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Abstract 

 

Successful patterning of the embryo, from establishing the three primary axes to 

the regional specification of tissue progenitors is essential to generating a viable embryo. 

The three germ layers in the early embryo undergo patterning through slightly different 

mechanisms. The tissue of interest to this study is the lateral plate mesoderm (LPM), 

which will give rise to the lineages of the cardiovascular system and is essential for 

regional specification of adjacent germ layers. However, little is known about how the 

LPM itself undergoes regional specification and attains its intitial patterning after 

gastrulation. Here, I will demonstrate that a complex pattern of gene expression exists 

across the entire LPM shortly after gastrulation, much earlier than previously recognized.  

Furthermore, I will use molecular techniques to elucidate the signalling factors involved 

in the early patterning and regional specification the LPM. I hypothesize that both the 

retinoic acid (RA) and Fibroblast Growth Factor (FGF) signalling pathways are involved 

in the LPM regional specification in the neurula stage embryo. Through the use of 

exogenous modulators of the RA pathway, I will show that RA signalling is essential for 

patterning the anterior-dorsal and middle LPM domains. Secondly, by addition of a 

synthetic FGF receptor inhibitor I will demonstrate that FGF signalling is essential for 

establishing the anterior-ventral and posterior domains of the LPM and functions 

antagonistically to the RA pathway. I will also show that altering the activity of either of 

these two signalling pathways affects the specification of the early cardiovascular 

progenitors, particularly the cardiac and endothelial lineages. Finally I will provide 

preliminary evidence that one of the early LPM marker genes, hand1, is necessary for 
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normal cardiovascular development and thus provide a link between the early LPM 

pattern and later organogenesis. A thorough understanding of the mechanisms behind 

specifying embryonic lineages is of vital importance for basic biological knowledge, as 

well as for providing a basis for the emerging field of regenerative medicine, whereby 

researchers are attempting to generate organ progenitors in vivo to be used for cell 

therapies. 

 

Keywords:  Xenopus laevis, lateral plate mesoderm, cardiovascular system, retinoic acid, 

fibroblast growth factor, Hand1, patterning, specification 
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Chapter 1 Introduction 

The complexity of patterning within the early LPM of Xenopus, immediately after 

gastrulation, has thus far been under appreciated. While some pattern has been described 

with respect to the early cardiac progenitors, the remainder of the LPM is viewed as a 

mostly homogenous tissue layer with little appreciable pattern. Here, I describe a novel 

patterning event occurring shortly after gastrulation that leads to a complex pattern of 

gene expression in both the anterior-posterior and dorsal-ventral axes of the early frog 

LPM. This suggests that regional specification of the LPM may be occurring much earlier 

than previously thought. Elucidating the mechanism of this early patterning event, and its 

relevance to later development is of interest both to basic biology, as well as to the in 

vitro derivation of cardiovascular stem cells for modern cell therapies. 

 

1.1 The Early Frog Embryo. 

Xenopus laevis has become one of the most popular models for use in early 

embryogenesis. However, a highly related amphibian species, Xenopus tropicalis has 

been gaining popularity in recent years due to its diploid nature and shorter generation 

time, making Xenopus tropicalis much better suited to genetic studies that Xenopus 

laevis. The Xenopus laevis egg is relatively large with a 1.3 mm diameter (1 µL volume), 

although those of some other anuran species, such as Eleutherodactylus coqui (diameter 

of 3.5 mm, volume of 20 µL) or those of amniotes, such as reptiles or birds can be 

significantly larger. However, unlike amniote embryos, once fertilized the entire volume 

of the Xenopus embryo will contribute to the embryo proper, making the early embryo 

itself comparatively large.   
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One of the biggest advantages to studying the Xenopus embryo is that once the 

eggs are laid, embryonic development occurs completely external to the body allowing 

direct access to the embryo during all stages of development. Amniote embryos that 

either develop in hard shells (birds and reptiles) or develop internally (mammals) are 

much more difficult to observe and manipulate. The easy access to embryos and 

comparatively large size are advantageous for many reasons, including easy use of 

specific inhibitors of signalling pathways, physical manipulations and live imaging.   

Visually, the frog egg has two distinct poles: a darkly pigmented animal half, 

which upon fertilization will face upward and a lighter pigmented vegetal half (Figure 

1A). The lighter pigmented vegetal pole contains more of the embryonic yolk that will 

provide nourishment to the embryo until it reaches the feeding tadpole stage 

approximately four to five days post fertilization. In addition to the yolk, the egg also 

contains enough maternal mRNA to sustain development until embryonic transcription 

begins at the mid-blastula transition. 

The frog embryo is, like all higher organisms (from flat worms to mammals), a 

triploblastic embryo. Triploblastic embryos are composed of three germ layers: the 

ectoderm (the outer most germ layer), the endoderm (the inner most germ layer) and the 

mesoderm (the middle germ layer). Cells arising from the animal and vegetal poles of the 

one cell embryo become either the ectoderm (animal pole) or endoderm (vegetal pole) in 

isolation (Nieuwkoop, 1969). The mesoderm is induced later as a result of complex 

interactions between the cells of the vegetal and animal poles. 
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1.2 Establishing the Early Axes 

Patterning of the three-primary axes (dorsal-ventral, rostral-caudal, and left-right) 

occurs early in the Xenopus embryo. In the Xenopus embryo the dorsal-ventral axis is the 

back to belly axis, while the rostral-caudal axis refers to the head-tail axis. The dorsal-

ventral and anterior-posterior axes are somewhat linked and are established prior to the 

first cleavage division. However, establishing the left-right axis does not occur until later 

during gastrulation (approximately 10 hours post fertilization). Since this thesis discusses 

axial patterning across a tissue layer, a discussion on the topic of primary axis 

determination in the embryo is relevant. 

 

1.2.1 The Dorsal-Ventral Axis 

The dorsal-ventral axis is specified very early in development by events that are 

set in motion by the sperm entering the egg. Following fertilization of the egg, the outer 

cortex rotates by approximately 30° in relation to the inner core (Vincent et al., 1986).  

This process is termed cortical rotation and is dependent upon proper formation of a 

cortically located microtubule network (Charron et al., 1999; Elinson and Rowning, 

1988). Cortical rotation leads to the localization of maternal wnt11 mRNA (Tao et al., 

2005), enrichment of dishevelled (Miller et al., 1999) and stabilization of β-catenin on the 

future dorsal side of the embryo (Figure 1A). How wnt11 is localized to the dorsal side 

remains an unanswered question. It is currently thought that, upon fertilization, the 

microtubule network assembles and particles located at the vegetal pole of the embryo, 

namely GSK-binding protein, dishevelled and wnt11, are transported by a combination of 

cortical rotation (Scharf and Gerhart, 1980) and active transport along the microtubule 
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network (Miller et al., 1999; Weaver et al., 2003) away from the sperm entry point and 

toward the equator. The enrichment of these factors then leads to the stabilization of β-

catenin and activation of the canonical Wnt signalling pathway on the future dorsal side of 

the embryo (reviewed in (Weaver and Kimelman, 2004; White and Heasman, 2008)).   

At the initiation of gastrulation the dorsal lip becomes an essential signalling 

centre for specifying the dorsal pole of the embryo. When the dorsal lip is transplanted 

into a recipient embryo, it has the ability to ectopically induce a secondary axis (Spemann 

and Mangold, 1924). The Spemann-Mangold organizer secretes inhibitors of the bone 

morphogenic protein (BMP) pathway: Noggin (Zimmerman et al., 1996), Follistatin 

(Fainsod et al., 1997) and Chordin (Piccolo et al., 1996).  It also secretes antagonists of 

the Wnt pathway: Dickkopf 1 (Dkk-1) (Glinka et al., 1998) and Frizzled-related protein 

(Frzb-1) (Leyns et al., 1997) and Nodal antagonist: Lefty (Sakuma et al., 2002) among 

others.  These signalling molecules are also essential to anterior-posterior patterning (as 

discussed in 1.2.2), and therefore links dorsal-ventral and anterior-posterior axis 

specification. 

 

1.2.2 The Anterior-Posterior Axis 

The anterior-posterior axis is tightly linked to the dorsal-ventral axis. The 

embryonic mesoderm that arises opposite to the sperm entry point, and where β-catenin 

becomes stabilized following cortical rotation, is not only fated to become dorsal, but also 

the anterior-most mesoderm cells of the embryo. That is, these future head mesoderm 

cells will travel through the dorsal lip of the blastopore first, and will travel the furthest 

towards the anterior end of the embryo.  
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The first active patterning process of the anterior-posterior axis occurs during 

gastrulation, as a result of signals originating from the dorsal lip. However, the organizer 

is not a static signalling center, and its ability to induce tissue changes with time, first 

hinted at by Hans Spemann who described the dorsal organizer (Spemann, 1938). The 

same inhibitors involved in specifying dorsal are also involved in specifying the anterior-

posterior axis, although different combinations are required throughout the axis, leading 

to the suggestion that there may be three distinct organizers of the anterior-posterior axis 

(for a discussion see; (Niehrs, 2004)). To specify the head, antagonists to all of BMP, 

Wnt and Nodal pathways are required (Khokha et al., 2005; Piccolo et al., 1999), while 

the trunk requires both Nodal and canonical Wnt signalling (Agius et al., 2000; Hoppler 

et al., 1996). Finally, the tail, recently described in zebrafish, requires high levels of 

active BMP, Wnt and Nodal signalling (Agathon et al., 2003). 

 

1.2.3 The Left-Right Axis 

The intial symmetry breaking process of the left-right axis is generally considered 

to be generation of a leftward fluid flow via the actions of beating cilia in the node 

(gastrocoel roof) of Xenopus (Essner et al., 2002; Schweickert et al., 2007). This cilia-

based symmetry-breaking event appears to be conserved in all vertebrates tested (Essner 

et al., 2002; Neugebauer et al., 2009; Nonaka et al., 1998; Okada et al., 1999). The 

leftward fluid flow in the node leads to a cascade of Nodal signalling (a member of the 

transforming growth factor β (TGFβ) super family) in the left side of the embryo that 

culminates in pitx2 expression (Lohr et al., 1997; Lustig et al., 1996a; Ryan et al., 1998).
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Figure 1.  Early development of Xenopus laevis.   A) One cell stage embryo (Stage 1). 

The sperm penetrates the egg on the vegetal pole, which leads to cortical rotation (grey 

arrows) away from the sperm entry point.  This process culminates in the stabilization of 

β-catenin (yellow shading) on the side opposite the sperm entry point, and active Wnt 

signalling on the future dorsal side of the embryo. NC: Nieuwkoop Center.  B)  Blastula 

stage embryo (Stage 8).  Fate map of the early gastrula embryo, showing the major 

components of the mesoderm in the marginal zone: the head mesoderm and notochord in 

red, somites in green, and lateral plate mesoderm in orange, with heart field marked.  

Position of the future dorsal lip is shown (black arrow). CNS: central nervous system, 

LPM: lateral plate mesoderm, H: head mesoderm, HE: heart, N: notochord. C)  Early tail 

bud stage embryo (Stage 20).  Previously described LPM patterning of cardiovascular 

progenitors. HE: heart, HEM: hemangioblasts, M: myeloid cells. D)  Location of the three 

lineages of the cardiovascular system of interest to this thesis in the tail bud stage embryo. 

HE: heart, PCV: posterior cardinal vein, VP: vascular plexus, BI: blood islands 

(erythrocyte lineage).   
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However, recent reports have also implicated ion channels in the very early embryo to be 

necessary for generating left-right asymmetry (Adams et al., 2006; Aw et al., 2008; Aw et 

al., 2010; Levin et al., 2002).  The mechanisms connecting early ion channel 

expression/function to leftward fluid flow in the node is currently unknown. 

 

1.3 The Mesoderm 

The mesoderm is the middle of the three germ layers. Immediately following 

gastrulation the mesoderm will form, from dorsal to ventral, the axial mesoderm 

(notocord and somites), the intermediate mesoderm (although this is not a distinct tissue 

in Xenopus), and the lateral plate mesoderm (LPM). Since the focus of this thesis is on the 

LPM, a discussion of the upstream events leading to LPM specification is pertinent.   

The LPM is a subdivision of the embryonic mesoderm, that is present on the 

lateral and ventral sides of the embryo after gastrulation. By the end of neurulation the 

LPM will separate into two distinct layers, the outer somatic, and the inner splanchnic 

mesoderm with the body cavity (coelom) forming between them. The somatic layer forms 

the lining of the body cavity while the splanchnic layer forms the circulatory system and 

the mesenchyme surrounding the gut. The lateral plate mesoderm is also essential for 

proper regional specification of the underlying endoderm during the early tailbud stage of 

Xenopus development (Horb and Slack, 2001), which strongly suggests that the LPM 

itself must have anterior-posterior polarity before the mid tail bud stage. Therefore proper 

patterning of the LPM is crucial to both the mesodermal lineage, but likely also the 

underlying endodermal lineage. However, The mechanism and timing of LPM patterning 

is currently not well understood. 
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1.3.1 Mesoderm Induction 

 Roughly four decades ago, Pieter Nieuwkoop demonstrated that neither the animal 

pole, nor vegetal pole, could form mesoderm tissues in isolation (Nieuwkoop, 1969; 

Sudarwati and Nieuwkoop, 1971). More specifically, Nieuwkoop demonstrated that the 

mesoderm formed from the animal cap ectoderm as a result of an inductive signal from 

the endoderm of the vegetal pole. The inductive signal was later shown to be a maternal 

determinant, present in the ventral pole of the embryo long before the onset of zygotic 

transcription (Jones and Woodland, 1987).   

 A handful of genes have been implicated in mesoderm induction. Two genes that 

have been thoroughly studied, and are both present in the maternal pool of RNA are 

growth differentiation factor 1 (gdf1; previously Vg1) and vegt.  Gdf1, a Tgf β family 

member, has potent mesoderm inducing activity in vivo (Birsoy et al., 2006) in Xenopus 

as well as a number of other model organisms (Shah et al., 1997; Skromne and Stern, 

2001). Furthermore,	  gdf1	  depleted	  embryos	  also	  show	  significantly	  reduced	  

mesodermal	  gene	  expression	  during	  the	  late	  blastula	  stages	  suggesting	  that	  gdf1	  

may	  also	  be	  necessary	  in	  mesodermal	  specification	  (Birsoy	  et	  al.,	  2006). 

Vegt encodes a T-box transcription factor that is also a maternally supplied 

mRNAs and is vegetally localized in both the mature oocyte and early embryo (Lustig et 

al., 1996b; Stennard et al., 1996; Zhang and King, 1996). Loss of Vegt leads to a loss of 

endodermal marker expression and reduced ability for isolated vegt -/- vegetal pole 

explants to induce wild type animal pole caps to form mesoderm, and in severe cases, a 

complete loss of gastrulation (Kofron et al., 1999; Zhang et al., 1998).  Interestingly, 
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depleting vegt mRNA disrupts the vegetal localization of other mRNAs important for 

early patterning including both wnt11 and gdf1 (Heasman et al., 2001). 

 After the mid-blastula transition, vegt initiates mesoderm induction through the 

regulation of specific TGFβ	  family	  members,	  such	  as	  the	  Xenopus	  Nodal	  genes	  

(nodal1,	  nodal2	  and	  nodal4)	  and	  derriere	  (Clements	  et	  al.,	  1999;	  Kofron	  et	  al.,	  1999).	  

Interestingly,	  vegt,	  nodal1	  and	  nodal2	  are	  responsive	  to	  canonical	  Wnt	  signalling	  

through	  β-‐catenin,	  leading	  to	  these	  genes	  being	  more	  highly	  expressed	  in	  the	  

presumptive	  dorsal	  side	  of	  the	  embryo	  (Agius	  et	  al.,	  2000).	  The	  area	  of	  overlap	  

between	  Vegt	  and	  β-‐catenin	  activity	  is	  commonly	  called	  the	  Nieuwkoop	  center,	  or	  

the	  area	  that	  will	  initiate	  the	  formation	  of	  the	  Spemann	  Organizer.	  Mesodermal	  

genes,	  such	  as	  the	  T-‐Box	  genes	  Brachyury	  (T;	  bra)	  and	  Eomesodermin	  (Eomes)	  are	  

activated	  downstream	  of	  a	  vegt	  and	  nodal	  signalling	  cascade	  leading	  to	  mesoderm	  

specification	  (Kofron	  et	  al.,	  1999;	  Ryan	  et	  al.,	  1996;	  Smith	  et	  al.,	  1991). 

 

1.3.2 Early Mesoderm Patterning and Fate Map 

 A great deal of research has been completed to create a fate map and locate cells 

destined to become each of the various mesodermal lineages as far back in development 

as the early blastula. Correlations have been made as to the location of cells with respect 

to the organizer, thus placing developmental ‘fields’ along a dorsal-ventral axis. In the 

late blastula stages only two definitive domains are present in the marginal zone: the 

organizer, characterized by expression of genes such as noggin (Smith and Harland, 

1992) and nodal3 (Smith et al., 1995), and the remaining marginal zone characterized by 

expression of bmp4 (Fainsod et al., 1994) and wnt8 (Christian et al., 1991). However, by 
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the early gastrula the marginal zone has begun to be subdivided along the dorsal-ventral 

axis as demonstrated by the differential expression of vent1 (Gawantka et al., 1995), myf5 

(Dosch et al., 1997) and sizzled (Salic et al., 1997). 

 The current fate map of the Xenopus marginal zone has refined where specific 

mesodermal lineages arise from the early blastula embryo, by employing a variety of 

techniques including fate mapping with fluorescent dyes and explant strategies. The head 

and notochord mesoderm lay adjacent to the dorsal lip, while the somitic and lateral plate 

mesoderm lineages are arranged adjacent to one another in the animal to vegetal axis 

(Figure 1B) (Keller, 1991; Lane and Sheets, 2000; Lane and Smith, 1999). However, it 

should be noted that this fate map does not suggest that the cells inhabiting any of the 

presumptive mesodermal fields of the late blastula are patterned into any specific lineage. 

In fact, recent data suggests that these cells are not subdivided into the lineages of 

mesodermal derivatives until much later (discussed in more detail in section 1.4). 

 

1.4 The Cardiovascular System and the Lateral Plate Mesoderm 

The cardiovascular system is one of the first major organ systems to undergo 

specification and organogenesis during development. The cardiovascular system is also 

derived entirely from the lateral plate mesoderm. Recently there has been considerable 

interest in describing the signalling events that lead to the subdivision of the 

cardiovascular lineages from the mesodermal progenitors. For the purpose of this thesis, 

the cardiovascular system will generally be subdivided into three broad lineages: cardiac 

(or heart), endothelial (or vasculature) and hematopoietic (or blood). Although, note that 

in each case these lineages could be further subdivided. Recent data has suggested that 
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the myocardial, endothelial, hematopoietic, and smooth muscle cells (another vasculature 

lineage that differentiates after the endothelial lineage) are specified from a common 

progenitor pool in the lateral plate mesoderm of mouse (Kattman et al., 2006; Moretti et 

al., 2006), although this has yet to be demonstrated in Xenopus. Interestingly, both the 

heart (Tonissen et al., 1994) and the hemangioblast lineage (cells which will give rise to 

vascular and embryonic blood) (Mead et al., 1998) are detectable shortly after 

gastrulation (Figure 1C). However, while distinct populations of cells are identifiable by 

lineage specific gene expression, these progenitor cells remain somewhat plastic and are 

not determined until the early to mid tailbud stage of development, roughly six to eight 

hours later (Figure 1D).   

Defining the cellular events that lead to specification of the three cardiovascular 

lineages is of direct clinical relevance. Recently, there have been a number of groups 

which have reported identifying cardiac stem cells in mammalian organisms, however 

clinical trials utilizing these stem cells in the treatment of cardiovascular disease has thus 

far not been encouraging (reviewed in (Tran et al., 2010)). Therefore, defining the 

combinatorial signals required to specify each lineage has become of great interest as it 

may allow researchers to derive a homogenous source of cardiovascular stem cells in 

vitro that may allow for better clinical outcomes when transplanted into patients.   

The frog model is a convenient model to study early cardiovascular development. 

Mutations in amniote embryos that disturb early cardiovascular development tend to be 

early embryonic lethal, making a detailed analysis difficult. However, the Xenopus 

embryo is an incredibly resilient model able to survive until the swimming tadpole stages 

with major perturbations of the cardiovascular system, or even a complete ablation of the 
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heart (Copenhaver, 1926) . This enables researchers to alter one of the three lineages of 

the cardiovascular system, and subsequently assay for effects on specification of the other 

two lineages at later time points, a concept that is difficult to accomplish in some other 

model systems. 

 

1.4.1 Early Cardiac Development 

The heart develops from two patches of anterior-dorsal lateral plate mesoderm cells 

at the early neurula stage Xenopus embryo. In the approximately four hours after 

gastrulation these cells migrate ventrally to fuse at the ventral midline and form the heart 

field (Sater and Jacobson, 1990). In mammals and birds, the stage at which fusion occurs 

is called the cardiac crescent stage. At the crescent stage there are two distinct 

populations of cardiac cells, the primary heart field which will form the primary heart 

tube, and the secondary heart field (just anterior to the primary heart field) which 

migrates into the heart tube and contributes to the right ventricle and outflow tract (Cai et 

al., 2003). This secondary heart field has also recently been described in Xenopus 

(Gessert and Kuhl, 2009). The sheet of cells that represents the first heart field will then 

form the myocardial trough during mid tailbud stage (stage 29/30), and fuse dorsally to 

form the heart tube shortly thereafter (stage 32) (Mohun et al., 2000). Once the tube is 

formed it will quickly begin to loop in a leftward fashion, the earliest morphological 

consequence of the embryonic left-right axis. After the heart has looped, the walls of 

heart will undergo hypertrophy and thicken considerably. The atria and ventricles then 

undergo septation (although in frog there is a single ventricle) and the spiral valve and 

atrioventricular valves form (Mohun et al., 2000).  
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The signalling mechanisms required for heart specification and determination are 

complex, and in most cases are still not well understood. It has been well established that 

an interaction between the pre-cardiac mesoderm and adjacent axial mesoderm and 

endoderm is essential for inducing cardiac cell fate in Xenopus (Nascone and Mercola, 

1995) as well as in chick (Schultheiss et al., 1995; Yatskievych et al., 1997) and mouse 

(Arai et al., 1997). While the relative contribution of specific signalling molecules is still 

uncertain, three signalling pathways have been implicated: the FGF, Wnt and BMP 

signalling pathways. While there is support for BMP signalling being involved in cardiac 

induction in both zebrafish (Reiter et al., 2001) and chick (Schlange et al., 2000; 

Schultheiss and Lassar, 1997), in Xenopus BMP signalling does not appear to be involved 

in heart field induction but rather maintenance of cardiac identity (Mandel et al., 2010; 

Walters et al., 2001). Non-canonical Wnt signalling has also been implicated in early 

heart specification, as a loss of wnt11 in frog leads to a loss of early heart field markers, 

while wnt11 is able to induce cardiogenesis in animal cap explants (Afouda et al., 2008; 

Pandur et al., 2002). Although Wnt signalling has also been shown to be detrimental after 

initial specification (Samuel and Latinkic, 2009). Lastly, FGF signalling has recently been 

implicated in heart field specification in frog (Keren-Politansky et al., 2009; Samuel and 

Latinkic, 2009), as well as zebrafish (Marques et al., 2008; Reifers et al., 2000) and chick 

(Alsan and Schultheiss, 2002). 

The first marker of cardiac mesoderm in frog is nkx2-5 (Tonissen et al., 1994), 

which is expressed throughout the presumptive myocardium and pharyngeal mesoderm. 

The Drosophila homologue Tinman was the first gene shown to be absolutely necessary 

for heart specification (Bodmer, 1993; Bodmer et al., 1990). While flies mutant for 
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tinman completely lack cardiac mesoderm, mice lacking nkx2-5 specified cardiac tissue 

and a heart tube was still formed, though the tube does not loop and the embryos die of 

cardiac insufficiency (Lyons et al., 1995). This may be due to some functional 

redundancy between Nkx family members, such as nkx2-3 which is also expressed in the 

early heart field in both frog (Cleaver et al., 1996) and chick (Buchberger et al., 1996).  

Studies in Xenopus where both nkx2-5 and nkx2-3 function was inhibited demonstrated a 

synergistic phenotype of the double mutant (Fu et al., 1998), suggesting at least some 

degree of functional redundancy. Furthermore, over expression of either nkx2-3 or nkx2-5 

in Xenopus leads to an increased number of myocardial cells (Cleaver et al., 1996). This 

functional redundancy between vertebrate Nkx family members may explain the 

phenotypic anomaly between flies and vertebrates upon loss of nkx2-5.  However, Nkx2-3 

is not expressed in the early mouse heart (Pabst et al., 1997), suggesting another family 

member may be responsible, if functional redundancy exists between Nkx family 

members in the mouse heart.   

In Xenopus, expression of early cardiac markers is detectable shortly after 

gastrulation but cardiac differentiation does not occur until roughly 24 hours later with 

the onset of cardiac troponin I (cTnI) (Drysdale et al., 1994) and myosin heavy chain 

alpha (MHCα) (Logan and Mohun, 1993) expression. While the transcriptional control 

networks connecting early cardiac specification to later differentiation remain incomplete, 

one key family of genes is the GATA family. Gata4, 5, and 6 have overlapping expression 

patterns during early heart and endodermal development in Xenopus (Jiang and Evans, 

1996). Gata4 has also been implicated in the control of nkx2-5 gene expression (Jiang et 

al., 1999; Lien et al., 1999) and evidence suggests that GATA members can act as 
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cofactors with nkx2-5 (Durocher et al., 1997; Sepulveda et al., 1998). Like the Nkx gene 

family, loss of function experiments have shown a high degree of functional redundancy 

between GATA family members. In Xenopus, all of the gata4, 5, and 6 genes function in 

the maturation and differentiation of the myocardium, with differing levels of redundancy 

(Peterkin et al., 2003; Peterkin et al., 2007). However, gata5 is the only single morphant 

to have an affect on early heart progenitors in Xenopus (Haworth et al., 2008), whereas 

loss of gata4 and 6 does not affect early expression of the cardiac specification markers 

nkx2-5 and nkx2-3 (Peterkin et al., 2007). It is worth noting that the role of GATA factors 

in cardiac differentiation and the high degree of functional redundancy is also highly 

conserved in both zebrafish (Holtzinger and Evans, 2007; Peterkin et al., 2007) and mice 

(Watt et al., 2004; Zhao et al., 2008; Zhao et al., 2005). Several other transcription factors 

have been implicated in regulating early cardiogenesis but a full discussion of these is 

beyond the scope of this thesis. These transcription factors include members of the T-box 

Family (Horb and Thomsen, 1999; Stennard et al., 2003; Yamada et al., 2000), myocyte 

enhancer factor 2 (mef2) (Edmondson et al., 1994; Ghosh et al., 2009; Vincentz et al., 

2008) and Iroquois 4 (Irx4) (Bao et al., 1999; Bruneau et al., 2000). 

Until now the focus of this discussion has been on the nkx2-5 expressing cells of 

the cardiac crescent that form the first or primary heart field. However there is another 

population of mesodermal cells that down regulate the expression of nkx2-5, yet still 

contribute to the mature heart. This population of cells was termed the secondary heart 

field, because these cells do not migrate into the heart until later in development, after the 

presumptive myocardium has formed a tube (de la Cruz et al., 1977; Kelly et al., 2001; 

Mjaatvedt et al., 2001; Waldo et al., 2001). This concept of a second, or later heart field 



	  

	  

17	  

has been further refined with the characterization of the gene Islet 1 (isl1). Mice lacking 

isl1 are characterized by a loss of the outflow tract, right ventricle, and a large part of the 

atria, while the remainder of the heart is still intact (Cai et al., 2003). When isl1 was 

inhibited in Xenopus with an antisense morpholino, the loss of function phenotype was 

much more severe than that reported for mouse and included defects in tissues of the 

primary heart field and vasculogenesis, leading the authors to suggest a much larger role 

for isl1 than simply regulating the second heart field (Brade et al., 2007). A subsequent 

analysis of heart field markers in Xenopus, as well as lineage tracing the anterior-and 

posterior heart field has since demonstrated a clear divide between markers of the first 

and second heart field during the tail bud stage of development (Gessert and Kuhl, 2009), 

although no functional studies have been accomplished with these markers with the intent 

of understanding their role in the secondary heart field. 

 

1.4.2 Early Endothelial Development 

Endothelial progenitors have traditionally been thought to arise from a separate 

pool of mesodermal progenitors, termed the hemangioblast. The hemangioblast lineage, 

that will give rise to both endothelial and erythroid lineages, is first detectable shortly 

after gastrulation by the expression of T-cell acute lymphatic leukemia 1 (tal1) (Mead et 

al., 1998) and Ets variant 2 (etv2) (Salanga et al., 2010) on the ventral side of the embryo 

shortly after the heart field is first detectable. However, it has recently been realized that 

the heart and vascular lineages might be much more closely linked than first appreciated. 

Evidence that the cardiovascular progenitors are initially generated from a common 

precursor arises from recent studies in mice examining VEGFR-2, an early marker of the 
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vascular lineage. Recently, it has been shown through use of a VEGFR2 reporter 

transgene that VEGFR2 is widely expressed in the early mesoderm during gastrulation as 

well as in cells of the cardiac crescent (Ema et al., 2006). This suggests the presence of a 

common mesodermal precursor between the cardiac and vascular populations. 

The fully developed vascular system is formed by two distinct processes: 

vasculogenesis, the de novo differentiation of endothelial cells from a mesodermal 

progenitor, and angiogenesis, the sprouting of new blood vessels from pre-existing 

vessels. Many genes have been implicated in being important for endothelial development 

or for angiogenesis, but few have been shown to be necessary for initial vascular 

specification. However, there is evidence that a small number of transcription factors play 

an important role in vascular specification, including the Ets factors fli1 and etv2. Etv2-/- 

mice die at midgestation with a loss of endothelial progenitors and without any detectable 

embryonic vessels suggesting that Etv2 is necessary for initial endothelial specification 

(Lee et al., 2008). However, y11 mutant zebrafish, harboring a mutant etsrp gene (the 

zebrafish homologue of Etv2), display a less severe phenotype, as they do specify 

endothelial cells, although the vascular cells fail to undergo tubular morphogenesis (Pham 

et al., 2007; Sumanas et al., 2008). The discrepancy between the mouse and zebrafish 

phenotypes could be, at least in part, due to redundancy between several Ets related 

factors (Pham et al., 2007).   

 

1.4.3 Primitive Hematopoietic Development 

The primitive blood islands form on the ventral side of the embryo and can be 

classified into two separate populations in early Xenopus development, the anterior blood 

islands (primitive myeloid cells), and the posterior blood islands (primitive erythroid 
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cells). The anterior blood islands are first detectable in the mid neurula stage embryo 

through expression of tal1 (Mead et al., 1998). By the end of neurulation the anterior-

ventral blood islands begin to down regulate expression of tal1 and express markers of 

the myeloid lineage such as mpo (formerly Xenopus peroxidase 2 (Xpox2)) (Smith et al., 

2002) and spib (Costa et al., 2008) as they differentiate. Shortly after, the myeloid cells 

will migrate away from the anterior-ventral region and become diffuse throughout the 

entire embryo (Smith et al., 2002; Tashiro et al., 2006).   

The posterior-ventral blood islands are present after the end of neurulation and are 

visualized as the remaining pool tal1 expressing hemangioblast cells. The expression 

pattern of tal1 now extends much further posterior on the ventral side. Primitive erythroid 

differentiation in the posterior-ventral blood islands does not occur until roughly a day 

later with the onset of α-globin expression, which begins at the anterior end of the 

hemangioblast domain, and proceeds in a wave of differentiation toward the posterior end 

(Mills et al., 1999).   

The signalling pathways that regulate primitive erythroid development have been 

studied thoroughly both in frog and other model organisms, but questions do remain as to 

how hematopoietic development is specified in the LPM. Proper induction of primitive 

erythroid development requires signals from both the endoderm and ectoderm in Xenopus 

(Kikkawa et al., 2001). The BMP (Maeno et al., 1996; Schmerer and Evans, 2003), and 

FGF (Isaacs et al., 2007; Walmsley et al., 2008) signalling pathways have both been 

implicated in erythroid specification. As well a number of genes essential to early 

hematopoietic development have been identified in vertebrates, including VEGRF2 

(Shalaby et al., 1997; Shalaby et al., 1995), tal1 (D'Souza et al., 2005; Endoh et al., 2002; 
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Liao et al., 1998; Mead et al., 1998; Porcher et al., 1996) and etv2 (Liao et al., 1997; 

Stainier et al., 1995; Thompson et al., 1998).  It is interesting that all of these genes have 

also been implicated in vascular development (discussed above), which is supporting 

evidence for the existence of a hemangioblast-like lineage in vertebrates. Furthermore, a 

number of GATA family members have been implicated in hematopoiesis, in addition to 

the heart and vasculature (see above) demonstrating a similar transcriptional regime in all 

three of the cardiovascular lineages. However, in hematopoiesis, Gata1-3 have been 

implicated in development instead of Gata4-6 genes important for the heart and 

vasculature (Bertwistle et al., 1996; Dalgin et al., 2007; Kelley et al., 1994). A signalling 

hierarchy is beginning to form in hematopoiesis, as BMP signalling during gastrulation 

has been shown to be upstream of Fli1 (Liu et al., 2008) an Ets related transcription 

factor, that in turn regulates expression of both tal1 (Liu et al., 2008; Mead et al., 1998) 

and gata2 (Dalgin et al., 2007; Liu et al., 2008) in the hematopoietic lineage.  

 

1.5 The Retinoic Acid Signalling System 

All	  trans	  retinoic	  acid	  (RA,	  Figure	  2A)	  is	  the	  biologically	  active	  metabolite	  of	  

vitamin	  A	  (Mic	  et	  al.,	  2003).	  RA	  is	  synthesized	  in	  vivo	  from	  a	  precursor,	  retinal,	  by	  

the	  actions	  of	  alcohol	  dehydrogenase	  (ADH)	  that	  catalyzes	  the	  conversion	  of	  retinol	  

to	  retinal,	  and	  then	  by	  retinaldehyde	  dehydrogenase	  2	  (RALDH2),	  that	  converts	  

retinal	  into	  RA	  and	  is	  the	  predominant	  RA	  synthesizing	  enzyme	  in	  vivo	  (Figure	  2C)	  

(Haselbeck	  et	  al.,	  1999;	  Mic	  et	  al.,	  2003).	  Once	  synthesized,	  RA	  will	  bind	  to	  the	  

retinoic	  acid	  receptors	  (RAR	  α,	  β,	  or	  γ)	  that	  will	  dimerize	  with	  the	  retinoid	  X	  

receptors	  (RXR	  α,	  β,	  or	  γ)	  and	  act	  as	  ligand	  activated	  transcription	  factors.	  The	  RARs	  
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are	  nuclear	  hormone	  receptors	  with	  three	  important	  domains,	  a	  DNA	  binding	  

domain,	  a	  ligand	  binding	  domain,	  and	  the	  transactivating	  domain	  that	  interacts	  with	  

the	  RXRs	  (See	  figure	  2B).	  The	  RAR/RXR	  heterodimer	  will	  bind	  retinoic	  acid	  response	  

elements	  (RAREs:	  direct	  repeats	  of	  TGACCT)	  in	  the	  promoter	  regions	  of	  retinoic	  acid	  

responsive	  genes.	  After	  the	  RAR/RXR	  heterodimer	  has	  bound	  its	  ligand	  (all-trans	  

RA)	  it	  recruits	  the	  histone	  acetyl	  transferase	  (HAT)	  complex	  (along	  with	  other	  

transcriptional	  co-‐factors)	  allowing	  chromatin	  to	  open	  and	  transcription	  to	  

commence	  (Chambon,	  1996;	  Petkovich	  et	  al.,	  1987).	  	  

In	  addition	  to	  being	  an	  activator	  of	  gene	  expression,	  the	  non-‐ligand	  bound	  

RAR/RXR	  heterodimer	  is	  required	  in	  a	  number	  of	  tissues	  not	  normally	  exposed	  to	  

RA	  to	  act	  as	  a	  represser	  of	  transcription.	  The	  un-‐liganded	  form	  of	  the	  RAR/RXR	  

heterodimer	  recruits	  the	  histone	  deacetylase	  (HDAC)	  complex	  and	  causes	  the	  

regionalized	  compaction	  of	  DNA	  (Heinzel	  et	  al.,	  1997;	  Nagy	  et	  al.,	  1997).	  The	  retinoic	  

acid	  signalling	  pathway	  is	  highly	  conserved	  throughout	  evolution	  and	  is	  essential	  for	  

normal	  development	  (for	  a	  discussion	  of	  the	  evolutionary	  conservation	  see:	  (Albalat,	  

2009;	  Campo-‐Paysaa	  et	  al.,	  2008)).	  

	  

1.5.1 Vitamin	  A	  Deficiency	  

Retinoic	  acid	  was	  initially	  implicated	  as	  being	  essential	  for	  normal	  

development	  by	  studying	  offspring	  of	  vitamin	  A	  deficient	  (VAD)	  pigs	  (Hale,	  1935)	  

and	  rats	  (Warkany	  and	  Schraffenberger,	  1946).	  In	  these	  studies,	  female	  rats	  were	  

kept	  on	  a	  diet	  free	  of	  vitamin	  A	  prior	  to	  and	  throughout	  pregnancy	  such	  that	  the	  



	  

	  

22	  

 

 

 

 

 

 

Figure 2.  The retinoic acid signalling pathway.  A) The chemical structure of the 

synthetic molecules used in this thesis to alter retinoic acid signalling.  All trans retinoic 

acid is an agonist that will increase retinoic acid signalling.  AGN 194301 is an RARα 

specific antagonist, while AGN 193109 is a pan-RAR antagonist.  B)  Generalized 

structure of the RAR receptors, with the DNA binding domain (DBD) and ligand binding 

domain (LBD) illustrated.  C) Schematic of the retinoic acid signalling pathway, the 

predominant enzymes responsible for each step in the pathway are shown underlined 

above the arrows.   
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In this study, we have investigated the extent to which synthetic
retinoids directed against RAR sub-types inhibit the growth of
prostate carcinoma cell lines. These compounds included agonists
of RAR! and RAR"# and antagonists of RAR!, RAR"# and
RAR!"#. In our screens we have used sub-lines of LNCaP, PC-3
and DU145 cells that had been grown long-term in serum-free
conditions: the development and characteristics of these lines are
described. The use of serum-free grown lines avoids the complica-
tion introduced by the small amounts of naturally occurring
retinoids in serum. We find that RAR antagonists are substantially
more potent than agonists in inducing growth arrest both of
prostate carcinoma cell lines and of primary prostate carcinoma
cultures. As such, they are potentially useful in prostate cancer
therapy. 

MATERIALS AND METHODS 

Retinoids 

The novel synthetic RAR ligands were synthesized at Allergan
Inc. (Irvine, CA). Their structures are shown in Table 1. They
comprise RAR! agonists (AGN194078, AGN195153), a RAR"#
agonist (AGN190299) (Nagpal et al, 1995), a specific RAR!
antagonist (AGN194301) (Teng et al, 1999), an RAR"# antagonist
(AGN194431) and an RAR pan-antagonist (AGN194310)
(Johnson et al, 1999). Our definition of the term RAR antagonist is
a compound that binds to the RARs (see Table 1) and that does not
activate gene transcription (see Table 1) but instead blocks the
gene transcriptional activity induced by ATRA and other RAR

454 LA Hammond et al

British Journal of Cancer (2001) 85(3), 453–462 © 2001 Cancer Research Campaign

Table 1 Structures of novel retinoid analogues, and their receptor binding and transactivation properties 
RAR! RAR" RAR#

Compound no. (AGN) Structure Receptor Specificity1 Kd
2 (nM) EC50

3 (nM) Kd
2 (nM) EC50

3 (nM) Kd
2 (nM) EC50

3 (nM)

194078 RAR! agonist 4 140 > 5000 WA > 5000 NA4

195153 RAR! agonist 40 130 > 5000 WA > 5000 WA4

190299 RAR"# agonist 616 > 1000 41 18 57 42 

194310 RAR!"# antagonist 3 NA4 2 NA4 5 NA4

194301 RAR! antagonist 3 NA4 320 NA4 7250 NA4

194431 RAR"# antagonist 300 NA4 6 NA4 70 NA4

1When tested against RXR!, RXR" and RXR#, all compounds were inactive: Kd values for binding were >10 µM, and they showed no activity in transactivation
assays. 2Binding to baculovirus-expressed RAR!, RAR" and RAR# was measured. 3EC50 values for transactivation by RARs were determined by doubly
transfecting CV-1 cells (500 cells/well) with an RAR reporter plasmid ($MTV-TREp-LUC) and one of the human RAR expression vectors, and then treating the
transfected cells with the defined ligand (Nagpal et al, 1995). 4Abbreviations: NA, inactive; WA, weak partial agonist. 
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developing	  embryo	  would	  receive	  extremely	  low	  levels	  of	  vitamin	  A	  from	  the	  

maternal	  source.	  Offspring	  demonstrated	  a	  high	  level	  of	  abnormalities	  in	  the	  

development	  of	  the	  eye,	  the	  respiratory	  system,	  the	  heart	  and	  major	  arteries,	  and	  

the	  uro-‐genital	  tract	  (Warkany	  and	  Schraffenberger,	  1946;	  Wilson	  et	  al.,	  1953;	  

Wilson	  and	  Warkany,	  1947a;	  Wilson	  and	  Warkany,	  1947b;	  Wilson	  and	  Warkany,	  

1948;	  Wilson	  and	  Warkany,	  1949;	  Wilson	  and	  Warkany,	  1950).	  Although	  cardiac	  

defects	  were	  not	  among	  the	  most	  frequent	  of	  those	  seen	  in	  later	  embryos	  or	  in	  those	  

pups	  which	  survive	  until	  birth,	  a	  high	  degree	  of	  embryonic	  lethality	  was	  observed	  

between	  embryonic	  day	  10	  and	  15	  (E10-‐15),	  presumably	  due	  to	  major	  defects	  in	  

cardiovascular	  development	  (Wilson	  and	  Warkany,	  1949;	  Wilson	  and	  Warkany,	  

1950).	  Finally,	  it	  was	  subsequently	  demonstrated	  that	  the	  majority	  of	  defects	  seen	  in	  

the	  vitamin	  A	  deficiency	  syndrome	  of	  rats	  could	  be	  rescued	  if	  the	  mother	  was	  given	  

an	  oral	  vitamin	  A	  supplement	  by	  E10,	  with	  decreasing	  effectiveness	  if	  given	  at	  later	  

times	  (Wilson	  et	  al.,	  1953).	  The	  only	  developmental	  abnormalities	  of	  the	  VAD	  

syndrome	  that	  could	  not	  be	  rescued	  were	  cardiac	  defects,	  which	  is	  understandable	  

since	  heart	  development	  has	  already	  commenced	  well	  before	  E10.	  	   

	  

1.5.2	   Knock-out	  Mouse	  Models	  of	  Retinoic	  Acid	  Signalling	  

With	  the	  advent	  of	  targeted	  gene	  knockouts	  in	  the	  latter	  part	  of	  the	  20th	  

century,	  a	  new	  approach	  could	  be	  taken	  to	  understand	  the	  importance	  for	  vitamin	  A	  

for	  early	  development.	  One	  obvious	  approach	  to	  study	  the	  RA	  signalling	  system	  is	  to	  

target	  the	  retinoic	  acid	  receptors,	  however	  this	  has	  been	  difficult	  to	  analyze	  due	  to	  

the	  extensive	  redundancy	  between	  the	  RARs.	  All	  of	  the	  single	  RAR	  knockouts	  survive	  
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until	  birth	  in	  mouse,	  although	  both	  RARβ	  and	  RAR	  γ	  null	  embryos	  display	  growth	  

retardation	  (Ghyselinck	  et	  al.,	  1997;	  Lohnes	  et	  al.,	  1993),	  and	  RARα	  and	  RARγ	  null	  

embryos	  have	  a	  higher	  post	  natal	  mortality	  rate	  than	  control	  embryos	  (Lohnes	  et	  al.,	  

1994;	  Lufkin	  et	  al.,	  1993).	  However,	  while	  no	  single	  receptor	  knockout	  displayed	  the	  

entire	  VAD	  phenotype,	  the	  double	  knockout	  mouse	  embryos	  were	  able	  to	  better	  

recapitulate	  the	  spectrum	  of	  disorders	  associated	  with	  VAD.	  All	  of	  the	  double	  

knockouts	  were	  lethal:	  RARα-‐/-‐/RARβ-‐/-‐	  and	  RARβ-‐/-‐/RARγ-‐/-‐	  mice	  died	  within	  24	  

hours	  of	  birth	  (Ghyselinck	  et	  al.,	  1997),	  while	  RARα-‐/-‐/RARγ-‐/-‐	  mice	  died	  in	  utero	  

(Lohnes	  et	  al.,	  1993;	  Mendelsohn	  et	  al.,	  1994).	  Interestingly,	  in	  each	  case	  the	  mice	  

had	  major	  defects	  in	  the	  cardiovascular	  system,	  suggesting	  that	  RA	  signalling	  is	  

essential	  for	  proper	  heart	  formation.	  	  	  

No	  single	  RAR	  knockout	  was	  able	  to	  recapitulate	  the	  full	  spectrum	  of	  the	  VAD	  

syndrome,	  and	  while	  double	  RAR	  mutants	  were	  closer,	  there	  was	  still	  a	  large	  degree	  

of	  variation	  between	  the	  phenotypes.	  However,	  a	  targeted	  deletion	  of	  Raldh2	  has	  

been	  very	  useful	  in	  examining	  the	  consequences	  of	  an	  RA	  signalling	  loss.	  In	  all	  cases	  

the	  Raldh2-/-	  mutation	  was	  lethal	  by	  E10.5	  (Niederreither	  et	  al.,	  1999).	  The	  Raldh2-/-	  

embryos	  were	  smaller,	  with	  the	  entire	  posterior	  region	  being	  severely	  shortened,	  

and	  they	  had	  not	  undergone	  axial	  rotation	  that	  normally	  occurs	  at	  approximately	  

E8.5	  (Niederreither	  et	  al.,	  1999).	  There	  was	  also	  a	  dramatic	  loss	  of	  extra-‐embyonic	  

vessels	  in	  the	  yolk	  sac	  membranes	  and	  the	  heart	  was	  dilated	  with	  no	  obvious	  left-‐

right	  asymmetry	  (Niederreither	  et	  al.,	  1999;	  Niederreither	  et	  al.,	  2001).	  This	  was	  the	  

first	  definitive	  model	  of	  a	  nearly	  complete	  loss	  of	  RA	  signalling,	  and	  the	  severe	  

phenotype	  demonstrates	  that	  an	  in	  vivo	  source	  of	  RA	  signalling	  is	  absolutely	  
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required	  for	  a	  number	  of	  embryonic	  processes,	  including	  early	  cardiovascular	  

development.	  

All	  of	  the	  previously	  discussed	  knockout	  mouse	  models	  have	  focused	  on	  a	  

loss,	  either	  partial	  or	  complete,	  of	  RA	  signalling.	  However,	  shortly	  after	  the	  Raldh2	  

null	  mouse	  embryo	  was	  described,	  a	  Cyp26A1	  null	  mutant	  was	  also	  created	  to	  study	  

the	  effects	  of	  an	  increase	  in	  embryonic	  RA.	  Cyp26A1	  is	  the	  enzyme	  predominantly	  

responsible	  for	  RA	  catabolism	  in	  the	  embryo.	  The	  Cyp26A1	  phenotype	  was	  

embryonic	  lethal,	  although	  highly	  variable	  in	  severity,	  with	  mild	  cases	  dying	  at	  

approximately	  E18.5,	  while	  more	  severely	  affected	  embryos	  were	  developmentally	  

arrested	  at	  approximately	  E8.5	  (Abu-‐Abed	  et	  al.,	  2001).	  All	  embryos	  demonstrated	  

some	  form	  of	  posterior	  truncations,	  with	  a	  very	  high	  level	  of	  neural	  tube	  closure	  

defects,	  as	  well	  as	  kidney	  abnormalities	  and	  posterior	  gut	  tube	  defects,	  such	  as	  a	  

complete	  absence	  of	  the	  rectum	  (Abu-‐Abed	  et	  al.,	  2001).	  	  Some	  of	  the	  more	  severely	  

affected	  embryos	  arrested	  during	  early	  development	  and	  displayed	  severe	  heart	  

defects	  including	  a	  dilated	  heart	  cavity	  and	  imperfectly	  looped	  hearts,	  suggesting	  a	  

cause	  of	  early	  lethality	  (Abu-‐Abed	  et	  al.,	  2001).	  These	  effects	  of	  loss	  of	  Cyp26A1	  

function	  demonstrates	  the	  fine	  balance	  normally	  required	  of	  RA	  signalling	  in	  the	  

embryo,	  and	  a	  role	  for	  Cyp26	  in	  restricting	  RA	  signalling	  during	  early	  

embryogenesis.	  

	  

1.5.2 Retinoic	  Acid	  Signalling	  in	  Development	  

As	  demonstrated	  by	  the	  mouse	  mutant	  studies,	  retinoic	  acid	  is	  involved	  in	  

many	  developmental	  processes.	  An	  in	  depth	  examination	  of	  RA	  signalling	  
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throughout	  development	  is	  not	  within	  the	  scope	  of	  the	  current	  discussion,	  I	  will	  

therefore	  focus	  on	  only	  those	  effects	  that	  are	  pertinent	  to	  the	  topic	  of	  this	  thesis.	  	  

During	  early	  development,	  increased	  RA	  signalling	  before	  or	  during	  early	  

gastrulation	  (stages	  8-‐10)	  in	  frog	  embryos	  leads	  to	  inhibited	  development	  anterior	  

(head)	  end	  of	  the	  embryo	  in	  a	  dose-‐dependant	  manner	  (Durston	  et	  al.,	  1989;	  Koide	  

et	  al.,	  2001;	  Papalopulu	  et	  al.,	  1991).	  The	  mechanism	  responsible	  for	  the	  RA-‐induced	  

anterior	  truncation	  remains	  undefined,	  and	  a	  number	  of	  possibilities	  remain,	  

including	  altered	  cell	  movements	  during	  gastrulation,	  or	  more	  likely,	  altered	  

inductive	  signals	  passed	  between	  the	  mesoderm	  and	  ectoderm	  (Lloret-‐Vilaspasa	  et	  

al.,	  2010).	  However,	  to	  study	  RA	  dependent	  patterning	  after	  gastrulation,	  it	  is	  

necessary	  to	  delay	  application	  of	  RA	  to	  avoid	  compounding	  results	  with	  the	  effects	  

during	  gastrulation.	  

Following	  gastrulation,	  RA	  has	  been	  implicated	  in	  a	  number	  of	  patterning	  

processes	  including	  the	  patterning	  of	  the	  somitic	  mesoderm	  (Kawakami	  et	  al.,	  2005;	  

Moreno	  and	  Kintner,	  2004),	  pronephric	  fate	  in	  the	  kidney	  (Cartry	  et	  al.,	  2006),	  

neurectoderm	  (Sharpe,	  1991),	  as	  well	  as	  for	  specifying	  a	  number	  of	  endodermal	  cell	  

fates	  (Zeynali	  and	  Dixon,	  1998),	  including:,	  endocrine	  fate	  in	  the	  pancreas	  (Chen	  et	  

al.,	  2004),	  and	  the	  lung	  primordium	  in	  mouse	  (Chen	  et	  al.,	  2010).	  Interestingly,	  the	  

unliganded	  form	  of	  the	  RARs	  has	  also	  been	  shown	  to	  a	  be	  necessary	  in	  anterior-‐

neural	  patterning	  acting	  to	  suppress	  transcription	  (Koide	  et	  al.,	  2001).	  These	  studies	  

demonstrate	  that	  the	  function	  of	  the	  RARs	  is	  dynamic	  and	  context	  dependent,	  

required	  as	  activators	  in	  some	  contexts	  when	  bound	  to	  ligand,	  while	  being	  equally	  
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important	  as	  repressors	  in	  other	  tissues	  in	  which	  the	  RA	  ligand	  is	  normally	  not	  

present	  (for	  further	  discussion	  see:	  (Weston	  et	  al.,	  2003)).	  

Over	  the	  past	  two	  decades	  there	  has	  also	  been	  a	  keen	  interest	  in	  RA	  signalling	  

during	  heart	  development,	  where	  RA	  clearly	  has	  a	  complex	  function	  that	  is	  highly	  

stage	  dependent.	  During	  early	  heart	  specification	  in	  zebrafish,	  RA	  acts	  as	  a	  negative	  

input	  to	  heart	  development	  by	  restricting	  the	  number	  of	  cardiac	  progenitors	  

(Keegan	  et	  al.,	  2005).	  This	  is	  in	  line	  with	  studies	  in	  frog	  that	  show	  that	  raldh2	  is	  not	  

normally	  expressed	  in	  the	  early	  heart	  field	  (Chen	  et	  al.,	  2001),	  and	  that	  up	  regulated	  

RA	  signalling	  is	  capable	  of	  blocking	  differentiation	  of	  the	  myocardium	  (Drysdale	  et	  

al.,	  1997).	  However,	  retinoic	  acid	  signalling	  is	  also	  necessary	  for	  later	  

morphogenesis	  of	  the	  heart,	  as	  the	  heart	  fails	  to	  form	  a	  tube	  when	  RA	  signalling	  is	  

antagonized	  (Collop	  et	  al.,	  2006).	  In	  mouse	  and	  chick,	  RA	  signalling	  has	  further	  been	  

implicated	  in	  anterior-‐posterior	  patterning	  of	  the	  heart	  tube	  (Hochgreb	  et	  al.,	  2003;	  

Sirbu	  et	  al.,	  2008).	  Finally,	  there	  is	  some	  recent	  evidence	  that	  RA	  is	  also	  necessary	  

for	  secondary	  heart	  field	  differentiation	  (Li	  et	  al.,	  2010;	  Lin	  et	  al.,	  2010).	  Therefore,	  

RA	  signalling	  seems	  to	  be	  restrictive	  to	  early	  heart	  specification,	  but	  later	  required	  

for	  multiple	  aspects	  of	  morphogenesis.	  While	  there	  is	  clearly	  a	  substantial	  amount	  of	  

information	  pertaining	  to	  the	  role	  of	  RA	  signalling	  in	  specification	  of	  a	  number	  of	  

mesodermal	  lineages	  during	  later	  development,	  a	  role	  in	  early	  patterning	  of	  the	  LPM	  

during	  the	  neurula	  stage	  embryo	  has	  thus	  far	  remained	  undefined.	  

Although	  little	  is	  known	  in	  Xenopus	  regarding	  the	  role	  of	  retinoic	  acid	  during	  

endothelial	  cell	  development,	  studies	  in	  amniote	  embryos	  have	  suggested	  a	  role.	  

Using	  the	  Raldh2-/-	  knockout	  mouse	  it	  has	  been	  shown	  that	  RA	  is	  necessary	  to	  
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restrict	  proliferation	  within	  the	  endothelial	  progenitors	  and	  for	  proper	  endothelial	  

cell	  maturation	  (Bohnsack	  et	  al.,	  2004;	  Lai	  et	  al.,	  2003),	  although	  the	  vascular	  plexus	  

was	  still	  present.	  Conversely	  when	  RA	  signalling	  was	  increased,	  extra-‐embryonic	  

vasculature	  was	  perturbed,	  with	  no	  identifiable	  intact	  blood	  vessels	  (Ribes	  et	  al.,	  

2007).	  However,	  at	  this	  point	  the	  role	  of	  RA	  in	  endothelial	  specification	  and	  

development	  remains	  poorly	  understood.	  	  

	  

1.6 The	  Fibroblast	  Growth	  Factor	  Signalling	  Pathway	  

The	  FGF	  pathway	  is	  an	  essential	  signalling	  pathway	  in	  development.	  The	  Fgf	  

family	  comprises	  at	  least	  22	  family	  members	  in	  higher	  vertebrates,	  and	  signals	  

through	  a	  smaller	  family	  of	  four	  receptor	  tyrosine	  kinase	  receptors	  (FGFR1-‐4)	  to	  

regulate	  a	  diverse	  array	  of	  cellular	  processes	  including	  proliferation,	  differentiation,	  

apoptosis	  and	  migration	  (For	  thorough	  reviews	  see	  (Bottcher	  and	  Niehrs,	  2005;	  

Eswarakumar	  et	  al.,	  2005)).	  	  	  

All	  of	  the	  FGF	  ligand	  family	  members	  share	  a	  conserved	  region	  of	  120	  amino	  

acids	  with	  16-‐65%	  sequence	  homology	  in	  the	  ‘core	  domain’	  that	  is	  responsible	  for	  

interacting	  with	  the	  FGFRs.	  FGFs	  are	  diffusible	  peptides	  and	  appear	  to	  have	  different	  

effects	  at	  different	  concentrations	  (Green	  et	  al.,	  1992;	  Kengaku	  and	  Okamoto,	  1995)	  

suggesting	  a	  possible	  role	  as	  a	  morphogen	  during	  early	  development.	  In	  addition	  to	  

binding	  the	  FGFRs,	  FGF	  ligands	  also	  interact	  with	  heparan	  sulfate	  proteoglycans	  

(HSPGs)	  that	  facilitate	  ligand-‐receptor	  binding	  (Chuang	  et	  al.,	  2010;	  Kan	  et	  al.,	  1993;	  

Kato	  et	  al.,	  1998;	  Lanner	  et	  al.,	  2010;	  Steinfeld	  et	  al.,	  1996).	  
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The	  FGFRs	  are	  single	  pass	  transmembrane	  proteins	  that	  function	  as	  dimers.	  	  

The	  receptors	  contain	  extracellular	  ligand	  binding	  domains	  (Immunoglobin	  (Ig)-‐like	  

domains)	  and	  an	  intracellular	  tyrosine	  kinase	  domain	  (Figure	  3B).	  As	  previously	  

noted	  there	  are	  four	  FGFRs	  (FGFR1-‐4)	  and	  several	  splice	  variants	  of	  each	  with	  

altering	  affinities	  for	  FGF	  ligands	  (Lee	  et	  al.,	  1989;	  Pasquale,	  1990).	  The	  extracellular	  

Ig-‐like	  domains	  regulate	  ligand	  specificity	  and	  binding	  affinity.	  Between	  Ig-‐like	  

domains	  1	  and	  2	  exists	  a	  heparin-‐binding	  domain	  that	  allows	  the	  receptor	  to	  interact	  

with	  the	  extracellular	  matrix	  and	  bind	  HSPGs	  and	  cell	  adhesion	  molecules.	  The	  

tyrosine	  kinase	  tails	  reside	  on	  the	  intracellular	  side	  of	  the	  molecule,	  as	  well	  as	  

binding	  sites	  of	  various	  interacting	  proteins,	  such	  as	  protein	  kinase	  C	  and	  FRS2	  (for	  

a	  review	  of	  FGFR	  structure	  see	  (Eswarakumar	  et	  al.,	  2005)).	  	  Upon	  ligand	  binding,	  

the	  tyrosine	  kinse	  tails	  undergo	  autophosphorylation	  leading	  to	  the	  activation	  of	  a	  

downstream	  signalling	  cascade	  (Ullrich	  and	  Schlessinger,	  1990;	  Yarden	  and	  Ullrich,	  

1988).	  	  

Downstream	  of	  FGFR	  dimerization	  and	  autophosphorylation,	  signal	  

transduction	  can	  occur	  via	  three	  distinct	  pathways:	  The	  MAPK	  pathway	  (the	  

canonical	  FGF	  signalling	  pathway:	  Figure	  3C),	  the	  PLCγ/Ca2+	  pathway	  and	  the	  PI3	  

kinase/Akt	  pathway.	  In	  general,	  the	  canonical	  FGF	  signalling	  pathway	  is	  the	  

predominant	  pathway	  controlling	  FGF	  induced	  transcription	  through	  a	  MAP	  kinase	  

phosphorylation	  cascade	  (Ras/Raf/Mek/Erk)	  (Besser	  et	  al.,	  1995).	  The	  canonical	  

FGF	  signalling	  pathway	  leads	  to	  the	  induction	  of	  a	  number	  of	  FGF	  inducible	  genes,	  

including	  members	  of	  the	  Fgf	  synexpression	  group	  that	  includes	  sprouty2	  

(Chambers	  et	  al.,	  2000;	  Hacohen	  et	  al.,	  1998;	  Minowada	  et	  al.,	  1999).	  The	  PLCγ/Ca2+	  
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is	  upstream	  of	  cytoskeletal	  organization	  (Williams	  et	  al.,	  1994a;	  Williams	  et	  al.,	  

1994b)	  and	  the	  PI3	  kinase/Akt	  pathway	  has	  anti-‐apoptotic	  functions	  in	  some	  tissue	  

(Debiais	  et	  al.,	  2004;	  Lenhard	  et	  al.,	  2002).	  	  	  	  

	  

1.6.1 Fibroblast	  Growth	  Factor	  Signalling	  in	  Development	  

The	  FGF	  signalling	  pathway	  is	  essential	  in	  early	  development,	  with	  a	  number	  

of	  functions	  throughout	  different	  tissues	  at	  different	  developmental	  stages,	  and	  

many	  of	  the	  functions	  defined	  for	  FGF	  signalling	  have	  been	  conserved	  throughout	  

evolution.	  	  Before	  gastrulation,	  FGF	  signalling	  is	  required	  as	  a	  competence	  factor	  for	  

mesoderm	  induction	  (Amaya	  et	  al.,	  1991;	  Amaya	  et	  al.,	  1993;	  Cornell	  et	  al.,	  1995).	  	  

During	  gastrulation	  FGF	  signalling	  is	  also	  directly	  required	  for	  convergent	  extension	  

movements,	  and	  without	  this	  the	  embryos	  fail	  to	  gastrulate	  properly	  (Nutt	  et	  al.,	  

2001).	  	  The	  early	  role	  of	  FGF	  signalling	  both	  before	  and	  during	  gastrulation	  creates	  

an	  added	  level	  of	  complexity	  in	  studying	  later	  roles	  of	  FGF	  signalling	  during	  

organogenesis.	  

Recently,	  FGF	  signalling	  has	  also	  been	  demonstrated	  to	  be	  necessary	  for	  the	  

induction	  of	  the	  heart	  field	  in	  Xenopus	  (Keren-‐Politansky	  et	  al.,	  2009;	  Samuel	  and	  

Latinkic,	  2009)	  as	  it	  is	  in	  both	  chick	  (Alsan	  and	  Schultheiss,	  2002)	  and	  zebrafish	  

(Marques	  et	  al.,	  2008).	  	  There	  is	  some	  evidence	  that	  FGF	  signalling	  through	  Fgfr1	  

may	  be,	  at	  least	  in	  part,	  responsible	  for	  the	  role	  of	  Fgf	  in	  heart	  induction	  (Dell'Era	  et	  

al.,	  2003).	  	  Furthermore	  FGF	  signalling	  is	  required	  in	  the	  mouse	  after	  heart	  field	  

induction	  for	  the	  development	  of	  the	  secondary	  heart	  field	  
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Figure 3.  The fibroblast growth factor signalling pathway.  A)  Chemical structure of 

SU5402, the synthetic FGFR inhibitor which binds the intracellular domain of the FGFR 

and inhibits autophosporylation of the receptor tyrosine kinase tails of the receptor dimer.  

B)  A generalized structure of the fibroblast growth factor receptors (FGFRs), showing 

the three extra cellular domains (D1, D2, and D3), the acid box (AB), the transmembrane 

domain (TM) and the tyrosine kinase tail.  C)  A schematic of the canonical Fgf signalling 

pathway. 
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(Ilagan	  et	  al.,	  2006;	  Park	  et	  al.,	  2006).	  	  While	  a	  role	  distinct	  for	  FGF	  in	  the	  secondary	  

heart	  field	  has	  yet	  to	  be	  defined	  in	  Xenopus,	  fgf8	  is	  expressed	  in	  the	  anterior	  heart	  

field	  during	  the	  mid-‐tailbud	  stages	  (Gessert	  and	  Kuhl,	  2009)	  suggesting	  this	  role	  

may	  be	  conserved.	  	  Thus,	  FGF	  signalling	  in	  heart,	  as	  in	  gastrulation,	  is	  required	  for	  

multiple	  processesfrom	  induction	  to	  morphogenesis	  in	  a	  context	  dependent	  manner.	  

While	  there	  is	  little	  evidence	  that	  FGF	  signalling	  is	  involved	  in	  vasculogenesis,	  

there	  is	  a	  wealth	  of	  data	  indicating	  Fgfs	  in	  angiogenesis.	  Fgf1	  (acidic	  Fgf)	  was	  

initially	  identified	  as	  endothelial	  cell	  growth	  factor	  due	  to	  its	  mitogenic	  activity	  in	  

umbilical	  vein	  endothelial	  cells	  (Maciag	  et	  al.,	  1979).	  The	  angiogenic	  activity	  of	  FGF	  

signalling	  seems	  to	  function	  through	  VEGF	  signalling	  (Magnusson	  et	  al.,	  2004;	  

Seghezzi	  et	  al.,	  1998),	  and	  blocking	  VEGF	  signalling	  blocks	  the	  angiogenic	  activity	  of	  

Fgf’s	  in	  embryoid	  bodies	  (Magnusson	  et	  al.,	  2004).	  However,	  one	  study	  in	  Xenopus	  

suggests	  that	  Fgfs	  are	  involved	  in	  determining	  the	  balance	  of	  blood	  versus	  

endothelial	  marker	  expression	  in	  ventral	  marginal	  zone	  explants	  (Iraha	  et	  al.,	  2002).	  	  

Therefore,	  while	  there	  has	  been	  a	  great	  deal	  of	  focus	  placed	  on	  Fgf’s	  role	  in	  

angiogenesis,	  it	  may	  have	  additional	  roles	  in	  vasculogenesis.	  

	  

1.6.2 Interaction	  of	  the	  Fibroblast	  Growth	  Factor	  and	  Retinoic	  Acid	  Signalling	  

Pathways	  

Generating polarized tissues within the embryo is a common process that often 

requires the input of two opposing signalling pathways specifying each end of the tissue.  

The RA and FGF signalling pathways have been described as opposing pathways in 

generating polarized tissue in a number of patterning processes. During heart 
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development in mice RA acts at the atrial (posterior) end of the heart tube in opposition to 

FGF signalling at the ventricular (anterior) end to pattern the anterior-posterior axis of the 

heart tube (Sirbu et al., 2008). During somite patterning, the RA signalling pathway in the 

anterior end of the embryo is opposed by FGF signalling from the posterior end (Diez del 

Corral et al., 2003; Moreno and Kintner, 2004; Sirbu and Duester, 2006). Similarly, 

during body axis extension, RA is necessary to restrict FGF signalling to the tailbud 

(Zhao and Duester, 2009).   

Furthermore, both the RA and FGF pathways are known to modulate the 

signalling levels of the other. FGF signalling restricts RA signalling by up regulating the 

expression of cyp26, the RA metabolizing enzyme (Goncalves et al., 2009; Moreno and 

Kintner, 2004; White et al., 2007). However, the effect of RA on FGF signalling appears 

much more complex. ChIP experiments have demonstrated that the RARs (all of RARα, 

β and γ) are able to bind the Fgf8 promoter suggesting that Fgf8 is directly regulated by 

RA signalling (Zhao et al., 2009). The ChIP data is further supported by the finding that 

RA signalling modulates the level of Fgf signalling, and in most reports RA represses 

Fgf8 expression (Diez del Corral et al., 2003; Ribes et al., 2009; Sirbu and Duester, 2006; 

Sirbu et al., 2008; Zhao et al., 2009), although there is also data that RA can up regulate 

fgf8 expression in some contexts (Moreno and Kintner, 2004; Stavridis et al., 2010).   

	  

1.7 Early	  Lateral	  Plate	  Mesoderm	  Gene	  Expression	  

Traditionally,	  the	  LPM	  has	  been	  pictured	  as	  a	  homogenous	  tissue	  with	  

minimal	  patterning	  following	  gastrulation	  in	  Xenopus.	  The	  first	  described	  pattern	  of	  

regionally	  expressed	  genes	  occurred	  during	  the	  mid	  to	  late	  neurula	  with	  the	  
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expression	  of	  the	  heart	  field	  marker	  nkx2-5	  (Tonissen	  et	  al.,	  1994)	  in	  the	  anterior-‐

ventral	  LPM	  and	  markers	  of	  the	  myeloid	  lineage	  (mpo)	  just	  posterior	  to	  the	  heart	  

field	  (Smith	  et	  al.,	  2002)	  (Figure	  1C).	  However,	  further	  patterning	  of	  the	  LPM	  in	  the	  

neurula	  stage	  embryo	  has	  thus	  far	  not	  been	  reported.	  

Following	  a	  microarray	  on	  frog	  embryos	  treated	  with	  RA	  and	  an	  RA	  

antagonist	  in	  a	  four	  hour	  time	  window	  during	  neurulation	  a	  number	  of	  genes	  were	  

identified	  whose	  expression	  was	  significantly	  altered	  under	  one	  or	  both	  of	  the	  

treatments	  as	  compared	  to	  control	  embryos	  (Drysdale,	  personal	  communication).	  

Known	  targets	  of	  RA	  signalling	  showed	  significant	  changes	  in	  gene	  expression	  

suggesting	  that	  the	  microarray	  could	  identify	  novel	  genes	  regulated,	  at	  least	  in	  part,	  

by	  RA	  signalling.	  Several	  genes	  were	  identified	  that	  were	  not	  previously	  recognized	  

as	  being	  regulated	  by	  RA	  including:	  hand1,	  foxf1,	  and	  sall3.	  These	  three	  genes	  encode	  

transcription	  factors	  that	  are	  expressed	  in	  the	  LPM	  and	  necessary	  for	  heart	  

development	  at	  later	  stages,	  although	  their	  expression	  had	  not	  been	  thoroughly	  

analyzed	  at	  earlier	  stages.	  Of	  the	  three	  genes	  identified	  by	  microarray	  analysis,	  

hand1	  was	  the	  most	  highly	  studied,	  and	  will	  be	  discussed	  below	  in	  its	  own	  section	  

(see	  section	  1.7.1).	  

	  Foxf1	  is	  a	  member	  of	  the	  large	  family	  of	  fork	  head	  box	  (Fox)	  transcription	  

factors.	  The	  defining	  characteristic	  of	  the	  Fox	  family	  is	  that	  they	  all	  contain	  a	  winged	  

helix	  DNA	  binding	  domain	  that	  resembles	  a	  helix-‐turn-‐helix	  motif	  (Brennan,	  1993).	  	  

Foxf1	  has	  previously	  been	  characterized	  in	  the	  anterior	  LPM	  beginning	  in	  the	  early	  

tailbud	  stage	  embryo	  (stage	  26),	  and	  throughout	  most	  of	  the	  LPM	  by	  the	  late	  tailbud	  

stage	  (stage	  36),	  although	  no	  expression	  pattern	  was	  described	  during	  neurula	  
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stages	  (Koster	  et	  al.,	  1999).	  In	  both	  Xenopus	  and	  mouse,	  foxf1	  has	  been	  implicated	  in	  

the	  patterning	  of	  the	  endoderm	  by	  the	  lateral	  plate	  mesoderm	  (Ormestad	  et	  al.,	  

2006;	  Tseng	  et	  al.,	  2004).	  Furthermore,	  in	  mice,	  FoxF1	  has	  been	  implicated	  in	  early	  

mesoderm	  formation	  (Mahlapuu	  et	  al.,	  2001b),	  vascular	  development	  (Astorga	  and	  

Carlsson,	  2007)	  and	  lung	  development	  (Mahlapuu	  et	  al.,	  2001a).	  	  

The	  posterior	  LPM	  marker	  sall3	  is	  much	  less	  studied.	  Xenopus	  sall3	  was	  

originally	  cloned	  as	  Xsal-1,	  and	  described	  as	  a	  homolog	  of	  the	  Drosophila	  gene	  spalt	  

(Hollemann	  et	  al.,	  1996),	  but	  was	  later	  renamed	  sall3	  to	  be	  consistent	  with	  the	  

human	  nomenclature	  (Kohlhase	  et	  al.,	  1999).	  	  Sall3	  is	  a	  zinc	  finger	  transcription	  

factor	  with	  a	  characteristic	  arrangement	  of	  four	  double	  zinc	  finger	  domains.	  Sall3	  

expression	  was	  originally	  described	  in	  neural	  tissues	  during	  early	  Xenopus	  

development,	  as	  well	  as	  in	  the	  limb	  buds	  during	  later	  development	  (Hollemann	  et	  al.,	  

1996),	  however	  no	  expression	  was	  demonstrated	  in	  the	  early	  LPM.	  	  	  

In	  Drosophila,	  spalt	  is	  necessary	  for	  determining	  the	  head-‐trunk,	  and	  trunk-‐

tail	  boundaries	  (Frei	  et	  al.,	  1988;	  Jurgens,	  1988).	  For	  the	  vertebrate	  sall3,	  there	  is	  

very	  little	  functional	  data	  available.	  In	  mice,	  loss	  of	  Sall3	  causes	  defects	  in	  the	  organs	  

necessary	  for	  feeding,	  such	  as	  the	  palate,	  tongue	  and	  epiglottis	  and	  thus	  causes	  

perinatal	  lethality	  due	  to	  inability	  to	  feed	  (Parrish	  et	  al.,	  2004).	  In	  humans,	  the	  SALL3	  

gene	  has	  been	  correlated	  with	  18q	  deletion	  syndrome	  characterized	  by	  a	  

combination	  of	  mental	  retardation,	  growth	  retardation,	  developmental	  delay,	  as	  well	  

as	  eye,	  nose,	  mouth	  and	  limb	  defects	  among	  others	  (Dostal	  et	  al.,	  2009;	  Kohlhase	  et	  

al.,	  1999).	  
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1.7.1 Hand1	  Gene	  Expression	  and	  Function	  

One	  gene	  of	  significant	  interest	  to	  this	  study	  is	  hand1.	  Hand1	  is	  a	  basic	  helix-‐

loop-‐helix	  transcription	  factor,	  whose	  expression	  was	  initially	  characterized	  in	  a	  

broad	  domain	  within	  the	  LPM	  at	  the	  mid-‐tailbud	  stage	  in	  Xenopus	  (Sparrow	  et	  al.,	  

1998).	  The	  first	  report	  in	  Xenopus	  characterized	  an	  asymmetric	  left-‐right	  expression	  

pattern	  within	  the	  early	  LPM,	  with	  stronger	  expression	  on	  the	  left	  that	  right	  side	  of	  

the	  embryo	  (Sparrow	  et	  al.,	  1998),	  although	  I	  find	  no	  evidence	  of	  this	  asymmetric	  

expression	  (see	  results).	  This	  left-‐right	  asymmetric	  expression	  of	  hand1	  has	  also	  

been	  characterized	  during	  heart	  development	  of	  mice	  (Biben	  and	  Harvey,	  1997).	  A	  

recent	  report	  in	  mice	  has	  shown	  that	  hand1	  expressing	  cells	  contribute	  to	  a	  vast	  

array	  of	  mesodermally	  derived	  structures	  including	  the	  placenta,	  limbs,	  heart	  and	  

vasculature	  (Barnes	  et	  al.,	  2010).	  In	  zebrafish,	  hand	  (the	  lone	  homologue	  of	  

vertebrate	  Hand1	  and	  Hand2	  genes)	  is	  expressed	  in	  the	  early	  LPM	  and	  is	  described	  

as	  a	  pan-‐LPM	  marker	  (Keegan	  et	  al.,	  2005;	  Yelon	  et	  al.,	  2000).	  

Unlike	  the	  previously	  described	  genes,	  Hand1	  function	  has	  been	  thoroughly	  

studied	  in	  mouse,	  with	  most	  of	  the	  focus	  on	  heart	  morphogenesis.	  Complete	  loss	  of	  

Hand1	  in	  mice	  is	  lethal	  between	  E8.5	  and	  E9.5	  due	  to	  defects	  in	  extraembryonic	  

vasculature	  and	  heart	  development	  (Firulli	  et	  al.,	  1998;	  Riley	  et	  al.,	  1998).	  In	  the	  

extra	  embryonic	  vasculature,	  Hand1-/-	  embryos	  undergo	  vasculogenesis,	  however	  

the	  expression	  of	  several	  angiogenic	  genes	  is	  perturbed,	  suggesting	  a	  role	  for	  Hand1	  

in	  placental	  angiogenesis	  (Morikawa	  and	  Cserjesi,	  2004).	  Furthermore,	  a	  loss	  of	  

Hand1	  during	  the	  early	  stages	  of	  heart	  development	  leads	  to	  a	  delay	  in	  heart	  tube	  

formation	  (Smart	  et	  al.,	  2002),	  and	  morphogenesis	  of	  the	  left	  ventricle	  (McFadden	  et	  
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al.,	  2005),	  whereas	  mutants	  overexpressing	  Hand1	  have	  defects	  in	  ventricular	  

septation	  (Togi	  et	  al.,	  2004).	  This	  suggests	  that	  Hand1	  is	  necessary	  for	  

morphogenesis	  of	  the	  left	  ventricle	  but	  must	  be	  inhibited	  from	  the	  region	  correctly	  

fated	  to	  form	  the	  septum.	  

Since	  hand1	  is	  expressed	  in	  a	  broad	  region	  of	  the	  early	  frog	  embryo	  that	  will	  

give	  rise	  to	  both	  the	  vasculature	  and	  heart	  (Sparrow	  et	  al.,	  1998),	  and	  hand1	  

expression	  is	  RA	  responsive,	  this	  gene	  is	  of	  particular	  interest	  to	  this	  study.	  	  

Furthermore,	  that	  hand1	  has	  been	  implicated	  in	  both	  heart	  and	  vascular	  

development	  in	  some	  contexts	  in	  mouse	  suggests	  that	  it	  may	  play	  a	  pivotal	  role	  in	  

early	  cardiovascular	  specification.	  Finally,	  since	  hand1	  mutant	  mice	  display	  defects	  

in	  heart	  tube	  closure	  (Smart	  et	  al.,	  2002),	  a	  phenotype	  which	  closely	  resembles	  a	  

loss	  of	  RA	  signalling	  in	  Xenopus	  (Collop	  et	  al.,	  2006),	  I	  hypothesize	  that	  this	  gene	  may	  

be	  downstream	  of	  RA	  signalling	  in	  early	  specification	  and	  morphogenesis	  of	  

cardiovascular	  lineages.	  
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1.8	   Experimental	  Rationale	  

The purpose of this thesis is to examine the role of RA and FGF signalling in 

regional patterning within the early lateral plate mesoderm of Xenopus laevis. While 

some pattern has been described by the early tail bud stage, there has been no 

comprehensive analysis to gain an understanding of when the LPM is patterned, and how 

this pattern is established. Patterning within the LPM has been demonstrated in the 

neurula stage embryo, but focus has been placed on the ventral cardiovascular precursors, 

while the more dorsal LPM has been ignored. Furthermore, the RA and FGF signalling 

pathways have been demonstrated to oppose one another in a delicate balance leading to 

patterning across a number of tissues during development. The expression domains of 

raldh2 and fgf8 strongly suggest that these two signalling systems may be responsible for 

patterning the anterior and posterior ends of the LPM respectfully. 

I hypothesize that early patterning of the LPM occurs, at least in part, under the 

control of the RA and FGF signalling pathways shorty after gastrulation. Furthermore, I 

predict that RA will pattern the anterior-dorsal end of the LPM corresponding to the 

expression pattern of raldh2, and FGF signalling the anterior-ventral and posterior ends, 

corresponding to the expression domain of fgf8.  

In the first aim of my thesis, I demonstrate that the LPM has significant pattern 

during the neurula stage embryo. Furthermore, I will show that RA signalling is necessary 

for properly specifying the anterior-dorsal end of the LPM during early development.  

When RA signalling is lost, both the anterior-dorsal, and middle LPM markers are 

restricted. In increased RA conditions, both the anterior-dorsal and middle LPM markers 

are expanded posteriorly, while posterior markers are lost. 
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The second aim of my thesis will demonstrate that FGF signalling is necessary to 

specify both the posterior tail bud domain and the anterior-ventral heart field. When FGF 

signalling is inhibited, markers of both the heart field in the anterior-ventral LPM, and the 

tail bud domain in the posterior LPM are lost. Furthermore I demonstrate that the FGF 

and RA signalling pathways are antagonistic, and that they have opposing function on 

LPM marker domains. 

For the third aim of my thesis I will describe a role for both RA and FGF in 

specifying the early cardiovascular precursors. By increasing RA signalling, the early 

heart progenitors are severely reduced, while the expression of vascular markers is 

increased. Conversely, by reducing FGF expression, markers of the early heart field are 

lost and vascular markers are also increased. These results implicate proper RA and FGF 

signalling in subdivision of the early mesodermal precursors that will give rise to the 

cardiac and endothelial lineages. 

Finally, for my fourth objective I will present preliminary evidence that Hand1 

function is required for the proper morphology of the heart, and specification of the 

endothelial lineage. A reduction in Hand1 function mirrors the phenotype of a loss of RA 

signalling on heart development. Since RA signalling regulates hand1, this may provide a 

link connecting RA signalling to heart tube formation, and may be of interest to future 

studies on cardiovascular development. 
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Chapter 2 Methods 

 

2.1 Xenopus laevis Embryo Generation 

Female Xenopus laevis frogs were injected in the thigh muscle with 500-700 IU of 

human chorionic gonadotropin the evening before collecting eggs. Eggs were collected by 

‘squeezing’ females and fertilized in vitro by adding minced testis collected from 

sacrificed males to the 80% Steinberg’s solution in which the eggs were being cultured.  

Embryos were flooded with 20% Steinberg’s solution following fertilization. Embryos 

were dejellied in 2.5% cysteine, pH 8.0, and cultured in 20% Steinberg’s solution.  

Embryo staging was based on the Normal Table of Xenopus laevis (Nieuwkoop and 

Faber, 1994). The Steinberg’s solution was kept as two stock solutions at a 2000% 

concentration, and mixed 1:1 to yield a 1000% stock (for 1L of each, Steinberg’s Stock 

A: 68g NaCl, 1g KCl, 4.09g MgSO4-7H2O, 1.58g Ca(NO3)2-H20; Steinberg’s Stock B: 

11.2g Tris-HCl pH 7.4). The 1000% Steinberg’s solution stock was then diluted 1:5 for 

the 200% Steinberg’s solution with distilled H2O, 1:12.5 for the 80% Steinberg’s 

solution, or 1:50 for the 20% Steinberg’s solution. All embryos were fixed in MEMPFA 

(4% paraformaldehyde, 1mM MgSO4, 2mM EDTA (ethyleneglycol-bis-(β-aminoethyl 

ether) N’,N’,N’,N’-tetra-acetic acid) pH 8.0), 0.1M MOPS pH7.4 for 2 hours at room 

temperature, or overnight at 4°C and then stored in 100% at -20°C until assayed. 

 

2.2 Experimental Treatments 

 All treatments were accomplished by adding the exogenous chemical of interest to 

the solution that the embryos were developing in. Embryos were cultured in 20% 
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Steinberg’s solution unless otherwise noted, and cultured at varying temperatures 

(between 12° C and room temperature) as required to control the rate of development and 

obtain embryos at a desired stage.   

 

2.2.1 Retinoic Acid Treatments 

Embryos were treated with 1µM all-trans RA (Sigma) (Collop et al., 2006), an 

RARα antagonist (allergan; AGN 194301; (Teng et al., 1997)) or a pan RAR antagonist 

(RAA) (Allergan #193109; (Agarwal et al., 1996)) at stage 14, and cultured until the 

desired stage. Stock solutions for both RA and RAA were stored at a 1 mM concentration 

in DMSO, and therefore a control treatment was performed with 0.1% DMSO in 20% 

Steinberg’s solution. To alter the bio-availability of endogenous RA ligand, ketoconazole 

was used to at a concentration of 50 µM to inhibit Cyp26 (Lutz et al., 2001; Van Wauwe 

et al., 1988), the enzyme primarily responsible for RA catabolism and thereby increasing 

the levels of RA. Raldh2, the enzyme primarily responsible for synthesis of RA, was 

inhibited with either 120 µM citral (Cartry et al., 2006) or 20 µM 

diethylaminobenzaldehyde (DEAB) (Begemann et al., 2004) to create an endogenous 

reduction of RA ligand. Finally, to determine if RA was directly regulating gene 

expression, embryos were treated with RA in conjunction with cycloheximide to inhibit 

protein synthesis. Cycloheximide treatments were performed at a concentration of 10 

µg/mL (Moreno and Kintner, 2004) at stage 14 and cultured for 90 minutes before being 

fixed. Experimental embryos were exposed to cycloheximide 15 minutes prior to 

treatment with RA.  



	  

	  

44	  

To study the effets of a restricted time window of RA signalling during 

neurulation in embryos that were allowed to develop past stage 20, I added an equal 

concentration of RAA (where embryos were first treated with RA at stage 14) or RA 

(where they had been treated with RAA) for 30 minutes, before being transferred to 20% 

Steinberg’s solution without exogenous RA. The neutralization treatments with both RA 

and RAA were necessary since simple washes were found to be insufficient to eliminate 

exogenous RA from the embryo. 

 

2.2.2 FGF Inhibitor Treatments 

 The FGF inhibitor experiments were performed by adding 10 µM SU5402 

(Calbiochem) to embryo cultures in conjunction with 0.1 mM ATP. The stock solution 

for SU5402 was 10 mM dissolved in DMSO, and the stock solution for ATP was 0.1 M 

dissolved in distilled H2O. Therefore, a control treatment was performed with 0.1% 

DMSO and 0.1 mM ATP in 20% Steinberg’s solution. Note that treatments with 10 µM 

SU5402 in conjunction with 0.1 mM ATP has yielded a phenotype comparable to other 

studies using as much as ten fold higher concentrations when ATP is not added 

(Walmsley et al., 2008; Wills et al., 2010). To remove the inhibitor when needed, the 

petri dishes in which the embryos were being cultured were flushed five times with 

‘fresh’ 20% Steinberg’s solution without ATP, and the embryos were then moved to a 

clean dish with 20% Steinberg’s solution. 

 

2.3 Obtaining Ventral Explants 

 Embryo explants were generated at stage 12.5-13 in 1x Modified Barth’s Saline 

(MBS) by making an incision through the center of the neural plate into the achenteron. 
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The resulting flaps of tissue were folded back and removed at the point at which the walls 

of the archenteron met the archenteron floor, effectively isolating tissue from the floor of 

the archenteron to the ventral pole of the embryo. Explants were then treated with 1µM 

RA, RAA or control DMSO for 90 minutes before being fixed. MBS was made as a 10x 

stock (for 1L of 10x stock: 51.43g NaCl, 0.75g KCl, 2.02g NaHCO3, 23.83g HEPES, 

0.99g MgSO4, 0.78g Ca(NO3)2-4H2O, pH to 7.5) and diluted 1:10 in dH2O with 0.7% 

0.1M CaCl2 for 1x MBS working solution. 

 

2.4 Microinjections 

 An antisense morpholino oligomer was designed to recognize the translational 

start site of the Hand1 transcript (GeneTools Inc. suggested sequence: 

GTTGGTAGCTCCCAATCAGGTTCAT). Control morpholino oligos were also used 

with a random sequence that did not correspond to any known EST in the Xenopus 

genome. In each case the morpholinos were fluorescently tagged with carboxyflourescein 

on the 3’ end of the oligo. The antisense morpholinos were reconstituted in distilled H2O 

to a concentration of 1 mM and aliquots were stored at -80°C until use, as per the 

recommendation of GeneTools Inc. Injections were accomplished by using a Drummond 

Nanoject (Drummond Scientific; Broomall, Pa) to inject either 4.6 nL, or 9.2 nL into a 

dejellied one cell embryo, or into one blastomere of a two cell embryo. Injections were 

accomplished in 1x MBS with 2% ficoll. Embryos were incubated in 1x MBS with ficoll 

for roughly four hours following injection and then transferred to 20% Steinberg’s 

Solution. Successful injections were assayed and sorted the following day by 

fluorescence. Successfully injected embryos were allowed to develop until the desired 
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stage and were fixed in MEMPFA for further analysis by whole mount in situ 

hybridization. 

 

2.5 Antisense Probe Synthesis for in situ Hybridization 

 Digoxygenin-labelled antisense riboprobes were synthesized from cDNA 

constructs (For a full list please see Table 1). DNA constructs were transformed into 

competent E. coli bacteria to amplify the plasmid. Once the plasmid had been amplified 

to a suitable concentration, it was digested at the 5’ end of the gene of interest and an in 

vitro transcription reaction was performed to synthesize the DIG (Digoxygenin-11-UTP; 

Roche) anti-sense ribonucleotide probe. 

 

2.5.1 Competent Cell Culture and Transformation of cDNA Constructs 

 E. coli competent cells (Xl1 Blue strain) were grown in approximately 4mL of 

liquid Luria Broth (LB; for 1L: 10g bacto-tryptone, 5g bacto-yeast extract, 10g NaCl, pH 

7.0) overnight agitating at 37°C. The following morning 0.2mL of the overnight culture 

was used to inoculate a 50 mL culture of LB and agitated at 37°C for 4 hours, or until the 

culture had reached log phase growth. The cultures were then chilled on ice for 20 

minutes, and pelleted at 4000 RPM for 5min at 4°C. Cells were then resuspended in 20 

mL ice cold 0.1 M CaCl2, followed by centrifugation at 4000 RPM for 5 min at 4°C. 

Finally the cells were resuspended in 2 mL ice cold 0.1 M CaCl2, 0.1% glycerol and 

aliquots were stored at -80°C until used. 

 To transform cDNA constructs into competent E.coli cells, 2 µL of cDNA 

template was added to 50 µL of ice cold competent cells (or 10 µL into 100 µL for 
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constructs which were more difficult to transform). The competent cell/DNA solution was 

kept on ice for 20 minutes, before being heat shocked at 37° for 90 seconds. Following 

heat shock, the competent cells were then incubated on ice for a further 20 minutes before 

being plated on solid LB plates (for 500 mL: 5 g bacto-tryptone, 2.5 g bacto-yeast extract, 

5 g NaCl, 7.5 g bacto-agar) containing the appropriate antibiotic (in each case ampicillin 

was used for positive selection). The LB plates were then cultured overnight at 37°C. The 

following afternoon, the colonies were picked with a heat sterilized metal loop and were 

used to inoculate a 4 mL culture of liquid LB with 1 µL/mL of 50 mg/mL ampicillin (one 

colony per culture), and these cultures were agitated overnight at 37°C. The following 

morning the cDNA plasmids were isolated from the E.coli cells following the tabletop 

microcentrifuge protocol of the QIAprep Spin Miniprep Kit (Quiagen).  

 

2.5.2 Restriction Digest of cDNA Constructs 

 Plasmid templates were digested with the appropriate restriction endonuclease 

enzyme. For the digest reactions, approximately 15 µg of DNA was digested in a 50 µL 

total reaction (15 µL or 1 µg/µL DNA, 28 µL dH2O, 5 µL appropriate Buffer, 2 µL 

restriction endonuclease) for a minimum of 2 hours, or a maximum of overnight at 37°C. 

Following the restriction digest reaction, the cDNA was purified by adding 50 µL dH2O 

and 100 µL phenol, mixed thoroughly and centrifuged in a tabletop microcentrifuge at 

14000 RPM for 10 min. The aqueous layer was then removed to a new tube and the 

plasmid DNA was precipitated by adding 0.1 volumes of 3 M NaAcetate, 2.5 volumes of 

cold 95% ethanol, mixed thoroughly and centrifuged for 10 min at 14000 RPM. 

Following centrifugation, the supernatant was poured off and the pellet allowed to dry at 
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room temperature, before being resuspended in 10 µL dH2O. 1 µL of the resulting cDNA 

template was loaded into a 1% Agarose-TAE (6.73 mM Tris-HCl pH 7.9, 3.3 mM sodium 

acetate, 1 mM EDTA pH 8.0) gel with Ethidium Bromide (1.5 µL per 100 mL Agarose-

TAE) to visualize the product of the restriction digest reaction. 

 

2.5.3  In vitro Transcription of Antisense Ribonucleotide Probes 

 Antisense riboprobes for hand1 (Sparrow et al., 1998), sall3 (Hollemann et al., 

1996), foxf1 (Koster et al., 1999), nkx2-5 (Tonissen et al., 1994), hoxc10 (Christen et al., 

2003), cardiac Troponin I (Drysdale et al., 1994), apeline receptor (aplnr) (Devic et al., 

1996), etv2 (Salanga et al., 2010), globin (Knochel et al., 1987), tal1 (Mead et al., 1998), 

spib (IMAGE 7023083), mpo (IMAGE 5336501), fgf4 (Isaacs et al., 1992), fgf8 (Christen 

and Slack, 1997), cyp26 (Hollemann et al., 1998) and raldh2 (Chen et al., 2001) were 

labelled with digoxygenin (DIG)-labelled UTP (Roche Diagnostics) following the 

protocol by (Harland, 1991) except that incorporating P32 labelled nucleotides was 

omitted. The transcription reaction was assembled at room temperature (except for the 

RNase Inhibitor and RNA Polymerase enzyme which were kept on ice until added) with 

the following components in this order: 2-4 µL of template DNA (from digest reaction 

above), dH2O (sufficient to bring total reaction volume to 20 µL), 4 µL NTPs (2.5 mM 

ATP, CTP and GTP; 1.625 mM UTP; 0.875 mM DIG-11-UTP), 4 µL 10 mM DTT, 0.5 

µL RNaseOUT (RNase Inhibitor: Invitrogen #10777-019), 4 µL 5x Transcription Buffer 

(Invitrogen) and 2 µL of the appropriate RNA polymerase (table 1; Invitrogen), and was 

incubated for 2 hrs at 37°C. Once the incubation was complete 1 µL DNase1 (Invitrogen  
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Table 1.  List of the reagents used to generate antisense RNA probes from the cDNA 

constructs.  In each case the vector that each construct had been cloned into is listed, the 

restriction enzyme necessary to digest the cDNA construct at the 5’ end of the insert, and 

the proper RNA polymerase corresponding to the promoter located at the 3’ end of the 

insert. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Construct Vector Restriction 
Enzyme 

Polymerase 

Bra pSP73 EcoRV T7 
CTnI pBluescript SK NotI T7 

Cyp26 pCS2 EcoRI T3 
Etv2 pGEM-T Easy SalI T7 
Fgf4 pBluescript EcoRI T3 
Fgf8 pCS2 XhoI T7 

FoxF1 pBluescript II EcoRI T7 
Globin pCS107 HindIII T3 
Hand1 pKRX BamHI T7 
Hoxc10 pGEM-T Easy NotI T7 

Isl1 pBluescript SK EcoRI T7 
Mpo pSport1 SalI T7 

Nkx2-5 pGEM 3Z KpnI T7 
Pitx2c pBluescript II NotI T7 
Raldh2 pCS2 BamHI T3 
Sall3 pBluescripts KS HindIII T7 
Tal1 pGEM7 XhoI SP6 

Sprouty2 pCS2 XhoI SP6 
Spib pCMV-Sport6 SalI T7 
Aplnr pBluescript SK- BamHI T7 
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#AM2222) was added to digest the template DNA and incubated for a further 10 min at 

37°C. 1 µL of the transcription product was loaded into a 1% agarose gel (as above) to 

check the reaction yield. The remainder of the transcription reaction was then precipitated 

by adding 4 volumes of 1% SDS in TE (10 mM Tris pH7.4, 1 mM EDTA), 0.5 volumes 

of 5M ammonium acetate and 2.5 volumes of 95% ethanol, mixing thoroughly and 

centrifuging at 14000 RPM for 10 min. The reaction was the dried and resuspended in 

RNA Hybridization buffer. The RNA hybridization buffer was: 50% formamide, 5x SSC 

(from a 20x SSC stock: 3 M NaCl, 0.3 M sodium citrate, pH7.0), 5 mM 

ethylenediaminetetraacetic acid (EDTA) pH 5.0, 1 mg/ml Yeast RNA extract 

(Boehringer), 1 M Denhart’s solution (2% bovine serum albumin, 2% 

polyvinylpyrrolidone (PVP-40), 2% ficoll 40), and 0.1% Tween-20. Probes were then 

transferred to a 15 mL screw cap tube and diluted to a working concentration of 

approximately 0.5 µg/ml (using approximated yield estimates from the agarose gel), and 

stored at -20°C until used. 

 

2.6 Whole Mount In Situ Hybridization 

 Whole mount in situ hybridizations were performed following established 

protocols (Harland, 1991) with several modifications as described below. Procedure was 

carried out in borosilicate glass vials with phenolic screw cap (1.5 dram, VWR; Cat. No. 

66011-063). Each vial was labelled with riboprobe identity, treatment, and date via 

permanent marker, and labels were covered with a strip of transparent tape to avoid labels 

being removed if exposed to alcohols. Embryos stored in methanol were rehydrated 

through a graded methanol to aqueous series (5 minute washes in 75%, 50%, 25% 
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methanol) in tris buffered saline with 0.1% Tween-20 (Ttw). The proteinase K step was 

omitted and embryos were washed twice in Triethanolamine (0.125M), and 5µL acetic 

anhydride was added to the second wash of triethanolamine, twice, for two further washes 

of 5 minutes each. The embryos were then rinsed in Ttw, 4 washes for five minutes each, 

before being moved into RNA hybridization buffer, one wash of 10 minutes in 1:1 Ttw to 

RNA hybridization buffer, followed by one further wash of 10 minutes in 100% RNA 

hybridization buffer. The pre-hybridization step was then completed in hybridization 

buffer while the embryos were agitated at 65°C for a minimum of 1 hour, although 

performing this step for 2-3 hours tended to reduce background. The probe was then 

added and embryos were left agitating in probe solution over night at 65°C. 

 The following morning the probe solution was removed from the vials, and 

replaced with 10 minute washes of each of 100% RNA hybridization buffer, 50% 

hybridization buffer in 2x SSC, 25% hybridization buffer in 2x SSC all performed at 

65°C. At this juncture, the RNase A step was omitted without an appreciable increase in 

background. Low stringency washes were then performed to remove unbound probe 

consisting of two washes in 2x SSC at 37°C for 30 minutes each, followed by three high 

stringency washes of 0.2x SSC at 65°C for 45 minutes each. Embryos were then washed 

in Ttw for ten minutes, followed by a 10 minute wash in TBT (Ttw with 2mg/ml bovine 

serum albumin). A blocking step was then performed preceding antibody addition in 

blocking solution (TBT with 20% heat-treated sheep serum). Finally, alkaline 

phosphatase conjugated anti-digoxygenin antibody (Anti-digoxygenin-AP, Fab 

Fragments; Roche Applied Science, Cat. No. 11 093 274 910) was diluted in blocking 

solution 1:5000. Embryos were agitated overnight at 4°C. 
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 After an overnight incubation, the antibody solution was removed and embryos 

were thoroughly washed for thirty minutes in TBT for twelve washes, before a 10 minute 

wash in alkaline phosphatase buffer (100mM NaCl, 100mM Tris pH 8.4, 50mM MgCl2, 

0.1% Tween-20). The colour reaction was accomplished by adding 0.5 ml of BM Purple 

AP Substrate (Roche; Cat. No. 11 442 074 001). The colour reaction was allowed to 

proceed until the desired intensity had been reached, at which time the embryos were then 

dehydrated and subsequently rehydrated in a graded methanol series (in 25% steps) to 

stop the reaction. Once rehydrated embryos were re-fixed in Mempfa for 20 minutes, 

thoroughly washed in Ttw (4 washes for 5 minutes each) and bleached to remove pigment 

in the embryos yielding better contrast for imaging. Bleaching solution was 5% 

formamide, 0.5% SSC, 0.3% H2O2). The bleaching reaction was allowed to continue until 

the embryos had reached an acceptable level of contrast was present between the stain 

and embryo colour, embryos were washed and stored in 100% methanol until being 

imaged. Stained embryos were imagined on a Leica MZ12 dissecting microscope and 

images were captured using Northern Eclipse software (Empix Imaging, Mississauga, 

Ontario, Canada). 

  

2.6.1 Double Whole Mount In Situ Hybridization 

Double whole mount in situ hybridizations were performed according to recently 

published protocols (Koga et al., 2007) with some further modifications. The probes were 

synthesized separately, one probe was labelled with DIG-11-UTP as described above, 

while a second flourescein labelled probe was synthesized using the same protocol as for 

DIG labelled probed except that Fluorescein-12-UTP (Roche; Cat. No. 11 427 857 910) 
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was substituted for DIG-11-UTP. The product of the transcription reaction was diluted in 

RNA hybridization buffer to yield a 3x more concentrated probe than used for single in 

situ hybridizations and the two concentrated probes were mixed 1:1.   

The same in situ hybridization protocol was used for double in situ hybridizations 

as for single in situ hybridizations as described above, except that the double probe (probe 

containing the 1.5x concentrated mixture of Dig labelled and Fluorescein labelled probes) 

was added at the end of the first day in place of a single in situ hybridization probe. The 

second day of the double in situ hybridization protocol was identical to the single 

hybridization protocol except that anti-fluorescein-AP Fab Fragments (Roche; Cat. No. 

11 426 338 910) were added in place of anti-DIG-AP Fab Fragments at 1:4000 diluent. 

Washing excess antibody from the embryo was accomplished as above and the first 

colour reaction was carried out using BM-Purple AP substrate. 

Following the first colour reaction, the flourescein antibody was inactivated in 

0.1M glycine pH 2.0 as previously described (Sive et al., 2000) for 40 minutes followed 

by four ten minute washes in maleic acid buffer (100mM Maleic acid, 150mM NaCl, pH 

8.0). Embryos were then washed for ten minutes in Ttw followed by ten minutes in TBT, 

and then blocked for 90 minutes in TBT with 20% sheep serum. The Anti-DIG antibody 

was then added at a 1:2000 dilution in Blocking Solution and the embryos were incubated 

at 4°C overnight. The following day the embryos were washed thoroughly in TBT (12 

washes of 30 minutes) to remove the excess antibody. The embryos were then washed for 

10 minutes in AP Buffer before being stained in 5-Bromo-4-chloro-3-indolyl phosphate 

(BCIP: 0.5mg/ml in AP Buffer). 
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2.7 Statistical Analysis 

To quantify the area of hand1 expression in explants, the area of staining was 

measured using Northern Eclipse software (Empix Imaging; Mississauga, ON, Canada). 

Total staining area was then compared between treatments by virtue of a one way 

ANOVA with a Tukey’s post hoc test (GraphPad Prism; La Jolla, CA). The confidence 

interval was set at 95% in order to determine statistical significance. 

The length of the LPM expression domains at stage 36 was measured using 

Northern Eclipse software. The posterior border of the anterior LPM domains was 

measured as the distance from the front of the cement gland to the posterior edge of the 

staining domain at the point at which the LPM met the axial mesoderm (I have denoted 

this distance x), divided by the distance from the front of the cement glad to the point at 

which the posterior edge of the body axis met the somites (denoted y; fraction x/y). The 

exception was the hoxc10 domain that was instead measured as a fraction of the length 

from the most anterior point of the expression domain to the point at which the body wall 

met the somites (distance denoted z) divided by y (fraction z/y). These values were then 

compared by a one-way ANOVA with a confidence interval of 95% with a Tukey’s post 

hoc test. A minimum of 10 embryos was used for each experiment. 
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Chapter 3 Results  

 

3.1 Restricted Expression Domains in the Early Lateral Plate Mesoderm 

 Immediately following gastrulation, the LPM is generally considered to have only 

a rudimentary pattern, with the heart field and early hemangioblast lineages occupying 

the anterior-ventral and middle-ventral domains respectively, while the rest is considered 

homogenous. The homogeneity of the LPM can be exemplified by the expression of 

Hand that has been used as a pan LPM marker in zebrafish (Keegan et al., 2005). The 

Xenopus homologue, hand1, is expressed in the anterior and middle LPM in Xenopus, 

with a clear domain in the posterior LPM that is hand1 negative (Figure 4B). There also 

exists a region in the anterior-ventral mesoderm that is devoid of expression creating a 

hole in the staining pattern just posterior to the heart region after stage 18. This hole has 

previously been shown in the expression domain of foxf1 (Tseng et al., 2004) and scl2 

(Kumano et al., 2006) and at early stages it correlates well with early myeloid lineage 

markers. 

 Expression of Xenopus sall3 has previously been described in dorsal neural tissue 

(Hollemann et al., 1996), but I now extend the expression pattern to include a region of 

the posterior LPM that corresponds to the region that is hand1 negative, although some 

overlap is likely at stage 20 (Figure 4C). The sall3 expression domain in the posterior 

LPM is transient and lost shortly after neural fold closure (stage 20). Subsequent 

sectioning of embryos assayed for either sall3 or hand1 confirmed expression in the 

LPM. While I cannot rule out overlap between the hand1 and sall3 domains, a significant 

portion of the Xenopus LPM is sall3 positive and hand1 negative.    
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I subsequently examined LPM expression patterns of multiple genes looking for 

additional genes whose expression patterns display a restricted domain in the early LPM. 

Two other transcription factors, foxf1 (Figure 4A) and nkx2-5 (Tonissen et al., 1994) have 

restricted expression domains that mark anterior-dorsal and anterior-ventral LPM 

(myocardium) respectfully. Furthermore the enzyme responsible for retinoic acid 

synthesis, raldh2, was also found to show a restricted expression domain within the LPM 

along the anterior and dorsal edges (previously described (Koster et al., 1999)). However, 

raldh2 expression is not restricted to the LPM as it is also expressed dorsally in the 

somites. 

Patterning in the early LPM has been poorly described, with the exception of the 

early cardiovascular progenitors in the ventral LPM.  However the domains of nkx2-5, 

foxf1, hand1 and sall3 clearly demonstrate that this tissue has a complex pattern in both 

the anterior-posterior and dorsal-ventral axes by the end of neurulation. 

 

3.1.1 The Lateral Plate Mesoderm is RA Responsive 

The RA synthesizing enzyme raldh2 is differentially expressed along the anterior 

and dorsal borders of the LPM suggesting an asymmetric distribution of ligand within the 

LPM (Chen et al., 2001). Also, foxF1, hand1 and sall3 were identified to be RA 

responsive in a microarray at the same stage of development (Drysdale, personal 

communication). Therefore, I predicted that RA signalling would be involved in 

generating the early LPM pattern. I exposed post-gastrula embryos to exogenous RA, 

RAA, or a DMSO carrier control for an approximate four-hour time window throughout 

neurulation (stage 14-20) and assayed LPM marker gene expression. I observed a marked 
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Figure 4. Expression of foxf1, hand1 and sall3 in the early Xenopus embryo. Foxf1 (A) is 

expressed in the mid-late neurula stage embryo in the anterior-dorsal LPM. As the tail 

bud elongates, the foxf1 expression domain elongates to encompass the anterior two thirds 

of the LPM by the late tailbud stage. Expression of hand1 (B) is first detectable 

immediately following gastrulation and continues into the swimming tadpole stage in the 

medial LPM. At stage 20 it is clear that the hand1 staining does not extend to the 

posterior end of the LPM. Sall3 (C) is expressed during late gastrulation in the 

presumptive neural plate, and by stage 14 in the posterior LPM (arrows). Expression in 

the posterior LPM disappears by the end of neurulation, while expression in the neural 

tube persists into the late tailbud stage. The black numbers indicate the developmental 

stage of the embryo. The embryos are viewed from the side with dorsal up and the 

anterior end to the left, with the exception of the stage 12 sall3 staining where the embryo 

is viewed from the posterior end looking at the dorsal surface.  
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expansion of our anterior-dorsal marker foxf1 (Figure 5E-F) along the anterior-posterior 

axis, particularly at the dorsal most region of this domain in the RA treatment when 

compared with control embryos. In contrast, embryos exposed to RA and assayed for 

nkx2-5 expression demonstrated a reduction in expression domain size (Figure 5B-C). 

When embryos were exposed to RAA, the anterior-dorsal foxf1 domain was severely 

reduced (Figure 5D) while the anterior-ventral nkx2-5 domain remained unchanged 

(Figure 5A).   

The middle LPM marker hand1 is normally expressed in an inverted saddle shape 

and this domain is expanded towards both anterior and posterior poles of the embryo 

under exogenous RA conditions (Figure 5H-I). Conversely, the hand1 domain is 

restricted when RA signalling is blocked by addition of RAA (Figure 5G). Furthermore, 

the hole normally observed in the anterior-ventral end of the hand1 pattern in DMSO 

controls is absent in embryos treated with RA (Figure 5K-L). Finally, when embryos are 

exposed to RA, the posterior and dorsal most edge of the hand1 domain stains darker in 

all cases when compared to the rest of the domain, suggesting that hand1 is being more 

highly expressed along the posterior-dorsal border of the domain. There was no marked 

difference in hand1 staining intensity within the hand1 expression domains of RAA 

treated embryos. 

In contrast to hand1, when RA signalling is increased the posterior sall3 

expression domain is lost in the early LPM (Figure 5O). I also noted that the previously 

described sall3 expression pattern (Sparrow et al., 1998) in the neural tube was also 

changed, as staining in the basal ganglia was much darker with increased RA signalling 

(Figure 5R). Conversely, treatment with RAA has no obvious effect on the sall3 

expression domain in the LPM (Figure 5M).  
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To test if these expression domains were directly adjacent to one another in the 

LPM, I performed a double in situ hybridization with DIG probes against either, both 

foxf1 and hand1, or both hand1 and sall3. In control treated embryos (Figure 6H, Q) there 

was no gap between either of the foxf1 and hand1 domains, or the hand1 and sall3 

domains, although a region of overlap could not be ruled out.   

To confirm the results of the exogenous RA treatments, which rely on 

concentrations of RA ligand well above physiological levels, I altered the endogenous RA 

concentrations by inhibiting the function of Cyp26 with ketoconazole, thereby inhibiting 

RA catabolism and presumably increasing the availability of endogenous RA ligand. In 

addition, inhibition of Raldh2 by treating embryos with citral and DEAB, presumably 

decreasing RA signalling by inhibiting RA synthesis, was done to test whether 

endogenous RA signalling plays a role in patterning the LPM. Both foxf1 and hand1 

domains were reduced in size when the embryos were treated with either DEAB (Figure 

7G, K) or citral (Figure 7H-L) as would be expected if endogenous levels of RA were 

decreased. However, no consistent changes were observed in the expression pattern of 

foxf1 or hand1 when the embryos were treated with ketoconazole (Figure 7E, I) and 

compared to controls (Figure 7F, J). No obvious changes in the expression domains of 

either nkx2-5 or sall3 were observed under any of those conditions (Figure 7A-D, M-P).  

Therefore, decreasing the availability of endogenous RA ligand by inhibition of Raldh2 

causes a change in the size of the anterior foxf1 and middle hand1 expression domains 

supporting a role of endogenous RA in defining these LPM domains. However, 

increasing the endogenous concentrations of RA through inhibition of Cyp26 has no 

discernable effect on the expression domains within the LPM.
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Figure 5. The expression domains of nkx2-5, foxf1, hand 1 and sall3 are regulated by RA 

signaling. Embryos are treated with RAA (left panel), RA (right panel) or DMSO (center 

panel) at stage 14 and were allowed to develop until stage 20. Whole mount in situ 

hybridization for nkx2-5 (A-C) demonstrates the reduced expression domain under the 

RA treatment (C), as compared to the DMSO control (B). In contrast, the expression 

domain of the anterior-dorsal marker foxf1 (D-F) is extends further to the posterior end of 

the embryo under exogenous RA conditions (F) and reduced under treatment with the 

RAA (D) as compared to the DMSO control (E). Similarly, the middle marker hand1 (G-

L) demonstrates a reduced expression domain under the RAA treatment (G), while the 

domain is expanded when treated with RA (I) as compared to the DMSO control (H). 

Note that when viewed from the side (G-I), the greatest expansion in the hand1 domain is 

on the dorsal edge, where there is also increased staining intensity (arrowhead), when 

treated with RA. In contrast, when viewed from the side (M-O), the lateral sall3 domain 

is virtually absent under treatment with RA (O) when compared to either RAA-treated 

(M) or control embryos (N). When viewed from the anterior end (Q-S), other areas of 

sall3 expression are also affected by RA. The banded expression in the developing brain 

is reduced and there is increased expression in staining in presumptive ganglia 

(arrowhead) when compared to RAA-treated (Q) or control embryos (R). ant: anterior 

view, llv: left lateral view, ven: ventral view. 
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Figure 6.  The expression domain of hand1 overlaps with both foxf1 and sall3. Embryos 

were treated with RAA (left panel), DMSO (center panel) or RA (right panel) at stage 14 

and assayed for expression of foxf1 (A-C), hand1 (D-F, J-L), sall3 (M-O), or both foxf1 

and hand1 (G-I) or hand1 and sall3 (P-R) at stage 20. Probes for foxf1 and hand1, or 

hand1 and sall3 were Digoxygenin labeled, and detected simultaneously with an alkaline 

phosphatase conjugated anti-DIG antibody. 
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Figure 7. Decreasing endogenous RA levels altered the expression of hand1 and foxf1 but 

does not affect the expression of nkx2-5 or sall3. Embryos were treated at stage 14 with 

ketoconazole (left column) to increase endogenous RA levels by inhibiting Cyp26 and 

DEAB or citral was used to lower endogenous RA levels by inhibiting RALDH2. The 

expression domain of nkx2-5 (A-D) was not noticeably altered by any of the treatments 

when compared to DMSO controls (B). In contrast, the expression of foxf1 (E-H) was not 

obviously altered by treatment with ketoconazole (E) but both DEAB and citral (G, H) 

treatments reduced the expression domain of foxf1 as compared to the DMSO control 

embryos (F). Similarly, the size of the hand1 (I-L) domain was not clearly altered by 

ketoconazole (I) when compared to controls (J), but both DEAB and citral (K, L) 

diminished the expression domain. The expression domain of sall3 was not altered by any 

of the treatments (M-P). 
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3.1.2 Retinoic Acid Directly Regulates Hand1 Transcription 

It has been previously established in Xenopus, that the lateral plate mesoderm 

receives instructive signals from the dorsal mesoderm, as signals establishing the left-

right axis originating from the node are passed onto the LPM during this stage of Xenopus 

development (Schweickert et al., 2007). Therefore, it was a distinct possibility that RA 

could act on the dorsal mesoderm and that the observed changes in LPM expression 

domains were a secondary effect to RA activities within the dorsal mesoderm. To test 

whether RA directly alters the LPM, or at least the ventral pole of the embryo, 

independent of dorsal axial mesoderm and neural plate, I created ventral tissue explants 

lacking all dorsal tissue (Figure 8). Once isolated, I treated the explants with RA or RAA, 

and looked for changes in the expression domains of foxf1, hand1 and sall3. Both hand 1 

(Figure 8A-C) and sall3 (Figure 8G-M) LPM expression domains are altered under 

exogenous RA treatments in the absence of dorsal tissue implying that RA is directly 

affecting the ventral side of the embryo. As the explants could be laid flat after staining, I 

was able to measure the total area of the hand 1 expression domain. I found that total area 

of expression was significantly different (p<0.05) between all treatments (Figure 8I), with 

the expression domain in RA treated explants significantly larger, and RAA treated 

explants significantly reduced when compared to control explants, mirroring the effect 

seen in whole embryo treatments.  

The sall3 domain present in the DMSO control explants and absent in RA treated 

explants similar to whole embryo treatments (Figure 8G-H). These explant results 

demonstrate that RA can pattern the LPM independent of signals from the dorsal side of 

the embryo. An interesting result was observed when explants were assayed for foxf1 

expression (Figure 8D-F).  In untreated ventral explants, foxf1 was detectable 
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Figure 8. RA signalling affects the expression of hand1 and sall3 in the absence of dorsal 

tissue. As in the whole embryo, the hand1 expression domain area was found to be 

enlarged under RA treatment (A) and reduced with RAA (C) when compared to controls 

(B). Measurements and comparison of the total staining area confirmed that this change 

was statistically significant (I). Explants lacking dorsal tissue show an expansion of foxf1 

(D-F) expression throughout the LPM in all treatments. Ventral explants also show the 

same lack of sall3 expression in the LPM (arrows) when treated with RA (F) when 

compared to control explants (E). In each panel, ventral explants are positioned with the 

anterior end toward the top of the image.    
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throughout the entire LPM. This suggests that an inhibitory factor controlling foxf1 

expression was removed in isolation from dorsal tissue. 

As the RARs function as ligand activated transcription factors, I wished to 

determine if RA signaling was directly regulating hand1 and sall3 expression. Embryos 

were treated with cycloheximide to inhibit protein synthesis 15 minutes prior to treatment 

with RA (Cascio and Gurdon, 1987). If RA is not acting through RARs directly bound to 

the promoter regions of hand1 or sall3, their expression should not be altered. Following 

in situ hybridization, I observed that addition of RA altered the hand1 domain even in the 

presence of cycloheximide (Figure 9 A-D), suggesting that RA is acting directly on hand1 

expression.  

In contrast, the sall3 domain was not completely absent in either the RA or RA 

and cycloheximide treatment (Figure 9G-H), although it does seem to be consistently 

reduced from controls (Figure 9E). The reduction in sall3 domain is not as obvious as the 

previous RA treatements (section 3.1.1, Figure 5) because this treatment was limited to 

one hour before fixation due to the toxic effects of cycleheximide. However, since the 

sall3 domain is detectable in each treatment, drawing definite conclusions regarding sall3 

being a direct target of RA signalling is difficult. 

 

3.1.3 The RA Induced Changes of LPM Patterning are Permanent 

Since	  the	  observed	  alterations	  to	  the	  LPM	  are	  occurring	  within	  a	  relatively	  

short	  developmental	  time	  window,	  I	  wished	  to	  test	  if	  these	  changes	  are	  permanent	  

or,	  if	  RA	  signalling	  is	  returned	  to	  normal,	  the	  LPM	  pattern	  is	  able	  to	  recover.	  	  I	  

exposed	  early	  neurula	  embryos	  to	  RA	  or	  RAA,	  and	  cultured	  them	  until	  stage	  20	  
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Figure 9. RA directly regulates the middle hand1 domain. Embryos treated with 

cycloheximide at stage 14 had no change in the expression of either hand1 (B) or sall3 

(F) when compared to control embryos (A, E) when assayed 90 minutes later. Expansion 

of the hand1 domain, when treated with RA (C), was also observed in embryos treated 

with both RA and cycloheximide (D). When the embryos were treated with RA for one 

hour, there was a reduction in the sall3 expression domain although not the severe loss 

seen in the 4-5 hour treatments (G). In the presence of cycloheximde, the reduction in the 

sall3 domain was not observed (H). In contrast, the expression domain of sall3 under 

treatment with RA and cycloheximide is not reduced to the extent seen in RA alone (H). 

In each panel the left lateral side is shown with the anterior end to the left, dorsal to the 

top. Cycloheximide (Cx). 

	  

 

 

 

 



	  

	  

72	  

 

 

 

 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  



	  

	  

73	  

when	  the	  neural	  tube	  is	  sealed.	  In	  order	  to	  then	  restrict	  abnormal	  RA	  levels	  to	  a 

defined	  developmental	  time	  window,	  equimolar	  RAA	  was	  added	  to	  the	  embryos	  that	  

had	  previously	  been	  treated	  with	  RA,	  and	  RA	  was	  added	  to	  RAA	  treated	  embryos 

effectively	  neutralizing	  the	  effect	  of	  either	  treatment.	  This	  neutralization	  was	  

necessary	  since	  simply	  flushing	  the	  embryos	  was	  unable	  to	  remove	  the	  lipophillic	  

RA	  ligand	  and	  insufficient	  to	  return	  the	  level	  of	  RA	  signalling	  to	  normal	  (Figure	  10).	  	  

Furthermore,	  a	  1:1	  concentration	  of	  RA	  to	  RAA	  was	  found	  to	  be	  sufficient	  to	  

neutralize	  the	  effect	  of	  either	  on	  RA	  signalling	  as	  assayed	  by	  cyp26	  expression,	  a	  

direct	  target	  of	  RA	  signalling	  (Figure	  11M-‐O).	  The	  embryos	  were	  then	  cultured	  for	  

one	  hour	  in	  the	  combination	  of	  RA	  and	  RAA	  before	  being	  thoroughly	  flushed	  and	  

moved	  into	  a	  new	  culture	  solution	  without	  exogenous	  RA	  or	  RAA.	  The	  embryos	  were	  

fixed	  at	  the	  tailbud	  stage	  (Stage	  34-‐36). 

Both foxf1 and hand1 but not sall3 expression persists in the LPM after the early 

tailbud stage. Therefore, I could only assay for permanent alterations in the foxf1and 

hand1 expression domains. To extend the observations of altered patterning within the 

posterior LPM, I also assayed for the expression of two additional transcription factors 

that are expressed in the LPM at later stages with restricted expression domains: hoxc10 

and pitx2. Pitx2 is expressed in the anterior to medial LPM during the late tailbud stages 

(Figure 12B) on the left side of the embryo (Campione et al., 1999). Hoxc10 is normally 

expressed in the posterior half of the LPM (Figure 12K) during the mid to late tail-bud 

stage (Christen et al., 2003). 
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Figure 10.  Exogenous RA cannot be flushed from the embryo. Embryos were treated 

with RAA (A-C), DMSO (D-F) and RA (G-I) at stage 14 and assayed for cyp26 as a 

measure of active RA signalling at stage 20. To determine if RA signalling could be 

washed from the embryo, embryos were further treated with RA for 90 minutes beginning 

at stage 14, flushed thoroughly at the end of the 90 minute time interval (roughly stage 

16) and then washed at 30 minute intervals untile stage 20 (J-L). Finally, a last treatment 

was performed where embryos were treated with RA at stage 14 for 90 minutes, and then 

an equal concentration of RAA was added for a further 30 minutes, before the embryos 

were flushed thoroughly, and washed at 30 minute intervals until stage 20 (M-O).  ant: 

anterior view (left panel), dor: dorsal view (center panel), pos: posterior view (right 

panel). 
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Figure 11. Embryos treated with 1:1 RA:RAA demonstrate a proper dorsal expression 

domain of cyp26. Embryos were treated with RAA (A-C), DMSO (D-F), RA (G-I), 2:1 

RAA:RA (J-L), 1:1 RAA:RA, 1:2 RAA:RA at stage 14 and assayed by whole mount in 

situ hybridization to determine the proper dosage of RA:RAA required to neutralize 

abnormal RA signaling. The dorsal neural tube domain of cyp26 expression was used to 

assay for the proper dosage in the medial embryo (arrow heads in middle column). 

Interestingly, although the medial LPM showed signs of rescue, the expression domains 

in both the anterior and posterior pole were not rescued. Anterior views of embryos are 

shown in the left column, dorsal views in the center column, and posterior in the right 

column. 
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The foxf1, pitx2 and hand1 domains extended further posterior in RA treated 

embryos (Figure 12C, F, I) when compared to DMSO control treated embryos (Figure 

12B, E, H). Exposure to RAA during the same time window demonstrated a restriction of 

the expression domains of these three transcription factors towards the anterior end of the 

embryo (Figure 12A, D, G). To quantify these results, the lengths of the expression 

domains from the cement gland to the posterior extent of the expression domains was 

compared to the length from the cement gland to the point where the posterior trunk 

meets the somites. Significant changes were found for the lengths of the foxf1, pitx2, and 

hand1 domains (Figure 12O, P, Q), confirming my earlier qualitative observations.  

The anterior edge of the hoxc10 expression domain was displaced anteriorly under 

treatment with RAA (Figure 12J). This displacement was quantified by taking a ratio of 

the length from the back of the body axis to the front of the expression domain to the 

length of the body axis (cement gland to posterior trunk/somite junction) and the 

difference was found to be statistically significant between the RAA treated embryos and 

the DMSO control (Figure 12R). However, RA had no significant effect on the 

expression domain of hoxc-10. Therefore, altered RA signalling during a restricted four 

hour time window between stages 14 and 20, was sufficient to permanently alter the 

expression domains of our anterior LPM markers, extending their expression domains 

further posterior. Conversely decreased RA signalling restricted the expression domains 

of all of the anterior-middle markers, and extended our posterior marker, hoxc10, further 

anterior.   
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Figure 12.  Changes to the LPM patterning persist after time restricted RA treatments. 

Experimental changes in RA signaling were limited to between stages 14-20 and the 

embryos were fixed at stage 34-36 for in situ hybridization for pitx2 (A-C), foxf1 (D-F), 

hand1 (G-I), and hoxc10 (J-L). The expression domain is reduced under treatment with 

RAA (A,D, and G), and expanded under RA (C, F, and I) as compared to the DMSO 

controls (B, E, and H) for all of foxf1, pitx2, and hand1. While the domain of the posterior 

marker hoxc10 was anteriorly displaced under RAA (J) as compared to DMSO controls 

(K), the domain is unaffected under treatment with RA. In each case the lengths of the 

domains were measured as a ratio of the length from the cement gland to the posterior 

LPM staining (x) to the length from the cement gland to the back of the body (y) for the 

anterior foxf1, pitx2, and hand1.  The differences in the length of the staining domain 

were found to be significant (M, N and O) between all treatments in embryos assayed for 

these three genes. Hoxc10 was similarly measured (P) using the length of the body axis 

from the cement gland to the back of the body axis (y), however the length of the domain 

was measured from the back of the body axis to the anterior edge of the domain (z), and 

was found to be significantly different between the DMSO controls and the RAA 

treatment however no significant difference was found between RA treatments and 

controls. In all embryos the left lateral side is shown, with the anterior pole to the left, 

dorsal to the to
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3.2 FGF Signalling Contributes to LPM Patterning 

While proper RA signalling is clearly important for patterning the early LPM, RA 

signalling alone cannot explain all aspects of the observed of the LPM pattern. The effect 

of dorsal tissue on foxf1 expression suggests that a second signalling mechanism is 

required to inhibit its expression in the posterior LPM. I hypothesized that the FGF 

signalling pathway is a good candidate since fgf4 is expressed in the posterior pole of the 

embryo, while fgf8 is expressed both in the posterior pole of the embryo as well as at the 

anterior end of the LPM in the heart region. To test if FGF signalling was necessary for 

patterning of the LPM after gastrulation, I used a chemical FGFR inhibitor, SU5402, 

which binds to the intracellular ATP binding domain of the FGFRs (Mohammadi et al., 

1997) and inhibits autophosphorylation between the RTK tails. This approach was used 

because it allowed greater control over the timing of FGF inhibition, and allowed me to 

avoid compounding the results with earlier effects of FGF inhibition on early mesoderm 

formation (Amaya et al., 1993) (see section 1.6.1). 

 

3.2.1 FGF Signalling is Essential for LPM Patterning  

To test if FGF signalling was necessary post gastrulation for proper patterning of 

the LPM we treated embryos at stage 12.5-13, immediately following blastopore closure 

and as soon as the neural plate is evident, and fixed embryos at stage 20. While SU5402 

has been used at concentrations of up to 100 µM in Xenopus (Fletcher and Harland, 

2008), we found that by adding 0.1 mM ATP, as per instructions (CalBiochem) that it 

was possible to see a full loss of FGF signalling phenotype including loss of the tail 

outgrowth (Figure 13), loss of the heart field (Figure 14), and loss of sprouty2 expression, 
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a member of the FGF synexpression group (Furthauer et al., 2004) at a 10 µM 

concentration (Figure 15). Although SU5402 has been described as a specific FGFR1 

inhibitor, the original paper did not test its effectiveness at inhibiting the other FGFRs 

(Mohammadi et al., 1997) and it has since been shown to inhibit both FGFR2 (Bernard-

Pierrot et al., 2004; Moftah et al., 2002) and FGFR3 (Grand et al., 2004). It is therefore 

likely that the SU5402 treatments show at least some inhibition of all of the FGFRs. 

Foxf1, expressed in the anterior-dorsal LPM, was expanded toward the ventral 

pole of the embryo when FGF signalling was blocked with 10 µM SU5402 (Figure 16 A-

B).  In addition, foxf1 is normally restricted to the anterior half of the LPM at stage 20, 

but when FGF signalling is inhibited foxf1 expression is up regulated at the posterior-

ventral end of the LPM on the ventral side of the closed blastopore (Figure 16C-D). 

Blocking FGF signalling also resulted in a posterior expansion of the middle hand1 

domain, particularly evident in the dorsal half of the LPM (Figure 16E-F). The posterior 

border of the hand1 expression domain was also extended further posterior, approaching 

the neural folds more closely in the SU5402 treatment than in the DMSO control (Figure 

16G-H).   

In the posterior LPM, the sall3 expression domain was displaced further posterior 

when FGF signalling was inhibited, in a domain reminiscent of the ectopic foxf1 domain 

next to the closed blastopore (Figure 16I-L). Furthermore, the bra domain, normally 

present in the most posterior mesoderm (the tail bud domain), was completely 

undetectable after treatment with 10 µM SU5402 (Figure 16M-N) as has been described 

(Fletcher and Harland, 2008). Therefore, over the entire LPM there is a coordinated shift 

of all expression domains towards the posterior end of the embryo when FGF signalling is 

lost. 
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Figure 13.  ATP is necessary for full efficacy of SU5402 at a 10 µM concentration.  

Embryos were treated with DMSO+ATP (A), 10 µM SU5402 (B) or 10 µM SU5402 in 

conjunction with 0.1 mM ATP (C) at stage 12.5. Embryos treated with SU5402 elongated 

similar to DMSO controls, while embryos treated with SU5402 in conjunction with ATP 

demonstrate the truncated phenotype characteristic of a loss of FGF signalling.   
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Figure 14.  ATP is required in conjunction with SU5402 at a 10 µM concentration to 

block heart specification. Embryos that were treated with 10 µM SU5402 at stage 12.5 

show proper patterning of the heart tube (C-D) shown by expression of cardiac Troponin 

I (cTnI) at stage 34, whereas embryos treated with 10 µM SU5402 and 1mM ATP fail to 

specify and form the heart tube (E-F); a known effect resulting from a loss of FGF 

signalling (Keren-Politansky et al., 2009; Samuel and Latinkic, 2009). 
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Figure 15. 10 µM SU5402 in conjunction with ATP yields the full loss of Fgf signalling 

phenotype. Effectiveness of SU5402 is based on absence of sprouty2 (A-L) expression, 

absence of heart development shown by cTnI expression (M-X), and a loss of tail bud 

outgrowth. A dose of 1µM SU5402 at stage 12.5 was sufficient to completely block heart 

development (Q-R), but not sprouty2 expression (E-F) or tailbud outgrowth. Doses of 10 

µM SU5402 higher were required to fully block all of sprouty2 expression (I-J), heart 

development (U-V) and tailbud outgrowth (I). Higher doses of 20 µM SU5402 (P-R) also 

blocked both sprouty2 expression (K-L), heart development (W-X) and tail bud 

outgrowth (K), but also led to an increase in lethality by the mid tailbud stage. 
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Figure 16.  Fibroblast Growth Factor signalling is necessary for proper LPM patterning.  

The expression domains of foxf1, hand1, sall3 and bra were assayed at stage 20 for 

changes when FGF signalling was inhibited with SU5402 at stage 12.5. The anterior 

domain of foxf1 (A-D) was expanded toward the ventral side of the embryo (arrowheads 

in A and B), and was upregulated at the posterior end of the LPM just ventral to the 

blastopore (arrowheads in C and D). The posterior border of hand1 (E-H) is displaced 

further posterior, particularly at the dorsal edges of the domain (arrowheads in E-H). The 

LPM domain of sall3 (I-L) is displaced posterior with a loss of FGF signalling (white 

arrowheads in K-L) while the posterior neural tube domain is undetectable (black 

arrowheads in K-L). Expression of bra in the tail bud domain is completely lost in the 

absence of FGF signalling (arrowheads in M-N). llv: left lateral view, embryos oriented 

with the anterior pole toward the right of the image, dorsal at top. pos: posterior view, 

embryos oriented with dorsal at top of image. 
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Since early LPM patterning requires FGF signalling, I also wanted to confirm that 

later LPM patterning was dependent on FGF. To test this possibility, FGF signalling was 

inhibited from the early neurula to the tailbud stage with either 10 µM SU5402 in 

conjunction with ATP, or a DMSO and ATP control. Treated embryos were then assayed 

for the expression of hand1, foxf1, hoxc10 and cTnI which all have restricted expression 

domains within the LPM at later stages. A loss of FGF signalling from shortly after 

gastrulation until the late tail bud stages (stage 32-34) resulted in a stunted embryo 

phenotype, as has been previously described (Amaya et al., 1991; Amaya et al., 1993; 

Fletcher and Harland, 2008). As I have previously shown in the RA experiments, both 

hand1 and foxf1 are normally expressed in the anterior two thirds of the LPM at the early 

tailbud stage, with a defined area free of staining in the posterior LPM in both cases. 

However, the expression of both markers was detectable in the dorsal LPM over the 

entire anterior-posterior axis, from the anterior end to the closed blastopore when FGF 

signalling was blocked (Figure 17A-D). Conversely, hoxc10 expression, that is normally 

restricted to the posterior half of the LPM, was entirely absent when FGF signalling is 

lost (Figure 17E-F). Lastly, the expression of cTnI was inhibited under treatment with 

SU5402 (Figure 17G-H).   

 

3.2.2 FGF and RA Signalling Interact in Patterning the LPM 

Since both RA and FGF are necessary to pattern separate areas of the LPM, and 

have been previously shown to form mutually antagonistic gradients in other tissues, I 

wished to test if the two pathways interacted in patterning the LPM. To determine if the 

RA signalling pathway directly impacts FGF signalling, embryos were treated with 1 µM 
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Figure 17.  FGF is required for the patterning of late LPM markers. Hand1 (A, B) and 

foxf1 (C, D) are normally restricted in the anterior and middle LPM with a clear posterior 

domain free of expression in both cases. When embryos were treated with SU5402 at 

stage 12.5 both hand1 (B) and foxf1 (D) were observed along the entire anterior-posterior 

axis by stage 32.  Conversely, the LPM expression domains of both hoxc10 (E-F; 

normally expressed in the posterior half of the LPM) and cTnI (G-H; marker of cardiac 

differentiation) were completely undetectable when FGF signalling is inhibited, although 

expression of hoxc10 in the somites and neural tube is still observed. A-F: lateral view of 

the embryos is shown, with anterior toward the left, dorsal at top. G-H; ventral view of 

the heart region is shown, with anterior toward left. 
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RA, RAA or a DMSO control and assayed for both fgf4 and fgf8 expression at the end of 

neurulation. When RA signalling was antagonized, the anterior trunk domain of fgf8, 

located just posterior to the cement gland, was decreased in intensity in comparison to 

staining in the pituitary anlagen (Figure 18D-E). However, the posterior domains of both 

fgf4 and fgf8 remained unaffected. Increasing RA signalling by treatment with all-trans 

RA resulted in an increase in the fgf8 expression domain in anterior trunk (Figure 18E-F), 

becoming much thicker and surrounding the entire cement gland rather than residing 

posterior to it. Fgf8 expression in the posterior neural tube was also extended much 

further anterior along the neural folds (Figure 18H-I), which is in agreement with 

previous results (Moreno and Kintner, 2004). Conversely, the expression domain of fgf4 

was decreased in the posterior neural tube to essentially background levels (Figure 18B-

C).   

Finally, I used sprouty2 expression as an assay of active FGF signalling. Sprouty2 

is normally expressed in both anterior and posterior domains overlapping with the fgf8 

expression domains (Figure 18K, N). When RA signalling is increased the anterior 

domain of sprouty2 becomes much broader in both the heart region and the pituitary 

anlagen (Figure 18L). Expression of sprouty2 is also increased in the neural tube (Figure 

18O), as it is normally present in the posterior half of the neural folds, but is displaced 

much further anterior with increased RA signalling. 

To test if FGF signalling impacted the RA signalling system, I treated embryos at 

stage 12.5-13 with 10 µM SU5402 and assayed at the end of neurulation for both raldh2, 

the enzyme predominantly responsible for synthesizing all trans RA in vivo, and cyp26, 

the enzyme responsible for RA catabolism. Raldh2 is normally expressed in the anterior 

half of the somites and dorsal LPM, as well as the anterior trunk along the anterior border
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Figure 18.  The RA and Fgf pathways regulate each other. The levels of RA signalling 

(A-I) were altered by addition of a synthetic RA antagonist (left column) or all-trans RA 

(right column) at stage 12.5 and compared to a DMSO control (center column). Embryos 

were assayed for fgf4 (A-C) and fgf8 (D-I) expression at stage 20. The posterior domain 

of fgf4 (a) is lost in RA treated embryos (C) when compared to the control (B), but 

unaffected in embryos treated with RAA. Expression of fgf8 however is expanded both 

anteriorly (E-F) and posteriorly (H-I; compare distance between arrowheads (d) marking 

the anterior limits of domain, and (e) marking posterior limits of domain) under treatment 

with RA. Decreasing RA signalling also reduces the anterior domain of fgf8 underlying 

the heart region (compare ratio of staining intensity between (b) marking the pituitary 

anlagen to (c)). A similar effect is seen with sprouty2 expression (J-O), as its domain is 

increased with RA in both the anterior heart region (L; arrowhead f) and it extends further 

anterior (g) in the dorsal neural tube (O) when compared to controls (K-N). Conversely, 

embryos were treated with SU5402 at stage 12.5 and assayed for expression of raldh2 (P-

Q) or cyp26 (R-S) at stage 20 to determine the effect of a loss of FGF signalling on the 

RA signalling pathway. The expression domain of raldh2 was expanded posterior (Q) 

(arrowhead: h – marking posterior limit of expression domain) as compared to control 

embryos (P). Cyp26, normally present in the posterior LPM tailbud domain (R; 

arrowhead i) is undetectable when FGF signalling is inhibited (S). Ant: anterior view with 

dorsal at top of image. Dor: dorsal view with anterior at top. Llv: left lateral view with 

anterior toward left, dorsal at top of image. Pos: posterior view with dorsal at top. 
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of the LPM. Inhibiting FGF signalling caused a posterior expansion of the dorsal raldh2 

domain much further posterior in the somites and LPM than in control embryos (Figure 

18 P-Q). Cyp26 is also normally expressed in the posterior neural tube and tail bud in a 

domain reminiscent of the fgf4 and fgf8 expression domains, and in the tail bud region 

that corresponds to the normal bra domain. Inhibiting FGF signalling caused a complete 

loss of the posterior cyp26 domain (Figure 18R-S), which was no longer detectable in the 

posterior neural folds or the adjacent tail bud domain, consistent with previous studies 

(Moreno and Kintner, 2004). 

To confirm that RA signalling was necessary for expression of the Fgf ligands, I 

also treated embryos with inhibitors of Raldh2 (ketoconazole) and Cyp26 (DEAB), the 

endogenous enzymes primarily responsible for RA synthesis and catabolism respectively.  

A reduction in RA levels by treatment with DEAB caused a similar reduction in fgf8 

staining in the anterior domain to that seen with RAA treatments (Figure 19 H-I), 

although to a lesser degree. However, increasing endogenous RA signalling by treating 

with ketoconazole did not seem to have an obvious effect on fgf8 expression (Figure 19G-

H). Neither an endogenous increase or decrease in RA signalling led to obvious changes 

of the sprouty2 domain (M-R). 

 

3.2.3 Synergistic Effects Between RA and FGF Signalling on LPM Patterning 

Since the RA and FGF signalling pathways seem to be antagonistic in patterning 

the LPM, I wished to test if up-regulating RA signalling and inhibiting FGF signalling 

would show synergistic effects on LPM patterning. I treated embryos at stage 12.5-13 

with RA, SU5402 or both and assayed for the expression of LPM markers at stage 20. As 
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Figure 19.  Altering the availability of endogenous RA ligand affects FGF signalling.  

Expression of cyp26, a biomarker of RA signalling, is slightly increased under treatment 

with ketoconazole (B, E), and decreased with DEAB (C, F) as compared to control 

embryos (A, D). The anterior fgf8 expression domain (arrowhead a) was unchanged with 

a moderate increase in RA signalling when treated with ketoconazole (H) was also 

reduced in comparison to expression in the pituitary anlagen (arrowhead b) under 

treatment with DEAB (I) when compared to controls (G). However consistent changes 

were seen with either ketoconazole or DEAB on the posterior domain of fgf8 expression 

(J-L). Also, no obvious and consistent changes were seen on the size and position of the 

sprouty2 domain (M-R). 
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expected, treating with either RA or SU5402 individually drastically reduced the 

expression domain of nkx2-5 when compared to control embryos (Figure 20 A-C). 

However, when embryos were treated with both RA and SU5402 expression of nkx2-5 

was completely abolished (Figure 20 D). Furthermore, Isl1, a marker of the secondary 

heart field (Cai et al., 2003; Moretti et al., 2006; Sun et al., 2007), displayed a similarly 

reduced expression domain as nkx2-5 above when treated with either RA or SU5402 

independently as compared to controls (Figure 20E-G). However, Isl1 was completely 

undetectable in the heart domain when treated with RA and SU5402 together (Figure 

20H). Conversely, the foxf1 expression domain was expanded when either RA signalling 

was increased, or when FGF signalling is decreased (Figure 20I-K). However it was 

detectable throughout the entire LPM when embryos were treated with both RA and 

SU5402 (Figure 20L).   

Lastly, hand1, sall3 and bra were also assayed for changes in expression domain 

(Figure 20M-X). However additive effects between treatments were difficult to determine 

since the hand1 domain changes are indistinguishable between the RA, SU5402 and RA 

and SU5402 treatments. The sall3 domain is completely undetectable when treated with 

either RA or RA and SU5402, thus additive effects could not be demonstrated. The same 

issue existed with the bra domain, because bra was undetectable when treated with 

SU5402 or a combination of RA and SU5402.   
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Figure 20.  Retinoic acid and FGF are opposing signalling molecules in patterning the 

LPM. Embryos were treated at stage 12 with RA, SU5402 or both RA and SU5402 and 

assayed by whole mount in situ hybridization for expression of nkx2-5 (arrowhead a), Isl1 

(arrowhead b) and foxf1 at stage 20. Treating embryos with RA reduces the expression 

domain of both nkx2-5 (B) and Isl1 (F) compared with controls (A, E). Significantly 

reduced domains of nkx2-5 and Isl1 were also present in SU5402 treated embryos (C, G), 

however when embryos are treated with both RA and SU5402 neither marker is 

detectable (D, H).  The expression domain of foxf1 was expanded in both the RA (J) and 

SU5402 (K) treatments when compared to controls (I), however when embryos were 

treated with both RA and SU5402 foxf1 expression was detectible across the entire LPM 

although expression was graded. The expression of hand1 (M-P), sall3 (Q-T) and bra (U-

X) was also analyzed, however the RA+SU5402 treatment was indistinguishable with one 

or more of the single treatments, thus I was unable to assess an additive effect between a 

gain of RA and loss of Fgf signalling. Ant: anterior view with dorsal at top of image.  

Pos: posterior view with dorsal at top of image. 
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3.3 Early Cardiovascular Progenitors 

 To determine relevance for the early LPM patterning process I have described, 

and the RA and FGF induced alterations on this pattern, I decided to examine how 

altering RA and FGF signalling would impact the early cardiovascular system. The 

cardiovascular system, one of the earliest organ systems to develop, is derived from the 

LPM. Furthermore, previous evidence demonstrating that both RA and FGF signalling 

were important to proper specification of one or more of the cardiovascular lineages (see 

sections 1.5.2 and 1.6.1) suggests that my manipulations of the early patterning event (see 

sections 3.1 and 3.2) could be correlated with altered specification of the early 

mesodermal precursor cells that will give rise to the cardiovascular lineages.   

 

3.3.1 FGF Signalling is Necessary for Heart Field Specification and Maintenance 

I have shown that during the neurula stage of embryogenesis FGF signalling is 

necessary for early heart field specification, in line with previous results (Keren-

Politansky et al., 2009; Samuel and Latinkic, 2009), while RA signalling during this same 

satge is inhibitory as assayed by either nkx2-5 or isl1 expression (see section 3.2.3). 

Interestingly, while RA signalling is detrimental to the heart field into the early tail bud 

stages (stages 20-24) (Drysdale et al., 1997), it is also required for proper morphogenesis 

(Collop et al., 2006), suggesting tight control over this pathway is necessary throughout 

cardiac development. Therefore, since the role of RA in heart development is well 

documented in Xenopus, I wished to further characterize the requirement of FGF 

signalling on heart field specification, in particular to determine the temporal 

requirements of FGF signalling. 
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Embryos were treated with 10 µM SU5402 at successively later stages and 

assayed for effects on gross heart morphology and differentiation using the expression of 

nkx2-5 and cTnI as markers. If FGF signalling is inhibited immediately after gastrulation 

(stage 12.5), early expression of nkx2-5 is lost and later differentiation is blocked as 

assayed by cTnI expression (Figure 21B, F). Similar results were also obtained if FGF 

signalling was blocked after stage 20 (Figure 21C, G). If FGF signalling was inhibited 

after stage 24, expression of both nkx2-5 and cTnI was detected, but the heart did not 

form a tube, nor loop (figure 21D, H). 

Since it is possible to flush the inhibitor out of the embryo and thus restore normal 

FGF signalling (Marques et al., 2008) I could narrow down the temporal requirement for 

FGF signalling in cardiogenesis. To test if heart development is able to recover after FGF 

signalling is restored, I treated embryos at stage 12.5, and then restored FGF signalling by 

removing SU5402 and thoroughly flushing. When SU5402 was removed by stage 20, 

expression of both nkx2-5 and cTnI recovered by stage 32 (Figure 21J, N). However, 

heart morphology was clearly abnormal. Nkx2-5 and cTnI expression was present in two 

bilateral patches, with no indication of tube formation. If the inhibitor was removed at the 

early tail bud stage (Stage 22) both nkx2-5 and cTnI domains were present in similar 

bilateral domains but the size of these domains was further reduced compared to controls 

(Figure 21K, O). However, if SU5402 was not removed until stage 26, neither the 

expression of nkx2-5 nor cTnI was observed (Figure 21L, P).  

 

3.3.2 RA Signalling Affects the Boundaries of the Vascular System 

I have previously demonstrated that RA signalling is necessary for both properly 

patterning the LPM, as well as early heart specification (Figure 20). Therefore, I tested 
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Figure 21.  FGF signalling is necessary to maintain heart specification and for 

morphogenesis. Embryos were treated with SU5402 at stages 12.5 (T12.5), 20 (T20), or 

24 (T24) to determine when FGF signalling is necessary for heart development and 

assayed for expression of nkx2-5 (A-D) or cTnI (E-H). FGF signalling was inhibited at 

successively later stages (top panel: A-H) and compared to control embryos (A and E). 

Embryos treated with SU5402 at either stage 12.5 (B and F) or stage 20 (C and G) 

demonstrate a complete loss of heart marker expression by stage 32, while embryos 

treated at stage 24 (D and H) show expression of both nkx2-5 and cTnI but no discernable 

heart tube. FGF signalling was also inhibited at stage 12.5 and restored at later stages by 

removing the inhibitor at stages 20 (W20), 24 (W24) and 26 (W26) (bottom panel: I-P) 

and compared to control embryos (I and M) and assayed for nkx2-5 (I-L) or cTnI (M-P). 

When FGF signalling is restored by either stage 20 (J and N) or stage 22 (K and O) both 

heart markers are expressed however a normal heart tube is not formed. If signalling is 

not restored until stage 26 (L and P) neither nkx2-5 or cTnI are detectable. White arrows 

mark the heart region in each panel. 
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whether altering RA signalling also affects the specification of the vascular system. To 

visualize the developing vascular system I used two transcription factors essential for the 

endothelial lineage: etv2 and aplnr. In control embryos there is a vascular free region in 

the posterior trunk of the embryo where neither of the etv2 or aplnr domains extend to the 

posterior limits of the trunk. This vascular free zone is evident in expression patterns of 

various vascular markers demonstrated by others (Cox et al., 2006; Meadows et al., 2009; 

Salanga et al., 2010; Xu et al., 2009).   

Embryos were treated with RA or RAA at stage 14 and fixed and assayed at stage 

32-34. When RA signalling was blocked with an RA antagonist, there were no obvious 

changes in the expression domains of either etv2 or aplnr when compared to control 

embryos (Figure 22 A-B, G-H). However, increasing RA signalling by treating the 

embryos with exogenous all trans RA caused a posterior expansion in the expression 

domains of both etv2 and aplnr (Figure 22E-F, K-L), and an overall reduction in the 

vascular free zone. At the anterior end of the embryo, expression in the rostral lymph sac 

is also significantly decreased with increased RA signalling (Figure 22E, K). This 

suggests that overall vascular specification is not dependent on RA signalling, as a loss of 

RA does not significantly affect vascular specification, however RA may be involved in 

defining the boundaries of the vascular plexus. 

 

3.3.3 FGF Signalling is Necessary to Restrict Early Vascular Specification 

 Since FGF signalling was required for patterning the LPM and for differentiation 

of the heart, I examined the role of FGF signalling in patterning the vascular system.  

Embryos were treated with 10 µM SU5402 at stage 12.5, and allowed to develop until the 

tail bud stage (stage 32) when they were fixed and assayed for expression of the vascular 



	  

	  

108	  

 

 

 

Figure 22.  RA and FGF signalling are required for defining boundaries of the vascular 

plexus. Embryos treated at stage 14 with a synthetic RA antagonist (RAA), all- trans RA 

or a DMSO control (Top panel: A-L) and assayed for etv2 (A-F) or aplnr (G-L). While no 

obvious changes are present after treating embryos with RAA (A-B and G-H), the 

posterior limit of the LPM vasculature (white arrowheads) is extended further posterior in 

RA treated embryos (E-F and K-L) when compared with control embryos (C-D and I-J). 

The staining seen in the rostral lymph sac (RLS; red arrows in C and I) is also absent in 

embryos treated with RA (red arrows in E and K). To inhibit FGF signalling, embryos 

were treated with DMSO or SU5402 at stage 12 (Bottom panel: M-T) and allowed to 

develop until stage 32 when vascular pattern was assessed by expression of etv2 (M-P) 

and alpnr (Q-T). Both etv2 (M-N) and aplnr (Q-R) are normally restricted from the 

posterior end of the LPM. However, when FGF signalling is lost the expression domains 

of both etv2 (O-P) and aplnr (S-T) are extended to the posterior end of the trunk (white 

arrows). Also, the anterior gap (black arrows) in vasculature between the RLS (red 

arrows) and trunk vasculature corresponding to the location of the developing heart is 

absent in SU5402 treated embryos.  
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markers etv2 and aplnr. The vascular free zone, shown as an absence of etv2 and aplnr 

expression in control embryos, was lost when FGF signalling was inhibited, and both etv2 

and aplnr were subsequently expressed along the entire anterior-posterior axis in the LPM 

(Figure 22 O-P, S-T). In addition, the gap in staining between the rostral lymph sac and 

the trunk vasculature, seen in the controls and normally occupied at least in part by the 

heart, is absent (Figure 22O, P). In the SU5402 treated embryos the trunk vasculature is 

continuous with staining in the rostral lymph sac.    

Since SU5402 is known to cross-react with the Vegf receptor (Mohammadi et al., 

1997), albeit with much less affinity, I tested whether the effects of SU5402 on the early 

cardiovascular system were due to a loss of Vegf signalling. Embryos were treated with a 

VEGFR specific inhibitor, KRN633 (Nakamura et al., 2004), after gastrulation and 

assayed for both cardiac and vascular marker expression. The overall phenotype of the 

embryos was compared between KRN633 treated embryos and controls, as well as the 

effects on both vascular and heart development. Doses of 10 µM, and 25 µM of KRN633 

(Figure 23) were sufficient to block angiogenesis, the sprouting of vascular precursors to 

form endothelial tubes and networks. The inhibition of angiogenesis was demonstrated 

using etv2 (Figure 23G-L) and alpnr (Figure 23M-R) expression to mark endothelial 

cells. Both the vascular plexus and intersomitic vessels fail to form in the presence of 

KRN633 (Figure 23; white arrows). However, there was no detectable effect on defining 

the vascular free zone, on heart differentiation as assayed by cTnI expression, or on tail 

bud outgrowth (Figure 23 A-F), suggesting that the effects of SU5402 on the heart, 

vascular free zone and tail bud are due to specific inhibition of the FGFRs, and not due to 

cross reactivity of SU5402 on the Vegf signalling pathway. 
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Figure 23.  Inhibiting VEGF signalling with KRN633, a VEGFR specific inhibitor, does 

not recapitulate the SU5402 phenotype. Neither a concentration of 10 µM or 25 µM 

KRN633 added at stage 12.5 was able to block expression of cTnI (A-F), alter the 

posterior vascular free region or to create posterior truncations as seen in the Fgf inhibitor 

treatments. However, treating embryos with both10 µM or 25 µM KRN633 leads to a loss 

of angiogenesis when embryos are assayed for either etv2 (G-L) or alpnr (M-R) as 

demonstrated by a loss of vascular budding in the ventral trunk, and a loss of intersemitic 

vessels (white arrow heads).  
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3.3.4 RA and FGF Signalling in Primitive Haematopoiesis 

Since proper levels of FGF and RA signalling are necessary for both heart and 

vascular development, I wished to test if altering the levels of these signals would impact 

the expression of the ventral blood islands domains. Previous reports have suggested that 

FGF signalling is required for haematopoiesis in both zebrafish (Yamauchi et al., 2006) 

and Xenopus at earlier time points (Walmsley et al., 2008), however I wished to test if RA 

and FGF signalling during the neurula stage embryo is essential for proper blood 

development.  

By the late tailbud stage, after specification of the endothelial lineage, tal1 is 

expressed solely in the erythroid progenitors, while globin, a marker of erythroid 

differentiation, begins to be expressed in an anterior-posterior wave as erythroid cells 

differentiate. The expression domain of erythroid progenitor marker, tal1, remains 

unaltered in either RAA or RA treated embryos (Figure 24A-F) compared with the 

DMSO control treatment. However, an obvious decrease in the globin domain is seen 

after increasing RA signalling (Figure 24 I, L), in line with previous results (Bertwistle et 

al., 1996). Conversely, a loss of RA signalling has no effect on the boundaries of the 

globin domain (Figure 24 G, J) suggesting that RA is not normally required for defining 

the erythroid lineage.   

To examine the effects of a loss of FGF signalling on the ventral blood islands, 

embryos were treated with SU5402 at stage 12.5 and allowed to develop until stage 32. In 

control embryos the erythroid progenitor marker tal1 is expressed along the ventral 

midline in the LPM to the closed blastopore (Figure 25A). Inhibiting FGF signalling 

causes a restriction of the progenitor domain from the posterior half of the LPM, as the 

tal1 domain does not approach the closed blastopore as closely in SU5402 treated 
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embryos (Figure 25D) as in control embryos. Globin, a marker of erythroid differentiation 

is significantly decreased in the posterior ventral LPM (Figure 25J) when compared to 

controls (Figure 25G). To further characterize the effect of a loss of FGF signalling on 

erythroid development I wished to test if the loss of globin was simply a delay, or a true 

reduction in the domain size when embryos were treated with SU5402. Embryos were 

treated with SU5402 at stae 12.5, and fixed at stages 34 and 36 and assayed from both 

tal1 and globin expression. At all stages it appeared that the tal1 domain did not extend as 

far posterior in the SU5402 treated embryos as in the control treated embryos (Figure 25 

A-F). While the globin domain would eventually expand to encompass a similar domain 

as tal1, the globin domain also seemed to be displaced anteriorly, as it did not approach 

the closed blastopore nearly as closely in SU5402 treated embryos (Figure 25J-L; 

distance between white and dark arrows) as in control embryos (Figure 25 G-I). These 

results suggest that there is both a delay in erythroid differentiation, shown by a delay in 

the onset of globin expression, as well as a reduced erythroid domain, shown in the 

anterior displacement of both tal1 and globin. 

Finally, I also wished to examine the early myeloid lineage, which had been 

shown to be Fgf responsive during gastrulation (Walmsley et al., 2008). Embryos were 

treated with RA, RAA or a DMSO control, as well as SU5402 and an ATP and DMSO 

control at stage 12.5 and assayed for the expression of mpo and spib at stage 20. Both 

mpo, and spib are markers of the anterior blood island that form the myeloid lineage. 

However, neither of the anterior blood island marker domains were different in any of the 

altered RA or FGF conditions (Figure 26). 
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Figure 24.  Abnormal levels of RA or FGF signalling lead to impaired erythroid 

differentiation. Altering levels of RA signalling by addition of either RA (right column), 

or RAA (left column) at stage 12.5 does not lead to any consistent changes in tal1 

expression (A-F) when compared to DMSO treated embryos (center column), while 

increasing RA signalling reduces expression of globin (G-L) particularly in the posterior-

most limits of its normal expression domain (I, L; arrowhead a).  
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Figure 25.  Decreased erythroid differentiation is not due to a delay in development when 

FGF signalling is lost. FGF signalling was inhibited after gastrulation at stage 12.5 and 

embryos were fixed and assayed at stage 32 (left column), stage 34 (center column) or 

stage 36 (right column).  When Fgf signalling is lost, the posterior end (white arrows) of 

the tal1 expression domain was restricted further anterior (D-F) as it did not approach the 

closed blastopore (black arrows) as closely as in control embryos (A-C). When FGF 

signalling is inhibited globin expression was only weakly detectable by in situ 

hybridization at stage 32 (J) but does recover to become more easily detectable at later 

stages. However, the length of the globin domain remains reduced as the posterior edge 

(white arrowhead) does not approach the proctodaeum (black arrowheads) as closely in 

the SU5402 treated embryos (K-L) as in the control treated embryos (H-I). 
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Figure 26.  Neither RA nor FGF signalling is required after gastrulation for early myeloid 

marker expression. Anterior ventral blood markers mpo (A-B, E-G), and spib (C-D, H-J) 

expression domains (myeloid cell markers) remain unaffected when FGF signalling is 

inhibited (A-D), or when RA signalling is altered (E-J) at stage 12.5 and expression of 

markers is assayed at stage 20. 
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3.4 Examining the Role of Hand1 in Early Cardiovascular Progenitors 

 The previous experiments with markers of the developing vasculature 

demonstrated a region in the posterior of the LPM in which no vasculature marker was 

expressed (see 3.3.2 and 3.3.3). In comparing this vascular free region with the late 

anterior-middle markers of the LPM, hand1 and foxf1, whose expression is also restricted 

in the posterior LPM, it was noted that the vascular free region was roughly similar to the 

posterior limits of the hand1 and foxf1 domains. To better test if this vascular free region 

and the hand1 negative domain in the posterior LPM were directly correlated I performed 

a double in situ hybridization in embryos treated with RA, RAA, the FGFR inhibitor 

SU5402, or control embryos (Figure 27).   

In control embryos the hand1 and etv2 were closely correlated, particularly in the 

posterior limits of the two domains (Figure 27 B, E). When retinoic acid signalling was 

inhibited by treatment with the retinoic acid antagonist there was little change in either 

domain (Figure 27 A, D). However, when retinoic acid signalling was increased by 

addition of the agonist, both the hand1 and etv2 domains were extended much further 

toward the posterior pole of the embryo (Figure 27 C, F), with the posterior limits again 

corresponding very closely. If FGF signalling was inhibited both domains were extended 

to the posterior limits of the LPM, similar to the RA treatment (Figure 27 H, J). While 

this is similar to individually stained embryos examined earlier, the high degree of 

overlap of the two domains, along with results previously discussed (see section 1.7.1) 

strongly suggests a possible role for hand1 in early cardiovascular specification. 
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Figure 27.  The LPM marker hand1 and vascular marker etv2 expression domains 

overlap and respond similarly to either altered RA signalling, or a loss of Fgf signalling.  

Antisense probes for hand1 (Flourescein, light blue) and etv2 (DIG, purple) were used to 

visualize the overlap in domains. Embryos were treated with RAA (A, D), RA (C, F), and 

compared to DMSO controls (B, E) or SU5402 (H, J) and compared to a DMSO and ATP 

control (G, I). The two domains were highly correlated in each treatment, as each domain 

expanded similarly in both RA and SU5402 treatments when compared to control 

embryos. 
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3.4.1 Hand1 is Necessary for Cardiac Morphogenesis, but not Early Specification 

 To determine a role for hand1 in heart development, I designed an antisense 

morpholino directed to the translational start site of the hand1 transcript to disrupt  

translation. Blocking Hand1 translation should lead to a loss of function phenotype. The 

antisense morpholinos were injected into one-cell embryos to attain a partial loss of 

hand1 activity throughout the entire embryo, at a volume of either 4.6 nL or 9.2 nL. To 

determine if hand1 was necessary for early heart field specification embryos were fixed at 

stage 20 and assayed for expression of nkx2-5 and Isl1. Upon inhibiting hand1 function, 

there was no discernable effect of the morpholino at either volume in the expression of 

nkx2-5 or on Isl1 (Figure 28), suggesting that hand1 is not required for expression of 

early heart field markers. 

 Reports of hand1 loss of function in both mouse (Smart et al., 2002) and zebrafish 

(Garavito-Aguilar et al., 2010) have suggested that hand1 may be involved in later heart 

morphogenesis.  Therefore, I wished to test if hand1 had any obvious effects on later 

heart development in Xenopus. Embryos were injected at the one cell stage with 4.6 nL of 

morpholino and fixed and assayed for the expression of nkx2-5 and cTnI during late 

tailbud stages. Interestingly, embryos injected with 9.2 nL of hand1 morpholino displayed 

a greatly increased rate of death during early tail bud stages when compared to control 

morpholino injected embryos, and thus this concentration of morpholino was not used 

further for analyzing later development. At stage 32, hand1 morpholino injected embryos 

express both nkx2-5 and cTnI, supporting the conclusion that hand1 is not necessary for 

heart specification or differentiation (Figure 29 E-O). However, morphogenesis of the 

heart tube, in particular formation of the tube itself is inhibited  
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Figure 28.  Hand1 function is dispensable for early heart specification. Embryos were 

injected at the one cell stage with 4.6 nL (C and G) or 9.2 nL (D and H) of the hand1 

morpholino, or 9.2 nL of a control morpholino (B and F) and compared to uninjected 

embryos (A and E). Neither the expression domain of nkx2-5 or Isl1 was altered in any 

condition. In all cases, the anterior-ventral end of the embryo is viewed, with dorsal 

toward the top of the image. Un: uninjected, Cont: Control morpholino injected, Hand1-

MO: Hand1 morpholino injected. 
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Figure 29.  Loss of Hand1 leads defects in myocardial trough formation at stage 30.  

Embryos were injected with 4.6 nL of Hand1 morpholino (Bottom panel) and compared 

to either control injected morpholino (middle panel) embryos or unjectected controls (top 

panel). Embryos were assayed for expression of nkx2-5 (A-F) and cTnI (G-O) to visualize 

the heart. Both of the uninjected embryos and control injected morpholinos had formed a 

myocardial trough (arrows), whereas none of the Hand1 morpholino injected embryos 

had formed a trough. 
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(Figure 29F, O), reminiscent of embryos in which RA signalling is lost (Collop et al., 

2006), or Notch signalling has been inhibited (Rones et al., 2000). 

To test if hand1 morphant hearts were simply delayed in heart tube formation, or 

if they were unable to form a heart tube, I fixed and assayed embryos at stage 36, long 

after the heart tube should have closed and looped (Figure 30). At this time, I assayed for 

cTnI to visualize the heart and scored the number of embryos that had successfully 

formed a heart tube. Of the morphant embryos assayed (n=14) 57% of embryos had 

apparently normal hearts, while 36% of morphant hearts remained as an open sheet of 

cells (Figure 30E-L). In control morpholino injected embryos (n=10), 100% of embryos 

had hearts that had formed a tube and looped (Figure 30A-D). These results suggest that 

there is a significant delay, and in some cases a complete block of heart tube formation.  

 

3.4.2 Hand1 is Necessary for Vascular Specification 

 Due to the high degree of overlap in the hand1 and etv2 domain (see section 

3.4.0), I hypothesized that a functional relationship may exist between hand1 and 

vascular specification. Embryos were injected with the hand1 morpholino at either the 

one cell stage, yielding an embryo wide distribution of the morpholino, or one cell of a 

two cell embryo, yielding embryos where hand1 was blocked only on one side (left or 

right) of the embryo. If hand1 is required for the endothelial lineage, hand1 function 

would provide a link between the early LPM patterning I have described and the later 

effects of RA and FGF on vascular specification. 

 When Hand1 function was blocked in the whole embryo by injection of the anti-

sense morpholino into a one-cell embryo the formation of the trunk vascular plexus is 
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Figure 30.  Loss of Hand1 leads to a delay in heart tube formation. Embryos were 

injected with 4.6 nL of Hand1 morpholino (E-K) and assayed with cTnI to visualize the 

heart field at stage 36. Heart morphology was then divided into three groups: the heart 

had looped (E-F), the heart had formed a tube (G-H), or the myocardium remained a sheet 

of cells (I-K). Both uninjected control embryos (A-B) and control morpholino injected 

embryos (C-D) had formed a tube with 100% occurance, where as the Hand1 morpholino 

injected embryos had a severly reduced frequency of heart tube formation (L). 
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clearly altered (Figure 31 C-D, G-H). Both endothelial markers etv2 and aplnr are 

expressed in the LPM, however the density of the vascular plexus is reduced (Figure 31 

D, H). The reduced density of the vascular plexus could be due to either a reduced 

number of endothelial cells differentiating (reduced vasculogenesis), or reduced migration 

into the vascular networks (reduced angiogenesis).   

To further characterize the role of hand1 in endothelial development I performed 

unilateral injections, injecting the hand1 morpholino into one blastomere of a two-cell 

embryo (Figure 32). This effectively created embryos that were wild type on one half of 

the embryo, and were hand1 morphants on the other side. In embryos assayed for either 

etv2 or alpnr the vascular plexus was extremely perturbed, being almost undectectable at 

the anterior-end of the LPM (Figure 32D, H). In addition, in both cases the anterior half 

of the posterior cardinal vein was also absent. This suggests that hand1 is required for 

proper development of the endothelium, and a loss of hand1 greatly perturbs formation of 

the vascular plexus and posterior cardinal vein. 

 

3.4.3 Hand1 is Dispensable for Embryonic Blood Formation 

 Since hand1 is necessary for both heart and vasculature development, I also 

wished to test if it was involved in blood differentiation. While hand1 is initially 

expressed in the ventral LPM at the neurula stage, it is excluded from both the myeloid 

cells (anterior blood islands) in the neurula, and future erythrocytes (ventral/posterior 

blood islands) by the mid tailbud stages (stage 26), long before globin expression. The 

exclusion of hand1 from the early blood-forming region suggests that hand1 may not 

normally be involved in haematopoiesis. I therefore hypothesized that a loss of Hand1 

would not affect primitive blood development. 
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Figure 31.  Vascular plexus density is decreased when Hand1 is lost in the whole 

embryo.  One-cell stage embryos were injected with 4.6 nL of Hand1, and compared to a 

control morpholino.  Embryos were assayed with etv2 (A-D) or alpnr (E-H) to visualize 

the vasculature.  In each case the hand1 morpholino injected embryos demonstrated a 

reduced density of the vascular plexus.  Left panel: whole embryo view with anterior 

toward the right, dorsal at top.  Right panel: magnified view of LPM showing the vascular 

plexus. 
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Figure 32.  Loss of Hand1 leads to severely reduced vascularization in contralateral 

injected embryos.  Two-cell embryos were injected with 4.6 ηL of hand1 morpholino into 

the left blastomere (right panel), and compared to the contralateral uninjected side (left 

panel).  Embryos were assayed with either etv2 of alpnr to visualize the vasculature.  In 

each case, the morphant side displayed dramatically reduced staining when compared to 

the uninjected side.  Top panels (A-B, E-F): whole embryo views.  Bottom panels (C-D, 

G-H): magnified view of LPM showing vascular plexus. 
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Embryos were injected with either 4.6 nL or 9.2 nL of hand1 morpholino and 

assayed for the expression of mpo and spib, the anterior blood island markers and etv2, a 

marker of the hemangioblast lineage. There was no consistent detectible difference found 

in expression domains of either mpo or spib (Figure 33 A-H), suggesting that hand1 is not 

involved in the anterior blood island lineage. Furthermore, there was no difference in the 

early expression of etv2 (Figure 33I-L), suggesting that the early hemangioblast lineage is 

not dependent of Hand1 function. 

 To determine if hand1 has a role in the posterior blood island (erythroid lineage) I 

injected whole embryos with the hand1 morpholino and assayed for tal1, a marker of 

erythrocyte precursors, and globin, a marker of differentiated erythrocytes. Hand1 

morphants were indistinguishable from either uninjected or control morpholino injected 

embryos when assay for either tal1 or globin at all stages assayed (Figure 34), suggesting 

that Hand1 is also dispensable for erythroid lineage development. 
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Figure 33.  Hand1 is dispensable for the myeloid and early hemangioblast lineages.  

Embryos were injected with either 4.6 ηL (C, G, K) or 9.2 ηL (D, H, L) of hand1 

morpholino, or a control morpholino (B, F, J) and compared with uninjected control 

embryos (A, E, I).  Embryos were assayed for mpo (top panel) and spib (middle panel), 

markers of the myeloid lineage, or etv2, a marker of the hemangioblast lineage (bottom 

panel).  No difference was discernable in any of the conditions examined.  
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Figure 34.  Hand1 is dispensable for erythrocyte differentiation.  Embryos were injected 

with 4.6 nL of hand1 morpholino, or a control morpholino and compared to uninjected 

control embryos.  Embryos were assayed for expression of tal1 (top: A-F), a marker of 

erythrocyte progenitors, or globin (bottom: G-L), a marker of differentiated erythrocytes.  

No consistent differences were detectable in any of the conditions.  Top panels (A-C, G-

I): whole embryo views with anterior toward the left, dorsal at top.  Bottom panels (D-F, 

J-L): ventral views showing the ventral blood islands. 
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Chapter 4 Discussion 

 Patterning within the early LPM has not been well described. While the early 

cardiovascular progenitors are present along the ventral side of the LPM, patterning 

throughout the early LPM, particularly toward the dorsal LPM has been 

underappreciated. Here, I demonstrate that LPM is clearly subdivided into specific 

domains based on the expression of specific transcription factors at the neurula stage of 

development. I describe four distinct domains: an anterior-ventral nkx2-5 expression 

domain, an anterior-dorsal foxf1 domain, a middle hand1 domain and posterior sall3 

domain. Although these domains are not mutually exclusive of each other, this pattern 

suggests that significant anterior-posterior patterning exists within the LPM much earlier 

than previously appreciated. This patterning event is likely not limited to Xenopus 

development, but rather may be an important process in all vertebrates as homologues of 

all of these genes are present in similar domains in other vertebrates (Lints et al., 1993; 

Mahlapuu et al., 2001b; Srivastava et al., 1995; Sweetman et al., 2005).  

 

4.1 Retinoic Acid and Patterning of the Early LPM 

 I have demonstrated that RA is necessary for defining the anterior-dorsal end of 

the LPM during early LPM patterning. When RA signalling is lost, the domains residing 

along the anterior and dorsal borders of the LPM are most affected. The foxf1 domain is 

almost completely lost in LPM, while the dorsal part of the hand1 domain is severely 

restricted. However, the anterior-ventral, and posterior domains are independent of RA 

signalling and are unaffected when RA signalling is lost. The ability of RA signalling, to 

pattern the anterior and dorsal LPM correlates with the expression pattern of raldh2, and 

a loss of raldh2 function mirrors the effect of treatment with an RA antagonist. These 
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results suggest that RA, synthesized by Raldh2 in the anterior and dorsal mesoderm (LPM 

and somites), is required to establish proper polarity within the early LPM by defining the 

anterior and dorsal ends of the LPM. However, while RA is important for the middle 

hand1 domain, it is clearly not the only signal establishing that domain as hand1 is still 

expressed in the middle LPM, albeit highly restricted, in the absence of RA signalling.   

 The evidence I have presented here supports the hypothesis that retinoic acid is 

not normally a posteriorizing factor at this stage (Maden, 1999). Instead, high 

concentrations of RA ligand are present in the anterior trunk of the embryo corresponding 

to expression of raldh2 (Chen et al., 2001) and that RA diffuses toward the posterior of 

the embryo. However, the expression pattern of raldh2 suggests a much more complex 

model than a direct linear gradient from anterior to posterior. Rather, any gradient of RA 

present in the LPM would be highest at the anterior-dorsal end of the LPM, which is 

bordered on two sides by raldh2, and decrease toward the posterior-ventral end.   

 The RA metabolizing enzyme cyp26 is strongly expressed at the posterior-ventral 

end of the embryo around the closed blastopore, and is not normally detectable via in situ 

hybridization within the LPM. This could account for the inability of ketoconazole to 

significantly alter the expression domains of foxf1 and hand1. The extent of the RA signal 

at any point within the LPM may simply be a result of diffusion away from the source, in 

the anterior-ventral corner of the LPM. Since ketoconazole inhibits cyp26, and cyp26 is 

not normally expressed within the LPM, intuitively RA degradation by cyp26 would not 

be altered and therefore the levels of RA within the LPM would be unaltered. 

 In contrast to anterior LPM patterning, addition of RA causes a loss of the 

posterior Sall3 domain. However, when RA signalling is decreased, the posterior domain 

remains unchanged suggesting that RA is not normally required for patterning the 
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posterior LPM. Since the posterior LPM is responsive to exogenous treatments of RA, 

one or more of the RARs should be expressed in this region, which is indeed the case as 

both RARα and RARγ are expressed in the posterior LPM (Escriva et al., 2006; Koide et 

al., 2001).  It is possible that repression of RA responsive genes through unliganded 

RARs may be necessary for proper posterior positional identity. The role of the 

unliganded RARs as a transcriptional repressor has been previously proposed in mid-

brain patterning (Koide et al., 2001). The possibility that RARs act as a repressor in the 

posterior LPM suggests an attractive model of RA signalling, where a high concentration 

of RA is present in the anterior-dorsal LPM, specifying the expression domain of foxf1, 

while more moderate levels are present in the middle of the embryo which act to define 

the border of the hand1 domain. The posterior LPM, in which the RA ligand is normally 

absent (See Figure 36), requires the active repression of RA responsive genes by the 

unliganded RARs. 

  

4.1.1 FGF Signalling and Early LPM Patterning 

The loss of FGF signalling leads to a loss of proper identity of both the anterior-

ventral and posterior LPM. When FGF signalling is inhibited, the anterior-ventral nkx2-5 

domain is lost, while the anterior-dorsal foxf1 domain is expanded toward the ventral pole 

of embryo. At the posterior end of the embryo, bra is absent around the blastopore, while 

both sall3 and hand1 are displaced toward the posterior pole. Interestingly, both of the 

foxf1 and hand1 domains, that are expanding to ‘fill in’ the lost nkx2-5 and bra domains 

respectively, are positively regulated by retinoic acid. This suggests that the Fgf pathway 

is acting in opposition to the RA signalling pathway along the anterior-posterior axis. I 
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propose that the role of the Fgf pathway is to restrict anterior pattern within the posterior 

LPM, and to keep these cells in an unspecified state.   

Fgf functioning to restrict more anterior pattern seems likely since bra, the marker 

of the tail bud, which is lost when Fgf signalling is inhibited, is a marker of unspecified 

mesoderm and necessary for tail bud elongation (Conlon et al., 1996; Smith et al., 1991).  

Furthermore, this tail forming region, induced during this same stage in development 

(stage 13) (Beck and Slack, 1998; Gont et al., 1993), will normally give rise to axial 

mesoderm, such as the somites of the tail, but not LPM derived tissues (Gont et al., 1993).  

However, when FGF signalling is lost, genes normally expressed in the LPM, such as 

foxf1 and sall3, are ectopically expressed the tail bud domain. The ectopically expressed 

anterior genes suggest that these cells are, at least in part, becoming specified into the 

LPM lineage instead of the tail bud lineage and are no longer able to undergo the 

characteristic convergent extension movements necessary for tail bud elongation. 

In addition to a requirement for Fgf signalling in the maintenance of the tail bud 

domain, Fgf signalling is also necessary at the anterior-ventral end of the LPM for 

maintenance of the heart field. When Fgf signalling is inhibited, nkx2-5, a marker of the 

heart field is lost, while foxf1, the anterior-dorsal marker is expanded toward the ventral 

pole of the embryo. Similar to the posterior end of the embryo, when Fgf signalling is 

lost, an adjacent-RA regulated domain expands into the Fgf dependent domain.  

Interestingly, the anterior-ventral heart region is induced at roughly the same stage (Stage 

13) that the tailbud domain is being specified at the posterior end of the embryo (Cleaver 

et al., 1996; Keren-Politansky et al., 2009; Samuel and Latinkic, 2009). Therefore, Fgf 

appears to be necessary in the anterior-ventral LPM to restrict the adjacent anterior-dorsal 

RA dependent domain, in this case allowing for the heart field to be specified. These dual 
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roles for Fgf signalling, in both the anterior-ventral LPM, and the posterior tail bud 

domain, correlates with the expression of fgf8. Although, it should be noted that other 

sources of FGF signalling cannot be excluded, as a number of Fgf ligands are expressed 

in proximity to the LPM at the neurula stages, such as fgf3, which may also be important 

and contribute to patterning the LPM (Keren-Politansky et al., 2009; Lea et al., 2009). 

Treating embryos with SU5402 would potentially inhibit all of these sources of FGF 

signalling. However, the anterior and posterior inputs of FGF signalling corresponding to 

the fgf8 domain contrast the RA dependent domain nicely, with RA necessary for 

anterior-dorsal LPM, while Fgf signalling is necessary for anterior-ventral LPM and the 

posterior tail bud domain.  

It is also possible that altered cell migration or cell survival plays a role in the 

altered posterior LPM patterning I observed when FGF signalling was inhibited. Previous 

results have demonstrated that FGF signalling is required for proper cell migration in a 

number of contexts (Benazeraf et al., 2010; Ciruna and Rossant, 2001; Conlon and Smith, 

1999; Gisselbrecht et al., 1996; Poole et al., 2001). One area in particular which altered 

cell migration may play a role is in the posterior vascular free zone. It is possible that 

FGF signalling normally inhibits endothelial cells from migrating into the posterior LPM 

after they have undergone vasculogenesis. To answer this question, I propose to use the 

previously published vegfr2 transgenic reporter line (Doherty et al., 2007) to visualize 

endothelial cells as they are specified and track the cells in real time as the undergo 

angiogenesis. Through the use of this reporter line I could determine if FGF signalling is 

necessary to restrict vascular specification in the posterior LPM, restrict migration, or 

both. 
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Lastly, If the proposed RA and FGF signalling inputs into the LPM are visualized 

on a diagram (Figure 35), it can be easily seen how the combinatorial input of these two 

pathways could yield positional identity in a two dimensional sheet of cells such as the 

early LPM. However, it remains likely that at least one more, as yet unidentified 

signalling input is required for full patterning of the LPM. In particular, this third pathway 

would be necessary for proper expression of the middle ventral LPM markers. This is 

because none of the performed treatments was able to inhibit middle and ventral domains 

such as hand1 or the myeloid markers spib, and mpo. A likely candidate is the Wnt 

pathway, since at least one family member, wnt4, is expressed in the ventral LPM during 

neurula stages and has been implicated in primitive hematopoiesis (Tran et al., 2010). 

 

4.2 Significance of the LPM Pattern 

 My results expand the role of RA and FGF signalling to include patterning of the 

LPM during the neurula Xenopus embryo. RA and Fgf signalling pathways are known to 

pattern the somites during this same window of time (Moreno and Kintner, 2004) and I 

propose that these processes are connected. Since the source of both the RA and Fgf 

signals responsible for patterning the somites (Moreno and Kintner, 2004), and the LPM 

are similar, it seems likely that the patterning of these tissues is coordinated. I also 

propose that this LPM patterning process is an initial step in regional specification of the 

LPM, leading to the subdivision of mesodermal progenitors, such as the cardiovascular 

lineages.  
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Figure 35. Model of early LPM patterning in the neurula stage Xenopus embryo. (A) A 

high level of RA signalling input is suggested by the expression domain of raldh2 in the 

anterior and dorsal LPM. Conversely, Fgf signalling is proposed in the anterior-ventral 

and posterior-ventral LPM, suggested by the expression domains of fgf8 in the anterior, 

and fgf4 and fgf8 in the posterior pole of the embryo. Dark blue and yellow bars represent 

the expression of raldh2 and FGF ligands respectively, while blue and yellow arrows 

depict the proposed area which RA (blue) and FGF (yellow) are required for normal 

patterning.  Model depicts a left lateral view of the LPM. Ant: anterior, Dor: dorsal, Lat: 

lateral view, Pos: posterior, Ven: ventral.  (B) Diagrammatical representation of LPM 

expression domain response to decrease in either RA (left) or FGF (right) signalling when 

compared with the DMSO control (center).  The anterior-dorsal and middle LPM 

domains require RA signalling for their full expression domain, whereas the anterior-

ventral and posterior LPM domains are dependant on FGF signalling. Red: nkx2-5, blue: 

foxf1, yellow: hand1, green: sall3, purple: bra. 
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Many studies have recently demonstrated developmental decisions between two 

adjacent LPM derived structures, based on the extracellular signalling molecules 

encountered. These reciprocal patterning processes have been described for both the 

myocardial and endocardial lineages (Ferdous et al., 2009; Misfeldt et al., 2009), 

epicardial and myocardial lineages (van Wijk et al., 2009) within the heart field, the heart 

field and limb bud (Waxman et al., 2008), the heart and vasculature (Schoenebeck et al., 

2007), and the kidney and vasculature (Mudumana et al., 2008). In each of these 

examples, cells in close proximity are co-ordinately patterned leading to distinct cell 

lineages as a result of encountering different extracellular signals. The observations that I 

have provided here suggest that many of the early mesodermal lineage decisions that have 

thus far been examined as separate events, may be a part of a much larger, mesoderm 

wide patterning processes.   

 

4.2.1 Relevance of LPM Pattern to Cardiovascular Development 

The requirement for both FGF and RA signalling on heart development has been 

thoroughly studied in a number of model systems. However, this is the first report of RA 

and FGF signalling being required for endothelial differentiation in whole Xenopus 

embryos after gastrulation. RA has been implicated in murine endothelial development: 

Raldh2-/- mice fail to form organized extraembryonic vascular networks (Niederreither et 

al., 1999), while mouse ES cells treated with RA are inhibited from differentiating into 

endothelial cells (Festag et al., 2007). Here, I demonstrate that after gastrulation in 

Xenopus, RA signalling will expand the domain of vascular development. The 

contradiction between the early mouse ES cell work and the results reported here may 

simply be due to the timing and state of specification of the progenitor cells, ES cells are 
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isolated from the blastocyst embryo and represent a much earlier stage in development, 

while the cells of interest to my work are post gastrula mesodermal progenitors. 

FGF signalling has been previously implicated in subdividing the hemangioblast 

lineage. Increasing FGF signalling before gastrulation leads to an increase in vascular 

markers and a corresponding decrease in blood markers (Iraha et al., 2002). Here I have 

shown that FGF signalling is necessary to restrict the endothelial lineage and for 

maintaining the posterior vascular free zone. The contradiction between previous results 

and those presented here is likely due to the difference in timing between experiments, as 

the previous experiments were performed before gastrulation. Therefore, it is likely that 

the earlier result on the hemangioblast lineage was compounded with earlier effects of 

Fgf on initial mesoderm formation, thus complicating the interpretation of those results. 

Recently, the existence of the hemangioblast lineage has been called into question.  

It has been argued that since the endothelial and erythropoietic cells travel through the 

primitive streak at slightly different time points, the vascular and blood fates have been 

determined either prior to, or during gastrulation ((Kinder et al., 2001) and references 

therein). My observation that the balance between endothelial and erythropoietic lineages 

can be altered after gastrulation suggests that, in Xenopus, these cells may retain some 

lineage plasticity in the post gastrula embryo. While I have not shown a direct erythroid 

to endothelial transformation, the increase in endothelial cell markers, and corresponding 

decrease in erythroid differentiation in both RA, and FGF inhibitor treated embryos 

strongly suggest a close link between these two lineages in the Xenopus embryo. A cell 

culture approach whereby progenitor cells are differentiated into one lingeage over the 

other based upon the levels of active RA and FGF signalling would further support this 

hypothesis. The idea that the endothelial and erythroid lineages are linked after 
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gastrulation is difficult to test in vivo as these lineages share many of the defined early 

lineage markers, such as etv2 and tal1 (see section 1.4.2 and 1.4.3). However, sharing a 

common transcriptional regime does also support the idea that these two lineages are 

closely linked. I therefore propose that while endothelial and erythroid cells pass through 

the node at slightly different times (Kinder et al., 2001) and this is a result of being 

spatially distinct in the blastula marginal zone, that these two cell populations are not yet 

differentially specified. Rather, I suggest that the mesodermal lineages are not subdivided 

until later based on the positional cues received when they have reached their final 

location in the embryo. This model would support the existence of the hemangioblast in 

Xenopus, although only as one step in the subdivision of the mesodermal progenitor pool. 

 

4.2.2 Relevance of the Early LPM Patterning to Gut Tube Development 

This thesis has focused on the relevance of this patterning process to early 

cardiovascular lineages. However, it should be noted that the LPM has a number of 

functions during this stage of development, not only in relation to cardiovascular 

development, but it is also essential for regional specification of the gut tube (Horb and 

Slack, 2001). The early LPM domains of hand1, foxf1 and sall3 do not directly correlate 

to any previously defined structure. It is tempting to speculate that the RA/Fgf dependent 

patterning within the LPM during the neurula, may be important for patterning of the gut 

tube during the mid tail bud stage. Both RA (Zeynali and Dixon, 1998) and Fgf (Chen et 

al., 2003) pathways have been shown to be important for regulating endodermal 

development in the post-gastrula Xenopus embryo. Furthermore, the anterior-dorsal LPM 

marker, foxf1, is necessary for proper gut morphogenesis (Tseng et al., 2004). Since foxf1 

is a mesodermally restricted transcription factor, it is likely that it plays a key role in 
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regulating a diffusible factor responsible for the mesodermal-endodermal interactions.  

Furthermore, since RA signalling regulates foxf1, it is possible that at least part of the RA 

requirement for endodermal development is in regulating the mesodermal signals 

responsible for regional specification of the gut tube. 

 

4.3 Hand1 Function is Essential for Cardiac Morphogenesis 

 Hand1 is essential for proper cardiac morphogenesis in the mouse embryo.  

Hand1-/- mice show a significant delay in the formation of the heart tube (Smart et al., 

2002). This is reminiscent of the phenotype I describe here (section 3.4.1). A loss of 

hand1 through injection of an antisense morpholino oligonucleotide leads to a disruption 

of heart tube closure in Xenopus. The similarity in phenotype between the mouse mutant 

and frog morphant provides a measure of confidence and phenotypic evidence that the 

hand1 morpholino is efficiently inhibiting the translation of the hand1 gene as intended. 

The similarity in phenotype described between frog and mouse serves to further 

demonstrate the conserved mechanisms of heart tube formation among vertebrates. Heart 

tube formation is poorly understood; although a number of signalling molecules have 

been implicated (such as RA (Collop et al., 2006) and Notch (Rones et al., 2000)), the 

mechanism of heart tube formation remains unknown. However, since hand1 is RA 

responsive, this may provide a link between the loss of RA, and the failure of the heart to 

form a tube. While hand1 is a transcription factor, and is thus not likely to be directly 

involved in the cell shape changes necessary for the transition between a sheet of cells 

and a tube, it is possible that hand1 regulates the expression of cellular components 

necessary for tissue morphogenesis, as recently shown in zebrafish (Garavito-Aguilar et 
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al., 2010). Therefore, further characterizing the targets of hand1 in the heart will be of 

particular interest to connecting a loss of retinoic acid to heart morphogenesis. It would 

also be interesting to more closely compare the expression domain of hand1 and nkx2-5 

as I would predict that a loss of RA signalling would restrict hand1 expression out of the 

heart field during later stages. 

 

4.3.1 Hand1 is Essential for Vascular Development 

 Loss of Hand1 function severely perturbs vascular formation. Vascular plexus 

density was reduced when Hand1 production was inhibited in the whole embryo, as 

assayed by etv2 and alpnr. This is similar to the phenotype of Hand1-/- mouse embryos 

that lacked extra embryonic vasculature (Firulli et al., 1998). Contralateral injected frog 

embryos demonstrated a more severe phenotype with almost a complete lack of 

vasculature on the injected side. The increased severity of the contralateral morphant 

phenotype is most likely the result of increased concentration of the morpholino on the 

injected side (4.6 nL of the stock morpholino oligo injected into the whole embryo, versus 

4.6 nL injected on one side). Interestingly, while the vascular plexus is almost completely 

absent on the injected side, the posterior cardinal vein is also severely affected, 

particularly in the anterior half of the trunk corresponding to the region of overlap with 

hand1. Ablation of the posterior cardinal vein suggests that the endothelial defect results 

from a defect in vasculogenesis (Cleaver et al., 1997), as opposed to a defect in 

angiogenesis. However, one possibility that I have not addressed is an increase in 

apoptosis within the endothelial lineage. Apoptosis will need to be examined in the future 

to exclude the possibility that the difference between endothelial markers in the hand1 
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morphant is due to an increase in cell death rather than a specific effect on endothelial 

differentiation. 

 Both of the vascular markers etv2 and alpnr are essential for endothelial 

development (Inui et al., 2006; Salanga et al., 2010). Etv2 has been described to be at, or 

near the top of the transcriptional cascade leading to specification of the endothelial 

lineage (Salanga et al., 2010). In the hand1 morphants assayed at stage 20 for early 

expression of vascular markers, both etv2 and alpnr appear to be expressed normally.  

Both of these markers are expressed in precursors of the endothelial and erythrocyte 

lineage, or the hemangioblast lineage, at this stage. The expression of both etv2 and alpnr, 

like hand1, is down regulated shortly after neural tube closure in the ventral blood 

islands. Since the early expression of both of these markers in the hemangioblast lineage 

is normal, but later expression in the endothelial cells is perturbed, this suggests that 

hand1 is necessary for the maintenance of the endothelial lineage specification. 

Furthermore, if the down regulation of hand1 leads to a loss of vascular markers, 

excluding hand1 from the ventral blood islands in the early tail bud stage embryo may be 

a key step to defining the erythrocyte versus endothelial cell lineages. This could be 

tested by overexpressing hand1, and thereby not allowing it to be restricted from the 

hemangioblast population. 

 

4.4 Future Directions 

While the similarity between the results that I have discussed here and the 

previous results described in mouse, with regard to heart tube closure suggest that the 

morpholino is acting specifically through blocking Hand1 translation, a number of 
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experiments are still outstanding. Co-injecting a Hand1-RFP fusion construct to 

demonstrate that Hand1 is binding specifically to the target sequence will need to be 

done. As well, a rescue of the phenotype, by injection of a hand1 construct with a 

mutated target sequence is also needed to demonstrate specificity of the morpholino. 

Furthermore, overexpression of the construct to determine if it is able to ectopically 

induce endothelial development is of great interest in order to place hand1 within the 

endothelial specification cascade. Finally, determining direct targets of Hand1 is essential 

to an understanding of hand1 function in both heart morphogenesis and endothelial 

specification. Chromatin immunoprecipitation could be done to determine the target 

genes. However, the lack of a suitable Xenopus Hand1 antibody, in addition to the current 

lack of genome data, particularly promoter sequences in Xenopus laevis, complicates 

these final experiments.   
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Chapter 5 Conclusions 

 I find here that both the RA and FGF signalling pathways are absolutely required 

for proper early patterning of the LPM in a mutually antagonistic fashion. This extends 

the role of RA and Fgf in embryonic patterning to include the whole LPM tissue. I 

propose that RA is released from raldh2 expressing cells in the anterior and dorsal LPM 

and somites, and that it is necessary for patterning the anterior-dorsal and middle LPM 

domains. Conversely, Fgf8 is produced in the anterior-ventral end, while Fgf4 and 8 are 

produced posteriorly, corresponding to the heart domain and tail bud domain respectfully, 

the two areas dependent on FGF signalling. I propose that the sum of RA and FGF 

signalling, and additional as yet unidentified signalling molecules creates a combinatorial 

signalling code that yields two-dimensional positional information across the LPM.  

Proper establishment of this early LPM pattern is essential for the embryo, as any 

perturbations in RA or FGF signalling will have severe consequences to the 

cardiovascular lineages. Furthermore, Hand1 function is essential for both proper heart 

tube development, and endothelial lineage specification. Since hand1 is directly regulated 

by RA signalling, this may provide a link between the loss of RA and failed heart tube 

formation, and increased RA signalling and the posterior expansion of the vascular 

plexus. 
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