits involved. This allows

even imperfect quantum systems (i.e., real-world, physical systems that are subject to errors

and decoherence) to successfully run complex calculations.

One method for error correction in quantum systems is outlined by Paler et al. [22] using

redundant encoding. Two classical codes are employed separately to detect X- and Z-errors

and calculating the parity (evenness or oddness) of two qubits in the code block without di-

rectly measuring the qubits themselves. This is achieved using an ancilla qubit. The goal is to

generate encoded codewords that always occupy specific states, regardless of the information

being encoded. If there are any physical errors, they will disrupt these specific states, which

can be detected without revealing any details about the encoded information. The number of

errors that can be successfully corrected depends on the number of qubits in the code block.

Paler et al. [22] observe that the number of errors which can successfully corrected grows lin-

early with the number of qubits in the code block. For n qubits, (n−1)/2 errors can be uniquely

correct. It is important to note that increasing the number of qubits alone does not automati-

cally improve the effectiveness of quantum error correction. The efficiency of error correction

depends on various factors, such as the quality of the qubits (including their coherence time

and error rates), the interactions between qubits, and the accuracy of operations performed on
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them. While adding more qubits can enhance error correction capabilities, it also increases the

complexity of the system and introduces potential sources of errors.

2.3 Quantum Algorithms

2.3.1 Shor’s Algorithm

Conceived by Peter Shor in 1994, Shor’s algorithm is a quantum algorithm for effiently fac-

toring large numbers (Shor, [28]). It is one of the most well-known quantum algorithms that

demonstrates how quantum computers may solve certain problems exponentially faster than

classical computers. The importance of Shor’s algorithm emerges from its potential impact on

widely used encryption methods, such as RSA, which fundamentally rely on the computational

complexity of large number factorization. Consequently, the ability of a quantum computer to

factorize such numbers with higher efficiency could compromise the robustness of these en-

cryption mechanisms. The basic steps of Shor’s algorithm can be encapsulated as follows:

1. Application of Quantum Fourier Transform (QFT): The initial step in the algorithm ne-

cessitates the utilization of the Quantum Fourier Transform on a superposed amalga-

mation of all conceivable inputs. The QFT, representing a quantum counterpart to the

traditional discrete Fourier transform, assists in extrapolating periodicity details from the

input.

2. Determining the Period: The subsequent phase involves implementing a modular expo-

nentiation, which empowers the algorithm to uncover the period of a specific function.

By incorporating a sequence of such modular exponentiations and gauging the subse-

quent quantum state, Shor’s algorithm can proficiently establish the period.

3. Usage of Continued Fractions: On successful determination of the period, the algorithm

resorts to established classical methods, such as the implementation of continued frac-

tions, to discern the factors of the input number relying on the period data.
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Shor’s algorithm has a polynomial-time complexity for factoring large numbers, which is

exponentially faster than the best-known classical factoring algorithms. This efficiency gain

arises from the ability of quantum computers to perform parallel computations and exploit

quantum interference.

It is important to note that Shor’s algorithm is contingent on the availability of a large-scale,

fault-tolerant quantum computer to achieve its speedup. Given the existing challenges of re-

alizing a fault-tolerant quantum computer machine, Shor’s algorithm has not been practically

implemented for factoring large numbers that pose a significant cryptographic threat. Regard-

less, Shor’s algorithm has instigated an influential shift in cryptographic research, prompting

significant global attention towards post-quantum cryptography that aims at formulating en-

cryption mechanisms resilient against potential quantum computer attacks.

2.3.2 Grover’s Algorithm

Grover’s algorithm, conceived by Lov Grover in 1996, is a quantum algorithm that provides a

quadratic speedup for searching an unsorted database compared to classical algorithms (Grover,

[13]). This method is considered a cornerstone in quantum computing, showcasing the com-

pelling attributes of quantum parallelism in addressing computational issues. The primary

problem that the Grover’s algorithm seeks to resolve is the unstructured search issue. With a

database of N elements, unsorted in nature, the aim is to locate a specific target element within.

The classical approach requires an average of O(N/2) queries to locate the target element.

However, Grover’s algorithm offers a substantial speedup utilizing quantum parallelism. An

overview of Grover’s algorithm can be summarized as follows:

1. Initiation: The process commences by setting up the quantum computer to generate an

equal superposition of all feasible states. This is achieved by employing a Hadamard

transform on a set of qubits.

2. Oracle Mechanism: A quantum gate, signifying the oracle, is devised to mark the target
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element within the superposition. It inverts the phase of the target element, effectively

setting it apart from the remainder of the database.

3. Amplitude Amplification: The crux of Grover’s algorithm lies in the repeated application

of two operations: the oracle and the inversion about the average. The oracle amplifies

the amplitude of the target element, while the inversion operation amplifies the amplitude

of all other elements. Through iterative application of these operations, the likelihood of

measuring the target element gradually enhances.

4. Quantification: Ultimately, a measurement is enacted on the qubits, leading to the col-

lapse of the superposition and thereby deriving the target element with a high probability.

An important aspect of Grover’s algorithm is that it achieves a quadratic speedup compared

to classical algorithms. While classical algorithms require O(N/2) queries, Grover’s algorithm

requires only approximately O(
√

N) queries to find the target element with high probability.

This quadratic speedup can provide significant computational advantages for large-scale search

problems.

It is important to note that Grover’s algorithm does not provide an exponential speedup like

Shor’s algorithm for factorization. Instead, it showcases the power of quantum parallelism and

amplitude amplification in solving search problems more efficiently than classical algorithms.

Grover’s algorithm has applications in various domains, including database search, optimiza-

tion, and cryptography. It demonstrates the potential of quantum computing to revolutionize

search algorithms and inspire the development of new quantum algorithms for solving a range

of problems more efficiently.

2.4 Gate-Based Superconducting Quantum Computers

There are several different types of quantum computers that have been proposed and developed,

each with its own approach to realizing and manipulating quantum bits (qubits) and performing
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quantum operations. This thesis will focus on gate-based superconducting quantum computers.

Superconducting quantum computing is another approach to gate-based quantum comput-

ing that utilizes superconducting electronic circuits. Superconductivity is observed in certain

materials at extremely low temperatures, exhibiting zero electrical resistance and expelling

magnetic flux fields below a critical temperature. Superconducting qubits are built with su-

perconducting circuits that operate at cryogenic temperatures, enabling the manipulation of

quantum information. This work focuses on qubits and gate speeds in superconducting proces-

sors.

2.5 Applications of Quantum Computing

There are a wide range of potential applications of quantum computing, due to it’s ability

to process massive amounts of data and perform computations that have, until now, been in-

tractable.

1. Cryptanalysis and Cryptography: Existing encryption standards risk being deciphered by

the formidable processing capabilities of quantum computers. For instance, Shor’s algo-

rithm can factorize large numbers with greater efficacy compared to classical computing

devices, thereby posing a threat to the integrity of RSA encryption. Conversely, quantum

computing also harbors the potential to spur the evolution of novel, robust cryptographic

systems, inclusive of quantum key distribution mechanisms.

2. Pharmacological Innovations: Quantum computational systems may hold the key to

modeling intricate molecular interactions at an atomic level, thus expediting the pro-

cesses of drug discovery and formulation. These advanced systems could offer valuable

assistance to scientists in devising new pharmaceuticals or understanding the character-

istics of complex biological systems by providing accurate simulations and analysis of

their molecular constituents.
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3. Quantum Physics: Quantum computers could pave the way for breakthroughs in our

understanding of the cosmos through the simulation of quantum systems, an area where

classical computers grapple with significant difficulties. Quantum simulations facilitated

by such computational power could unveil novel insights into the fundamental nature of

the universe.

2.5.1 Demonstrations of Quantum Supremacy

The first computation that could only be accomplished on a quantum processor was marked

by an experiment conducted by Arute et al. (Arute, [5]) using a programmable superconduct-

ing processor, surpassing the capabilities of classical computing and challenging the extended

Church-Turing thesis. By implementing random quantum circuit sampling, the experiment

demonstrated the ability to perform a task for which no efficient classical method exists. The

researchers employed a programmable superconducting qubit processor, specifically utilizing

53 qubits to create quantum states and explore a computational state-space of dimension 253

(approximately 1016). The resulting probability distribution was sampled through repeated ex-

periments, which were verified using classical simulations. Notably, the Sycamore processor

took approximately 200 seconds to sample one instance of a quantum circuit a million times,

a task that would hypothetically require around 10,000 years for a state-of-the-art classical

supercomputer to complete according to current benchmarks.

Another significant advancement toward practical quantum computing, was marked by

Madsen et al. [19], who unveiled the remarkable capabilities of a photonic processor called

Borealis. Their study demonstrated the execution of Gaussian boson sampling on 216 squeezed

modes, which were intricately entangled with three-dimensional connectivity. The outcomes

revealed a staggering contrast between Borealis and conventional supercomputers. While the

best available algorithms and supercomputers would require more than 9,000 years to generate

a single sample from the programmed distribution, Borealis accomplished the task in a mere

36 microseconds. This exceptional runtime advantage surpassed the previous achievements
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of photonic machines by a factor of over 50 million. Consequently, this research is widely

acknowledged as a pivotal milestone, affirming the viability of photonics as a foundational

platform for practical quantum computing and validating its crucial technological attributes.

In a study titled ”Classically Simulating Quantum Supremacy IQP Circuits through a Ran-

dom Graph Approach” by Codsi [9], novel methodologies were introduced to enhance the

classical simulation of random IQP circuits. The research emphasized the need for cautious

evaluation when claiming quantum supremacy, as advancements in classical algorithms can

rapidly achieve substantial improvements. Furthermore, the paper presented an algorithm ca-

pable of computing the amplitudes of IQP circuits ranging from 30 to 50 qubits on a single

CPU core of a laptop in a matter of minutes. The algorithm could be readily distributed in

parallel, suggesting that a cluster comprising 100,000 CPU cores could calculate the amplitude

of a dense 60-qubit circuit in approximately one hour. Additionally, the study implied that the

computation of 70-qubit circuits could be within the grasp of the world’s leading supercom-

puters.

2.5.2 Limitations of Near-Term Practical Quantum Advantage

In their publication titled ”Disentangling Quantum Computing: Realistic Applications and

Speedup Criteria,” Hoefler et al. [15] examine potential applications of quantum comput-

ers and the factors that determine their feasibility. The authors emphasize the significance

of considering not only asymptotic speedups but also the constants associated with quantum

computations. To illustrate this, they conduct a comparative analysis between an idealized

quantum computer and a classical computer chip, taking into account various factors such as

I/O bandwidth, crossover scale, and compute performance. Their investigation underscores

the challenges arising from the interplay between quantum and classical systems, particularly

concerning data input and output. As a result, they propose that quantum computers may prove

more practical for ”big compute” problems involving small datasets rather than those involv-

ing big data. The concept of crossover time is introduced, referring to the point at which the
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quantum speedup compensates for the slower operations of a quantum computer compared to

a classical counterpart. The authors stress the importance of achieving short crossover times to

enable practical applications. Concrete examples and estimations are provided, outlining the

function complexity required to attain crossover times within specified durations. Importantly,

the authors conclude that quadratic speedups are inadequate for achieving practical quantum

advantage, highlighting the necessity of at least cubic or quartic speedups. They identify cer-

tain applications, such as quantum system simulation, cryptanalysis utilizing Shor’s algorithm,

and solving highly structured linear systems of equations, as the most promising candidates

for exponential quantum speedups and practical quantum advantage. Conversely, applications

with quadratic quantum speedups, including machine learning, drug design, protein folding,

and certain scientific simulations, are deemed unlikely to achieve quantum advantage in the

near future. The limitations of quantum computing for big data problems, unstructured lin-

ear systems, and database search are attributed to I/O constraints and the nature of black-box

algorithms. In light of these findings, the authors call for a focus on super-quadratic or ex-

ponential speedups and advise the consideration of I/O bottlenecks when developing quantum

algorithms.

2.6 Significance of Qubits and Gate Speeds on Quantum Ca-

pacity

The capacity of a quantum computer is one factor in determining its computational abilities and

its ability to tackle complex problems. It often encompasses the number of qubits, gate speeds,

error rates, coherence times, and other performance metrics that collectively attribute towards

the processing power and efficiency of a quantum computing system [7]. Beyond the mere

quantity of qubits, the practicality of a quantum computer also encompasses quantum error

correction as a critical element in the pursuit of fault-tolerant quantum computing systems.

Schemes like surface codes enable the conversion of multiple physical qubits into a single low-
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error ’logical qubit.’ Consequently, a larger number of physical qubits expands the potential for

creating a greater quantity of logical qubits, thereby facilitating the execution of more intricate

quantum computing tasks.

The operational speed of quantum gates serves as a pivotal factor in assessing the practi-

cality of a quantum computer. These gates, acting as fundamental building blocks of quantum

circuits, enable the execution of quantum algorithms. A swifter gate speed translates to faster

execution of quantum circuits, resulting in reduced overall computation time. This attribute

proves invaluable, particularly considering the often extensive sequences of gates required for

many quantum algorithms. Additionally, faster gate operations contribute to a reduction in the

accumulation of computation errors.

The interplay between gate speed and coherence time, which measures a qubit’s ability

to maintain its quantum state, holds significant importance. A faster gate operation allows

for a greater number of computations to be performed within the coherence time of a qubit.

This, in turn, mitigates the detrimental effects of decoherence on the outcome of the quantum

computation. The synergistic relationship between gate speed and coherence time thus plays a

crucial role in enhancing the reliability and efficiency of quantum computations.

2.7 Introduction to Machine Learning

Lying in the intersection of computer science, mathematics and statistics, machine learning

is a field that has transformed sectors ranging from communication technology (Huang, [16]),

astrophysics (Vanderplas, [32]), finance (Dixon, [10]) to language (Chowdhary, [8]) and proofs

(Sanchez, [26]). It is the science of learning patterns and functional relationships from known

information. Machine learning can be broadly categorized into supervised learning, unsuper-

vised learning and reinforcement learning.

In supervised learning, the known information will contain many input samples and their

corresponding outputs or labels. Using a dataset, the goal is to learn a model that can predict
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the outputs of similar input samples which we have not come across yet. Some examples are

spam filters (Renuka, [25]), house prices prediction (Phan, [24]), fraud detection (Khatri, [17]).

Popular algorithms used to learn supervised learning models include neural networks, support

vector machines, linear and logistic regression, etc.

Similarly, consider a problem where one has to cluster a given set of data points (vectors)

into different groups. Unlike supervised learning, in this case, we do not have labelled data.

So, the model is not shown any ”known outputs” and has to figure things out by learning

on unearthing intrinsic properties of the data points. Such problems fall in the unsupervised

learning category. Other prominent examples in this class include dimensionality reduction

(Tschannen, [30]) and learning low dimensional vector embeddings for words (Pennington,

[23]), general entities (Wu, [33]) and elements of knowledge graphs (Nickel, [21]).

Finally, in reinforcement learning, we frame the learning procedure in a reward based

framework, similar to how animals are taught to do certain specific actions. The model to be

trained is designed as an agent performing actions in specially constructed environments. Such

a model is rewarded for good actions and is trained to maximize rewards. Famous instances

of reinforcement learning in action includes AI programs such as AlphaGo Zero (Silver, [29])

and AlphaStar (Arulkumaran, [4]), automated neural network architecture designer AutoML

(He, [14]), etc.
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Related Work

The goal to unlock the potential of quantum computing has witnessed remarkable progress in

recent years. This chapter delves into the exciting advancements that have propelled the field

forward, improving our understanding of the capabilities and limitations of quantum com-

puters. This chapter explores two key areas of advancement: estimating quantum computer

capacities and breakthroughs in quantum algorithms.

3.1 Estimating Quantum Computer Capacities

Agarwal et al. [3] presented a series of estimations regarding various quantum computing met-

rics, such as number of qubits, gate frequency, gate infidelity, and overhead reduction. These

predictions were founded upon assumptions made by the authors, without the use of statistical

techniques. The study suggests an optimistic prediction of a doubling in the number of qubits

every 10 months, and a pessimistic prediction of a doubling every 20 months. Furthermore, the

authors predicted that the gate infidelity would follow DeVincenzo’s law of reducing infidelity

by a factor of 2 per year, plateauing at an infidelity of 5 × 10−6 in the optimistic case, and

5 × 10−5 in the pessimistic case. In their study, the authors focus on two main areas of Bitcoin

that could potentially be at risk due to quantum computers. Drawing from their projections,

they arrive at two primary conclusions.

19
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1. Proof of Work (PoW): The PoW used by Bitcoin is relatively resistant to substantial

speedup by quantum computers in the next 10 years. This is mainly because special-

ized ASIC miners are extremely fast compared to the estimated clock speed of near-

term quantum computers. Using Grover’s algorithm, a quantum computer can perform

the hashcash PoW by performing quadratically fewer hashes than a classical computer.

However, the extreme speed of current specialized ASIC hardware, coupled with much

slower projected gate speeds for current quantum architectures, essentially negates this

quadratic speedup at the current difficulty level, giving quantum computers no advan-

tage. Future improvements to quantum technology allowing gate speeds up to 100GHz

could allow quantum computers to solve the PoW about 100 times faster than current

technology, but such a development is unlikely in the next decade.

2. Cryptographic Signatures: The elliptic curve signature scheme used by Bitcoin is at

significant risk from quantum computers. The authors estimate that a quantum computer

capable of breaking the elliptic curve signature scheme could exist as early as 2027.

The primary window for this attack is from the time a transaction is broadcast until it’s

processed into a block on the blockchain with several blocks after it. By their most

optimistic estimates, this period could be less than 10 minutes, the block time used in

Bitcoin.

In their study, Sevilla et al. [27] have offered a novel statistical model purposed to predict

both the number of qubits and the average two-qubit error rate in quantum computing systems.

An essential cornerstone of their study revolves around the anticipation of when the first large-

scale, fault-tolerant quantum computer will be capable of breaking the modern cryptographic

scheme RSA 2048. This particular milestone is operationalized in their work as a function

of the number of generalized logical qubits, with the threshold set specifically at 4100 logical

qubits. Sevilla and his team employed a sophisticated multivariate log linear regression model

as a tool to thoroughly examine the association between the number of physical qubits in a sys-

tem and the error rate it experiences. Interestingly, their analysis revealed a positive correlation
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between these two metrics, indicating that an increase in qubits tends to be associated with

higher error rates. This finding suggests the existence of a development frontier in the field of

quantum computing where trade-offs are made between the number of qubits and the error rate.

The researchers also built their predictions on the assumption of exponential progress in quan-

tum computing. Using this assumption as a foundation, they applied a log-linear multivariate

model to estimate an upper bound of the likely progress trajectory of QC, specifically focusing

on technologies based on superconductors. In addition to these statistical models, Sevilla et

al. [27] made a significant contribution to the field by compiling and providing a comprehen-

sive dataset. This dataset, carefully curated, records a multitude of data points related to the

progression of quantum computing, covering aspects such as qubit counts and error rates over

time.

In our work, we have chosen to utilize this dataset as a key input to our analyses. We

have conducted a direct comparison between the methodology proposed by Sevilla et al. [27]

and our own approach. This comparison, detailed in our results, serves to further validate

our findings while also providing a basis for discussion on the relative merits and potential

improvements in both methodologies.

IBM has published a roadmap delineating their accomplishments in the field of quantum

computing, as well as their projections for forthcoming years 1. The roadmap includes annual

estimates for the number of qubits that will be available during each respective year. Similarly,

Google has proposed a roadmap conceptualizing its own progression in quantum computing.

Google’s strategy is delineated through a logarithmic scale ”journey”, wherein the number of

qubits in their quantum systems is envisaged to incrementally increase over time2. This offers

an insight into Google’s strategy for scaling their quantum computing capacities.

In our study, we leveraged IBM’s executed quantum roadmap to facilitate a comparison

between our results and those proposed by Sevilla et al. [27]. This approach allowed for an

evaluation of the effectiveness and accuracy of our methodology, which was able to provide

1For more information, visit: https://www.ibm.com/quantum/roadmap.
2See Google’s quantum computing journey here: https://quantumai.google/learn/map.
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reliable estimations regarding the number of qubits and the error rate in quantum computing.

By utilizing these industry roadmaps and predictions, we were able to validate our method-

ology and further enhance the credibility of our findings. This validation process served two

purposes. First, it allowed for an examination of our predictions’ accuracy. Second, we were

able to substantiate the reliability of our research outcomes by comparing our forecasts to

the forecasts proposed by industry experts actively engaged in the development of quantum

technologies. Furthermore, our research underscores the significance of industry roadmaps in

harmonizing academic research with the pragmatic pace of technological development in the

real world, thereby ensuring the relevance and applicability of our findings. The methodology

and results presented in this thesis reinforce the principle that academic research in quantum

computing should be attuned to the industry’s progression. This alignment, facilitated by the

utilization of industry roadmaps and forecasts, ensures that the academic contributions remain

relevant to the evolving needs of industry.

Since our study, Microsoft’s Azure Quantum Resource Estimator [20] has been updated to

provide users with rQOPS and error rate outputs for their chosen quantum algorithms and hard-

ware architectures. The rQOPS metric quantifies reliable operations in a practical quantum al-

gorithm for scaling up quantum systems to execute valuable applications. It encapsulates three

critical factors: scale, ensuring the presence of a sufficient number of reliable qubits; speed,

dependent on the clock speed; and reliability, indicated by the error rate on logical qubits. The

rQOPS value is obtained by multiplying the number of logical qubits by the hardware’s log-

ical clock speed. The metric incorporates the logical error rate, which denotes the maximum

acceptable error rate for operations performed on logical qubits. This is relevant to this work

since the number of qubits and gate speeds can be used predicted from our resulting model and

used as input to the Quantum Resource Estimator, enabling researchers to assess the feasibility

of quantum algorithms and hardware architectures for specific applications.
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3.2 Advancements in Quantum Algorithms

Gidney et al. [11] presents significant advancements in the reduction of the cost of factor-

ing integers and computing discrete logarithms in finite fields on a quantum computer. The

researchers achieved this by integrating techniques from numerous previous works, including

those by Shor, Griffiths-Niu, Zalka, Fowler, Ekerå-Håstad, Ekerå, Gidney-Fowler, and Gidney.

The study’s computation cost estimates were based on assumptions about large-scale supercon-

ducting qubit platforms, including a planar grid of qubits with nearest-neighbor connectivity, a

physical gate error rate of 10−3, a surface code cycle time of 1 microsecond, and a reaction time

of 10 microseconds. The estimates also took into account factors usually overlooked such as

noise, the necessity for repeated attempts, and the spacetime layout of the computation. Com-

pared to prior works, the construction of this study demonstrated a hundredfold decrease in

spacetime volume when factoring 2048 bit RSA integers. In the abstract circuit model, ignor-

ing overheads from distillation, routing, and error correction, the construction uses an equation

involving logical qubits, Toffoli gates, and measurement depth to factor n-bit RSA integers.

Finally, the study discusses the cryptographic implications of their findings, for both RSA and

schemes based on the discrete logarithm problem (DLP) in finite fields.

Gouzien et al. [12] presents a study on the use of cat qubits as building blocks for quantum

computing. Cat qubits exhibit a tunable noise bias, allowing for exponential suppression of

bit-flips based on the average photon number. To protect against phase errors, the study uses

a simple repetition code. The research evaluates the cost of such a repetition code and pro-

vides insights for selecting a large-scale architecture using cat qubits. The researchers perform

a performance analysis using Shor’s algorithm to compute discrete logarithms on an elliptic

curve. They propose a 2D grid of cat qubits with neighboring connectivity to implement two-

qubit gates through lattice surgery and Toffoli gates via offline, fault-tolerant preparation of

magic states. These methods involve projective measurements and subsequent gate teleporta-

tions. All-to-all connectivity between logical qubits is achieved by routing qubits. The study

assumes a ratio between single-photon and two-photon losses of 10−5, along with a cycle time
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of 500 nanoseconds. With these assumptions, the researchers demonstrate that the proposed

architecture can compute a 256-bit elliptic curve logarithm in nine hours using 126133 cat

qubits.



Chapter 4

Research Methodology

This chapter provides a comprehensive examination of our approach to predicting qubit ca-

pacities, presenting an account of our Elastic Net Regression model and its variant with a

pessimistic perspective along with our training, validation, and testing processes. We then

extend our focus to the prediction of gate speeds, incorporating a slight modification to the

methodology.

4.1 Design Rationale

The design of the methodology is grounded in the goal of predicting the future development

of superconducting qubits and gate speeds by leveraging the well-known trend established

by Moore’s Law. This approach is chosen to provide insights into the potential trajectory of

quantum computing capabilities and gate speeds if they were to follow a similar pattern of

advancement observed in classical computing. By building ’g’ to capture the relation between

classical transistors and quantum computing capabilities, it serves as a bridge between the two

domains allowing us to to draw parallels between the historical growth of classical computing

components and the potential growth of quantum computing. After establishing relationships

between classical computer metrics and quantum computing metrics, we may build a model

‘f’ to predict the future number of classical computing metrics observed under Moore’s Law to

25
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then bridge back to the quantum computing space, thereby ensuring that predictions in the su-

perconducting quantum computing space is driven by the same trends observed under Moore’s

Law. An overview of the design architecture for predicting superconducting qubits is provided

in Figure 4.1.

4.2 Predicting Qubit Capacities

This chapter details the steps and processes involved in our methodology to forecast the number

of qubits in superconducting quantum computers. For a bird’s eye view of the method, refer to

Figure 4.4 which presents a schematic representation of the process.

Our training phase relies on the combination of two distinct datasets that serve to inform

our model. The initial dataset, depicted in Figure 1.1 and sourced from Our World in Data

[1], illustrates the evolution of transistor capacities over time. Comprising 24 data points,

each sample encompasses two attributes: ’Year’ and ’Transistors per microprocessor’. The

graph is characterized by an exponential curve, a clear demonstration of Moore’s Law in ac-

tion. Moore’s Law, an observation made by Gordon Moore in 1965, posits that the number

of transistors on a microchip doubles approximately every two years, while the cost of these

computers is halved. The empirical evidence presented in our graph substantiates this theory

and provides a strong foundation for our model.

We use a supplementary dataset spotlighting the achievements in superconducting qubit

capacities in recent times. This dataset, presented graphically in Figure 4.2, is sourced from

Sevilla et al. [27]. Comprising 9 instances, each sample is defined by two variables: ’Year’

and ’Superconducting qubit capacity’.Despite its relatively smaller size, this dataset provides

crucial insights into the advancements in superconducting quantum computing capacities. The

dataset outlines the peak superconducting qubit capacities achieved over the years, beginning

from 2007 and extending up until 2021. It provides a clear and succinct overview of the growth

and development in this space, effectively capturing the trajectory of progress over time.
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In reviewing the available datasets, historical records from 2013 mark a significant mile-

stone: the establishment of a 2-qubit capability in quantum computers. Concurrently, approxi-

mately 1010 transistors existed in classical computers. Similar data is available for 2014, mak-

ing both years valuable for comparing classical bits and quantum bits. With this overlapping

data, we aim to determine the polynomial relationship, g, which links the number of qubits to

the corresponding number of classical bits. Once established, this relationship can predict the

number of qubits based on the number of classical transistors, and vice versa, offering insights

into the comparative capabilities of classical and quantum computing systems.

After determining the polynomial relationship, the next phase involves training a machine

learning model, f . We use the classical dataset, which includes the number of transistors in

classical computers over various years, to train f to project future transistor numbers. By

utilizing data on the actual growth of classical transistors, f can extrapolate observed patterns

and make predictions for any given year. Thus, f offers insights into the projected growth and

development of classical computing capacities under the observed pattern of Moore’s Law.

In the following stage, we employ the polynomial relationship g to convert predicted num-

bers of classical bits to quantum bits. For any given year y, we can determine the projected

qubit capacity generated by f by evaluating the composition g( f (y)).

We further refine our predictions using hyperparameter tuning to find the optimal values

for the selected machine learning model. Given the limited data available on superconducting

qubits, our approach for validating our model is to use only the last three years of data as our

validation dataset 2017, 2018, and 2021. During these years, we compare the performance

of our model with other models in the literature. To learn the relationship between qubit and

classical transistors, we use data from years 2013 and 2014, and then tune the hyperparameters

of our model based on its performance in predicting qubit numbers for 2013, 2014, and 2015.

To optimize the hyperparameters, we use the Mean Squared Error (MSE) between the model

predictions and the true qubit numbers. Ultimately, we select the final models based on the

hyperparameters that result in the lowest MSE scores.
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One crucial aspect is the nature of the datasets. Both classical and quantum datasets provide

measurements for the maximum number of transistors and qubit capacities at the end of each

year. This temporal factor is crucial, as it allows our model’s predictions to be interpreted as

the projected qubit capacity by year-end. This granularity may inform decision-making and

planning, as stakeholders can anticipate advancements in quantum computing capabilities over

time.

4.2.1 Elastic Net Regression

The Elastic Net regression model was selected for this study due to its strengths in handling

multicollinearity and regularization, which are particularly advantageous when dealing with

our dataset. Our data exhibits high multicollinearity due to our assumption of the close rela-

tionship between the number of classical transistors and quantum computing capabilities over

the years. Elastic Net regression effectively manages this issue by combining the Ridge and

Lasso regression models, which, respectively, minimize the sum of square residuals and ab-

solute values of coefficients. Furthermore, Elastic Net introduces an element of regularization

which helps to prevent overfitting. This is especially important for our project, as we aim to

develop a model that not only performs well with our existing data but also can generalize to

future scenarios.

The model can be formally defined as follows. LetD be a set of p dimensional real vectors

and let g : D → R. Our goal is to find g, given a finite set of training data {(x(k), g(x(k))) | k =

1, 2, . . . ,m}. In linear regression we assume that g can be approximated by a hyperplane. That

is, there exist a vector β0 ∈ R
p and scalar β1 ∈ R such that

g(x) ≈ βT
0 x + β1. (4.1)

Once this parametric model has been decided, the aim then is to find the vector and scalar β0

and β1. Given any candidates α0 ∈ R
p and α1 ∈ R, we can compute a score of how bad the
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choice is as follows:

C(α0, α1) =
m∑

i=1

(g(x(i)) − αT
0 x(i) − α1)2. (4.2)

The cost function C simply computes how far the values predicted by the hyperplane is to the

true values for each known input x(i). This can be more concisely written as

C(α) = ||Xα − y||22, (4.3)

where X ∈ Rm×p+1 with its kth row being x(k) appended by an extra 1, α = [α0 α1] and y ∈ Rm

with its kth entry being g(x(k)). Our aim then is to find

β∗ = argmin
β

C(β). (4.4)

The set D is composed of vectors, essentially ordered lists of numbers, with each vector

having p elements. The function g is the relationship we’re trying to find, which takes a vector

from the setD and gives us a real number. The training data we’re using to find this relationship

is a set of pairs. Each pair consists of a vector x(k) and the corresponding output g(x(k)) of our

desired function. The goal is to determine what the function g is based on these pairs. In

the context of linear regression, we’re assuming that g can be approximated by a flat plane (a

hyperplane in higher dimensions). This is described by the equation g(x) ≈ βT
0 x + β1, where β0

is a vector and β1 is a scalar (a single number), and the T represents the transpose of the vector

(flipping the vector from vertical to horizontal or vice versa).

The next step is to find the best choices for β0 and β1 that make the approximation as

good as possible. We measure the quality of these choices using a cost function C. The cost

function measures how far the hyperplane’s predicted values are from the actual values for

each input vector. It does this by summing the squared differences between the predicted and

actual values. The ultimate goal is to find the values of β0 and β1 that make C as small as
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possible (thus giving us the best approximation for g). This is represented by the equation

β∗ = argmin
β

C(β), which basically says ”find the β that minimizes the cost function C”.

We can find the best approximation for our function using various methods. One of these

is iterative optimization algorithms. However, in many instances, we can also find the best

approximation directly without iterating. An issue that can arise when we minimize the cost

function too much is overfitting. Overfitting is when our model becomes too good at predicting

the outcomes for our training data (the data we used to build the model) but struggles to predict

outcomes for new, unseen data. In other words, it has learned the training data so well that it

performs poorly when introduced to new information. To avoid overfitting, we use a technique

called regularization. Regularization limits the range of values that our coefficients (in this

case represented by α) can take. We can think of it as a tuning process to keep our model’s

predictions reliable. We add this regularization as a penalty term to our cost function, leading

to a new cost function:

C(α) = ||Xα − y||22 + λ||α||, (4.5)

Here, the symbol ||.|| represents a type of measurement, known as a vector norm, and λ is

a hyperparameter we set. If we choose a large value for λ, the regularization becomes more

strict, limiting the range of values that our coefficients can take. The choice of vector norm can

lead to different types of regression models. If we choose the Euclidean norm, also known as

the L2 norm, we call the model Ridge regression. If we choose the taxicab norm, or L1 norm,

we call the model Lasso regression. Elastic Net regression is a type of regression that combines

the constraints of both Ridge and Lasso regression models. It uses both L1 and L2 norms, and

we adjust their influence using two hyperparameters, λ1 and λ2. The cost function for Elastic

Net regression is:
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C(β) = ||Xβ − y||22 + λ1||β||1 + λ2||β||
2
2. (4.6)

In this equation, λ1 and λ2 are the hyperparameters we need to adjust to get the best model.

Pessimistic model

In order to construct a more conservative or ”pessimistic” forecast of quantum capabilities com-

pared to classical transistor capacities, we adjust the nature of the relationship that our model

learns between these two variables. Instead of directly learning a polynomial relationship, we

introduce a logarithmic transformation, transitioning to a polylogarithmic relationship.

We may clarify this with the following notation. Suppose n1, n2, . . . , nT denote the transistor

capacities of years y1, y2, . . . , yT respectively, and q1, q2, . . . , qT represent the corresponding

qubit capacities. Under our new approach, the polynomial function g is tailored to fit the

logarithm of the transistor capacities to the qubit capacities, i.e., g(log ni) ≈ qi.

This logarithmic adjustment can be seen as ’slowing down’ the increase in qubit capabil-

ities in relation to classical transistor capacities. Essentially, as the transistor capacity grows

exponentially over time (as suggested by Moore’s Law), the logarithmic transformation mod-

erates this growth, leading to a smaller corresponding increase in the predicted qubit capacity.

As a result, the polynomial function g provides a more conservative estimate, dampening the

relative value of qubits compared to classical transistors over time.

This change can be valuable in different scenarios. For instance, it might reflect a perspec-

tive where advancements in quantum computing face increasing technical challenges and do

not keep pace with the exponential growth observed in classical computing capacities. This ap-

proach can be useful for stakeholders who prefer to err on the side of caution when predicting

future quantum computing capabilities based on the ongoing expansion of classical computing

capacities.
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4.2.2 Training, Validation and Testing

Figure 4.3 provides a visual representation of how our dataset was partitioned for training, test-

ing, and validation purposes. The division is an important part of the model-building process,

allowing us to properly train our model, tune its parameters, and evaluate its performance.

The Elastic Net regression model, which is represented by the black line in figure 4.3, is

trained on the transistors data. Meanwhile, the polynomial relationship between transistor ca-

pacity and qubit capacities are learned from data corresponding to the years 2013 and 2014.

This choice of years is significant, as it represents the overlap in the availability of data for both

classical and quantum computer capabilities. Once the initial training phase is complete, we

move on to hyperparameter tuning. Hyperparameter tuning based on prediction performance

on data from the year of 2015. In future years, more data points may be added to the train-

ing and validation sets to improve robustness. Importantly, to ensure a fair evaluation of our

model’s predictive performance, we deliberately withhold data from the most recent four years,

treating these as our test set. This approach ensures that our model is evaluated on unseen data,

offering a more realistic estimation of its real-world predictive performance.

Figure 4.4 offers an overview of our model’s prediction mechanism. The shaded colour

regions are from Figure 4.3, indicating training, validation and test sets. Firstly, using the

qubit and classical transistor data from 2013 and 2014, we learn a polynomial function g that

approximates the relationship between transistor capacity and qubit capacity. In other words,

g(transistor capacity) ≈ qubit capacity. Next, we train the Elastic Net regression model, de-

noted as f , using the classical transistor data. This model is designed to predict future transistor

capacities based on a given year. Formally, for any year y, f (y) ≈ transistor capacity in year y.

Once both functions f and g are learned, predicting the qubit capacity for a given year becomes

straightforward. Given a year y, we first use f to predict the transistor capacity for that year,

and then pass this predicted transistor capacity into function g. The output, g( f (y)), provides

our predicted qubit capacity for year y. This two-step process effectively allows us to project

future quantum computing capabilities based on trends observed in classical computing.
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Figure 4.1: Architecture for predicting superconducting qubit capacities.
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Figure 4.2: Historical superconducting qubit capacities.
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Figure 4.3: Partitioning of data into train, validate and test sets.
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4.3 Gate Speeds

Quantum gates typically operate at a slower speed than their classical counterparts. However,

our goal in this chapter is to predict future advancements in quantum gate implementation

speed, leveraging a model similar to the one used for predicting qubit capacities.

To this end, we incorporate two key datasets. The first, derived from the data collected by

Koomey et al. [18], offers a temporal overview of operation speeds for classical computers,

illustrated in Figure 4.5. This dataset comprises of two variables: ’Year’ and ’Computations

per second’. The second dataset, studied in Aggarwal et al.’s work [3], provides corresponding

information for quantum gate speeds, displayed in Table 4.1. This dataset also comprises of

two variables: ’Year’ and ’Quantum operations per second’.

A critical point to note is the absence of overlapping years in these two datasets, meaning

there are no years for which we possess data for both quantum and classical gates. To overcome

this challenge, we adopt a unique approach. First, we use the classical gate speed data to train

our model and predict the classical gate speeds for specific years for which we have quantum

gate speed data. These predicted values form an artificial overlap between the two datasets.

Specifically, we predicted values for the years of 2013, 2015 and 2016 using a regression

model similar to the one used in Chapter 4.2.1 and then use these predicted scores for learning

the relationship between qubit and classical bit. This is shown in Figure 4.5, where the classi-

cal computations per second data is extended to the years of 2013, 2015 and 2016 in order to

create an overlap with the quantum operations per second data provided in Table 4.1. Having

established this artificial overlap, we then proceed to learn the relationship between quantum

gate speeds and classical gate speeds. By leveraging the model trained on classical data and

applying it to the quantum context, we aim to derive meaningful insights into future devel-

opments in quantum gate speed. This approach allows us to extrapolate the pace of progress

in quantum computing, despite the lack of directly comparable historical data. To refine the

performance of our regression model, we used the final three years of the quantum dataset for

hyperparameter tuning. We chose to compute the relative squared error (RSE) as the function
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Figure 4.5: Historical trend of computation speeds achieved by classical computers.

Year Quantum operations per second
2013 2.64 × 106

2015 2.31 × 106

2016 6.25 × 106

2017 2.5 × 107

2018 4 × 107

2019 7.2 × 107

Table 4.1: Peak gate speeds achieved in superconducting devices.

to minimize. The RSE is a measure of the difference between the actual and predicted gate

speeds, squared to emphasize larger discrepancies. The hyperparameters tuned in our regres-

sion model primarily included the regularization parameter and the mixing parameter in the

elastic net regression (referenced in Chapter 4.2.1).
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Results and Discussions

In this chapter, we present our findings pertaining to qubits and gate speeds predictions. We

compare our qubit predictions to the related works and discuss the relevant assumptions im-

posed onto our gate speeds model. A sub-chapter is dedicated to a discussion exploring im-

portant considerations, such as the validity of assuming qubits will follow a growth function

akin to the number of transistors, the impact of existing hardware limitations and technolog-

ical advancements on the future trajectory of quantum computing, and the appropriateness of

envisioning a ”Quantum Moore’s Law”.

5.1 Qubits

In Figure 5.1, we present the predictive capacities of two distinct models. These models attempt

to predict the progression of qubit capacity, which is a key metric of the overall performance

of quantum computers. The blue line represents a model based on a polynomial relationship

between qubit capacity and transistor capacity. On the other hand, the red line signifies a

model which posits a polylogarithmic relationship. Comparing the two, it is clear that the

polynomial model tends to forecast higher qubit capacities, making it more optimistic than

its polylogarithmic counterpart. Interestingly, both models follow an upward trend, indicating

a steady increase in qubit capacities over time. However, the extent of this growth varies

38
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significantly depending on the model.

Figure 5.1: Qubit model predictions.
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Table 5.1 presents a comparison of our model’s predictions with those produced by Sevilla

et al. [27] for the years 2017, 2018, and 2021. In the table, we also provide the actual recorded

qubit capacities for those years. The Mean Squared Error (MSE) between the predicted and

actual capacities for our model stands at approximately 441.33, which is notably lower than the

MSE of the model by Sevilla et al. [27] at around 2209.82. Although our model overestimated

the qubit capacity in 2017, it was notably more accurate for the years 2018 and 2021. This

suggests that our model, while not perfect, tends to provide a more precise prediction of future

qubit capacities.

In Table 5.2, we compare our model’s predictions, those of Sevilla et al. [27], and the

published IBM roadmap [2] for the years 2022 through 2026. Both our model and the model

provided by Sevilla et al. [27] fall short of matching the IBM roadmap predictions. How-

ever, our model tends to provide predictions closer to those of IBM. For instance, for 2022,

our model predicts a capacity of 173 qubits, while Sevilla et al. [27] predict 92 qubits, both

significantly below IBM’s forecast of 433 qubits.

Looking further into the future, the trend continues. Our model consistently predicts higher

qubit capacities than the model in Sevilla et al. [27], with the gap widening as we move forward
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in time. For example, by 2026, our model forecasts a capacity of 692 qubits compared to the

predication made by Sevilla et al. [27] prediction of 374 qubits. Still, both models significantly

underestimate the IBM roadmap’s predictions, which anticipate a capacity as high as 10,000

qubits by 2026. Looking further into the future, the trend continues. Our model consistently

predicts higher qubit capacities than the model in Sevilla et al. [27], with the gap widening

as we move forward in time. For example, by 2026, our model forecasts a capacity of 692

qubits compared to the predication made by Sevilla et al. [27] of 374 qubits. Still, both models

significantly underestimate the IBM roadmap’s predictions, which anticipate a capacity as high

as 10,000 qubits by 2026.

In summary, while both our model and the model by Sevilla et al. [27] struggle to match the

highly optimistic forecast put forth by IBM’s roadmap, our model generally presents more ac-

curate predictions. However, given the rapid and uncertain nature of advancements in quantum

computing, these predictions should be interpreted with caution. Nevertheless, they provide

valuable insights into possible trends in quantum computing technology and can guide future

research and development efforts.

2017 2018 2021
Sevilla et al. [27] 16 23 65
Our model 24 37 120
Actual 17 72 127

Table 5.1: Historical comparison of our predictions to Sevilla et al. [27] and the true qubit
capacities.

2022 2023 2024 2025 2026
Sevilla et al. [27] 92 131 187 262 374
Our model 173 247 351 494 692
IBM Roadmap 433 1121 1386 4158 10,000

Table 5.2: IBM roadmap comparison.
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5.2 Gate Speeds

Our models predict an exponential surge in the quantum gate operation frequency over the next

few years, assuming the parallel evolution of classical control circuits to keep pace with these

accelerated quantum gate operations. Despite an initial phase of rapid acceleration, we antic-

ipate a considerable slowdown in growth, attributed primarily to the requisite for increasingly

faster classical control circuits. However, it is important to note that due to current hardware

limitations, the technology is not capable of executing over 1 billion gates per second. Butko

et al. [6] describes the limitations of classical control circuits in managing quantum gate op-

erations at different frequencies. The authors state that these circuits struggle to accurately

execute quantum gate operations beyond a certain frequency. For instance, a processor running

on an FPGA board can guarantee timely gate delivery for up to a density of eight gates with the

immediate format and up to a 32-gate density with the mask format if there are only two types

of gates. ASIC implementations running at around 2GHz can execute any 32-qubit circuit us-

ing the immediate format or mask for circuits with a gate diversity of eight types and lower.

Beyond these gate densities and diversities, the processor fails to deliver control gates on time,

resulting in circuit execution inaccuracy and erroneous result. Therefore, our prediction func-

tion should embody this inherent property. As the operation frequency approaches 1 billion

gates per second, the increase becomes progressively more challenging. Unfortunately, our ex-

isting models do not adequately reflect this property, necessitating the design of a new model.

This new model can be derived by applying the function f (x) = −1
x + 1e9 to the second column

of the classical dataset. The key intuition here is the introduction of a function which exhibits a

bend similar to the logarithmic function. If the functional relationship between quantum gates

per second and classical computations per second mirrors this, the function’s increase will di-

minish as we approach 1e9. We capped the frequency cap at 50 GHz. This frequency caps

reflects our expectation that the classical control circuits will struggle to manage quantum gate

operations at frequencies beyond these limits. For this new model, we choose the data points

from 2016 and 2017 to learn the polynomial relationship and validate it against the gate speed
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Figure 5.2: Gate speed model predictions.

of years 2018 and 2019.

5.3 Discussions

The subsequent subsections examine three primary results derived from this work. These dis-

cussions explore the growth trajectory of qubits in comparison to classical computing transis-

tors, reconciling current hardware limitations and technological advancements and the appro-

priateness of envisioning a ”Quantum Moore’s Law”.

5.3.1 Is it fair to assume that qubits will follow the same growth function

as the number of transistors?

While the rapid progression of transistor development has greatly impacted the landscape of

classical computing, it’s not necessarily fair to directly map this trajectory onto quantum com-

puting’s growth. While parallels can be drawn between the two technologies, there exist signif-

icant differences in their respective physical properties and implementation challenges. Qubits,

in their superconducting guise or otherwise, are faced with unique obstacles such as maintain-

ing coherence, or the ability of a qubit to sustain a superposition of states long enough for
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meaningful computation.

Environmental noise, along with inter-qubit interactions, often compromise this coherence

time. Moreover, the fabrication and control of qubits present complex, resource-intensive prob-

lems, rendering current manufacturing techniques somewhat unscalable. However, these limi-

tations have stimulated a flurry of research aimed at discovering innovative qubit designs and

materials, as well as enhanced error correction and fault tolerance methods. Despite the growth

function of qubits potentially deviating from that of transistors, continued research and devel-

opment in this area holds promise for the advancement of quantum computing. It is also worth

noting the degree of human ingenuity when developing solutions to novel problems. Even in

the present day, there are ongoing efforts to sustain the Moore’s Law trend observed over the

past few decades, despite an expected slowdown in its trajectory due to physical and material

design limitations, as discussed by Van Schoot et al. [31]. It is entirely conceivable that analo-

gous breakthroughs in materials and quantum computer development could emerge, sustaining

a comparable growth trajectory.

5.3.2 How do current hardware limitations and technological advance-

ments shape the future of quantum computing?

Hardware constraints currently impose significant restrictions on the growth and scalability of

quantum computing. These limitations, such as maintaining qubit coherence, designing effi-

cient quantum gates, and executing operations at high frequencies, present both challenges and

opportunities for researchers and engineers. As quantum computing technology evolves, new

strategies to overcome these hurdles are continually being developed. These include advance-

ments in qubit design, error correction algorithms, and manufacturing processes. On the other

hand, the limitations also set the pace for the evolution of quantum computing, providing a

realistic lens through which future growth can be projected. Therefore, understanding these

constraints, and keeping pace with technological advancements, is pivotal for the accurate

modeling and prediction of the progression of quantum computing.
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In our study, for instance, we incorporated these aspects into our predictive models, reflect-

ing the inherent complexities associated with the progression of quantum computing technol-

ogy. This approach not only allows for a more realistic prediction but also provides valuable in-

sights that can guide future research and development efforts. As the field continues to evolve,

refining and updating these models will remain an ongoing task, crucial to shaping the future

of quantum computing.

5.3.3 Is it fair to envision a ”Quantum Moore’s Law”?

When it comes to quantum computing, it is tempting to envision an analogous ”Quantum

Moore’s Law”, where quantum computational power, measured in terms of qubit counts or

quantum gate speeds, might follow a similar exponential growth trajectory. However, the di-

rect application of Moore’s Law to quantum computing can be overly simplistic and potentially

misleading. The physical properties, manufacturing challenges, and technological limitations

of qubits are fundamentally different from those of transistors. Notably, maintaining qubit co-

herence and creating reliable quantum gates present significant challenges that can impede the

doubling rate of qubits.

Moreover, the metric for computational power in quantum computing is not as straightfor-

ward as in classical computing. It is not solely about the number of qubits or gate speeds, but

also about the quality of qubits, error rates, connectivity, and the effectiveness of quantum error

correction, among other factors. Therefore, a ”Quantum Moore’s Law” would have to account

for these multi-faceted and interdependent aspects of quantum computing.

Nevertheless, certain trends hint at the rapid progression of quantum computing technology.

Qubit counts and coherence times have been increasing, and error rates decreasing, albeit not

at a consistent exponential pace. Researchers are continuously developing novel architectures,

materials, and techniques to push these limits. Therefore, while a ”Quantum Moore’s Law”

might not manifest in the same form as its classical counterpart, it is clear that the field of

quantum computing is on a trajectory of rapid growth and development, albeit with a different
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set of guiding principles and constraints.

There is also the observation made by Hartmut Neven, Director of the Quantum Artificial

Intelligence Lab at Google, regarding the progress of quantum computing. Neven’s Law, also

known as Neven’s Rule, Neven’s Law states that the power of quantum computers is roughly

doubled every year, following a similar trajectory to Moore’s Law, which describes the expo-

nential growth of classical computer processing power. Neven’s Law suggests that quantum

computers can achieve significant advancements in terms of computational capabilities and

performance over time, potentially leading to breakthroughs in solving complex problems that

are intractable for classical computers. However, it is important to note that Neven’s Law is an

empirical observation and does not guarantee a fixed rate of progress in quantum computing.
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Conclusion

In conclusion, this work provides an improved method to forecast the future capacities of su-

perconducting qubits and gate speeds based on the relationship between qubit and classical

transistor capacities. We make use of a data-driven approach capable of accommodating new

data points as quantum milestones are reached. The results of the analysis suggest that the au-

thors’ model is a more accurate predictor of qubit capacities compared to the model developed

by Sevilla et al. [27]. However, both models struggle to match the trend of the IBM roadmap,

which predicts much higher qubit capacities in the coming years. These predictions should

be viewed with caution, given the inherent uncertainty in predicting future developments in

quantum computing technology. Nevertheless, this work may provide valuable insight into the

potential trajectory of quantum computing technology if Moore’s law continues to hold in this

domain. Further research in this area could help to refine these predictions and improve our

understanding of the future potential of quantum computing.

6.1 Future Work

As a logical extension to our work, several directions for future research can be explored:

• Refining and expanding the predictive models: The models presented here primarily
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revolve around the relationship between qubit and classical transistor capacities. Fur-

ther research can explore the inclusion of additional parameters that influence quantum

computer performance. These might include the quality of qubits, quantum gate error

rates, qubit connectivity, and the efficiency of quantum error correction techniques. By

expanding the model to incorporate these factors, it may be possible to enhance its pre-

dictive accuracy and make it more representative of the multi-faceted nature of quantum

computing advancements.

• Incorporating advances in quantum architectures and technologies: Our models pri-

marily consider superconducting qubits. There are, however, several other types of qubits

being researched and developed, such as topological qubits, trapped ions, and photonic

qubits, each with their own advantages and challenges. Future work could consider these

alternative technologies and their impact on the development trajectory of quantum com-

puters.

• Exploring quantum-classical hybrid systems: As quantum computing technology pro-

gresses, so does classical computing technology. This suggests potential for quantum-

classical hybrid systems, where the strengths of each can be leveraged to compensate for

the weaknesses of the other. Further exploration of these hybrid systems might present a

novel avenue for advancing the computational landscape.

• Performing periodic reassessments of the model: Given the rapid and dynamic na-

ture of advancements in quantum computing, it would be prudent to perform periodic

reassessments of the model’s predictive accuracy. This would allow for necessary recal-

ibrations and modifications to keep pace with the evolving field of quantum computing.
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