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Retrieval of Peak Thunderstorm Wind Velocities Using WSR-88DWeather Radars

IBRAHIM IBRAHIM,a GREGORY A. KOPP,a AND DAVID M. L. SILLSa

a Northern Tornadoes Project, Faculty of Engineering, Western University, London, Ontario, Canada

(Manuscript received 30 March 2022, in final form 17 October 2022)

ABSTRACT: The current study develops a variant of the VADmethod to retrieve thunderstorm peak event velocities us-
ing low-elevation WSR-88D radar scans. The main challenge pertains to the localized nature of thunderstorm winds, which
complicates single-Doppler retrievals as it dictates the use of a limited spatial scale. Since VAD methods assume constant
velocity in the fitted section, it is important that retrieved sections do not contain background flow. Accordingly, the cur-
rent study proposes an image processing method to partition scans into regions, representing events and the background
flows, that can be retrieved independently. The study compares the retrieved peak velocities to retrievals using another
VAD method. The proposed technique is found to estimate peak event velocities that are closer to measured ASOS read-
ings, making it more suitable for historical analysis. The study also compares the results of retrievals from over 2600 thun-
derstorm events from 19 radar–ASOS station combinations that are less than 10 km away from the radar. Comparisons of
probability distributions of peak event velocities for ASOS readings and radar retrievals showed good agreement for sta-
tions within 4 km from the radar while more distant stations had a higher bias toward retrieved velocities compared to
ASOS velocities. The mean absolute error for velocity magnitude increases with height ranging between 1.5 and 4.5 m s21.
A proposed correction based on the exponential trend of mean errors was shown to improve the probability distribution
comparisons, especially for higher velocity magnitudes.

KEYWORDS: Databases; Measurements; Radars/Radar observations; Surface observations

1. Introduction

a. Background

The estimation of wind speeds, especially those associated
with high-intensity weather events, is important for atmospheric
scientists and wind engineers alike. While meteorologists and
atmospheric scientists rely on measured wind speeds to issue
appropriate weather warnings and to calibrate weather predic-
tion models, wind engineers are concerned with providing suit-
able wind loads for the design of safe and reliable structures.
Measured peak wind velocities are used to perform extreme
value analysis on records that have sufficient historical extent.
Efforts to evaluate statistical properties of wind speeds date
back to Thom (1968). More advanced efforts emphasized the
importance of separating statistical properties of wind phenom-
ena with distinct scales (Gomes and Vickery 1976; Riera and
Nanni 1989; Mason 2015). In other words, statistics related to
thunderstorms, which are localized in nature, should be sepa-
rated from statistics related to extratropical and tropical cyclo-
nes. When separated, statistics indicate that peak thunderstorm
velocities tend to govern the annual maximum wind speeds for
a vast region of the United States, spanning the Southeast all
the way to the Midwest (Lombardo and Zickar 2019).

While different methods have been implemented, including
those of Duranona (2015), Lombardo et al. (2009), Vallis et al.
(2019), and Zhang et al. (2018), a common aspect in all studies

is that they rely on point measurements from anemometers.
Networks of anemometers, like Automated Surface Observ-
ing Systems (ASOS) (NWS 2021a) and Automated Weather
Observing System (AWOS) (FAA 2021), include wind re-
cords that go back decades. Standardization procedures, in-
cluding unifying height, ground roughness, and averaging
time, are performed so that data across different sites form a
homogeneous dataset (Masters et al. 2010). The spacing of
observing sites in such networks is often orders of magnitude
larger than thunderstorms. Therefore, while single-point meas-
urements can sufficiently describe the synoptic-scale wind for
a region or thunderstorm winds at a single point, they are
insufficient to describe 1) the spatial correlation between
wind speeds measured at neighboring points, which is of im-
portance to numerical weather prediction modeling efforts,
and 2) the loading for spatially distributed structures such
as electrical transmission lines, long-span bridges, or large
industrial complexes. Resolving small-scale spatial correla-
tions cannot be achieved by anemometers in the case of
thunderstorms unless a dense network of anemometers is
used. This is impractical to achieve in practice from an ob-
servational nonresearch focused network considering these
applications require resolution between hundreds of meters
to a few kilometers.

In contrast to networks of anemometers, weather Doppler
radars provide measurements that have high spatial resolu-
tion. The use of Doppler radar data to estimate wind veloci-
ties can result in a grid of points with a spatial resolution that
depends on factors like the scanning pattern, its frequency,
pulse repetition frequency, antenna size, etc. In the case
where the estimated velocities can be verified to be equivalent
to those provided by anemometers, the results can provide in-
sights on thunderstorm wind flow conditions.
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b. Radar retrievals

Doppler weather radars measure velocity using the Dopp-
ler effect. The phase shift of the returning signal indicates
the velocity toward or away from the radar depending on
the phase sign. Weather radars operate in plan position in-
dicator (PPI) scanning mode to capture horizontal plane
scans. Figure 1 shows schematics of (Fig. 1a) the coordi-
nate system used and (Fig. 1b) PPI scanning mode where
radars scan around a vertical axis. Radar scan volumes
combine several of the horizontal scans at different eleva-
tion angles to form the scanned volume. For more informa-
tion about radar applications in meteorology, the reader is
referred to Fabry (2015).

Using two radars in synchrony, referred to as dual-Doppler
systems, makes retrieval easier compared to using one radar,
yet it is harder to achieve as fixed radars are rarely found in
vicinity to other radars. Dual-Doppler systems are usually mobile
radars used during special field projects to study weather events
like thunderstorms (Fujita 1985; Gunter and Schroeder 2015).

Alternatively, estimating wind velocities from one radar
requires an assumption to overcome the indeterminacy. The
first attempt to do so was proposed by Lhermitte and Atlas
(1961). The main assumption of their proposed velocity–
azimuth display (VAD) technique is that the analyzed sec-
tion of the wind field has the same magnitude and direction.
Accordingly, fitting the measured radial velocity to a harmonic
representation for points along a ring around the radar would
allow for computing the wind magnitude and direction. The
fitting method is evaluated based on a harmonic wave, where
the amplitude and phase shift of the wave correspond to the
wind magnitude and direction, respectively. Considering a full
azimuthal range yields a single result per scanned level, which
can be combined to construct a vertical profile such as the
work done by Giammanco et al. (2016) and Krupar et al.
(2016). A three-dimensional approach, named volume velocity
processing (VVP), was proposed by Waldteufel and Corbin
(1979). This approach assumes linear wind within a volume
and solves for variables within that volume.

A lot of work has been done based on these two generic
techniques of single-Doppler analysis. Researchers like
Browning and Wexler (1968) and Siemen and Holt (2000)

built on the VAD technique, while others like Shapiro et al.
(2003) and Zhou et al. (2014) proposed retrieval methods
based on the VVP technique. Although VAD and VVP are
the most widely used approaches for wind retrieval, particu-
larly the works of López Carrillo and Raymond (2011), Li
et al. (2017, 2007), Liou et al. (2018), Shapiro et al. (2003),
Zhao et al. (2003), and Zhou et al. (2019) provide further in-
sights on the development of wind retrieval methods.

Even though progress on wind retrieval has been made over
the years, the challenge of retrieving near-surface peak winds
for localized events, like thunderstorms, using fixed radars per-
sists. For example, a comprehensive study that compared
retrieved hurricane velocities from fixed radars to ground
measurements was presented in the work done by Krupar et al.
(2016). However, hurricanes are more abiding to the VAD
linearity assumptions when compared to smaller-scale thunder-
storm wind events. This limits the generalization of the technique
to use with thunderstorms. Furthermore, Liou et al. (2018) used
mobile Doppler radars instead of fixed Dopplers to make use of
their enhanced temporal and spatial resolution. The study pro-
duced realistic retrievals that show fine-scale wind variations in
the hook-echo region of a supercell, yet the analyzed data from
mobile radars have a limited availability compared to fixed ra-
dars, which limits the efforts of developing historical statistics of
thunderstorm wind speeds.

One of the most advanced VAD-related techniques was de-
veloped by Xu et al. (2006, referred to as Xu06 hereafter). It
can retrieve velocities from radar scans through statistical in-
terpolation between neighboring points, allowing for relaxing
the assumption of constant velocity throughout the analyzed
domain. Nevertheless, the technique relies on relating the
measurements from a spatial domain that can be large enough
to average out peak wind velocities of thunderstorm events
that need a resolution of hundreds of meters to a few kilo-
meters, at most, to be captured. From a statistical perspective,
it would be useful to find a technique that utilizes fixed radars,
providing extended records (in contrast to mobile radars) and
retrieves peak velocities of localized thunderstorm events that
are comparable to peak ground measurements.

Therefore, the objective of the current study is to develop a
method to retrieve peak wind velocities from scans of fixed
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FIG. 1. (a) A schematic representation of coordinate system. (b) PPI scanning mode.
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radars such that they are comparable to peak ground meas-
urements in thunderstorm wind conditions. This will be done
by using a piecewise variation of the VAD technique that an-
alyzes a limited spatial domain versus the conventional VAD
method that typically analyzes the complete 3608 azimuth of
Doppler velocities. The resulting data are compared to the
advanced VAD technique developed by Xu06, as well as ane-
mometer measurements from the ASOS network to evaluate
the usability of radar-retrieved velocities for retrieving peak
thunderstorm wind velocities during thunderstorm events.

2. Data structure and utilization

a. Data structure

The National Weather Service’s (NWS) NEXRAD weather
radar network is a key tool for storm detection and prediction
across the United States. The radar data used are from the
NEXRAD level-II archive (NWS 2021b) that combines radar
measurements from 160 WSR-88D radars since 1991. Level-II
archive provides the finest azimuthal resolution (0.58), which
is influential for the proposed retrieval method. Radar data
older than 2012 are single-polarized, after which they gradually
changed to dual-polarized until completed in 2014. This change
in technology does not affect the homogeneity of the dataset
used for this study since no dual-polarization data are used.

Every archived file is annotated by a time stamp correspond-
ing to the start of the scan in UTC. Each file includes horizontal
scans taken under (PPI) scanning mode for elevation angles, u,
ranging from 0.58 to 19.58. The radial velocity scans have an azi-
muthal resolution of 0.58 and a fixed gate spacing of 250 m out
to 230 km away from the radar for the lowest elevation angles.
For the archived data, the range of elevation angles scanned
and their sequence depend on the operating modes}named
volume coverage patterns (VCPs)}that are selected by local

weather forecast office based on weather conditions at the time.
In cases of severe weather, VCPs that have more repetitions of
the lowest angle of elevation are typically used in severe weather
operations in order to monitor rapidly changing storm features.
The increased frequency of the 0.58 elevation angle scan in-
creases the temporal resolution from 1 per 6 min (the total scan
time for each archived volume) to about 1 per 1.5–2 min when
repeating the 0.58 scan three or four times per volumetric scan af-
ter the addition of Supplemental Adaptive Intravolume Low-
Level Scan (SAILS) scans (OFCM 2017).

Anemometer records were taken from National Centers for
Environmental Information’s (NCEI) ASOS database. ASOS is
a network of over 900 stations covering the United States (NWS
2021a). Each station includes an anemometer at an approximate
height of 10 m. ASOS has two data streams: 64010 (5 min),
and 64050 (1 min). The resolution represents the archiving
frequency while the sampling frequency was at 1 Hz.

b. Data utilization

First, radar and ASOS station combinations were selected
such that the ASOS station is between 2.4 and 10 km away
from the radar. This minimum distance was used to match the
minimum radius of recorded radar data. The elevation angle
used in the current study is the lowest available at 0.58, and
the retrieval procedure was limited to 10 km of radial dis-
tance. This is because the elevation angle results in an (ap-
proximately) 8 m km21 slope upward from the radar base.
Noting that radars are placed on pedestals with heights of
25 m or more from the ground, the height difference between
the scanned radar point and the anemometer would make it
hard to correlate retrieved (radar) and measured (anemome-
ter) data beyond 10 km of radial distance. Accordingly,
19 stations were selected, as listed in Table 1. The table also
provides the position of each radar station, as plotted in

TABLE 1. List of stations used in analysis sorted by distance between radar and ASOS stations.

Radar ASOS
Radar

longitude (8)
Radar

latitude (8)

Distance
radar to

ASOS (km)

Azimuth
radar to
ASOS (8)

Height
difference (m)

Analyzed
events

of TSRA

KBYX KNQX 281.7032 24.5975 2.44 139 45.7 123
KTLH KTLH 284.3289 30.3976 2.50 262 57.0 142
KIND KIND 286.2804 39.7075 2.71 272 55.1 214
KFSD KFSD 296.7294 43.5878 2.84 251 47.1 190
KGRR KGRR 285.5449 42.8939 3.00 113 52.8 205
KGRB KGRB 288.1111 44.4985 3.26 240 64.8 141
KAMX KTMB 280.4127 25.6111 3.59 317 62.6 193
KOKX KHWV 272.8639 40.8655 3.76 188 72.8 24
KPBZ KPIT 280.2180 40.5317 3.79 206 76.3 65
KCXX KBTV 273.1664 44.5110 3.93 152 61.8 82
KSRX KFSM 294.3619 35.2904 3.97 351 122.4 143
KLSX KSUS 290.6829 38.6987 4.63 140 118.1 214
KLWX KIAD 277.4778 38.9754 4.83 136 73.8 126
KILN KILN 283.8217 39.4203 5.05 80 72.0 210
KDTX KPTK 283.4718 42.7000 6.44 117 127.2 96
KCBW KHUL 267.8066 46.0392 7.31 355 172.6 24
KARX KLSE 291.1916 43.8228 8.10 307 281.5 189
KAPX KGLR 284.7198 44.9071 9.22 11 149.6 97
KLZK KLIT 292.2622 34.8365 9.73 162 199.7 238
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Fig. 2, the distance between the radar and ASOS station (in kilo-
meters), the height difference between anemometers and the
center point of the radar beam (assuming the beam is a straight
line given its close proximity to the radar), and the number
of events analyzed for each radar–ASOS combination. Distan-
ces between stations were computed based on their longitude–
latitude location, while height differences were computed based
on ground elevations from Google Earth. It is worth noting that
although the stations were only chosen on the basis of availabil-
ity of ASOS stations that are in close proximity to the radar, the
distribution of stations shown in Fig. 2 is similar, to some extent,
to the regions where annual maxima of wind speeds are domi-
nated by convective events as per Fig. 3 in Lombardo and
Zickar (2019).

The next step was to download ASOS data for the months
of April to October for every year between 2000 and 2020.
The range of months chosen aligns with the occurrences of ex-
treme events based on analyzing ASOS data as presented by
Lombardo and Zickar (2019). The 5-min 64010 data were
used to determine the files to download from NEXRAD since
one of the recorded fields is an alphanumeric identifier to de-
scribe the weather condition. Accordingly, instances of thun-
derstorm occurrence (TSRA) were identified. Data extending
1 h before the first TSRA and 1 h after the last TSRA were
downloaded from the NEXRAD archive for each event. To
ensure independence between events, those occurring within
6 h of one another were merged to be one event similar to the
procedure implemented in Lombardo and Zickar (2019). Fur-
thermore, the 64050 files included the measured velocities and di-
rections that were used to evaluate the radar-retrieved values.
Fields in 64050 files include 3-s and 2-min wind speeds and direc-
tions, recorded every minute. Only the 3-s data were used in the
current study as the objective is to retrieve peak velocities.

Data used fromASOS archives were not standardized, mean-
ing that they were used as found in the archive. As for radar
data, the Py-ART toolkit (Helmus and Collis 2016) was used to
process NEXRAD raw data. The toolkit was used to perform
dealiasing of the radial velocity readings. The Nyquist velocity,
extracted from level-II metadata, is around 20–23 m s21 for the
modes analyzed in the current study (A. Losey-Bailor et al.
2019, meeting presentation). Several dealiasing methods are
available in the Py-ART toolkit: 1) unwrap method, 2) region-
based method, and 3) four-dimensional Doppler dealiasing
(4DD) method. The most comprehensive is the 4DD method,
which requires initial conditions (dealiased readings from a

previous time step or a wind profile) to perform. This would re-
sult in cumulative errors, so it was avoided. Alternatively, the
unwrap method is relatively fast compared to the region-based
method. Nevertheless, a study by Louf et al. (2020) indicates
that the unwrap method results in twice the errors produced
by the region-based method. Therefore, the region-based
method was chosen. To avoid the undesired effects of noise
on the corrected velocity, a quantity named velocity texture
was computed for the velocity field using a built-in function
in the Py-ART toolkit. Based on the values computed, ve-
locity values that corresponded to a texture value of more
than 3, where higher values imply higher noise, were removed
prior to the dealiasing procedure. The choice of this exclusion
limit was based on visual observations of corrected velocity
fields. To avoid processing excessive numbers of files, only files
that had more than one 0.58 Doppler sweep}VCP 12, 212,
112, 215, 121, and 35}were processed. Yet VCP annotations
were only mentioned in data archived after 2013, so this filter
was not applied to older data. The dealiasing procedure was
performed on the full 230 km range of data but only the veloc-
ity field within 200 gate spacings (;50 km) from the radar
was exported to netCDF format, which was then read by
MATLAB (Mathworks 2021) for further processing.

3. Methodology

The methodology to retrieve the velocity magnitude and di-
rection of the dealiased velocity field is described in this sec-
tion. Given that the objective is to retrieve peak velocities
from a nonuniform wind field, the current method aims to re-
trieve velocities using the smallest possible spatial domain.
Based on the sensitivity analysis presented in section 5, it is
proposed that a harmonic fit be performed on 108 segments
(20 points of 0.58 resolution) in the azimuthal direction to re-
trieve wind velocities at points of interest. Being a harmonic
fit makes it a variant of the VAD retrieval method with the
limited spatial domain being its main characteristic. It is im-
portant to acknowledge that wind signatures in radar scans
are noisy by nature, which makes it challenging to consider
such a limited domain. To minimize the effect of noise on the
fitted points, two consequent low-pass filters are applied along
the radial direction. The filters were of second order with half
power frequency ratios of 0.02 and 0.15 of half the sampling
frequency. This corresponds to filtering windows of widths
7.28 and 548, respectively. These values were chosen such that
the larger window establishes continuity for a larger scale and
eliminates outliers, and the smaller window establishes fur-
ther consistency, with less noise, among the points to be fitted.
For example, examining Fig. 3, this particular PPI scan shows
prevailing background wind as well as a separate event ap-
proaching from SSW. The expression “event” is used hereaf-
ter to refer to nonbackground wind, or flows that occur on a
limited scale compared to background wind occurring at a
much larger scale. The measured points along a radial ring
are presented in the same figure to show that while the back-
ground wind fit reasonably to a harmonic, the section repre-
senting the secondary event cannot be represented by the
same fit. In addition to the inadequacy of fitting both events

FIG. 2. Locations of radar stations used in the analysis.
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within the same 108 segment, applying the filtering process
along the full radial ring would completely distort the event
section, as well as affect the background results. Therefore, it
is essential to separate both domains, background and event,
prior to the retrieval process.

The separation process relies on the following four steps:

1) To remove noise, a grid of 0.5 km 3 0.5 km is used to re-
move locations with standard deviation of wind speeds
exceeding 2 m s21. Locations with such a high level of
inconsistency either represent noise or a sudden change
in radial velocity magnitude representing border lines
between background and events flows. The removal of

noisy grids is beneficial for the fitting process, while the
removal of border regions makes it easier to identify dif-
ferent regions in the next step. Figure 4 shows the PPI
scan before and after the removal of inconsistent loca-
tions, while Fig. 5 shows the effect of noise removal and
filtering on partitioned regions.

2) MATLAB’s Image Processing Toolbox is used to label
different regions for each PPI scan of radial velocity. Con-
sidering positive and negative wind speeds separately, the
following steps were performed:
(i) Image Processing Toolbox functions imerode and im-

dilate are applied to the scan. Any data point that is

FIG. 3. (a) PPI scan of radial velocity (in m s21) with a radial ring at Rd 5 22 km and (b) mea-
sured points along the ring with a harmonic fit. The blue points represent background flow and
red points are for event flow.
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not neighboring at least another point with valid ve-
locity value was deleted using imerode. This proce-
dure is dependent on the removal of inconsistent grid
values performed in the previous step which removed
data points between different flow regions. Using
imerode helps widen border lines between regions to
facilitate the region labeling in step (ii). After that, im-
dilate is used to connect regions that would fall within
a disk of five grid points diameter from one another.
This helps step (ii) form regions that would otherwise
be too small to be valid for the separations on the fol-
lowing steps.

(ii) Image Processing Toolbox function regionprops com-
bines every eight or more connected grid points to
form a region. Grid points of each region are then fit-
ted to Eq. (1) which represents a harmonic fit that
takes into account the height difference between
points introduced by the scanning elevation angle
pointing upwards. Assuming the wind vertical profile
is exponential, the three fitting parameters would
represent the amplitude of the harmonic (wind
speed), the phase shift (wind direction), and lastly

the power-law coefficient. Background flows are ex-
pected to adhere to the exponential vertical profile,
unlike thunderstorm flows. This will be used on a
later step to separate thunderstorm flows from back-
ground. For further analysis, a few parameters were
stored for each region. From the fitting process,
the first two fitting parameters, the R2 value, and the
mean absolute residual error were stored. In addi-
tion, the area of each region, computed using Eq. (3),
was also stored:

yrad 5 a1 3 sin(f 1 a2) 3
h(Rd)
hrad

[ ]a3
, (1)

h(Rd) 5 hrad 1 Rdtan(u), (2)

where yrad is the measured radial velocity, a1 is the
first fitting parameter corresponding to amplitude of
a harmonic wave, f is the azimuth angle of the data
point from the north direction, a2 is the second fit-
ting parameter corresponding to the harmonic
phase shift, h(Rd) is height of the radar beam

FIG. 4. Effect of noise removal shown using (a) raw scan of radial velocity and (b) noise removed and replaced with
black zones.

FIG. 5. The effect of noise removal and filtering shown using data points distribution along a ring
for the original data, data after noise removal, and data after filtering.
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above the ground level, hrad is height of the radar
station, a3 is third fitting parameter representing
the power-law coefficient; and u is scanning elevation
angle;

Area 5 ∑
nelements

1

p

naz
3 (Rd 1 gs)2 2 (Rd 2 gs)2

[ ]
, (3)

where nelements is number of elements (grid points) in
the region, naz is number of points in azimuthal direc-
tion (720 for 0.58 resolution), Rd is radial distance to
radar of each element, and “gs” is gate spacing (250m).

3) The main separation of event flow from background flow
occurs in this step. An optimization-based technique is
used to separate events from background flow as discussed
hereafter. Based on the region characteristics computed in
the previous step, regions that had (i) area . 250 km2,
(ii) R2 . 21.5, and (iii) mean absolute residual error of ve-
locities . 2 m s21 were considered to have events embedded
in background flows. The choice of area was such that the
area had to be large enough to engulf background wind and
an event. Also, it was found that regions with R2 , 21.5
correspond to regions where no part represents straight back-
ground wind in which case the separation algorithm cannot
operate (since there is no background region to separate).
The same analogy applies for the choice of cutoff error where
regions with more than 2 m s21 error imply the presence of
an area with values that offset from the current fit. An en-
semble of more than 100 scans containing event flows
within background flows was used to decide on these
cutoff values.

Regions with thementioned features are partitioned us-
ing an optimization-based technique. An optimization

function searches for the largest combination of grid
points that can be labeled backgroundwind as follows:
Optimization parameters: a1, a2, and a3 similar to
Eq. (1):

Objective function : Ar 5 2
Arsm2res

2 2 R2 : (4)

The optimization is done using MATLAB’s Optimiza-
tion Toolbox function “patternsearch” with mesh tol-
erance of 0.01. “Ar” in Eq. (4) is the variable to be
minimized, where Arsm2res represents the area of data
points with a smoothed fitting absolute residual not ex-
ceeding 1.5 m s21, set to be the characteristic of back-
ground wind. Smoothing is performed using the 2D
smoothing function “nanmedfilt2” as per Voronov
(2021) to avoid the effect of outliers. Last, the area
computed is divided by (2 2 R2) to prioritize areas
that have higher conformity. Accordingly, an R2

value of 1 would result in the lowest (highest nega-
tive value) Ar and values would worsen as R2 de-
creases. The final Arsm2res is considered to be the
background straight wind subregion and the remain-
ing subregion represents the event flow and is as-
signed a new region number. Figure 6 shows
examples of classified regions in comparison to the
radial velocity scans. Examining the velocity scans
can lead an experienced meteorologist to identifying
the type of event, especially when aided by reflectiv-
ity scans. Nevertheless, it is important to note that
the presented classification procedure does not aim
to do that, but instead aims at separating regions
based on their radial velocities to ensure the

FIG. 6. Examples of classified regions from PPI scans. (top) Radial velocity scans (blue is negative and red is positive) and (bottom) classi-
fied regions where each color represents a different region.
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harmonic fit is only applied to points that can be as-
sumed to share the same magnitude and direction.
For example, the second scan in Fig. 6 shows the
background region (in the bottom portion of the
scan) divided in two. While they are actually one re-
gion, the classification process only ensures that
points within each classified region can be assumed
to have the same magnitude and direction so VAD
assumptions can be applied.

4) As a last step in the separation process, the algorithm
goes through the classified regions to check for narrow
gust fronts. Regions similar to the red region in the last
classification of Fig. 6 cannot be fitted on an azimuthal
ring with 108 segments as it is exceptionally narrow. In-
stead, the fit in this case is performed for points within
5 km from the point of interest rather than along an
azimuthal ring. This approach yields enough points to
evaluate the fit for each point of interest. To classify
these regions as narrow gust fronts, the following sub-
steps were performed:

(i) Each region is fitted using least square orthogonal
linear fit as per Carr (2021). This is a linear slope
and intercept fit that minimizes the local orthogonal
residual instead of the global y residual. The result-
ing root-mean-squared error (rmse) is the thickness
of the region. Also, angles c1 and c2 were computed
as the slope angle of fitted straight line 6908 to rep-
resent the potential directions of wind perpendicular
to the fitted line.

(ii) The length l of each region along its longer axis is
computed using its minimum and maximum global x
and y coordinates.

(iii) The processed region is also fitted using Eq. (1) to
find a2.

(iv) The region is assigned to be a narrow gust front if it
follows the conditions
1) l . 5000 m indicating long length,
2) rmse , 1200 m indicating narrow shape,
3) l/rmse . 12 indicating slender shape, and
4) |a2 2 c1| or |a2 2 c2| , 208 indicating wind direc-

tion is perpendicular to longer dimension.
Accordingly, for each PPI scan of radial velocity, the sepa-

ration algorithm is performed to label regions that would be
fitted separately. After that, for any point of interest, the two-
step filtering procedure is applied for points that belong to the
same region, and last, a 108 segment is fitted to a harmonic fit
to find the wind magnitude and direction. Applying these
steps to a 1-km resolution grid of points for the scan in Fig. 3,
the 2D wind field is presented in Fig. 7 representing (Fig. 7a)
the magnitude and (Fig. 7b) the direction of the estimated
wind velocities. Different regions can be clearly distinguished
based on the predicted directions. This could not be achieved
without the separation prior to the harmonic fitting at points
of interest. The next section of this study will present more
metrics of the retrieved results in comparison to synchronized
ASOS results. Retrieval was only performed for one point per
scan, aligning with the ASOS station location. Results were
also compared to retrievals performed using the advanced
VAD technique presented by Xu06 which was procssed using
the software module developed by Lang et al. (2018).

4. Results and discussion

The procedure elaborated in the methodology section was
performed on the radar scans described in the data section.
The same radar scans were used for retrieval using the tech-
nique proposed by Xu06. Both techniques had similar compu-
tational time. Yet it is important to note that the amount of
time used by the current technique only yields the fitted

FIG. 7. (a) Magnitude and (b) direction of retrieved velocity using a 1 km grid. White space is an indication of missing
raw data or eliminated noise.
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velocity of a single point, while the same amount of time re-
sults in retrieving a grid of points covering the entire domain
considered for retrieval within the PPI scan. This means that
the new technique is significantly slower than Xu06, which is
more suitable for nowcasting applications. The results pre-
sented hereafter are statistical comparisons between the re-
trieved radar velocities using both techniques versus ASOS
3-s measurements.

a. Comparison between current technique and Xu06

Figure 8 provides examples for how each of the retrieval
techniques perform, depicting eight distinct examples. These
chosen time histories all had peak ASOS velocities of at least
25 m s21, which is close to the NWS’s definition of severe
winds (58 mph). Several observations can be made. First, it
can be seen that the current technique removes some data
points that are evident in the ASOS record. All of the missing
points occur when the wind speed is of lower magnitude; points
with higher magnitudes are always present. This is a by-product
of the noise suppression and classification procedures that result

in the removal of data points such that there is a lack of suffi-
cient data to perform the fit within the 108 segment width. Since
higher magnitude wind speeds are unaffected, which aligns with
the objective of this study, this loss of data at low speeds is not
deemed to be important.

Second, when examining the peak speeds from each record,
it is observed that the current technique is always closer to
the ASOS peak value than Xu06. This is expected due to the
spatial domain adopted by each technique. The current tech-
nique relies on a limited domain of 108 width, equivalent to
hundreds of meters in scale, while the other technique adopts
a domain that is two orders of magnitude larger. Although
the Xu06 method results in almost no missing point in the re-
cords, it inherently performs spatial averaging that smooth
out peak velocities due to the larger size of the considered
spatial domain. To confirm this, we altered the correlation
length with the Xu06 technique, going as low as 5 km instead
of the 60 km used in their study, which did not alter the results
significantly. Thus, the Xu06 methodology is not appropriate
for determining peak event wind speeds.

FIG. 8. Time histories of retrieved events showing ASOS record (black dots), XU retrieval (red dots), and current method retrieval (blue
crosses). The peak event velocity from each record is shown in larger annotation points.
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b. Assessment of retrieved peak velocities

In this section, peak event velocities obtained from the cur-
rent technique are examined to assess the validity of relying on
radar retrievals for estimating peak thunderstorm event veloci-
ties. ASOS ground measurements are used for comparison. Fig-
ure 9 shows the peak event velocities estimated for each station
using the current method and from the ASOS stations. Each di-
agram also has a 1:1 line to judge the relevance of the retrieved

velocities. The stations are sorted by their distance separation
from the radar. The axes represent ASOS and radar for X and
Y, respectively. The remainder of this section will explore the
properties of the computed peak velocities with relation to dis-
tance and height difference.

To compare the radar and ASOS data, it is important to ac-
knowledge two features of radar retrievals: (i) the scanned
volumes are at a higher elevation than the anemometer masts,

FIG. 9. Peak event retrieved velocity (y axis) vs ASOS (x axis) for each station separately (in m s21).
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which are at 10 m, and (ii) the scanned volumes vary with
distance from the radar. The elevation of the scanned vol-
ume is generally proportional to the distance from the radar
as a result of the scanning elevation angle. It is also affected
by the ground elevation at the radar base compared to the
ground elevation for the scanned volume, as demonstrated
in the values of Table 1, which do not follow a monotonic
trend with distance. It is expected that higher elevation
would lead to overestimation of retrieved velocities com-
pared to ASOS due to the boundary layer frictional effects.
In contrast, due to the beamwidth increasing as the distance
from the radar increases, the resolved volume increases as a
function of distance, which is expected to underestimate the
retrieved velocities as it represents a volume in the case of
radar versus a point in the case of anemometers. As per
Eq. (5), assuming a pulse duration of 2 ms, which is in line
with the 1.5–2.5 ms operational range of NEXRAD radars, a
18-wide beam would result in a resolution volume that varies
between 0.36 and 9.1 km3 for radial distances of 2 and 10 km,
respectively (Wolff 2022). These volumes are significant par-
ticularly when compared to ASOS resolution volume, which is
essentially a point:

Volume 5 R2
du

2
b
ct
2
, (5)

where Rd is radial distance from radar, ub is beamwidth in ra-
dians, C is the speed of light, and t is pulse duration.

To observe the effects of the distance from the radar on the
estimated peak velocities with the current method, Fig. 10
shows the generalized extreme value distribution fit for sta-
tions less than 4 km away from the radar (left panel) and sta-
tions more than 4 km away (right panel). The closer stations
had a much better agreement compared to stations farther
away. Nevertheless, it is important to note that the retrieved
peaks had a distribution that is to the right of the ASOS distribu-
tion. This means that the current retrieval technique overesti-
mates the peak velocities as distance increases, leading to the
conclusion that height increase effect overrides the volume aver-
aging effect. While height is related to distance away from the
radar, the initial height difference (radar height2 ASOS height)
results in a different relation for each station combination.
Therefore, height and distance are examined independently. A
more detailed look into the height effect can help refine the
retrieved velocities.

           ASOS   RADAR 
K                -0.05        -0.07    

Sigma          3.79         3.82      

Mu               9.87       10.18 

           ASOS   RADAR 
K                -0.08       -0.10    

Sigma          4.17        4.58      

Mu               9.75      11.86 

FIG. 10. Peak event velocity distribution fits for stations (left) within 4 km and (right) more than 4 km.

FIG. 11. Velocity mean errors (dots) and mean absolute errors (crosses) vs (a) height difference between the beam and
ASOS anemometer and (b) distance between the ASOS and radar.
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Accordingly, Fig. 11 examines the mean error and mean ab-
solute error of velocity, being the difference between ASOS
and retrieved values, plotted against height difference (left
panel) and distance (right panel). These error values were
computed from all retrieved points rather than only peak
points used for previous comparisons. The figure shows, as
expected, an increase in mean absolute errors with height and
distance ranging between 1.6 and 4.2 m s21, as well as a de-
crease for mean errors going from 0.5 to24 m s21.

A closer look at the plotted values shows that the mean er-
ror plotted against height difference would comply to an ex-
ponential fit. Given that the previous discussion showed that
distance is less important to errors compared to height, it was
decided to use the distribution of error with height to correct
the retrieved peak velocities. The trend in the case of mean
error versus height difference is close to an exponential repre-
sentation. Fitting the mean error versus height h using Eq. (6)
result in fitting parameters equal to 20.173, 37.38, and 1.71
for parameters a, b, and c, respectively:

Err 5 a 3
h 2 b
10

( )1/c
: (6)

Modifying the retrieved peak event velocities plotted in
Fig. 10 resulted in the distributions plotted in Fig. 12 based on
this error distribution. The modified distribution shows a
near-perfect match for stations less than 4 km apart, and a
much better agreement for farther stations, especially for the
leading tail which is in perfect agreement for values exceeding
15 m s21. The improved range is of more importance given
that the objective of this study is to retrieve peak velocities,
meaning that higher values are of more relevance.

5. Sensitivity and limitations

The proposed algorithm inherently removes data points
during noise removal as well as when performing the first step
in region classification. The black spaces in Fig. 5 show that

data points that have radial velocity values were eliminated
by noise removal procedures. The ASOS data used for com-
parisons made in the previous section were only ASOS read-
ings that had corresponding radar retrievals. Accordingly,
means that ASOS data points that synchronized with missing
radar data were removed from the compared dataset. For at-
mospheric science and wind engineering applications, it is cru-
cial to guarantee that such eliminations did not include any
high-intensity peak velocities. To check that, Fig. 13 compares
the full dataset of ASOS readings with no eliminations with
the dataset used in the previous section for stations with radial
distance within 4 km. As illustrated in the figure, the postpeak
region is in perfect match, while the main difference is in ve-
locities less than around 7 m s21. It is reassuring that results
of radar retrieval do not miss important data of higher inten-
sity and can predict it within the errors described above.

           ASOS   RADAR 
K                -0.08        -0.12    

Sigma          4.17         4.38      

Mu               9.75        9.41 

           ASOS   RADAR 
K                -0.05        -0.07    

Sigma          3.79         3.79      

Mu               9.87        9.75 

FIG. 12. Peak event velocity distribution fits for stations (left) within 4 km and (right) more than 4 km after correction
using error in Eq. (6).

           ASOS   Complete 
K                -0.05       -0.07    

Sigma          3.79        3.99      

Mu               9.87       9.65 

FIG. 13. Peak event velocity distribution fits for complete ASOS
set and radar matching set where data points corresponding to
missing radar data were eliminated.
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Furthermore, fitting the data points to a harmonic wave
was done using a segment width of 108. This choice was based
on comparing the distribution functions of retrieved data with
ASOS data for radial distances of 4 km or less as shown in
Fig. 14. Visual comparison shows that the 108 segment width re-
sults in more conforming results with ASOS observations com-
pared to 58 and 158 segment widths. The y axis is presented on a
log scale to amplify the differences for comparison.

In addition, the chosen segment width of 108 influences the
minimum scale resolvable by the retrieving technique. The
108 segment is assumed to have wind flow with the same mag-
nitude and direction. Yet diffluent flow, which is a common
feature of thunderstorm outflows, will see error introduction
as the linearity assumption is violated. To investigate the scale
of error introduced in such nonlinear flows, retrieval using 108
segments was performed on a static representation of the ana-
lytical model presented by Xhelaj et al. (2020). The model
represents directionally diverging flow due to stagnation of a
vertical downdraft. As explained in their work, the wind field
is a function of the maximum velocity yrmax, the radial posi-
tion away from the stagnation center r, as well as event de-
scriptors Rmax and Rs. The two event descriptors represent the
radius of maximum velocity and the radial length scale, both of
which are functions of the downdraft radius Rdown. Equation (7)
explains how the radial velocity y(r) is computed:

y(r) 5
yrmax

r
Rmax

( )
, 0 # r # Rmax

yrmax : exp 2
r 2 Rmax

Rs

( )2⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,Rmax , r

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where Rmax 5 2Rdown and Rs 5 Rdown.
The model was used to generate downdraft wind fields with

Rdown 5 [0.1, 0.25, 0.5, 1, 2, 5, 10] km. Each downdraft wind
field was applied at a radial distance from the radar varying
from 2 to 20 km with 2 km interval. The results shown in

Fig. 15 show the mean absolute error of retrieved velocity at
points of maximum intensity (across varying radial distances)
normalized by yrmax versus the downdraft radius in kilometers
for the current technique and the previous one. It can be
noted that the error decays exponentially with the increase of
downdraft radius for both cases. The current technique out-
performs the other one, especially for smaller radii due to the
smaller spatial domain considered in the analysis. It is also im-
portant to note that the simulated downdraft did not include
any noise, which means that the errors computed are for the
peak performance of the retrieval algorithm. The introduction
of noise would increase the error. The current technique is
shown to yield less than 5% normalized error at 1 km radius,
which the other technique achieves at 5 km radius. Neverthe-
less, due to the noise removal and classification associated
with the current algorithm, it is suggested that it cannot be re-
liable for flows that diverge with radii less than 3 km, which
corresponds to region area of 25 km2.

Furthermore, it is important to note that the presented re-
sults are bound by the specific properties of WSR-88D radars
and the archiving features of level-II data. Different radar
products can use the methodology as a concept, but thresh-
olds and limitations need to be changed based on the avail-
able data. Last, the presented work does not address factors
like terrain roughness and atmospheric stability due to the ab-
sence of a clear model that considers both factors when com-
puting vertical wind velocity profiles for thunderstorms. With
the presence of such model, these factors can be included in
the presented framework in the future.

6. Conclusions

The current study presents a method by which a variant of
the VAD retrieval method may be applied to thunderstorm
winds, which are sampled by high-resolution NEXRAD radar
scans, to retrieve peak event velocities. This novel approach
overcomes the violation of VAD’s linearity requirement in
the case of thunderstorm winds by (i) considering a relatively
limited spatial domain (108 segment in the azimuthal direc-
tion) and (ii) utilizing image processing and optimization to
separate inconsistent flows within each PPI scan such that
each flow region can be treated separately. An optimization
process identifies the largest area within the region of interest
that satisfies specified fitting conditions to a harmonic fit. This

FIG. 14. Peak event velocity distribution fits using different fitting
segment widths.

FIG. 15. Normalized mean absolute error of retrieved velocity using
108 segment vs radial distance from the radar.
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identified area, considered to be background wind, is parti-
tioned from the remainder of the region, considered to be
thunderstorm event winds.

To validate the retrieval procedure, estimated velocities
were compared to an advanced VAD variant proposed by
Xu06, as well as synchronized ASOS 3-s gust measurements
at times when ASOS logs indicate the presence of a thunder-
storm. A total of 19 NEXRAD–ASOS station combinations
having a separation distance of 2–10 km were considered. Be-
tween the years 2000 and 2020, more than 2600 thunderstorm
events were logged by these 19 ASOS stations. For each thun-
derstorm event, an average of 45 low-elevation PPI scans were
retrieved, resulting in a total of about 117 000 retrieved scans.

The following conclusions can be drawn:

1) Retrievals from the presented technique, although com-
putationally expensive, had better estimates of peak ve-
locities compared to retrievals using the method of Xu06.
This is attributed to the large spatial domain adopted by
Xu06 resulting in underestimation of peak event veloci-
ties, especially for higher wind speeds.

2) Differences between the retrieved NEXRAD velocities
and ASOS 3-s gust measurements showed a clear correla-
tion with both the separation between radar and ASOS
station and the elevation difference between ASOS mast
and corresponding radar target. The mean absolute error
in wind velocity varied linearly between 1.6 and 4.2 m s21

for heights and distances in the range of 45–280 m and
2–10 km, respectively.

3) Peak event velocity distributions indicate close agree-
ment for stations less than 4 km from the radar. A cor-
rection based on the mean error with height significantly
improved the peak distributions for all stations, especially
for the tails, which are significant for estimating high-
intensity wind velocities based on historical records.

4) Sensitivity analyses, which are specifically related to WSR-
88D data, showed that a 108 radial segment demonstrated
the best agreement with ASOS measurements, and that
the algorithm can retrieve velocities for diffluent flows with
radii as small as 3 km, corresponding to areas of at least
25 km2.

These findings suggest that the algorithm can be used to es-
timate surface wind velocities within 10 km of a radar station.
This allows the possibility of retrieving velocities on a spatial
grid, which can aid atmospheric scientists studying mesoscale
events since the algorithm can reveal details of near-surface
flows. Such grid retrievals are also useful for wind engineers
in the design of structures with large spatial footprints, such
as transmission lines, long span bridges, and large industrial
complexes.
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