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Abstract 

The very high mechanical strength and enhanced durability of ultra high-

performance concrete (UHPC) make it a strong contender for several concrete 

applications. However, UHPC has a very low water-to-cement ratio, which increases its 

tendency to undergo early-age shrinkage cracking with a risk of decreasing its long-term 

durability. To reduce the magnitude of early-age shrinkage and cracking 

potential, several mitigation strategies have been proposed including the use of shrinkage 

reducing admixtures, internal curing methods (e.g. superabsorbent polymers), expansive 

cements and extended moist curing durations. To appropriately utilize these strategies, it 

is important to have a complete understanding of the driving forces behind early-age 

volume change and how these shrinkage mitigation methods work from a materials 

science perspective to reduce shrinkage under field like conditions.  

This dissertation initially uses a first-principles approach to understand the 

interrelation mechanisms between different shrinkage types under simulated field 

conditions and the role of different shrinkage mitigations methods. The ultimate goal of 

the dissertation is to achieve lower early-age shrinkage and cracking risk concrete along 

with reducing its environmental and economic impact. As a result, a novel 

environmentally friendly shrinkage reducing technique based on using partially hydrated 

cementitious materials (PHCM) from waste concrete is proposed. The PHCM principle, 

mechanisms and efficiency were evaluated compared to other mitigation methods. 

Furthermore, the potential of replacing cement with wollastonite microfibers was 

investigated as a new strategy to produce UHPC with lower carbon foot-print, through 

reducing the cement production. Finally, an artificial neural networks (ANN) model for 

early-age autogenous shrinkage of concrete was proposed. 

The evidence and insights provided by the experiments can be summarized in: 

drying and autogenous shrinkage are dependant phenomena and applying the 

conventional superposition principle will lead to an overestimation of the actual 

autogenous shrinkage, adequately considering in-situ conditions in testing protocols 

should allow gaining a better understanding of shrinkage mitigation mechanisms, the 

iii 



PHCM technique provides a passive internal restraining system that resists deformation 

as early as the cementitious materials are mixed, wollastonite microfibers can act as an 

internal restraint for shrinkage, reinforcing the microstructure at the micro-crack level 

and leading to an enhancement of the early-age engineering properties, along with 

gaining environmental benefits, and ANN showed success in predicting autogenous 

shrinkage under simulated field conditions. 

 

Keywords: Shrinkage, ultra high-performance concrete, field-like conditions, 

superabsorbent polymer, shrinkage reducing admixture, wollastonite microfibers, 

partially hydrated cementitious materials, drying/wetting cycles, carbon-oxygen demand 

(COD), artificial neural networks. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1. ULTRA HIGH PERFORMANCE CONCRETE (UHPC)  

Over the last few decades, concrete technology has experienced substantial advances, 

resulting in innovative uses and unconventional applications of concrete. The use of 

supplementary cementitious materials and additives has developed new generations of 

concrete with enhanced properties, which can be used in areas that were dominated by 

metals and ceramics. These new generations of concrete can be categorized based on 

compressive strength development. Starting by Normal Concrete (NC) (20 to 40 MPa) 

passing by high-performance concrete (HPC) (40 to 80 MPa), very high performance 

concrete (VHPC) (100 to <150 MPa) and ultra high performance (≥ 150 MPa), which 

represents a leap development in concrete technology. 

In the early 1990’s, researchers at Bouygues company were the first to develop 

ultra high-performance concrete (UHPC) (Richard and Cheyrezy, 1995). UHPC is 

characterized by a very specific mixture design, which gives it a superior performance 

compared to that of conventional concrete. The main concept behind UHPC mixture is to 

minimize the number of defects, such as voids and internal micro-cracks, and to achieve a 

greater percentage of the ultimate load capacity of its components (Acker and Behloul, 

2004). This can be reached by enhancing homogeneity and increasing the packing density 
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through optimization of the granular mixture and elimination of coarse aggregates 

(Holschemacher and Weiße, 2005), producing a very dense and strong structure of the 

hydration products using very low water-to-cement ratio (w/c) (about 0.20 to 0.25) 

(Schmidt and Fehling, 2005).  

The main characteristics of UHPC include very high compressive strength, a 

relatively high tensile strength and enhanced durability compared even with that of HPC. 

These outstanding properties make it a promising material for different concrete 

applications (Tang, 2004). Nowdays, UHPC is used for producing special pre-stressed 

and precast concrete members (Yazici, 2007). Applications include the production of 

nuclear waste storage facilities (Yazici et al., 2009), precast pre-stressed concrete 

highway bridge girders (Garas et al., 2009), pedestrian footbridges (Shah and Weiss, 

1998), inner wedges and outer barrel of nonmetallic anchorage systems (Reda et al., 

1999), rehabilitation and retrofitting of concrete structures (e.g. waterproofing layer in 

bridge decks, protection layer on a crash barrier walls and strengthening of industrial 

floors) (Brühwiler and Denarié, 2008). Although there are only a few applications for 

these concretes due to its high production cost, some economical advantages do exist in 

UHPC applications (Yazici et al., 2009). For instance, it is possible to reduce 

maintenance costs relative to steel and conventional concrete bridge girders (Garas et al., 

2009). Moreover, due to the ultra-high mechanical performance, the thickness of UHPC 

elements can be reduced, which results in materials and cost savings (Yazici et al., 2009) 

and increased useful space in buildings. 

Indeed, it has been possible since several years ago to produce in the laboratory 

concrete with a compressive strength as high as 700 MPa. But to reproduce it in a job site 
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would be questionable due to uncontrolled in-situ conditions. Therefore, understanding 

the influence of in-situ environmental conditions on UHPC behaviour is essential before 

taking UHPC technology from the laboratory to full-scale field construction, 

rehabilitation and retrofitting of concrete structures.  

 

1.2. EARLY-AGE SHRINKAGE  

In the literature, there is no agreed upon definition of the early-age period for concrete; it 

highly depends on the investigated property. The early-age can be the first few hours or 

days after casting concrete that are characterized by two main processes: setting 

(progressive loss of fluidity) and hardening (gaining strength) (Pane and Hansen, 2002). 

Generally, shrinkage can be divided into two main types: early-age shrinkage, which 

represents shrinkage during the first 24 hours after the first contact between cement and 

water, and can extend up to 7 days (Holt, 2001, Wongtanakitcharoen and Naaman, 2007, 

Khan, 1995), and long-term shrinkage, which extends beyond the early-age period (Holt, 

2001). The total shrinkage of concrete must be considered as the summation of both. 

However, there is no clear relationship between the magnitudes of these two types of 

concrete shrinkage.  

Concrete shrinkage is a complex phenomenon that is affected by many factors 

including drying and internal self-desiccation deformations, curing procedure and 

ambient environmental conditions. Concrete shrinkage is generally assumed to begin at 

the time of loading or drying, however, it actually starts as early as the cement and water 

come in contact during concrete mixing. Early-age shrinkage is typically ignored in 
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design codes of concrete structures since its magnitude is assumed to be much less than 

long-term shrinkage (William et al., 2008). However, this can be erroneous since the 

early-age shrinkage can be equivalent to or even more than the long-term one. New 

generations of concrete are characterized by very low w/c (approximately below 0.40), 

thus a high portion of measured shrinkage (i.e. up to 80%) can be a result of self-

desiccation shrinkage. Furthermore, a significant portion of this self-desiccation 

shrinkage takes place during the early-age period (Holt, 2001).  

Many serviceability and durability problems of concrete can be attributed to the 

early formation of cracks as a result of concrete shrinkage. Recent studies have shown 

that this can also significantly affect the initial term response of structures (Bischoff and 

Johnson 2007). (Brown et al., 2007) reported that early-age cracking resulting from 

drying shrinkage affects more than 100,000 bridge decks in the US. Therefore, several 

shrinkage mitigation strategies have been proposed. These include adding shrinkage 

reducing admixtures (SRA) (Tazawaa and Miyazawaa, 1995), controlling the binder 

particle size distribution (Bentz et al., 2001), modifying the chemical composition of the 

binder (Tazawaa and Miyazawaa, 1995), adding of saturated lightweight aggregates 

(LWA) (Bentur et al., 2001) and superabsorbent polymers (SAP) (Igarashi and 

Watanabe, 2006). 

Substantial research has focused on predicting the early-age shrinkage behaviour 

and evaluating the efficiency of various shrinkage mitigation methods under laboratory 

conditions. Conversely, very limited research has explored that early-age shrinkage 

behaviour under field-like conditions, whether with or without applying shrinkage 

mitigation methods. This probably led to a misevaluation of the actual early-age 
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shrinkage behaviour of different concrete mixtures and the real performance of shrinkage 

mitigation methods.  

 

1.3. NEED FOR RESEARCH 

Despite the current knowledge and specifications for early-age shrinkage and mitigation 

techniques, numerous early-age shrinkage cracking cases for different concrete structures 

have been reported, indicating the existence of high shrinkage stresses (Brown et al., 

2007). It seems that the difference between the well defined curing conditions inside the 

lab and the actual field conditions had contributed to a clear discrepancy between 

laboratory measured performance and the actual performance of concrete mixtures in-

situ. Moreover, several studies have been conducted to quantify the shrinkage behaviour 

of UHPC either under heat curing or constant temperature and relative humidity. 

Therefore, a proper understanding for the effect of field exposure conditions still needs to 

be gained, and the actual mechanisms that govern UHPC shrinkage of structural elements 

cast in-situ is still largely unexplored.  

On the other hand, several shrinkage mitigation techniques have been proposed 

and are being used in various applications. The mechanisms of these shrinkage mitigation 

techniques are based on certain chemical and physical processes that take place within 

the cementitious material microstructure. Any factors that affect these processes are 

expected to affect the efficiency and mitigation mechanisms of the used techniques. 

Hence, a better understanding of the role and efficiency of these shrinkage mitigation 
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techniques in UHPC, which exhibits more complex chemical and physical processes 

compared to that of conventional concrete, under different exposure conditions is needed.  

UHPC has a relatively high carbon-footprint and environmental impact due to its 

high cement content, which leads to high energy consumption and CO2 emissions 

associated with cement production. Hence, finding new strategies to produce more 

environmentally friendly concrete, which exhibits lower or at least similar cracking 

tendency to traditional cement-based materials, is our obligation to future generations 

(Naik and Moriconi, 2005). 

 

1.4. OBJECTIVES AND SCOPE 

To address the aforementioned research needs, the fundamental theme of this research is 

improving the current level of knowledge on the early-age shrinkage behaviour of UHPC 

and evaluating the efficiency of shrinkage mitigation methods under realistic field 

conditions. The specific objectives of the research are multi-fold:  

• Introducing fundamental knowledge on the relationship between different types of 

early-age shrinkage of UHPC under a wide range of simulated field conditions.  

• Evaluating the influence of exposure conditions on the efficiency and mechanisms of 

different shrinkage mitigation techniques. 

• Implementing new environmentally-friendly shrinkage mitigation techniques that can 

utilize the superior performance of UHPC along with achieving economical and 

environmental benefits compared to that of convention mitigation techniques. 
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• Investigating the synergetic effects of different shrinkage mitigation techniques in 

order to identify optimum combinations that achieve efficient performance under 

realistic field exposure conditions. 

• Building modeling systems that are capable of predicting the early-age shrinkage of a 

wide range of UHPC mixtures under various curing conditions. 

To achieve the above objectives, the scope of this research includes: 

• A wide range of simulated field-like conditions: the key variables included the 

temperature (10°C, 20°C and 40°C) and ambient humidity (40, 60, 80 and 100%). In 

the case of drying/wetting cycles, switching between a drying condition and a 

submerging condition was conducted. For submerged conditions, specimens were 

stored under water.  

• Active shrinkage mitigation techniques: these include techniques that directly deal 

with shrinkage sources and try to minimize their effects, including chemical 

admixtures (i.e. shrinkage reducing admixture), since it reduces the surface tension of 

the pore solution; and chemical additives (i.e. superabsorbent polymer) that acts as an 

internal source of water.  

• Passive shrinkage mitigation techniques: these include techniques that have indirect 

effect on the developed shrinkage, including internal passive restraint systems, and 

the addition of natural microfibers (e.g. wollastonite microfibers). 

• Combined shrinkage mitigation techniques: since each shrinkage mitigation technique 

has its benefits and drawbacks, combining two or more of the techniques above may 
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optimize the gained benefits and minimize the drawbacks along with achieving better 

shrinkage mitigation behaviour.  

• Modelling: a model based on an artificial neural network (ANN), an emerging 

computational intelligence-based tool in concrete technology research, was developed 

to predict the shrinkage of the different types of concrete mixtures under the effect of 

environmental exposure. The model was applied to the case of variable simulated 

curing humidity and temperature including cold, normal and arid conditions. Based 

on the experimental database and developed ANN model, a parametric analysis was 

conducted to investigate the influences of different mixture criteria on the shrinkage 

behaviour.  

 

1.5. STRUCTURE OF THESIS 

This thesis has been prepared according to the guidelines of the Faculty of Graduate 

Studies at the University of Western Ontario for an integrated-article format. It comprises 

11 chapters, 9 of which display the progress in the experimental program starting by 

enhancing the fundamental knowledge about shrinkage and its mitigation techniques, 

moving to introducing and evaluating new shrinkage mitigation techniques, followed by 

modelling. Substantial parts of these chapters have been either published, accepted, or 

submitted for possible publication in peer-reviewed technical journals and national and 

international conferences.  

 Chapter 2 contains a state-of-the-art review of the current knowledge on early-age 

properties of concrete, their relationships, influences of various shrinkage mitigation 
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techniques and different proposed models. Chapter 3 discusses the interaction 

mechanisms between different types of UHPC shrinkage under the effect of various 

exposure conditions. In chapters 4 and 5, the role of different shrinkage mitigation 

techniques and their performance under simulated field-like conditions are discussed. 

Chapter 6 introduces a new concept for inducing an internal passive restraint to mitigate 

UHPC shrinkage at the micro-structural level. The basic phenomena and experimental 

results that demonstrate the concept are presented in this chapter. The performance of the 

new shrinkage mitigation technique and its efficiency compared to that of conventional 

mitigation techniques are described in Chapter 7. The benefits of adding different sizes 

and contents of natural wollastonite microfibers to UHPC as partial volume replacement 

for cement are presented in Chapter 8. Chapter 9 evaluates the performance of UHPC 

incorporating different combinations of shrinkage mitigation techniques discussed in 

previous chapters. The development of an artificial neural network model and parametric 

analysis are presented in Chapter 10. Finally, general and specific conclusions drawn 

from the research study along with recommendations for future research are included in 

Chapter 11.  

 

1.6.  ORIGINAL CONTRIBUTIONS  

This research introduces a series of fundamental investigations related to the early-age 

shrinkage and the role of different shrinkage mitigation techniques under field-like 

conditions. It explores the influence of a wide range of field-like conditions and the 

efficiency of available shrinkage mitigation strategies. Moreover, it proposes new 
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strategies to produce concrete with lower shrinkage and risk of cracking, yet with a 

smaller environmental impact. Specific original contributions of this dissertation include:  

1. Developing a large and comprehensive database on the early-age shrinkage of UHPC 

under a wide range of environmental conditions.  

2. Identifying the interaction mechanisms between different types of UHPC shrinkage 

under simulated field-like conditions. Specifically, it was revealed that: (i) 

autogenous and drying strains in UHPC specimens are dependent phenomena; (ii) 

autogenous strains under sealed conditions differ from that under drying conditions; 

(iii) applying the superposition principle without considering the effect of drying 

conditions will result in overestimating autogenous strains. 

3. Evaluating the performance and efficiency of different shrinkage mitigation 

techniques and their interaction with the surrounding environmental. Specifically, it 

was found that: (i) adequate external curing is essential for shrinkage mitigation 

methods to work properly; (ii) drying conditions jeopardize the effect of SAP as a 

shrinkage mitigating method; (iii) the efficiency of SRA admixtures is highly affected 

by the ambient relative humidity, (iv) under submerged conditions, initial early 

swelling results in very low net shrinkage strains; (v) the washout behaviour of SRA 

under submerged and drying/wetting cycles was documented for the first time; (vi) 

the washout of SRA can dismiss its effectiveness in mitigating shrinkage strains; and 

(vii) combining SRA and SAP has a strong potential for developing a new generation 

of high-performance shrinkage mitigation admixture with dual effect. 
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4. Developing for the first time an innovative shrinkage mitigation technique capable of 

improving the mechanical properties along with reducing shrinkage strains and 

solving the economical and environmental problems associated with waste concrete. 

More specifically: (i) the concept of self-retraining concrete was pioneered based on 

using partially hydrated cementitious material (PHCM); (ii) it was demonstrated for 

the first time that PHCM has a high potential for reducing shrinkage through 

providing internal passive restraining system; (iii) left-over and/or returned concrete 

can be used as PHCM, thus enhancing concrete sustainability and preventing waste 

and disposal; (iv) PHCM showed a hydration acceleration effect, which has a 

potential to replace conventional chloride-based accelerating admixtures, particularly 

in the pre-cast industry; (v) combining PHCM and SRA mitigated the drawbacks of 

SRA including delays in setting time and significant reduction in early-age 

compressive strength; and (vi) combining PHCM and SAP reduced porosity and mass 

loss during drying in UHPC. 

5. Implementing the use of wollastonite microfibers in UHPC as a replacement of 

cement, which has economical and environmental benefits along with enhancing the 

early-age properties. In particular, (i) wollastonite microfibers enhanced the early age 

compressive strength of UHPC mixtures incorporating SRA; (ii) wollastonite 

microfibers promote pore discontinuity, leading to lower mass loss, drying shrinkage 

and reduced SRA washing out; (iii) wollastonite microfibers act as passive internal 

restraint leading to lower shrinkage; (iv) at early-age, the low elastic modulus of the 

cementitious matrix increases the shrinkage restraining effect of wollastonite 

microfibers; and (v) wollastonite microfibers delay the coalescence of micro-cracks. 
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6. Advancing the promising use of artificial neural networks for predicting and 

estimating the shrinkage behaviour of different concrete mixtures that are used in 

concrete structures serving in different environments.  
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CHAPTER TWO 

 

EARLY-AGE PROPERTIES OF CONCRETE: OVERVIEW* 

 

The long-term performance of concrete structures is affected to a large extent by the 

properties and behaviour of concrete at early-age. However, the fundamental mechanisms 

affecting the early-age behaviour of concrete have not yet been fully understood. This is 

due to the various highly interrelated factors influencing it, and the complexity of testing 

techniques needed for its investigation. With modern developments in concrete 

technology, it has become essential to evaluate the influence of these interrelated factors 

and their implications for the service life of concrete structures. Thus, a more 

fundamental approach for investigating the early-age behaviour of concrete, along with 

more reliable testing techniques is required. This chapter provides a critical overview of 

research on the mechanisms that affect the properties of concrete and its performance at 

early-age.  It provides useful, concise and coherent information on the behaviour of 

concrete at early-age, which should enhance the understanding of the implications of 

such behaviour on the service life performance of concrete structures.  

 

2.1. INTRODUCTION 

Concrete is the most widely used construction material in the world. Its service life is 

considered synonymous to its mechanical strength, durability and serviceability. The 

selection of proper ingredients and mixture proportions are important to produce concrete 

      

*A version of this chapter has been published in the Journal of Construction Materials, ICE, Vol. 164, Issue 
CM2, April 2011, pp. 55-77.  
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that can meet strength and durability requirements. However, achieving a high quality 

concrete may be elusive if adequate attention is not paid to its early-age properties. For 

instance, the mechanical performance and long-term durability of concrete can be 

seriously compromised due inadequate curing or insufficient compaction during 

placement. Moreover, accelerated construction schedules aiming at economic gains have 

led to tragic failures during construction due to inadequate knowledge of the concrete 

behaviour at early-age (Oluokun et al., 1990). Therefore, a fundamental understanding of 

the behaviour of concrete at early-age is essential to assure safety during construction, as 

well as adequate durability and long-term properties.  

 There is no agreed upon definition of the early-age period for concrete; indeed it 

depends on the investigated property. In other words, the time required to achieve a 

certain level of a desired property is perceived as the early-age (Mehta and Monteiro, 

2006). Table 2-1 summarizes the early-age period as considered by different researchers 

(Mehta and Monteiro, 2006, RILEM, 1981, Kahouadji et al., 1997, Holt, 2001, 

Wongtanakitcharoen and Naaman, 2007, Brooks and Megat-Johari, 2001, Holt and 

Leivo, 2004, Altoubat, 2002, Østergaard et al., 2001, Khan, 1995, Oluokun et al.,1991, 

Nassif et al., 2003, Kovler et al., 1999, Pane and Hansen, 2002, Bissonnette and Pigeon, 

1995). Generally, the early-age is the first few hours or days after casting concrete that 

are characterized by two main processes: setting (progressive loss of fluidity) and 

hardening (gaining strength). During these processes, the fluid multiphase structure of the 

fresh concrete transforms into a hardened structure due to the progress of hydration 

reactions, leading to the development of mechanical properties, heat liberation and 

deformations (Pane and Hansen, 2002). This heat liberation and water loss, due to either 
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evaporation or consumption by hydration reactions, leads to internal/external 

deformations. Hence, the coupling between thermal and mechanical characteristics of 

early-age concrete is more critical compared to that in mature concrete. Furthermore, 

proper curing after placement is crucial to maintain a satisfactory moisture content and 

adequate temperature in concrete during this early stage so that the desired properties can 

develop later (Huo and Wong, 2006). 

Table 2-1: Definition of early-age period. 

Early‐age period  Field of study  Reference. 
First 1‐2 days  Concrete properties  (Mehta and Monteiro, 2006) 
Up to 48 hrs  Concrete properties  (RILEM, 1981) 

4 days after casting  Strength  (Kahouadji et al., 1997) 

Shrinkage 
(Holt, 2001, Wongtanakitcharoen 

and Naaman, 2007) 
Shrinkage and creep  (Brooks and Megat‐Johari, 2001) 

24 hrs after placing 
concrete 

Creep and relaxation  (Holt and Leivo, 2004) 
Shrinkage and creep  (Altoubat, 2002) 

5 days after casting 
Creep  (Østergaard et al., 2001) 

3 days after placing 
concrete 

Strength  (Khan, 1995, Oluokun et al.,1991) 

Shrinkage  (Nassif et al., 2003) 
Strength  (Kovler et al., 1999) 

Creep and relaxation  (Pane and Hansen, 2002) 
Up to 7 days after 

casting 
Creep  (Bissonnette and Pigeon, 1995) 

 

2.2. EARLY-AGE PROPERTIES 

 

2.2.1. Early-Age Thermal Properties  

Because of the significant role of the heat of hydration at early-age, basic thermal data for 

concrete are of a vital importance. These data are essential to predict the temperature and 

thermally induced stress and strain distributions within a concrete member in order to 
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avoid thermal cracking. Generally, the thermal properties of concrete reflect those of its 

constituents, i.e. the cement paste (including cement, water, chemical and mineral 

admixtures) and aggregates, and these depend on the mixture proportions and type of 

constituents (RILEM, 1981). 

2.2.1.1 Heat of Hydration  

The amount and kinetics of heat generated by cement hydration is an important parameter 

for predicting the temperature development and its distribution within a concrete 

member. The hydration of Portland cement is a highly exothermic chemical reaction 

(Neville, 1996). Usually, about one-half of the total heat of hydration is evolved between 

1 and 3 days after mixing cement with water (Oluokun et al., 1990). At early-age, the rate 

and total heat of hydration are mainly influenced by the type, total content, and chemical 

composition of cement, the ambient temperature and the admixtures used (Khan, 1995). 

Cements with a high Dicalcium Silicate (C2S) and/or Tetracalcium Aluminoferrite 

(C4AF) content can usually be considered as low heat cements, while cements high in 

Tricalcium Silicate (C3S) and Tricalcium Aluminate (C3A) typically exhibit high heat 

liberation (RILEM, 1981). Table 2-2 shows the typical heat of hydration for each of the 

main cement phases (McCullough and Rasmussen, 1999). For instance, the ASTM C150 

(Standard Specification for Portland Cement ) limited the C3S and C3A contents for low-

heat cement (Type IV) to 35% and 7%, respectively (ASTM, 2007). Furthermore, the use 

of mineral admixtures, such as blast furnace slag (BFS), fly ash (FA) and other 

supplementary cementing materials (SCM), in combination with ordinary portland 

cement (Type I) in a blended cement, have proven to be a cost-effective method for 

controlling the heat of hydration, which led to stopping the manufacture of the low heat 
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cement Type IV. The hydration process in blended cements is relatively more complex 

than that of the ordinary cement. It involves hydration reactions of the mineral additives 

(pozzolanic reactions) resulting in heat liberation, in addition to that of the portland 

cement hydration (Pane and Hansen, 2005). Generally, the total amount of heat liberated 

will depend on the pozzolanic activity and proportion of the added mineral (Snelson et 

al., 2008). For example, adding silica fume can accelerate the hydration of cement 

resulting in a higher rate of heat of hydration, while adding BFS usually exhibit an 

opposite trend (Alshamsi, 1997). 

Table 2-2: Heat of hydration of cement compounds [after (McCullough and 

Rasmussen, 1999), (Lea, 2004)]. 

Compound Heat of Hydration (J/g) 

C3S    (Tricalcium Silicate)  500‐520 
C2S    (Dicalcium Silicate)  260 
C3A   (Tricalcium Aluminate)  850‐910 
C4AF (Tetracalcium Aluminoferrite)  420 
C        (Free Lime)  1165 
MgO  (Magnesium Oxide)  850 

  

 The ambient temperature has a significant effect on the rate of hydration and heat 

liberation during early-ages. Figure 2-1 illustrates the effect of the temperature on the 

heat of hydration for different types of Portland cement. In hot weather, the hydration rate 

increases leading to more rapid heat generation. Conversely, in a cold climate, the 

hydration rate slows down and lower heat is liberated. Hence, rapid hydrating cements 

are used in such-conditions to avoid excessive set retardation and strength gain delays. 

Moreover, chemical admixtures that affect the kinetics of hydration reactions normally 

change the rate of heat liberation (Schindler, 2004). For instance, retarding agents slow 
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the rate of hydration reactions at early-age; consequently, the rate and amount of heat 

liberated will decrease. Conversely, accelerating admixtures increase the hydration rate. 

However, the total long-term heat generated usually remains almost unchanged (RILEM, 

1981). 
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Figure 2-1: Heat of hydration developed after 72 hours at different temperatures 

(Type I: Ordinary Portland cement, Type II: Moderate sulfate resistance portland 

cement, Type IV: Low heat portland cement) [adapted after (Neville, 1996)]. 

 

There are generally three commonly used methods for evaluating the heat 

liberated from the hydration of cement (Khan, 1995), namely: conduction calorimetry, 

heat of solution, and the adiabatic/semi-adiabatic method. Conduction calorimetry 

measures the rate of heat released under nearly isothermal conditions. This method is 

preferable for determining the heat of hydration at very early-ages (even less than 0.5 

hour). For the heat of solution method, the heat of hydration is determined by the 
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difference between the heat of solution of the dry cement and a hydrated cement paste 

immersed in acid, respectively. This method is not suited for early-ages because of the 

limited amount of heat being liberated. The adiabatic/semi-adiabatic methods measure 

the temperature rise under insulated conditions, which simulates curing conditions at the 

center of large concrete elements at early-ages. Generally, in the adiabatic method the 

temperature of the sample surrounding environment must be equal to the temperature of 

the concrete at any time. This condition requires that additional heat be supplied from the 

outside. In the semi-adiabatic method, a maximum heat loss from the hydration specimen 

less than 100 J/(h.K) is accepted. Therefore, the sample is insulated to minimize the rate 

of heat loss (RILEM, 1997). The rate of hydration can be obtained from the product of 

the specific heat, concrete density and the rate of change in the measured adiabatic 

temperature curve.  

2.2.1.2 Specific Heat Capacity  

The specific heat (Cp) of a material is the amount of heat required to change a unit mass 

of the material by one degree in temperature (Goldsmid, 1965). For concrete, Cp depends 

on the mixture composition, moisture content and ambient temperature. The specific heat 

of water is about 5 times greater than that of the un-hydrated cement and most aggregates 

(Khan, 1995). Thus, the moisture content of concrete has a major effect on its specific 

heat capacity at early-age as it changes significantly due to hydration and drying. A linear 

reduction of the specific heat with the degree of hydration was reported (Bentur, 2003). 

Generally, a decrease in the specific heat of concrete with age was consistently reported 

by several researchers, while the opposite trend was not reported (Bentur, 2003). 

However, there has been no general agreement concerning the magnitude of this decrease 
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due to differences in the testing procedures and materials used. Table 2-3 summarizes 

values of decrease of specific heat capacity with time reported by different researchers 

(RILEM, 1981, Brown and Javaid, 1970, Mounanga, 2004). Moreover, the specific heat 

of concrete was found to increase by about 3 % to 3.5 % per 10°C increase in temperature 

(RILEM, 1981). However, little attention has been paid to the effect of the curing 

conditions, including the ambient temperature and relative humidity on Cp. The curing 

condition is expected to have a significant effect on the specific heat of concrete as it 

directly affects the concrete moisture content and temperature. Therefore, a more 

comprehensive study of the effects of different curing conditions on the development of 

the specific heat of concrete at early-age is needed. 

Table 2-3: Values of specific heat investigated by different researchers. 

Age 
Initial 
Value 

Age 
Later 
Value

Units 
Reduction 

(%)* 
Sample  Reference 

3 days  1180 
10 
days 

1160  ‐1.70  Mortar 
(RILEM, 
1981) 

24 hrs  1122  ‐2.52 
6 hrs  1151 

7 days  888  ‐22.85 
Concrete 

24 hrs  1055  ‐1.95 
6 hrs  1076 

7 days  871 

J/kg per °C

‐19.05  
Mortar 

(Brown and 
Javaid, 
1970) 

6 hrs  2.6  24 hrs  2.35 
106 J/m3 
per K 

‐ 9.62  Paste 
(Mounanga, 

2004) 

            *Related to the Initial measured value. 

 

2.2.1.3 Thermal Conductivity   

The thermal conductivity (κ) is the rate of heat transmission across a unit cross-section 

area when there is a unit temperature gradient perpendicular to that area, and is usually 
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expressed as the ratio of the flux of heat to the temperature gradient (Goldsmid, 1965). It 

significantly influences temperature gradients, thermal strains, warping, and cracking in 

early-age concrete (Neville, 1996). A decrease in the thermal conductivity of concrete by 

about 10 to 40% with age within the first week of hydration was observed (Østergaard, 

2003). Conversely, other researchers stated that the thermal conductivity of concrete does 

not change significantly with age, and may be considered constant (RILEM, 1981, Khan, 

1995). The density, water content, temperature and mineralogical characteristics of 

aggregates (see Table 2-4) significantly influence the thermal conductivity of concrete 

(Khan, 1995). The thermal conductivity of cement paste is a resultant of the thermal 

conductivity of its constituents, including un-hydrated cement, hydration products, and 

that of the air and moisture contained in pores (Uysal et al., 2004). Air has a low thermal 

conductivity; while water has about 25 times the thermal conductivity of air and less than 

half that of the hydrated cement (Neville, 1996). Therefore, it is expected that the thermal 

conductivity changes during the early period of hydration as the concrete phases change 

(Khan, 1995). During this process, the air in pores is being partially displaced by water or 

moisture; which in turn reacts with cement and is replaced by hydrated cement, leading to 

greater thermal conductivity (Uysal et al., 2004). Therefore, variation in both the 

moisture content and density of concrete can drastically affect the thermal conductivity of 

concrete (Brown and Javaid, 1970). On the other hand, silica fume, latex, and 

methylcellulose were found to decrease the thermal conductivity of concrete (Xu and 

Chung, 1999, Fu and Chung, 1997). This is mainly due to the relatively low thermal 

conductivity of these admixtures. 
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Table 2-4: Thermal properties of concrete with different aggregate types [after 

(Mehta and Monteiro, 2006)]. 

Aggregate Type 
Thermal 

conductivity
(W/m.K) 

Thermal diffusivity
(m2/h) 

Coefficient of thermal 
expansion 

(microstrain /°C) 
Quartzite  3.5  0.0054  ≈ 12.0 
Dolomite  3.2  0.0047  ‐‐‐‐ 
Limestone  2.6‐3.3  0.0046  ≈ 6.0 
Granite  2.6‐2.7  0.0040  ≈ 8.0 
Rhyolite  2.2  0.0033  ‐‐‐‐ 
Basalt  1.9‐2.2  0.0030  ≈ 7.0 

 

There are mainly three common methods for measuring the thermal conductivity 

of concrete (Kook-Han et al., 2003), namely the two-linear parallel-probe (TLPP) 

method, the plane-heat-source (PHS) method, and the hot-guarded plate (HGP) method. 

The required sample preparation was the main obstacle for applying these methods to 

concrete at early stages. However, a new experimental device based on the basic 

principle of the TLPP method was recently developed. It showed reasonable reliability 

for measuring the thermal conductivity of concrete at very early-age (Kook-Han et al., 

2003). Moreover, Bentz (Bentz, 2007) demonstrate the applicability of the transient plane 

source method (TPS) for measuring the thermal conductivity of hardening concrete. 

These developments should provide useful tools for investigating the thermal 

conductivity of different concrete mixtures during early-ages and significant research 

work is still needed in this area.   

2.2.1.4 Thermal Diffusivity 

The thermal diffusivity (kd) of a material represents the rate at which temperature changes 

within its mass (Goldsmid, 1965). It measures the rapidity of heat propagation through a 
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material. It is an important property in problems involving non-steady state heat 

conduction. The thermal diffusivity of ordinary concrete generally depends on the 

aggregate type used (see Table 2-4) and water content (Mehta and Monteiro, 2006, 

Neville, 1996). Only limited and conflicting data are available on the thermal diffusivity 

of concrete at early-age. Constant thermal diffusivity values through the hardening 

process were observed, as well as increasing and decreasing trends (De Schutter and 

Taerwe, 1995). Generally, the thermal diffusivity is related to the thermal conductivity 

and specific heat by the following mathematical formula (Goldsmid, 1965): 

p
d C

k
⋅

=
ρ
κ

    (m2/s)            Eq. 2-1

Where, k  is the thermal diffusivity (m2
d /s), κ is the thermal conductivity (W/(m.K)), ρ is 

the bulk density (kg/m3), and Cp is the specific heat (J/(kg.K)). Table 2-5 summarizes 

values for the thermal diffusivity of concrete reported by various researchers (RILEM, 

1981, Bentur, 2003, Brown and Javaid, 1970). 

The conflicting data of thermal diffusivity of concrete can be attributed to 

differences in the testing methods, mixture proportions and constituents of tested 

concrete, and curing conditions. These factors have a significant effect on the degree and 

rate of concrete phase development, which can lead to diverse thermal characteristics. 

Even applying the above mathematical relationship (Eq. 2-1) is expected to give different 

thermal diffusivity values since it depends on the thermal conductivity and specific heat, 

which do not have a well-defined trend during early-age.  
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Table 2-5: Values of thermal diffusivity obtained by different researchers. 

Age  Value (m2/hr)  Trend  Sample  Reference 

1 day  0.00370 
7 days  0.00370 

Constant  Concrete 
(RILEM, 
1981) 

1 hr  0.00336 
7 days  0.00283 

Decrease (‐15.85%)  Concrete 

1 day  0.00255 
7 days  0.00296 

Increase (16.08%)  Mortar 

(Brown and 
Javaid, 
1970) 

0.85000 Within 
1000 hrs  1.05000

Increase (23.53 %)  Paste 
(Mounanga, 

2004) 

 

2.2.1.5 Coefficient of Thermal Expansion  

The coefficient of thermal expansion (CTE) of a material is the change in a unit length of 

the material per one degree of temperature change (Goldsmid, 1965). The CTE of 

concrete depends on different parameters, including the type and content of cement, 

aggregate type (see Table 2-4), w/c, age, temperature, and relative humidity (Østergaard, 

2003). The CTE of concrete can be estimated from the volumetrically weighted average 

of the coefficients of thermal expansion of its mixture components (Kada et al., 2002).  

At early-age, especially during the first ten hours, an important variation in the 

CTE of concrete occurs, and then it stabilizes (see Fig. 2-2). This variation is essentially 

caused by variation in the amount of water that is not yet chemically bound since water 

has a CTE up to 20 times greater than that of other concrete constituents (Kada et al., 

2002). Hence, it is believed that the CTE of concrete at early-age, when concrete 

typically has a higher free water content, is several times higher than that of the hardened 

concrete (Østergaard, 2003, Kada et al., 2002), and can be estimated to be 3 to 4 times 

that of the hardened concrete at the onset of setting, then decreases until the end of the 
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setting period to remain nearly constant thereafter (Kada et al., 2002). Table 2-6 

summarizes CTE values of concrete as a function of its age (RILEM, 1981, Khan, 1995, 

Bentur, 2003, Østergaard, 2003, Kada et al., 2002, Cusson and Hoogeveen, 2006, 

Sellevold and BjØntegaard, 2006). Generally, a decreasing trend of CTE with age was 

observed, however its amount is highly varied. This can be attributed to the ongoing 

hydration, change in primary constituents and surrounding conditions, which affect the 

amount of free water and proportion of concrete constituents at the testing age. 
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Figure 2-2: Evaluation of the coefficient of thermal expansion of concrete during 

hydration [adapted after (Kada et al., 2002)]. 
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Table 2-6: Values of coefficient of thermal expansion obtained by different 

researchers. 

Age  / °C × 10‐6 Reference 
4 hrs  70.00 

≥120 hrs  12.00 
(Østergaard, 2003) 

7 hrs  24.00 
≥ 13 hrs  10.00 

(Khan, 1995) 

1 day   6.00 
4 days  8.00 

(Cusson and 
Hoogeveen, 2006) 

Fresh concrete  20.00 
8‐24 hrs  15.00 
1 ‐6 days  12.00 

(RILEM, 1981) 

10‐24 hrs  ≈ 9.10 to 12.30 
1 day – 4 days  ≈ 8.50to 8.10 

> 4 days  ≈ 8.00 
(Bentur, 2003) 

8 hrs  ≈ 22.11 
12 hrs  ≈ 7.12 
≥ 1 day  ≈ 5.79 

(Kada et al., 2002) 

Before setting  20.00 
Final set  7.00
11 weeks  11.00
> 11 weeks  7.00

(Sellevold and 
BjØntegaard, 2006) 

 

In addition, during the hydration period, the accuracy of measuring small 

displacements in concrete is strongly dependent on its stiffness, which presents the main 

difficulty during the testing stage. On the other hand, dealing with a heterogeneous, 

porous and aging material such as concrete, presents other difficulties during the analysis 

stage. Thus, a special extensometer with a sufficiently low stiffness (1 GPa) was used to 

monitor the concrete strain at very early-age (Kada et al., 2002). This method allows 

monitoring the evolution of the CTE from the onset of concrete hardening. In order to 

maximize the accuracy of readings, an experimental approach to determine the 

coefficient of thermal expansion of concrete at early-age under stress-free and isothermal 
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conditions using high accuracy LVDTs was developed (Cusson and Hoogeveen, 2006). 

As a result, the evolution of CTE as a function of time after casting could be monitored. 

Nevertheless, it was not possible to accurately measure the CTE before the final setting. 

(Viviani et al., 2006) introduced a system of optical fiber sensors to monitor the evolution 

of CTE based on determine the kinetic parameters of hardening materials. However the 

measurement system allows rapid and efficient predictions of CTE under laboratory 

conditions, its potential for in-situ application is still need to be investigated (Viviani et 

al., 2006).  

 

2.2.2. Early-Age Mechanical Properties 

The mechanical properties of concrete at early-age depend, to a large extent, on the 

development of the hydrated cementitious microstructure as a function of the achieved 

degree of hydration. However, the rate of development differs from one mechanical 

property to another. Since the interrelations between these mechanical properties are 

affected by numerous factors such as the mixture proportions, w/c, age, curing 

conditions, rate of loading, it is difficult to formulate a unique relationship between such 

properties.  

2.2.2.1 Compressive Strength 

The compressive strength is considered as a key property of concrete. It provides a 

general indication of concrete quality. The gain in compressive strength is typically rapid 

at early-age, and then becomes slower at later ages. This early rapid increase in strength 

is directly related to the increase in the calcium silicate hydrate (CSH) gel/space ratio 

(Neville, 1996). Compressive strength is influenced by several factors; most notably the 



Chapter 2                                                                                                                                                        31 

w/c, type of cement, additives, and curing conditions (Østergaard, 2003). Rapid hydration 

of cement results in a higher degree of hydration and consequently higher early-age 

strength for a given w/c ratio (Mehta and Monteiro, 2006). 

 Curing conditions, i.e. the availability of moisture and the temperature profile, 

drastically affect the compressive strength gain. At a very early-age, the absence of 

moisture usually has a limited effect on the early strength gain, because concrete is still 

wet.  However, inadequate moisture curing during the first day after casting concrete 

could lead to noticeable strength loss at later ages (RILEM, 1981). Furthermore, a high 

initial curing temperature speeds up the hydration reactions and the formation of the 

hydrated cement paste structure at early-age. Thus, it enhances the early-age compressive 

strength of concrete. However, it decreases the strength at later ages due to the lower 

quality of hydration products microstructure formed at higher temperature (Kahouadji et 

al., 1997).  

 Pozzolanic materials can also contribute to the early-age strength through 

improving the particle packing density (filler effect) and densifying the aggregate-cement 

paste interfacial transition zone (Neville, 1996). In addition, the type and level of addition 

of pozzlans have a significant influence on the compressive strength development. For 

instance, concrete incorporating class C (high calcium oxide) fly ash generally develops 

higher early-age strength than that of concrete made with class F (low calcium oxide) fly 

ash (Kosmatka et al., 2002). Moreover, other pozzolanic materials such as blast furnace 

slag were found to slightly improve the early-age strength compared to its more 

significant contribution to the later strength, which can be ascribed to its slow hydration 

rate (Shan-bin and Zhao-jia, 2002). However, applying the crystal seed technology, i.e. 
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addition of hydrated micro-crystals, for this type of pozzolanic materials was found to 

improve its early strength contribution significantly (Prusinski, 2006). Generally, using 

pozzolanic materials may result in higher or lower early compressive strength of concrete 

depending on their type, addition rate, mineralogy, particle shape and fineness, and 

pozzolanic activity. 

 Several methods have been developed to predict the compressive strength of 

concrete at early-age. One of the well-known methods is the maturity or the “equivalent 

age” method, which is expressed as a function of the time and temperature of curing as 

follows: 

∑ ∆⋅−= tTTtM a )()( 0  Eq. 2-2

Where ∆t is the time interval, Ta is the average concrete temperature during the time 

interval ∆t, and T0 is the datum temperature (Mehta and Monteiro, 2006). 

 At early-ages, maturity is low, especially in the first two days after casting, and 

the relation between compressive strength and maturity is not fully linear. Thus, for 

accurate compressive strength prediction at early-age using the maturity concept, the heat 

of hydration should be considered during the calculation of maturity (Oluokun et al., 

1990). Figure 2-3 shows the average additional maturity due to the heat of hydration 

with respect to concrete strength (σc). Moreover, a more fundamental approach to 

evaluating the compressive strength development as a function of the degree of 

hydration, taking into account the w/c as a parameter, was introduced (De Schutter and  

Taerwe, 1996). Good agreement with the available data was obtained based on following 

formula: 
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Where  is the compressive strength at degree of hydration r,  is the 

compressive strength at a degree of hydration r=1, r

( )rfc ( 1=rfc )

o and a are parameters that depend on 

the cement type and w/c (De Schutter and  Taerwe, 1996).  
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Figure 2-3: Average additional maturity, (F-hr), due to hydration [adapted after 

(Oluokun et al., 1990)]. 

 

2.2.2.2 Tensile Strength   

Tensile strength is a key property of early-age concrete; it has a chief influence on the 

resistance of concrete to plastic shrinkage, thermal stresses during hydration, and early-

age loading and cracking which can affect the stiffness of the structure (Zhao, 1990). 

Measuring the early-age tensile strength of concrete is complicated since concrete is 
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viscous and inelastic at that stage (Abel and Hover, 1998). Several methods have been 

developed in an attempt to evaluate this property including uniaxial tensile test, splitting 

test, and flexural test. Results obtained by the uniaxial tensile test can be characterized as 

the real tensile strength of concrete. However, the specimen’s self-weight for the vertical 

testing position or the friction against the sub-base for the horizontal testing position 

induce a significant error (Østergaard, 2003). The splitting tensile test (Brazilian test) and 

the three point flexural test rely on linear elastic formulas with empirical correction 

factors, which make their applicability for early-age concrete questionable. Fracture 

mechanics testing methods, e.g. the crack mouth opening displacement (CMOD), have 

increasingly been applied to evaluate the early-age tensile strength (Østergaard, 2003).  

 The development of tensile and compressive strength is generally affected by 

similar factors. Thus, the tensile strength of concrete can be related to its compressive 

strength. This relationship is influenced by age, grading, type and density of aggregates, 

curing conditions, and the strength evaluation method. At early-age, the tensile strength 

tends to increase more rapidly than the compressive strength (RILEM, 1981, Bentur, 

2003, De Schutter and Taerwe, 1996). Conversely, some researcher found that the tensile 

strength increases at a lower rate than that of the compressive strength 

(Swaddiwudhipong et al., 2003), and that the ratio between the two properties decreases 

from 0.1 to 0.04 as the concrete matures. This discrepancy can be attributed to 

differences in the starting age of the test and quality of concrete. (Kasai et al., 1972) 

reported a higher increasing rate for the tensile strength compared to that of the 

compressive strength during the very early age up to around 0.5 day. Thereafter, the 
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tensile strength increasing rate became lower than that of the compressive strength, as 

shown in Fig. 2-4.   

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 0.5 1 1.5 2 2.5 3 3.5
Age (Day)

Te
ns

ile
/C

om
pr

es
si

ve
 S

tr
en

gt
h 

R
at

io
   

 
w/c=0.6 (Swaddiwudhipong et al., 2003)

w/c=0.4 (Swaddiwudhipong et al., 2003) 

w/c=0.45 (RILEM, 1981)

 w/c=0.4 (Kasai et al., 1972) 

w/c=0.6 (Kasai et al., 1972) 

 

Figure 2-4: Tensile / compressive strength of concrete versus age. 

 

The tensile strength can be expressed as a function of the compressive strength as 

follows (Neville, 1996): 

                              

n
ct fkf )(⋅=    Eq. 2-4 

Where  is the tensile strength,  is the compressive strength, and k and n are relation 

coefficients as shown in Table 2-7 (Zhao, 1990, ACI, 2005, Raphael, 1984, CEB-FIP, 

1991). This relationship was obtained for matured concrete. Yet, previous research has 

indicated its validity at early-ages and under various conditions (Zhao, 1990). 

tf cf
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Table 2-7: Different suggested values for k and n. 

 Direct tensile strength Modulus of rupture  Splitting tensile strength
k 0.5  0.7 0.3 0.95 6.7  0.33
n 0.5  2/3  2/3  2/3  0.5  2/3 

Ref. 
(Zhao, 
1990) 

(Raphael, 
1984) 

(CEB‐FIP, 
1991) 

(Raphael, 
1984) 

(ACI, 2005) 
(CEB‐FIP, 
1991) 

  

 The tensile strength evolution between the ages of 2 and 8 hrs after mixing 

concrete was investigated by (Abel and Hover, 1998). A dormant period of tensile 

strength gain was observed from the age of 2 hrs to 4 hrs at which tensile strength was 

infinitely low. This period was followed by a very rapid tensile strength development 

starting at the point of initial setting. However, it is difficult to monitor this dormant 

period for mixtures characterized by a delayed setting. On the other hand, the tensile 

strain capacity (strain at maximum stress) starts with a very high value before the initial 

setting and continues to decrease beyond that, reaching a minimum value later (Fig. 2-5) 

(Hammer et al., 2007).  
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Figure 2-5: a) Uniaxial tensile strength, and b) Uniaxial tensile strain capacity 

[adapted after (Hammer et al., 2007)]. 
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 Decreasing the w/c was reported to increase the early-age tensile strength 

development (Fig. 2-6) (Abel and Hover, 1998). Using shrinkage reducing admixtures 

(SRA) was found to have a non significant effect on the early-age tensile strength of 

concrete at different w/c as shown in Fig. 2-7 (D’Ambrosia et al., 2001, D’Ambrosia et 

al., 2002).  
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Figure 2-6: Tensile strength of concrete with different water/cement ratio [after 

(Abel and Hover, 1998)]. 
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Figure 2-7: Tensile strength of concrete with shrinkage reducing admixture 

[adapted after (D’Ambrosia, 2002)]. 

 

2.2.2.3 Modulus of Elasticity  

The modulus of elasticity is a principle property of concrete; it indicates the concrete’s 

capability to deform elastically and thus is related to its serviceability. Generally, it is 

obtained from the stress-strain curve at a certain stress level relative to the ultimate 

strength (Tia et al., 2005). This stress value is 40% of the ultimate strength according to 

ASTM C 469-94 (Standard Test Method for Static Modulus of Elasticity and Poisson's 

Ratio of Concrete in Compression) (ASTM, 1994), and about 33% in the British 

Standards (BS 1881: part 121:1983: Method for determination of static modulus of 

elasticity in compression) (BSI, 1983). On the other hand, researchers have tried to 

monitor the evolution of the elastic modulus at early-age using ultrasonic waves and to 

formulate a relationship between the measured dynamic modulus values ( ) and the dE
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static modulus ( ), especially for high-performance concrete. A relationship between 

the dynamic and elastic modules was given by (Mesbah et al., 2002): 

cE

                           2.311 )160065(109 +×= −
dc EE Eq. 2-5 

The proposed correlation was obtained based on experiential results, which makes it 

limited to the used aggregates and cement type. However, it indicates the possibility of 

establishing a relationship between the concrete’s dynamic and static modules of 

elasticity at early-age. 

 Several formulas have been proposed to express the modulus of elasticity of 

concrete at any age as a function of its compressive strength (Table 2-8) (Zhao, 1990, 

Ghali and Favre, 1994, Gardner and Zhao, 1993). However, the change in the concrete 

elastic modulus with respect to its compressive strength at early-ages is affected by 

several parameters, including the w/c, temperature; cement type, properties of aggregates, 

and curing conditions (Neville, 1996). Decreasing the w/c enhances the modulus of 

elasticity as a result of developing a denser microstructure (Østergaard, 2003). The age of 

concrete at the time of testing was not found significantly to affect the relationship 

between the modulus of elasticity and compressive strength as shown in Fig. 2-8 (Zhao, 

1990). This is due to the very rapid development rate of the modulus of elasticity of 

concrete at early-age compared to that of compressive strength. About 90% or more of 

the elastic modulus value is achieved within the first 24 hours after casting (Myers, 

1999). Consequently, the risk of cracking at early-age rises since the stress generated 

depends on the modulus of elasticity, whereas the resistance to cracking depends on the 

development of tensile strength (Atrushi, 2003). 
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Table 2-8: Modulus of elasticity as a function of compressive strength of concrete at 

any age. 

Equation  Reference 

⎟
⎠
⎞

⎜
⎝
⎛

+
′=

t
tftE o

c 85.04
57000)( 0  

Where E (t0) = modulus of elasticity at age t0,  = compressive strength 

(psi), and t = age of concrete. 
cf ′

(Ghali and 
Favre, 
1994) 

cmc fE ′+= 43003500  

Where Ec = time dependent modulus, = compressive strength (MPa) cmf ′

(Gardner 
and Zhao, 
1993) 

3/2)(0.3 cmc fE ′=   for MPa 27≤′cmf
3/1)(0.9 cmc fE ′=   for  MPa 27>′cmf

Where Ec = modulus of elasticity, cmf ′  = compressive strength at test 

time. 

( )28,,,28,, 2.112.008.08 cutcutcucutc ffffE ′′+′+′+=  

Where Ec,t = modulus of elasticity at age t,  = compressive strength 

at 28 days,   = compressive strength at age t days, and t ≥ 3 days. 

28,cuf ′

tcuf ,′

(Zhao, 
1990) 
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Figure 2-8: Modulus of elasticity to compressive strength ratio data classified by 

concrete age [after Zhao, 1990]. 
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2.2.2.4. Poisson’s Ratio   

Poisson’s ratio is the ratio between the lateral and longitudinal strains under the same 

uniaxial load (Neville, 1996). Limited research focused on the evolution of the Poisson’s 

ratio of concrete at early-ages. A review of previous studies showed that the Poisson’s 

ratio changes with time. It starts with a high value at early stage, then it decreases sharply 

until it reaches a low value during the first 24 hours, then it starts to increase again 

(Mesbah et al., 2002, Byfors, 1980). Conversely, other researchers stated that the 

Poisson’s ratio of concrete does not change significantly with age, and may be considered 

constant (Oluokun et al., 1991). Considering the assumption that the deformation of fresh 

concrete occurs without volume changes, the Poisson’s ratio can be taken equal to 0.5 

(De Schutter and Taerwe, 1996). Table 2-9 gives typical Poisson’s ratio values observed 

by different researchers (RILEM, 1981, Mesbah et al., 2002, Byfors, 1980, Oluokun et 

al., 1991). It was found that the Poisson's ratio does not change significantly with the 

increase of the cement content (Oluokun et al., 1991, Oluokun, 1989). Moreover, tests 

conducted on concrete specimens at different ages (1, 3, 7, 14, 28, 90 and 180 days) have 

shown an insignificant effect of the moisture content and ambient temperature on 

Poisson’s ratio (Downie, 2005). Generally, the Poisson’s ratio can be evaluated as a 

function of the degree of hydration as follows: 

( ) rerr ⋅−⋅+⎟
⎠
⎞

⎜
⎝
⎛ ⋅

⋅= 105.0
2

sin18.0 πν Eq. 2-6

Where ( )rν  is the Poison’s ratio at a degree of hydration r (De Schutter and Taerwe, 

1996). 
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Table 2-9: Poisson’s ratio values. 

Initial value  Minimum value*  Reference 
0.23  0.14  (Mesbah et al., 2002) 
0.40  0.20  (RILEM, 1981) 
0.48  0.13  (Byfors, 1980) 

0.19  (Oluokun et al., 1991) 
               *Minimum measured value during the first 24 hr 

 

2.2.3. Early-Age Shrinkage of Concrete  

Shrinkage of concrete is the main cause for several types of cracks which influence the 

serviceability and durability of concrete. Shrinkage can be divided into two main types: 

early-age which represents shrinkage during the first 24 hours after the first contact 

between cement and water (Holt, 2001, Wongtanakitcharoen and Naaman, 2007, Khan, 

1995), and long-term shrinkage, which extends beyond the first day (Holt, 2001). The 

total shrinkage of concrete must be considered as the summation of both. However, there 

is no clear relationship between the magnitudes of these two types of shrinkage. At rapid 

drying conditions, the magnitude of the early-age shrinkage can easily exceed that of the 

long-term shrinkage. Figure 2-9 illustrates this behaviour for different environmental 

conditions (Holt, 2005). Due to its low strength and strain capacity at early-age, concrete 

is very sensitive to internal stresses. Thus, any induced tensile stress greater than the 

tensile strength will cause either cracks comparable to those that occur at later ages, or 

internal and microscopic cracks which can be reactivated at later ages, causing serious 

problems (Holt and Leivo, 2004). Stresses that lead to early-age cracking are typically the 

result of a combination of three types of deformation: thermal dilation, drying shrinkage, 

and autogenous shrinkage. 
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Figure 2-9: Accumulation of early-age and long-term shrinkage, with various curing 

environments (Wind = 2 m/s (4.5 mph), dry = 40% RH, wet = 100% RH) [after 

(Holt, 2005)]. 

 

2.2.3.1 Thermal Dilation 

Thermal dilation is induced by inadequate heat dissipation during the cement hydration 

and cooling of concrete. It can be observed as an expansion and/or contraction 

deformation. During the hydration of cement at early-age, the liberated heat increases the 

concrete temperature causing thermal expansion. As the hydration reactions reach its 

peak, the rate of heat liberation decreases and concrete starts to dissipate heat and cools 

down, causing contraction or thermal shrinkage (Holt, 2001). In massive concrete 

however, the difference in the rate of heat dissipation between the interior and exterior 

concrete can induce a thermal gradient, leading to thermal strains, and associated stresses 

that can cause cracking (Holt, 2001, Neville, 1996). Because the coefficient of thermal 
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expansion varies during early-ages, the traditional method of multiplying the temperature 

change by an average value of the coefficient of thermal expansion is not accurate for the 

evaluation of the early-age thermal dilation. Other approaches including the Poly-

isothermal test and Saw-toothed test were introduced (Bjøntegaard and Sellevold, 2001). 

In these methods, the tested specimen is subjected to a realistic temperature history, 

comprising of temperature steps. The basic idea behind these new approaches is that 

thermal dilation can be measured directly during each temperature step.  Therefore, 

thermal dilation can be separated from other early-age deformations. 

2.2.3.2 Drying Shrinkage 

Drying shrinkage is the reduction in the concrete volume due to moisture loss at constant 

temperature and relative humidity.  It is mainly affected by the total moisture loss, rate of 

evaporation and bleeding. If the bleeding rate is higher than the evaporation rate, drying 

shrinkage will not occur since the excess water will be sufficient for further evaporation 

and can act as a curing layer (Holt, 2001, Holt, 2005). When the reverse behaviour 

occurs, the extra water required for evaporation will be extracted from the internal pores. 

Losing water from capillary pores at early-age will cause plastic shrinkage and 

subsequent internal stresses, leading to early-age surface cracks (Khan, 1995). The 

particle size distribution and quantity of cement, w/c and aggregates have an essential 

role in controlling bleeding, which in turn controls the mechanism of drying shrinkage on 

the macro-level. However, it is believed that the drying shrinkage mechanism on the 

nano-level is a combination of four well-known mechanisms (Bentur, 2003), namely: 

surface free energy, capillary tension, movement of interlayer water, and disjoining 

pressure. This combination was found to be highly affected by the relative humidity of 
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concrete (Bentur, 2003), which varies drastically during early ages. In addition, it should 

be noted that the measured shrinkage strain of drying concrete specimens under 

isothermal conditions is not representative of the net drying shrinkage. This measured 

shrinkage includes drying shrinkage and shrinkage due to cement hydration (so-called 

autogenous shrinkage), especially at low w/c concrete mixtures. 

2.2.3.3 Autogenous Shrinkage 

Autogenous shrinkage of concrete can be defined as the macroscopic volume change that 

occurs after the initial setting as a result of the withdrawal of moisture from capillary 

pores to continue cement hydration reactions (Mihashi and Leite, 2004). Chemical 

shrinkage, which is the reduction in the volume of hydration products compared with that 

of the reacting constituents, can be considered as the main driving mechanism behind 

autogenous shrinkage (Tazawa, 1999). However, autogenous shrinkage is considered as 

an external volume change (apparent volume change), while chemical shrinkage is 

considered as an internal volume reduction (absolute volume change), as shown in (Fig. 

2-10) (Holt, 2001, Mihashi and Leite, 2004, Tazawa, 1999, Esping, 2007).  
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Figure 2-10: Chemical shrinkage and autogenous shrinkage of concrete[adapted 

after Mihashi and Leite (2004)]. 

  

 During early-age, concrete undergoes three phases including particulate 

suspension, skeleton formation, and initial hardening (Fig. 2-11). At the initial phase, 

concrete is still plastic without a permanent internal structure, and autogenous shrinkage 

is equivalent to chemical shrinkage (part AB in Fig. 2-11). Consequently, any applied 

stresses will cause movement of the body. A few hours after casting, the development of 

a skeleton starts due to the formation of hydration products. During this stage, the setting 

will occur, and concrete can resist some of the chemical shrinkage. At this moment, the 

so-called mineral percolation threshold, autogenous shrinkage starts to diverge from 

chemical shrinkage (part BC in Fig. 2-11). Finally, the hardening stage starts and 

autogenous shrinkage becomes increasingly restrained due to stiffening of the cement 

paste (part C in Fig. 2-11) (Holt, 2001, Bentur, 2003, Tazawa, 1999, Esping, 2007). 
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Figure 2-11: Autogenous and chemical shrinkage during different stages, as a 

function of degree of hydration [adapted after (Holt, 2001, Esping, 2007)]. 

 

Measuring autogenous shrinkage should start as soon as possible after mixing the 

concrete since there is no general agreement on the starting point of autogenous 

deformation (the time zero (t0)) (Esping, 2007). While autogenous shrinkage has been 

known for a long time, it’s practical importance and effects have only been recognized 

with the development of low w/c concrete mixtures (w/c below 0.42) (Aitcin, 2003). 

Autogenous shrinkage can have nearly the same value as drying shrinkage for low w/c 

concrete under normal condition (20°C and RH=50%) (Tazawa and Miyazawa, 1995).  

Several methods for measuring the early-age shrinkage of concrete have been 

reported by several researchers. It is believed that the difference between the various 

measuring methods is largely responsible for variations in results. Table 2-10 

summarizes the common methods for measuring early-age shrinkage and their main 
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features (Tazawa, 1999, Bjøntegaard et al., 2004, Lee et al., 2003, Termkhajornkit et al., 

2005, Hansen and Jensen, 1997, Lokhorst, 1999, Glišic and Simon, 2000, Jensen and 

Hansen, 1995, Østergaard and Jensen, 2003, Gagné et al., 1999, Lura and Jensen, 2007, 

Slowik et al., 2004, Gary-Ong and Myint-Lay, 2006, Igarashi and Kawamura, 2002, Lura 

et al., 2007, Turcry and Loukili, 2006). 

Table 2-10: Methods used for measuring shrinkage at early-age. 
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displacement  tra‐ 
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(Bjøntegaard et 
al., 2004) 

100 x 100 x 400  Prism 
LVDTs & Embed‐ 
ded strain gauge 

(Lee et al., 2003) 

Diameter:125 
Height: 250 

Cylinder 
Embedded strain 
gauge 

(Termkhajornkit 
et al., 2005) 

270 x 270 x 100  Slab 
Vertical cast‐in 
bars & LVDTs 

(Tazawa, 1999) 

Diameter:100 
Length: 375 

Flexible 
tube 

‐ LVDTs 
(Hansen and 
Jensen, 1997) 

150 x 150 x 375  Beam 
‐ Horizontal cast‐
in bars & LVDTs 

(Lokhorst, 1999) 
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(Glišic and Simon, 
2000) 

To
ta
l  100 x 100 x 
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Table 2-10 Cont’d: Methods used for measuring shrinkage at early-age. 
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‐ Automated 
image  analysis 

(Lura et al., 2007) 

Pl
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70 x 70 x 280  Prism 

Co
nc
re
te
 

‐ Laser sensors 
(Turcry and 
Loukili, 2006) 

40 x 40 x 160  Prism 

M
or
ta
r 

‐ Laser sensors  (Tazawa, 1999) 

Diameter:30 
Length: 300 

Corrugated 
tube 

‐ Inductive 
displacement    
   transducer 

(Jensen and 
Hansen, 1995) 

Diameter:30 
Length: 350 

Corrugated 
tube 

‐ Thermal 
comparator    
   sensor 

(Østergaard and 
Jensen, 2003) 

Diameter:76 
Length: 305 
Membrane 

thickness:0.64 

Flexible 
cylindrical 

latex 
membrane 

‐ Dual‐
compartment cell 

(Gagné et al., 
1999) 

Polyurethane 
membrane with 
thickness 0.04 

‐‐‐‐ 
‐ Buoyancy 
method 

(Lura and Jensen, 
2007) 

A
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og
en

ou
s 

30 x 30 x 90  Prism 

Ce
m
en

t P
as
te
 

‐ Fiber optical 
sensors 

(Slowik et al., 
2004) 

 

2.2.3.4 Factors Affecting Early-Age Shrinkage 

The parameters that affect early-age shrinkage of concrete differ according to the driving 

forces behind each shrinkage mechanism. Drying shrinkage is mainly attributed to 

environmental conditions. Thus, problematic factors are those that affect the rate of 
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evaporation, i.e. relative humidity, air velocity, air and concrete temperature (Esping, 

2007). Additionally, the materials used in concrete have a parallel effect through 

controlling the quantity and duration of bleeding and setting time (Holt and Leivo, 2004). 

On the other hand, autogenous shrinkage is influenced by the type and properties of the 

binder, mixture proportions, and admixtures that can refine the pore structure. Although 

the early-age autogenous shrinkage is fully attributed to chemical shrinkage, it may 

behave differently than chemical shrinkage with respect to some factors especially those 

that affect the setting time and formation of a restraining structure (Esping, 2007). 

Generally, the early-age shrinkage is affected by the following parameters: 

 

a) The binder type, content and rate of hydration: A higher rate of hydration results in 

higher autogenous and drying shrinkage due to the decreased volume of hydration 

products relative to their constituents and the higher water consumption, which in turn 

reduces bleeding and increases the concrete temperature (Bentur, 2003, Holt, 2005, 

Tazawa, 1999, Esping, 2007, Topçu and Elgün, 2004). 

b) The aggregate content: aggregates reduce shrinkage, and act as an internal 

restraint. It also reduces the volume of cement paste, leading to lower chemical shrinkage 

(Holt, 2001, Esping, 2007). Furthermore, light-weight aggregates with high absorption 

were found to reduce autogenous shrinkage as it acts as an internal curing source (Nassif 

et al., 2003, Mihashi and Leite, 2004, Tazawa, 1999, Zhutovsky et al., 2002, Duran-

Herrera et al., 2007). 

c) The water content: it has a major role during early-age shrinkage through 

controlling the amount of free water, and the development of the microstructure and pore 
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system, which consequently affects the capillary tension and meniscus development 

(autogenous shrinkage).  

d) Admixtures: a shrinkage reducing admixture (SRA) can decrease the surface 

tension of the capillary pore solution resulting in a reduction of the capillary tension. It 

was found to reduce both autogenous and drying shrinkage strains (Bentur, 2003, 

D’Ambrosia, 2002, Holt, 2005, Esping, 2007, Lura et al., 2007, Bentza et al., 2001). 

About 60% reduction in the early-age unrestrained shrinkage due to an SRA dosage of 1-

2% by mass of the cement was observed within the first week after casting concrete 

(D’Ambrosia, 2002). SRA has a more significant effect at low w/c as shown in Fig. 2-12.  

Moreover, SRA was found to induce early expansion after the time of set, maintain a 

higher relative humidity level in the concrete, and to facilitate water loss from smaller 

pores, which results in reducing the concrete shrinkage as discussed by (Weiss et al., 

2008).  Greater early-age shrinkage was observed with the addition of superplasticizer 

(SP) as a result of improving cement dispersion, which consequently increases the rate of 

hydration reactions (Holt, 2005, Esping, 2007). In addition, it was pointed out that 

excessive SP dosage would delay the setting time and result in higher early-age drying 

shrinkage (Holt and Leivo, 2004). Scattered data on the effect of using air entraining 

admixtures on the early-age shrinkage were observed (Hammer and Fosså, 2006). 

However, the general trend was an increase of the autogenous shrinkage rate before it 

diverged from chemical shrinkage, and then it decreased thereafter. Conversely, air 

entraining admixtures were found by others to cause a considerable decrease in early-age 

shrinkage (Kronlof et al., 1995).  
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Figure 2-12: Free shrinkage with different w/c and 1% shrinkage reducing 

admixture [adapted after (D’Ambrosia, 2002)]. 

 

e) Pozzolanic materials: the type, fineness, and percentage of cement replacement are 

the main parameters controlling the effect of pozzolanic materials on early-age shrinkage. 

Silica fume was found to increase the autogenous shrinkage significantly due to refining 

the pore structure of concrete (Tazawa, 1999, Wiegrink et al., 1996). Similar behaviour 

was observed for ground granulated blast furnace slag (Lee et al., 2006, Lim and Wee, 

2000). A high level of cement replacement by metakaolin (MK) (10-15%) was found to 

reduce both autogenous and drying shrinkage at early-age. This reduction may be a result 

of the dilution effect of reducing the cement content (Brooks and Megat-Johari, 2001, 

Kinuthia et al., 2000). Conversely, Gleize et al. (Gleize et al., 2007) observed an increase 

in autogenous shrinkage due to MK addition, which was interpreted as a result of the 

heterogeneous nucleation of hydration products on the surface of MK particles. Fly ash 
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was also found to reduce the autogenous shrinkage of concrete (Lee et al., 2003, 

Termkhajornkit et al., 2005). In contrast, it was reported that very fine fly ash had a 

similar effect to that of silica fume (Tazawa, 1999).  

f) Curing conditions: the curing method, duration and temperature have a significant 

effect on early-age shrinkage. Shrinkage was found to increase with increasing curing 

temperature during the first 5 to 10 hours after casting, and then it decreased with 

temperature increase. This may be attributed to an increase in moisture loss at high curing 

temperature, leading to an increase in the development of plastic shrinkage (Zhao, 1990). 

Additionally, moist curing with burlap and/or cotton mats was found to effectively reduce 

the early-age shrinkage and to increase water retention compared with other curing 

methods (Nassif et al., 2003, Huo and Wong, 2006). Furthermore, the longer the curing 

period, the lower was the shrinkage deformation (Tazawa, 1999). 

 

2.2.3.5 Compensating for Early-Age Shrinkage 

Different methods have been developed to compensate for and/or reduce early-age 

shrinkage. Table 2-11 summarizes some of these different methods (Mehta and 

Monteiro, 2006, Wongtanakitcharoen and Naaman, 2007, Brooks and Megat-Johari, 

2001, Bentur, 2003, D’Ambrosia, 2002, Holt, 2005, Mihashi and Leite, 2004, Tazawa, 

1999, Esping, 2007, Lura et al., 2007, Duran-Herrera et al., 2007, Bentza et al., 2001, 

Kronlof et al., 1995, Kinuthia et al., 2000, Sule and van Breugel, 2001, Weiss, 1999). 

However, the shrinkage of concrete cannot be completely avoided; it will occur at least 

due to the volume reduction resulting from the hydration of cement and water (chemical 

shrinkage also called Le Chatelier's contraction).  
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Table 2-11: Shrinkage compensating methods. 

Method  Effective  parameter  Action  Reference 
Low and moder‐ 
ate heat cement 

High  C2S  content  & 
formation of ettringite  

Expansion  (Tazawa, 1999) 

Expansive 
cement (Type K) 

Formation of ettringite 
Hydration  of  hard‐
burnt CaO. 

Expansion and 
chemical pre‐
stress level 

(Mehta and 
Monteiro, 2006) 

Shrinkage 
reducing 
admixture 

Reduce surface tension 
of pore solution. 

Reduce capillary  
tension 

(Bentur, 2003, 
D’Ambrosia, 2002, 
Holt, 2005, Esping, 
2007, Lura et al., 
2007, Bentza et al., 

2001) 

Fiber  High elastic modulus. 
Resist exceeded   
tensile stress 

(Wongtanakitcharoen 
and Naaman, 2007, 
Kronlof et al., 1995) 

Internal curing 

Soaked lightweight agg
Water soluble, 
chemicals (self‐curing 
admixture), Smart 
parafine microcapsule, 
Superabsorbent 
polymer. 

Store water for 
internal curing, 
increase water 
retention, 
Mitigate rapid 
temperature   
change. 

(Mihashi and Leite, 
2004, Esping, 2007, 
Duran‐Herrera et al., 

2007) 

Increase w/c  Free water. 

Sufficient  
amount of water 
for hydration   
and bleeding 

(Tazawa, 1999) 

Reinforcement 
schemes 

Light  reinforcement 
bars. 

Resist exceeded   
tensile stress 

(Sule and van Breugel, 
2001, Weiss, 1999) 

Additive 

Expansive  additive, 
gypsum,  fly  ash, 
metakaolin,  water 
repellent powder. 

Hydration   
product with  
tendency to  
volume increase 

(Brooks and Megat‐
Johari, 2001, Tazawa, 
1999, Kinuthia et al., 

2000) 
 

2.2.4. Early-Age Creep of Concrete 

Creep is a complex phenomenon, particularly at early-age, due to the rapid changes in 

concrete properties (Khan, 1995) and the difficulty to clearly distinguish between 

instantaneous elastic strains and early-age creep (Neville, 1996). The total creep, either 
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under tensile or compressive load, is the sum of two main components: basic creep 

(without external moisture loss), and drying creep (Pickett effect), which is an additional 

creep due to moisture loss during loading. However, the tensile creep has greater 

importance at early-age when the crack potential is to be determined (Altoubat, 2002, 

Bissonnette and Pigeon, 1995). 

 The mechanism of early-age creep is not completely understood. Several 

mechanisms have been proposed including real and apparent mechanisms. Real 

mechanisms, involving the viscous flow theory, plastic flow, and seepage of gel water, 

are related to cement hydration and can be considered as material properties (Bentur, 

2003). Apparent mechanisms are associated with micro-cracking and stress-induced 

shrinkage (Altoubat, 2002). Generally, creep is a combination of these two categories of 

mechanisms. Several mathematical formulas were proposed to predicate and model early-

age creep, see (Springenschmid, 1998). However, the accuracy of these formulas in 

capturing and simulating the early-age behaviour of concrete is still questionable and 

need more investigation (Springenschmid, 1998).  

 Creep is mainly affected by the mixture composition of concrete, loading age and 

duration, water migration, temperature, moisture conditions, and the stress level (Neville, 

1996).  The earlier the loading age, the higher the creep strain values due to the low 

modulus of elasticity of concrete (Bissonnette and Pigeon, 1995, Neville, 1996). 

Furthermore, no relationship between the applied stress and the resultant creep strain was 

found for specimens loaded at an age of 24 hours (Østergaard et al., 2001). Increasing the 

temperature was found to enhance the early-age creep rate, which is contrary to its effect 

at later ages (Neville, 1996). However, high temperature is expected to reduce the early-
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age creep value as a result of accelerating the hydration process (Springenschmid, 1998). 

Moreover, the early-age creep of restrained concrete was found to be inversely related to 

the w/c (Altoubat, 2002). 

 Generally, mineral additives such as fly ash, metakaolin and slag were found to 

reduce the tensile creep and relaxation of concrete at early-age (Brooks and Megat-

Johari, 2001, Pane and Hansen, 2002, Li et al., 2002), while silica fume showed an 

opposite trend (Kovler et al., 1999, Bissonnette and Pigeon, 1995, Pane and Hansen, 

2002, Li et al., 2002). The spherical shape and smooth surface of un-reacted silica fume 

particles at early-age were suggested as a reason for this behaviour (Kovler et al., 1999).  

 Autogenous shrinkage was found to affect basic creep significantly, especially at 

low w/c (Pane and Hansen, 2002, Li et al., 2002). Autogenous shrinkage is a material 

property that is not dependent on the applied stress. Thus, it should be subtracted from 

the total creep strain (see Eq. 2-7) (Lee et al., 2006). Consequently, the measured creep 

can be categorized into real creep (excluding autogenous shrinkage), and apparent creep 

(including autogenous shrinkage) (Fig. 2-13). One interesting observation is that SRA 

was found to reduce the total tensile creep as well as the early-age shrinkage, but to a less 

extent. This can be a benefit if creep is considered to offset the induced tensile stress due 

to shrinkage (D’Ambrosia, 2002). 

)(
),(),(
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t

tttt
ttJ autogenoustotal

real ′

′−′
=′

σ
εε

Eq. 2-7

Where, is the real compliance function, )),( ttJ real ′ ,( tttotal ′ε  is the total strain of a 

concrete specimen measured from the basic creep test at time t  caused by an amount of 
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constant stress applied at age t′ , ),( ttautogenous ′ε  is the autogenous shrinkage strain at time 

, t σ  is the total applied stress. 

 

Figure 2-13: Apparent and real creep compliance function [after (Lee et al., 2006)]. 

  

 Furthermore, the sustained mechanical loading at early-age seems to increase the 

degree of hydration during early-age creep (Tamtsia et al., 2004). It was also shown that 

biaxial sustained compressive load would promote hydration reactions (Liu et al., 2002). 

Enhancing the hydration process involves the formation of more calcium silicate hydrate 

(CSH) gel, which gradually carries load leading to stress reduction in the originally 

loaded CSH gel and consequently reduced creep at early-age (Springenschmid, 1998). 
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2.3. MODELS FOR SIMULATION AND ANALYSIS OF EARLY-AGE 

PROPERTIES 

Several complex and interacting factors affect the early-age properties of concrete, but 

the hydration process is generally considered as the main indication of early-age 

behaviour. Hydration of cement is a progressing system of reactions concurrent with a 

nonlinear temperature rise, thermal expansion, micro-structural changes, water loss and 

autogenous deformation. Therefore, developing accurate models for the early-age 

behaviour of hydrated cement should be based on an accurate simulation of the cement 

hydration process. Several analytical models for simulating the cement hydration process 

have been developed. According to the scale at which the hydration process is described, 

these models were classified into micro-scale, meso-scale, and macro-scale models 

(Mihashi and Leite, 2004). In addition, a digital-image-based model using the so-called 

“cellular automata” was introduced to study the hydration process, formation of 

microstructure, growth of void structures, strength development, and shrinkage (Bentz 

and Garboczi, 1993). However, this model was not able to simulate the hydration process 

at different material scales. Therefore, a multi-scale modeling approach was introduced to 

overcome this limitation, where separate models at different material scales are 

developed and then connected with each other (Bentz and Garboczi, 1996). This can 

better characterize for the hydration process of cement versus time. 

Several other models have been introduced to predict the early-age concrete 

deformation, including thermal, autogenous, drying, and creep deformations. The basic 

concepts for some of these models that deal mainly with various types of early-age 

deformations are reviewed hereafter.  
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A thermo-dynamic model was proposed to describe the autogenous deformation 

of hardening cement paste. This model was based on reaching thermo-dynamic 

equilibrium in the capillary pore system, which continuously changes as a result of the 

hydration progress and autogenous shrinkage. The pore water surface tension was 

considered as the main reason for autogenous shrinkage (Koenders and van Breugel, 

1997). However, the formula used to evaluate autogenous shrinkage is only valid for low 

relative humidity (< 40%). Moreover, a macro-scale model to explain autogenous 

shrinkage of cement paste was introduced (Hual et al., 1995). In this model, microscopic 

stresses due to capillary depression were considered as the main driving force for 

autogenous shrinkage. This model was further enhanced to estimate autogenous 

shrinkage at the scale of hydrating grains (Hual et al., 1997). Likewise, a multi-scale 

model for early-age autogenous shrinkage was proposed (Pichler et al., 2007). It 

demonstrates the role of capillary depression and ettringite formation pressure on 

autogenous shrinkage.  

On the other hand, the Kelvin chain model was modified to simulate basic creep 

in early-age concrete (De Schutter, 1999). The modified Kelvin chain model units have 

variable parameters that vary depending on the degree of hydration. As a result, the 

model was able to simulate the visco-elastic behaviour of early-age concrete and a good 

agreement with experimental results was observed. More recently, a hygro-thermo-

chemo-mechanical model for early-age creep was introduced. In this model, creep was 

described based on the micro-pre-stress-solidification theory, which was modified to take 

into account the effect of relative humidity on the cement hydration rate and the 

associated hygro-thermal phenomena (Gawin et al., 2006). The good agreement with 
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experimental data indicates a potential of this model to analyze creep phenomena at 

different ages and environmental conditions. 

Generally, a challenge remains as to how to deal with the nonlinear ageing 

behaviour of concrete, and how to characterize the behaviour of its constituents at the 

microscopic and nano-scale levels under field mechanical and environmental conditions. 

Generally, a smart model which can predicate and demonstrate the interaction effects 

between different types of deformations (i.e. shrinkage and creep) during early-age of 

cement-based materials still remain to be developed. 

 

2.4. CONCLUDING REMARKS 

It is widely accepted that the early-age period of concrete has a substantial influence on 

the long-term service life performance of concrete structures. During early-age, 

continuous and rapid changes in the concrete microstructure and constituents proportions 

(un-hydrated and hydrated cement, water content, etc.) take place. Consequently, the 

early-age characteristics of concrete, including thermal, mechanical and deformation 

properties, can have different development rates, relationships and values compared to 

that of the later age properties. Moreover, early-age properties are generally more 

sensitive to the curing regime (i.e. temperature and relative humidity), early-age loading 

rate and value, and the use of chemical and mineral admixtures. Several models for the 

early-age behaviour of concrete have been proposed. It appears that simulating the 

cement hydration process on a multi-scale level is a useful modeling method for 

predicting the early-age behaviour as it captures the microscopically ageing cement-based 

materials behaviour.  
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For a better understanding and control of the early-age properties of cement-based 

materials, especially new and emerging materials such as ultra-high performance 

concrete, the following remarks are noteworthy: 

1) Optimization of the binder composition (e.g. use of SCMs) can allow achieving 

superior early-age performance along with avoiding various divergent effects on 

early-age properties. 

2) There is a need for improving measuring techniques to capture the early-age 

properties precisely as early as possible and for developing standard testing methods 

to avoid conflicting data of various non-standardized test methods. 

3) Early-age properties of concrete should be investigated under simulated field-like 

conditions to capture the real behaviour of cement-based materials and to develop 

more realistic predictive models and relationships. 

4) Relationships between early-age concrete properties are greatly affected by the 

quality of concrete, which is influenced by several factors including the mixture 

proportions, constituent quality, ageing, etc. Hence, existing formulas for these 

properties in the literature should be calibrated to the actual concrete mixture and 

exposure conditions. 

5) Mitigating the cracking of concrete should be studied in a holistic manner including 

thermal strains, drying and autogenous shrinkage.   

6) Coupling new modeling tools such as artificial intelligence with existing empirical 

models may facilitate capturing the interactions between different early-age 

properties of concrete. 
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CHAPTER THREE 

 

INTERACTION MECHANSIMS OF EARLY-AGE 
SHRINKAGE OF UHPC UNDER SIMULATED FIELD-LIKE 

DRYING CONDITIONS* 

 

This chapter provides a fundamental investigation for the evaluation of different early-

age shrinkage of UHPC and their interaction mechanisms under field-like conditions.  

UHPC specimens were exposed to different simulated field-like conditions including 

temperatures, namely, 10, 20 and 40°C and relative humidity (RH) ranging from 40 to 

80%. 

 

3.1. INTRODUCTION 

Ultra high-performance concrete (UHPC) represents a leap development in concrete 

technology. Its high strength and enhanced durability make it the ultimate building 

material for the construction, strengthening and rehabilitation of bridges and other 

transportation infrastructure (Tang, 2004). However, UHPC is affected by high self-

desiccation and autogenous shrinkage due its low water-to-binder ratio (w/b) (Ichinomiya 

et al., 2005). Moreover, exposure to drying conditions and moisture loss during early-

ages are of particular concern in thin applications of UHPC, such as in slabs on grade, 

repairs and overlays, where the exposed surface area per unit volume of material is high.  

Contrary to conventional drying, self-desiccation is an internal drying (without 

mass loss) of capillary pores as a result of water consumption by the hydration of cement 

*A version of this chapter was published online in Materials and Structures. Some parts of this chapter 
were also published in the Eighth International Conference on Short and Medium Span Bridges, 
Niagara Falls, Ontario, Canada, (2010). 
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(Aïtcin, 1999). Moreover, the hydration of cement results in chemical shrinkage, which is 

the driving force for self-desiccation shrinkage (Jensen and Hansen, 1999). Therefore, 

self-desiccation shrinkage can be evaluated based on the progress of hydration reactions 

(i.e. increase of the chemically bound water) (Yang et al., 2005, Tazawa, 1999). 

Nevertheless, drying and self-desiccation shrinkage occur with similar phenomena, 

especially for low w/b concrete. Since low w/b concrete typically has low bleeding, the 

evaporation from its surface at low RH conditions will extract water from the internal 

mass, causing moisture loss and menisci formation (Holt, 2001). This process will extend 

until equilibrium is achieved between the capillary pore pressure and the vapour pressure 

above the menisci (Kovler and Zhutovsky, 2006). Generally, more evaporation during 

early stages will result in more shrinkage. On the other hand, localized water loss due to 

hydration process will result in the formation of internal water menisci. As hydration 

proceeds, the menisci radius will decrease, leading to higher capillary stresses, and 

consequently to higher self-desiccation shrinkage (Holt, 2005, Jensen and Hansen, 1996). 

In concrete exposed to field conditions during early-ages, water evaporates from 

the surface along with self-desiccation due to the progress of hydration reactions (Yuasa 

et al., 1999). Therefore, a better understanding of the combined effects of drying and 

autogenous shrinkage, and their interaction mechanisms under field-like conditions is 

needed. Furthermore, an accurate evaluation of the associated deformations is useful to 

seek best solutions for reducing early-age deformations and the associated cracking, thus 

leading to stronger, more durable and maintenance free structures. 

Substantial research has focused on evaluating the autogenous shrinkage of 

different concrete mixtures under sealed conditions, while limited research has explored 
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the influence of drying conditions and moisture loss on the autogenous shrinkage 

behaviour during early-age. In addition, only a few studies have been conducted in 

environments other than 20°C and 50% RH. The present study explores the combined 

effects of drying and autogenous shrinkage in UHPC and their mutual interactions under 

different drying conditions. 

 

3.2. RESEARCH SIGNIFICANCE 

Several studies have been conducted to quantify autogenous strains in UHPC, either 

under sealed condition without accounting for the moisture exchange between concrete 

and its surrounding, or assuming that autogenous and drying strains can be superimposed. 

This study adopts a more fundamental approach based on the progress of hydration 

reactions in an attempt to capture the effects of ambient conditions, including temperature 

and RH, on the development of autogenous strains in UHPC. The results should have 

important implications in better understanding for the evolution of early-age 

deformations under field-like conditions. 

 

3.3. METHODOLOGY 

To clarify the relationship between autogenous strains under sealed and drying 

conditions, this relationship will be evaluated based on the superposition principle and 

the degree of hydration method. The degree of hydration method will be applied in this 

study as follows: First, the progress of hydration under different curing conditions will be 

quantitatively evaluated based on the amount of chemically bound water (BW). 

Simultaneously, autogenous and total strains under identical curing conditions will be 
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measured. Subsequently, a relationship between autogenous strains under sealed 

conditions and BW will be established. Finally, the contribution of autogenous strains to 

total strains under drying conditions will be evaluated. 

 

3.4. EXPERIMENTAL PROGRAM 

 

3.4.1. Materials and Mixture Proportions 

An ordinary portland cement (OPC) was used. Silica fume (SF) was added in a dry 

powder form as partial replacement for cement. The chemical and physical properties of 

the various binders are listed in Table 3-1. The high SF content was chosen within the 

optimum SF content recommended by (Youhua, 2000, Schachinger et al., 2004) and used 

in a wide range of UHPC applications to achieve the required mechanical properties 

(Graybeal and Hartmann, 2005, Katrin et al., 2006). According to the suggestions of 

(Cheyrezy et al., 1995), coarse aggregate was not used. Quartz sand having a particle size 

in the range of 0.1 to 0.8 mm was used. A polycarboxylate-based high-range water-

reducing admixture (HRWRA) was added at a rate of 3% by mass of cement. Water from 

the HRWRA was included in the specified water to cement ratio (w/c). The mixture 

compositions of the control UHPC mixtures with a target compressive strength of 150 

MPa are shown in Table 3-2. 

3.4.2. Environmental Conditions 

To understand the mechanisms that govern UHPC shrinkage, it is necessary to 

understand the real effects that exist in structural elements cast in-situ as well as in 

precast elements subjected to heat curing. Heat curing of UHPC usually consists of steam 
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curing at 90°C for two days, which is not always easy to apply in the precast industry or 

in-situ. Therefore, different curing conditions (i.e. temperature and RH) were applied in 

the present study in order to investigate the influence of in-situ environmental conditions 

and normal temperature curing regimes during early-age on UHPC deformations (Table 

3-3). At cold curing conditions, maintaining the RH as low as 40% inside the walk-in 

environmental chamber was not feasible. Therefore, this condition was excluded from the 

experimental program. 

 

Table 3-1: Chemical and physical properties of cement and Silica fume  

  OPC  Silica Fume 

SiO2 (%)  19.8  94.0 
CaO (%)  63.2  0.4 

Al2O3 (%)  5.0  0.1 

Fe2O3 (%)  2.4  0.1 

MgO (%)  3.3  0.4 

K2O (%)  1.2  0.9 

SO3 (%)  3.0  1.3 

Na2O (%)  0.1  0.1 

TiO2 (%)  0.3  0.3 

CaCO3 (%)  ‐‐  ‐‐ 

Loss on ignition (%)  2.5  4.7 

Specific surface area (m2/kg)  410  19530 
Specific gravity  3.17  2.12 

C3S  61  ‐‐ 

C2S  11  ‐‐ 

C3A  9  ‐‐ 

C4AF  7  ‐‐ 

 



Chapter 3                                                                                                                                                      78 

Table 3-2: Composition of control mixture. 

Material   (mass/cement mass) 

Cement   1.00 

Silica fume  0.30 

Quartz sand (0.1‐0.5 mm) 0.43 

Quartz sand (0.3‐0.8 mm) 1.53 

water  0.22    / 0.25 

HRWRA  0.03 

 

Table 3-3: Simulated environmental conditions. 

Curing condition  Temperature (°C)  Ambient humidity (%) 

Cold  10  60 / 80 

Normal  20  40 / 60 / 80 

Hot  40  40 / 60 / 80 

 

3.4.3. Preparation of Test Specimens and Testing Procedures 

Cubic specimens (50×50×50 mm) were used to determine the compressive strength at 1, 

3, 7 and 28 days according to ASTM C109/C109M-08 (Standard Test Method for 

Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube 

Specimens)). Prismatic specimens (25×25×280 mm) were used to measure autogenous 

and total strains. Identical size specimens were used to measure the mass loss, coefficient 

of thermal expansion (CTE) and thermo-gravimetric analysis (TGA) tests in order to 

dispel the effect of the specimen size on the results. Microanalysis was conducted on a 

chip of specimen from selected UHPC mixtures.  The fracture surfaces were examined 
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using scanning electron microscopy coupled with energy dispersive X-ray analysis 

(SEM/EDX) using a Hitatchi S-4500 Field Emission SEM. 

All UHPC specimens were taken from a single batch of the tested mixture. 

Specimens were cast in layers and compacted on a vibrating table. After casting, 

specimens were maintained at ambient temperature (i.e. 20 ±1 °C) and covered with 

polyethylene sheets until demolding to avoid any moisture loss. All specimens were 

demolded at the final setting time and initial readings were taken before moving 

specimens to the pre-determined curing conditions inside the walk-in environmental 

chamber (Note: strains will be used hereafter to account for both shrinkage and 

expansion deformations). 

3.4.3.1 Chemically Bound Water and Degree of Hydration 

Thermo-gravimetric and derivative thermo-gravimetric analyses (TGA/DTG) were used 

to determine the evolution of the BW content during hydration. This indirect method has 

been commonly used (e.g. Loukili et al., 1999, Mounanga et al., 2004) to quantify the 

degree of hydration. Since only one binder composition was used, a linear correlation 

between the amount of BW and the degree of hydration was assumed, in agreement with 

previous studies (Loukili et al., 1999, Mounanga et al., 2004, Kjellsen and Detwiler, 

1992, Lam et al., 2000, Pane and Hansen, 2005). At the specific testing age, small pieces 

were sliced from (25×25×280 mm) specimens and submerged in an isopropanol solvent 

to stop hydration. They were subsequently dried using a desiccator until a constant mass 

was achieved. Immediately before testing, the dried samples were ground and sieved on a 

No. 350 sieve. The tested samples, weighing up to 40 mg, were heated from 20 to 

1100°C under nitrogen gas flow at a heating rate of 10°C/min.  All TGA/DTG curves, 
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mass changes, and temperature peaks were calculated using a TGA software. The amount 

of BW and degree of hydration were related based on the Powers’ relation given in Eq. 

3-1 (Loukili et al., 1999, Mounanga et al., 2004): 

100
)(
)((%) ×=

∞tW
tBWα Eq. 3-1

Where α  is the degree of hydration,  is the amount of chemically bound water at 

time t and  is the amount of water required for complete hydration. For the binder 

used in this study,  was evaluated to be approximately 0.223 (g/g binder) using 18 

months age specimens. The starting temperature for calculating the BW ranges from 103 

to 112°C according to DTG results, which was within the temperature range used in 

previous studies on UHPC (Loukili et al., 1999). However, if the tested sample is dried 

well, then the induced error by the difference in the starting temperature will be 

negligible (Pane and Hansen, 2005). Furthermore, the measured  was corrected to 

consider the mass loss due to CO

)(tBW

)( ∞tW

)( ∞tW

)(tBW

2 release between 600 and 780°C as a result of calcite 

decomposition (Mounanga et al., 2004, Pane and Hansen, 2005).  

3.4.3.2 Strain Measurements 

For each mixture, four (25×25×280 mm) specimens per curing condition were made 

according to ASTM C 157 (Standard Test Method for Length Change of Hardened 

Hydraulic-Cement Mortar and Concrete). Immediately after demolding, specimens for 

autogenous strain measurements were wrapped with four layers of polyethylene sheets 

and a layer of paraffin wax membrane to prevent moisture loss. Specimens for total strain 

measurements were exposed to different curing conditions inside the walk-in 

environmental chamber. The measured unrestrained one-dimensional deformations have 
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been measured using a comparator provided by a dial gauge with an accuracy of 10 

µm/m.  Moreover, Type-T thermocouples were inserted in the specimens to monitor 

internal temperature changes from the onset of tests. Small cross-section prismatic 

(25×25×280 mm) specimens were chosen to reduce the moisture gradients effect induced 

by drying (Lam, 2005) and to assure quick dissipation of the hydration heat (Bao-guo, et 

al., 2007, Baroghel-Bouny et al., 2006). In addition, the high surface area to volume ratio 

of the tested specimens was intended to enhance the effect of drying conditions through 

reaching moisture equilibrium between the specimen and it’s surrounding in a shorter 

time.  

3.4.3.3 Moisture Loss 

Prismatic specimens (25×25×280 mm) were made for each mixture and demolded at the 

time of starting total strain measurements. Prisms were transferred to the walk-in 

environmental chamber after measuring the initial mass of each prism using a balance 

with an accuracy of 0.01 g. The mass measurements were taken for all prisms along with 

measurements of the total strains. Each mass loss test result in this study represents the 

average value obtained on four identical prisms. 

3.4.3.4 Coefficient of Thermal Expansion 

The coefficient of thermal expansion (CTE) was measured based on the temperature 

variations method introduced by (Cusson and Hoogeveen, 2006, Cusson and Hoogeveen, 

2007). In this method, tested specimens were subjected to a realistic temperature history 

including small range temperature cycles. Three sealed concrete prisms (25×25×280 mm) 

from each mixture were tested simultaneously in the walk-in environmental chamber 

from the demolding time up to 48 hrs during which an important variation in CTE 
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occurred before it stabilized thereafter. During the 25-30°C temperature cycles, the 

temperature was maintained constant at each temperature step for 3 hrs, including a 15 

minute ramp between each temperature step, thus resulting in 4 completed cycles per day.  

Each specimen was fixed to an invar frame at one end and was free to deform 

over two invar rods at the other end.  The longitudinal deformation of the concrete prism 

was measured using a high accuracy (0.001mm) LVDT located at the ends of the invar 

frame. A foam rubber pad was placed between the test setup and the floor of the walk-in 

environmental chamber to eliminate ambient vibrations. The concrete temperature was 

measured using Type-T thermocouples embedded at the centre of the UHPC specimens. 

In addition, the temperature inside the walk-in environmental chamber was monitored 

using other thermocouples. Figure 3-1 presents a diagram of the test setup. The test setup 

was calibrated under similar experimental conditions in order to eliminate undesirable 

temperature effects induced by LVDT sensors and the metal and geometry of the test 

apparatus. All measurements were corrected based on the calibration factor obtained (Eq. 

3-2). Further details on the CTE calculation method can be found in (Cusson and 

Hoogeveen, 2006). 

T610mc ∆−×α+κε=ε Eq. 3-2

Where cε   is the corrected strains, mε  is the measured strains, κ is a calibration factor 

(0.9925), and α is the coefficient of thermal expansion of the calibrated test apparatus 

(1.267 x10 -6 /°C). 
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Figure 3-1: Coefficient of thermal expansion test setup. 

 

3.5. RESULTS AND DISCUSSION 

The discussion below will focus on the influence of drying conditions, including the 

ambient temperature and relative humidity, on the measured autogenous strains of UHPC 

specimens. The thermal strain evaluated based on the temperature change at the centre of 

the tested specimens and the corresponding CTE was excluded from the total measured 

strain. (Note: CTE results are included in Appendix A).  

 

3.5.1. Compressive Strength  

Compressive strength is considered as a key property of UHPC. Results indicate that 

curing conditions, including the availability of moisture and temperature profile, can 

significantly affect the early-age compressive strength of UHPC. Figure 3-2 shows the 

effect of the curing temperature on the compressive strength development of UHPC. 

Higher curing temperature resulted in higher compressive strength, especially during the 

first 24 hrs. The compressive strength at 24 hrs for specimens cured at 10 and 20°C 

achieved only 45% and 70% of that cured at 40°C, respectively. However, the rate of 

strength gain was lower at later age for specimens cured at 40°C compared with that at 10 
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and 20°C. For instance, the strength gain at 40°C between ages 3 and 7 days was only 

about 9%, while it was about 29% at 20°C.  
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Figure 3-2: Effect of curing temperature on compressive strength for mixtures with 

w/c=0.25. 

 

During early-age, higher ambient humidity led to higher compressive strength, 

while at latter age, this effect started to diminish as shown in Fig. 3-3. The strength 

gained during the first 24 hrs at 20°C and 40% ambient humidity was about 25% lower 

than that gained under 80% ambient humidity, while this difference was only 10 and 7% 

at 3 and 7 days, respectively. This is likely due to the fact that for UHPC a lower amount 

of hydration is required to gain higher strength since space between cement particles and 

porosity to be filled by hydration products are relatively low. In addition, at later ages the 

depercolation of capillary pores will reduce moisture exchange between the core of the 

specimens and it’s surrounding (Bentz and Garboczi, 1991). 
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Figure 3-3: Effect of ambient humidity on compressive strength for mixtures with 

w/c=0.25. 

 

Generally, decreasing the w/c resulted in greater compressive strength. However, 

the compressive strength results for the control mixture with w/c=0.22 were comparable 

to that of the control mixture with w/c=0.25 as shown in Fig. 3-4. For instance, the 

percentage difference in early-age compressive strength between control mixtures with 

w/c=0.22 and 0.25 after 7 days under different curing conditions, ranged from about (-

5.0%) to (+4.0%). Moreover, this difference decreased further at 28 days (ranged from (- 

3.2%) to (+2.0%)). Not achieving significantly greater compressive strength with lower 

w/c can be ascribed to the agglomeration of SF particles which reduced its effectiveness. 

The agglomerated grains of silica fume have less effective pozzolanic activity than that of 

individual grains (Yajun and Cahyadi, 2003). In addition, the size of such agglomerates 

often exceeds that of Portland cement particles, thus limiting the benefits attributed to the 

fine particle filler effect (Diamond and Sahu, 2006), leading to higher porosity. However, 
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such porosity may provide more space for further hydration products, leading to retrieval 

of strength at later ages. It was observed by (Korpa and Trettin, 2004, Diamond et al., 

2004) that at later age, the pozzolanic reaction of large silica fume particles can attain a 

considerable degree, contributing remarkably to the development of mechanical 

properties. 
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Figure 3-4: Effect of w/c on compressive strength. 

 

3.5.2. Total Strain 

3.5.2.1 Influence of Curing Temperature and Ambient Humidity on Total Strain 

The total amount of strain mainly depends on the exposure conditions and concrete 

mixture design (Mönnig and Lura, 2007). Figure 3-5 illustrates the effect of exposure 

conditions on the measured total strains for control UHPC mixtures. At higher 

temperature, specimens were found to exhibit higher total strains compared to that of 

specimens exposed to lower temperature, regardless of the RH. In addition, under the 
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same exposure temperature, lowering the RH increased the total strains. This increase 

was more significant at high temperature as shown in Fig. 3-5. Moreover, mixtures with 

w/c=0.22 showed lower total strain compared to that of mixtures with w/c=0.25. This can 

be attributed to lower water content of w/c=0.22 mixtures and consequently lower 

evaporable water.  

3.5.3. Autogenous Strain 

3.5.3.1 Effect of Curing Temperature and w/c 

Figure 3-6 shows the autogenous strain for the control mixture (w/c=0.25) under sealed 

conditions for the first 7 days at different curing temperatures. Increasing the temperature 

from 20 to 40°C accelerated the autogenous strain rate during the first 24 hours, which 

could be explained by the acceleration of hydration reactions, resulting in higher 

chemical shrinkage. The latter is considered as the main driving force for shrinkage until 

an internal rigid skeleton is formed (Jensen and Hansen, 1999, Mounanga et al., 2004, 

Acker, 2004, Kamen et al., 2008). 

While the rate of autogenous strain at 40°C started to decrease after the first day 

of hydration, this took more than 4 days at 20°C. This could be attributed to the dual 

action of temperature on the microstructure of the cementitious matrix. High curing 

temperature motivates the development of a strong solid skeleton (Kamen et al., 2008), 

which resists autogenous strain (Yang et al., 2005, Esping, 2007). Simultaneously, the 

high curing temperature results in a coarser porous structure (larger pore radius) (Neville 

and Brooks, 1991, Cao and Detwiler, 1995), leading to lower capillary stresses as shown 

by the Kelvin-Laplace equations (Hua et al., 1995). Consequently, autogenous strain will 

develop with a lower rate (Kamen et al., 2008). 
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Figure 3-5: Total strains Vs. ambient humidity at different curing temperatures for 

a) w/c=0.25 and b) w/c=0.22 mixtures at age of 7-days. 
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Figure 3-6: Autogenous strains for the control mixture (w/c=0.25) at 10, 20 and 

40°C. 

 

At 10°C, the developed strain showed a near plateau after a few hours from the 

setting time, then started to expand slightly, before autogenous shrinkage strain increased 

again. This expansion could not be attributed to the thermal effect of hydration reactions 

since the specimen cross-section was small (Baroghel-Bouny et al., 2006), but could 

occur likely due to the formation of ettringite (Loukili et al., 1999, Baroghel-Bouny et 

al., 2006, Bentz et al., 2001a). 

Generally, decreasing the w/c results in greater autogenous strains (Holt, 2001, 

Zhang et al., 2003, Holt and Leivo, 2004). However, comparable strains were observed 

for mixtures with w/c=0.22 and 0.25 at different temperatures as shown in Fig. 3-7. This 

can be ascribed to the high SF content (>25%), which was reported to reduce the 

autogenous strains for extremely low w/b mixtures as a result of the inadequate packing 
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and agglomeration of SF particles, which consequently leads to higher porosity 

(Baroghel-Bouny and Kheirbek, 2000, Yajun and Cahyadi, 2003). 
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Figure 3-7: Autogenous strains for mixtures with w/c=0.22 and 0.25 at different 

temperatures. 

 

Furthermore, for high SF/cement mixtures, calcium hydroxide (CH) crystals 

dissolve to provide calcium ions during the pozzolanic reaction. If the resulting calcium 

silicate hydrate (CSH) products do not fill the space of dissolved CH crystals, porosity 

can be created (Baroghel-Bouny and Kheirbek, 2000). This can partially explain the 

absence of expansion at 10°C for w/c=0.22 mixtures since more pore space could have 

been created. Figure 3-8 shows SEM and EDX microanalysis results (conducted at 

Surface Science Western at The University of Western Ontario), which substantiate this 

hypothesis in w/c=0.22 UHPC control mixtures. Spatial elemental distribution by EDX 

revealed high intensity of silicon (Si) in the circular body representing an agglomerated 
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SF particle. The agglomerated SF particle is encapsulated by a rich media of calcium 

(Ca), silicon (Si) and oxygen (O) forming a halo of CSH.  

(a) 

 

(b) 

 

Figure 3-8: Scanning electron micrograph for w/c =0.22 UHPC specimens: (a) 

agglomerated silica fume encapsulated with C-S-H, (b) elemental distribution. 

 

3.5.4. Degree of Hydration 

3.5.4.1   Under Sealed Condition 

The hydration of cement is highly sensitive to the w/c and curing temperature (Mounanga 

et al., 2004, Lothenbach et al., 2007, Escalante-Garcia and Sharp, 2000, Slamecka and 

Škvara, 2002). The hydration kinetics increases with increasing w/c and/or curing 

temperature (Mounanga et al., 2004). TGA was used to investigate the hydration 

evolution for samples taken from the cementitious matrix of the tested UHPC specimens. 

The measured degree of hydration versus age is shown in Fig. 3-9. For all mixtures, the 
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hydration rate increased with increasing temperature, which is in agreement with 

previous work (Mounanga et al., 2004, Escalante-Garcia and Sharp, 2000). Reducing the 

w/c from 0.25 to 0.22 did not cause a significant reduction in the degree of hydration 

(Fig. 3-9(b)). This can be attributed to the fact that at very low w/c, the content of un-

hydrated phases, which could exceed 42% (Acker, 2004), may restrict the further 

development of hydration products (Lothenbach et al., 2007).  
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Figure 3-9: Evaluation of degree of hydration Vs. age for control mixtures a) 

w/c=0.25 and b) w/c= 0.22. 
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Figure 3-9 Contd’: Evaluation of degree of hydration Vs. age for control mixtures a) 

w/c=0.25 and b) w/c= 0.22. 

 

3.5.4.2 Under Drying Condition 

Concrete is usually exposed to ambient air at early-ages, and a moisture exchange 

between concrete and its environment occurs. Hence, the amount of water available for 

hydration reactions will be altered. Generally, a reduction in water content at drying 

conditions takes place, with an adverse effect on the hydration process of cement. 

Accordingly, the amount of hydration products and BW will be changed (Bentz et al., 

2001b). Figure 3-10 shows cross sections for sealed and exposed to drying specimens. 

The difference in the colors would indicate the difference in the hydration degree 

between the two specimens. 
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a) b) 

 

Figure 3-10: Cross sections for a) sealed and b) exposed to drying specimens after 7 
days. 

 

Figure 3- 11 (a,b,c) shows the effect of the curing conditions on the BW. At 

10°C, the change in RH induced a slight difference in the degree of hydration achieved. 

This could be attributed to the low rate of evaporation and hydration (Escalante-Garcia 

and Sharp, 2000), which slowed down the reduction of internal RH (Jensen and Hansen, 

1999). In addition, the rate of hydration seemed to be similar over the investigated period. 

At higher curing temperatures, the RH had a pronounced effect on both the rate of 

hydration and the degree of hydration achieved. Low RH enhances the moisture transfer 

from the specimen to its surrounding, which disturbs the hydration process, leading to a 

lower degree of hydration. Generally, curing at high temperature induces a competition 

for the mixing water between evaporation and hydration. High curing temperatures 

usually result in a more porous and continuous pore structure, which facilitates 

evaporation (Cao and Detwiler, 1995). Conversely, high curing temperature enhances the 

hydration rate causing more water to bond chemically and physically to hydration 

products, leaving a lower amount of evaporable water (Mounanga et al., 2004). The rate 

of change of the internal RH, which is controlled by the hydration rate (Jensen and 
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Hansen, 1999) and external RH level, will dominate the water exchange between the 

tested specimen and its surrounding. 
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Figure 3-11: Change in BW Vs. ambient humidity for w/c=0.25 control mixtures at 

a) 10°C, b) 20°C, and c) 40°C. 
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Figure 3-11 Cont’d: Change in BW Vs. ambient humidity for w/c=0.25 control 

mixtures at a) 10°C, b) 20°C, and c) 40°C. 

 

BW results were consistent with mass loss measurements as shown in Fig. 3-12 

(a,b,c). While UHPC specimens cured at 10°C showed a slight increase in mass loss with 

decreasing RH, significant variations in mass loss were observed at higher temperature. 

Increasing the curing temperature and decreasing the RH enhanced the evaporation rate, 

resulting in higher mass loss, which is in agreement with previous studies (Almusallam, 

2001, Bissonnette et al., 1999, Al-Saleh and Al-Zaid, 2006). 
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Figure 3-12: Change in mass loss Vs. ambient humidity for w/c=0.25 control 

mixtures at a) 10°C, b) 20°C, and c) 40°C. 
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Figure 3-12 Cont’d : Change in mass loss Vs. ambient humidity for w/c=0.25 control 

mixtures at a) 10°C, b) 20°C, and c) 40°C. 

 

3.5.5. Correlation between Autogenous Strain and Achieved Degree of Hydration 

under Sealed Condition 

Autogenous strains were plotted in Fig. 3-13 for mixtures with w/c=0.22 and 0.25 cured 

at 10, 20 and 40°C as a function of the amount of BW determined by TGA tests. The 

amount of BW was fixed at zero at the start of autogenous strain measurements. Thus, 

BW will be considered as the relative chemically bound water (RBW) in the proposed 

relationship. The experimental results revealed a good correlation between the measured 

autogenous strains and the RWB, as shown in Fig. 3-13. 
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Figure 3-13: Correlation between autogenous strains and RBW for control mixtures 

cured at 10, 20 and 40°C. 

 

3.5.6. Predicting Drying and Autogenous Strains under Different Curing 

Conditions 

To investigate the effect of drying conditions on the contribution of both drying and 

autogenous strains to the total strains, the drying strains were determined based on the 

superposition principle and the evaluated degree of hydration.  

3.5.6.1 Superposition Principle 

The superposition principle is based on the assumption that autogenous and drying strains 

could be superimposed, and that autogenous strains in an exposed specimen are similar to 

that in a sealed specimen. Thus, drying strains can be determined by subtracting the 

autogenous strains in a sealed specimen from the total strains after applying the thermal 
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strains correction (Tazawa et al., 2000). Figure 3-14 illustrates the drying strains in the 

control specimens under different curing conditions. As the RH increased, drying strains 

decreased, which is consistent with previous results (Bao-guo et al., 2007, Hansen, 2005, 

Almusallam, 2001, Holt and Leivo, 2000, Tazawa and Miyazawa, 1999, Bazant and 

Wittmann, 1982).  

The effect of the temperature on drying strains at different RH did not exhibit a 

clear trend. At RH=40%, drying strains increased as the curing temperature increased, 

which is consistent with previous observation (Almusallam, 2001). At RH=60 and 80%, 

specimens cured at 10°C showed higher drying strains than that of specimens cured at 20 

and 40°C. These results are in agreement with measurements performed in a previous 

study at 5, 20 and 30°C (Weiss and Berke,2003). It was argued that the delay in 

developing a strong microstructure to resist deformations at low curing temperature was 

the main reason for this behaviour. 
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Figure 3-14: Drying strains for w/c=0.25 control mixtures based on the 

superposition principle at age of 7-days. 
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At RH=80% and 20°C, the calculated drying strains based on the superposition 

principle indicated swelling, which confirms that autogenous strains were higher than the 

total strains. Similar results were reported by others (Tazawa et al., 2000, Tazawa and 

Miyazawa, 1999) who attributed this behaviour to the moisture movement from the high 

RH environment into the concrete specimens, driven by the lower intrinsic humidity 

developed due to the effect of self-desiccation. 

 

3.5.6.2 Degree of Hydration Method 

In the degree of hydration method, autogenous strains under different exposure 

conditions were evaluated based on the achieved degree of hydration (i.e. amount of 

RBW) of the exposed specimen and the relationship between the degree of hydration and 

the corresponding autogenous strain under sealed condition (Kovler and Zhutovsky, 

2006).  Consequently, the reductions in the autogenous strains due to the drying effect are 

considered. Figure 3-15 shows the autogenous strains evaluated based on the degree of 

hydration at different exposure conditions. It can be observed that autogenous strains 

calculated based on the superposition principle under drying conditions were 

overestimated as compared with that calculated using the degree of hydration. The 

overestimation ratio (β ) calculated by Eq. 3-3 is listed in Table 3-4, in which 

autogenous strains at 7 days are used for calculations.  

w

ws

ε
εεβ −

= Eq. 3-3

Where sε  is the autogenous strain under sealed conditions, wε  is the autogenous strain 

under drying conditions obtained based on the evaluated degree of hydration. The lower 
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the RH, the more pronounced was the difference between the autogenous strains obtained 

by the two methods. It should be noted that the early-age exposure to drying increased the 

overestimation ratio, since it interrupts the hydration process and the development of 

denser microstructure, thus resulting in higher porosity. 
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Figure 3-15: Autogenous strains evaluated based on achieved degree of hydration 

for w/c=0.25 UHPC mixtures at age 7 days. 

 
Table 3-4: Overestimation ratios for autogenous strains under different curing 

conditions. 

    Overestimation ratio 

Mixture  Temp.°C/RH% 40  60  80 

10  ‐‐‐‐*  0.78  0.46 

20  1.26  0.98  0.45 w/c=0.25 

40  1.74  1.17  0.63 

10  ‐‐‐‐*  0.80  0.51 

20  1.32  0.97  0.49 w/c=0.22 

40  1.89  1.22  0.65 

                            * Condition is not feasible. 
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Figure 3-16 shows the drying strains determined by subtracting autogenous 

strains from the total measured strains, after considering the reduction in the autogenous 

strains due to the drying effect. Comparing Figs. 3-14 and 3-16, a significant increase in 

the contribution of drying strains to the total measured strains can be observed. For 

instance, at 40°C and RH=40%, the calculated drying strains based on the superposition 

principle represented about 40% of the total measured strains, compared to about 78% 

based on the evaluated degree of hydration. Moreover, no swelling was observed at high 

RH, which is consistent with the expected denser structure for the tested mixtures 

(Esping, 2007). Generally, a good agreement exists between the determined drying 

strains and mass loss results (Fig. 3-12(a,b,c) and 3-16). 
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Figure 3-16: Drying strains evaluated based on achieved degree of hydration for 

w/c=0.25 UHPC mixtures at age 7 days. 
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3.6. CONCLUSIONS  

Using the amount of chemically bound water to assess autogenous and drying strains in 

ultra high-performance concrete specimens was explored in this chapter. The following 

conclusions can be drawn from the experimental results:  

1) Ambient conditions, including temperature and relative humidity, can 

significantly affect the development of early-age compressive strength of UHPC 

cast in-situ, especially in cold temperature for which the achieved strength was 

only about 52% of the target strength. 

2) Autogenous and drying strains in UHPC specimens are dependent phenomena; 

therefore the behaviour of autogenous strains under sealed conditions will differ 

from that under drying conditions. 

3) Autogenous shrinkage strain and drying shrinkage strain of concrete under drying 

conditions can be separated from total shrinkage strain based on the evaluated 

degree of  hydration based on BW 

4) Applying the superposition principle without considering the effect of drying 

conditions will result in overestimating autogenous strains, especially in arid 

conditions. 

5) For thin UHPC sections, drying dominates the total deformation and reduces the 

development of autogenous strains, leading to lower autogenous contribution to 

the total deformation. 
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CHAPTER FOUR 

 

INFLUENCE OF SHRINKAGE MITIGATION 
TECHNIQUES ON EARLY-AGE SHRINKAGE 

INTERRELATION UNDER DRYING CONDITIONS* 

 

In the preceding chapter (3), the combined effect of drying and autogenous shrinkage, 

and their interaction mechanisms was investigated. It was proven that autogenous and 

drying shrinkage are dependent phenomena. Reduction in the water content under drying 

conditions, due to evaporation, had an adverse effect on hydration process and 

development of autogenous shrinkage. However, the role of commonly used shrinkage 

mitigation methods, including shrinkage-reducing admixture (SRA) and a superabsorbent 

polymer (SAP), on these previous findings in Chapter 3 is not clear. Hence, this Chapter 

provides fundamental investigation for the effect of ambient conditions on these 

shrinkage mitigation methods mechanisms, suitable conditions for each mitigation 

method and how to optimize its benefit in reducing shrinkage strains. 

 

4.1. INTRODUCTION 

General literature pertinent to UHPC self-desiccation, autogenous and drying shrinkage 

behaviour during early-ages has been given in Chapter 3 (Section 3.1). It had pointed out 

that early-age shrinkage and high cracking potential can defeat the purpose of using 

UHPC. Hence, several shrinkage mitigation strategies have been proposed to reduce 

shrinkage development and avoid crack formation. Among these, the most commonly 

used is the addition of shrinkage-reducing admixtures (SRAs). SRAs directly influence 

*A version of this chapter was published online in Materials and Structures. Some parts of this chapter 
were also published in the Eighth International Conference on Short and Medium Span Bridges, 
Niagara Falls, Ontario, Canada  
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shrinkage by decreasing the surface tension of the pore solution, leading to lower 

capillary stresses and consequently reduced shrinkage. Moreover, a new method using 

superabsorbent polymers (SAPs) particles as a concrete admixture has been proposed. 

SAPs are a group of polymeric materials that have the ability to absorb a significant 

amount of liquid from the surrounding environment and to retain it within their structure 

without dissolving. The SAP shrinkage mitigation technique is similar to using saturated 

lightweight aggregate (LWA) particles but in a better controlled manner. However, the 

efficacy of these mitigation techniques under field-like conditions is not guaranteed, since 

it was evaluated under controlled laboratory conditions. In concrete exposed to field 

conditions during early-ages, multi-mechanisms affect shrinkage behaviour 

simultaneously (Yuasa et al., 1999). Hence, in this study a more realistic behaviour and 

efficiency of SRA and SAP under simulated field-like conditions was investigated.  

 

4.2. RESEARCH SIGNIFICANCE 

Several studies have evaluated efficiency of various shrinkage mitigations techniques in 

reducing shrinkage strains in UHPC under controlled curing condition without 

accounting for the effect of the surrounding environment. A more realistic behaviour and 

efficiency for SRA and SAP was evaluated based on degree of hydration approach 

(described in previous chapter). Efficiency of SRA and SAP was found to be highly 

influenced by exposure conditions. Field conditions should given a greater attention 

while choosing the shrinkage mitigation method.  

 

4.3. METHODOLOGY 

Basically, the same methodology discussed in Chapter 3 was followed (see section 3.3).  
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4.4. EXPERIMENTAL PROGRAM 

 

4.4.1. Materials and Mixture Proportions 

The materials used in this chapter were similar to that used in Chapter 3 (refer to Section 

3.4.1). Four UHPC mixture incorporating 2% SRA or 0.6% SAP with w/c= 0.22 and 0.25 

were tested in order to investigate the effect of both shrinkage mitigation techniques. The 

chemical and physical properties of the used binders have been given in Chapter 3 (refer 

to Table 3-1). A commercially available SRA composed mainly of poly-oxyalkylene 

alkyl ether was used in this study. A 2% SRA by mass of cement was added as partial 

replacement for mixing water, in agreement with previous works (Bentz et al., 2001a, 

Bentz, 2006, Loser and Leemann, 2009). SAP is a covalently cross-linked polyacrylic 

acid, suspension polymerized, white spherical particles with a particle size in the range of 

100 to 140 µm. SAP was added at a rate of 0.6% by weight of cement as this value had 

shown a great influence in diminishing shrinkage and reducing the cracking potential in 

previous research (Jensen and Hansen, 2002, Lam, 2005, Lura and Jensen, 2007). 

Mixtures with SAP contain an additional entrained water to offset self-desiccation. The 

w/c of mixture incorporating SAP was increased to account for the amount of water that 

will be absorbed by SAP particles to offset self-desiccation (Jensen and Hansen, 2001).  

4.4.2. Environmental Conditions 

The environmental conditions applied in this chapter were similar to that used in Chapter 

3 (refer to Section 3.4.2).  
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4.4.3. Preparation of Test Specimens and Testing Procedures 

Testing samples were prepared and tested following the same procedure discussed in 

Chapter 3 (refer to Section 3.4.3).  

 

4.5. RESULTS AND DISCUSSION 

 

4.5.1. Compressive Strength  

Addition of SRA reduced the rate of cement hydration and strength development in 

concrete. This led to a delay in setting and a reduction in the early-age compressive 

strength compared to that of control specimens with similar w/c as shown in Fig. 4-1. 

Moreover, reducing the ambient humidity had a minor effect on the achieved strength for 

SRA mixtures compared to that for control mixtures. This can be ascribed to the sharp 

drying front induced by SRA at low ambient humidity, which led to lower water loss 

(Bentz et al., 2001a, Bentz, 2006).  

Mixtures incorporating SAP exhibited lower compressive strength compared to that 

of other mixtures, as shown in Fig. 4-1. However, SAP incorporated higher water 

content, which enhanced the hydration process; it resulted in higher total porosity. At low 

ambient humidity, water evaporates faster leading to more porosity and lower 

development of hydration.  
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Figure 4-1: Effect of adding 2% SRA and 0.6%SAP on compressive strength after 7 

days for mixtures with w/c=0.25. 

 

As expected, SRA reduced the 28 days compressive strength. The reduction in the 

strength ranged between -5.8% to -11.0%. This is in agreement with ranges reported in 

previous study on low w/c concrete (Weiss and Berke, 2003). The reduction in the 

achieved strength can be attributed to the retardation effect induced by SRA addition. On 

the other hand, mixtures incorporating SAP exhibited higher compressive strength 

reduction (ranged between -12 to -22%) compared to SRA mixtures. Addition of SAP 

induced higher and continuous porosity that facilitates water exchange with the 

surrounding environments. As a result, higher porosity is required to be filled by 

hydration product to gain strength compared to that of control mixtures.  This is 

consistent with previous findings which indicate that porosity has a dominate effect on 

the achieved strength (Odler and Rößler, 1985, Mikhail et al., 1977). 
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4.5.2 Total Strain 

Generally, SRA mixtures exhibited lower total strain compared to that of control 

mixtures (Fig. 3-5(a) & Fig. 4-2(a)). The reduction in total strain increased at higher 

curing temperature and/or lower RH. For instance, the reduction in the total strain was 

about 325 µε and 267 µε at (40°C and RH=40%) and (20°C and RH=40%) than that of 

control mixtures, respectively. Conversely, SAP mixtures showed higher total strain 

compared to that of control mixtures (Fig. 3-5(a) & Fig. 4-2(b)). Moreover, a higher total 

strain was exhibited with higher curing temperature and/or lower RH. For instance, the 

increase in the total strain was about 109 µε and 71 µε at (40°Cand RH=40%) and (20°C 

and RH=40%)  than that of control mixtures, respectively. 
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Figure 4-2: Total strains Vs. ambient humidity at different curing temperatures for 

w/c=0.25 mixtures at age of 7-days: a) SRA and b) SAP. 
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 Figure 4-2 Contd’: Total strains Vs. ambient humidity at different curing 

temperatures for w/c=0.25 mixtures at age of 7-days: a) SRA and b) SAP. 

 

4.5.3. Autogenous Strain 

4.5.3.1 Effect of Curing Temperatures 

The effect of adding 2% SRA and 0.6% SAP on autogenous strains at 10, 20, and 40°C 

for UHPC mixtures made with w/c=0.25 is shown in Fig. 4-3. It can be observed that 

SRA and SAP reduced autogenous strains effectively, though SRA achieved more 

significant reduction. Moreover, the effect of SRA was more significant at higher 

temperature (40°C) where the reduction in autogenous strains was about 55% compared 

with 34% and 32% at 10 and 20°C, respectively. This is believed to be due to the increase 

of SRA concentration in the pore solution as a result of the accelerated hydration 

reactions at high temperature. Indeed, hydration reactions consume mixing water, while 
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SRA remains or would be consumed at a slower rate compared to that of water 

(Rajabipour et al., 2008), thus leading to higher SRA concentration.  
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Figure 4-3: Autogenous strains after 7 days for mixtures with w/c=0.25. 

 

Conversely, SAP appeared to be more effective at 10°C. It reduced autogenous 

strains by about 71% compared to that of the control mixture. The reason for this 

behaviour lays in the early expansion as shown in Fig. 4-4(a). To capture this effect, the 

autogenous shrinkage curves were initiated to zero at the end of expansion as shown in 

Fig. 4-4(b). The reduction in autogenous contraction after the early expansion was about 

31 and 38% for SRA and SAP mixtures, respectively. Different phenomena are believed 

to induce this early expansion including ettringite formation, expansion due to the 

absorption of the internal curing water from SAP by the cement gel (Jensen and Hansen, 

2002), and the relatively low stiffness of the specimens at early-age which permits such 

an expansion (Baroghel-Bouny et al., 2006, Cusson and Hoogeveen, 2007). In addition, 
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another mechanism can be hypothesized as follows: SAP particles release part of its 

entrained water as hydration progresses (Wang et al., 2009), the vapour pressure in the 

capillary pores increases and menisci curvature changes to have a large radius (Kovler, 

1996). This will release the capillary surface tension, leading to capillary distension and 

consequently expansion.   

Indeed, autogenous shrinkage and expansion occur simultaneously during early-

ages. Early expansion along with autogenous shrinkage reduction due to SRA and/or 

SAP can result in lower net autogenous strains.  This is in agreement with previous 

findings (Baroghel-Bouny et al., 2006, Cusson and Hoogeveen, 2007, Kamen et al., 

2008, Weiss et al., 2008).  
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Figure 4-4:  Autogenous strains at 10°C: a) observed, and b) after expansion for 

mixtures with w/c=0.25. 
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Figure 4-4 Contd’:  Autogenous strains at 10°C: a) observed, and b) after expansion 

for mixtures with w/c=0.25. 

 

4.5.3.2 Effect of w/c under Different Curing Temperatures 

It was reported that SRA is more effective in reducing shrinkage at lower w/c 

(D’Ambrosia, 2002). Conversely, SRA mixtures with w/c=0.22 showed higher 

autogenous strain than that with w/c=0.25. In SRA mixtures, the role of SF 

agglomeration and consequent creation of additional pore space can be explained as 

follows: during early periods, the created pore space allows more hydration product 

formation (e.g. ettringite formation (Bentz et al., 2001b, Bentz and Peltz, 2008)) without 

causing high early expansion (see Fig. 4-5). Hence, SRA mixtures with w/c=0.22 showed 

lower expansion compared to that of SRA mixtures with w/c=0.25, and thus higher 

autogenous strain. At later ages, the effect of SRA on the surface tension of the pore 

solution started to be the major mechanism controlling autogenous strain development. 
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Hence, similar autogenous shrinkage strain rate was exhibited by both w/c=0.22 and 0.25 

mixtures as shown in Fig. 4-6(a). Therefore, SF agglomeration can adversely affect SRA 

mixtures during early-age. SAP mixtures exhibited similar trend to that of the control 

mixtures as shown in Fig. 4-6(b). However, it is difficult at that point to evaluate the 

effect of SF agglomeration on autogenous strain with respect to that of SAP. Further 

research is needed to capture the effect of SAP mixtures without SF at similar level of 

w/c. 

 

Agglomerated SF particle 

Figure 4-5: Scanning electron micrograph for agglomerated silica fume in SRA 

mixture with w/c=0.22. 
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Figure 4-6: Autogenous strains for mixtures with w/c=0.22 and 0.25 at different 

temperatures a) SRA and b) SAP mixtures. 
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4.5.4. Degree of Hydration 

 

4.5.4.1 Under Sealed Condition 

SRA retarded the hydration reactions at 10 and 40°C, as shown in Fig. 4-7(a). A slight 

retardation in hydration reactions was observed at 20°C, indicating that the addition of 

SRA did not affect the degree of hydration of specimens cured under a sealed condition. 

This is consistent with previous results (Bentz et al., 2001a, Bentz, 2006) 

SAP mixtures had a relatively higher water content (about 18% of w/c), thus 

achieving a higher degree of hydration (Jensen and Hansen, 2002, Jensen and Hansen, 

2001), as shown in Fig. 4-7(b). The increase in hydration rate was more pronounced at 

40°C, which can be attributed to the thermo-activated characteristics of the hydration 

process (Mounanga et al., 2004). 
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Figure 4-7:  Evaluation of degree of hydration Vs. age for a) w/c=0.25 + 2% SRA, 

and b) w/c=0.25 + 0.6% SAP UHPC mixtures cured at 10, 20 and 40°C. 
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Figure 4-7 Contd’:  Evaluation of degree of hydration Vs. age for a) w/c=0.25 + 2% 

SRA, and b) w/c=0.25 + 0.6% SAP UHPC mixtures cured at 10, 20 and 40°C. 

 

4.5.4.2 Under Drying Condition 

4.5.4.2.1 SRA mixtures 

Figure 4-8 (a,b,c) shows the effect of curing conditions on the BW for mixtures 

incorporating 2% SRA. At 20°C, specimens cured at RH=40% showed higher BW 

compared to that of specimens cured at RH=60% during the initial drying period (up to 3 

days). After the initial drying period, the situation was reversed and specimens cured at 

RH=40% showed lower BW. This was likely due to the sharp drying front induced by 

SRA (Bentz et al., 2001a, Bentz, 2006), as shown in Fig. 4-9. During early-age, the 

initial drying of specimens concentrate SRA in the remaining pore solution at the top 

exposed surface of the specimens, which in turns restrict pulling more water from deeper 

parts within the specimens (Bentz, 2006). Consequently, higher degree of hydration is 
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expected at specimen core compared to its surface. The effect of the sharp drying front 

seemed to become more important as RH decreased. At later ages, some absorption of 

SRA by cement hydration products could reduce the efficiency of the drying front in 

eliminating water extraction from the specimen core; leading to a higher rate of 

evaporation and a lower BW (Bentz, 2006).   

At 10 and 40°C, normal trends were observed. As the RH decreased, the rate of 

evaporation increased; hence a lower BW was measured. However, at 40°C a lower 

variation in the amount of BW with respect to RH change was observed, as shown in Fig. 

4-8(c). This is believed to be due to the lower evaporation rate and the faster development 

of the drying front due to the increase in SRA concentration at high temperature, as 

mentioned earlier. 
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Figure 4-8: Change in BW Vs. ambient humidity for w/c=0.25 + 2% SRA mixture at 

a) 10°C, b) 20°C, and c) 40°C. 
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Figure 4-8 Cont’d: Change in BW Vs. ambient humidity for w/c=0.25 +2% SRA 

mixture at a) 10°C, b) 20°C, and c) 40°C. 



Chapter 4                                                                                                                                                 126 

 

 

Figure 4-9: Cross section for SRA specimen exposed to drying condition after 7 

days. 

 

Figure 4-10 (a,b,c) shows the effect of RH on the mass loss for w/c=0.25 mixture 

incorporating 2% SRA and cured at 10, 20 and 40°C. Generally, a slight reduction in 

mass loss compared to that of control mixtures was observed at the different curing 

temperatures, which is in agreement with (Weiss and Berke, 2003). However, the mass 

loss of SRA mixtures increased with decreasing RH, similar to that of mixtures without 

SRA, as previously observed by (Weiss et al., 2008).  

At 20°C, the specimens cured at RH=40 and 60% showed similar mass loss 

during the initial period of drying. Subsequently, their results started to deviate until the 

end of the investigated period, as shown in Fig. 4-10(b). These results agree with earlier 

discussion of BW results (Fig. 4- 8(b)). Furthermore, comparing Fig. 4- 10(b) and 4-

10(c), it can be observed that changing the curing temperature did not cause a significant 

difference in mass loss. This can also be ascribed to the effect of increasing the curing 

temperature on the actual SRA concentration.   
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Figure 4-10: Change in mass loss Vs. ambient humidity for w/c=0.25 +2% SRA 

mixture at a) 10°C, b) 20°C, and c) 40°C. 
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Figure 4-10 Cont’d: Change in mass loss Vs. ambient humidity for w/c=0.25 +2% 
SRA mixture at a) 10°C, b) 20°C, and c) 40°C. 

 

4.5.4.2.2 SAP Mixtures 

Figure 4-11(a,b,c) shows the effect of RH levels on the BW for w/c=0.25 mixtures 

incorporating 0.6% SAP and cured at 10, 20 and 40°C. Generally, mixtures incorporating 

SAP showed a higher degree of hydration, as shown by BW results, compared to those of 

mixture without SAP.  However, SAP mixtures were highly affected by the RH level. 

This was exhibited by higher mass loss when the RH decreased, as shown in Fig. 4-

12(a,b,c). The higher water content due to the additional entrained water held in SAP 

particles was likely the main reason for this behaviour. These results are in agreement 

with previous findings (Kovler, 1996, Mönnig and Lura, 2007). 
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Figure 4-11: Change in BW Vs. ambient humidity for w/c=0.25 +0.6% SAP mixture 

at a) 10°C, b) 20°C, and c) 40°C. 
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Figure 4-11 Cont’d: Change in BW Vs. ambient humidity for w/c=0.25 +0.6% SAP 

mixture at a) 10°C, b) 20°C, and c) 40°C. 
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Figure 4-12: Change in mass loss Vs. ambient humidity for w/c=0.25 +0.6% SAP 

mixture at a) 10°C, b) 20°C, and c) 40°C. 
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Figure 4-12 Cont’d: Change in mass loss Vs. ambient humidity for w/c=0.25 +0.6% 

SAP mixture at a) 10°C, b) 20°C, and c) 40°C. 
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Due to higher ion concentration inside SAP, water flows under the effect of 

osmosis from the cement matrix to SAP particles (Jensen and Hansen, 2001). As the 

hydration progresses, more ions dissolve in the pore solution (Lea, 1988). Once the ions 

concentration in the pore solution becomes higher than that inside SAP particles, water 

starts to flow in the opposite direction (i.e. from SAP particles to the surrounding cement 

matrix (Jensen and Hansen, 2001)). Combined with water loss due to evaporation, this 

resulted in higher ions concentration in the pore solution, which motivates further water 

flow from the SAP particles. Furthermore, since the rate of hydration and evaporation are 

functions of the temperature and RH, it is expected that increasing the curing temperature 

and/or decreasing the RH will result in more extracted water from the SAP particles, thus 

enhancing evaporation and higher mass loss. 

 

4.5.5. Correlation between Autogenous Strain and Achieved Degree of Hydration 

under Sealed Condition 

4.5.5.1 SRA Mixtures 

Autogenous strains are shown in Fig. 4-13 as a function of the RBW for mixtures 

incorporating 2% SRA and cured at 10, 20 and 40°C. A good correlation can be observed 

between the measured autogenous strains and the RWB for mixtures cured at 10 and 

20°C. At 40°C, a different trend was observed.  At the same RBW, a higher autogenous 

strain was achieved at 40°C compared to that at 10 and 20°C.  This could be ascribed to 

the absence of early expansion at 40°C due to the adverse effect of the high curing 

temperature at early-age on ettringite formation and the acceleration of hydration, leading 

to higher self-desiccation. Mono-sulphate super-saturation levels and stability (Thomas et 
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al., 2003) will be affected, leading to lower rate of ettringite formation. Moreover, the 

higher self-desiccation shrinkage opposes expansion induced by any ettringite formation 

(Bentz et al., 2001b, Kaufmann et al., 2004).  
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Figure 4- 13: Correlation between autogenous strains and RBW for 2% SRA 

mixtures cured at 10, 20 and 40°C. 

 

4.5.5.2 SAP Mixtures 

For mixtures incorporating 0.6% SAP, experimental results revealed a linear correlation 

between the measured autogenous strains and RBW at 20 and 40°C, as shown in Fig. 4-

14. At 10°C, no correlation was observed, which can be ascribed to the effect of the high 

early-age expansion due to a disjoining pressure provided by water released from the 

SAP. Such an expansion, depending on its magnitude and rate of development, will act to 

offset deformations due to shrinkage. Further research is needed to explore this complex 

combination of expansion and autogenous strain. This includes, for instance, the 
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influence of the rate of dissolution of salts in the pore solution on capillary stresses, the 

disjoining pressure (Lura, 2003), and the coefficient of super-saturation at low 

temperature for mixtures incorporating SAP.   
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Figure 4- 14: Correlation between autogenous strains and RBW for 0.6% SAP 

mixtures cured at 10, 20 and 40°C. 

 

4.5.6. Predicting Drying and Autogenous Strains under Different Curing 

Conditions 

To investigate the effect of drying conditions on the role of SRA and SAP, the drying 

strains were determined based on the superposition principle and the evaluated degree of 

hydration (described in Chapter 3).  
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4.5.6.1  SRA Mixtures 

Similar to the control mixtures, the contribution of autogenous strains to the total strain 

under drying conditions for mixtures incorporating 2% SRA, based on the superposition 

principle, were overestimated when compared with that obtained using the degree of 

hydration, as shown in Fig. 4-15. However, SRA mixtures showed lower variation 

between the evaluated autogenous strains under different RH and sealed specimens 

compared to that of the control mixtures (lower overestimation values (Table 4-1)). For 

instance, at 40°C the difference between autogenous strains at RH=40% and sealed 

specimens was about 50 and 360 µε for SRA and control mixtures, respectively. This can 

be ascribed to the role of SRA in maintaining higher internal relative humidity under 

different drying conditions, which enhanced the hydration process (Bentz et al., 2001a, 

Weiss et al., 2008). SRA effectively reduced the drying strains for specimens cured under 

low RH conditions, while reduced autogenous strain slightly. For instance, w/c=0.25 

+2% SRA specimens achieved up to 55% reduction in the drying strain at 40°C and RH= 

40% compared to only 6% reduction in the autogenous strain at 40°C. Conversely, a 

higher efficiency of SRA in mitigating autogenous strains was observed at high RH 

compared to that of the control mixtures, as shown in Fig. 4-16. In conclusion, SRA was 

more effective in reducing drying strains at low RH, where drying dominated the total 

deformation and autogenous deformation had a minor effect. It can also be argued that 

SRA can be more effective in reducing autogenous strains for sealed or large cross-

section concrete members, where autogenous deformation at the core would be the major 

cause of deformation.  
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Figure 4-15: Autogenous strains evaluated based on achieved degree of hydration 

for w/c=0.25 + 2% SRA UHPC mixtures at age 7 days. 
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Figure 4-16: Comparison between autogenous strains evaluated based on achieved 

degree of hydration for w/c=0.25 mixtures at age of 7-days with and without SRA. 
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Table 4- 1: Overestimation ratios for autogenous strains under different curing 

conditions for different w/c=0.25 UHPC mixtures 

    Overestimation ratio 

Mixture  Temp.°C/RH% 40  60  80 

10  ‐‐‐‐*  0.78  0.46 

20  1.26  0.98  0.45 Control 

40  1.74  1.17  0.63 

10  ‐‐‐‐*  0.47  0.15 

20  0.57  0.46  0.26 2% SRA 

40  0.32  0.16  0.13 

20  0.98  0.47  0.20 
0.6% SAP 

40  1.13  0.67  0.48 

                              * Condition is not feasible. 

 

4.5.6.2 SAP Mixtures 

Figure 4-17 shows autogenous strains evaluated based on the degree of hydration for 

mixtures incorporating 0.6% SAP under different exposure conditions (except at 10°C, 

no correlation between the strains and degree of hydration was obtained as discussed 

earlier). It can be observed that autogenous strains for sealed specimens were 

significantly higher than that under other exposure conditions as shown by the 

overestimation ratio in Table 4-1.  In addition, SAP efficiency in mitigating autogenous 

strains decreased with lowering the RH.  Lowering the RH facilitates water escaping 

from specimens, which disturbs water storage in the SAP particles as mentioned before. 

This can affect the role of SAP in mitigating autogenous strains induced by self-

desiccation. For instance, the reduction in autogenous strains at 40°C for SAP mixtures 
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compared to that of control mixtures was about 7 and 21% for RH=40 and 80%, 

respectively as shown in Fig. 4-18. Furthermore, SAP mixtures exhibited higher drying 

strains compared to that of the control mixtures which is in agreement with mass loss 

results (see Fig. 4-12(a,b,c)).  
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Figure 4-17: Autogenous strains evaluated based on achieved degree of hydration 

for w/c=0.25 + 0.6% SAP UHPC mixtures at age 7 days. 
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Figure 4-18: Comparison between autogenous strains evaluated based on achieved 

degree of hydration for w/c=0.25 mixtures at age of 7-days with and without SAP. 

 

4.6. CONCLUSIONS  

Using the amount of chemically bound water to assess autogenous and drying strains in 

ultra high-performance concrete specimens was explored in this study including the 

effects of a shrinkage reducing admixture and superabsorbent polymer.  The following 

conclusions can be drawn from the experimental results:  

1) The reduction in UHPC compressive strength induced by the addition of SRA and 

SAP should be considered in evaluating the overall field performance.  

2) Effect of different shrinkage mitigation techniques on development of autogenous 

and drying strains are dependent; therefore their behaviour under sealed 

conditions will differ from that under drying conditions. 
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3) Applying the superposition principle without considering the effect of drying 

conditions on the shrinkage mitigation mechanisms will result in overestimating 

autogenous strains, and consequently an unrealistic evaluation for the efficiency 

of the applied shrinkage mitigation technique. 

4) For thin UHPC sections, drying dominates the total deformation and reduces the 

development of autogenous strains, leading to lower autogenous contribution to 

the total deformation. 

5) Adding SRA effectively reduced drying strains, which are the dominant strains in 

UHPC specimens under low RH conditions. At higher RH conditions, SRA 

reduced autogenous strains, which in turn are the dominant strains at high RH. 

6) In sealed UHPC specimens, early-age expansion of SAP mixtures had a 

significant effect in reducing the net strains. 

7) In UHPC specimens under drying conditions, adding SAP resulted in higher 

drying strains, which disturbed the curing process and diminished the effect of 

SAP as a shrinkage mitigating method.  

8) Adequate external curing is essential to mitigate early-age deformation in UHPC 

even when internal curing mechanisms are provided, since it guarantees a suitable 

environment for shrinkage mitigation methods to work properly. 
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CHAPTER FIVE 

 

EARLY-AGE SHRINKAGE OF UHPC UNDER 
DRYING/WETTING CYCLES AND SUBMERGED 

CONDITIONS* 
 

In the previous chapters (3 and 4), the influence of coupling a wide range of temperatures 

and relative humidities on drying and autogenous shrinkage behaviour, and their 

interaction mechanisms was investigated. Moreover, the role of shrinkage reducing 

admixture (SRA) and superabsorbent polymer (SAP), as shrinkage mitigation techniques, 

and their efficiency were also explored under similar conditions. However, such tests still 

not capturing the effect of other factors existing in field conditions, which may modify 

the early-age shrinkage behaviour of UHPC and its interaction with surrounding 

environment. Therefore, the present chapter examines the early-age shrinkage behaviour 

of UHPC mixtures, with and without shrinkage mitigation techniques, along with 

considering environmental loads (including the application of drying/wetting cycles 

and/or full immersion). This shall initiate the idea for developing a comprehensive 

integrated early-age shrinkage testing approach.   

 

5.1. INTRODUCTION 

Concrete is usually subjected to early-age variation in temperature, relative humidity, 

wind and other environmental loading that can alter its behaviour. Considering in-situ 

conditions and environmental loading in testing protocols should allow gaining a better 

*A version of this chapter has been Accepted in the ACI Materials Journal. Some parts of this chapter were 
also published in the Second International Structures Specialty Conference, Winnipeg, Manitoba, Canada, 
ST-30. 



Chapter 5                                                                                                                         145  

understanding of the early-age behaviour and developing suitable performance 

specifications. This seems to be more important for new generations of concrete (i.e. 

UHPC) before being implemented in wide full-scale field constructions.  

During early-age curing, before depercolation of capillary pores, concrete can 

imbibe water from its environment. Hence, self-desiccation shrinkage can be delayed and 

cracking may be avoided (Bentz and Jensen, 2004). In addition, early curing minimizes 

early-age moisture loss and maximizes the degree of hydration achieved by the cement, 

potentially leading to stronger and more durable concrete. Based on the quality of the 

curing regime, UHPC can be subjected to cyclic drying (intervals between exposures to 

moisture) and wetting (during moisture exposure). Besides the curing regime, concrete is 

usually exposed in the field to various environmental conditions. These may include: the 

drying action of the sun and wind; rain-water containing dissolved chemicals; bridge-

deck run-off or road spray contaminated with chlorides from de-icing salts; tidal and 

wave action in offshore or water-front marine structures, etc. Hence, it can be expected 

that the quality of the curing regime and the effects of the surrounding environment may 

be responsible for considerable dimensional instability due to moisture changes, and can 

thus have major consequences on the long-term performance of concrete. 

Therefore, the present chapter explores the shrinkage behaviour of UHPC under 

different environmental loads. These loads include drying/wetting (DW) cycles, which 

used as an accelerated test method to simulate outdoor environmental conditions in which 

structures are subjected to moisture cycles, and submerged (SM) condition to simulate the 

submerged part of marine and offshore structures. 
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5.2. RESEARCH SIGNIFICANCE 

Several studies have been conducted to quantify the shrinkage behaviour of UHPC using 

a conventional testing approach under controlled environment. However, achieving a 

proper understanding for the effect of field exposure conditions on such shrinkage a more 

integrated testing approach is still needed. Hence, this study introduces a simple 

integrated testing method through considering the effect of environmental load on 

shrinkage behaviour and the efficiency of shrinkage mitigation methods. Results should 

have important implications in understanding the evolution of early-age deformations in 

UHPC and the role of mitigation methods under field-like conditions. In addition, it 

paves the way for developing a multi-factor integrated testing approach for early-age 

shrinkage behaviour that can capture different field scenarios. 

 

5.3. EXPERIMENTAL PROCEDURE 

 

5.3.1.  Materials and Mixture Proportions 

The materials, UHPC mixtures and ID coding used in this chapter were similar to that 

used in Chapter 4 (refer to Section 4.4.1). A new UHPC mixture incorporating 2% SRA 

and 0.6% SAP was tested in order to investigate the synergetic effect of both mitigation 

techniques. The chemical and physical properties of the used binders have been given in 

Chapter 3 (Tables 3-1).  

5.3.2. Environmental Conditions  

Four exposure conditions were simulated, namely; drying, sealed, SM and DW cycles. 

The drying condition was simulated inside a walk-in environmental room, where 
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temperature and relative humidity (RH) were kept constant (20 ±1°C and RH= 40 ± 5%). 

Submerged specimens were stored in a temperature controlled water bath at 20 ±2°C. 

During the DW, specimens were allowed to dry inside the walk-in environmental room at 

20 ±1°C  and RH= 40% for 12 hours, then submerged in a temperature controlled water 

bath at 20 ± 2°C for 6 hours. Controlling the temperature of specimens insures a similar 

temperature history; hence, the temperature effects on the developed autogenous 

shrinkage strains are minimized during the various exposure regimes (Turcry et al., 

2002). 

5.3.3. Preparation of Test Specimens and Testing Procedures 

Prismatic specimens (75×75×280 mm) were used for all conducted tests in order to dispel 

size effects on the results. All UHPC specimens were taken from a single batch of the 

tested mixture. Before casting, the moulds were lined with a layer of thin Teflon sheets to 

minimize friction between the concrete and moulds. Specimens were cast in three layers 

and compacted on a vibrating table. UHPC was cast in metallic molds with 5-mm thick 

copper walls. Silicone sealant was used to seal the molds’ sides and prevent any water 

diffusion from the bath. The surface of each specimen was covered with a wide 

polyethylene sheet which was bent down on both sides of the mold and fixed with a 

silicone sealant. The temperature of each specimen was controlled using a temperature 

controlled water bath surrounding the specimens’ sides. The top surface temperature was 

controlled using a wet sponge. The sponge was submerged in the water bath regularly 

every 15 minutes until the demolding time. At around 5-7 hours from first contact 

between cement and water, molds were removed from the water bath. The silicon sealant 

and wall-base attaching screws were removed, then specimens were taken off and moved 
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to the specific curing conditions. The specimens were installed over roller supports that 

can rise up the specimens allowing: i) drying from all specimens’ faces, and ii) specimens 

to shrink freely without friction effects. In the remainder of this text, strains will be used 

to account for both shrinkage and expansion deformations. 

5.3.3.1 Chemically Bound Water and Degree of Hydration  

Thermo-gravimetric (TGA) combined with derivative thermo-gravimetric (DTG) 

analysis was previously explained in Chapter 3 (refer to section 3.4.3.1)  

5.3.3.2 Strain Measurements  

The strain measurements on UHPC specimens were carried out using electrical-resistance 

strain gauges according to a common procedure (RILEM, 2003, Tazawa, 1999) in which 

an embedded steel bar, with strain gauges installed on it, is used to measure strain inside 

the tested specimen. Fresh UHPC mixtures were cast in metallic formwork with steel 

reinforcing bars (6 mm in diameter, and 280 mm in length). On each steel bar, four strain 

gauges were installed to form a full bridge circuit, as shown in Fig. 5-1. Two strain 

gauges were installed opposite to each other along a fabricated 20 mm smooth length at 

the middle of the bar to eliminate the bending effect on the measured strains (Hannah and 

Reed, 1992, Sule and Van Breugel, 2001). The other two strain gauges were installed in 

the transverse direction to minimize the temperature effect on the measured strains 

(RILEM, 2003, Hannah and Reed, 1992). In addition, two metallic plates were added at 

the ends of the bar to capture any expansion deformation. The measured strains were 

corrected to account for the local restraint induced by the embedded bar due to the 

difference between the stiffness of concrete and that of the embedded steel bar as follows 

(RILEM, 2003): 
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Where εt is the total concrete strain after correction, εm is the measured strain after 

deducting the temperature effect on the measurements, Es, As and Ec, Ac are the modulus 

of elasticity and cross-section area of the embedded steel bar and tested UHPC 

specimens, respectively, αs is the coefficient of thermal expansion of the embedded steel 

bar, and T∆ is the change in temperature from the onset of the test. The calculated value 

(Es As /Ec Ac) was much lower than 1, which indicates a very low restraint induced by the 

steel bar against shrinkage. 

 

 

Figure 5-1 : (a) Strain measurement specimen, and (b) strain gauges arrangement to 

form full bridge circuit. 

 

For each UHPC mixture, three replicate specimens per curing condition were 

made. Immediately after demolding, specimens for autogenous strain measurements were 

wrapped with four layers of polyethylene sheets and a layer of paraffin wax membrane to 

prevent moisture loss. Specimens for drying and drying/wetting strain measurements 

were exposed to the drying condition inside the walk-in environmental room. Submerged 

specimens were moved to the controlled water bath. Moreover, two type-T 
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thermocouples were inserted in the specimens to monitor concrete temperature changes 

from the onset of testing.  

5.3.3.3 Moisture Loss 

Three identical prisms (75×75×280 mm) were made for each mixture and demolded at 

the time of starting strain measurements. The prisms were transferred to the different 

exposure conditions after measuring the initial mass of each prism using a balance with 

an accuracy of 0.01 g. The mass measurements were started along with measurements of 

total strains.  

5.3.3.4 Mercury Intrusion Porosimetry (MIP): 

 UHPC fragments were taken from tested specimens and immediately plunged in an 

isopropanol solvent to stop hydration and subsequently dried inside a desiccator until a 

constant mass was achieved. The pore size distribution for each specimen was 

determined automatically using a Micromeritics AutoPore IV 9500 Series porosimeter 

allowing a range of pressures from 0 to 414 MPa. The assumed surface tension of 

mercury was about 0.484 N/m at 25°C according to ASTM D 4404-84 (Standard Test 

Method for Determination of Pore Volume and Pore Volume Distribution of Soil and 

Rock by Mercury Intrusion Porosimetry). The density of the mercury was 13.546 g/ml 

and the assumed contact angle was 140°. 

5.3.3.5 Chemical Oxygen Demand (COD) 

Chemical Oxygen Demand (COD) test determines the oxygen requirement equivalent of 

organic matter that is susceptible to oxidation with the help of a strong chemical oxidant. 

In the COD method, the water sample is oxidized by digesting in a sealed reaction tube 
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with sulphuric acid and potassium dichromate in the presence of a silver sulphate 

catalyst. The amount of dichromate reduced is proportional to the COD. A reagent blank 

is prepared for each batch of tubes in order to compensate for the oxygen demand of the 

reagent itself. Over the range of the test a series of colours from yellow through green to 

blue are produced. The colour is indicative of the chemical oxygen demand and is 

measured using a Photometer. The results are expressed as milligrams of oxygen 

consumed per litre of sample. 

 

5.4. RESULTS AND DISCUSSION 

 

5.4.1. Mass Change  

The mass change of the control UHPC specimens due to the ingress/absorption of 

moisture is illustrated in Fig. 5-2. Under the drying condition, specimens showed a 

continuous mass loss over the investigated period. Conversely, specimens subjected to 

DW cycles showed fluctuation of mass change while switching between the drying and 

wetting periods. On the other hand, submerged specimens gained mass rapidly during the 

first 24 hours, and then their mass became nearly constant. This can be attributed to the 

higher ability for imbibing water during the early period before depercolation of capillary 

porosity (Bentz and Garboczi, 1991). However, control specimens with w/c=0.22 

exhibited a lower mass change of about 25% and 58% under the drying and submerged 

conditions, respectively, compared to that of control specimens with w/c=0.25. This can 

be ascribed to the reduction in porosity as a result of reducing the w/c. Reducing the w/c 

generally leads to lower capillary suction of water and reduced diffusion coefficient due 

to the development of a denser pore structure (Lea and Hewlett, 1998, Martys and 
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Ferraris, 1997, Teichmann and Schmidt, 2004). Moreover, the w/c=0.22 control mixture 

had a lower content of evaporable water compared to that of the w/c=0.25 control 

mixture due to its lower water content and higher consumption of evaporable water in the 

hydration process (i.e. self-desiccation) (Dhir and McCarthy, 1999).  
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Figure 5-2: Mass change of control mixtures a) w/c=0.22 and b) w/c=0.25 under 

different exposure conditions. 
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Similar trends were observed for UHPC mixtures incorporating SRA and SAP 

(Fig. 5-3). Compared with control mixtures, the SRA mixtures did not exhibit a 

significant mass change under drying and DW conditions. Conversely, the SAP mixtures 

showed a higher mass loss. Under the SM condition, SRA and SAP mixtures behaved 

differently when the w/c changed. SRA and SAP mixtures with w/c=0.25 showed a lower 

mass gain compared to that of the w/c=0.25 control mixture. This can be ascribed to the 

effect of SRA and SAP on the capillary suction, which is considered the driving force for 

water diffusion into the porous material (Lstiburek and Carmody, 1994). Using SRA is 

believed to reduce the capillary suction since it reduces the pore fluid surface tension 

(Ribeiro et al., 2006). The SAP mixture had a higher water content leading to lower 

capillary suction (Lstiburek and Carmody, 1994). On the other hand, SRA and SAP 

mixtures with a w/c=0.22 showed similar mass gain compared to that of the w/c=0.22 

control mixture (see Fig. 5-3), which indicates that the water diffusion and consequently 

mass change at such a low w/c is dominated by the development and depercolation rate 

of the pore structure leading to lower diffusion characteristics (Lea and Hewlett, 1998).  
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Figure 5-3: Mass change for a) w/c=0.22 and b) w/c= 0.25 mixtures incorporating 

2% SRA or 0.6% SAP under different exposure conditions. 
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5.4.2. Shrinkage Strain under Different Environmental Exposure Conditions 

5.4.2.1 Control Mixture 

UHPC specimens exposed to the drying and sealed conditions showed significant 

shrinkage strain. DW cycles seemed to be somewhat effective in counteracting shrinkage 

strain. The final shrinkage strains after DW cycles were reduced by about 21% and 37% 

compared to that under the drying condition for mixtures with w/c=0.22 and 0.25, 

respectively. Figure 5-4 shows the strain development for the w/c=0.25 control mixture 

under different curing conditions.  
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Figure 5-4: Measured strain for w/c=0.25 control specimens under different 

exposure conditions. 

 

It can be seen that during the wetting period in DW cycles (Fig. 5-5), specimens 

expanded as a result of water absorption. Conversely, during the drying period, it started 

to shrink due to the loss of moisture, along with thermal deformation caused by 
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evaporative cooling due to the removal of free water (Kovler, 1996). These thermal 

deformations (which ranged from 20 to 35 µε) were eliminated from strain measurements 

based on the measured specimens’ temperature and coefficient of thermal expansion, 

which was evaluated using a similar procedure to that proposed by (Cusson and 

Hoogeveen, 2006, Cusson and Hoogeveen, 2007).  
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Figure 5-5: Measured strain for w/c=0.25 control specimens under drying/ wetting 

cycles. 

 

Moreover, the amount and rate of strain development during either the drying or 

wetting period was found to decrease with time. This can be explained as follows: the 

higher the pore volume of the specimen, the deeper was the level of internal free water 

that can evaporate and be exchanged with the surrounding environment (Aïtcin, 1998), 

the so-called moisture influential depth (Chunqiu et al., 2008). As the hydration process 

progresses, especially for UHPC, hydration products start filling voids and pores, thus 
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leading to denser internal microstructure (Loukili et al., 1999, Lstiburek and Carmody, 

1994). This will limit the exchange of water with the external surface layer of the 

specimen. Figure 5-6(a,b) illustrate the progress of the degree of hydration and pore 

volume for the surface layers and cores of UHPC specimens with w/c=0.25 subjected to 

DW cycles. It can be observed that the cores of specimens have higher degree of 

hydration and denser pore structure compared to that of the external layer.  
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Figure 5-6: Measured (a) porosity and (b) degree of hydration for w/c=0.25 control 

specimens surface (S) and core (C) under different exposure conditions. 
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Figure 5-6 Contd’: Measured (a) porosity and (b) degree of hydration for w/c=0.25 

control specimens surface (S) and core (C) under different exposure conditions. 

 

Under SM conditions, specimens continued to swell during the first 24 hours. 

Then, it started to shrink until the end of the investigated period. This high early swelling 

resulted in a lower net shrinkage compared with that of sealed specimens (about 79% and 

98% reduction in the shrinkage strain for mixtures with w/c=0.22 and 0.25, respectively). 

The swelling of submerged specimens can be ascribed to the continuous supply of water, 

allowing the cement gel to absorb water and expand (Neville, 1996). The reduction in the 

swelling strain can be explained by the fact that the progress of the hydration process 

reduced and depercolated the concrete capillary porosity, which interfered with water 

imbibing from the surrounding environment to the specimen’s core. As a result, higher 

self-desiccation occurred as water was drained from increasingly finer capillaries, thus 

leading to higher capillary tension and higher deformations. Unlike the case of DW 
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cycles, the external layers were found to be denser and had higher degree of hydration 

than that of specimen cores as shown in Fig. 5-6 (a,b). 

However a similar behaviour was observed for the w/c=0.22 control mixture, 

which showed a lower rate and amount of strain during DW cycles and under the SM 

condition compared to that of the w/c=0.25 control mixture. For instance, the w/c=0.22 

control mixture exhibited an early expansion strain during the first 24 hours of about 21% 

less than that of the w/c=0.25 control mixture. This behaviour of the w/c=0.22 mixture 

can be attributed to its denser pore structure, which eliminated the water exchange 

between the specimens and their surrounding (Tazawa, 1999), whether during drying or 

wetting periods. Figure 5-7 illustrates the effects of the w/c and exposure conditions on 

the surface pore volume distribution after one DW cycle. It can be observed that reducing 

the w/c and applying moist curing resulted in lower total porosity values and movement 

of the pore width peak to smaller widths in agreement with previous research (Cook and 

Hover, 1999, Alford and Rahman, 1981). 
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Figure 5-7: Pore size distribution for control specimen’s surface under different 

exposure conditions after the first drying/wetting cycle. 

 

5.4.2.2 Effect of SRA  

Figure 5-8 illustrates the shrinkage strain for w/c=0.25 specimens incorporating SRA 

under different curing conditions. Incorporating SRA led to a significant reduction in 

both the drying and autogenous strains by about 24 and 38% for w/c=0.22 mixtures and 

about 18% and 25% for w/c= 0.25 mixtures, respectively, compared to that of 

corresponding control specimens with no SRA. This is attributed to the effect of SRA in 

reducing the surface tension of the pore fluid, leading to a reduction in the developed 

capillary stress and drying shrinkage strains (Bentz, 2006, Weiss et al., 2008). Moreover, 

SRA is believed to mitigate the drop in internal relative humidity of specimens, leading 

to lower self-desiccation and autogenous shrinkage (Bentz et al., 2001).  
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Figure 5-8: Measured strain for w/c=0.25 UHPC specimens incorporating 2% SRA 

under different exposure conditions. 

 
Figure 5-9 illustrates changes in the drying strain rate during DW cycles for the 

control and SRA mixtures. Two interesting features can be observed. First, a steep 

reduction in the drying strain rate after about 1 and 3 DW cycles is observed for w/c=0.22 

and 0.25 mixtures, respectively. As hydration proceeds, hydration products fill the pore 

space, thus diminishing the size and connectivity of pores (Cook and Hover, 1999). The 

resulting lower water exchange with the surrounding environment causes a steep 

reduction in the drying strain rate. The lower the w/c, the lower was the pore space to be 

filled, leading to earlier reduction in the rate of water exchange (Loukili et al., 1999, 

Lstiburek and Carmody, 1994).  
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Figure 5-9: Drying strain rate during drying/wetting cycles for control and SRA 

UHPC specimens. 

 
Secondly, mixtures incorporating SRA had higher efficiency in reducing the 

drying strain rate during the early period compared to that of control mixtures, but had a 

lower efficiency at later stage. Furthermore, UHPC specimens incorporating SRA 

exhibited about 36 and 14% reduction in the developed strain during the initial drying 

period compared to that of the w/c=0.22 and 0.25 control specimens, respectively. This 

strain reduction due to incorporating SRA continued to decrease with the application of 

DW cycles. Moreover, submerged specimens incorporating SRA showed similar 

shrinkage strain to that of the submerged control specimens with no SRA. Figure 5-10 

shows the measured shrinkage strain after fixing the strain to zero at the end of the 

expansion period. Therefore, it is hypothesized that SRA is washed out with migrating 

water since SRA is a chemical that reduces the pore fluid surface tension but does not 
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chemically combine with other hydration products (Rodden and Lange, 2004). To 

validate this hypothesis, chemical oxygen demand (COD) tests were conducted on water 

samples taken from the submersion tanks. The COD test is based on the fact that nearly 

all organic compounds can be oxidized by strong oxidizing agents (Sawyer et al., 2003). 

Specifically, the COD test measures the total amount of oxygen required to oxidize the 

organic matter in a water sample, regardless of the biodegradability of the organic 

substances. Hence, it is widely used for measuring water quality. 
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Figure 5-10: Measured strain after the early expansion period under submerged 

condition. 

 

Figure 5-11 (a,b) show the COD values for the control and SRA mixtures. The 

results confirm the existence of SRA in the submerging water. The cumulative SRA 

percentage increased with time, which indicates continuous washout of SRA. However, 
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the w/c=0.22 mixture incorporating SRA showed lower COD values compared to that of 

the w/c=0.25 mixture with SRA, which indicates a reduction in the amount of washed out 

SRA. Based on the COD value for organic SRA, about 17% and 22% of the SRA was 

washed out from the w/c=0.22 and 0.25 mixtures by the end of the investigated period, 

respectively. In the case of DW cycles, COD values decreased simultaneously with DW 

cycle repetition, especially for the w/c=0.22 mixture, which showed a significant 

reduction in the COD values after the first cycle, as shown in Fig. 5-11(b) This can be 

attributed to the reduction and depercolation of capillary pores by hydration products as 

mentioned before. In addition, the ability of SRA to migrate to the curing water decreased 

as the SRA concentration in the specimens decreased with time due to SRA leaching.  
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Figure 5-11: COD values for control and SRA UHPC specimens under a) 

submerged condition and b) drying/wetting cycles. 
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Figure 5-11 Cont’d: COD values for control and SRA UHPC specimens under a) 

submerged condition and b) drying/wetting cycles. 

 

5.4.2.3 Effect of SAP  

Figure 5-12 illustrates the shrinkage strain development for w/c=0.25 UHPC specimens 

incorporating SAP under different curing conditions. Regardless of the w/c, UHPC 

specimens incorporating SAP showed higher mass loss during drying than that of the 

control mixtures, yet showed a significantly lower total shrinkage. This can be ascribed to 

the effect of the pore size distribution and developed capillary tensile stress (Wittmann, 

1982). According to the Laplace law (Eq. 5-2), this capillary stress is highly affected by 

the radius of the pore ( ) in which the meniscus forms. Therefore, water loss from 

smaller pores will probably induce higher capillary tensile forces, leading to higher 

shrinkage (Aly and Sanjayan, 2009, Collins and Sanjayan, 2000).  

sr
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                                                      s
c r

θγσ cos2 ⋅
−=

                                              
 Eq. 5-2 

Where cσ  is the capillary stress, γ  is the surface tension of the pore solution, θ  is the 

contact angle between the pore solution and the solid (often assumed to be 0°), and  is 

the average radius of meniscus curvature.  
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Figure 5-12: Measured strain for w/c=0.25 UHPC specimens incorporating 0.6% 

SAP under different exposure conditions. 

 

Analysis of the incremental pore size distribution data from MIP tests showed that 

SAP specimens had a proportion of finer pore size similar to that of the control 

specimens as shown in Fig. 5-13. The different pore sizes were classified according to the 

International Union of Pure and Applied Chemistry system (IUPAC) (IUPAC, 1972). 

The calculated ( ) values were higher for SAP specimens than that for the control sr
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specimens with no SAP, as shown in Table 5-1. This is expected to result in lower 

capillary stress, leading to lower shrinkage regardless the mass loss. The parameter ( ) 

was calculated following the same procedure reported by (Aly and Sanjayan, 2009, 

Collins and Sanjayan, 2000). Furthermore, since the UHPC tested had a very low w/c 

(i.e. w/c=0.22 and 0.25), the contribution of autogenous shrinkage to the total shrinkage 

cannot be ignored. Therefore, a percentage of the total shrinkage reduction can be 

ascribed to a reduction in the autogenous shrinkage induced by SAP in drying specimens 

(Jensen and Hansen, 2002).   
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Figure 5-13: Pore size percentage for w/c=0.25 control and SAP UHPC specimens 

under drying conditions. 
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Table 5-1: Computation of ( ) for control and SAP mixtures under drying 
conditions and drying/wetting cycles 

sr

  Control  SAP 

  Drying conditions 

Number of cycles  1  5  9  1  5  9 
% Moisture loss from  1.50  2.00  2.20  1.68  2.43  2.55 

Volume of water dried  3.10  4.20  4.60  3.55  5.18  5.51 

Total porosity (from MIP) 14.8 11.1 9.66  14.51 11.4 10.6

sr (nm)  70.0 46.0 16.00 90.00 65.0 22.0

           DW cycles 

Number of cycles  3  5  9  3  5  9 
%  Moisture  loss  from  1.19  1.42  1.13  1.27  1.33  1.22 

Volume  of  water  dried  2.54  3.04  2.48  2.72  2.89  2.59 

Total porosity (from MIP) 12.5 10.2 9.56  13.83 9.69  8.57 

sr (nm)  65.0 38.0 12.00 36.00 20.0 8.00 

 

On the other hand, SAP specimens showed mass loss and net shrinkage under DW 

cycles higher than those of the control specimens at different w/c ratios. Moreover, the 

shrinkage rate was much higher than that of the control specimens. Analysis of the TGA 

and MIP results for UHPC specimens incorporating SAP under DW cycles indicates that 

such specimens had higher degree of hydration and lower value of the parameter ( ) 

compared to that of the control specimens subjected to DW cycles as shown in Fig. 5-14 

and Table 5-1. SAP particles have a high tendency to absorb water and expand (Jensen 

and Hansen, 2001). Hence, it is expected that SAP will absorb water during the wetting 

period, leading to higher expansion as a result of SAP particles swelling. During the 

drying period, SAP particles release water and occupy smaller volume (Wang et al., 

2009), thus leading to an additional shrinkage strain along with drying and autogenous 

strains. Furthermore, SAP enhances the hydration process leading to a higher degree of 

sr
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hydration and smaller capillary pores. The smaller the capillary pores (i.e. parameter 

( )), the higher the capillary stress induced by water loss during the drying period, thus 

resulting in higher shrinkage.  
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Figure 5-14: Degree of hydration for w/c=0.25 control and SAP UHPC specimens 

under drying/wetting cycles. 

 

However, UHPC specimens incorporating SAP gained less mass under SM 

conditions, but exhibited higher early expansion compared to that of the control 

specimens. For instance, after 24 hours specimens incorporating SAP exhibited about 

70% and 81% higher expansion strains compared to that of the control specimens with 

w/c=0.22 and 0.25, respectively. Moreover, SAP specimens showed a significant 

reduction in the developed shrinkage after the initial swelling compared to that of the 

control and SRA specimens. As a result, the net strain at the end of the investigation 
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period was an expansion (about 122 and 237 µε for mixtures with w/c=0.22 and 0.25, 

respectively).  During the early period, submerged specimens absorb water leading to 

mass increase and swelling, as can be observed in Figs. 5-3 and 5-12. On the other hand, 

sealed specimens showed a high autogenous shrinkage (Fig. 5-12), which is likely 

attributed to self-desiccation (Ma et al., 2004). Therefore, it can be expected that the 

imbibed water effectively mitigates self-desiccation during the early period rather than 

the SAP itself. Once depercolation of capillary pores occurred, water stored inside SAP 

particles started its role in mitigating self-desiccation. This would explain the relatively 

lower shrinkage rate after the initial swelling for submerged SAP specimens compared to 

that of the control specimens. Figure 5-15 captures this behaviour in which the strain 

curves for the SM condition were initiated to zero at the end of the swelling. The 

reduction in shrinkage strains after the early expansion was about 52% and 66 % for 

mixtures incorporating SAP compared to that of the control mixtures with w/c=0.22 and 

0.25, respectively. 
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Figure 5-15: Measured strain for control and SAP UHPC specimens under SM 

condition after early expansion 

 

5.4.2.4 Synergistic Effect of SRA and SAP   

To investigate a possible synergistic effect of SRA and SAP, an additional mixture with 

w/c=0.25 and incorporating both 2% SRA and 0.6% SAP was tested. This mixture (noted 

MSS) achieved higher efficiency in reducing shrinkage strains under different exposure 

conditions. Table 5-2 shows the percentages of shrinkage strain reduction of MSS 

compared to those of the other mixtures. Under SM conditions, MSS specimens showed 

high expansion during early-age, similar to that of UHPC specimens incorporating SAP, 

resulting in a net shrinkage strain reduction of about 70% and 71% compared to that of 

the control and SRA specimens. Moreover, the measured COD for MSS specimens 

indicated only 5% reduction in SRA loss compared to that of the SRA specimens. Hence, 

SAP can be considered to have the dominant effect under SM conditions.  
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Under DW cycles, MSS specimens showed a significant reduction in shrinkage 

strains compared to that of the other mixtures as shown in Table 5-2. Moreover, COD 

results indicated a significant reduction in SRA loss during DW cycles. After the first DW 

cycle, the net measured COD value for the MSS mixture was about 525 mg/L, which is 

similar to that of the SRA mixture. At the end of the second cycle, the net measured COD 

value was about 129 mg/L compared to 372 mg/L for the SRA mixture (about 65% 

reduction). On the other hand, MSS specimens showed lower mass loss and shrinkage 

strains compared to that of the SAP mixture specimens. This can be explained as follows: 

SAP supplies water for further hydration and consequently a denser pore structure is 

developed. This, in turn leads to a smaller meniscus radius which results in higher 

capillary stresses. However, the developed denser pore structure also reduces the amount 

of washed out SRA, which decreases the surface tension of the pore water, leading to 

lower mass loss and capillary stresses. Hence, the synergistic effect of SRA and SAP 

optimizes the mutual benefits of these shrinkage mitigation methods and could overcome 

their individual deficiencies in the various exposure conditions. However, further 

research is needed to investigate this synergistic mechanism in order to possibly develop 

a new generation of high- performance shrinkage mitigation admixtures. 

Table 5-2: Percentage of reduction in shrinkage strain for each exposure condition 

due to incorporating both SRA and SAP compared to reference mixtures. 

  % Reduction in strain due incorporating both SRA and SAP 

Exposure conditions Reference 

mixtures  Sealed  Drying  Drying/Wetting  Submerged 

Control  50.0%  52.0%  44.0%  70.0% 
SAP  39.0%  40.0%  49.0%  16.0% 

SRA  35.0%  42.0%  32.0%  71.0% 
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5.5. CONCLUSIONS 

In this study, UHPC mixtures with different w/c and with or without SRA and SAP were 

tested under sealed, SM and DW cycles conditions. Based on this work, the following 

conclusions can be drawn:  

1) Environmental exposure conditions alter the shrinkage behaviour of UHPC with 

and without shrinkage mitigation methods. 

2) Initial high early swelling of submerged specimens results in very low net 

shrinkage strain.  

3) The washout of SRA during SM and/or DW cycles can dismiss its effectiveness in 

mitigating shrinkage strains. 

4) Using SAP under DW cycles can result in higher shrinkage strains of UHPC since 

it stimulates a higher degree of hydration (i.e. smaller capillary pores) leading to 

higher capillary tensile stress. 

5) Using SAP under submerging condition is very effective in reducing the 

developed shrinkage strain.  

6) Using a combination of SRA and SAP creates a synergistic effect whereby the 

benefits of these shrinkage mitigation methods are optimized. This allows 

overcoming their individual deficiencies under different exposure conditions, 

which is promising for developing a new generation of high-performance 

shrinkage mitigation admixture with dual effect. 
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CHAPTER SIX 

 

SELF-RESTRAINING SHRINKAGE CONCRETE: 
MECHANISMS AND EVIDENCE * 

 

In the previous chapters, the effect of environmental conditions (i.e. field-like conditions) 

and active shrinkage mitigation techniques on the early-age shrinkage behaviour of 

UHPC was investigated. It was proven that the addition of shrinkage reducing admixture 

and/or superabsorbent polymer can significantly reduce shrinkage under different 

exposure conditions. However, a number of disadvantages including, reduction in 

mechanical properties, retarding hydration process, higher water loss, higher porosity, 

washing out effect and cost, are still limiting these materials applications. Further, these 

shrinkage mitigation techniques do not provide a reduction in the environmental impact 

of concrete production. In this chapter, a passive shrinkage mitigation technique is 

introduced as a solution that provides adequate benefits for both facets. 

 

6.1. INTRODUCTION 

Once water comes in contact with cement, exothermic chemical reactions (so-called 

hydration reactions) initiate, leading to the formation of hydration products (Neville, 

1996). These hydration products connect un-hydrated cement particles and other concrete 

constituents together to form the internal microstructure of concrete (Struble et al., 1980). 

As hydration reactions progress with time, the concrete microstructure gains rigidity and 

increased ability to resist different stresses (Roy and Idorn, 1993).  

*Some parts of this chapter (Part 1) were accepted by the ACI Materials Journal. Other parts (Part 2) have 
been submitted for review to Cement and Concrete Research. 
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On the other hand, the volume occupied by hydration products will be less than 

that occupied by its reactants before hydration, leading to a volume contraction. This 

internal deformation is known as chemical shrinkage (Le Chatelier contractions) (Mehta 

and Monteiro,2006). Under sealed conditions, the progress of hydration reactions and 

associated chemical shrinkage will result in an external bulk deformation, which is 

referred to as autogenous deformation (Kovler and Zhutovsky, 2006, Hansen, 2011). 

Hence, chemical shrinkage can be considered as the main driving force behind 

autogenous deformation (Barcelo et al., 2001). Such an early-age shrinkage of concrete is 

a complex physico-chemical phenomenon, which is related to the hydration reactions and 

progressive hardening of the concrete skeleton. 

This chapter describes a new concept for reducing early-age shrinkage in 

hydrating cement-based materials through the addition of partially hydrated cementitious 

materials (PHCM) as a concrete admixture. During the mixing of concrete, the added 

PHCM will form restraining clusters, which essentially consist of a hydrated cement 

paste structure and micro-crystals of hydration products. Conceptually, this is similar to 

the role played by un-hydrated cement particles and aggregates, which impart a passive 

internal restraint within concrete (Bentz and Jensen, 2004). The PHCM technique creates 

deformation resistance as early as the cementitious materials are mixed through 

developing a connected strength-gaining skeleton at the fresh stage. An explanation of 

the mechanism and rationale of the PHCM technique is given below; validity and 

benefits are also discussed below. 
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6.2. EARLY-AGE PHASES AND AUTOGENOUS SHRINKAGE IN 

CEMENTITIOUS MATERIALS 

Early-age shrinkage is defined as a volume change occurring immediately after placing 

concrete up to the age of about 24 hours (Holt, 2001). During this time the structural 

development in concrete can be categorized into three stages (Esping, 2007) (i) liquid 

stage when concrete is plastic, workable, and having a visco-elastic behaviour, (ii) 

skeleton formation stage (semi-plastic) when concrete undergoes early stiffening and a 

transition from fluidity to rigidity through the progressive forming a self-supporting 

skeleton which usually begins after the initial setting), and (iii) hardened (rigid) stage 

which starts at the point of final setting when the concrete starts developing mechanical 

strength as a result of continuing hydration reactions. 

At the liquid stage, when no significant skeleton that restrains deformation exists, 

autogenous shrinkage is considered to be equal to chemical shrinkage (Barcelo et al., 

2001, Holt, 2001). Once concrete enters the skeleton formation stage, a self-supporting 

skeleton starts to form; hence, autogenous shrinkage will diverge from chemical 

shrinkage since the rigidity of the paste restrains volume changes (Mehta and 

Monteiro,2006). At this stage, the rate of autogenous shrinkage will decrease to about 

(1/10) of the rate of chemical shrinkage (Hammer, 1999a). In conclusion, autogenous 

shrinkage initially originates from the chemical shrinkage, once the concrete set the 

development of a contracting capillary pore pressure will control the subsequent 

deformations (Hansen, 2011).  
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Autogenous and chemical shrinkage are influenced by several factors. However, 

these factors can have similar or conflicting effects on autogenous and chemical 

shrinkage. Indeed, factors that increase chemical shrinkage may reduce autogenous 

shrinkage, for instance when they reduce the setting time and/or generate a more rigid 

restraining structure (Esping, 2007). 

 

6.3. EARLY-AGE SHRINKAGE MITIGATION TECHNIQUES 

Early-age shrinkage can be more likely to cause cracking than long-term shrinkage since 

it develops more rapidly and occurs when the cement-based material still has low 

mechanical properties (Holt and Leivo, 2004). When formed, cracks may reduce strength, 

jeopardize durability, cause loss of pre-stress, etc. Therefore, different strategies for 

mitigating early-age shrinkage cracking have been proposed. 

Understanding the relationships amongst forces existing in a cement paste during various 

early-age phases, their sources and how they affect the overall behaviour is key to 

tailoring effective shrinkage mitigation strategies. According to the Laplace equation 

(Eq. 6-1), at the maximum capillary pore radius filled with water, water is under tensile 

stresses: 

r
Pca

)cos(2 θσ ⋅⋅−
=  Eq. 6-1 

Where  is the tensile stress in the pore solution, caP σ is the surface tension of the pore 

solution, θ  is the wetting angle of the solid with pore solution, and r is the radius of the 

meniscus curvature. The tensile stresses developed in the capillary water must be 
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balanced by compression stresses on the surrounding solid (Kovler and Zhutovsky, 

2006). During the liquid phase, the induced capillary stresses are greater than the bonding 

strength among cement paste particles; hence, the particles will be rearranged in the 

water. At that time, autogenous shrinkage is considered to be equal to chemical shrinkage 

(Barcelo et al., 2001, Tazawa, 1999). Once a solid path within the material is developed, 

the material rigidity gradually increases due to increasing connectivity of the solid 

particles; the bond strength among particles becomes greater than capillary stresses. This 

moment is known as the mineral percolation threshold (Barcelo et al., 2001).  

Consequently, the developed skeleton starts restraining particle displacements; 

however, it does not yet have sufficient strength to resist compressive stresses, which 

results in a volume decrease (i.e. bulk shrinkage). Meanwhile, water will move within the 

paste without particle displacements. Hence, autogenous shrinkage starts to diverge from 

chemical shrinkage (Justens et al., 1996, Hammer, 1999b). As hydration reactions 

progress, the paste skeleton gains increased strength to resist further three-dimensional 

deformation and air voids develop within capillary pores, leading to self-desiccation 

(Barcelo et al., 2001). Once the breakthrough pressure has been reached, the water 

meniscus cannot find a stable position due to discontinuity of the water system. Hence, a 

collapse of capillary pressure takes place (Wittmann, 1976). Therefore, early-age 

shrinkage of cementitious materials is mainly related to the development of capillary 

stresses, internal self-desiccation, and the strength of the restraining skeleton. Figure 6-1 

illustrates a correlation between cement paste structure development and volume change 

during different early-age stages. 
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Figure 6-1: Structure development and volume change during different early-age 

stages. 

 

Considering the various mechanisms discussed above, several concrete shrinkage 

mitigation techniques have been proposed. The first mitigation strategy deals with the 

surface tension of the pore solution. The latter is indeed a critical parameter for 

autogenous shrinkage as it directly affects capillary stress based on Laplace's equation 

(Eq. 6-1). The most commonly used material in this category is shrinkage-reducing 

admixtures (SRA). SRA decrease the surface tension of the pore solution, hence, it is 

considered as a direct method for reducing autogenous shrinkage (Tazawa and 

Miyazawaa, 1995a). However, possible disadvantages of SRA include a reduction of its 

effectiveness over time due to absorption of SRA by hydration products, destabilization 

of the entrained air void system (Schemmel et al., 1999), delaying the setting time and 

retardation of hydration reactions, thus leading to reduced mechanical strength (Bentz, 

2006). Moreover, the surface tension is also influenced by temperature, which may result 

in dosage variations to achieve optimum behaviour (Jensen and Hansen, 1999). In 

addition, washing out effect of SRA can significantly reduce it shrinkage mitigation 

efficiency as illustrated in chapter 5. 
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The second shrinkage mitigation strategy deals with both the radius of the water 

meniscus of the largest water-filled pore within the microstructure and the availability of 

water for hydration. These two parameters have a significant effect on capillary stresses 

and the internal self-desiccation process. In this strategy, internal curing techniques have 

been proposed, including the use of saturated lightweight aggregate particles with coarser 

pores (i.e. larger radius) (Bentur et al., 2001). This results in the development of lower 

capillary stress since the formation of empty pores due to chemical shrinkage first takes 

place in such coarser pores (in the aggregate) and does not involve relatively finer pores 

in the cement paste (Henkensiefken et al., 2010). In addition, the water contained within 

the saturated aggregate pores provides internal curing for the hydrating cement paste. 

Nevertheless, difficulties in controlling the consistency of the rheological properties of 

concrete incorporating such aggregates, along with potential reductions in its mechanical 

strength and elastic modulus constitute limitations of this technique. More recently, based 

on a similar principle to that of saturated lightweight aggregate particles, superabsorbent 

polymer particles (SAP) have been proposed as a shrinkage mitigation admixture for 

concrete (Jensen and Hansen, 2001). SAP is a more direct technique which produces a 

better controlled microstructure since it uniformly distributes the curing water. 

While significant research has investigated the above shrinkage mitigation 

strategies, to the best of the authors’ knowledge, research dedicated to exploring the 

effect of a restraining skeleton on shrinkage is rather scarce. Therefore, the present study 

focuses on the restraining skeleton concept and pioneers a self-restraining shrinkage 

system to reduce early-age shrinkage of concrete through the addition of partially 

hydrated cementitious material. 
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6.4. SHRINKAGE RESTRAINING SYSTEMS 

The concept of a shrinkage restraining system itself is not new. Generally, un-hydrated 

cement particles and aggregates constitute an internal restraining system (Bentz and 

Jensen, 2004), which resists autogenous deformation and reduces physical shrinkage 

(Tazawa and Miyazawaa, 1995b). However, using a higher aggregate content for 

reducing autogenous shrinkage in modern concretes such as high performance concrete 

or self-consolidating concrete is not practical. This is because increasing the aggregate 

content leads to reducing the paste volume, which is detrimental to workability in low 

w/c systems (Kovler and Zhutovsky, 2006) or where aggregate friction causes blockage 

of flow.  

One of the key parameters in early-age autogenous shrinkage is the time of 

hardening (Holt, 2001). This corresponds to the time when the cementitious material has 

sufficient strength to resist shrinkage stresses. The hydrated cement paste in fresh 

concrete forms a self-restraining system that reduces the absolute volume contraction 

(Aitcin, 1999). Therefore, accelerating agents and heat curing which cause an earlier 

setting and structuring of a stiff skeleton will shorten the period during which early-age 

autogenous shrinkage occurs (Holt, 2001, Kronlöf et al., 1995). However, such 

accelerating methods also accelerate the rate of autogenous shrinkage along with 

increasing mechanical strength. 

At the micro-level, calcium hydroxide (CH) crystals act as a passive restraint and 

reduce the measured physical shrinkage (Jensen and Hansen, 1996). The hypothesis that 

CH micro-crystals provide restraint was proposed by (Bentz and Jensen, 2004) based on 

results reported in (Carde and Francois, 1997, Powers, 1962) which indicate a significant 
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effect of leaching of CH crystals on deformation properties. The role of CH micro-

crystals is schematically illustrated in Fig. 6-2.  

 

 

Figure 6-2: Micro-crystals role in restraining deformation. 

 

6.5. CAN PHCM ADDITION REDUCE CONCRETE SHRINKAGE  

The ability of PHCM addition to reduce early-age concrete shrinkage in concrete is 

affirmative at least for the main reasons below. 

First, a cement paste matrix can be divided into two phases, the liquid phase and 

solid phase (i.e. un-hydrated particles and hydration products). As discussed earlier, 

emptying of capillary pores in a cementitious material via drying or chemical reactions 

subjects capillary water to tensile stresses and the solid paste to compressive stresses, 

which leads to volume reductions (Kovler and Zhutovsky, 2006). The compressive 

pressure that induces such stresses on the solid paste represents effective pressure 

transmitted through points of contact between the solid phase particles (Fosså, 2001). 

This effective pressure can be calculated from Eq. 6-2: 
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⎟
⎠
⎞

⎜
⎝
⎛ −

−=′
A

AAupp c Eq. 6-2

Where p' is the effective pressure, p is the total pressure, u is the pore water pressure, A is 

the total area, and Ac is the particle contact area. Increasing contact points between grains 

increases the resistance to apparent volume changes (Barcelo et al., 2005). During the 

liquid stage, the bonds and contact areas amongst particles are very small. Hence, the 

concrete does not resist significant stresses or deformations (Fosså, 2001). As hydration 

reactions proceed, the contact areas and bond between particles increase, resulting in 

increased ability to resist deformation. The higher the contact area, the higher is the 

resistance. Adding PHCM increases the contact areas acting as a load bearing structure 

for induced compressive stresses. This reduces volume reduction and overall 

deformation. 

Second, the added PHCM provides a sufficient initial amount of hydration 

product crystals (i.e. calcium silicate hydrate (CSH) and CH) and induces a hydrated 

cement paste structure within the original otherwise fresh mixture at the onset of the 

hydration process. In other words, the PHCM increases the passive internal restraint 

within the fresh cementitious matrix, which is analogous to the role of un-hydrated 

cement and aggregate particles. This can be illustrated as follows: in concrete, the 

hydrated cement paste constitutes a continuous matrix phase; shrinkage can be reduced 

due to the presence of discrete restraining particles (i.e. un-hydrated cement and 

aggregates). The volume of the shrinkable paste can be expressed as follows (Hansen, 

1987): 
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)( ucacpc vvvv +−= Eq. 6-3

Where  is the volume of paste in concrete,  is the volume of concrete,  is the 

volume of aggregate, and  is the volume of un-hydrated cement. Aggregates and un-

hydrated cement particles are assumed to be the sole shrinkage restraining agents. 

However, concrete contains partially hydrated cement. Thus, the volume of un-hydrated 

cement should be expressed as follows (Hansen, 1987): 

pcv cv av

unv

)1( α−= coun vv Eq. 6-4

Where  is the volume of cement added originally and cov α  is the relative degree of 

hydration, which varies between 0 and 1. Substituting Eq. 6-4 into Eq. 6-3, one obtains 

the following equation: 

[ ])1( α−+−= coacpc vvvv Eq. 6-5

Therefore, the relative shrinkage restraining volume ( ) can be defined as follows 

(Hansen, 1987): 

dV

c

coa
d v

vv
V

))1(( α−+
= Eq. 6-6

For mixtures incorporating PHCM, the added PHCM can be considered as an additional 

internal shrinkage restraining material, the volume of shrinkage paste can be modified to 

the following: 
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[ ] [ ] ηαααηα ⋅+−−+−+−⋅−+−= 1212 )1)(1(()1())1(( cocoaccoacpc vvvvvvvv  

   Part 1    Part 2  

Eq. 6-7

Where Part 1 represents the volume of paste in the mixture batch before adding PHCM, 

while Part 2 represents the volume of paste in the added PHCM; 1α  is the relative 

degree of hydration of the paste in the added PHCM, η  is the percentage of the added 

PHCM; 2α  is the relative degree of hydration of the paste without PHCM addition. By 

rearranging Eq. 6-7, it can be reduced to the follow: 

[ ] [ ]))1()1( 212212 ααηαααηα ⋅⋅⋅+−+−=⋅⋅+−+−= cocoaccoacpc vvvvvvvv  Eq. 6-8

Hence, the relative restraining volume ( ) can be reformulated to include the effect of 

the PHCM as follow: 

dV

c

co

c

coa
d v

v
v

vv
V 212 )1( ααηα ⋅⋅⋅

+
−+

= Eq. 6-9

Comparing the Eq. 6-6 and Eq. 6-9, a new term (i.e.
cv

21cov α⋅α⋅η⋅ ), representing the 

relative shrinkage resistance induced by the addition of PHCM, is added. Therefore, 

mixtures incorporating PHCM can possess a higher relative deformation restraining 

volume compared to that in normal mixtures. According to (Hansen, 1987), the 

volumetric shrinkage of concrete ( cvv )(∆  can be expressed as follows: 

)1( d
p

pc

c

V
K
P

v
v

−=⎟
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⎞

⎜
⎝
⎛ ∆

Eq. 6-10

Where  is the total hydrostatic shrinkage stress within the paste in concrete, and  

is the bulk modulus of the paste. It can be deduced from Eq. 6-10 that the volumetric 

pcP pK
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shrinkage of concrete decreases as V  increases. Hence, it is expected that mixtures 

incorporating PHCM can exhibit lower shrinkage compared to that in similar mixtures 

without PHCM.  

d

Third, previous work (Lobo et al., 1995) indicated that reused concrete can induce 

acceleration effect. Hence, this acceleration will increase the very early-age strength 

(Kronlöf et al., 1995) and structure a strong and stiff skeleton frame which withstand 

forces and limit shrinkage within fresh concrete (higher passive internal restraining 

system). This is consistent with Eq. 6-10 which shows that the volumetric shrinkage of 

concrete is indirectly proportional to the bulk modulus of the paste. Since PHCM addition 

accelerates the hydration process, resulting in a higher paste bulk modulus, a reduction in 

volumetric shrinkage can be expected. The main difference between PHCM addition and 

conventional acceleration techniques is that PHCM accelerates hydration reactions along 

with inducing a pre-existing passive internal restraint system, which in turn reduces the 

amount of deformation developed. 

 

6.6. SOURCES OF PHCM  

It is estimated that an annual average of 17.5 million cubic meters of ready mixed 

concrete produced in the USA is returned to concrete batch plants (Obla et al., 2007). The 

disposal of this returned concrete has serious environmental and economical implications. 

However, such a returned material can be used as a source of PHCM after some 

treatment. This treatment may include the use of stabilizing admixtures (Lobo et al., 

1995) to control the degree of hydration of the PHCM before adding to a newly mixed 

concrete. 
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6.7. PARTIALLY HYDRATED CEMENTITIOUS MATERIALS 

METHODOLOGY 

The main idea behind the PHCM technique is to provide a sufficient initial amount of 

calcium silicate hydrate (CSH) and calcium hydroxide (CH) through adding PHCM to the 

original mixture at the onset of the hydration process. This can be achieved through 

mixing the concrete batch in two stages. In the first, a portion of the mixture batch is 

mixed and stored under adequate curing conditions to avoid altering the quality of the 

hydrated material due to drying. The second step includes conventional mixing of the 

remaining portion of the batch with the pre-mixed portion from the first stage. During the 

elapsed time between the two mixing steps, hydration reactions progress and hydration 

products are formed within the mixed portion before remixing. The longer the elapsed 

time and/or the greater the portion mixed in the first step, the higher is the hydration 

product formation, which enhances the efficiency of the added PHCM as passive internal 

restraint system.  

 

6.8. EXPERIMENTAL PROCEDURE 

This experimental program aims to gain an understanding of the mechanisms involved in 

using PHCM. This is of primary importance in order to enable the production of self-

restraining concrete. In this study, monitoring of the hydration process and 

characterization of the cement paste microstructure has been carried out on concrete 

mixtures incorporating PHCM. The experimental includes two parts. Part I was devoted 

to validating the addition of PHCM as shrinkage mitigation technique and to evaluate its 

effect on other early-age properties. The second part focuses on explaining the 

mechanism of the PHCM technique.  
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6.8.1. Materials and Mixture Proportions 

The materials used in this chapter were similar to that used in Chapter 3 (refer to Section 

3.4.1). The chemical and physical properties of the used binders have been given in 

Chapter 3 (Table 3-1). In addition, Fig. 6-3 shows the NMR spectra for the anhydrous 

cement and SF used in this study. The peak of the anhydrous cement (Q0) and SF (Q4) 

occur at -71 and -110 ppm, respectively. Three PHCM proportions, namely, 25, 33 and 

50% of the batch weight were used to investigate the effect of the PHCM portion on the 

early-age behaviour. The elapsed time between the two mixing steps was taken equal to 6 

hrs according to previous hydration kinetics studies (Odler and Dörr, 1979). The selected 

composition and proportions for the control and PHCM mixtures, and the characteristics 

of the tested mixtures are shown in Tables 6-1 and 6-2, respectively.  

 
Table 6-1: Composition of control and PHCM mixtures.  

  Mixture (mass/ cement mass) 
  Control  PHCM 25%  PHCM 33%  PHCM 50% 
  Mixing Stage 

Material  1  2  1   2  1  2  1   2 
Cement  ‐‐‐‐  1.0000 0.2500 0.7500 0.3300 0.6700  0.5000 0.5000
Silica fume  ‐‐‐‐  0.3000 0.0750 0.2250 0.0990 0.2010  0.1500 0.1500
Quartz powder  ‐‐‐‐  0.4300 0.1075 0.3225 0.1419 0.2881  0.2150 0.2150
Quartz sand   ‐‐‐‐  1.5300 0.3825 1.1475 0.5049 1.0251  0.7650 0.7650
Water  ‐‐‐‐  0.2500 0.0625 0.1875 0.0825 0.1675  0.1250 0.1250
HRWRA  ‐‐‐‐  0.0300 0.0075 0.0225 0.0099 0.0201  0.0150 0.0150

 

Table 6-2: Tested mixtures 

Mixture 
PHCM 

 (% of the batch weight) 
C  0.0 
H1  25.0 
H2  33.0 
H3  50.0 
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 (a) (b) 

 
Figure 6-3: NMR spectra for anhydrous a) Portland cement, and b) Silica fume. 

 

6.8.2. Preparation of Test Specimens and Testing Procedures 

The experimental methods used in this chapter are the cubic compressive strength test, 

Semi-adiabatic calorimetry, TGA, Differential scanning calorimetry (DSC), 

measurements of total free shrinkage, setting time,  the corrugated tube protocol for 

measuring autogenous shrinkage, and solid-state 29Si MAS-NMR. The cubic compressive 

strength test, Semi-adiabatic calorimetry, TGA, and measurements of total free shrinkage 

method were previously explained in chapter 3. The setting time, Differential scanning 

calorimetry (DSC), the corrugated tube protocol for measuring autogenous shrinkage, and 

solid-state 29Si MAS-NMR are explained in the following sections. 

The time of setting was measured on three replicate paste specimens using a Vicat 

needle according to ASTM C191 (Standard Test Method for Time of Setting of 

Hydraulic Cement by Vicat Needle).  

The decomposition of different hydration phases (e.g. calcium hydroxide (CH)) 

can be calculated from DTG results. However, DSC tests were performed as it requires 

much less time, allowing testing every 2 hrs. The UHPC samples, around 30 to 60 mg, 
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were heated in a helium atmosphere at a constant rate of 10°C per minute up to 550°C. 

The DSC data analysis was done using TA Instruments thermal analysis software. The 

CH content was equivalent to the area (enthalpy) under the respective endothermic peaks. 

The endothermic peak for CH was observed at around 440°C. The area under the curve 

was related to the quantity of the material in the sample using the regression equation 

obtained from the calibration graphs for the used TA Instruments machine. At least two 

DSC analyses were performed on identical specimens for each mixture at each age to 

ensure repeatability of results. 

Autogenous shrinkage was assessed using a special measuring technique 

developed by (Jensen and Hansen, 1995), where the concrete is encapsulated in thin, 

corrugated polyethylene moulds. The dilatometer was equipped with automatic data-

logging and high accuracy electronic linear displacement transducers (0.001mm). 

Moreover, the dilatometer was fabricated with a built-in temperature-controlled light 

paraffin oil bath at 20 ± 1°C to ensure isothermal conditions during measurements, where 

three replicate specimens were evaluated concurrently while being submerged in the light 

paraffin oil bath (see Fig. 6-4). Autogenous deformation measurements were zeroed at 

the final setting times (Bentz and Peltz, 2008).  

High-resolution solid-state 29Si MAS-NMR experiments were performed in the 

Biomolecular NMR facility at the University of Western Ontario using a Varian Infinity 

Plus 400 spectrometer operating at 79.4 MHz with a triple-resonance Varian T3 HXY 

MAS probe having 7.5 mm ZrO2 rotors rotating at 6.0 kHz. The 29Si NMR spectra were 

obtained using a single-pulse experiment with a 2.5 µs pulse roughly corresponding to a 

40-degree tip-angle (π/2-pulse = 5.5 µs). The chemical shifts were all relative to 
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tetramethylsilane (TMS). The free induction decays (FIDs) were apodized with 100 Hz 

line-broadening and zero-filled two times before Fourier transform. The experimental 

error in peak position values was estimated as ±0.1 ppm. At testing age, NMR samples 

hydration were stopped using freeze-drying method. 

 

 

Section A-A 

(a) 

(b) 

Figure 6-4: The corrugated tube protocol a) test setup, and b) measuring unit. 
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6.9. RESULTS AND DISCUSSION 

 

6.9.1. Setting Time and Compressive Strength 

Regardless of the added amount of PHCM, the PHCM technique significantly enhanced 

the development of early-age compressive strength. All PHCM mixtures consistently 

produced higher early-age compressive strengths compared to that of the control mixture 

(C) cured at 10 and 20°C, as shown in Fig. 6-5(a,b). The increase in compressive 

strength compared to that of the C was directly proportional to the added amount of 

PHCM. For instance, the 24 hrs compressive strength at 10 and 20°C increased by 70% 

and 30% for H1, 85% and 40% for H2 and by 140% and 45% for H3 of their respective 

C values. At 10°C, higher increase in compressive strength with PHCM addition was 

achieved compared to that at 20°C. This is likely due to the influence of the added PHCM 

on accelerating hydration reactions. Hence, the slow rate of hydration and strength 

development at the low temperature of 10°C were compensated for, leading to more 

hydration products and stronger microstructure (ACI committee 701, 2001).  
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Figure 6-5: Early-age compressive strength of UHPC mixtures incorporating 

PHCM cured at a) 10°C and b) 20°C. [Maximum COV (10°C, 20°C): C (0.9%, 

2.0%), H1 (1.9%, 4.8%), H2 (2.3%, 5.6%), H3 (2.7%, 2.2%)]. 
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Compared with the control mixture setting time, the PHCM technique also 

reduced the setting time significantly as shown in Table 6-3. These results demonstrate 

that the PHCM technique can be considered as an effective setting and hardening 

accelerating method.  

Table 6-3: Initial and final setting times for different mixtures. 

Temperature
10°C 20°C

  Setting time (min)
Mixture  Initial Final Initial Final 

C  510 715 460 520 
H1  450 495 340 420 
H2  405 465 220 270 
H3  245 280 170 210 

 

The improvement in early-age compressive strength and reduction in setting time 

induced by PHCM addition can not be attributed to addition of older material. For 

instance, mixture H3 after 6 hours curing at 10°C, 50% of the mixed cementitious 

material is 6 hours older. Hence, 50% of the cementitious material has an age of 12 

hours, while the other 50% has an age of 6 hours.  Summing up 50% of the C 

compressive strength at age 6 hours (0.0 MPa) and 12 hours (1.68 MPa) results in a 

compressive strength about (0.84 MPa) which is much lower than that of H3 at 6 hours 

(3.90 MPa). On the other hand, setting time of normal paste starts to set at about 510 min 

at 10°C, hence, adding 50% of 6-hour older paste material should theoretically reduce the 

setting to about 150 min. However, the setting time was only reduced to about 245 min 

(which represents about 52% reduction with respect C value). The longer setting time 

achieved by H3 than the theoretical one (150 min) can be attributed to the effect of 
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remixing on the developed microstructure. Remixing break down the formed connection 

between hydration products (Lea, 1988), hence, the H3 paste will initially have a lower 

stiffness than that of paste mixed 6 hours earlier. 

Figure 6-6 shows the compressive strength results for different mixtures at age 28 

days. Generally, all mixtures exhibited comparable 28 days compressive strength 

compared to that of the control mixture regardless the curing temperature. For instance, 

the difference in 28 days compressive strength between control mixture and PHCM 

mixtures at 10°C and 20°C, ranged from -1% to +6.5% and from -4% to +0.85% with 

respect to the control mixture values, respectively. This slight variation in the 28 days 

compressive strength can be attributed to the fact that at low w/c ratio, hydration progress 

is mainly controlled by the availability of sufficient space for hydration products to form 

(Lea, 1988).  
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Figure 6-6: 28 days compressive strength of UHPC mixtures incorporating PHCM 

cured at 10°C and 20°C. 
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6.9.2. Degree of Hydration 

Early-age strength development of concrete mixtures highly relies on the degree of 

hydration achieved (Xiao and Li, 2008). The correlation between the compressive 

strength and degree of hydration (represented by the amount of BW) is plotted in Fig. 6-

7. It can be observed that the relationship exhibits a linear trend for PHCM mixtures 

(with R2 = 0.97). This linear relationship between compressive strength and degree of 

hydration indicates a proportional relationship between the added dosages of PHCM and 

the development of hydration and strength.  
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Figure 6-7:  Relation between degree of hydration (amount of BW) and compressive 

strength development for the PHCM mixtures. 

 

6.9.3. Heat of Hydration 

A key characteristic of cementitious materials is the heat generated due to the exothermic 

hydration reactions of cement. This heat is translated into a temperature increase from 
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which the heat quantity developed can be evaluated (Chikh et al., 2008) in the present 

study. Test results were presented graphically in terms of semi-adiabatic temperature 

evolution versus time. 

Mixtures incorporating PHCM had similar temperature evolution curves that 

differed from that of the control mixture, as shown in Fig. 6-8, indicating a variation in 

the hydration kinetics. Initially, the temperature for PHCM mixtures rised rapidly after 

casting the specimen in the semi-adiabatic cell (20 min from water addition) and did not 

exhibit an induction period (period in which the rate of hydration reactions slows down 

significantly (Ramachandran et al., 2002)). Temperature rised up until reaching a peak of 

about 42°C after about 7.5 hrs for H3, 38°C and 39°C after about 8 hrs for H1 and H2, 

respectively. On the other hand, C hydration exhibited induction and acceleration periods 

as shown in Fig. 6-8. The acceleration period for C was initiated at about 6 hrs later than 

that of PHCM mixtures and had a temperature peak of about 36°C at around 12 hrs from 

water addition. Hence, the PHCM technique effectively diminished the induction period, 

leading to a continuous progress of hydration reactions and consequently shorter setting 

time and higher early-age compressive strength as discussed earlier. 

 

 

 

 

 



Chapter 6                                                                                                                         202 

20

25

30

35

40

45

0 6 12 18 24 30 36 42 48
Age (hours)

Te
m

pe
ra

tu
re

 (°
C

)

C
H1
H2
H3

(a)

 

Figure 6-8: Heat of hydration for UHPC mixtures incorporating PHCM. 

 

6.9.4. Shrinkage 

Shrinkage results for mixtures incorporating different contents of PHCM are shown in 

Fig. 6-9. PHCM mixtures showed lower shrinkage and mass loss compared to that of the 

control mixture (Figs. 9 and 10). This can be attributed to the fact that the measured 

shrinkage includes drying and autogenous shrinkage (thermal deformation can be ignored 

due to the small cross-section of the samples (Baroghel-Bouny et al., 2006)). Autogenous 

shrinkage is strongly related to hydration reactions in which water is consumed, leading 

to internal self-desiccation (without external water loss) (Power and Brownyard, 1947). 

For low w/c mixtures, the amount of autogenous shrinkage can be comparable to that of 

drying shrinkage (Tazawa and Miyazawa, 1999). Generally, accelerating the rate of 

hydration increases the internal self-desiccation, and consequently increases the 

autogenous shrinkage contribution to the measured shrinkage.  
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Figure 6-9: Total shrinkage for PHCM mixtures  

[Maximum COV: C (4.5%), H1 (3.1%), H2 (1.5%), H3 (4.6%)]. 
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Figure 6-10: Mass loss for PHCM mixtures. 
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However, the added PHCM will act as a passive internal restraint, thus reducing 

the amount of deformation developed along with accelerating the hydration reactions. At 

the micro-level, the added PHCM provides CH crystals that can act as a passive restraint 

and reduce the measured physical shrinkage (Jensen and Hansen, 1996). This explanation 

is consistent with autogenous shrinkage results shown in Fig. 6-11, and with DSC results 

presented below. Increasing the amount of added PHCM increased the passive internal 

restrain and consequently reduced the amount of autogenous shrinkage.  
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Figure 6-11: Autogenous shrinkage for PHCM mixtures.  

 

Furthermore, the evaporable water content in PHCM mixtures is probably less 

than that in the control mixture at the onset of drying. This can be explained as follows: 

all mixtures initially have the same amount of mixing water, however, the added mixing 

water before casting the specimens for PHCM mixtures (i.e. mixing water at the second 
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stage) is less than that of the ordinary mixture. For instance, for the mixture H3, half of 

the mixing water is added in the first mixing stage, while the other half is added at the 

second stage before casting the shrinkage specimens. Hence, PHCM mixtures possess 

lower evaporable water and consequently exhibited lower mass loss as shown in Fig. 6-

10. 

 

6.10.      MECHANISM OF PHCM ACTION 

The results above demonstrate that the PHCM technique does accelerate the setting and 

hardening processes. Consequently, it accelerates the rigid skeleton formation and 

development of restraining system within the microstructure.  The subsequent part of this 

study focuses on explaining PHCM mechanisms. The H2 mixture containing a moderate 

dosage of PHCM will be used in this discussion. 

The modification in the hydration kinetics of PHCM mixtures compared to that of 

the control mixture can be ascribed to a number of effects. Adding pre-hydrated C3S 

provides CH and CSH acts as nuclei for further CSH formation or for the conversion of 

the ‘first-stage’ CSH (water impermeable product formed within the first few minutes of 

hydration), into a ‘second-stage’ CSH (better permeable hydrate). Hence, this way 

accelerates the hydration reactions, leading to abolishing the induction period. This was 

found to be consistent with NMR results. Sets of NMR spectra for control and H2 

samples at ages of 8, 10, 12 and 24 hours are shown in Fig. 6-12. The peaks 

corresponding to CSH (Q1 and Q2) occur at about -79 and -84 ppm, respectively, similar 

to previous findings (Fernandez et al., 2008, Al-Dulaijan et al., 1995, Cong and 

Kirkpatrick, 1996). During the first hours of hydration, CSH formed with a 
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predominantly protonated Q1 species, which represents the onset of SiO4 polymerization 

(Johansson et al., 1999). As hydration progressed, increased amount of protonated Q2 

species also became detectable in addition to Q1 (Lea, 1988). Comparing the NMR 

spectra for control and H2, Q1 and Q2 had appeared, as early as 8 and 10 hrs for the H2 

mixture and at 12 hrs for control mixture, respectively. This indicates an earlier onset of 

polymerization and conversion of CSH from the first to the second stage for H2 

compared to C, as shown in Fig. 6-12. These results are consistent with the early-age heat 

evolution and compressive strength measurements. 

 (a) (a) 

 

(a) 

 

Figure 6-12: NMR spectra for a) C and b) H2 samples at different ages. 
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(b) 

 

(b) 

Figure 6-12 Contd’: NMR spectra for a) C and b) H2 samples at different ages. 

 

Moreover, added crystalline CH, besides acting as a passive internal restraint, it 

enables further dissolution of C3S, renewed CSH formation (Tadros et al., 1976, Kondo 

and Daimon, 1969). Furthermore, this reduction in the calcium and silicate ions in the 

solution can result in the breakdown of the electrical double layer of calcium and silicate 

ions formed on C3S during its initially dissolution, as indicated by the electrical double 

layer theory. This can also lead to renewed acceleration of the hydration process (Lea, 

1988, Tadros et al., 1976, Kondo and Daimon, 1969, Young et al., 1977). This is 

depicted by the DSC results in Fig. 6-13, where enthalpies of CH (440°C) for the H2 

were significantly higher than that of the C over the investigated period.  
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Figure 6-13: Enthalpy values for C and H2 mixtures during the first 24 hours. 

 

Another mechanism emanates from the principle that silica fume (amorphous 

silica) affects the rate of hydration during the early-age. Silica fume provides large 

amounts of reactive siliceous surface, serving as a site for the early CSH precipitation. 

Accordingly, the initial CSH layer will be formed mostly on silica surface rather than 

developing a protective layer on the surface of the most reactive phases (i.e. C3S), thus 

preventing a hydration delay (Korpa et al., 2008). Microstructure analysis confirms this 

hypothesis as explained below. Furthermore, the pozzolanic reaction of silica fume with 

CH (provided by PHCM) leads to an increase in the amount of developed CSH (less 

protective than the initially formed CSH (McCurdy and Erno, 1970)) and the Q2 signal 

which indicates a growth in the mean chain length of CSH phases (i.e. degree of 

polymerization) (Schachinger et al., 2008). This is confirmed by the consumption of 
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silica fume during the hydration period as detected by NMR results. Figure 6-12(b) 

shows the gradual reduction in the silica fume NMR peak with time. Also, this early 

pozzolanic reaction can be considered the reason for the high early-age compressive 

strength (Al-Dulaijan et al., 1995).  

The microstructure of H2 specimens was found to be uniformly developed in the 

inter-granular space, as shown in Fig. 6-14(a). More anhydrous silica fume clusters and 

large plate-like formations of CH can be observed clearly within the H2 matrix during 

early-age (about 8 hours) compared to that at later ages (after 24 hours). This observation 

emphasizes the role of PHCM in providing crystalline CH during early hydration as 

mentioned before. In addition, the thin rim of CSH was not detected at that early-age. 

Conversely, the H2 matrix at 24 hrs was found to be rich in dark CSH with a Ca/Si ratio 

of about 0.86, as shown in Fig. 14(b). This reveals the effect of the pozzolanic reactions 

of silica fume, which consumed the CH, producing less protective dark CSH (Scrivener, 

2004) with low Ca/Si ratio range (0.83-1.5) (Lea, 1988), which allows more hydration 

reactions to occur. 
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(a) 

 

 

(b) 

Figure 6- 14: Microstructure of H2 mixtures after a) 8, and b) 24 hrs as in 

backscattered electron microscopy, and energy dispersive X-ray element analysis. 
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6.11. CONCLUSIONS 

The main conclusions that can be drawn from this experimental investigation are the 

following: 

1) ent of the The addition of PHCM had a strong acceleration effect on the developm

internal microstructure leading to early setting and hardening process.  

2) PHCM technique showed a high potential for reducing early-age shrinkage. 

3) ad bearing structure Addition of PHCM increases contact points and acts as lo

providing an internal passive restraining system. 

4) The higher the added PHCM, The higher was the restraining effect. 

5)  The PHCM technique initiates the concept of self-restraining concrete. 

6) concrete in Concrete sustainability enhanced through using left-over and returned 

produce self-accelerated concrete, thus preventing waste and disposal. 

7) l for reducing autogenous Mixtures incorporating PHCM achieved a high potentia

shrinkage through providing internal passive restrains.  

8) The PHCM showed an acceleration effect, which has a paramount potential, 

particularly in the pre-cast industry. It resolves the two major drawbacks 

associated with chloride accelerator; corrosion related to chlorides and increased 

shrinkage. (A Comparison between PHCM and conventional chloride and non 

chloride accelerators are shown in Appendix B). 
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CHAPTER SEVEN 

 

EVALUATION OF SELF-RESTRAINING SHRINKAGE 
TECHNIQUE COMPARED TO CONVENTIONAL 

METHODS IN UHPC: INDIVIDUALLY AND COMBINED* 

 

In the previous chapter (Chapter 6), the concept of developing self-restraining concrete 

was introduced. Using partially hydrated cementitious materials (PHCM) had shown a 

high potential to improve the early-age properties of UHPC. In addition, it provides an 

environmental and economic technique for producing precast and cast in place self-

restraining shrinkage concrete, through inducing internal passive restraint within fresh 

concrete. In this chapter, the efficiency of PHCM as a shrinkage mitigation method was 

evaluated in comparison to conventional techniques including, shrinkage-reducing 

admixture (SRA) and/or a superabsorbent polymer (SAP). In addition, the combined 

effects of PHCM, SRA and SAP techniques in reducing early-age shrinkage were 

investigated. 

 

7.1. INTRODUCTION 

General literature about UHPC characterizations, potential applications, shrinkage 

problems and different mitigation strategies has been given in proceeding chapters 3 and 

4. It has been outlined that the ultimate mechanical properties and enhanced durability 

make it a promising material for many construction applications. However, its high self-

desiccation shrinkage and potential of early-age cracking may defeat its purposes. Hence, 

*A version of this chapter has been submitted for review to Cement and Concrete Research.  
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several shrinkage mitigation methods were proposed. Among these methods, SRA is the 

most commonly used method, while SAP represents an enhanced version of internal 

curing technique.    

In addition to the shrinkage mitigation strategies described above, various 

concrete components can provide passive internal restraint that resists autogenous 

shrinkage and reduces the measured physical deformations (Bentz and Jensen, 2004). 

Chief amongst these are aggregate particles (Hobbs, 1974, Hansen and Nielsen, 1965). At 

the micro-level, a passive restraint can be provided by several components including un-

hydrated cement particles, hydrated cement paste skeleton (Aitcin, 1999) and other 

hydration products (e.g. calcium hydroxide (CH) micro-crystals) (Jensen and Hansen, 

1996).  

Therefore, it was proven in Chapter 6 that adding PHCM can provide an internal 

restraint system which varies in size from as small as CH micro-crystals up to networks 

of hydration products and clusters. These clusters can provide load-bearing mechanisms 

at the micro-structural level to resist contracting forces in fresh concrete. Besides, using 

PHCM has two major positive environmental and economical benefits through 

eliminating, or greatly reducing wastage of concrete, which consequently can lead to cost 

reduction. Hence, the focus of this chapter is to investigate the effectiveness of PHCM as 

a passive internal restraint system to reduce early-age shrinkage strains in comparison to 

SRA and SAP.  
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7.2. RESEARCH SIGNIFICANCE  

Early-age shrinkage cracking is a considerable problem for concrete structures. Several 

shrinkage mitigation techniques have been proposed to reduce shrinkage and to avoid 

crack formation. However, such mitigation methods can adversely affect other key 

properties of concrete inducing difficulties in controlling consistency, retardation of 

hydration reactions, reduction in mechanical properties, etc. Adding partially hydrated 

cementitious materials (PHCM) to the fresh concrete during mixing had shown a high 

potential to reduce early-age shrinkage. This chapter confirms the efficacy of PHCM as a 

new environmental-friendly shrinkage mitigation technique compared to SRA and SAP. 

PHCM mitigates undesirable behaviour induced by SRA and/or SAP, including setting 

time delays and reduction in mechanical properties.  Hence, unused/returned concrete can 

be recycled in new mixtures, individually or combined with other shrinkage mitigation 

techniques, to enhance mechanical strength and resistance to shrinkage, and to mitigate 

set retardation effects. 

 

7.3. EXPERIMENTAL PROGRAM 

The experimental program aims at gaining an understanding of the mechanisms involved 

in using PHCM. This is of primary importance in order to enable the production of 

shrinkage self-restraining concrete. In this study, monitoring the hydration process 

(degree of hydration, heat of hydration, Vicat setting time) and characterization of the 

shrinkage behaviour have been carried out on concrete mixtures incorporating PHCM, 

SRA and SAP. The chapter consists of two parts. Part I was devoted to investigating the 

effects of PHCM addition on the early-age properties of control mixtures with and 

without SRA and/or SAP. The second part focused on validating the addition of PHCM 
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as a shrinkage mitigation technique and evaluating its efficiency compared to that of SRA 

and SAP. Combined effects of the tested shrinkage mitigation techniques including 

PHCM, SRA, and SAP were also investigated. Mixtures containing a moderate dosage of 

PHCM (i.e. 33%) were selected for comparison in this second part.  All tests were 

conducted on UHPC specimens without heat curing in order to explore realistic effects 

that govern UHPC shrinkage in structural elements cast in situ. 

7.3.1.  Materials and Mixture Proportions 

The materials used in this chapter were similar to that used in Chapter 4 (refer to Section 

4.4.1). The chemical and physical properties of the used binders have been given in 

Chapter 3 (Table 3-1). The selected composition of the control and PHCM mixture are 

shown in Chapter 6 (refer to Table 6-1). The characteristics of the tested mixtures are 

shown in Table 7-1. 

Table 7-1: Tested mixtures. 

Mixture  PHCM(%)*  SRA (%)**  SAP (%)** 

C  ‐‐‐‐  ‐‐‐‐  ‐‐‐‐ 

H1  25.0  ‐‐‐‐  ‐‐‐‐ 

H2  33.0  ‐‐‐‐  ‐‐‐‐ 

H3  50.0  ‐‐‐‐  ‐‐‐‐ 

CR2  ‐‐‐‐  2.0  ‐‐‐‐ 

CS  ‐‐‐‐  ‐‐‐‐  0.6 

CR2S  ‐‐‐‐  2.0  0.6 

H2R2  33.0  2.0  ‐‐‐‐ 

H2S  33.0  ‐‐‐‐  0.6 

H2R2S  33.0  2.0  0.6 
                               *Added as % of the batch weight 
                               ** Added as % by mass of cement 
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7.3.2. Preparation of Test Specimens and Testing Procedures 

The experimental methods used in this chapter are the cubic compressive strength test, 

Semi-adiabatic calorimetry, TGA, measurements of total free shrinkage, setting time and 

the corrugated tube protocol for measuring autogenous shrinkage. All experimental 

methods were previously explained in chapters 3 and 6. 

 

7.4. RESULTS AND DISCUSSION  

 

7.4.1. Setting Time and Early-Age Compressive Strength  

Regardless of the added amount of PHCM, the PHCM technique significantly affected 

the development of early-age compressive strength. All UHPC mixtures incorporating 

PHCM consistently produced higher early-age compressive strength compared to that of 

the control mixture as discussed in chapter 6 (see Fig. 6-5(b)).  

On the other hand, the mixture incorporating 2% SRA (CR2) achieved a lower 

early-age compressive strength compared to that of the C (Fig. 7-1(a)). This can be 

attributed to the retardation effect induced by SRA, in agreement with previous work (He 

et al., 2006). The mixture incorporating PHCM and SRA (H2R2) achieved higher 

compressive strength than that of the CR2 mixture, indicating that the accelerated 

hydration induced by PHCM addition offset the early-age compressive strength reduction 

induced by SRA. For instance, H2R2 exhibited a compressive strength of about 1.1 MPa 

at the age of 6 hours, while CR2 did not exhibit any strength at that age (Fig. 7-1(a,b)).  

The early-age compressive strength of the mixture incorporating SAP (CS) was 

lower than that of the C (Fig. 7-1(a)). This can be ascribed to the higher water content of 
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the CS mixture, leading to higher porosity and consequently lower strength (Jensen and 

Hansen, 2002). Adding PHCM to the CS mixture improved its early-age compressive 

strength. This can be explained as follows: the higher water content imparted by SAP 

provided enhanced conditions for hydration reactions to progress. SAP particles release 

their entrained water and occupy a lower volume (Wang et al., 2009), leading to more 

space for hydration products to form. At such a very low w/c, the availability of space for 

hydration products to form is a main restriction on hydration development (Acker, 2004). 

Hence, enhanced curing conditions and availability of space along with accelerated 

hydration reactions induced by PHCM addition produced a well developed 

microstructure and consequently higher early-age strength was achieved. 

The mixture incorporating both SRA and SAP (CR2S) exhibited a lower early-

age compressive strength than that of the CS; reflecting the set retarding effect induced 

by SRA. However, the CR2S mixture exhibited higher early-age strength compared to 

that of the CR2. This can be ascribed to the lower SRA concentration in CR2S as a result 

of the higher water content (Rajabipour et al., 2008) and the ability of SAP particles to 

absorb SRA (Bentz, 2005). Adding PHCM to the CR2S mixture enhanced its early-age 

compressive strength by about 26% at 24 hours (Fig. 7-1(b)). This improvement exhibits 

the resultant of conflicting effects of SRA, SAP and PHCM on the early-age strength 

developments.  
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Figure 7-1 : Early-age compressive strength development for mixtures 

incorporating a) SRA and/or SAP and b) combined shrinkage mitigation 

techniques. 
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Adding SRA tends to prolong the setting time compared to that of the control 

mixture, while adding SAP tends to shorten it slightly owing  to the better curing 

condition offered by the SAP entrained water and consequently the better progress of 

hydration reactions. Adding PHCM shortened the setting time significantly compared to 

that of the C mixture as shown in Table 7-2. The higher the PHCM addition, the shorter 

was the measured setting time. These results confirm the acceleration of hydration 

reactions imparted by the PHCM technique. This acceleration effect offsets the 

undesirable behaviour induced by SRA and/or SAP. For instance, it mitigates the 

retardation effect induced by SRA addition, leading to enhanced early-age compressive 

strength (Fig. 7-1(b)). 

 

Table 7-2 : Setting time results for the tested mixtures. 

Setting Time 
Initial  Final Mixture 

Hours  Minutes  Hours  Minutes 
C  5  25  6  10 
H1  4  45  5  10 
H2  3  05  4  00 
H3  2  35  3  20 
CR2  6  17  7  10 
CS  5  08  5  50 
CR2S  5  55  6  35 
H2R2  5  35  6  15 
H2S  4  45  5  30 
H2R2S  5  00  5  53 

 

7.4.2. Degree of Hydration 

The early-age compressive strength development of concrete mixtures greatly depends on 

the degree of hydration achieved (Xiao and Li, 2008). Shrinkage mitigation techniques 
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usually affect the rate of hydration reactions. Accordingly, the degree of hydration and 

amount of BW will be changed (Bentz et al., 2001a). TGA was used to investigate the 

hydration evolution. The measured degree of hydration (represented by the relative BW) 

versus age is shown in Fig. 7-2(a,b).

Adding PHCM accelerated the rate of hydration reactions, leading to a higher 

degree of hydration. The higher the added dosage of PHCM, the higher was the degree of 

hydration achieved as shown in Fig. 7-2(a). This is in agreement with previous early-age 

compressive strength results (see Fig. 6-5(b)). Adding SRA retarded the hydration 

reactions leading to a lower degree of hydration compared to that of the C mixture (Fig. 

7-2(a)). Conversely, the CS mixture had relatively higher water content, thus achieving a 

higher degree of hydration compared to that of the C mixture (Jensen and Hansen, 2001, 

Jensen and Hansen, 2002). Despite its higher degree of hydration, the CS mixture 

exhibited a lower early-age compressive strength compared to that of the C mixture (Fig. 

7-1(a)) as a result of its higher porosity. Analysis of the incremental pore size distribution 

data from MIP tests at age 24 hrs showed that SAP specimens had a higher proportion of 

voids compared to that of the control specimens. The percentage of voids, classified 

according to the International Union of Pure and Applied Chemistry system (IUPAC) 

(IUPAC, 1972) was about 4.7% and 2.2% for mixtures CS and C, respectively. This can 

be explained as follows: in the mixture without SAP, a lower amount of hydration is 

required to gain strength since the space between solid particles and the porosity to be 

filled by hydration products are relatively lower than that of the SAP mixture. 

Conversely, in the SAP mixture, a higher degree of hydration is achieved while the 

volume of pores to be filled increases, resulting in a higher net porosity. This is consistent 
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with previous findings which indicate that porosity has a more dominate effect on the 

achieved strength than that of the degree of hydration (Odler and Rößler, 1985, Mikhail 

et al., 1977). The mixture incorporating both SRA and SAP (CR2S) did not exhibit a 

significant improvement in degree of hydration; however, its degree of hydration was 

higher than that of the CR2 mixture (Fig. 7-2(a,b)). Adding PHCM to the CR2 mixture 

improved its degree of hydration significantly. After 24 hours, mixture H2R2 had about 

18% higher BW than that of the CR2 mixture. This is ascribed to the hydration 

acceleration effect induced by PHCM. On the other hand, adding PHCM to the CS 

mixture resulted in the highest degree of hydration compared to that of the other 

mixtures, indicating a considerable progress of hydration reactions (Fig. 7-2(b)). This can 

be ascribed to the coupled effects of adequate curing conditions provided by SAP 

particles and the acceleration effect of PHCM addition. Similar to the trend of C and CS 

mixtures, the H2S mixture showed lower compressive strength than that of H2 mixture. 

Adding SRA to the mixture incorporating PHCM and SAP (H2S) led to a reduction in 

the amount of the BW (i.e. degree of hydration) compared to that of the H2S mixture, 

which is expected due to the retardation effect imparted by SRA. 
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Figure 7-2: Degree of hydration development for mixtures incorporating a) single 

and b) combined shrinkage mitigation techniques. 
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7.4.3. Heat of Hydration 

The heat of hydration for mixtures incorporating PHCM has been discussed in chapter 6 

(see Fig. 6-8). Adding PHCM effectively diminished the induction period, leading to a 

continuous progress of hydration reactions and consequently shorter setting time and 

more advanced development of microstructure.   

  It can be noted that adding SRA retarded hydration reactions and reduced the 

liberated heat compared to that of mixture C, as shown in Fig. 7-3(a). This is consistent 

with previous results (Eberhardt and Kaufmann, 2006).  Adding PHCM to the CR2 

mixture resulted in a higher heat of hydration compared to that of the original CR2 

mixture.  Figure 7-3(b) illustrates the synergetic effect of PHCM and SRA, which 

represents the net result of two conflicting effects: acceleration and retardation. Adding 

PHCM accelerated the hydration process and shifted the hydration curve upward and to 

the left (compared to that of the CR2 mixture). Concurrently, SRA limited the 

acceleration effect induced by PHCM addition, resulting in a slightly lower hydration 

peak at a later time of about 1 hour with respect to that of the H2 mixture.  

The mixture incorporating SAP (CS) exhibited a different trend than that of 

mixture C. It initially exhibited a lower temperature peak. This can be ascribed to the 

high volume fraction of water in the CS mixture, which led to higher heat capacity 

compared to that of the C mixture (Bentz, 2008). After about 24 hours, another peak 

occurred, which indicates further hydration. This can be ascribed to the further hydration 

reactions between the un-hydrated binder and water released from SAP particles. The 

mixture incorporating PHCM and SAP (H2S) exhibited a higher temperature peak 

compared to that of the H2 mixture. Moreover, there was no indication of a second peak 
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as in the CS mixture. This can be ascribed to the early accelerated hydration induced by 

PHCM, which consumed the majority of the available water (i.e. original mixing water 

and water entrained by SAP particles) leading to a single temperature peak.  

The combined effect of SRA and SAP (mixture CR2S) slightly affected the 

hydration curve with respect to that of the CR2 and CS mixtures. The set retardation 

effect of SRA shifted the temperature peak downward and to a later time by 

approximately 1 hour with respect to that of the CS mixture. Moreover, similar to the 

case of the CS mixture, a small secondary peak occurred. The mixture incorporating 

PHCM, SRA and SAP (H2R2S) showed a combined trend to that of the CS, CR2S and 

H2 mixtures. The temperature maximum shifted upward and to an earlier time by 

approximately 3 hours compared to that of the CR2S mixture as a result of the hydration 

acceleration effect induced by PHCM. However, H2R2S exhibited a lower temperature 

peak compared to that of the H2 mixture, which can be ascribed to the SRA hydration 

retardation effect and higher heat capacity (as a result of higher water content) (Fig. 7-

3(c)). Moreover, a secondary temperature peak occurred at about 8 hours earlier than that 

of the CS mixture (Fig. 7-3(a,b)). This indicates that SAP released its entrained water 

earlier, reflecting the higher water demand induced by the accelerated hydration.   
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Figure 7-3: Heat of hydration development for mixtures incorporating a) SRA 

and/or SAP and b) combined shrinkage mitigation techniques. 
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7.4.4. Shrinkage and Mass Loss 

The mass loss and shrinkage curves of mixtures incorporating SRA, SAP and/or PHCM 

are shown in Fig. 7-4 and 7-5.  The measured total shrinkage includes both drying and 

autogenous shrinkage (thermal deformation can be ignored due to the small cross-section 

of the samples (Baroghel-Bouny et al., 2006)). For very low w/c (Tazawa and Miyazawa, 

1999), the contribution of autogenous shrinkage to the total shrinkage can be comparable 

to that of drying shrinkage. 
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Figure 7-4: Mass loss for mixtures incorporating a) single and b) combined 

shrinkage mitigation techniques. 
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Figure 7-4 Contd’: Mass loss for mixtures incorporating a) single and b) combined 

shrinkage mitigation techniques. 
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Figure 7-5: Shrinkage development for mixtures incorporating a) single and b) 

combined shrinkage mitigation techniques. 
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Figure 7-5 Contd’: Shrinkage development for mixtures incorporating a) single and 

b) combined shrinkage mitigation techniques. 

 

Incorporating SRA slightly reduced the mass loss with respect to that of the C 

mixture, yet it induced a significant reduction in the total shrinkage, in agreement with 

previous findings (Ichinomiya et al., 2005, Bentz, 2006, He et al., 2006). Figure 7-6 

demonstrates the relationship between a given mass loss and the corresponding 

shrinkage. The lower slope for the initial linear part and the second part of the mass loss-

shrinkage curve for mixture CR2 compared to that of mixture C is consistent with the 

mechanisms of reduction in surface tension induced by SRA (Kovler and Bentur, 2009). 

As a result, lower capillary stresses developed, resulting in lower total shrinkage for a 

given mass loss.  
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Figure 7-6: Mass loss- shrinkage relationship for mixtures incorporating a) single 

and b) combined shrinkage mitigation techniques. 
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This reduction in capillary stresses also explains the lower autogenous shrinkage 

of mixture CR2 compared to that of mixture C (about 59% reduction at 7 days) as shown 

in Fig. 7-7(a). Moreover, SRA is believed to reduce the drop in internal relative humidity 

of specimens, leading to lower self-desiccation and autogenous shrinkage (Bentz et al., 

2001b). A few hours after final setting, CR2 specimens showed an expansion of 

approximately 85 µε compared to only about 21 µε for C specimens (Fig. 7-7(a)). This 

expansion along with the reduction in autogenous shrinkage induced by SRA resulted in 

lower net shrinkage compared to that of C specimens (Weiss et al., 2008). 

Conversely, CS specimens exhibited higher mass loss (about 35% at 7 days) 

compared to that of C specimens, while the measured shrinkage at the same age was 

increased by only 12%. Consequently, the mass loss-shrinkage curve for CS mixture 

(Fig. 7-6(a)) exhibited lower slope compared to that of the C mixture. This can be 

explained by the specific shrinkage mitigation mechanism of SAP.  The higher water 

content (due to added entrained water) initially results in higher mass loss (Mönnig and 

Lura, 2007). Concurrently, SAP particles release water and occupy a smaller volume, 

leading to additional coarse pores from which water first evaporates, regardless of its 

location from the drying surface (Bentz et al., 2001a). Such water evaporation results in 

lower capillary stresses compared to that in the C mixture having a finer porosity. In 

addition, releasing the entrained water from SAP particles likely resulted in expansion 

(Jensen and Hansen, 2002). Different phenomena are believed to induce this expansion, 

including swelling of cement gel due to water absorption (Jensen and Hansen, 2002), and 

capillary distension as a result of capillary vapour pressure increase leading to capillary 

surface tension relaxation and consequently lower capillary stresses (Kovler, 1996). 
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Furthermore, autogenous shrinkage and expansion occur simultaneously during early-

age, resulting in lower net autogenous shrinkage. This is consistent with the lower 

autogenous shrinkage exhibited by CS specimens compared to that of C specimens (22% 

reduction) (Fig. 7-7(a)) and is in agreement with previous findings (Baroghel-Bouny et 

al., 2006, Kamen et al., 2008) 

PHCM mixtures showed a slight reduction in the mass loss and measured total 

shrinkage compared to that of the C mixture (Figs. 7-4 and 7-5). For instance, the H3 

mixture had the lowest mass loss among the other PHCM mixtures, which was about 

10% lower than that of the C mixture. Increasing the amount of added PHCM reduced the 

measured shrinkage. This can be ascribed to the passive internal restraint system (i.e. 

hydration micro-crystals (Aitcin, 1999, Jensen and Hansen, 1996)), provided by PHCM 

addition. The hypothesis that CH micro-crystals provide restraint was proposed by 

(Jensen and Hansen, 1996) based on results reported in (Carde and Francois, 1997, 

Powers, 1962) which indicated a significant effect of leaching of CH micro-crystals on 

deformation properties. Adding PHCM accelerates the hydration process leading to two 

conflicting mechanisms: higher rate of autogenous shrinkage and faster structuring of a 

stiff hydrated skeleton. This internal skeleton can withstand compressive stresses induced 

by capillary stress due to either drying or self-desiccation (Aitcin, 1999, Acker, 2004, 

Anna et al., 1995). Consequently, PHCM mixtures had a lower shrinkage, leading to a 

lower mass loss-shrinkage ratio as shown in Fig. 7-6(a). PHCM mixtures exhibited slope 

of the initial part of the mass loss-shrinkage curves comparable to that of the C mixture, 

reflecting the similarity of the large pore structure (Kovler and Bentur, 2009), while the 



Chapter 7                                                                                                                         237 

slopes of the second part were lower, indicating that the same water loss resulted in lower 

shrinkage strain.  

The relatively stiffer skeleton and passive internal restraint system induced by 

PHCM can explain the significant reduction in autogenous shrinkage of PHCM mixtures 

compared to that of the C mixture (Fig. 7-7(a)). The reduction in the measured 

autogenous shrinkage after 24 hours versus that of C was about 10% for H1, 37% for H2, 

and 57% for H3.  
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Figure 7-7: Autogenous shrinkage for mixtures incorporating a) single and b) 

combined shrinkage mitigation techniques. 
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Figure 7-7 Contd’: Autogenous shrinkage for mixtures incorporating a) single and 

b) combined shrinkage mitigation techniques. 

 

Figure 7-7(b) shows the measured shrinkage for mixtures incorporating more 

than one shrinkage mitigation technique. Generally, the shrinkage behaviour of these 

mixtures depended on the interaction between the different shrinkage mitigation 

mechanisms of the combined techniques. This probably can lead to affirmative and/or 

negative effects on the final shrinkage behaviour. 

As mentioned earlier, adding SRA leads to a lower shrinkage as a result of 

reducing capillary stresses, inducing early expansion, and retarding hydration reactions, 

which effectively reduces the rate of self-desiccation (i.e. autogenous shrinkage) 

development. Therefore, adding SRA to SAP and PHCM mixtures reduced the total and 

autogenous shrinkage significantly with about 19% and 25% with respect to SAP mixture 
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values, and by 26% and 17% with respect to PHCM values, respectively.  In fact, the 

early expansion had a major contribution to the achieved reduction in the net autogenous 

shrinkage. Mixture incorporating SAR and SAP exhibited higher early expansion (about 

74 µm) which is about one order of magnitude of that of SAP mixtures without SRA (32 

µm). Moreover, adding SRA to PHCM led to an early-age expansion, distinct from 

mixture incorporating PHCM only, which showed a plateau in shrinkage development 

during the same period. This indicates that the early expansion effect of SRA was a 

dominate factor in the resultant shrinkage behaviour.  

Conversely, adding either SAP or PHCM to CR2 mixture increases the measured 

shrinkage compared to mixture incorporating SRA only. This can be attributed to the 

reduction in the SRA concentration due to the higher water content (Acker, 2004) and the 

ability of SAP particles to absorb SRA (Bentz, 2005). Moreover, SRA hinder CH 

formation (Matlese et al., 2005) which results in a lower amount of micro restraining 

crystals compared to PHCM mixture as shown in TGA curves (Fig. 7-8). PHCM mixture 

incorporating SRA showed an additional peak at about 340°C and smaller amount of CH 

decomposition compared to that of PHCM mixture without SRA. Previous studies (Sant, 

2009) reported a reduction in the SRA peak with time, which was attributed to the 

reduction in SRA concentration in the pore solution due to being uptake by hydration 

products. This can explain the difference in the 12 and  24 hrs TGA results, where the 

peak corresponding to SRA was disappeared for H2R2 mixture at 24 hrs and another 

peak seems to detected around 800°C, which is correspond to SRA  taken in the CSH gel 

(Beaudoin et al., 2008). 
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Figure 7-8: TGA curves at different ages for PHCM mixture with and without SRA. 

 

On the other hand, adding PHCM to SAP mixture showed about 16% and 11% 

lower mass loss and total shrinkage, respectively compared to that the SAP mixture, and 

slightly higher shrinkage compared to that of the PHCM mixture. This can be explained 

as follows: the addition of PHCM accelerates hydration reactions, which increases water 

consumption and the rate of self-desiccation. Hence, the water stored inside the SAP 

particles will be released earlier to compensate for the water deficit. This leads to less 

evaporable water, more hydration products and stronger restraining skeleton in the H2S 

mixture compared to that of the CS mixture. This can be seen in TGA curves, where the 

peak of evaporable water (60-200°C) was higher in SAP compared to that of H2S 

mixture, while the CH peak (thus amount) was lower (Fig. 7-9(a)). This was also 

confirmed by DSC results, where CS mixtures showed lower CH enthalpy compared to 

that of mixture incorporating both PHCM and SAP (Fig. 7-9(b)). Hence, the absence of 
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the early expansion in P-SAP specimens compared to that of the SAP specimens (Fig. 7-

7(a,b)) can be ascribed to the higher hydration progress and consequently higher 

autogenous shrinkage that likely offset the expansion induced by the released water. This 

is in agreement the previous heat of hydration results of H2S mixture (higher temperature 

peak and the absent of the second peak (Fig. 7-3(b))).  
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Figure 7-9: Thermal analysis at different ages for PHCM mixture with and without 

SAP a) TGA and b) CH content. 
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Figure 7-9 Contd’: Thermal analysis at different ages for PHCM mixture with and 

without SAP a) TGA and b) CH content. 

 

As expected, combining the three mitigation techniques showed a trend that can 

be a considered as the resultant of the different involved mechanisms. Adding SRA 

retarded hydration and induced higher early expansion (about 70 µm) compared to 

mixtures incorporating both PHCM and SAP, which showed a plateau in stead of 

expansion during the same period (Fig. 7-7(b)).  Adding PHCM provided additional CH 

to the mixture, which enhanced the passive retraining system and eliminate the hindering 

of CH formation induced by SRA. This was confirmed based on DSC results, where the 

CH enthalpy in CR2S mixture, detected as early as 3 hrs from adding the mixing water, 

was increased with the addition of PHCM to about the double (i.e. 3.104 J/g). 
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The mass loss-shrinkage curves for mixtures incorporating combined shrinkage 

mitigation techniques are shown in Fig. 7-6(b). Adding SRA to SAP and/or PHCM 

mixtures reduced the initial slope. This is expected due to the additional shrinkage 

reduction induced by SRA. Adding SAP to the H2 mixture did not cause a significant 

change in the initial slope. This is consistent with the earlier explanation of the synergetic 

effect of PHCM and SAP.  

Moreover, mass loss-shrinkage curves second slopes for all mixtures 

incorporating more than one mitigation technique were lower than those of mixtures 

incorporating one mitigation technique (Fig. 7-6(b)), indicating higher efficiency than 

their individual effects. For instance, the three mitigation techniques individually reduced 

the second slope with an average of 25% compared to 51% for the H2R2S mixture with 

respect to mixture C value. 

 

7.5. STATISTICAL ANALYSIS FOR EFFECT OF PHCM ADDITION ON 

SHRINKAGE 

Analysis of variance (ANOVA) was used to analyze the experimental data. To 

investigate whether an experimental variable (e.g. PHCM addition) is statistically 

significant, an F value is determined as the ratio of the mean squared error between 

treatments (e.g. different PHCM addition ratio) to that of within treatments (due to using 

replicates rather than testing only one specimen). This value is then compared to a 

standard (critical) F value of an F-distribution density function obtained from statistical 

tables based on the significance level (α) and the degrees of freedom of error determined 

from the number of treatments and observations in an experiment. Exceeding the critical 
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value of an F-distribution density function reflects that the tested variable affects the 

mean of the results (Montgomery, 2009). 

ANOVA at a significance level α = 0.05, showed that variation in the addition 

rate of PHCM had an insignificant effect on the mean of total shrinkage measured after 

the first 24 hours. The calculated F value of 0.892 for the total shrinkage results was 

lower than the corresponding critical F value of 4.07 (F0.05,3,8). Conversely, variation in 

the addition rate of PHCM showed a significant effect on the mean autogenous shrinkage 

measured from the final setting time; the associated value was 60.26, which is 

significantly larger than the corresponding critical F value (F0.05,3,8).  

According to previous studies (Aitcin, 1999, Zhang et al., 2003), measuring the 

total shrinkage after 24 hours leads to overlooking the autogenous deformation 

contribution. Hence, the total measured shrinkage can be re-evaluated taking into account 

the autogenous shrinkage measured using the corrugated tube from the time of final 

setting until the beginning of drying at 24 hours (Weiss et al., 2008). ANOVA for the 

total measured shrinkage after adding autogenous shrinkage showed that the variation in 

the addition rate of PHCM had a significant effect on the mean of the total shrinkage 

results. The calculated F value was 73.03, which is significantly larger than the 

corresponding critical F value (F0.05,3,8). This emphasizes the significant role of 

autogenous shrinkage. Indeed, delays in measuring shrinkage can result in 

underestimating the actual deformation behaviour, in agreement with previous findings 

(Aitcin, 1999, Zhang et al., 2003).  
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7.6. CONCLUSIONS 

The main conclusions that can be drawn from this experimental investigation are: 

1) UHPC mixtures incorporating PHCM achieved higher early-age compressive 

strength results than those mixtures incorporating SRA and/or SAP.  

2) SRA was the most effective shrinkage mitigation method compared to other 

mitigation techniques. 

3) PHCM achieved excellent early-age shrinkage reduction in balance with other 

properties when used alone or combined with other shrinkage mitigation 

techniques. 

4) Combining PHCM and SRA mitigated the drawbacks of SRA including delays in 

setting time and significant reduction in early-age compressive strength.  

5) The addition of PHCM improved the shrinkage behaviour of mixtures 

incorporating SAP and overcame the SAP drawbacks including higher mass loss 

and porosity that usually lead to a reduction in early-age compressive strength.  

6) Combining shrinkage mitigation techniques including SRA, SAP and PHCM 

showed better overall behaviour compared to their individuals effects. This 

includes enhanced compressive strength development and lower shrinkage. 
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CHAPTER EIGHT 

 

INFLUENCE OF NATURAL WOLLASTONITE 
MICROFIBERS ON EARLY-AGE BEHAVIOUR OF UHPC* 

 

In order to produce concrete characterized by lower early-age shrinkage and cracking risk 

along with reducing its environmental and economic impact, the concept of reusing waste 

concrete (i.e. partially hydrated cementitious materials) as a source for internal passive 

restraining system and its efficiency was discussed in Chapters 6 and 7. In this chapter, 

various sizes of natural wollastonite microfiber were added to the UHPC as a 

replacement for cement. The potential of using wollastonite microfiber, as a natural 

material, to improve early-age properties of UHPC along with achieving lower 

environmental impact was investigated.  

 

8.1. INTRODUCTION 

Early-age cracking of cement based materials arises from the early rapid volume changes 

as a result of autogenous and drying shrinkage and thermal deformations (Bentz et al., 

2008, Ma et al., 2007). Such volume changes induce tensile stresses within cement based 

materials. The tensile strength of such materials and its ability to resist tensile stresses 

increase with time (ACI Committee 231, 2010). Hence, a competition between the 

induced tensile stresses and the development of cement based materials tensile strength 

exists during early-ages. Once tensile stresses exceeded the tensile strength, micro-

*A version of this chapter has been submitted for review to the Journal of Materials in Civil Engineering, 
ASCE.  
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cracking develops and propagates leading to visible shrinkage macro-cracking (ACI 

Committee 231, 2010, Cusson, 2008). Shrinkage cracks later facilitate the penetration of 

aggressive substances to concrete, leading to a reduction in its performance, 

serviceability, and durability (Passuello et al., 2009). 

Several methods have been advocated to minimize the cracking potential of 

concrete, including using coarser cement particles, expansive additives, shrinkage 

reducing admixtures and/or improving curing conditions (Bentz and Peltz, 2008, Van 

Breugel and De Vries, 1998, Tazawa, 1998, Nmai et al., 1998). These approaches 

primarily focus on reducing shrinkage strains in concrete, thereby reducing the level of 

residual stress that develops (Shah et al., 1998). On the other hand, microfibers were 

reported to act as a local restraint for shrinkage (Zhang and Li, 2001). Microfibers 

generally bridge micro-cracks, leading to a reduction in crack widths and delaying the 

occurrence of cracking (Lawler et al., 2003). 

Different types of microfibers have been used as reinforcements for cementitious 

materials, including organic, mineral, metallic, or synthetic microfibers (Andiç et al., 

2008, Pierre et al., 1997). Among these, metallic microfibers (e.g. steel) have been 

widely used in different UHPC applications (Hoang et al., 2008). However, optimizing 

the use of other types of microfibers in UHPC applications can provide an effective and 

low-cost reinforcement method. A potential microfiber is wollastonite, which is widely 

used in other industrial applications (e.g. ceramics, plastics, paints, etc.) (Azaroy et al., 

1995). 
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Wollastonite is a naturally occurring, acicular, inert, white mineral (calcium meta 

silicate [β- CaO-Si02]), which is less costly than steel and carbon microfibers (Low and 

Beaudoin, 1992). Previous studies have shown the potential for using natural wollastonite 

microfibers as a reinforcing material in cementitious materials (Low and Beaudoin, 1992, 

Low and Beaudoin, 1993, Low and Beaudoin, 1994a). The addition of wollastonite in 

cement-silica fume matrices showed significant improvements in pre-peak and post-peak 

load, flexural toughness and ductility (Low and Beaudoin, 1993). Moreover, wollastonite 

microfibers imbedded in cementitious materials achieved high stability without surface or 

bulk deterioration with time (Low and Beaudoin, 1994b). However, there appears to be 

little or no information with regards to the early-age properties, shrinkage and cracking 

behaviour of UHPC reinforced with natural wollastonite microfibers. Moreover, the 

mechanism of microfiber/matrix interfacial bond in UHPC has not yet been fully 

characterized. Therefore, the aim of this study is to examine the feasibility of utilizing 

various small-size wollastonite microfibers in UHPC to control shrinkage cracking, and 

to investigate its effect on other early-age properties of UHPC. 

 

8.2. RESEARCH SIGNIFICANCE  

With the increasing use of UHPC in the construction, strengthening and rehabilitation of 

different infrastructure, controlling the early-age shrinkage cracking of UHPC is essential 

for ensuring an enhanced long-term performance and longer service life. Added 

wollastonite microfibers acted as an internal restraint for shrinkage, reinforcing the 

microstructure at the micro-crack level leading to an enhancement of early-age 

engineering properties of UHPC matrix. From an environmental point of view, achieving 
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UHPC with comparable performance, yet with lower cement content, using natural 

wollastonite as partial replacement for cement can lead to a reduction in the cement factor 

and consequently lower CO2 emissions. This can make the cement intensive UHPC more 

sustainable.  

 

8.3. EXPERIMENTAL PROGRAM 

This experimental program aims to investigate the effect of wollastonite microfibers on 

early-age behaviour of UHPC and their role in controlling shrinkage cracking. This is of 

primary importance in order to achieve high performance and durable structures. In this 

study, the hydration and strength development (compressive strength, flexural toughness, 

heat of hydration, degree of hydration) and shrinkage behaviour have been investigated 

on UHPC mixtures incorporating different contents and sizes of wollastonite microfibers. 

All tests were conducted on UHPC specimens without heat curing in order to explore real 

effects that govern UHPC shrinkage existing in structural elements cast in-situ. 

8.3.1.  Materials and Mixture Proportions 

The materials used in this chapter were similar to that used in Chapter 3 (refer to Section 

3.4.1). The chemical and physical properties of the used binders have been given in 

Chapter 3 (Table 3-1). Commercially available natural wollastonite microfibers were 

used at three dosages (4, 8 and 12%) as partial substitution for cement by volume. Three 

microfiber sizes were used in this study: MF1 (length 152 µm, diameter 8 µm), MF2 

(length 50 µm, diameter 5 µm), and MF3 (length 15 µm, diameter 3 µm) (see Fig. 8-1). 
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The selected composition of the control mixture are shown in Chapter 3 (refer to Table 

3-2). The characteristics of the tested mixtures are shown in Table 8-1. 

 

   
(a) (b) (c) 

Figure 8-1: Different sizes of wollastonite microfibers a) MF1, b) MF2 and c) MF3. 

 

Table 8-1: Tested mixtures 

Mixture MF1%  MF2%  MF3% 

C  ‐‐‐‐  ‐‐‐‐  ‐‐‐‐ 
M14  4.0  ‐‐‐‐  ‐‐‐‐ 
M18  8.0  ‐‐‐‐  ‐‐‐‐ 
M112  12.0  ‐‐‐‐  ‐‐‐‐ 
M24  ‐‐‐‐  4.0  ‐‐‐‐ 
M28  ‐‐‐‐  8.0  ‐‐‐‐ 
M212  ‐‐‐‐  12.0  ‐‐‐‐ 
M34  ‐‐‐‐  ‐‐‐‐  4.0 
M38  ‐‐‐‐  ‐‐‐‐  8.0 
M312  ‐‐‐‐  ‐‐‐‐  12.0 

  

8.3.2. Preparation of Test Specimens and Testing Procedures 

The experimental methods used in this chapter are the cubic compressive strength test, 

flexural strength test, workability test, Semi-adiabatic calorimetry, TGA, MIP, 

measurements of total free shrinkage, mass loss, setting time, shrinkage restraining test 
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and  SEM/EDX analysis. The cubic compressive strength test, Semi-adiabatic 

calorimetry, TGA, MIP, measurements of total free shrinkage, mass loss, setting time and 

SEM/EDX analysis were previously explained in chapters 3, 5 and 7. The workability, 

flexural strength test and shrinkage restraining test are explained in the following 

sections. 

The workability of mixtures was evaluated based on the flow index (F), which is 

defined as follows (Eq. 1): 

100x
0R

0R25R
F(%)

−
=  Eq. 1

where R25 is the radius of the mortar pile after the 25th drop and R0 is the initial radius of 

the mortar pile according to the ASTM C 1437 (Standard Test Method for Flow of 

Hydraulic Cement Mortar).  

Flexural strength testing was conducted on 35x35x200 mm UHPC prisms at the 

ages of 3, 5 and 7 days (Pierre et al., 1997). The third-point loading flexural strength tests 

were carried out using a computer controlled material testing system at a loading rate of 

0.1 mm/min. Prior to the bending test, each beam specimen was maintained in a calcium 

hydroxide saturated solution. A total of four specimens were tested for each mixture at 

each age and the average result was reported. 

An instrumented ring test was performed similar to previous work (See et al., 2003) 

to quantify the restrained shrinkage behaviour, cracking age and width, for mixtures with 

and without wollastonite microfibers. The dimensions of the concrete ring specimen used 

in this evaluation are given in Fig. 8-2. The specimens were not allowed to dry from top 
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and bottom surfaces of the ring by sealing the circumference. Each ring specimen was 

equipped with four strain gages at the mid-height on the inner circumference of the steel 

ring. Steel ring strain measurements were monitored until the concrete ring cracked. After 

that, measurements of the cracking widths were taken every day for at least 7 days.  

 

Figure 8-2: Concrete ring test. 

 

8.4. RESULTS AND DISCUSSION  
 

8.4.1. Workability  

The workability of UHPC mixtures incorporating microfibers is highly affected by the 

microfiber content and its aspect ratio (Tatnall, 2006). Figure 8-3 shows the relative 

change in the flowability of UHPC mixtures incorporating different sizes and contents of 

wollastonite microfibers with respect to that of the control mixtures. Incorporating MF1 

and MF2 led to lower workability compared to that of mixtures without microfibers. The 

higher the MF1 or MF2 content, the lower was the workability achieved. This can be 

attributed to an increase in the microfibers interlocking due to its needle-like shape 

(Tatnall, 2006). However, this reduction in workability can be overcome through 

applying vibration during placing or using higher dosage of HRWRA (Tatnall, 2006,  
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Ransinchung and Kumar, 2010). Conversely, adding MF3 increased workability of 

UHPC mixtures compared to that of the control. The workability was better enhanced as 

the added amount of MF3 increased. MF3 microfibers have a very small size; thus it 

provides an internal lubricant effect by displacing water from voids between coarser 

particles, leading to lower water demand (Nehdi et al., 1998, Schmidt, 1992).  
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Figure 8-3:  Relative change in flowability index for mixtures incorporating 

different content and sizes of wollastonite microfibers compared to that of the 

control mixture. 

 

8.4.2. Early-Age Compressive Strength  

Compressive strength is considered as a key property of UHPC. The addition of 

wollastonite microfibers affected the early-age compressive strength of UHPC, as shown 

in Fig. 8-4(a,b,c) and Table 8-2. The compressive strength development was mainly 

influenced by wollastonite microfibers content and size (i.e. aspect ratio). During the very 

early-age (i.e. ≤ 24 hrs), mixtures incorporating MF1 or MF2 exhibited compressive 
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strength comparable to or higher than that of the control mixture (Fig. 8-4(a,b)). This 

improvement in compressive strength was more significant at higher wollastonite 

microfibers content. Conversely, the greater the MF3 content, the lower was the early-age 

compressive strength (Table 8-2).  

Table 8-2: Compressive strength results of UHPC mixtures incorporating different 

content and sizes of wollastonite microfibers. 

Microfibers  Types 
MF1 (%)  MF2 (%)  MF3 (%) 

Age (hrs)/
Variation 
(%)*  4  8  12  4  8  12  4  8  12 

12(hrs)  11.4  12.1  15.2  10.0  10.4  12.0  9.8  6.7  4.7 
(%)  (+21)  (+28)  (+61)  (+6)  (+10)  (+27)  (+4)  (‐28)  (‐50) 

24(hrs)  37.6  38.0  39.1  36.9  37.5  38.1  36.4  33.0  29.3 
(%)  (+14)  (+15)  (+19)  (+13)  (+15)  (+16)  (+11)  (0)  (‐10) 

168(hrs)  90.7  94.8  101.2  89.5  92.7  95.3  81.6  86.3  88.5 
(%)  (‐2)  (+2)  (+9)  (‐3)  (0)  (+2)  (‐12)  (‐7)  (‐4) 

* Variation with respect to the control value at the same age 
**All compressive strength results are in (MPa) 
 
 

 The improvement in very early-age compressive strength can be ascribed to the 

ability of microfibers to bridge micro-cracks, thus leading to a higher load carrying 

capacity (Ding and Kusterle, 2000). The size-dependent effect of wollastonite microfibers 

on early-age compressive strength can be explained as follows: The efficiency of 

microfibers in bridging cracks is a function of the content and length of the used 

microfibers and the fiber-paste interfacial bond strength (Hameed et al., 2009, Banthia 

and Sheng, 1996). During very early-age, the degree of hydration is low and 

consequently the microfiber/matrix bond strength is low (Chan and Li, 1997). Moreover, 

the addition of wollastonite microfibers as a partial replacement for cement can delay the 

bond strength development as a result of a dilution effect (Schmidt, 1992). Therefore, 
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microfibers with a larger aspect ratio will be more effective as it has larger specific 

surface area (i.e. contact area), thus resulting in sufficient anchorage length beyond the 

edges of micro-crack. Moreover, the longer the hydration period, the higher was the 

matrix strength and consequent improvement of the microfiber/matrix bond and bridging 

efficiency, leading to higher compressive strength (Chan and Li, 1997).  
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Figure 8-4: Very early-age compressive strength development for different 

wollastonite microfibers a) MF1, b) MF2 and c) MF3. 
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Figure 8-4 Contd’: Very early-age compressive strength development for different 

wollastonite microfibers a) MF1, b) MF2 and c) MF3. 
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At later ages (i.e. > 24 hrs), mixtures incorporating low wollastonite microfibers 

content exhibited a slightly lower compressive strength compared to that of the control 

mixture. However, increasing the wollastonite microfibers content diminished and/or 

reduced the reduction in the compressive strength regardless of the microfiber size. For 

instance, increasing the wollastonite microfiber content from 4 to 12% improved the 7-

days compressive strength from -2.0% to +9 % for MF1, -3% to +2% for MF2 and -12% 

to -4% for MF3 of their respective control values, as shown in Fig. 8-5. A similar trend, 

though with a smaller magnitude, was observed at 28-days. This can be attributed to an 

improvement of the microfiber-matrix-bond with age, especially at the low w/c of UHPC, 

which leads to higher microfiber crack-bridging efficiency (Chan and Li, 1997, Hamoush 

et al., 2010). Moreover, adding very short microfibers (e.g. MF3) can enhance the 

compressive strength due to its packing effect (Lange et al., 1997). 
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Figure 8-5: Relative early-age compressive strength of mixtures incorporating 

different content and sizes of wollastonite microfibers at age 7 days. 
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8.4.3. Heat of Hydration 

A characteristic of cementitious materials is the heat generated due to the exothermic 

hydration reactions of cement. This heat is translated into a temperature increase from 

which the heat quantity developed can be evaluated (Chikh et al., 2008). Test results 

were presented graphically in terms of semi-adiabatic temperature evolution versus time 

in the present study.  

Wollastonite microfiber is a relatively inert material expected not to have a 

significant effect on the heat of hydration liberated during the hydration process (Low 

and Beaudoin, 1992). Contradictory to this previous finding in (Low and Beaudoin, 

1992), the addition of wollastonite microfibers in UHPC modified the evolution of heat 

of hydration compared to that of the control mixture. Regardless of its size, adding 4% of 

wollastonite microfibers exhibited higher heat of hydration with respect to that of the 

control mixture (Fig. 8-6(a)). The higher the wollastonite microfibers content, the lower 

was the increase in temperature peak with respect to that of the control mixture. For 

instance, the temperature peak for incorporating 4 and 12% of wollastonite microfibers 

varied by +13% and +3% for MF1, +11% and +1% for MF2 and by +6% and -5.5% for 

MF3 of their respective control values (Fig. 8-6(b)) 

In the present study, very small size wollastonite microfibers were used and 

different characterization of the hydration process was made compared to that in the 

previous study (Low and Beaudoin, 1992). Therefore, the discrepancy in the heat of 

hydration behaviour can be explained as follows: the added very fine inert particles (i.e. 

MF3) displaced some of the water from voids between cement particles, making it 

available; hence allowing more hydration reactions to take place (Schmidt, 1992). 

Simultaneously, adding these inert materials as a partial replacement for cement induced 
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a dilution effect, especially at higher dosages, leading to a lower hydration rate. UHPC is 

characterized by a very low w/c. Hence, the availability of space for hydration products 

to form is the main restriction on hydration development (Lea, 1988). Therefore, adding 

4% MF3, which is finer than cement particles, displaced water from voids and led to a 

higher rate of hydration. Conversely, increasing the MF3 content (> 4%), reduced the 

active sites (i.e. dilution effect) and improved the packing density, thus limiting the 

available space for hydration products to form and leading to a lower hydration rate.  

 On the other hand, the addition of 4% of MF1 and MF2 induced higher porosity 

due to the percolation of microfibers (Bentz, 2000), which increased the space available 

for hydration products. Consequently, more hydration reactions took place and a higher 

temperature peak was reached. At higher contents, the dilution effect dominates the 

hydration rate, resulting in a lower heat of hydration. 
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Figure 8-6: a) General trend of heat of hydration for wollastonite microfibers 

mixtures and b) variation in temperature peak of wollastonite mixtures Vs. control 

mixture. 
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Figure 8-6 Contd’: a) General trend of heat of hydration for wollastonite 

microfibers mixtures and b) variation in temperature peak of wollastonite mixtures 

Vs. control mixture. 

 

Figure 8-7(a,b) shows the degree of hydration and porosity for mixtures 

incorporating different wollastonite microfiber sizes. It can be observed that, at the same 

wollastonite microfibers content, the degree of hydration increased with higher size of 

wollastonite microfibers, while the porosity did not change significantly. Hence, it is 

expected that extra hydration products filled the additional space induced by the 

incorporation of larger size of wollastonite microfibers. (Heat of hydration results for all 

wollastonite microfibers can be found in Appendix D). 
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Figure 8-7: a) Development of degree of hydration and b) relative porosity for 

mixture incorporating 8% of wollastonite microfibers. 
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8.4.4. Free Shrinkage and Mass Loss 

The mass loss and total shrinkage curves for mixtures incorporating wollastonite 

microfibers are shown in Fig. 8-8 and 8-9.  The measured total shrinkage includes both 

drying and autogenous shrinkage (thermal deformation can be ignored due to the small 

cross-section of the specimens (Baroghel-Bouny et al., 2006)). For very low w/c (Tazawa 

and Miyazawa, 1999), the contribution of autogenous shrinkage to the total shrinkage can 

be comparable to that of drying shrinkage. 
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Figure 8-8: Mass loss for mixtures incorporating wollastonite microfibers with a) 

4%, b) 8% and c) 12% contents compared to that of the control mixture. 
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Figure 8-8 Contd’: Mass loss for mixtures incorporating wollastonite microfibers 

with a) 4%, b) 8% and c) 12% contents compared to that of the control mixture. 
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Despite the higher porosity induced by wollastonite microfibers, mass loss did not 

change significantly compared to that of the control mixture with no microfibers. 

Variation in mass loss due to incorporating different contents and sizes of wollastonite 

microfibers, ranged between -3.5% to +4.6% with respect to that of the control mixture. 

This can be attributed to the discontinuity of the pore structure induced by wollastonite 

microfibers (Mathur et al., 2007). Moreover, this confirms previous results which 

suggested that more hydration products were formed in the space induced by the 

incorporation of wollastonite microfibers, thus leading to a denser and a discontinuous 

pore structure.  

The general trend of the total shrinkage results indicates a progressive reduction 

in total shrinkage with increasing content and aspect ratio of wollastonite microfibers, as 

shown in Fig. 8-9. As the microfibers content increased from 4% to 12%, the reduction in 

total shrinkage at 7-days increased from 11% to 16% for MF1 and from 2% to 9% for 

MF2 with respect to that of the control mixture. On the other hand, mixtures 

incorporating different contents of MF3 exhibited a less significant reduction in the total 

shrinkage compared to that of the control mixture.  

Microfibers locally restrain shrinkage stresses in the cementitious matrix (Mangat 

and  Azari, 1984). As the matrix around shrinks, shear stresses develop along 

microfibers, leading to compressive stresses in the microfibers and tensile stresses in the 

cementitious matrix (Zhang and Li, 2001). The efficiency of microfibers in restraining 

shrinkage depends on several parameters, including the elastic modulus of the 

microfibers and matrix, the microfiber content and its aspect ratio (Zhang and Li, 2001, 

Mangat and  Azari, 1984). Hence, the shrinkage restraining efficiency of microfibers at 



Chapter 8                                                                                                                         269 

early-age is higher due to the low elastic modulus of the cementitious matrix (Zhang and 

Li, 2001). For instance, incorporating 4% of MF1 led to around 40% reduction in total 

shrinkage at 24 hrs, and about 16% at 7-days compared to that of the control mixtures, 

respectively. Moreover, for the same microfibers content, the higher the microfibers 

aspect ratio, the longer was the effective length leading to higher microfiber-matrix 

interfacial bond force and consequently higher restraint for shrinkage. For instance, at the 

same microfiber content of 12%, incorporating MF1 (aspect ratio 19) reduced the total 

shrinkage by about eight times greater than the reduction induced by MF3 (aspect ratio 

5). Moreover, increasing the microfibers content led to better shrinkage reduction 

(Mangat and  Azari, 1984, Swamy and Stavrides, 1979). This can be attributed to the 

smaller cross-sectional area of the matrix cylinder surrounding each microfiber needed to 

induce adequate interfacial bond strength and shrinkage restraining (Zhang and Li, 2001).  
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Figure 8-9: a) General trend of total shrinkage for wollastonite microfibers mixtures 
and b) variation in total shrinkage of wollastonite mixtures Vs. control mixture at 7-

days. 
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Figure 8-9 Contd’: a) General trend of total shrinkage for wollastonite microfibers 

mixtures and b) variation in total shrinkage of wollastonite mixtures Vs. control 

mixture at 7-days. 

 

Figure 8-10 shows the effect of adding wollastonite microfibers on autogenous 

shrinkage development. Generally, mixtures incorporating wollastonite microfibers 

exhibited lower autogenous shrinkage compared to that of the control mixture. In 

addition, the MF3 mixture achieved the lowest autogenous shrinkage compared to that of 

other wollastonite microfiber mixtures. Autogenous shrinkage is strongly related to 

hydration reactions in which water is consumed, leading to internal self-desiccation 

(without external water loss) (Powers and Brownyard, 1948). Adding wollastonite 

microfibers as a partial replacement for cement led to a lower hydration activity (i.e. 

dilution effect) (Bentz et al., 2008), and locally restrained shrinkage as shown earlier. 

Hence, increasing the wollastonite microfibers content increased the passive internal 

restraint along with reducing hydration activity. Consequently, lower autogenous 
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shrinkage occurred (Bentz et al., 2008, Bentz and Peltz, 2008). Moreover, mixtures 

incorporating the very fine microfibers (i.e. MF3) exhibited early age expansion, which 

led to a lower net autogenous shrinkage. This expansion can be attributed to the 

development of disjoining pressure as a result of water absorption on these very fine 

microfiber surfaces (Craeye et al., 2010).  (Shrinkage results for all wollastonite 

microfibers can be found in Appendix D). 
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Figure 8-10: a) General trend of autogenous shrinkage for wollastonite microfibers 

mixtures and b) variation in autogenous shrinkage of wollastonite mixtures Vs. 

control mixture at 7-days. 
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Figure 8-10 Contd’: a) General trend of autogenous shrinkage for wollastonite 

microfibers mixtures and b) variation in autogenous shrinkage of wollastonite 

mixtures Vs. control mixture at 7-days. 

 

8.4.5. Restrained Shrinkage  

MF1 and MF2 wollastonite microfibers were found to enhance the shrinkage cracking 

resistance as it delayed the age at which the first crack occurred, compared to that of the 

control mixture. For instance, adding 4% of MF1 and MF2 delayed the cracking age by 

about 27% and 16% compared to that of the control mixture, respectively. The higher the 

MF1 or MF2 content, the later was the onset of cracking (Fig. 8-11(a)). Conversely, 

increasing the MF3 content reduced the cracking age (Fig. 8-11(b)). In the absence of 

microfibers, there is little resistance to crack propagation, while in a cementitious matrix 

incorporating microfibers, the weakest crack resistance point changes with time 

depending on the distribution of microfibers (Passuello et al., 2009). Hence, microfibers 
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delayed the coalescence and propagation of cracks at early-age through better stress 

transfer at micro-cracks (Banthia and Sheng, 1996, Swamy and Stavrides, 1979). Using 

microfibers with a very small aspect ratio (i.e. MF3) jeopardized its crack bridging 

efficiency, leading to lower shrinkage cracking resistance and earlier crack formation. On 

the other hand, the increase in the cracking age with increasing microfiber content 

implies a higher crack bridging efficiency and ability of larger size wollastonite 

microfibers to overcome the reduction in matrix strength induced by dilution effect. 
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Figure 8-11: Strain measurements of the steel ring for mixtures incorporating 
different content of a) MF1 and b) MF3. 
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Figure 8-11 Contd’: Strain measurements of the steel ring for mixtures 
incorporating different content of a) MF1 and b) MF3. 

 

For all tested mixtures, cracking was first observed to occur after approximately 

42 hours. Steel rings containing specimens with MF1 and MF2 microfibers tended to 

experience the development of two cracks, while those with MF3 or no microfibers 

exhibited only one large crack. The presence of multiple cracks is an expected result, 

since microfibers create internally several small restraints inside the matrix leading to 

lower crack width as the cracking opening is shared by all cracks (Passuello et al., 2009). 

Moreover, the total width of the multiple cracks developed in MF1 and MF2 was 

lower than that of the control mixture single crack at the end of the investigated period 

(Fig. 8-12). The absence of multiple cracks in the control and MF3 mixtures can be 

attributed to the stress relief induced by the opening of single crack, since, unlike 

matrices with microfibers, there is no ability to transfer or redistribute stresses (Shah and  
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Weiss, 2006). Moreover, the crack width increased with increasing MF3 content. This 

can be ascribed to a reduction in the tensile strength of the matrix due to the cement 

dilution effect.  
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Figure 8-12: Total crack width for mixtures incorporating different content and 

sizes of wollastonite microfibers. 

 

8.4.6. Flexural Strength 

The addition of wollastonite microfibers in UHPC mixture significantly modified its 

flexural strength characteristics compared to that of the control mixture without 

microfibers. The flexural strength varied depending on the wollastonite microfibers 

content and aspect ratio and the hydration period of the cementitious matrix.  

Figure 8-13 shows the variation in flexural strength for different wollastonite 

microfibers contents and aspect ratios relatively to that of the control mixture. At 3-days, 

the flexural strength increased as the content of the wollastonite microfibers and its 
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aspect ratio increased, except for MF3. Moreover, at 5 and 7-days, tested specimens of 

mixtures incorporating MF1 and MF2 did not display signs of distress during the initial 

portion of the test procedure. Popping and cracking sounds could be heard towards the 

end of the test as the load applied to the specimen continued to increase. Subsequently, a 

sudden and brittle failure similar to that of the control mixture without microfibers 

occurred. 
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Figure 8-13: Relative flexural strength for mixtures incorporating different content 

and sizes of wollastonite microfibers compared to that of the control mixture. 

 

The cracking process is believed to initiate as sub-micro cracks formed around 

flaws once the load is applied. Coalescence of these sub-micro cracks results in forming 

narrow micro-cracks. Microfibers hindered the widening of these narrow micro-cracks, 

though their lengths continued to increase. Eventually, the coalescence of narrow micro-
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cracks localizes deformation, producing macro-cracks over the entire width of specimens 

(Lawler et al., 2003). Therefore, increasing the amount of microfibers increases the crack 

bridging efficiency (Lawler et al., 2003, Banthia and Sheng, 1996) and consequently 

delays the development of macro-cracks, which leads to a stronger material as observed 

for the mixtures incorporating MF1 and MF2 (Lawler et al., 2003). The 

microfiber/matrix interfacial bond and fiber length are important factors that can 

influence the effectiveness of microfibers as a medium of stress transfer (Banthia and 

Sheng, 1996). Hence, increasing the embedment length and the fiber perimeter increases 

the interfacial contact area between the fibers and matrix, leading to stronger interfacial 

bond (Pakravan et al., 2010). This can explain the increase in flexural strength as the 

aspect ratio of the added wollastonite microfibers increased. On the other hand, it seems 

that the very small size of MF3 and the expected reduction in the strength induced by the 

cement dilution effect significantly reduced the flexural strength of MF3 mixtures.  

The very high strength of the UHPC matrix is expected to enhance the fiber-matrix 

interfacial bond, providing high resistance to fiber pullout. Previous studies (Ransinchung 

and Kumar, 2010, Low and Beaudoin, 1994) showed that wollastonite microfibers have 

the ability to react with cement and develop a strong chemical bond. This strong chemical 

adhesion will increase the bond strength, leading to fiber rupture rather than pull-out 

(Rathod and Patodi, 2010).  Hence, the reduction in the flexural strength, at ages 5 and 7 

days, can be attributed to sudden rupture of wollastonite microfibers under flexural load 

(Rathod and Patodi, 2010, Lawler et al., 2005). This was confirmed by SEM micrographs 

as shown in Fig. 8-14. Moreover, wollastonite microfibers have a relatively low modulus 

of elasticity (30 GPa) (Pierre et al., 1997) while the UHPC matrix has a very high 
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modulus (around 34 GPa after 3 days). This reduced the apparent strength of inclined 

microfibers (Zhang and Li, 2002). Thus, the amount of microfibers that pulled out instead 

of rupturing was reduced and the fracture toughness decreased.  

 

 

Figure 8-14: Scanning electron micrograph and energy dispersive X-ray element 

analysis for ruptured wollastonite microfibers. 

 

8.6. CONCLUSIONS 

The feasibility of utilizing various small-size wollastonite microfibers in UHPC to 

control shrinkage cracking and its effect on other early-age properties of UHPC were 

investigated. The main conclusions that can be drawn from this experimental are the 

following: 

1) Influence of wollastonite microfibers addition on UHPC mixtures early-age 

compressive strength is highly influence by its bridging micro-cracks efficiency, 

packing and dilution effects.  
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2) Addition of high aspect ratio of wollastonite microfibers can improve UHPC 

hydration process through providing more space for hydration products to form. 

3) Addition of wollastonite microfibers appears to promote pore discontinuity 

leading to lower mass loss and drying shrinkage.  

4) Addition of wollastonite microfibers can act as passive internal restraint leading 

to lower measured shrinkage. 

5) The low UHPC matrix elastic modulus at early-age increases the shrinkage 

restraining effect of wollastonite microfibers. 

6) Addition of wollastonite microfibers retarded development of shrinkage cracks as 

it delay the coalescence of micro-cracks. 

7) Addition of wollastonite microfibers increase the pre-peak load, however, no 

improvement in ductility was achieved due to rupture of wollastonite microfibers. 
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CHAPTER NINE 

 

SHRINKAGE BEHAVIOUR OF UHPC WITH SHRINKAGE 
REDUCING ADMIXTURE AND WOLLASTONITE 

MICROFIBERS* 

 

In previous chapters, shrinkage reducing admixtures and wollastonite microfibers have 

been used to improve shrinkage behaviour and the cracking potential of UHPC.  

Shrinkage reducing admixture had shown a high efficiency in reducing early-age 

shrinkage, however, it delays development of mechanical properties. Wollastonite 

microfibers was found to act as an internal passive restraint for shrinkage, reinforcing the 

microstructure at the micro-crack level leading to an enhancement of early-age 

engineering properties of UHPC matrix. These results are based on previous 

independently analysis of SRA and wollastonite microfibers, without considering their 

combination. In this chapter, the improvement in early-age properties, shrinkage 

behaviour and  reduction of cracking potential of UHPC due to the addition of the SRA 

and wollastonite microfibers, used separately or in a blend, were investigated and 

analyzed. 

 

9.1. INTRODUCTION 

General background on the UHPC properties (high strength and enhanced durability) and 

characterization (homogeneity, stronger and higher packing density microstructure and its 

very low water to cement ratio) has been given in previous chapter 3. In addition, it has 

*A version of this chapter has been submitted for review to Cement and Concrete Composites.  
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been illustrated that UHPC has high tendency to early-age cracking which probably affect 

its durability. Furthermore, UHPC has a serious environmental and economical impact 

due to its high cement content which increases energy consumption and CO2 emissions. 

In Chapter 8, it was outlined the potential of replacing cement with an inert 

natural material, such as wollastonite microfibers. Addition of wollastonite microfibers 

was found to improve the early-age properties of UHPC. This probably will lead to 

environmental and economic benefits.  

Among the several methods that have been proposed to minimize cracking 

potential of concrete, shrinkage reducing admixture (SRA) was the most commonly used 

technique. SRAs directly influence shrinkage by decreasing the surface tension of the 

pore solution, leading to lower capillary stresses and consequently a reduced shrinkage 

(Nmai et al., 1998). However, possible disadvantages of these materials include 

effectiveness reduction over time (Schemmel et al., 1999), delaying setting time, 

reducing strength (Bentz, 2006) and washing out of SRA as illustrated in chapter 5. 

Therefore, the aim of this research is to develop a strategy for producing UHPC 

with lower cracking propensity to traditional UHPC, while having a more positive 

environmental foot-print, through combining the benefits of SRA and wollastonite 

microfibers. 

 

9.2. RESEARCH SIGNIFICANCE  

Reducing concrete shrinkage cracks is important for durability, as well as that of strength, 

particularly in structures such as slabs, bridge deck overlays, tunnel linings and 
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pavements. In this chapter, the reduction of cracking risk has been evaluated by the 

reduction of shrinkage and the increase of the crack opening resistance due to the 

addition of shrinkage reducing admixtures (SRA) and wollastonite microfibers. Both 

technologies have been considered individually and used in combination. Addition of 

wollastonite microfibers had jeopardize the reduction It has been noted that combining 

SRA and wollastonite microfibers has led to a better cracking behaviour compared to 

mixtures incorporating one of these techniques alone. Moreover, the combining effect 

gives better carking behaviour than the effect of increasing SRA or wollastonite 

microfibers dosages. 

 

9.3. EXPERIMENTAL PROGRAM 

This experimental program aims to investigate the effect of SRA and wollastonite 

microfibers on early-age behaviour of UHPC and their role in controlling shrinkage 

cracking. This is of primary importance in order to achieve high performance and durable 

structures. In this study, monitoring of the strength development (compressive strength, 

heat of hydration, degree of hydration) and characterization of the shrinkage behaviour 

have been investigated on UHPC mixtures incorporating different dosages of SRA and/or 

wollastonite microfibers. All tests were conducted on UHPC specimens without heat 

curing in order to understand real effects that govern UHPC shrinkage in structural 

elements cast in situ. 

9.3.1.  Materials and Mixture Proportions 

The materials used in this chapter were similar to that used in Chapter 3 (refer to Section 

3.4.1). The chemical and physical properties of the used binders have been given in 
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Chapter 3 (refer to Table 3-1). A poly-oxyalkylene alkyl ether shrinkage reducing 

admixture was used in this study. SRA dosages of 1% and 2% by mass of cement were 

added as a partial replacement of the mixing water. Commercially available natural 

wollastonite microfibers MF1 (length 152 µm, diameter 8 µm) were used at two 

concentrations (4 and 12%) as partial substitution for cement by volume. The selected 

composition of the control mixture are shown in Chapter 3 (refer to Table 3-2). The 

characteristics of the tested mixtures are shown in Table 9-1. 

Table 9-1: Tested mixtures. 

Mixture SRA (%) 
Wollastonite 
microfiber (%) 

C  ‐‐‐‐  ‐‐‐‐ 
R1  1.0  ‐‐‐‐ 
R2  2.0  ‐‐‐‐ 
W4  ‐‐‐‐  4.0 
W12  ‐‐‐‐  12.0 
R1W4  1.0  4.0 
R1W12  1.0  12.0 
R2W1  2.0  4.0 
R2W12  2.0  12.0 

 

9.3.2. Preparation of Test Specimens and Testing Procedures 

The experimental methods used in this chapter are the cubic compressive strength test, 

Semi-adiabatic calorimetry, TGA, MIP, measurements of total free shrinkage, mass loss, 

setting time, shrinkage restraining test, COD and  SEM/EDX analysis. All tests were 

previously explained in chapters 3, 5, 7 and 8.  
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9.4.        RESULTS AND DISCUSSION  

 

9.4.1.     Compressive Strength  

Compressive strength is considered as a key property of UHPC. The addition of 

wollastonite microfibers was found to affect the early-age compressive strength of 

UHPC, as shown in Fig. 9-1. A detailed discussion on the effect of wollastonite 

microfibers addition on compressive strength was given in Chapter 8.  

On the other hand, mixtures incorporating SRA achieved a lower early-age 

compressive strength compared to that of the control mixture (Fig. 9-1). The higher the 

SRA dosage, the lower was the achieved early-age compressive strength. This can be 

attributed to the retardation effect induced by SRA, in agreement with previous work (He 

et al., 2006).  
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Figure 9-1: Development of early-age compressive strength of UHPC mixtures 

with and without different dosages of SRA or wollastonite microfibers. 
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Figure 9-2 illustrates the combined effect of SRA and wollastonite microfibers on 

the very early-age compressive strength. Generally, adding wollastonite microfibers to 

SRA mixtures improved the early-age compressive strength compared to that of mixtures 

incorporating SRA alone. The higher the wollastonite microfibers content, the higher was 

the improvement in compressive strength. For instance, adding 4% and 12% of 

wollastonite microfibers was found to increase the early-age compressive strength of 

mixture R1 by 12% and 20%, respectively and by 55% and 70% at age 24 hrs, 

respectively for mixture R2 (Fig. 9-2(a)). Compared to mixtures incorporating 

wollastonite microfibers alone, mixtures incorporating both SRA and wollastonite 

microfibers exhibited lower early-age compressive strength. The higher the added dosage 

of SRA, the higher was the reduction in the compressive strength. For instance, adding 1 

and 2% of SRA was found to reduce the 24 hrs compressive strength for mixture W4 by 

6% and 16%, respectively and by 4% and 13% at age 24 hrs, respectively for mixture 

W12 (Fig. 9-2(b)). 

The combined effect of SRA and wollastonite microfibers on the very early-age 

compressive strength represents the net result of two conflicting effects: reinforcing and 

retardation. Wollastonite microfibers bridge micro-cracks and reinforce the 

microstructure, leading to higher strength (compared to that of the R1 and R2 mixtures). 

Concurrently, SRA retards the hydration process and consequently reduces the 

reinforcing efficiency of wollastonite microfibers (compared to that the W4 and W12 

mixtures). The efficiency of microfibers in bridging micro-cracks is a function of the 

interfacial microfiber/matrix bond strength (Hameed et al., 2009, Banthia and Sheng, 

1996). The lower the degree of hydration, the smaller is the microfiber/matrix bond 
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strength, and consequently the lower is the reinforcing efficiency (Chan and Li, 1997). 

This is shown in degree of hydration results discussed below.  
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Figure 9-2: Effect of combing SRA and wollastonite microfibers on early-age 

compressive strength of UHPC with respect to a) SRA and b) wollastonite 

microfibers mixtures. 
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At later ages (i.e. >24 hrs), similar to very early-age results, the addition of 

wollastonite microfibers enhanced the compressive strength at late ages for SRA 

mixtures, as shown in Fig. 9-3.  The micro-cracks bridging and reinforcing of the 

microstructure induced by wollastonite microfibers was able to reduce the negative effect 

induced by SRA and achieve acceptable compressive strength behaviour. 
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Figure 9-3: Variation in the compressive strength of UHPC mixture with different 

dosages of SRA and/or wollastonite microfibers compared to the control mixture. 

 

9.4.2. Heat of Hydration 

In chapter 8, the wollastonite microfibers effect on heat hydration was investigated and 

analyzed.  It was concluded that addition wollastonite microfibers can alert the hydration 

process through inducing higher porosity, due to percolation of microfibers (Bentz, 2000) 
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and displacing water from pores. Adding wollastonite microfiber exhibited slightly 

higher heat of hydration with respect to that of control mixture (Fig. 9-4(a)). 

It can be noted that adding SRA retarded hydration reactions and reduced the 

liberated heat compared to that of the control mixture without SRA, as shown in Fig. 9-

4(a). This is consistent with previous results (Eberhardt and Kaufmann, 2006). 

Furthermore, as the SRA dosage increased from 1 to 2%, the temperature peak decreased 

and occurred later in time compared to that of the 1% SRA mixture. This retardation 

effect can be attributed to a reduction in the ability of salts (e.g. alkali sulphates) to 

dissolve and ionize in the pore solution due to the lower polarity induced by SRA 

addition (Rajabipour et al., 2008).  

On the other hand, mixtures incorporating both wollastonite microfibers and SRA 

exhibited similar trend to that of mixtures incorporating SRA alone, regardless of the 

added amount of wollastonite microfibers, as shown in Fig. 9-4(b). The higher the dosage 

of SRA, the smaller and later the temperature peaks occurred. Moreover, at the same 

dosage of SRA, on significant change in the heat of hydration was found as the content of 

wollastonite microfibers increased from 0% to 12%. For instance, the difference in the 

temperature peaks ranged between -0.9% to 1.8% and -1.3% to +1.6% for the 1% and 2% 

SRA mixtures, respectively. This indicates that the retardation of hydration process 

induced by SRA is the dominant factor. 
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Figure 9-4: Heat of hydration for UHPC mixtures incorporating SRA and/or 

wollastonite microfibers a) individually and b) combined. 
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9.4.3.     Degree of Hydration 

Shrinkage mitigation techniques usually affect the rate of hydration reactions. 

Accordingly, the degree of hydration and amount of BW will be changed (Bentz, 2000). 

TGA was used to investigate the hydration evolution. The measured degree of hydration 

(represented by the relative BW) versus age is shown in Fig. 9-5. 
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Figure 9-5: Change in degree of hydration during the first day for different UHPC 

mixtures. 

 

It can be observed that all mixtures incorporating SRA exhibited lower degree of 

hydration with respect to that of the control mixtures without SRA. The higher the added 

SRA dosage, the lower was the degree of hydration. For instance; R1W4 and R2W4 

mixtures exhibited about 18% and 27% lower amount of BW, respectively compared to 

that of the W4 mixture without SRA. This is consistent with the retardation induced by 
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SRA and early-age compressive strength results (see Fig. 9-1). Moreover, mixtures with 

the same dosage of SRA exhibited a significant change in BW as the wollastonite 

microfibers content increased from 0% to 12%. For instance, at 2% SRA, the variation in 

the amount of BW between mixtures with and without wollastonite microfibers ranged 

between -4.4% and +1.8%.  These results confirm heat of hydration results (see Fig. 9-

4(b)). 

9.4.4. Free Shrinkage and Mass Loss 

The mass loss, autogenous and total shrinkage curves for mixtures incorporating SRA 

and/or wollastonite microfibers are shown in Figs. 9-6 and 9-7.  The measured total 

shrinkage includes both drying and autogenous shrinkage (thermal deformation can be 

ignored due to the small cross-section of the specimens (Baroghel-Bouny et al., 2006). 

Generally, for very low w/c (Tazawa and Miyazawa, 1999), the contribution of 

autogenous shrinkage to the total shrinkage can be comparable to that of drying 

shrinkage.  

 Despite the higher porosity induced by wollastonite microfibers (Bentz, 2000), no 

significant change in mass loss was observed compared to that of the control mixture 

with no microfibers. This can be attributed to the discontinuity of the pore structure 

induced by wollastonite microfibers (Mathur et al., 2007) and the development of greater 

hydration products. This was also confirmed by MIP test results. For instance, mixture 

W12 had a total porosity about 12.5% higher than that of the control mixture at 24 hrs. 

However, analysis of the MIP pore size distribution data at 24 hrs, according to the 

International Union of Pure and Applied Chemistry system (IUPAC) classification 

(Aligizaki, 2006), showed that W12 had about 73% higher small mesopores (size range: 
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2.5 to 10 nm) than that of the control mixture, while it had 6% and 8% lower large 

mesopores (size range: 10-50 nm) and macropores (size > 50 nm) with respect to values 

for the control mixture, respectively. The higher small mesopores content indicates more 

advance development of hydration (Antonio et al., 2010). On the other hand, electrostatic 

interaction between the pore wall and pore liquid can hinder the pore liquid transfer 

process in pore sizes below 50 nm, while it has no effect in macrospores (Aligizaki, 

2006). Hence, the lower content of macropores in W12, probably affect the water 

transport mechanism, thus leading to the lower mass loss compared to that in the control 

mixture. 
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Figure 9-6: Mass loss for UHPC mixtures with and without different dosages of 

SRA and/or wollastonite microfibers. 

 

On the other hand, incorporating SRA slightly reduced mass loss with respect to 

that of the control mixture. The higher the dosage of SRA, the greater was the reduction 
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in the mass loss. Moreover, adding SRA to mixtures incorporating wollastonite 

microfibers reduced the mass loss with respect to that of mixtures incorporating 

wollastonite microfibers alone. For instance, mixtures R1W12 and R2W12 exhibited 

about 7% and 16% lower mass loss compared to that of mixture W12 (Fig. 9-6). This can 

be ascribed to the development of a drying front on the exposed top surfaces of 

specimens, which in turn restricted extracting more water from deeper within specimens 

(Bentz, 2006).  

 The general trend of total shrinkage results indicates a progressive reduction in total 

shrinkage with increasing content of wollastonite microfibers, as shown in Fig. 9-7(a). A 

detailed discussion on the effect of wollastonite microfibers addition on shrinkage 

behaviour was given in chapter 8.  

SRA induced a significant reduction in total shrinkage compared to that of the 

control mixture, in agreement with previous findings (He et al., 2006, Bentz, 2006, 

Powers and Brownyard, 1948). For instance, mixtures R1 and R2 exhibited about 39% 

and 48% lower total shrinkage, respectively, compared to that of the control mixture at 7-

days. This can be attributed to a reduction in surface tension of the pore solution induced 

by SRA (Kovler and Bentur, 2006). As a result, lower capillary stresses developed and 

consequently lower total shrinkage was achieved. This reduction in capillary stresses also 

explains the lower autogenous shrinkage of mixtures R1 and R2 compared to that of the 

control mixture (about 41% and 59% reduction at 7-days, respectively) as shown in Fig. 

9-7(b). Moreover, SRA is believed to mitigate the drop in internal relative humidity, 

leading to lower self-desiccation and autogenous shrinkage (Bentz et al., 2001). A few 

hours after the final setting, R1 and R2 specimens exhibited an expansion (Fig. 9-7(a)). 
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This expansion played a significant role in reducing the net shrinkage along with the 

reduction in autogenous shrinkage induced by SRA compared to that of control 

specimens (Weiss et al., 2008). Previous study (Sant, 2009) attributed this expansion to 

crystallization stresses as a result of amplifying portlandite super-saturation in the pore 

solution induced by SRA addition. 

 Figure 9-7 shows the effect of adding SRA to mixture incorporating wollastonite 

microfibers on the development of total and autogenous shrinkage. Adding SRA to 

mixtures incorporating wollastonite microfibers reduced the total and autogenous 

shrinkage significantly compared to that of mixtures incorporating wollastonite 

microfibers alone. For instance, mixtures R1W12 exhibited about 37% and 20% 

reduction in autogenous and total shrinkage, respectively compared to that of mixture 

W12.  
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Figure 9-7: Shrinkage strains for UHPC mixtures with and without different 
dosages of SRA and/or wollastonite microfibers under a) drying and b) sealed 

conditions.  
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Figure 9-7 Contd’: Shrinkage strains for UHPC mixtures with and without different 

dosages of SRA and/or wollastonite microfibers under a) drying and b) sealed 

conditions.  

 

  The reduction in total and autogenous shrinkage compared to that of control 

mixture was comparable for all mixtures incorporating the same SRA dosage, regardless 

of the added amount of wollastonite microfibers. Mixtures incorporating 2% SRA had 

59%, 54% and 58% reduction in autogenous strain for 0%, 4% and 12% wollastonite 

microfibers content, respectively. This implies that SRA had a major effect on reducing 

shrinkage, while wollastonite microfibers have a minor or negligible effect. This is due in 

part to the retardation effect of SRA and early expansion. The major part of shrinkage 

occurred during the first 24 hrs (Pease et al., 2005). The restraining effect of wollastonite 

microfibers during this period depends on the ability to transfer shear stresses between 

microfibers and the cementitious matrix, which is a function of the interfacial 
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microfiber/matrix bond strength (Hameed et al., 2009, Banthia and Sheng, 1996). Hence, 

the retardation of hydration reactions induced by SRA can lead to lower 

microfiber/matrix bond strength and consequently lower shrinkage restraining efficiency 

(Chan and Li, 1997). The pullout of wollastonite microfibers for the cementitious matrix 

is shown in Fig. 9-8. On the other hand, the high early expansion induced by SRA (i.e. 

between 12 and 24 hrs) could delay the development of contracting forces, which is 

considered as driving force for shrinkage development (Nawa and Horita, 2004).  

 

Figure 9-8: SEM for wollastonite microfibers pullout from cementitious matrix 

incorporating SRA. 

 

9.4.5. Restrained Shrinkage  

Figure 9-9 shows the steel ring measured strains for the C, R1, R2, W4 and W12 

mixtures. The SRA mixtures had a time lag in the development of strain during the 24 hrs 

ring test and consequently a delay in the age at which the first crack occurred. The delay 

in cracking age was about 38% and 82% for mixtures R1 and R2, respectively, compared 

to that of the control mixture (Fig. 9-9(a)), which is in agreement with previous studies 

(Weiss, 1997, Shah et al., 1997). This is a consequence of the slower development of the 
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shrinkage for these mixtures (see Fig. 9-7). The lower shrinkage development can be 

attributed to the retardation in hydration reactions and reduction in capillary stresses, 

along with the early expansion which compensated for shrinkage strains and cause the 

ring specimen to come out of contact with the inner steel ring thus generating no strains 

(Pease et al., 2005).   

 Wollastonite microfibers enhanced the shrinkage cracking resistance as it delayed 

the cracking age compared to that of the control mixture (Fig. 9-9(a)). A detailed 

discussion on the effect of wollastonite microfibers addition on restrained shrinkage was 

given in chapter 8.  

Figure 9-9(b) illustrates steel ring strain results for mixtures incorporating both 

SRA and wollastonite microfibers. Similar to mixtures with SRA, mixtures incorporating 

wollastonite microfibers had a time lag in strain development during the ring test. This is 

in agreement with previous shrinkage (see Fig. 9-7). Combining SRA and wollastonite 

microfibers improved the resistance to shrinkage cracking and significantly delayed the 

cracking age compared to that of the control mixture. For instance, combing 1% of SRA 

and 4% of wollastonite microfibers delayed the cracking age by about 84%, 33% and 

43% compared to that of the control, R1 and W4 mixtures, respectively. This represents 

the net result of combining the reduction in capillary stresses induced by SRA and 

improvement of cracking resistance provided by wollastonite microfibers. 

Mixtures R1W4 and R1W12 exhibited comparable strain behaviour to that of 

mixtures R2 and R2W4, respectively, as shown in Fig. 9-9(b). Hence, it appears that the 
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SRA dosage can be reduced while achieving better or comparable cracking behaviour 

with the aid of wollastonite microfibers.  

Steel rings containing specimens with wollastonite microfibers tented to 

experience the development of two cracks, while those with no microfibers exhibited 

only one large crack.  The presence of multiple cracks is an expected result, since 

microfibers create internally several small restraints inside the matrix leading to lower 

crack width as the cracking opening is shared by all cracks (Passuello et al., 2009). The 

absence of multiple cracks in the control and SRA mixtures can be attributed to the stress 

relief induced by the opening of a single crack, since, unlike matrices with fiber, there is 

no ability to transfer or redistribute stresses (Shah and Weiss, 2006).  
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Figure 9-9: Strain measurements of the steel ring for UHPC mixtures incorporating 

SRA and/or wollastonite microfibers a) individually and b) combined. 
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Figure 9-9 Contd’: Strain measurements of the steel ring for UHPC mixtures 

incorporating SRA and/or wollastonite microfibers a) individually and b) combined. 

 

9.4.6. COD Results 

Washing out of SRA from concrete, especially during early-ages, can significantly 

diminish its effectiveness in reducing shrinkage strains. SRA reduces the pore fluid 

surface tension in concrete but does not chemically combine with other hydration 

products (Rodden and Lange, 2004). Therefore, as SRA is washed out, higher shrinkage 

values develop. Figure 9-10(a) shows shrinkage results for the control, R2, R2W4 and 

R2W12 mixtures under submerged conditions. 
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Figure 9-10: Measured strains under submerged condition for control, SRA and/or 

wollastonite microfibers UHPC mixtures: a) observed and b) initiated to zero after 

the early expansion. 
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Under submerged conditions, specimens continued to swell during the first 24 hrs, 

then started to shrink until the end of the investigated period. The early swelling resulted 

in a lower net shrinkage compared with that of sealed specimens (see Fig. 9-10(a)). The 

swelling of submerged specimens can be ascribed to the continuous supply of water, 

allowing the calcium silicate hydrate (CSH) to absorb water and expand (Neville, 1996). 

The reduction in the swelling strain with time can be explained by the fact that the 

progress of the hydration reactions reduced and depercolated the concrete capillary 

porosity, which interfered with water imbibing from the surrounding environment. 

Hence, no further expansion took place, while internal self-desiccation occurred as water 

was consumed by the hydration process. Mixtures incorporating wollastonite microfibers 

exhibited lower early-age expansion compared to that of the control and SRA mixtures. 

Moreover, the higher the wollastonite microfibers content, the lower was the early 

expansion. This can be attributed to the discontinuity of the pore structure induced by 

wollastonite microfibers (Mathur et al., 2007) which probably affected water movement 

within the concrete (Passuello et al., 2009). 

In order to capture the shrinkage behaviour under submerged conditions, the 

strain curves were initiated to zero at the end of the swelling, as shown in Fig. 9-10(b). 

Mixture R2 had a comparable shrinkage strain to that of the submerged control 

specimens with no SRA, while mixtures R2W4 and R2W12 exhibited a lower shrinkage 

strain. Moreover, the reduction in shrinkage strain increased with higher content of 

wollastonite microfibers. It is hypothesized that SRA is washed out with migrating water 

from SRA mixtures, jeopardizing their shrinkage mitigation efficiency, while lower 

amounts of SRA were washed out from R2W4 and R2W12 mixtures.   
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 To examine this hypothesis, chemical oxygen demand (COD) tests were 

conducted on water samples taken from the submersion tanks. The COD results in Fig. -

11 for the C, R2, R2W4 and R2W12 mixtures confirm the existence of SRA in the 

submerging water. The cumulative level of leached SRA increased with time. However, 

mixtures R2W4 and R2W12 had lower COD values compared to that of mixture R2, 

which indicates a reduction in the amount of SRA washed out. The higher the content of 

wollastonite microfibers in specimens, the lower was the measured COD. This can be 

ascribed to the discontinuity of the pore structure of the wollastonite microfibers, which 

interfered with the washing out of SRA. Hence, a higher SRA content remained inside 

the pore solution, thus reducing capillary stresses induced by the internal self-desiccation 

and leading to lower shrinkage.  
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Figure 9-11: COD values for control, SRA and/or wollastonite microfibers UHPC 

mixtures. 
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9.6. CONCLUSIONS 

In this study, the shrinkage of UHPC mixtures with and without SRA and/or wollastonite 

microfibers was investigated under sealed, drying and submerged conditions. Based on 

this work, the following conclusions can be drawn:  

1) Wollastonite microfibers addition in UHPC mixtures had a positive effect on the 

early-age compressive strength. 

2) The addition of wollastonite microfibers enhanced compressive strength of UHPC 

mixtures incorporating SRA. 

3) Incorporating both wollastonite microfibers and SRA in UHPC delayed the time 

of cracking through retarding the development of shrinkage strains and resisting 

the coalescence of micro-cracks. 

4) The washout of SRA under submerged conditions can jeopardize its effectiveness 

in mitigating shrinkage strains. 

5) Incorporating wollastonite microfibers in UHPC appears to promote pore 

discontinuity, thus leading to lower mass loss, less drying shrinkage and reduced 

SRA washing out. 
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CHAPTER TEN 

 

ARTIFICIAL NEURAL NETWORK MODELING OF 
EARLY-AGE AUTOGENOUS SHRINKAGE OF 

CONCRETE* 

 

In this chapter, an artificial neural networks (ANN) model for the early-age autogenous 

shrinkage of concrete is proposed. The model inputs include the cement content, water-

to-cement ratio (w/c), type and percentage of supplementary cementitious materials, total 

aggregate volume, curing temperature, and hydration age. The autogenous shrinkage of 

concrete is the model output. Subsequent to model validation using experimental results 

of chapter 3, a parametric study was carried out to identify the effects of input variables 

on the evolution of autogenous shrinkage. Moreover, the autogenous shrinkage database 

assembled and used in the training of the proposed ANN is considered as a contribution 

to the state-of-the-art knowledge; it includes testing results on modern concretes under 

various environmental conditions. 

10.1. INTRODUCTION 

Concrete is the most widely used construction material world-wide (Vanikar, 2004). 

Shrinkage of concrete initiates cracks that can lead to the ingress of aggressive 

substances, which jeopardizes the durability of concrete structures (Lura et al., 2007). 

Hence, concrete shrinkage has been a matter of great concern in the design of durable 

concrete infrastructure (Toutanji et al., 2004). Shrinkage occurring over a long time 

*A version of this chapter has been submitted for review to the ACI Materials Journal.  
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period is attributed to drying. Early-age drying shrinkage induces internal tensile stresses 

while the concrete has not yet gained sufficient tensile strength to withstand such stresses, 

which leads to cracking (Sivakumar and Santhanam, 2006).  

At early-ages, another type of concrete shrinkage (so called “autogenous 

shrinkage”) occurs without moisture exchange with the environment (Bentz and Jensen, 

2004). Autogenous shrinkage is a mechanism whose importance has grown with the 

increasing use of low w/c concrete. For many years, autogenous shrinkage, which can 

mainly be attributed to internal self-desiccation due to the hydration of cement (Bentz 

and Jensen, 2004), had been neglected as it caused minor strains in conventional concrete 

members compared to that caused by drying shrinkage (Zhang et al., 2003). However, 

autogenous shrinkage was found to be too large to be neglected and to have critical 

effects on low w/c concrete members (Igarashi et al., 2000). The evolution of the 

autogenous shrinkage of concrete depends on many factors, including the w/c (Zhang et 

al., 2003), aggregate content, cement content (Tazawa et al., 1995), curing temperate 

(Mak et al., 1999), and type and percentage of supplementary cementitious materials 

(Zhang et al., 2003). Such parameters are highly interdependent and exhibit complex 

combined roles on the development of autogenous shrinkage. 

Existing models for drying shrinkage do not normally perform well for 

autogenous shrinkage of modern concretes (ACI 209R-92 (ACI Committee 209, 1992), 

Model B3 (Bažant, 1995), CEB-FIP 1990 (CEB-FIP 1990, 1991), Gl2000 (Gardner and 

Lockman, 2001)), since they are limited to concretes with mean 28-days compressive 

strengths ranging from 20 to 70 MPa. They also cannot capture the effects of high 
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contents (more than 30%) of silica fume, fly ash and other natural pozzolans, and they do 

not take into account the faster evolution of properties at early-ages in very low w/c ratio 

systems (ACI Committee 209, 2008, Lpَez and Pacios, 2006). Such models generally use 

mathematical formulae relating variables by means of statistical coefficients calculated 

from certain databases. The characteristics of the databases, including component 

materials, age and environmental conditions, limit the validity and application range of 

such models (Lpَez and Pacios, 2006). 

On the other hand, ANN is a powerful modeling tool for problems where the rules 

which govern the results are either not defined properly or too complex (Adeli, 2001, 

Flood and Kartam, 1994). A number of applications of ANN in concrete materials and 

structures have been proposed by several researchers (Bilgehan and Turgut, 2010, 

Rattapoohm and Pichai, 2009, Yeh, 2008, El-Chabib et al., 2005).  ANN is an artificial 

intelligence technique that does not require mathematical relationships between variables. 

It has learning, self-organizing and auto-improving capabilities (Demir, 2008) allowing it 

to capture complex interactions among variables without any previous knowledge of the 

nature of these interactions. A properly trained ANN also has the ability to recall full 

patterns from incomplete or noisy data (Rafiq et al., 2001). Due to such exceptional 

capabilities, ANN has been used in a wide range of engineering applications. 

This chapter demonstrates the potential for using artificial neural networks to 

predict the autogenous shrinkage of concrete under different curing temperatures. The 

assembled database, model architecture and training process of the ANN network are 

described. Moreover, the influence of important parameters including w/c, 

superplasticizer dosage and curing temperature on autogenous shrinkage were 
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quantitatively analyzed and evaluated with respect to knowledge available in the open 

literature. 

10.2. RESEARCH SIGNIFICANCE  

For many years, the autogenous shrinkage of concrete associated with the internal 

consumption of water during cement hydration and the associated self-desiccation had 

not been regarded as a serious problem. However, with the increasing use of low w/c 

concrete, the importance of autogenous shrinkage has grown since it is too large to be 

neglected. Autogenous shrinkage can have a comparable value to that of drying 

shrinkage. Therefore, predicting the autogenous shrinkage is an important aspect in the 

service life analysis and design of durable concrete structures. In this study, an attempt 

was made to develop an artificial intelligence-based tool for accurately predicting the 

autogenous shrinkage of concrete based on its mixture design. A powerful modeling tool, 

artificial neural networks, was employed on a comprehensive database assembled from 

the open literature. The ANN model allows predicting autogenous shrinkage along with 

the influence of key parameters on the autogenous shrinkage behaviour of concrete.  

 

10.3. NEURAL NETWORK APPROACH 

ANN has been used to relate the autogenous shrinkage of concrete and its mixture 

composition at different curing temperatures. ANN learns from input information similar 

to the operation of a biological brain (Haykin, 1999). It has the capability of 

generalization, classification, pattern recognition, function approximation and simulation 

of sophisticated operations (Haykin, 1999). ANN structure consists of parallel multiple 

layers of linear and nonlinear processing elements (i.e. neurons) which can be classified 
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into: an input layer, an output layer, and hidden layers (Demir, 2008), as shown in Fig. 

10-1. These neurons are linked by variable weights. The input layer receives original data 

(xi), which is adjusted by connection weights (wij) and biases (b). The adjusted inputs are 

subjected to a summation process to form a single input (net) for all inputs received from 

the input laye

j 

r (Eq. 10-1) (Sarıdemir, 2009).  

bxw)net(
n

1i
iijj +⋅=∑

=  
Eq. 10-1

This single input is modified by an activation function (f(x)) to generate an output value 

of the processing unit through the hidden layers. The error between the network outputs 

and desired targets is calculated and then propagated back to the network through a 

learning algorithm. The implementation of such an algorithm updates the network 

weights and biases in the direction in which the total network error decreases rapidly. 

ANN then synthesizes and memorizes the relationship between the inputs and outputs 

through a training process. Hence, the used data in the training process should be 

sufficient and representative to allow the ANN to recognize the underlying structure of 

the information involved. Once an ANN is established and well-trained, it will be capable 

of predicting outputs of any input set of data, and predicting the outcome of any 

unfamiliar set of input located within the range of the training data with an acceptable 

degree of accuracy.  

 In civil engineering, feed-forward neural networks along with back-propagation 

algorithms are widely used and have shown efficient performance (Demir, 2008, 

Sarıdemir, 2009, Venkiteela et al., 2010, Adhikary and Mutsuyoshi, 2006, Mukherjee and 
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Biswas, 1997). Hence, they were selected for constructing the proposed ANN model in 

this study.  

 

 

Figure 10-1: The architecture of ANN models. 

 

10.3.1.   Feed-Forward Neural Network 

Feed-forward neural network (FFN) is the most widely used model in engineering 

applications. In FFN, neurons are arranged in layers and all the neurons in each layer are 

linked to all the neurons in the next layer (Adhikary and Mutsuyoshi, 2006). In general, 

the FFN consists of one input layer, one output layer and one or more hidden layers of 

neurons (Mukherjee and Biswas, 1997). The phrase “Feed-forward” indicates that the 

data move forward from one layer to the next during ANN modeling (Venkiteela et al., 

2010). The input layer receives input information and passes it forward to the neurons of 

the hidden layer, which in turn passes the information to the output layer. The output 

from the output layer is the corresponding prediction of the model for the data set 
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supplied at the input layer. To construct a stable FFN for a particular problem, the 

optimum number of neural units in each layer was selected using a trial and error 

approach as recommended by (Rafiq et al., 2001). 

10.3.2.   Back-Propagation Learning Algorithm 

Learning algorithms are techniques used to establish connections (i.e. weights and biases) 

between neurons forming the network structure and to adjust both weights and biases to 

obtain the desired values. There are two broad categories of algorithms: unsupervised 

(weights and biases are modified in response to network inputs only) and supervised 

(weights and biases are modified in order to move the network outputs closer to the 

targets) (Haykin, 1999). 

One of the well-known supervised training algorithms for the FFN is the back-

propagation algorithm. In this algorithm a gradient descent technique is applied to 

minimize the error for a particular training pattern in which it adjusts the weights by a 

small amount at a time (Sarıdemir, 2009, Venkiteela et al., 2010, Adhikary and 

Mutsuyoshi, 2006, Mukherjee and Biswas, 1997, Topçu and Sarıdemir, 2007, Ince, 

2004). The learning error is calculated using the following equation (Eq. 10-2) 

∑ −=
i

2
ii2

1 )o(tError  Eq. 10-2

Where ti is the target output and oi is the predicted output at neuron (i), respectively. In 

the back-propagation phase, the error between the predicted and target output values is 

calculated and used to update the weights between neurons using the following equation 

(Eq. 10-3) (Ince, 2004): 
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)1t(wo)t(w j,iijj,i −∆β+ηδ=∆  Eq. 10-3

where  is the weight change at the end of iteration (t), local error gradient, 

 is the weight change at iteration (t-1), 

)t(w j,i∆ jδ

)1t(w −∆ j,i η , β are learning and moment rate, 

respectively. Hence, the error serves as a feedback for the learning process. The iteration 

continues until a satisfactory convergence is achieved (Mukherjee and Biswas, 1997).  

 

10.4.      PROPOSED ANN MODEL 

A multilayered feed-forward neural network with a back-propagation algorithm was used 

to model the autogenous shrinkage behaviour in the present study. Two hidden layers 

with a Tansigmoid (tansig Eq. 10-4) transfer functions were used, while a pure linear 

transfer function (Eq. 10-5) was used in the output layer.  

1
e1
2nsig

n2
−

+
=

− )(
)(tan  Eq. 10-4

n(n)purelin = Eq. 10-5

During the training process, the design of network architecture starts with fewer hidden 

neurons, and then the number of hidden neurons is adjusted by assessing the network 

error through applying a trial and error approach (Nehdi et al., 2007). In order to improve 

generalization, the regularization method was applied. This involves modifying the 

performance function, which is normally chosen to be the sum of squares of the network 

errors on the training set (Demuth and Beal, 1998). The new performance function 

measures the network performance as the weight sum of two factors: the mean squared 

error and the mean squared weight and bias values (Eq. 10-6). Using this modified 
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performance function causes the network to have smaller weights and biases, which 

forces the network response to be smoother and less likely to over fit. 

γ)msw(1γmsemsereg −+=  Eq. 10-6

Where (msereg) is the mean squared error with a regularization performance function, 

( γ ) is the performance ratio which gives weight to the mean square errors (mse)  (Eq. 10-

7) and the mean square weights (msw) (Eq. 10-8). 

∑
=

−=
N

1i

2
ii )o(t

N
1mse  Eq. 10-7

Where N is the number of iterations, ti is the target output and oi is the predicted output at 

neuron (i), respectively. 

∑
=

=
n

1j

2
jw

n
1msw  Eq. 10-8

Where n is the number of neurons, w is the weight value for neuron (j). 

To simplify the learning process and reduce the required time for training, the 

back-propagation Levenberg-Marquardt Algorithm (LMA) was adopted as the learning 

algorithm (Nehdi et al., 2001). The LMA operates in a batch mode at which the weights 

and biases of the network are updated only after the entire training set has been applied to 

the network (Demuth and Beal, 1998). LMA propagates back the errors computed at the 

output layer to the network based on the Jacobian matrix J, which contains the first 

derivatives of the network errors with respect to weights and biases. An iteration of such 

algorithm can be written as follows (Eq. 10-9) 
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−
+ +−=  Eq. 10-9

where wj is a vector of current weights and biases, µ is a learning rate, J is the Jacobian 

matrix, is the transpose matrix of J, I is the identity matrix, and e is a vector of 

network errors. Parameters of the established ANN model are shown in Table 10-1. 

TJ

The available set of data is divided into three subsets, namely, training, validation, 

and testing. The training data is used to train the model to recognize the patterns between 

input and output data. The validation data is used to evaluate the effectiveness of the 

designed model in generalizing the underlying relationships and achieving a good 

performance when new data are introduced. The final model is tested with the testing 

data set, not presented to the model before, to ensure that predictions are real and not 

artifacts of the training process (Demuth and Beal, 1998). Before training, all data (i.e. 

inputs and targets) were scaled so that they fall in the range [-1,1]. This pre-processing 

step increases the efficiency of the ANN training (Rafiq et al., 2001). 

Table 10-1: The values of parameters used in the ANN model. 

Parameters  ANN 
Number of input layer neurons  8 
Number of hidden layer  2 
Number of first  hidden layer neurons  12 
Number of second hidden layer neurons  8 
Number of output layer neurons  1 
Minimum gradient  1×10‐10

Goal  1×10‐5
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10.5.      MODEL DATABASE 

The ability of the ANN model to predict the autogenous shrinkage behaviour of concrete 

mixtures will largely depend on how comprehensive the database is. In other words, it 

will depend on the availability of experimental data that are capable to teach the ANN 

relationships between the concrete mixture variables and its measured autogenous 

shrinkage. An extensive literature review identified a great amount of published data on 

concrete shrinkage. However, in many cases there is insufficient information regarding 

the exact concrete mixture composition, testing methodology, curing conditions, 

incomplete or graphically presented data, and the absence of other important parameters 

needed to properly characterize autogenous shrinkage (e.g. age at which the measuring of 

autogenous shrinkage started). The exclusion of such incomplete data reduced the extent 

of the database available for training the network.  

It should also be highlighted that autogenous shrinkage of concrete has not been 

researched as extensively as drying shrinkage until Tazawa and Miyazawa (Tazawa and 

Miyazawa, 1993) emphasized its importance for low w/c mixtures. To avoid further 

complexity, only experimental data having mixture components with comparable 

physical and chemical properties were identified for the training and testing of the 

network. Using the aforementioned criteria, a number of data sets were selected from 

different studies and used to train, validate and test the ANN model, as summarized in 

Table 10-2. For ANN training, eight input variables were selected: w/c, cement content, 

silica fume percentage, fly ash percentage, superplasticizer content, total aggregate 

volume, curing temperature and hydration age. The measured autogenous shrinkage of 

concrete was the single output. 
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Table 10-2: Database sources and variables range of input and output. 

Source 
No. of 

mixtures 

Va
ri
ab
le
s 

M
ax
im

um
 

M
in
im

um
 

U
ni
t 

1  Zhang et al., 2003  9 
2  Igarashi et al., 2000 4 

Cement  924  292  kg/m3

3  Lura et al., 2007  1 
4  Mak et al., 1999 4 

w/c  0.60  0.16  ‐‐‐‐‐ 

5  Yang et al., 2005  3 
6  Loukili et al.,2000  1 

SF  30  0.0  % cement

7  Bentur et al., 2001 1 
8  Lee et al., 2006  4 

FA  50  0.0  % cement

9  Akkaya et al., 2007 3 
10  Pipat et al., 2005 5 

TA  72  40 
% total 
volume 

11  Yun et al., 2006  4 
12  Mazloom et al., 2004 4 

SP  4  0  % cement

13  Meddah and Sato, 2010  1 
14  Nassif et al., 2007  5 

Temp.  65  10  °C 

15  Konsta et al., 2003 3 
16  Meddah et al., 2006 7 

Age  360  0.5  hours 

17  Guangcheng et al., 2006 4 
18  Akcay and Tasdemir,2009  1 

Autogenous 
shrinkage 

‐1012  +20  με 

19  Daniel and Ted, 2008  1 
20  Ma et al., 2003 4 
21  Brook et al., 1999 8 
Total No. of mixtures  77 

TA: Total aggregate volume; 
SF: Silica fume; 
FA: Fly ash; 
SP: Superplasticizer 

 

10.6.      RESULTS AND DISCUSSION 

Since there is no precise method for partitioning the database, the ANN model was 

trained with randomly selected 60% of the total database, while 20% was used for 

validation and the other 20% for testing (West et al., 1997). The performance of an ANN 

model depends on the success of the training process. A successfully trained ANN model 

should give accurate output predictions, not only for input data used in the training 
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process, but also for new testing data unfamiliar to the model within the range of the 

training database. Moreover, very good ANN models normally have only slight 

difference between their validating and testing errors (Amegashie et al., 2006). At the 

training stage, the performance of the ANN model was assessed statistically based on 

root-mean-squared (RMS) error, absolute fraction of variance (R2), and mean absolute 

percentage error (MAPE) between model and experimental results which are expressed in 

the following equations (Eq. 11,12 and 13) , respectively (Sarıdemir, 2009, Topçu and 

Sarıdemir, 2008)
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 Eq. 13

Where ti is the target output, is the predicted output, and n is the number of data points.  io

Satisfactory performance of the training process was verified by requiring the 

ANN model to predict the autogenous shrinkage of concrete mixtures from the training 

data set using the eight input variables. Predictions of the ANN model are shown in Fig. 

10-2. The figure includes the equity line, as a reference, which represents the condition of 

equal values for the predicted and measured autogenous shrinkage strains. It can be noted 
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that the ANN model had captured the input-output relationships since the points are 

mostly located on or slightly under/above the equity line between the experimental and 

predicted expansion values. The RMS, R2 and MAPE values were 29 µε, 0.98 and 12.2%, 

respectively, which indicates that the performance of ANN is satisfactory. 

To examine the generalization capacity of the ANN, it was tested using the testing 

data (20% of the original database). Such testing points were not previously presented to 

the model, and thus the predictive capacity of the model for new data can be evaluated. 

The eight input parameters of the testing data points were introduced to the ANN model 

and the response (predicted autogenous shrinkage) is shown in Fig. 10-2. Similar to the 

case of the training data, the model achieved good predictions relative to the actual 

experimental data; testing data points were mostly located on or slightly deviated from 

the equity line (Fig. 10-2). The RMS, R2 and MAPE of the testing data points were 42 µε, 

0.965 and 15.1%, respectively. Hence, it can be deduced that the ANN had a satisfactory 

generalization capacity for predicting the autogenous shrinkage of similar concrete 

mixtures exposed to various curing temperatures. In addition, statistical parameters for 

the model validation data were comparable to that of the training and testing data (i.e. 

RMS =39 µε, R2=0.95 and MAPE= 13.2%) indicating an excellent performance of the 

model (Shang et al., 2004). 
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Figure 10-2: Response of ANN model in predicting autogenous shrinkage of 

concrete. 

 

10.6.1.   Validating ANN Using Experimental Work 

To demonstrate the utility of the proposed ANN model, experimental measurements from 

Chapter 3 for UHPC mixtures with w/c=0.22 and 0.25 cured at different temperatures, 

namely, 10, 20, 40 °C were collected and compared to that predicted by the trained ANN 

model. Details for the experimental program, materials, specimens and testing procedure 

were given in Chapter 3.    

The measured and predicted autogenous shrinkage curves are illustrated in Fig. 

10-3. It can be observed that the ANN predictions were in good agreement with the 

measured results throughout the entire range of the shrinkage behaviour. A comparison 

between the measured and ANN model-predicted autogenous shrinkage values shows a 
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deviation of about ±20%, which is quite reasonable according to (ACI Committee 209, 

2008) (Fig. 10-4). 
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Figure 10-3: Measured autogenous shrinkage values compared with predicted a) 

w/c=0.22 and b) w/c=0.25. 
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Figure 10-4: Deviation between measured and predicted autogenous shrinkage 

values. 

 

Moreover, residual analysis was applied to evaluate the performance of the ANN 

models. The residual value R is defined as the difference between the measured and 

ANN-predicted shrinkage strains (Eq. 10-14). 

R =Predicted value – Measured value Eq. 10-14

The residuals of tested mixtures at the different curing temperature are plotted in Fig. 10-

5. Positive residuals indicate that the model underestimated the shrinkage strains and 

negative residuals indicate that the model overestimates them. The distributions of the 

residuals in the negative region are greater than that in the positive range, indicating that 

the ANN model slightly overestimated autogenous shrinkage. However, about 97% of 

residuals are within a low range of ±100 µε, which indicates a reasonable performance of 

the ANN model. 
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Figure 10-5: Residual values for ANN model. 

 

10.6.2.  Parametric Analyses 

The ANN model showed a satisfactory performance and demonstrated its ability to 

predict autogenous shrinkage strains for a wide range of concrete mixture designs under 

different curing temperatures. The purpose of this section is to exploit the abilities of the 

ANN model in capturing the influence of individual input parameters on autogenous 

shrinkage development. The analysis was done by randomly selecting a concrete mixture 

to create multiple new mixtures (not previously presented to the model) with various 

levels (within the range of training data) of the parameter of interest. Among the model 

inputs, the w/c, superplasticizer content and curing temperature were selected due to 

limited and/or conflicting results about their effects on autogenous shrinkage.   
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10.6.2.1  Effect of Water-to-Cement Ratio 

The w/c has a great influence on the autogenous shrinkage behaviour of a concrete 

mixture. To investigate changes in the autogenous shrinkage magnitude due to variation 

of the w/c ratio, the w/c ratio was changed while the water amount was held constant. 

This corresponds to an increasing cement content and paste content while the aggregate 

amount remains constant. A constant dosage of superplasticizer was added; hence 

workability of the tested mixtures varied. As expected, the mixture with the lowest w/c 

ratio had the greatest amount of autogenous shrinkage. Moreover, autogenous shrinkage 

increased with a drop of the w/c as shown in Fig. 10-6. Increasing the cement content 

increases chemical shrinkage, which is a main driving force behind autogenous 

shrinkage. In agreement with previous work (Baroghel-Bouny et al., 2006), the 

magnitude of the predicted autogenous shrinkage at a given age increased linearly as the 

w/c decreased. The w/c is likely to be below 0.25 for ultra-high-performance concrete 

(UHPC). However, limited data is available on the relationship between the autogenous 

shrinkage behaviour and w/c for w/c values below 0.25. Therefore, with the aid of the 

ANN generalization capability, this relationship was successfully investigated.  

Below w/c = 0.24, the relationship of autogenous shrinkage and w/c exhibited a 

similar linear trend but with a higher slope. This indicates that the rate of autogenous 

shrinkage development is faster and more sensitive to w/c ratio reduction below 0.25 

compared to that at higher w/c (> 0.25). Reviewing the limited test results for mixtures 

with w/c below 0.25, a good agreement between model predictions and experimental data 

was found. For instance, results reported by (Tazawa et al., 2000) show that reducing the 

w/c from 0.23 to 0.17 led to about 1.5 times higher rate of autogenous shrinkage 



Chapter 10                                                                                                                       331 

compared to that induced by reducing the w/c from 0.4 to 0.3. Therefore, a polynomial 

relationship was proposed to capture the behaviour over a wider w/c range from 0.16 to 

0.44 (Fig. 10-7).  
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Figure 10-6: Sensitivity of ANN model to the w/c in predicting autogenous 

shrinkage. 
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Figure 10-7: Correlation between autogenous shrinkage of concrete measured at 

T=20°C and w/c at ages 24 and 72 hours. 

 

10.6.2.2 Effect of Superplasticizer 

Superplasticizer (SP) is a key component in modern concretes. It is used to improve 

workability and allow for adequate placement on site. In the literature, there is conflicting 

observations about the effect of superplasticizer on autogenous shrinkage. An increasing 

trend was reported (e.g. Holt and Leivo, 2004, Holt, 2005), as well as a reducing trend 

(e.g. Tazawa and Miyazawa, 1995, Nawa and Horita, 2004). In order to demystify such 

discrepancies, the ANN model was used to capture the effect of the SP dosage on the 

autogenous shrinkage behaviour. Figure 10-8 illustrates the effect of the SP amount on 

the autogenous shrinkage of concrete mixtures with a w/c = 0.26 used with various 

cement contents. It can be observed that the autogenous shrinkage of concrete increased 
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with increasing SP dosage until reaching a threshold dosage, beyond which autogenous 

shrinkage decreased. This threshold dosage increased with increasing cement content. 

This behaviour can be explained as follows: Chemical shrinkage, which is a 

reduction in the volume of hydration products compared to that of the reacting 

constituents, is a main driving mechanism behind autogenous shrinkage (Tazawa et al., 

1995). Adding SP deflocculated cement particles, leading to better dispersion, and 

consequently faster rate of hydration reactions. This ultimately led to a higher rate of 

autogenous shrinkage (Holt and Leivo, 2004, Holt, 2005). Conversely, a higher SP 

dosage was found to have the side effect of slowing the chemical activity of hydration 

through provoking an ionic double layer around cement grains (Morin et al., 2001). 

Therefore, it can be argued that as long as the added SP dosage is less than the threshold 

dosage, SP improves cement dispersion leading to higher chemical activity. Once the SP 

dosage exceeds the threshold, SP starts slowing down the chemical activity of hydration 

reactions. This threshold dosage was found to increase with increasing cement content 

since more cement particles need to be dispersed. However, at very high cement content, 

a lower SP dosage may be required since a higher percentage of cement grains acts as a 

filler rather than a reacting material, as shown in Fig. 10-8.  
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Figure 10-8: Effect of superplasticizer dosage on autogenous shrinkage of concrete 

measured at T=20°C and w/c=0.26. 

 

10.6.2.3 Effect of Curing Temperature 

The ANN model was used to predict the autogenous shrinkage curves of concrete 

mixtures with a w/c = 0.26 that were cured at various temperatures ranging from 10°C to 

40°C. These curves were plotted versus the age up to 72 hours in Fig. 10-9. It is observed 

that the initial slope of these curves increased with increasing curing temperature, 

indicating a higher rate of autogenous shrinkage development. Moreover, the higher the 

curing temperature, the earlier the curve started to flatten. At that flatten point (known as 

the knee-point) a significant reduction in autogenous shrinkage occurred (Mounanga et 

al., 2006). This reduction in autogenous shrinkage is frequently ascribed to the formation 

of a load-bearing microstructure (self-supporting skeleton), which resists contracting 

forces (Sellevold et al., 1994). Hence, increasing the curing temperature had two 
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compensating influences: accelerated hydration reactions leading to a higher rate of 

autogenous shrinkage, but at the same time accelerated the development of a self-

supporting skeleton that resisted autogenous shrinkage. The autogenous shrinkage is the 

net resultant of these two compensating processes. Therefore, as the curing temperature 

increased, a delay in starting autogenous shrinkage measurements will result in a 

significant underestimation of its real value.  
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Figure 10-9: autogenous shrinkage vs. age for concrete w/c=0.26 and cured at 

various temperature ranges from 10 to 40°C. 

 

10.7.      CONCLUSIONS 

Autogenous shrinkage is a highly complex mechanism that makes modeling its behaviour 

a difficult task. This study aimed at demonstrating the possibility of adapting artificial 

neural networks to predict the autogenous shrinkage of concrete as a function of its 

mixture design under different curing temperatures. A database for autogenous shrinkage 
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was developed and used for training, validating and testing the ANN model. The results 

support the following conclusions: 

1) The ANN model thus developed is a viable method for predicating autogenous 

shrinkage strains of concrete. It showed an excellent ability to capture the 

interrelationships amongst key system variables.  

2) Using the generalization capabilities of the ANN, the effects of several parameters 

on the early-age autogenous shrinkage development could be quantified.  

3) At a given age, the magnitude of autogenous shrinkage increased linearly as the 

w/c was reduced. Below a w/c = 0.24, the rate of autogenous shrinkage became 

more sensitive to w/c reduction. A polynomial relationship can capture the 

autogenous shrinkage behaviour for w/c values ranging from 0.16 to 0.42. 

4) A superplasticizer threshold dosage has been proposed at which the effect of the 

SP on autogenous shrinkage switches from a motivator to chemical hydration 

reactions to a deterrent. This threshold dosage changes according to the mixture 

proportions. 

5) The higher the curing temperature, the earlier the knee-point was reached where 

the shrinkage curve started to flatten.  

6) Hence, particularly at high curing temperatures, measuring autogenous shrinkage 

should start as early as possible in order to capture its real value. 

7) The proposed ANN is not capable of extrapolation beyond the domain of the data 

used in its training. However, it can be extended beyond the current domain and 

to include other experimental variables should sufficient data needed for such an 

extension becomes available in the future. 
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CHAPTER ELEVEN 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

  

11.1. SUMMARY AND CONCLUSIONS 

Despite the current knowledge and specifications for the early-age shrinkage of concrete 

and its mitigation techniques, numerous early-age shrinkage cracking problems in various 

concrete structures have been reported, indicating the existence of high shrinkage. Yet, 

the issue of early-age shrinkage and how to mitigate it has not been fully resolved and 

there are clear gaps between theory, research and practice.  

This dissertation attempted to overcome some of these gaps through providing a 

series of fundamental investigations related to volume changes in cementitious materials 

at early-age and strategies used to mitigate it, taking into consideration the ambient 

environmental conditions. Moreover, new strategies for producing concrete with lower 

shrinkage and cracking risk although, which is also more environmentally friendly, were 

proposed. These include the use of partially hydrated cementitious materials and 

wollastonite microfibers as partial replacement for cement. 

At the start of this research, Chapter 2 provides a comprehensive review for the 

early-age properties of concrete. It was found that the reported research on the early-age 

properties and shrinkage of concrete considering the exposure environmental conditions 

is rather limited. The development of early-age shrinkage for cementitious materials can 

be particularly sensitive to exposure conditions in the field, including temperature and 
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relative humidity. Yet, existing research studies on early-age shrinkage had a limited 

scope and relied mostly on constant curing conditions. It is anticipated that if research on 

the early-age shrinkage of new generations of concrete (e.g. ultra-high performance 

concrete (UHPC)) continue using classical testing approaches, a similar situation to that 

of normal concrete would prevail in the near future; i.e. cracking, expensive rehabilitation 

and accusations of unfounded science. This will defeat the purpose of UHPC that has 

been introduced as an “ultimate” building material for the construction, strengthening and 

rehabilitation of bridges and other transportation infrastructure. Thus, this dissertation 

introduces an integrated testing approach that allows capturing the actual mechanisms 

governing shrinkage of structural elements and the role of shrinkage mitigation 

techniques under simulated field-like conditions. 

Chapter 3 adopts a more fundamental approach based on the progress of hydration 

in an attempt to capture the effect of drying conditions on the autogenous shrinkage of 

ultra-high performance concrete (UHPC) at early-ages. UHPC specimens were exposed 

to different temperatures, namely, 10, 20 and 40°C under a relative humidity (RH) 

ranging from 40 to 80%. Results show that autogenous and drying shrinkage are 

dependent phenomena. Assuming the validity of the conventional superposition principle 

between drying and autogenous shrinkage led to overestimating the actual autogenous 

shrinkage under drying conditions; the level of overestimation increased with decreasing 

RH. Therefore, the behaviour of autogenous strains under sealed conditions will differ 

from that under drying conditions.  

The findings from Chapter 3 motivated research on investigating the role and 

efficiency of different shrinkage mitigation techniques under field-like conditions. For 
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this purpose, new UHPC mixtures incorporating a shrinkage-reducing admixture (SRA) 

and a superabsorbent polymer (SAP) as shrinkage mitigation methods were also 

investigated in Chapter 4. Results show that the SRA and SAP effectiveness in reducing 

autogenous shrinkage under sealed conditions differ than that under drying conditions. 

Adding SRA effectively reduced drying strains, which are the dominant strains in UHPC 

specimens under low RH conditions. At higher RH conditions, SRA reduced autogenous 

strains, which in turn are the dominant strains in high RH environments. Under sealed 

conditions, early-age expansion of SAP mixtures had a significant effect in reducing the 

net strains. Under drying conditions, adding SAP resulted in higher drying strains, which 

disturbed the curing process and diminished the effect of SAP as a shrinkage mitigating 

method. Generally, adequate external curing is essential to mitigate early-age 

deformation in UHPC even when internal curing mechanisms are provided, since it 

guarantees a suitable environment for shrinkage mitigation methods to work properly. 

Chapters 3 and 4 provided fundamental knowledge for the interaction 

mechanisms between drying and autogenous shrinkage under various curing conditions 

that simulate field-like conditions, including arid, normal and cold conditions. The 

second level of the fundamental investigation covered the behaviour under the effect of 

outdoor environmental conditions in which structures are subjected to moisture cycles 

and/or submerged conditions (simulating submerged parts of marine and offshore 

structures). This was done in chapter 5 by continuing research on the early-age shrinkage 

along with applying environmental loading, including drying/wetting cycles and 

submerged condition. Results show that applying the environmental load alters the 

shrinkage behavior of UHPC with and without shrinkage mitigation methods. It was 
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discovered that exposure to drying/wetting cycles and submerged conditions jeopardize 

the effectiveness of using SRA through a washing out mechanism. Using a combination 

of SRA and SAP creates a synergistic effect whereby the benefits of these shrinkage 

mitigation methods are optimized. This allows overcoming their individual deficiencies 

under different exposure conditions, which is promising for developing a new generation 

of high-performance shrinkage mitigation admixture with a dual effect. It is concluded 

that adequately considering in-situ conditions in testing protocols of UHPC should allow 

gaining a better understanding of shrinkage mitigation mechanisms and developing 

suitable performance specifications before a wide implementation of UHPC in full-scale 

field constructions.  

Fundamental investigations described in this dissertation proved that relying on 

constant and standard curing conditions alone to evaluate the early-age shrinkage 

behaviour and efficiency of shrinkage mitigation techniques is risky since ignoring the 

realistic field-like exposure conditions may yield misleading conclusions. Obviously, 

concerted efforts from concrete researchers, professional organizations and 

standardization agencies are needed. In addition to the current standard tests, much 

research should be conducted on developing and standardizing new series of early-age 

shrinkage performance tests that concomitantly take other variables (temperature, relative 

humidity, wetting-drying, immersion, aggressive media, etc.) into consideration. These 

combined performance tests are better able to capture synergistic actions of chemical and 

physical mechanisms in concrete structures, which can occur under real field-like 

exposure conditions. Such an integrated testing approach is essential for the development 

of consistent performance-based standards and specifications for concrete. Also, it should 
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lead to producing more reliable data and knowledge on the early-age shrinkage behaviour 

of normal and emerging concrete types with inevitable improvements in the modelling of 

concrete structures.  

The second core theme of this research is to achieve concrete with lower early-age 

shrinkage and reduced cracking risk, along with reducing its environmental and economic 

impact. UHPC has a high carbon-footprint and environmental impact due to its high 

cement content, leading to high energy consumption and CO2 emissions associated with 

cement production. In chapter 6, a new concept for reducing early-age shrinkage in 

hardening cement-based materials is introduced. The concept consists of adding partially 

hydrated cementitious materials (PHCM) as a concrete admixture. Reusing disposal 

concretes in producing PHCM will yield significant economical and environmental 

benefits. Results showed a high potential for PHCM to reduce concrete shrinkage. The 

addition of PHCM provides hydration product micro-crystals and a pre-existing hydrated 

cement paste structure, which act as passive internal restraining clusters within the fresh 

concrete. Consequently, the developed passive restraining system resists bulk 

deformations and acts as a load bearing structure, thus leading to lower shrinkage. Hence, 

the concept of a self-restraining shrinkage system was proposed and its mechanism was 

demonstrated. In addition, results show that PHCM can potentially be used for several 

other purposes, including as an accelerator for concrete instead of chloride-based 

accelerators that induce a risk of corrosion in reinforced concrete. A dedicated 

experimental study was conducted to providence evidence for aforementioned 

observation (see Appendix B). 
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To complement the findings of Chapter 6, the efficiency of PHCM as a shrinkage 

reducing technique, when PHCM is used separately or combined with SRA and SAP, 

was investigated in Chapter 7. Results indicate that SRA was the most effective in 

reducing shrinkage; however, PHCM achieved excellent early-age shrinkage reduction 

when used alone or combined with other shrinkage mitigation techniques. PHCM 

mitigates undesirable behaviour induced by SRA and/or SAP. Combining PHCM and 

SRA mitigated the drawbacks of SRA including preventing delays in setting time and 

mitigating significant reductions in early-age compressive strength. The addition of 

PHCM to a mixture incorporating SAP improved the shrinkage behaviour and overcame 

the SAP drawbacks including higher mass loss and porosity, which led to preventing the 

reduction in early-age compressive strength induced by SAP.  

Making concrete a more environmentally friendly material can be achieved in 

several ways. In Chapter 6 and 7, the production of low shrinkage environmentally 

friendly UHPC through using PHCM is proposed. This reduces the amount of portland 

cement in the mixture by partially replacing it with other suitable more environmentally 

friendly materials, thus reducing the amount of energy consumed and CO2 emitted. In a 

low w/c concrete, a high fraction of cement particles remain un-hydrated due to limitation 

of the available water and space. In chapter 8, the potential for using wollastonite 

microfibers as partial replacement for cement by volume and it capability to reduce 

shrinkage and improve the cracking resistance was investigated.  

Commercially available natural wollastonite microfibers were used at three 

concentrations (4, 8 and 12%) as partial substitution for cement by volume. Three 

microfiber sizes were used in this study: MF1 (length 152 µm, diameter 8 µm), MF2 
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(length 50 µm, diameter 5 µm), and MF3 (length 15 µm, diameter 3 µm). Results show 

that the early-age properties of UHPC mixtures incorporating wollastonite microfibers 

are highly affected by the microfiber aspect ratio and content, along with the hydration 

age of the cementitious matrix. Wollastonite microfibers were found to reduce shrinkage 

strains and increase the cracking resistance. It acts as an internal restraint for shrinkage, 

reinforces the microstructure at the micro-crack level and promotes pore discontinuity, 

thus leading to lower mass loss and less drying shrinkage. Incorporating wollastonite 

microfibers enhanced the early-age engineering properties of the UHPC matrix along 

with reducing its cement factor, which represents economic and environmental benefits.  

The promising results of using wollastonite microfibers introduced in Chapter 8 

encouraged the combination of wollastonite microfibers and SRA to optimize the gained 

benefit. In chapter 9, the effects of incorporating SRA and/or wollastonite microfibers on 

the early-age shrinkage behaviour and cracking potential of UHPC has been evaluated. 

Wollastonite microfibers were added at rates of 0, 4 and 12% as partial volume 

replacement for cement, while SRA was added at 1% and 2% by cement weight. Results 

show that the reinforcing effect induced by wollastonite microfibers mitigated the 

reduction in mechanical properties induced by SRA. Addition of wollastonite microfibers 

to SRA mixtures did not impart a significant change in the measured free shrinkage 

strain, while it enhanced the cracking resistance compared to that of mixtures 

incorporating SRA alone. Moreover, adding wollastonite microfibers promoted pore 

discontinuity, thus reducing the washing out of SRA from concrete under submerged 

conditions. Consequently, the efficiency of SRA in reducing shrinkage under submerged 

conditions was improved owing to the presence of wollastonite microfibers.  
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In Chapter 10, an original approach based on artificial neural networks (ANN) 

was proposed to assist engineers and quality control personnel in developing adaptable 

inference systems for the early-age shrinkage assessment of concrete. This is practically 

effective to select optimum concrete mixtures for specific exposure conditions. The ANN 

model inputs include the hydration age, water-to-cement ratio, total aggregate volume, 

cement content, curing temperature, and type and percentage of supplementary 

cementitious materials, while the autogenous shrinkage of concrete was the single model 

output. In such an ANN system, combining the effects of concrete mixture proportions 

and performance criteria with respect to a certain field-like exposure condition could 

simplify the decision-making process and improve the reliability of assessment.  

The ANN model developed in Chapter 10 was trained using a newly assembled 

database. These data can be considered as an enhancement for the existed concrete 

shrinkage database, since it included testing results for modern concretes under various 

environmental conditions. The ANN model showed high capability to accurately predict 

the autogenous shrinkage behaviour under different exposure conditions and exhibited a 

good generalization capacity beyond the training stage as validated by results obtained on 

new testing data within the range of training database.  

This model could be used in the design and prequalification stage of a 

construction project to reduce the need for exhaustive trial batches and experimental 

programs, thus facilitating the decision-making process. The developed ANN model is 

versatile and can be re-trained to encompass wider ranges of input variables, different 

mixture proportions, other environmental conditions, etc., when such data becomes 

available. 
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Among the model inputs, the w/c, superplasticizer content and curing temperature 

were selected due to limited and/or contradictory results about their effect on autogenous 

shrinkage.  Thus, the generalization capabilities of the ANN model were used to resolve 

this issue and clarify the influences of these parameters on the early-age autogenous 

shrinkage development.  

 

11.2. RECOMMENDATIONS FOR FUTURE WORK 

1. Based on the findings of the current thesis, it is suggested that other early-age 

properties of cement-based materials, such as their mechanical properties, be re-

examined using an integrated testing approach in which chemical, physical and 

structural aspects are assessed under a field-like exposure. Such an approach can 

elucidate synergistic actions of multiple mechanisms and better capture performance 

risks of cement-based materials that might be overlooked by current single-parameter 

standard test methods.  

2. On-site cracking of concrete is usually attributed to drying shrinkage and evaporation 

of water from the concrete surface. However, mechanisms and causes of cracking 

differ depending on the exposure conditions, type of the concrete element, etc. It is 

recommended that field tests be conducted to better quantify the actual source of 

cracking stresses and to quantify the benefits imparted by different shrinkage 

mitigation techniques. 

3. Tests conducted under drying/wetting cycles and submerged conditions introduced in 

the current thesis used a single curing temperature and a regular water immerging 
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solution. Following a similar integrated testing approach, further research is needed 

on UHPC using different curing temperatures and more aggressive immersing 

solutions.  

4. Given further research, the integrated testing procedures developed in this dissertation 

can be improved and refined. Investigations of reproducibility, inter- and multi-

laboratory errors should also be conducted for such combined performance tests.  

5. To develop shrinkage performance-based standards and specifications for concrete, 

there is an essential need to improve the shrinkage measuring techniques. Moreover, 

standardizing multi-factor performance tests could capture synergistic shrinkage 

mechanisms that can not be identified by current testing procedures which consider 

only one single factor at a time. Thus, it is recommended that standardization 

agencies such as CSA and ASTM motivate research programs in this theme in the 

near future.  

6. It was shown that the PHCM can be a very effective technique for reducing concrete 

shrinkage. However, to become a more versatile technique, further research and 

development are required. This includes: (i) investigating the effectiveness of the 

PHCM technique with different mixture proportions including various types of 

binders, w/c values and chemical admixtures; (ii) investigating the effect of adding 

PHCM as a paste without aggregate, which should reduce the volume of the added 

PHCM, making it a more practical tool for precast-plants, (iii) developing a mixture 

design procedure to include the PHCM, and (iv) investigating the long-term 

properties of concrete incorporating the PHCM. 
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7. The feasibility of implementing wollastonite microfibers in UHPC to resist shrinkage 

cracking has been proven in the current dissertation. However, to become an effective 

and applicable technique, further research and development are required. This 

includes investigating: (i) the effectiveness of the wollastonite microfibers in UHPC 

incorporating steel microfibers; (ii) the hybrid effect of adding wollastonite micro and 

microfibers. (iii) and the long-term properties of concrete incorporating wollastonite 

microfibers. 

8. This research demonstrated the promising application of artificial intelligence in 

modeling the complex early-age shrinkage behaviour of concrete. Such a versatile 

modeling tool should be established based on reliable databases derived from 

integrated performance tests. Indeed, more information on the early-age behaviour of 

concrete with various materials proportions combined with environmental conditions 

and/or structural loading is still needed. Once this information becomes available, the 

artificial intelligence inference system can be further developed and be commercially 

used to facilitate the decision-making process in the design/prequalification stage of 

construction projects.  
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Figure A-1: Detailed temperature and total strain measured in concrete samples 
over 24 hours. 
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Figure A-2: Time-evolution of coefficient of thermal expansion. 
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APPENDIX B 

 
SELF-ACCELERATED CONCRETE USING PARTIALLY 

HYDRATED CEMENTITIOUS MATERIALS 
 

B.1.       INTRODUCTION 

This study pioneers the concept of self-accelerated concrete. The effect of adding 

partially hydrated cementitious materials (premade or from returned/unused concrete) on 

the setting and hardening process of concrete cured at various temperatures was 

investigated. The partially hydrated cementitious materials (PHCM) were added at rates 

of 25, 33 and 50% of the overall batch weight. Similar mixtures incorporating chloride- 

(CA) and non-chloride- (NCA) based accelerating admixtures were also tested for 

comparison. The results indicate that the added PHCM alert the hydration kinetics and act 

as a setting and hardening accelerator. Mixtures incorporating PHCM showed 

comparable to and/or higher early-age compressive strength than that of both the control 

and mixtures incorporating accelerating admixtures. Therefore, using PHCM paves the 

way for self-accelerated concrete, without the need for accelerating admixtures, providing 

a safe and cost effective method for precast and cast in place concrete. Using left-over 

and unused concrete in this process enhances the sustainability of concrete and minimizes 

disposal in ready mixed concrete operations. 

 

 

 

 
 
A version of this Appendix has been Accepted in the ACI Materials Journal.  
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B.2.       EXPERIMENTAL PROGRAM 

This experimental program aims to produce a self-accelerated concrete without need for 

accelerating admixtures. This Appendix was devoted to validating the addition of PHCM 

as an accelerating technique and to evaluating its efficiency compared to that of different 

accelerating admixtures. The characteristics of the tested mixtures are shown in Tables 

B-1.  

Table B-1 Tested mixtures 

Mixture 
Accelerating 
method 

PHCM 
 (% of the batch weight) 

Admixture Dosage  
(% of cement mass) 

MC  ‐‐‐‐  0.0 ‐‐‐‐ 
MP1  25.0 ‐‐‐‐ 
MP2  33.0 ‐‐‐‐ 
MP3 

PHCM 
50.0 ‐‐‐‐ 

MAC1  ‐‐‐‐ 2.0 
MAC2 

Chloride 
Admixture  ‐‐‐‐ 4.0 

MANC1  ‐‐‐‐ 1.5 
MANC2 

Non‐Chloride 
Admixture  ‐‐‐‐ 3.0 

 

B.3.      RESULTS AND DISCUSSION 

B.3.1.   Setting Time and Compressive Strength 

B.3.1.1  PHCM  technique  

Regardless of the added amount of PHCM, the PHCM technique significantly enhanced 

the development of early-age compressive strength. All PHCM mixtures consistently 

produced higher early-age compressive strengths compared to that of MC cured at 10 and 

20°C, as shown in Fig. B-1(a,b). The increase in compressive strength was directly 

proportional to the added amount of PHCM. For instance, the 24 hrs compressive 

strength at 10 and 20°C increased by 70% and 30% for MP1, 85% and 40% for MP2 and 
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by 140% and 45% for MP3 of their respective MC values. At 10°C, PHCM addition 

induced higher increase in compressive strength compared to that at 20°C. This is likely 

due to the acceleration effect induced by PHCM addition. Hence, the slow rate of 

hydration and strength development at the low temperature of 10°C were compensated 

for, leading to more hydration products and stronger microstructure (ACI Committee E-

701, 2001). Compared with the MC setting time, the PHCM technique also reduced the 

setting time significantly as shown in Table B-2. These results demonstrate that the 

PHCM technique can be considered as an effective setting and hardening accelerating 

method.  
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Figure B-1: Early-age compressive strength of UHPC mixtures incorporating 
PHCM cured at a) 10°C and b) 20°C and UHPC mixtures incorporating CA and 

NCA cured at c) 10°C and d) 20°C. [Maximum COV (10°C, 20°C): MC (0.9%, 2.0%), 
MP1 (1.9%, 4.8%), MP2 (2.3%, 5.6%), MP3 (2.7%, 2.2%), MAC1 (1.7%, 0.9%), MAC2 

(4.2%, 4.7%), MANC1 (4.9%, 0.9%), MANC2 (3.8%, 6.8%)]. 
Table B-2: Initial and final setting times for different mixtures. 
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Temperature °C 
10  20 

  Setting time (min)
Mixture  Initial Final Initial Final 

MC  510 715 460 520 
MP1  450 495 340 420 
MP2  405 465 220 270 
MP3  245 280 170 210 
MAC1  425 475 240 285 
MAC2  160 205 150 190 
MANC1  475 540 350 395 
MANC2  240 300 260 295 

 
 

The improvement in compressive strength and reduction in setting time induced 

by PHCM addition cannot be solely attributed to the effect of the older material. For 

instance, for mixture MP3 after 6 hours of curing at 10°C, 50% of the mixed 

cementitious material is 6 hours older. Hence, 50% of the cementitious material has an 

age of 12 hours, while the other 50% has an age of 6 hours. Summing up 50% of the MC 

compressive strength at age 6 hours (0.0 MPa) and 12 hours (1.68 MPa) results in a 

compressive strength of about (0.84 MPa), which is much lower than that of MP3 at 6 

hours (3.90 MPa). On the other hand, the setting time of the normal paste starts at about 

510 min at 10°C, hence, adding 50% of 6-hour older paste material should theoretically 

reduce the setting to about 150 min. However, the setting time was only reduced to about 

245 min (which represents about 52% reduction with respect to the MC value). The 

longer setting time for MP3 than the theoretical value (150 min) can be attributed to the 

effect of remixing on the already developed microstructure. Remixing breaks down the 

formed connections between hydration products (Lea, 1988), hence, the MP3 paste will 

initially have a lower stiffness than that of the paste mixed 6 hours earlier. 
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B.3.1.2 Chloride-based accelerating admixture (CA) 

The compressive strength results of mixtures incorporating different dosages of CA are 

shown in Fig. B-1(c,d). The higher the dosage, the higher the rate of hydration reactions, 

and consequently the higher the early-age compressive strength achieved, which is in 

agreement with previous results (Cheeseman and Asavapisit, 1999). As shown in Fig. B-

1(c,d), MAC2 exhibited about six times higher early-age compressive strength compared 

to that of MAC1 after 6 hrs from mixing, regardless of the curing temperature. In 

addition, the CA improved the compressive strength more effectively at 10°C compared 

to that at 20°C. This is probably due to the higher heat liberated from the accelerated 

hydration reactions, offsetting the prolonged strength gain induced by the low curing 

temperature (Shideler, 1952). Adding the CA reduced the initial and final setting times 

significantly (Table B-2). For instance, MAC2 exhibited initial and final setting times at 

10 and 20°C more than 60% shorter than that of MC.  

 
B.3.1.3 Non-chloride based accelerating admixture (NCA) 

The compressive strength results for mixtures incorporating different dosages of the NCA 

are shown in Fig. B-1(c,d). Mixture MANC1 did not show a significant improvement in 

very early-age compressive strength. During the first 10 hrs, MANC1 showed a lower 

compressive strength than that of MC at 20°C. However, MANC1 exhibited initial and 

final setting times about 24% shorter than that of MC. MANC1 showed a different 

strength gain rate at 10°C compared to that at 20°C, with a significant increase in 

compressive strength (about double that of MC). On the other hand, MANC2 had higher 

early compressive strength and shorter setting time compared to that of MC. For instance, 

MANC2 exhibited about 136% and 36% higher compressive strength than to that of MC 
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after 24 hrs at 10 and 20°C, respectively. Hence, the NCA can generally be considered as 

a setting accelerator, confirming results reported by others (Chikh et al., 2008), while its 

effect on early-age strength gain can vary depending on the added dosage. 

 
B.3.1.4 Comparison between different acceleration techniques 

To evaluate the efficiency of the PHCM accelerating technique versus accelerating 

admixtures, the differences between the compressive strength gain achieved by mixtures 

incorporating PHCM and that incorporating accelerating admixtures were calculated, as 

shown in Fig. B-2. Generally, the PHCM mixtures exhibited higher compressive strength 

compared to that of MAC1 and MANC1. For instance, the differences in early-age 

compressive strength between PHCM mixtures and MAC1, over the investigated period, 

ranged respectively from -0.6 to +10 MPa at 10°C, and from +1 to +15 MPa at 20°C, 

respectively. A similar trend was observed between PHCM mixtures and MANC1, as 

shown in Fig. B-2(c). 

On the other hand, mixtures incorporating PHCM showed lower early-age 

compressive strength compared to that of MAC2 mixtures. The gap in compressive 

strength decreased with increasing the added amount of PHCM. However, the mixture 

MP3 incorporating 50% PHCM showed early-age compressive strength comparable to 

and/or higher than that of MANC2 at 10 and 20°C over the investigated period. 

Moreover, MP3 exhibited a compressive strength at the end of the investigated period 

higher than that of MAC2 as shown in Fig. B-2(b). In simple terms, it takes the 

maximum dosage of CA to compete with the acceleration induced by the PHCM method. 
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Figure B-2: Compressive strength difference between UHPC mixtures incorporating 
PHCM and that incorporating CA [ a) MAC1, and b) MAC2] and NCA [ c) MANC1, 

and d) MANC2 ]  at different curing temperatures. 
 

Figure B-3 shows the compressive strength results for different mixtures at age 

28-days. Generally, all mixtures incorporating different acceleration techniques exhibited 

28-days compressive strength comparable to that of MC, regardless of the curing 

temperature. For instance, the difference in 28-days strength between the control mixture 

without accelerating technique and mixtures with accelerating techniques at 10°C and 

20°C, ranged from -1% to +6.5% and from -4% to +2.5% with respect to the MC value, 

respectively. This slight variation in the 28-days compressive strength can be attributed to 

the fact that at low w/c ratio, the hydration progress is mainly controlled by the 

availability of sufficient space for hydration products to form (Lea, 1988).  
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Figure B-3: 28 days compressive strength of UHPC mixtures incorporating PHCM , 
CA and NCA cured at 10°C and 20°C. 

 

The effectiveness of the PHCM technique as a setting accelerator increased with 

increasing the added amount of PHCM, as shown in Fig. B-4. The lower the temperature, 

the higher the relative acceleration induced by the PHCM technique. Mixtures 

incorporating PHCM achieved longer setting time compared to that of MAC2 (see Fig. 

B-4(b)). However, MP2 and MP3 exhibited similar and/or shorter setting time compared 

to MAC1 (see Fig. B-4(a)). On the other hand, PHCM mixtures exhibited shorter setting 

time compared to that of MANC1, while longer compared to that of MANC2, except for 

MP3 (see Fig. B-4(c,d)). 
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Figure B-4: Change in initial and final setting times for UHPC mixtures 
incorporating PHCM and that incorporating CA [ a) MAC1, and b) MAC2] and 

NCA [ c) MANC1, and d) MANC2 ] at different curing temperatures. 
 

B.3.2.    Degree of Hydration 

Early-age strength development of concrete mixtures highly relies on the degree of 

hydration achieved (Xiao and Li, 2008). The correlation between the compressive 

strength and degree of hydration (represented by the amount of BW) is plotted in Fig. B-

5. It can be observed that the relationship exhibits a linear trend for mixtures 

incorporating PHCM and CA (with R2 = 0.97 and 0.94, respectively). Conversely, 

combining data points for MANC1 and MANC2 mixtures indicates a very poor linear 

trend (R2 = 0.67), while separating these two sets of data leads to a linear trend with R2 = 

0.97 and 0.95 for MANC1 and MANC2, respectively, as shown in the upper left corner of 
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Fig. B-5. This linear relationship between compressive strength and degree of hydration 

has been reported in previous works (Xiao and Li, 2008, Powers, 1948). It indicates a 

proportional relationship between the added dosages of PHCM and CA and the 

development of hydration and strength. Conversely, the NCA behaves differently from 

one dosage to another, in compliance with previous studies (Rear and Chin, 1990). 
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Figure B-5: Relation between degree of hydration (amount of BW) and compressive 

strength development for the tested mixtures. 

 

B.3.3.    Heat of Hydration 

Mixtures incorporating PHCM had similar temperature evolution curves that differed 

from that of the control MC, as shown in Fig. B-6(a), indicating a variation in the 

hydration kinetics. Initially, the temperature for PHCM mixtures rised rapidly after 

casting the specimen in the semi-adiabatic cell (20 min from water addition) and did not 

exhibit an induction period (period in which the rate of hydration reactions slows down 

significantly (Ramachandran et al., 2002). Temperature rised up until reaching a peak of 

about 42°C after about 7.5 hrs for MP3, 38°C and 39°C after about 8 hrs for MP1 and 
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MP2, respectively. On the other hand, MC hydration exhibited induction and acceleration 

periods as shown in Fig. B-6(a). The acceleration period for MC was initiated at about 6 

hrs later than that of PHCM mixtures and had a temperature peak of about 36°C at around 

12 hrs from water addition. Hence, the PHCM technique effectively diminished the 

induction period, leading to a continuous progress of hydration reactions and 

consequently shorter setting time and higher early-age compressive strength as discussed 

earlier. 
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Figure B-6: Heat of hydration for UHPC mixtures incorporating a) PHCM, b) CA, 
and c) NCA. 

 

The general profile of temperature evolution curves for mixtures incorporating CA 

was similar to that of MC but with different rates. In general, as the dosage of the 
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admixture increased, hydration reactions were accelerated. This is apparent in the heat of 

hydration curves in Fig. B-6(b). With increased admixture dosage, the curves shifted 

upward and to the left, which is in agreement with previous work (Cheeseman and 

Asavapisit, 1999, Ramachandran et al., 2002). 

For mixtures incorporating the NCA, a similar trend of temperature evolution 

curves to that of the PHCM mixture was observed, as shown in Fig. B-6(c). The dormant 

period was overlapped by the acceleration period, in agreement with previous results 

(Hill and Daughert, 1996). However, mixtures incorporating the NCA showed lower 

temperature peaks compared to that of the PHCM mixtures. This suggests higher 

reactivity at early-age for the PHCM mixtures with respect to that incorporating the NCA.  

 

B.3.4.    Shrinkage 

Shrinkage results for mixtures incorporating PHCM and accelerating admixtures are 

shown in Fig. B-7. All mixtures incorporating accelerating admixtures showed a 

significant increase in the measured shrinkage (about 31, 10, 12 and 23% for MAC1, 

MAC2, MANC1 and MANC2, respectively), while no significant mass change was 

measured, which is in agreement with previous works (Shideler, 1952, Rixom, M.R. and 

Mailvaganam, 1999) (Fig. B-8). Conversely, PHCM mixtures showed lower shrinkage 

and mass loss compared to that of the control MC (Figs. B-7 and B-8). This can be 

attributed to the fact that the measured shrinkage includes drying and autogenous 

shrinkage (thermal deformation can be ignored due to the small cross-section of the 

samples (Baroghel-Bouny et al., 2006). Autogenous shrinkage is strongly related to 

hydration reactions in which water is consumed, leading to internal self-desiccation 
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(without external water loss) (Powers, 1948). For low w/c mixtures, the amount of 

autogenous shrinkage can be comparable to that of drying shrinkage (Tazawa, E. and 

Miyazawa, 1999). Using accelerating admixtures increases the rate of hydration and 

consequently refines and changes the size distribution of capillary pores, which in turn 

eliminates water loss (ACI Committee 301, 2005). Conversely, the accelerated hydration 

reactions and finer porosity will increase self-desiccation, and consequently increase the 

autogenous shrinkage contribution to the measured shrinkage.  
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Figure B-7: Drying shrinkage for a) PHCM mixtures and b) mixtures incorporating 
accelerating admixtures [Maximum COV: MC (4.5%), MAC1 (4.8%), MAC2 (1.9%), 

MANC1 (5.9%), MANC2 (4.3%), MP1 (3.1%), MP2 (1.5%), MP3 (4.6%)]. 
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Figure B-8: Mass loss for a) PHCM mixtures, and b) mixtures incorporating 
accelerating admixtures. 
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In PHCM mixtures, a similar process takes place; however, the added PHCM can 

act as a passive internal restraint, thus reducing the amount of deformation developed, 

along with accelerating the hydration reactions. At the micro-level, the added PHCM 

provides CH crystals that can act as a passive restraint and reduce the measured physical 

shrinkage (Jensen and Hansen, 1996). The hypothesis that CH crystals can provide 

restraint was proposed by (Bentz and Jensen, 2004) based on results reported in (Carde 

and Francois, 1997, Powers, 1962) which indicate a significant effect of leaching and 

dissolution of CH crystals on mechanical and deformation properties. This explanation is 

consistent with autogenous shrinkage results shown in Fig. B-9, and with DSC results 

presented below. Increasing the amount of added PHCM increased the passive internal 

restrain and consequently reduced the amount of autogenous shrinkage. Accelerating 

admixtures initially increase the rate of autogenous shrinkage, as a result of increasing the 

rate of hydration, until reaching adequate stiffness to withstand shrinkage as reported by 

(Anna et al., 1955). 
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Figure B-9: Autogenous shrinkage for a) PHCM mixtures and b) mixtures 
incorporating accelerating admixtures.  
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Furthermore, the evaporable water content in PHCM mixtures is probably less 

than that in the control MC and mixtures incorporating accelerating admixtures at the 

onset of drying. This can be explained as follows: all mixtures initially have the same 

amount of mixing water, however, the added mixing water before casting the specimens 

for PHCM mixtures (i.e. mixing water at the second stage) is less than that of the 

ordinary mixture. For instance, for the mixture MP3, half of the mixing water is added in 

the first mixing stage, while the other half is added at the second stage before casting the 

shrinkage specimens. Hence, PHCM mixtures possess lower evaporable water and 

consequently lower mass loss as shown in Fig. B-8. 

 

B.4.       CONCLUSIONS 

The main conclusions that can be drawn from this experimental investigation are the 

following: 

1) The addition of PHCM had a strong acceleration effect on the early-age setting 

and hardening process for concrete, hence, it can be considered as a setting and 

hardening accelerator. 

2) Mixtures incorporating PHCM showed comparable and/or better early-age 

compressive strength results than that of the control and mixtures incorporating 

accelerating admixtures at cold (10°) and normal (20°C) temperatures. 

3) The higher the added portion of PHCM, the higher was the acceleration effect. 

4) Mixtures incorporating PHCM achieved a high potential for reducing autogenous 

shrinkage through providing internal passive restraint, compared to mixtures 
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incorporating accelerating admixtures. This is a clear advantage compared to 

conventional accelerating admixtures, which generally increase shrinkage strains. 

5) The addition of PHCM mainly affects the nucleation and renewal process of CSH. 

6) The PHCM technique pioneers the concept of self-accelerated concrete, which 

has a paramount potential, particularly in the pre-cast industry. It resolves the two 

major drawbacks associated with chloride-based accelerators; corrosion related to 

chlorides and increased shrinkage. 

7) Concrete sustainability can be enhanced through using left-over and returned 

concrete in producing self-accelerated concrete, thus preventing wastage and 

disposal costs. 
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APPENDIX C 

 
Table C -1: Sample for data used in ANN Model 

 

W/C  A/C  C.C.  SF  FA  HRWRA  Temp.  Age 
Shrinkage 
strain Ref. 

‐‐‐‐‐  ‐‐‐‐  Kg  (% )*  (% )*  (% )*  ( °C)  (Hours)  (μ m/m) 
0.28  2.82  576  10  0  1.8  20  5.5  ‐17.4334 
0.28  2.82  576  10  0  1.8  20  6  ‐153.995 
0.28  2.82  576  10  0  1.8  20  7  ‐161.743 
0.28  2.82  576  10  0  1.8  20  8  ‐167.554 
0.28  2.82  576  10  0  1.8  20  9  ‐175.303 
0.28  2.82  576  10  0  1.8  20  10  ‐178.208 
0.28  2.82  576  10  0  1.8  20  11  ‐183.051 
0.4  4.14  424  10  0  1.8  20  11  ‐107.506 
0.4  4.14  424  10  0  1.8  20  12  ‐106.538 
0.4  4.14  424  10  0  1.8  20  13  ‐107.506 
0.4  4.14  424  10  0  1.8  20  14  ‐106.538 
0.4  4.14  424  10  0  1.8  20  15.574  ‐104.977 
0.5  5.36  340  10  0  1.4  20  12  ‐84.2615 
0.5  5.36  340  10  0  1.4  20  13  ‐84.2615 
0.5  5.36  340  10  0  1.4  20  14  ‐84.2615 
0.5  5.36  340  10  0  1.4  20  15  ‐87.1671 
0.5  5.36  340  10  0  1.4  20  15.5185  ‐88.4956 
0.5  5.36  340  10  0  1.4  20  17  ‐88.4956 
0.5  5.36  340  10  0  1.4  20  18.4815  ‐90.2655 

[3] 

0.5  5.36  340  10  0  1.4  20  30.037  ‐99.115 
0.22  2.036  750  0  0  1.4  20  1.27434  ‐20.9129 
0.22  2.036  750  0  0  1.4  20  2.23009  ‐28.7028 
0.22  2.036  750  0  0  1.4  20  3.13274  ‐60.1828 
0.22  2.036  750  0  0  1.4  20  3.66372  ‐96.9667 
0.22  2.036  750  0  0  1.4  20  4.61947  ‐146.862 
0.22  2.036  750  0  0  1.4  20  5.68142  ‐178.324 

[4] 

0.22  2.036  750  0  0  1.4  20  7.43363  ‐214.974 
- w/c: water to cement ratio 
- a/c: aggregate to cement ratio 
- CC: Cement Content 
- SF: Silica fume 
- FA: Fly Ash 
- HRWRA: High range water reducing admixture 
- * : % of the cement weight. 
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APPENDIX D 
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Figure D-1: Heat of hydration for mixtures incorporating wollastonite microfibers

with a) 8% and b) 12% contents compared to that of the control mixture. 
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Figure D-2: Total shrinkage for mixtures incorporating wollastonite microfibers

with a) 8% and b) 12% contents compared to that of control mixture. 
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Figure D-3: Autogenous shrinkage for mixtures incorporating wollastonite

microfibers with a) 8% and 6) 12% contents compared to that of the control 

mixture.
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APPENDIX E 

 
Table E -1: Trial Mixtures Composition 

 
 

No. 
Cement 
Content 
(kg) 

Silica Fume
(kg) 

Quartz 
Sand (kg) 

Quartz 
Powder 
(kg) 

Water 
(kg) 

HRWRA 
(kg) 

1  720  210  1020  232  110  31 
2  650  165  779  560  237  23 
3  800  200  871  463  150  25 
4  930  104  930  451  155  24 
5  820  92  798  622  155  13 
6  1114  169  611  305  212  40 
7  1290  350  462  90  220  35 
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