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Abstract 

Thiamine deficiency from the consumption of invasive, high-thiaminase prey fishes is 

considered to be a major barrier for lake trout restoration in the Great Lakes. In fishes, an 

understudied aspect of thiamine deficiency is its effect on cardiac function. I examined the 

effects of dietary thiaminase on cardiac function and morphology in lake trout, specifically as 

they relate to thermal tolerance. Two hatchery strains of lake trout (Seneca and Slate) were 

raised on a control or thiaminase diet for nine months. The thiaminase diet was associated 

with significant ventricle enlargement, impaired cardiac function, and reduced thermal 

tolerance; these effects were more pronounced in Slate strain fish. Similar cardiac 

morphological changes were observed in wild-caught lake trout from the Sudbury Basin. 

These results suggest that dietary thiaminase impairs cardiac function and alters cardiac 

morphology in fishes, and that such changes may become increasingly important as water 

temperatures increase through climate change. 
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Summary for Lay Audience 

Thiamine (vitamin B1) is an essential vitamin that animals must obtain from their diet. In 

mammals, a deficiency of thiamine can result in severe cardiac disorders including heart 

failure and changes in heart size. However, little is known about how thiamine deficiency 

affects the cardiac system of fish. In lake trout from the Laurentian Great Lakes and Sudbury 

Basin, thiamine deficiency is thought to contribute to current population declines. In these 

ecosystems, the source of this vitamin deficiency comes from the consumption of invasive 

prey species — alewife and rainbow smelt — that contain high concentrations of a thiamine-

degrading enzyme called thiaminase. Understanding how the consumption of thiaminase 

impacts cardiac function is critical in advancing ongoing lake trout management efforts, as 

cardiac function and morphology are integral to the thermal tolerance of fishes. In this thesis, 

I investigated the connection between thiaminase consumption, cardiac function, cardiac 

morphology, and thermal tolerance in two hatchery strains of lake trout that are currently 

targeted for reintroduction in the Great Lakes. I found that raising lake trout on a diet 

containing thiaminase for nine months resulted in impaired cardiac function, increased heart 

size, and reduced thermal tolerance. I also found notable differences between lake trout 

strains, where a strain originating from a population that historically fed on high-thiaminase 

prey fishes was more tolerant of the thiaminase diet. I expanded my laboratory findings to the 

field where I found that wild lake trout from the Sudbury Basin displayed similar cardiac 

structural changes in lakes where high-thiaminase prey fishes are the main forage items. 

Results from this research show that the consumption of dietary thiaminase from invasive 

species can impair cardiac function and alter cardiac morphology, which may translate to 

lower survival in the wild, especially as water temperatures increase with climate change. 
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Chapter 1  

1 Introduction 

 Environmental Stressors 

Ecological communities around the world are increasingly being impacted by multiple 

environmental stressors. An environmental stressor refers to any biotic or abiotic 

environmental factor that causes stress, including extreme temperatures, food availability, 

predatory pressure, and inter- and intra-specific competition (Schulte, 2014). In recent 

years, human impacts on ecosystems have grown substantially such that many organisms 

now face additional stressors such as habitat loss, over-exploitation, pollution, invasive 

species, and climate change (Christie, 1972; Rosenberg, 2003; Farrell et al., 2008; 

Isaksson, 2010; Kirchman et al., 2020). Predicting the cumulative effects of 

environmental stressors on organisms can be difficult as stressors can interact in a variety 

of ways in an environment. In a simplified model of two stressors acting on an organism 

simultaneously, there are three categories describing the outcome: additive, synergistic, 

or antagonistic (Folt et al., 1999). The cumulative effect of multiple stressors can be 

additive if the effect of the combined stressors is equal to the sum of the independent 

effects, synergistic if the combined effect is greater than the sum of the independent 

effects, or antagonistic if the combined effect is less than the sum of the independent 

effects (Folt et al., 1999). Of these interactions, synergistic stressor interactions are of 

particular concern because of their capacity to have profound, unpredictable impacts on 

ecosystems (Myers, 1996; Côté et al., 2016). Indeed, such interactions can result in 

“ecological surprises” if the cumulative effect far exceeds the predicted additive effect 

(Christensen et al., 2006). Thus, there is a current need to understand how environmental 

stressors interact in an ecosystem to accurately predict how species might respond to 

changes in their environment. 
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1.1.1 Stressors in Aquatic Ecosystems 

Aquatic ecosystems are exposed to a myriad of environmental stressors, however, rising 

water temperatures due to climate change and the introduction of invasive species are two 

stressors of particular concern (Mainka and Howard, 2010). According to the 

Intergovernmental Panel on Climate Change (IPCC), current climate models project an 

average atmospheric temperature increase of 2.3-4.7°C by the year 2100 (IPCC, 2021). 

Consequently, lake surface water temperatures are predicted to increase dramatically 

across most of Canada (Sharma et al., 2007). Increases in lake surface water temperatures 

are predicted to modify the thermal properties of aquatic habitats such that many 

organisms will more frequently be exposed to temperatures that exceed their thermal 

optima (De Stasio et al., 1996; Ficke et al., 2007). Superimposed on the warming aquatic 

landscape is the increasing threat of biological invasion. Indeed, humans have greatly 

facilitated the spread of invasive species in aquatic ecosystems in recent years through 

intentional stocking, accidental releases, international trade, and through the modification 

of biogeographical barriers (Kolar and Lodge, 2000; Rahel, 2007). The introduction of 

invasive species in aquatic ecosystems has the potential to dramatically alter ecosystem 

structure through competition, predation, pathogen introduction, hybridization, and food 

web disruption (Kernan, 2015). 

Most research has traditionally focused on the independent effects of invasive species and 

climate warming, however, recent research has suggested that it is unlikely these stressors 

operate in isolation (Mainka and Howard, 2010). Global climate change is predicted to 

increase the abundance, extent, and diversity of invasive species in aquatic ecosystems 

(Kolar and Lodge, 2000; Stachowicz et al., 2002; Hellmann et al., 2008; Mainka and 

Howard, 2010; Kernan, 2015). For example, recent increases in water temperature in the 

Great Lakes have created an abundance of suitable thermal habitat for potential invaders 

such as the grass carp (Ctenopharyngodon idella) — a species that is now a significant 

threat to the Great Lakes (Wittmann et al., 2017). In addition, a longer shipping season as 

a result of climate change is predicted to increase the propagative opportunities for 

multiple invasive species in the Great Lakes (Kolar and Lodge, 2002). Lastly, increased 

surface water temperatures in boreal lakes are expected to precede a range expansion of 
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warm water invasive species such as smallmouth bass (Micropterus dolomieu), whose 

negative impacts on native fish communities are profound and well-documented 

(Jackson, 2002; Jackson and Mandrak, 2002; Vander Zanden et al., 2004; Sharma et al., 

2011). Altogether, interactions between these two stressors present a major challenge for 

the management and conservation of aquatic ecosystems. 

 Thiamine Deficiency: An Emerging Stressor 

1.2.1 Thiamine Deficiency in Wildlife 

In recent years, thiamine deficiency has been discovered in numerous wildlife 

populations around the world and has been hypothesized to be a significant contributing 

factor in worldwide biodiversity loss (Balk et al., 2016; Gilbert, 2018). Indeed, thiamine 

deficiency was recently listed as a significant threat to global conservation in a 2018 

horizon scan for emerging issues relating to global biodiversity loss (Sutherland et al., 

2018). The geographic and taxonomic extent of thiamine deficiency is widespread, with 

populations of birds, reptiles, fish, mammals and bivalves being affected across multiple 

continents (Fisher et al., 1996; Sepúlveda et al., 2004; Butler et al., 2008; Balk et al., 

2009; Balk et al., 2016). For example, thiamine deficiency has been identified as a 

primary factor behind widespread die-offs and breeding failure of Herring Gull (Larus 

argentatus), European Starling (Sturnus vulgaris), and Common Eider (Somateria 

mollissima) in Europe (Balk et al., 2009). Furthermore, reports of neurological 

impairment and unprecedented morbidity in alligators from central Florida has been 

attributed to low levels of thiamine in alligator tissue (Sepúlveda et al., 2004; Honeyfield 

et al., 2008). To date, no general cause for thiamine deficiency in wildlife is known. In 

many instances, however, the thiamine-degrading enzyme thiaminase is a common 

factor. There are two distinct types of thiaminase, thiaminase I and thiaminase II, both of 

which catalyze the hydrolysis of thiamine but with different mechanisms (Jenkins et al., 

2007), and both have been shown to induce thiamine deficiency in wildlife. For example, 

thiamine deficiency in moose from North Dakota is thought to result from grain overload, 

a syndrome by which a shift in diet from natural browse to agricultural crop produces a 

favorable rumen environment for Clostridium perfringens, a species of bacteria that 
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produces thiaminase II (Butler et al., 2008). Similarly, the consumption of prey fish that 

contain high concentrations of thiaminase I has been shown to induce thiamine deficiency 

in Pacific harbor seals (Phoca vitulina) in California (Croft et al., 2013). Altogether, 

thiamine deficiency is an emerging stressor that is hypothesized to be a significant 

contributing factor in large-scale wildlife mortalities and biodiversity loss (Balk et al., 

2016). 

1.2.2 Why is Thiamine Essential? 

In animals, thiamine (vitamin B1) is an essential vitamin required for a wide range of 

physiological processes. Essential vitamins refer to those that cannot be endogenously 

synthesized and must therefore be obtained through an external source. Indeed, the 

monophosphorylated form of thiamine (TMP; Figure 1) can only be endogenously 

synthesized by some bacteria, plants and fungi, while all animals must obtain thiamine 

from their diet (Fitzpatrick and Thore, 2014). In many animals, the primary site for 

thiamine uptake is the small intestine, where free thiamine (T+; Figure 1) is transferred to 

the bloodstream by a combination of concentration-dependent mechanisms (Manzetti et 

al., 2014). At high intestinal concentrations, thiamine passes through the intestinal 

membrane primarily by passive diffusion via proton channels in exchange for protons 

(Said et al., 1999; Manzetti et al., 2014). At low concentrations, thiamine passage is 

dominated by active transport via organic cation transporters and alkaline/acid 

phosphatases (Ferrari et al., 1978; Martel et al., 2001). In humans, approximately 47% of 

ingested thiamine is distributed to tissues and organs while the remainder is excreted in 

urine (Losa et al., 2005). Like other B-vitamins, thiamine is water soluble and cannot be 

stored for long periods of time. Thiamine storage can last up to 18 days in humans 

(Munir et al., 2001), with the greatest concentrations of thiamine existing in tissues with 

high metabolic requirements such as the liver, heart, and skeletal muscle (Marrs et al., 

2021). 
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A

B

C

D

Figure 1. Naturally occurring forms of thiamine at neutral pH.  

 

 

(A) Free thiamine (T+), 

(B) thiamine monophosphate (TMP), (C) thiamine diphosphate (TDP), (D) thiamine 

triphosphate (TTP). Adapted with permission from Manzetti et al. (2014). Copyright © 

2014 American Chemical Society. 
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In most tissues, thiamine primarily exists in its metabolically relevant form, thiamine 

diphosphate (TDP; Figure 1C; Tillitt et al., 2005; Gangolf et al., 2010), which plays a 

vital role in metabolism and energy production. TDP acts as a rate-limiting cofactor for 

several key metabolic enzymes that catalyze the oxidative decarboxylation of α-ketoacids 

in the tricarboxylic acid (TCA) cycle (Depeient et al., 2006). Specifically, TDP is a 

cofactor for pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and branched chain 

α-ketoacid dehydrogenase (Figure 2). In the process of each of these thiamine-dependent 

reactions, the electron carrier nicotinamide adenine dinucleotide (NAD+) is reduced to 

NADH, which then donates electrons to the electron transport chain to facilitate 

adenosine triphosphate (ATP) synthesis. As such, these thiamine-dependent metabolic 

reactions are essential in mitochondrial ATP production. Indeed, thiamine deficiency has 

been shown to reduce ATP synthesis in animal tissues (McCandles et al., 1970). In 

addition to ATP production, TDP also plays a role in the pentose phosphate pathway 

where TDP is a cofactor for transketolase which aids in the synthesis of nucleic and 

amino acids (Racker et al., 1953). 

Although thiamine is primarily known for its role in metabolism and energy production, 

it also serves a variety of other important functions. Particularly, thiamine plays a key 

role in brain function and interneuronal communication through the generation of 

acetylcholine, glutamate, and γ-aminobutyric acid (Perri et al., 1970; de Freitas-Silva et 

al., 2010; Ferreira-Vieira et al., 2016). Further, T+ and thiamine triphosphate (TTP; 

Figure 1D) regulate nerve signal transmission through the activation of potassium and 

chloride channels (Cooper and Pincus, 1979; Bettendorff et al., 1993). Thiamine also 

plays an important role in the immune system, primarily through the function of T+ as an 

antioxidant (Anderson, 1982; Huang et al., 2010). Multiple other immune-related 

processes depend on thiamine, including the release of intracellular adhesion molecules 

(Ottinger et al., 2012), expression of immunoglobulins (Molina et al., 1994; Zimitat and 

Nixon, 2001), and the anti-inflammatory response (Ke et al., 2006). Taken together, 

thiamine is an essential component in the diets of all animals and is vital for a variety of 

physiological processes including proper immune function, brain and nervous tissue 

function, and metabolism and energy production. 
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TCA Cycle

Figure 2. The role of thiamine diphosphate (TDP) in metabolism. Black arrows represent 

enzymatic reactions that require TDP as a cofactor and the associated enzymes are 

highlighted in blue. Figure adapted with permission from Kraft and Angert (2017). 

Copyright © 2017 University of Chicago Press. 
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1.2.3 Thiamine Deficiency: History & Manifestations 

Thiamine deficiency — clinically known as beriberi in humans — was first described by 

Chinese physicians in 300AD when a deadly disease associated with symptoms of 

weakness, swelling, and extremity numbness emerged (Benedict, 2018). However, 

empirical evidence to suggest that the disease was diet-related did not emerge until the 

1890s (Lanska, 2010), and thiamine itself was not discovered until the 1930s (Carpenter, 

2012). The prevalence of beriberi increased greatly in Asia during the early 20th century, 

particularly in Japan where it became a national disease known as Kak’ke (Berdanier, 

2021). The increased prevalence of thiamine deficiency in Japan and other Asian 

countries was primarily driven by a change in the processing of rice. Rice polishing, 

which was a novel and popular practice during the 20th century, is done by removing the 

outer rice husk that contains most of the plant’s nutrients. As a result, excessive 

consumption of polished rice led to widespread thiamine deficiency across much of Asia 

(Berdanier, 2021). The deficiency was especially prevalent in the Japanese military, with 

neurological and cardiovascular symptoms frequently documented between the times of 

the Russo-Japanese War and World War II (Hawk, 2006). In developed countries today, 

thiamine deficiency is uncommon and is generally only observed in patients that suffer 

from chronic alcohol abuse, as excessive alcohol consumption can impair thiamine 

uptake (Martin et al., 2003). 

Throughout the 20th century, after being recognized as a deadly disease in humans, 

thiamine deficiency became increasingly described in a variety of domestic animal 

populations. Mink and fox raised for fur production in the early 1900s were amongst the 

first domestic animals whose mortalities were known to be related to thiamine deficiency 

(Green and Evans, 1940; Stout et al., 1963). In the following decades, high mortalities of 

cattle, sheep, goats, and chickens had also been reported with similar sub-lethal signs that 

were alleviated with thiamine injection (Shintani, 1956; Edwin and Jackman, 1970; 

Thomas et al., 1987; Bourke et al., 2003). Similar to humans, thiamine deficiency in 

domestic animals was often related to diet. Indeed, large-scale die-offs of sheep in 

Australia were attributed to the heavy grazing of nardoo (Marsilea drummondii), a water 

fern that contains thiaminase I (McCleary and Chick, 1977).  
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Today, beriberi is clinically divided into two categories: wet beriberi and dry beriberi. 

Dry beriberi is typically characterized by central and peripheral nervous system 

impairment (Smith et al., 2021). During acute thiamine deficiency, dry beriberi can 

manifest as muscular weakness, fatigue, and memory loss (Kril et al., 1996). Prolonged 

and severe dry beriberi can lead to the development of Wernicke’s Encephalopathy, a 

neuropsychiatric disease characterized by severe cognitive impairment, oculomotor 

abnormalities, and ataxia (Sechi and Serra, 2007). If left untreated, Wernicke’s 

Encephalopathy can be accompanied by Korsakoff Syndrome (collectively referred to as 

Wernicke-Korsakoff syndrome), a memory disorder characterized by axonal 

degeneration, brain lesions, and cerebellum atrophy (Krill et al., 1996; Kopelman et al., 

2009). Conversely, wet beriberi is characterized by cardiac impairments. The most 

common manifestations of wet beriberi are heart rhythm abnormalities, cardiac structural 

alterations, acidosis, and edema (Roman-Campos and Cruz, 2014).  Severe cases of wet 

beriberi are clinically diagnosed as Shoshin beriberi, which is characterized by a rapid 

decline in systemic blood pressure, cyanosis, and cardiac failure (Roman-Campos and 

Cruz, 2014). In animal models, a reduction in heart rate and cardiac atrophy are among 

the most common cardiac-related symptoms of thiamine deficiency (Cohen et al., 1976; 

Cappelli et al., 1990; Oliveira et al., 2007; Roman-Campos et al., 2009; Gioda et al., 

2010). Concurrent with macroscopic evidence, impaired myocyte contractility and 

myocyte atrophy have been documented in multiple studies in rats (Gioda et al., 2009; 

Roman-Campos et al., 2009; Yamasaki et al., 2010). Current evidence suggests that the 

reduced cardiac function documented during thiamine deficiency in mammals is 

facilitated by a combination of reduced ATP availability, impaired calcium release from 

sarcoplasmic reticulum, increased reactive oxygen species production and apoptosis, and 

a reduction in myocyte size (Roman-Campos and Cruz, 2014). 

1.2.4 Thiamine Deficiency in Salmonids 

Salmonids from the Laurentian Great Lakes are among the most well-studied wildlife 

populations affected by thiamine deficiency. In the Great Lakes, signs of thiamine 

deficiency have been observed in populations of Atlantic salmon (Salmo salar), coho 

salmon (Oncorhynchus kisutch), Chinook salmon (O. tshawytscha), brown trout (S. 



10 

 

trutta), rainbow trout (O. mykiss), and lake trout (Salvelinus namaycush) (Fisher et 

al.,1995; Fisher et al., 1996; Marcquenski and Brown, 1997). In the Great Lakes, 

thiamine deficiency has been attributed to the consumption of thiaminase I (Fitzsimons 

and Brown, 1998). In particular, invasive alewife (Alosa pseudoharengus) and rainbow 

smelt (Osmerus mordax) have been found to have high thiaminase activity relative to 

native prey fishes (Tillitt et al., 2005). The production of thiaminase I in these prey fish is 

believed to originate from gut microbiota (Honeyfield et al., 2002), however this 

association has been called into question (Richter et al., 2012) and recent studies suggest 

that the synthesis of thiaminase may be de novo (Richter et al., 2023). Regardless of the 

source of thiaminase production, alewife and rainbow smelt have become abundant since 

their introductions to the Great Lakes and their consumption has been directly linked to 

the development of thiamine deficiency in salmonids (Fitzsimons and Brown, 1998).  

Signs of thiamine deficiency in the Great Lakes were first documented in 1968, when an 

unknown disease causing widespread mortality emerged among hatchery-raised 

populations of Chinook salmon, coho salmon, rainbow trout, and brown trout 

(Marcquenski and Brown, 1997). Early documentations of the deficiency reported high 

rates of mortality in sac-fry — a developmental stage prior to exogenous feeding where 

young fish rely on their yolk-sac for sustenance — and was aptly named early mortality 

syndrome (EMS). Over the next few decades, EMS became increasingly prevalent and 

mortality exceeded 90% in some hatchery-raised populations (Marcquenski and Brown, 

1997). During this time, a syndrome named M-74 presenting with similar signs to EMS 

emerged in Atlantic salmon from the Baltic Sea. As with EMS, hatchery-raised Atlantic 

salmon sac-fry suffering from M-74 exhibited high rates of mortality (Lundström et al., 

1999). In these fish, several sub-lethal impairments were also noted including ataxia and 

lethargy (Amcoff et al., 1998). Here, the disease was eventually linked to the 

consumption of sprat (Sprattus sprattus) and Atlantic herring (Clupae harengus), both of 

which contain high concentrations of thiaminase I, resulting in reduced egg and tissue 

thiamine concentrations (Karlsson et al., 1999; Wistbaka et al., 2002; Wistbaka and 

Byland, 2008).  
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Before EMS was linked to thiaminase consumption in the Great Lakes, early research 

focused on the possibility that environmental contaminants, such as polychlorinated 

biphenyls, dioxins, furans, and heavy metals, were behind the high rates of mortality 

(Mac et al., 1993; Fitzsimons et al., 1995). In a laboratory setting, exposure to these 

contaminants had previously been shown to induce a similar syndrome (Spitsbergen et 

al., 1991; Walker et al., 1991; Peterson et al., 1993; Walker et al., 1994), however 

contaminant concentrations in wild-caught fish were below the levels expected to explain 

the observed rate of mortality (Mac and Edsall, 1991; Fitzsimons et al., 1995). The 

inability to link EMS to environmental contaminants led to an alternative hypothesis that 

EMS was a result of a nutritional deficiency. Shortly after attention turned to a nutritional 

basis, Fitzsimons (1995) discovered that EMS signs were alleviated following thiamine 

injection while injections of the other B-vitamins were ineffective.  

Since the connection of thiamine to EMS, extensive research on the lethal and sublethal 

effects of thiamine deficiency has occurred, with the effects collectively referred to as 

thiamine deficiency complex (TDC). Many of the behavioural and physical signs of TDC 

are analogous to symptoms observed in humans. Behaviourally, salmonids suffering from 

TDC present with ataxia, lethargy, and uncoordinated swimming patterns often described 

as “corkscrew swimming” (Fisher et al., 1995; Fitzsimons et al., 2005). In addition, TDC 

has been shown to decrease visual acuity and impair foraging and predator avoidance 

behaviours in lake trout (Carvalho et al., 2009; Fitzsimons et al., 2009a). Physically, 

thiamine-deficient fry exhibit edema, hemorrhaging, hydrocephalus and vascular 

congestion (Fisher et al., 1995; Fitzsimons et al., 2001a; Fitzsimons et al., 2001b), while 

thiamine-deficient juvenile and adult salmonids have a reduced growth rate (Fitzsimons 

et al., 2009), impaired immune response (Ottinger et al., 2012, 2014), altered body 

morphology and skin pigmentation, and reduced swimming performance (Houde et al., 

2015a; Ketola et al., 2005, Fitzsimons et al., 2005). Many of the documented 

impairments associated with TDC have been attributed to the role of thiamine in the 

nervous system, and only indirect measures of cardiac function (i.e swimming 

performance) have been examined. If fish suffering from TDC exhibit similar cardiac 

impairments as mammals such as reductions in heart rate and cardiac atrophy, it would 
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have negative consequences for present and future salmonid survival and therefore 

warrants investigation.  

 A Crucial Link: Thiamine Deficiency and Thermal Tolerance 

1.3.1 The Salmonid Heart: A Lynchpin for Aerobic Performance 

The heart is a highly oxidative muscle that requires a high rate of ATP production to 

maintain its continuous mechanical work. In humans, heart tissue generates >95% of its 

ATP from mitochondrial oxidative phosphorylation, the majority of which is used to 

achieve ventricular contraction (Suga, 1990; Knaapen et al., 2007). The capacity of the 

heart to deliver oxygenated blood to tissues is especially important for salmonids which 

comprise a family of highly active fishes including trout, salmon, char, and graylings. 

Therefore, constraints to cardiac function as a result of TDC are expected to have 

pervasive impacts on the fitness of salmonids.  

Like all fish, the salmonid heart is comprised of four chambers: the sinus venosus, 

atrium, ventricle, and the bulbous arteriosus. The atrium and ventricle are lined with 

excitable cells and actively contract and pump blood, while the sinus venosus and the 

bulbous arteriosus are chambers that function as storage units for blood entering and 

leaving the heart (Santer, 1985). Unlike most fish, however, the salmonid ventricle 

consists of two different myocardial structures: spongy and compact myocardium (Davie 

and Farrell, 1991). Spongy myocardium is comprised of a mesh-like network of cells that 

span the inner ventricle (Tota et al., 1983). Ventricles that contain only spongy 

myocardium are described as having either saccular- or tubular-shaped ventricles and are 

generally found in more sedentary fishes (Santer and Walker, 1980; Agnisola and Tota, 

1994; Tota and Gattuso, 1996). Conversely, highly active fishes such as salmonids have a 

mixed-type ventricle that contains both spongy and compact myocardium and is 

described as being pyramidal-shaped (Santer and Walker, 1980; Agnisola and Tota, 

1994; Tota and Gattuso, 1996). Compact myocardium consists of a dense, muscular wall 

that envelopes the ventricle and functions as a supplementary pump (Tota et al., 1983; 

Davie and Farrell, 1991; Agnisola and Tota, 1994). In fish with this ventricular 
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arrangement, ventricular morphology plays an important role as a determinant of cardiac 

capacity. Indeed, both a greater ventricular mass and a more elongated ventricle have 

been linked to improved upper thermal tolerance and greater swimming capability in 

fishes (Claireaux et al., 2005; Eliason et al., 2011; Anttila et al., 2013a).  

1.3.2 Oxygen- and Capacity-Limited Thermal Tolerance 

Under the Oxygen- and Capacity-Limited Thermal Tolerance (OCLTT) hypothesis, 

thermal limitations of fishes are thought to be primarily set by a mismatch between tissue 

oxygen demand and the capacity of the cardiorespiratory system to supply adequate 

oxygen to tissues (Pörtner and Knust, 2007; Farell, 2009). As external temperature 

increases, the metabolic rate and therefore oxygen consumption of fishes increases 

exponentially, but this is met with capacity limitations set by the cardiorespiratory 

system. The difference between routine and maximum metabolic rate is known as aerobic 

scope and reflects an organism’s ability to perform aerobic activities above standard 

metabolic needs (Fry, 1947; Figure 3). Aerobic scope is maximized at an organism’s 

optimum temperature (TOpt), where essential metrics related to an organism’s fitness, 

such as growth rate and swimming ability are maximized (Gibson and Fry, 1954; Selong 

et al., 2001; Elliot and Elliot, 2010; Figure 3). At temperatures above TOpt, aerobic scope 

declines due to the inability of the cardiorespiratory system to keep pace with increasing 

metabolic demands. The decline in aerobic scope proceeds as temperatures increase until 

reaching the organism’s upper critical temperature (TCrit) where standard metabolic 

requirements surpass aerobic capacity, above which fitness declines substantially (Figure 

3). Thus, following the OCLTT hypothesis, cardiac function and morphology are integral 

to thermal tolerance and are considered to be key determinants of upper thermal limits in 

fishes (Farrell et al., 2008; Cooke et al., 2012).  

Measuring aerobic scope to estimate TOpt and TCrit have proven valuable for predicting the 

future effects of various climate change scenarios in fishes. For example, estimating TOpt 

has helped researchers understand the interactive effects of climate warming and ocean 

acidification in coral reef fishes (Munday et al., 2009). However, measuring the oxygen 

consumption of both resting and maximally exercised fish over a range of temperatures is 
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expensive and highly time consuming. Fortunately, a faster method to accurately estimate 

TOpt and TCrit using maximum heart rate (fHmax) has emerged in recent years (Casselman et 

al., 2012; Antilla et al., 2013b; Muir et al., 2021). In fishes, increased metabolic demand 

during exposure to high temperatures is supported through increases in cardiac output 

(Q), which in itself is mediated entirely through increases in heart rate (fH) (Cooke et al., 

2003; Clarke et al., 2005; Clarke et al., 2008; Steinhausen et al., 2008; Farrell, 2009; 

Gamperl et al., 2009). As temperatures approach an organism’s TOpt, fHmax reaches an 

inflection point known as the Arrhenius breakpoint temperature (TAB) where the rate at 

which maximum heart rate (fHmax) increases with temperature slows (Casselman et al., 

2012; Figure 3). This reduction in temperature-dependent increases in fHmax places a limit 

on oxygen availability and can result in a breakdown of cardiac function as temperatures 

near TCrit (Figure 3). The temperature at which heart function breaks down is known as 

the arrythmia temperature (TArr; Clarke et al., 2008; Casselman et al., 2012; Figure 3). It 

has been demonstrated that TAB and TArr are accurate proxies for estimating the more 

time-consuming measures of TOpt and TCrit (Casselman et al., 2012; Anttila et al., 2013b).  

Altogether, ventricular morphology and cardiac function are important factors 

determining the thermal tolerance capabilities of fishes. It is well established that 

thiamine deficiency impairs cardiac function and alters ventricular morphology in 

mammals. Therefore, if thiamine deficiency in fish results in similar manifestations, it is 

anticipated that the capacity of fish to tolerate warmer water temperatures will be 

impacted (Figure 3). 
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Figure 3. Aerobic scope (black line), the natural logarithm of maximum heart rate 

(fHmax; solid red line), and the predicted effect of thiamine deficiency on fHmax (dashed 

red line) as a function of temperature. TOpt, optimum temperature; TCrit, upper critical 

temperature; TAB, Arrhenius breakpoint temperature; TArr, arrythmia temperature. 

Figure modified from Muir (2022). 
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 Study Species: Lake Trout 

1.4.1 Habits & History in the Great Lakes 

Lake trout (Salveninus namaycush) is a cold-water species that have a widespread 

distribution throughout the Great Lakes region. In most lakes, lake trout spend much of 

the year in deep water where water temperatures range between 6-12°C (Olson et al., 

1988; Bergstedt et al., 2003) and migrate to shallower water to spawn in autumn (Hanson 

et al., 1999). Unlike most salmonids, lake trout are iteroparous, nocturnal lake-spawners 

that spawn on rocky shoals throughout October and November (Gunn, 1995). Although 

lake trout do not migrate upriver to spawn like many of their semelparous cousins 

(although it is believed some strains from Lake Superior historically made river 

migrations (Goodier, 1981)), migration routes for lake trout can be just as impressive; 

typically ~50 km on average in the Great Lakes (Elrod, 1987; Kapuskinski et al., 2005; 

Schmalz et al., 2011; Ivanova et al., 2021). Incredibly, Ivanova et al. (2021) tracked a 

lake trout traveling across the length of Lake Ontario to spawn, a distance of over 200 

km. In addition, the life history of lake trout is generally characterized by late maturation 

(6-7 years) and slow growth (Martin & Olver, 1980). Throughout much of their range, 

lake trout are primarily piscivorous and feed on a combination of pelagic and demersal 

prey fishes (Colborne et al., 2016; Mumby et al., 2018; Nawrocki et al., 2022). 

Historically, lake trout diets consisted predominantly of cisco (Coregonus artedi), bloater 

(C. hoyi), and slimy sculpin (Cottus cognatus) (Christie et al., 1987; Beeton, 2002, 

Morrison, 2019). However, a recent shift in the Great Lakes prey communities has altered 

lake trout diets such that invasive alewife and rainbow smelt are currently the most 

abundant component of lake trout diets in many parts of the Great Lakes (Ray et al., 

2007; Happel et al., 2018; Luo et al., 2019; Nawrocki et al., 2022). 

Lake trout were historically abundant throughout their range but have faced considerable 

declines over the past several decades. Before their decline, lake trout held a significant 

economic, ecological, and cultural importance (Ryder and Kerr, 1990; Muir et al., 2012; 

Marin et al., 2017). As top predators, lake trout played an important ecological role in the 

energy cycling of benthic and pelagic zones and exerted a stabilizing influence on food 

webs (Ryder and Kerr, 1990). Additionally, lake trout are considered to be a bioindicator 
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species of overall ecosystem quality because of their sensitivity to ecosystem change 

(Ryder and Edwards, 1985). Economically, lake trout historically supported a highly 

successful commercial fishery. At its peak in the early 1900s, the Great Lakes 

commercial fishery generated over $220 million annually (Muir et al., 2012; Brendon et 

al., in review). However, by the 1950s, lake trout became extirpated from Lakes Ontario 

(Christie, 1972), Erie (Leach and Nepszy, 1976), and Michigan (Cuhel and Aguhilar, 

2012), and were nearly extirpated from Lakes Superior (Curtis, 1990) and Huron (Berst 

and Spangler, 1972). The sharp declines were primarily attributed to a combination of 

overfishing and predation by invasive sea lamprey (Petromyzon marinus) (Christie, 

1974). Climate change is also thought to have played a role in the decline of lake trout 

across their range as their life history and narrow temperature range make them 

particularly vulnerable to ecosystem change (Ficke et al., 2007; Guzzo & Blanchfield, 

2016). Indeed, several populations of lake trout are believed to have gone extinct in 

eastern Ontario due to increasingly limited thermal habitat (MacLean et al., 1980). 

The decline in lake trout abundance triggered dramatic ecological changes throughout the 

Great Lakes. In the absence of a top predator, populations of invasive alewife and 

rainbow smelt exploded and largely displaced native prey fishes (Christie, 1974; 

O’Gorman and Stewart, 1999). Indeed, alewife abundance exceeded carrying capacity in 

some regions, with mass die-offs occasionally polluting shorelines of Lakes Michigan 

and Ontario (O’Gorman and Schneider, 1976; Hatch et al., 1981). In the mid-1960s, 

fisheries managers began stocking Pacific salmon (Oncorhynchus spp.) to control alewife 

populations while simultaneously seeking to improve the recreational fishery (Tanner and 

Toddy, 2002). This strategy was initially successful in reducing alewife abundance 

(Madenjian et al., 2002), however, the level of piscivory was unsustainable and 

eventually led to a collapse of the Pacific salmon fishery in the 1980s (Holey et al., 

1998). The decline in the recreational fishery generated a controversial management issue 

as managers were now faced with the decision on whether to manage for economics or to 

manage for the benefit of the ecosystem (Dettmers et al., 2012). Recognizing the 

importance of native fishes, lake trout restoration efforts began in most lakes by the late 

1980s (Muir et al., 2012). The combination of increased lake trout stocking, reduced 

stocking of Pacific salmon, implementation of sea lamprey control efforts, and lake trout 



18 

 

commercial catch limits set the stage for the successful rehabilitation of lake trout in Lake 

Superior and parts of Lakes Huron and Michigan (Hansen et al., 1995; Riley et al., 2007; 

Patterson et al., 2016). However, despite these efforts, lake trout continue to rely almost 

entirely on hatchery stocking for population recruitment in Lakes Ontario and Erie 

(Lantry et al., 2020; Markham et al., 2022). It has been hypothesized that a primary factor 

contributing to the lack of restoration success is due to thiamine deficiency from the 

consumption of alewife and rainbow smelt, which continue to dominate prey 

communities in these lakes (Fitzsimons and Brown, 1998; Brown et al., 2005). 

1.4.2 Lake Trout Management in Lake Ontario 

Current lake trout rehabilitation efforts in Lake Ontario provide a unique opportunity to 

examine the effects of thiamine deficiency on cardiac function and morphology. Lake 

trout were functionally extirpated during the 1950s and are currently the focus of large-

scale reintroduction programs (Christie, 1972; Lantry et al., 2014). Despite these 

restoration efforts, there is little evidence of natural reproduction and thiamine deficiency 

has been hypothesized as a significant contributing factor (Brown et al., 2005; Lantry et 

al., 2014). Indeed, thiamine concentrations in wild lake trout eggs collected from Lake 

Ontario are 4.7–8.8 times lower than in lake trout eggs from Lake Superior where lake 

trout feed primarily on native prey fishes (Fitzsimons, 1998; Fitzsimons et al., 2007; Ray 

et al., 2007; Gamble et al., 2011). Management strategies to restore self-sustaining 

populations of lake trout in Lake Ontario currently include the annual stocking of 1.3 

million yearling lake trout (Lantry et al., 2014). These stocking programs predominantly 

release lake trout from two populations: a population from Seneca Lake, NY (Seneca 

strain), and a population from the Slate Islands in Lake Superior (Slate strain). Notably, 

these strains differ in their bathythermal preferences, survival rates, and growth rates in 

Lake Ontario. Adult Seneca strain lake trout typically have greater survival rates than 

Slate strain fish in Lake Ontario (Lantry et al. 2020), likely due to lower sea lamprey-

related mortality from differences in bathymetric preferences (Schneider et al. 1996). 

Seneca strain lake trout typically prefer shallower, warmer water than Slate strain lake 

trout and juveniles have slower growth rates (Elrod et al., 1996). Perhaps most notably, 

these strains differ in their past history with high-thiaminase prey fishes. Seneca Lake has 
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long supported an abundant population of high-thiaminase prey fishes (Odell, 1934), 

whereas Lake Superior supports far fewer (Bronte and Hoff, 1996). Therefore, it has been 

suggested that local adaptation to high-thiaminase prey fishes has equipped Seneca strain 

lake trout with the capacity to better tolerate dietary thiaminase, possibly through reduced 

thiamine utilization (Fitzsimons et al., 2021). Local adaptations to dietary thiaminase 

have previously been identified in populations of Atlantic salmon, where populations that 

historically relied on high-thiaminase prey in their native lakes were more tolerant of a 

high-thiaminase diet (Houde et al., 2015a). Selecting a source population with pre-

existing adaptations to key environmental features in the restoration location, such as 

high-thiaminase prey, can greatly influence the success of reintroduction efforts (Houde 

et al., 2015b). If Seneca strain lake trout possess adaptations for thiaminase tolerance, it 

would have significant implications for lake trout rehabilitation efforts and would warrant 

potential changes in lake trout stocking methods in the Great Lakes.  

1.4.3 Lake Trout in the Sudbury Basin 

Current lake trout restoration efforts in the Sudbury basin provide another unique 

opportunity to study the cardiac-related effects of thiamine deficiency. Sudbury is largely 

regarded as the nickel mining capital of the world, producing over half of world’s nickel 

during the industries’ peak in the mid 1900s (Kerfoot et al., 1960). During this time, 

sulphur dioxide emissions resulted in unprecedented deposition of atmospheric sulphur in 

over 7000 lakes within a 17000 km2 area around Sudbury (Neary et al., 1990; Keller, 

1992). The resulting lake acidification decimated wildlife at all trophic levels (Keller, 

1992), and lake trout became extirpated from as many as 89 lakes by the late 1960s 

(Beamish and Harvey, 1972; Beggs and Gunn, 1986; Dixit et al., 1993). Since then, 

sulphur emissions from mining operations have dropped substantially and lake trout have 

become successfully re-established in some formerly acidified lakes as a result of 

intensive stocking efforts (Gunn and Keller, 1990; Casselman and Gunn, 1992; Luek et 

al., 2010). However, the recent introductions of invasive species are hypothesized to be 

complicating on-going lake trout restoration efforts (Therrien, 2019). Specifically, 

anthropogenically-mediated range expansions of non-native rainbow smelt have 

overlapped with several lake trout reintroduction programs in the Sudbury Basin 
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(Selinger et al., 2006). Indeed, lake trout collected from lakes where rainbow smelt are 

established have shown reduced tissue thiamine concentrations compared to lake trout 

from lakes where rainbow smelt are absent (Therrien et al., un-published data). Thus, the 

Sudbury Basin provides a valuable opportunity to investigate the cardiac-related effects 

of thiaminase consumption in wild-caught lake trout.  

 Thesis Overview & Objectives 

Cardiac impairments associated with thiamine deficiency are frequently observed in 

mammals. Pathologically, manifestations of impaired heart rate, cardiac atrophy, and 

cardiac failure stem from thiamine’s crucial role in cellular metabolism and energy 

production. However, the effects of thiamine deficiency on cardiac function have not yet 

been directly examined in fishes. In the context of fish thermal physiology, cardiac 

morphology and function play a vital role in determining the capacity in which fish can 

tolerate warmer water temperatures. Indeed, the Oxygen- and Capacity-Limited Thermal 

Tolerance (OCLTT) hypothesis suggests that the decline in aerobic scope observed at 

high temperatures results from a mismatch between oxygen supply by the 

cardiorespiratory system and tissue oxygen demand. Therefore, it is expected that 

thiamine deficiency will limit the thermal tolerance of fishes if the deficiency results in 

comparable cardiac-related manifestations as mammals. As a cold-adapted, stenothermal 

species, lake trout are particularly vulnerable to environmental warming, and it is 

imperative to understand how these two environmental stressors might interact in the 

wake of global climate change.  

In this thesis, I examined the effects of dietary thiaminase on cardiac function and 

morphology in lake trout, particularly as they related to the ability of the heart to meet 

increasing oxygen demands at high temperatures. I investigated and compared measures 

of cardiac function, morphology, and thermal tolerance between two hatchery strains of 

lake trout (Seneca and Slate) fed either a control diet or a diet containing bacterial-

derived thiaminase. I hypothesized that dietary thiaminase would affect cardiac function, 

morphology, and thermal tolerance in both strains. Specifically, I predicted that lake trout 

raised on the thiaminase diet would have impaired cardiac function, smaller ventricles, 
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and reduced thermal tolerance. However, I predicted that Seneca strain lake trout would 

show lesser effects of the high-thiaminase diet compared to Slate strain lake trout if past 

differences in exposure to high-thiaminase prey fishes has led to local adaptation. 

Additionally, I compared cardiac morphology between lake trout from lakes where 

rainbow smelt have become established and where rainbow smelt remain absent in the 

Sudbury Basin. Given the link between rainbow smelt consumption, thiamine deficiency, 

and changes in cardiac morphology, I hypothesized that the presence of rainbow smelt 

would affect cardiac morphology in wild-caught lake trout. I predicted that lake trout 

collected from lakes where rainbow smelt are established would exhibit similar cardiac 

morphological changes to what I measured in lake trout raised on a thiaminase diet in a 

hatchery setting. Overall, my research had the following objectives: (1) To determine if 

dietary thiaminase impacts cardiac function and morphology in lake trout, (2) to 

determine if the resulting cardiac impairments translate to reduced thermal tolerance, (3) 

to compare results between two strains of lake trout currently targeted for reintroduction 

in Lake Ontario, and (4) to determine if wild-caught lake trout ventricles collected from 

the Sudbury Basin exhibit similar morphological changes as hatchery-raised fish. 

Altogether, addressing these objectives provides a first glimpse into how two prevalent 

stressors in aquatic ecosystems — warmer water temperatures and invasive high-

thiaminase prey fishes — interact to threaten lake trout viability through cardiac 

impairments. 
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Chapter 2  

2 Methods 

 Measuring Cardiac Function, Morphology, and Thermal 

Tolerance in Two Strains of Hatchery-raised Lake Trout 

2.1.1 Experimental Animals 

Families for the Slate and Seneca strains were produced in late 2019 using single pair 

crosses of mature individuals at the Ontario Ministry of Natural Resources (OMNRF) 

Dorion Fish Culture Station (Dorion, ON) and were transferred to the OMNRF 

Chatsworth Fish Culture Station (Chatsworth, ON) as eggs. The Seneca Lake strain 

originated from wild-caught adult lake trout captured in 1984 from Seneca Lake, NY 

(42°39'24"N, -76°53'53"W). This line was last crossed with wild individuals in 1994 (J. 

Intini, pers. comm., 7 October 2022). The Slate Island strain originated from wild-caught 

adult lake trout captured in 2004 from Lake Superior around the Slate Islands 

(48°39'07"N, -87°00'14"W; J. Intini, pers. comm., 7 October 2022). On March 18th, 2021, 

lake trout parr of the Seneca (age 13 months) and Slate (age 14 months) strains were 

transferred from the OMNRF Chatsworth Fish Culture Station to Western University. On 

the same day, between 23–30 fish of the same strain were placed into each of sixteen 73 

L white polypropylene tanks, with eight tanks per strain (n=~200 fish/strain; Figure 4). 

Two independent recirculating water systems were used with eight tanks per system and 

water temperature was maintained at 9°C throughout the experiment. Dissolved oxygen 

levels were kept high (> 9mg L-1), and treatment groups were spread equally across the 

two systems. Fish were given 3 weeks to acclimate to hatchery conditions, during which 

they were fed a commercial fish feed (Ewos Inc.) at a rate of 2% body mass day-1 before 

being anesthetized (150 mg L-1 MS-222 buffered with 150 mg L-1 sodium bicarbonate) 

and measured for body mass on April 12th, 2021. While anesthetized, each fish was 

tagged with a 1.2 mm Passive Integrated Transponder (PIT; Biomark Inc). The fish were 

allowed to recover for 2 weeks on a diet of commercial fish feed at a rate of 2% body 

mass day-1. Following the recovery period, the fish received a diet consisting of a 1:1 
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Figure 4. Experimental hatchery setup for lake trout at Western University. 

ratio of experimental diet and commercial feed for two weeks before being fed 

exclusively the experimental diets. Diets were switched in stages to allow the lake trout 

to acclimate to the experimental diets. Control and thiaminase diets were administered to 

four replicate tanks for each strain. Once on the experimental diets, body mass was 

measured monthly and lake trout were fed daily at a rate of 2% body mass day-1 for the 

first 3 months, 1.5% body mass day-1 for the next 3 months, and 1% body mass day-1 for 

the remainder of the experiment.  
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2.1.2 Experimental Diets 

Control and thiaminase diets were produced following Honeyfield et al. (2005) with 

some modifications. Both diets contained identical ingredients (Table 1), with the 

addition of bacterial-derived thiaminase (from Paenibacillus thiaminolyticus isolated 

from Lake Michigan alewife; Honeyfield et al., 2002) to the thiaminase diet but not the 

control diet. Other sources of thiaminase also appear to be important contributors to the 

total thiaminase activity of some Great Lakes prey fishes (Richter et al., 2012; 2023; 

Rowland et al. in prep), but P. thiaminolyticus remains a useful source of thiaminase for 

experimental preparations — especially in studies focused on the effects of dietary 

thiaminase rather than the origin of the thiaminase activity. This diet has previously been 

shown to contain all the nutritional requirements for fish (Honeyfield et al., 2005; see 

Appendix B for full composition of vitamin and mineral premixes), including thiamine 

which was measured (mean ± SD) to be 7.05 ± 5.2 nmol/g in the control feed and 6.92 ± 

5.8 nmol/g in the thiaminase feed. In place of herring meal, ground dried herring was 

used by drying ground raw pacific herring (Clupea pallasii) at 74°C for 48 hours. For the 

thiaminase diet, P. thiaminolyticus cultures were prepared in nutrient broth (1.0 g/L yeast 

extract and 8.0 g/L Difco nutrient broth (Becton Dickinson, Mississauga, ON)) and 

incubated for 96h at 37°C. Autoclaved nutrient broth was used in the control diets. 

Nutrient broths were thoroughly mixed with all dry ingredients using an electric food 

mixer and pelletized using an electric meat grinder. Food pellets were left to air dry at 

room temperature for 48h and stored at -20°C until use. Maximum storage time for diets 

at -20°C was 2 weeks. Here, I used the same strain and concentration (mean ± SD: 2.1 × 

108 ± 6.1 × 107 CFU/mL) of P. thiaminolyticus that has previously been shown to reduce 

tissue thiamine concentrations and induce signs of thiamine deficiency in Atlantic salmon 

and lake trout (Houde et al., 2015a; Honeyfield et al., 2005). Experimental diets were 

administered for 9 months, by which signs associated with thiamine deficiency were 

evident in fish from the thiaminase treatment (ataxia, lethargy, increased mortality and 

reduced tissue thiamine levels; Therrien et al., unpublished data). 
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Table 1. Diet composition and proximate analysis of experimental lake trout (Salvelinus 

namaycush) diets.  

  

Variable Control (g/kg) Thiaminase (g/kg) 
Diet Composition   
Dry ground herring 320 320 
Corn starch 300 300 
Corn gluten meal 180 180 
Blood flour 86 86 
Menhaden oil 80 80 
Betaine-HCl 10 10 
Dextrin 10 10 
Choline chloride 5 5 
Vitamin premix 5 5 
Mineral premix 2 2 
Ascorbic acid 2 2 
Nutrient broth 300 mL 300 mL 
  Difco nutrient broth 2.7 2.7 
  Yeast extract 0.3 0.3 
ddH2O 100 mL 100 mL 
Bacterial thiaminase (CFU/mL) none 2.1 × 108 ± 6.1 × 107 
   
Proximate Analysis   
Carbohydrates (%) 31.6 33.1 
Proteins (%) 37.0 36.8 
Crude fat (%) 22.4 18.8 
Ash (%) 2.16 4.13 
Moisture (%) 6.82 7.19 
Thiamine (nmol/g) 7.05 ± 5.2 6.92 ± 5.8 
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2.1.3 Thermal Performance of Cardiac Function 

After nine months on the experimental diets, test fish were anesthetized in water 

containing 150 mg L-1 of MS-222 buffered with 150 mg L-1 of sodium bicarbonate. Body 

mass was measured while fish were anesthetized. Fish were then placed ventral-side up in 

a temperature-controlled (9°C) holding reservoir which consisted of a short (4.5-inch 

diameter) segment of PVC pipe that was cut lengthwise to form a holding trough (see 

Muir et al., 2021; Gradil et al., 2016). Fish were held in position using a weighted 

Styrofoam sling. Water temperature was maintained using a recirculating water bath 

(VWR, Edmonton, AB, Canada), and an additional temperature probe was used in the 

holding reservoir to ensure that the reservoir water temperature corresponded to the set 

temperature of the recirculating water bath (Omega, St-Eustache, QC, Canada). A 

maintenance dose of anesthetic (100 mg L-1 of MS-222 buffered with 100 mg L-1 sodium 

bicarbonate) was present in the recirculating water bath and fish were ram-ventilated 

using a 2.5cm segment of rubber tubing. Each fish was maintained at 9°C in the holding 

reservoir for 15-minutes before starting echocardiography measurements to ensure that 

heart rate had stabilized after handling. 

Thermal performance of cardiac function was assessed in 62 fish (Seneca control, n=12; 

Seneca thiaminase, n=15; Slate control, n=17; Slate thiaminase, n=18) using the Indus 

Doppler Flow Velocity System (DFVS; Indus Instruments, Houston, TX, USA) 

following the methods of Muir et al. (2021). Briefly, a 20 MHz transducer probe was held 

perpendicular to the ventral side of the fish, directly posterior to the gills, to measure 

blood flow velocity at the atrioventricular (AV) valve. Caution was taken to ensure that 

the probe was positioned parallel to the direction of blood flow, as the measurement error 

of the DFVS probe is below 1.5% when the insonation angle is within 10° of the 

direction of blood flow (Reddy et al., 2009). Additionally, Doppler shift is maximized 

when the insonation angle of the ultrasound beam approaches zero (Wang et al., 2017). 

Thus, to ensure proper alignment with the direction of blood flow, probe alignment was 

adjusted for each fish to reflect the strongest signal.  Signals from the DFVS probe were 

digitized and displayed as real-time spectrographs using the Doppler Signal Processing 

Workstation (DSPW). After the 15-minute stabilization period, DFV spectrographs were 
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recorded to measure baseline heart rate. Pharmacological stimulation was then used to 

induce maximum heart rate (fHmax) in the anesthetized fish through sequential 

intraperitoneal injections of 1.2 mg kg-1 atropine sulphate (Sigma-Aldrich, St. Louis, MO, 

USA) and 4 μg kg-1 isoproterenol (Sigma-Aldrich, St. Louis, MO, USA) dissolved in 

0.9% NaCl, each followed by a 15-minute stabilization period (Casselman et al., 2012). 

Atropine sulphate was used to block the cholinergic response of muscarinic receptors, 

whereas isoproterenol was used to fully stimulate adrenergic β-receptors. Injections of 

0.9% NaCl alone showed no change in heart rate. Water temperature was then increased 

by 1°C every 6 minutes until heartbeats became arrhythmic. After each temperature 

increment, DFV spectrographs were recorded (5 per temperature) and saved for later 

analysis. When heartbeats became arrhythmic, each fish was removed from the holding 

reservoir and euthanized with an overdose of MS-222 to collect heart tissue. 

2.1.4 Measures of Cardiac Morphology & Atrioventricular (AV) Valve 

Area 

Ventricles were isolated from heart samples collected from test fish by removing the 

atrium, sinus venosus, and bulbous arteriosus. Once isolated, the ventricle was weighed 

using a digital balance to determine ventricular mass (VM). Following VM 

measurements, hearts were placed in 10% neutral buffered formalin for 9 days before 

being transferred to 70% ethanol for long term storage (Perry et al., 2020). Ventricular 

shape (VS) was then measured using digital calipers as the quotient of ventricle width 

and ventricle length (Perry et al., 2020). Next, prior to AV valve measurements, hearts 

were immersed in 5% alcian blue stain for 1 hour followed by a 2-hour 5% acetic acid 

wash. Alcian blue stain selectively stains connective tissue (Nagy et al., 2009) allowing 

for better visualization of the AV valve. Photographs of the AV valve were taken using 

OPTIKA PROView (OPTIKA Srl, Ponteranica, BG, Italy; Figure 5) and AV valve 

diameter was measured using ImageJ (National Institutes of Health, Bethesda, MD, 

USA). An average AV valve diameter was calculated using two perpendicular 

measurements. AV valve area was then estimated using πr2, where r represents the radius 

of the AV valve. 
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Figure 5. Dorso-anterior view of a lake trout (Salvelinus namaycush) atrioventricular 
(AV) valve (black arrow) stained with 5% alcian blue. 
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Figure 6. Parameters used to calculate atrioventricular blood flow from a Doppler 
spectrograph. E-stroke distance was calculated as the area under the E-wave (ES-EPV-
EEAS), and A-stroke distance was calculated as the area under the A-wave (EEAS-APV-
AE). Figure modified from Muir (2022). 

2.1.5 Analysis 

Spectrographs were analyzed using the Doppler Signal Processing Workstation (DSPW) 

software using the parameters outlined in Muir et al. (2021). For each spectrograph, 

markers were manually placed at the ‘Early Flow Start’ (ES), ‘Early Flow Peak Velocity’ 

(EPV), ‘Early Flow End Atrial Flow Start’ (EEAS), ‘Atrial Flow Peak Velocity’ (APV), 

and ‘Atrial Flow End’ (AE) of each beat (n=8 beats; Figure 6). Using these markers, the 

software calculated an average Atrial flow (A) stroke distance and Early flow (E) stroke 

distance which was totaled to obtain total stroke distance (cm beat-1; Figure 6). Beat 

markers that were manually placed at the AE of each beat were used to calculate an 

average heart rate (fHmax; beats min-1) at each temperature using the software’s ‘Beat 

Editor’ (Figure 6).  
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For each fish, I estimated cardiac output (Q; mL min-1) at each temperature as the product 

of stroke volume (mL beat-1) and heart rate (beats min-1). Stroke volume was estimated at 

each temperature by calculating ventricular inflow volume (cm3 or mL beat-1), which is 

the product of total stroke distance (cm beat-1) and AV valve area (cm2) (Lee et al., 

2014). In fish, stroke volume is predominantly governed by ventricular filling pressure 

and ventricular inflow volume (Franklin and Davie, 1992; Keen et al., 2017). Therefore, 

ventricular inflow volume can be used as a proxy for stroke volume assuming the 

variation in ejection fraction is low across heart beats at a given temperature.  

Arrhenius breakpoint temperature (TAB) was identified for each fish by assessing the 

Arrhenius plots of fHmax as detailed in Muñoz et al. (2015). Briefly, the natural logarithm 

of fHmax was plotted against the inverse of temperature (K) using SigmaPlot 13.0 (Systat 

Software, San Jose, CA, USA). A bi-phasic line was then fitted to the data using the 

software’s ‘Dynamic Fit Wizard’, and TAB was calculated as the point at which the slope 

changed on the bi-phasic line (Yeager and Ultsch, 1989). Arrythmia temperature (TArr) 

was identified for each fish as the first temperature at which arrythmias were evident on 

the DFV spectrographs. I also recorded the highest fHmax (fHpeak) and Q (Qpeak) observed 

across all temperatures for each fish. 
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2.1.6 Statistical Analysis 

All statistical analyses were preformed using R 1.4.2 (R Core Team, Vienna, Austria). 

Differences in body mass between strains at the beginning of the experiment were 

assessed using a two-sample t-test. Differences in body mass after 9 months were 

assessed using a generalized linear mixed model (package lme4; Bates et al., 2018) that 

included strain and treatment as main effects and tank number and water source as 

random effects. Differences in TAB, TArr, and fHpeak were assessed using generalized linear 

mixed models (package lme4; Bates et al., 2018) that included strain and treatment as 

main effects, body mass as a covariate, and tank number and water source as random 

effects.  A treatment × strain interaction term was also included in each model. Random 

effects were quantified using the intraclass correlation coefficient (ICC) method (package 

lme4; Bates et al., 2018) and are represented as the percentage of the total model variance 

accounted for by the random effects. Differences in relative ventricular mass (RVM) and 

peak cardiac output (Qpeak) were assessed by calculating the residuals from a linear 

regression of the natural logarithm of ventricular mass or peak cardiac output versus the 

natural logarithm of body mass. Differences in residuals were analyzed using generalized 

linear mixed models that included strain and treatment as main effects, and tank number 

and water source as random effects. Repeated measures ANOVAs were used to assess 

differences in fHmax and Q between treatments and strains across temperatures. For 

comparative purposes, Q was presented as per kilogram of body mass for the repeated 

measures ANOVA. Body mass was also included as a covariate in the repeated measures 

analysis of fHmax. Lastly, the relationships between fHpeak, RVM, and TArr were examined 

at the individual level within treatments using a Pearson’s correlation test. Assumptions 

of all statistical tests were evaluated and confirmed prior to data analysis. 

2.1.7 Animal Ethics Approval 

This study was approved by the Animal Ethics Committee of the University of Western 

Ontario (Protocol Number: 2018–084; Appendix A). 
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 Cardiac Morphology of Lake Trout from the Sudbury Basin 

2.2.1 Sample Collection 

To determine the presence or absence of exotic rainbow smelt in Sudbury Basin lakes, 

fish community survey data was collected and compiled for 21 lakes from the Ontario 

Ministry of Natural Resources and Forestry (OMNRF) Broadscale Monitoring (BsM) and 

Land Information Ontario (LIO) databases (Table 2). Lake trout were collected from 6 

lakes that contain rainbow smelt and 15 lakes where rainbow smelt are absent by angling 

or using gill nets between February 2021 and September 2022 (Table 2). Immediately 

after capture, lake trout were euthanized with an overdose of MS-222 and body mass was 

measured using a digital scale. The whole heart was collected from each fish and stored 

at -80℃ until later analysis. 

2.2.2 Cardiac Morphology Measurements 

Hearts collected from wild lake trout were thawed from -80℃, and ventricular mass 

(VM) and shape (VS) were measured using the methods described in Chapter 2.1.4. 

2.2.3 Statistical Analysis 

To determine if there were differences in VS between lake trout from lakes with or 

without rainbow smelt, a generalized linear mixed model was used that included the 

presence of rainbow smelt as a main effect, body mass and strain as covariates, and lake 

as a random effect (package lme4; Bates et al., 2018). Random effects were quantified 

using the intraclass correlation coefficient (ICC) method (package lme4; Bates et al., 

2018) and are presented as the percentage of the total model variance accounted for by 

the random effects. Differences in relative ventricular mass (RVM) were assessed by 

analyzing the residuals from a linear regression of the natural logarithm of ventricular 

mass versus the natural logarithm of body mass using a generalized linear mixed model 

that included the presence of rainbow smelt as a main effect, strain as a covariate, and 

lake as a random effect. All statistical analyses were preformed using R 1.4.2 (R Core 
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Team, Vienna, Austria). Assumptions of all statistical tests were evaluated and confirmed 

prior to data analysis.  
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Table 2. List of lakes sampled for lake trout (Salveninus namaycush) in the Sudbury 
Basin. Lake data were obtained from Therrien (2019), OMNRF BsM database, LIO 
database, or OMNRF (2015). 
 
Name Latitude Longitude Surface 

Area (ha) 

Max 

Depth (m) 

Rainbow 

smelt 

Strain (if 

stocked) 

Bear 46.1892  -81.4507  682.3 36.6 P  

Bell 46.1294 -81.2042  217.7 26.8 A Mishibishu 

Burwash 47.1311 -81.0481 1058.2  A  

Chiniguchi 46.9262  -80.7068  1198.3 44.2 A Killala 

Elboga 47.0195 -81.6348  27.2 16.2 A Killala 

Evelyn 46.8960  -80.5907  110.7 24.0 A  

Kelly #27 46.7820  -80.5298  17.3 17.0 A Killala 

Fraleck 46.8960 -80.5910 110.7 24.0 A Killala 

Manitou 45.7775  -80.4348   49.0 P Manitou 

Manitou #2 46.8529  -80.2833  322.3 47.6 P  

Mozhabong 46.9648  -82.0774  1943.8 44.0 A  

Nelson 46.7216  -81.0960 315.8 50.3 A  

Panache 46.2358  -81.3066  8959 56.4 P  

Paradise 46.9750  -80.7663  487.4 35.0 A  

Rawson 46.9176  -80.5646  164.1 26.0 A  

Savage 46.2504 -81.5920 322.1 36.6 A  

Shakwa 46.4640 -81.5915 649.0 27.4 A  

Tyson 46.1174  -81.1185  1089.1 39.6 A Killala 

Wanapitei 46.4397  -80.7390  13131.0 125.0 P  

Wavy 46.3041 -81.0915 306.3 34.0 A Killala 

Whiskey 46.4397  -82.3356  992.8 55.2 P Manitou 

Note: Table modified from Therrien, (2019); Rainbow smelt present (P) or absent (A); 

BsM, Broad Scale Monitoring; LIO, Land Information Ontario 
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Chapter 3 

3 Results 

 Measuring Cardiac Function, Morphology, and Thermal 

Tolerance in Two Strains of Hatchery-raised Lake Trout 

A total of 51 trials were included in my analyses, with 11 trials excluded because of an 

abnormal response to the pharmacological stimulants or technical issues with the water 

recirculator. The analyzed fish included 21 from the Seneca strain (control: n=11; 

thiaminase: n=10) and 30 from the Slate strain (control: n=13; thiaminase: n=17; Table 

3). 

3.1.1 Body Mass 

At the beginning of the experiment, Slate strain lake trout had significantly greater body 

mass (mean ± SE: 27.2 ± 0.7g) than Seneca strain lake trout (22.3 ± 0.6g; t=-5.44, 

df=425, P<0.001). However, of the fish included in my thermal performance analyses 

after 9 months, body mass did not significantly differ between treatments (F=0.99; 

df=1,9; P=0.35) or strains (F=0.19; df=1,9; P=0.68), and there was no significant 

treatment × strain interaction (F=0.08; df=1,10; P=0.78; Table 3, 4). Tank and water 

source both contributed negligibly to the total variance of the model (ICC: 0% for both 

tank and water source; Table 4).  

 
Table 3. Body mass and sample size of Seneca and Slate strain lake trout (Salvelinus 

namaycush) raised on either a control or thiaminase diet for 9 months. 
 

Strain Treatment Body mass (g ± SE)  Sample size (n) 

Seneca Control 133 ± 16 11 

Seneca Thiaminase 116 ± 17 10 

Slate Control 119 ± 11 13 

Slate Thiaminase 108 ± 8 17 
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3.1.2 Thermal Performance of Cardiac Function 

Maximum heart rate (fHmax) increased significantly with temperature in this study 

(F=200.31; df=8,14; P<0.001), and there was a significant treatment × strain × 

temperature interaction effect on fHmax according to a three-way repeated measures 

ANOVA (F=3.25; df=2,12; P<0.001). Body mass contributed negligibly to this model 

(F=1.76; df=1; P=0.20). In fish from the Slate strain, individuals raised on the control diet 

had significantly greater fHmax across all temperatures than those on the thiaminase diet 

(F=5.27; df=2,13; P<0.001; two-way repeated measures ANOVA; Figure 7A). There was 

no significant difference in fHmax across temperatures between control and thiaminase 

treatments in Seneca strain fish (F=0.60; df=2,12; P=0.84; two-way repeated measures 

ANOVA; Figure 7B). 

Similarly, cardiac output (Q) per kilogram of body mass increased significantly with 

temperature (F=41.66; df=9,12; P<0.001). However, I did not detect a significant 

treatment × strain × temperature interaction effect on Q per kilogram of body mass 

according to a three-way repeated measures ANOVA (F=1.22; df=2,10; P=0.28). 

Likewise, there was no difference in Q per kilogram of body mass across temperatures 

between control and thiaminase treatments in Slate strain fish (F=0.88; df=2,11; P=0.56; 

two-way repeated measures ANOVA; Figure 8A) or Seneca strain fish (F=0.90; df=2,10; 

P=0.54; two-way repeated measures ANOVA; Figure 8B). 
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Figure 7. Effect of acute warming on maximum heart rate (fHmax) of Slate (A) and Seneca 
(B) strain lake trout (Salvelinus namaycush) raised on a control (dark grey) or thiaminase 
(light grey) diet. Data are presented as means ± SE. 
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Figure 8. Effect of acute warming on cardiac output (Q) per kilogram of body mass of 
Slate (A) and Seneca (B) strain lake trout (Salvelinus namaycush) raised on a control (dark 
grey) or thiaminase (light grey) diet. Data are presented as means ± SE. 
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3.1.3 Peak Cardiac Function 

Peak heart rate (fHpeak) was significantly lower in lake trout raised on the thiaminase diet 

(mean ± SE: 96 ± 3 bpm) than in lake trout raised on the control diet (110 ± 4 bpm; 

F=9.40; df=1,9; P<0.05; Figure 9A). I did not detect any significant difference in fHpeak 

between strains (F=0.00060; df=1,9; P=0.98), and there was no significant treatment × 

strain interaction (F=2.76; df=1,10; P=0.13; Table 4). Body mass did not contribute 

significantly to the model (F=2.44; df=1,42; P=0.13), and the ICCs for the random effects 

were low to moderate (ICC: 2.6% for tank and 35.6% for water source; Table 4). In 

addition, fHpeak was significantly correlated with TArr at the individual level in both control 

and thiaminase treatment groups (R2=0.66, P<0.001; and R2=0.76, P<0.001, 

respectively). Peak cardiac output (Qpeak) scaled hypo-allometrically with body mass in 

this study (Figure 10). Using the residuals from this regression, I did not detect any 

difference in peak cardiac output (Qpeak) between treatments (F=0.07; df=1,9; P=0.80), or 

strains (F=0.02; df=1,10; P=0.89; Figure 9B), and there was no significant treatment × 

strain interaction (F=2.34; df=1,10; P=0.16; Table 4). Further, both random effects 

contributed negligibly to the model variance (4.3% for tank and 0% for water source; 

Table 4).   
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Figure 9. Peak heart rate (fHpeak) (A) and the residuals of peak cardiac output (Qpeak) 
(B) of Seneca and Slate strain lake trout (Salvelinus namaycush) raised on a control 
(dark grey) or thiaminase (light grey) diet. Boxes show the median and the first and 
third quartiles. Whiskers show minimum and maximum values. 
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Figure 10. Allometry of peak cardiac output (Qpeak) versus body mass in 
hatchery-raised lake trout (Salvelinus namaycush). N=51. 

 

 

 

 

 
 
 
 
 
 
 

 
 

 

3.1.4 Thermal Tolerance 

I did not find a significant difference in arrythmia temperature (TArr) between treatments 

(F=2.37; df=1,10; P=0.16) or strains (F=0.067; df=1,10; P=0.80), and there was no 

significant treatment × strain interaction (F=0.56; df=1,10; P=0.47; Figure 11A). Body 

mass was not significant in this model (F=0.0040; df=1,39; P=0.95), and the ICCs for the 

random effects were low to moderate (15.9% for tank, 26.5% for water source; Table 4). 

In contrast, lake trout raised on the thiaminase diet had a significantly lower Arrhenius 

breakpoint temperature (TAB; mean ± SE: 13.6 ± 0.3°C) compared to fish raised on the 

control diet (15.2 ± 0.3°C; F=12.93; df=1,9; P<0.01; Figure 11B). TAB did not differ 

significantly between strains (F=0.24; df=1,10; P=0.64) or based on the treatment × 

strain interaction (F=0.96; df=1,10; P=0.35; Table 4). Body mass contributed negligibly 

to this model (F=1.00; df=1,43; P=0.32; Table 4), and the ICCs for the random effects 

were low (0% for tank, 20.0% for water source; Table 4). 
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Figure 11. Arrythmia temperature (TArr) (A), and Arrhenius breakpoint temperature 
(TAB) (B) of Seneca and Slate strain lake trout (Salvelinus namaycush) raised on a 
control (dark grey) or thiaminase (light grey) diet. Boxes show the median and the first 
and third quartiles. Whiskers show minimum and maximum values. Points represent a 
maximum or minimum value that lies outside 1.5x the interquartile range. 
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Table 4. Summary of linear mixed model results for thermal tolerance, peak cardiac function, cardiac morphology, and body mass for 
Slate and Seneca strain lake trout (Salvelinus namaycush) raised on a control or thiaminase diet. 
 

Metric Model term F df P ß           ICC (%) 
      Tank Water Source 
TArr Treatment 2.37 1,10 0.16 0.49 15.9 26.5 
 Strain 0.067 1,10 0.80 0.35   
 Treatment × strain 0.56 1,10 0.47 1.08   
 Body mass 0.004 1,39 0.95 0.0004   
TAB Treatment 12.93 1,9 <0.01 1.10 0 20.0 
 Strain 0.24 1,9 0.64 0.24   
 Treatment × strain 0.96 1,10 0.35 0.89   
 Body mass 1.00 1,43 0.32 0.005   
fHpeak Treatment 9.40 1,9 <0.05 5.05 2.6 35.6 
 Strain 0.0006 1,9 0.98 7.71   
 Treatment × strain 2.76 1,10 0.13 15.15   
 Body mass 2.44 1,42 0.13 0.08   
Qpeak Treatment 0.07 1,9 0.80 0.31 4.3 0 
 Strain 0.02 1,10 0.89 0.21   
 Treatment × strain 2.34 1,10 0.16 0.48   
RVM Treatment 6.68 1,9 <0.05 0.09 0 0 
 Strain 11.78 1,9 <0.01 0.13   
 Treatment × strain 0.03 1,10 0.87 0.01   
VS Treatment 0.41 1,9 0.54 0.14 0 0 
 Strain 26.38 1,9 <0.001 0.28   
 Treatment × strain 1.66 1,42 0.23 0.15   
 Body mass 2.17 1,9 0.15 0.0004   
Body mass Treatment 0.99 1,9 0.35 0.15 0 0 
 Strain 0.19 1,9 0.68 0.09   
 Treatment × strain 0.08 1,10 0.78 0.07   

Note: TArr, arrythmia temperature; TAB, Arrhenius breakpoint temperature; fHpeak, peak heart rate; Qpeak, peak cardiac output; RVM, 
relative ventricular mass; VS, ventricular shape. P-values in bold indicate significance for α = 0.05.
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Figure 12. Allometry of ventricle mass versus body mass in hatchery-raised lake trout 
(Salvelinus namaycush). N= 51. 

3.1.5 Cardiac Morphology 

Ventricular mass (VM) scaled isometrically with body mass in this study (Figure 12). 

Using the residuals from this regression, RVM was significantly greater in fish raised on 

the thiaminase diet compared to fish raised on the control diet (F=6.68; df=1,9; P<0.05; 

Figure 13A). In addition, fish of the Seneca strain had significantly greater RVM 

compared to fish of the Slate strain (F=11.78; df=1,9; P<0.01; Figure 13A). There was no 

treatment × strain interaction (F=0.03; df=1,10; P=0.87; Table 4), and both random 

effects had low ICCs (0% for tank and water source; Table 4). Lastly, I did not find a 

significant correlation between RVM and TArr at the individual level in either control or 

thiaminase treatment groups (R2=0.004, P=0.77; and R2=0.007, P=0.68, respectively). 

I did not detect any difference in ventricular shape (VS) between treatments (F=0.41; 

df=1,9; P=0.54; Table 3), however, Seneca strain lake trout had significantly wider 

ventricles (mean ± SE: 1.19 ± 0.040) than Slate strain lake trout (0.97 ± 0.020; F=26.38; 

df=1,9; P<0.001; Figure 13B). Body mass was not significant in this model (F=2.17; 

df=1,42; P=0.15), and there was no significant treatment × strain interaction (F=1.66; 

df=1,9; P=0.23; Table 4). Both random effects had low ICCs (0% for both tank and water 

source; Table 4). 
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Figure 13. Residuals of relative ventricular mass (RVM) (A) and ventricular shape (VS) 
(B) of Seneca and Slate strain lake trout (Salvelinus namaycush) raised on a control 
(dark grey) or thiaminase (light grey) diet. Boxplots show the median and first and third 
quartiles. Whiskers show minimum and maximum values. Points represent a maximum 
or minimum value that lies outside 1.5x the interquartile range. 
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 Cardiac Morphology of Lake Trout from the Sudbury Basin 

3.2.1 Sample collection 

A total of 229 lake trout were collected across 21 lakes in the Sudbury Basin, with at least 

3 fish collected per lake. Of these fish, 96 came from lakes where rainbow smelt are 

present, and 133 came from lakes where rainbow smelt are absent.  

3.2.2 Body mass 

Body mass was measured in 202 lake trout (rainbow smelt absent, n=123; rainbow smelt 

present, n=79; Table 5). Of  these fish, body mass did not differ significantly between 

lakes with or without rainbow smelt (F=0.36; df=1,11; P=0.56), however strain was 

significant in this model (F=7.92; df=4,15; P<0.01) such that Mishibishu strain fish had a 

significantly greater body mass than other lake trout strains. The ICC for lake was low 

(13.2%; Table 7). 

 
Table 5. Body mass and sample size of lake trout (Salvelinus namaycush) collected from 
lakes with and without rainbow smelt (RS) in the Sudbury Basin. 
 

RS present? Body mass (g ± SE)  Sample size (n) 

Yes 1250 ± 103 79 

No 1175 ± 93 123 

 

3.2.3 Cardiac Morphology 

Of the 229 fish collected, hearts were obtained from 225 fish (Table 6). Ventricular mass 

(VM) was measured in 200 fish (rainbow smelt absent, n=121; rainbow smelt present, 

n=79; Table 6). Twenty-five fish could not be included in this analysis due to missing 

body mass data or physical damage to the ventricle during dissection. Similar to 

hatchery-raised lake trout, body mass scaled isometrically with VM in lake trout from the 

Sudbury Basin (Figure 14). Using the residuals from this regression, RVM did not 

significantly differ between lakes with and without rainbow smelt, however it was 
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Figure 14. Allometry of ventricle mass versus body mass in wild lake trout (Salvelinus 
namaycush) collected from the Sudbury Basin. N=200. 
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approaching significance (F=3.47; df=1,12; P=0.06; Figure 15A). Strain was not 

significant in this model (F=0.63; df=1,17; P=0.65), and the ICC was low for lake 

(12.5%; Table 7).  

Ventricular shape (VS) was measured in a total of 174 fish (rainbow smelt absent, n=89; 

rainbow smelt present, n=85; Table 6). VS could not be calculated in 51 fish due to 

physical damage to the heart during dissection or damage during storage. Of the fish 

included, VS was significantly lower (ventricles were significantly more elongated) in 

lake trout collected from lakes with rainbow smelt (mean ± SE: 0.78 ± 0.01) than lakes 

without rainbow smelt (0.81 ± 0.01; F=6.97; df=1,9; P<0.05; Figure 15B). Body mass 

was not significant in this model (F=3.16; df=1,140; P=0.08; Table 6), strain was not 

significant in this model (F=1.87; df=4,17; P=0.16), and the ICC for lake was low (5.4%; 

Table 6). 
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Figure 15. Residuals of relative ventricular mass (RVM) and ventricular shape (VS) of 
lake trout (Salvelinus namaycush) collected from lakes with and without rainbow smelt 
in the Sudbury Basin. Boxplots show the median and the first and third quartiles. 
Whiskers show minimum and maximum values. Points represent a maximum or 
minimum value that lies outside 1.5x the interquartile range. An asterisk (*) represents a 
significant difference (p<0.05) between lakes with and without rainbow smelt, and a dot 
(.) represents a p-value approaching significance (0.10 > p > 0.05). 
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Table 6. Sample sizes by lake of lake trout (Salveninus namaycush) collected in the 
Sudbury Basin. 

Note: RVM, relative ventricular mass; VS, ventricular shape. 
 
 
 
 
 
 
 

Lake Name Number of hearts 
collected (n) 

RVM sample size 
(n) 

VS sample size (n) 

Bear 15 15 14 
Bell 7 7 6 
Burwash 12 7 10 
Chiniguchi 15 15 7 
Elboga 9 9 5 
Evelyn 7 4 7 
Fraleck 3 3 3 
Kelly #27 5 5 3 
Manitou 19 19 16 
Manitou #2 15 15 13 
Mozhabong 4 4 2 
Nelson 9 9 6 
Panache 14 11 11 
Paradise 20 20 15 
Rawson 8 8 5 
Savage 3 3 3 
Shakwa 20 19 10 
Tyson 4 4 3 
Wanapitei 19 11 19 
Wavy 7 7 7 
Whiskey 10 5 9 
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Table 7. Summary of linear mixed model results for cardiac morphological metrics of 
lake trout (Salvelinus namaycush) collected from lakes with and without rainbow smelt in 
the Sudbury Basin. 
 

Note: RVM, relative ventricular mass; VS, ventricular shape. P-values in bold indicate 
significance for α = 0.05. 

Metric Model term F df P ICC (%) 
     Lake 

RVM Rainbow smelt 3.47 1,12 0.06 12.5 
 Strain 0.63 4,17 0.55  
VS Rainbow smelt 6.97 1,9 <0.05 5.4 
 Strain 1.87 4,17 0.16  
 Body mass 3.16 1, 140 0.08  
Body mass Rainbow smelt 0.36 1,11 0.56 13.2 
 Strain 7.92 4,15 <0.01  
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Chapter 4 

4 Discussion 

 Functional and Structural Effects of Dietary Thiaminase on 

the Heart 

In mammals, thiamine deficiency is often associated with impaired cardiac function 

(Roman-Campos and Cruz 2014), yet this relationship has received limited attention in 

other taxa. To my knowledge, my study is the first to directly examine the cardiac-related 

effects of thiamine deficiency in a fish. In agreement with my prediction, I demonstrate 

that the consumption of bacterial-derived thiaminase can impair cardiac function. Lake 

trout raised on a diet containing thiaminase for 9 months displayed a 13% decline in peak 

heart rate (fHpeak) compared to fish fed a control diet. My results are consistent with 

studies that have shown a reduced heart rate in mammals during thiamine deficiency 

(Yoshitoshi et al. 1961; Davies and Jennings 1970; Oliveira et al. 2007). Interestingly, 

reduced cardiac function in fish from the thiaminase treatment may explain the abnormal 

responses of fish to the pharmacological stimulants, as all of the fish that displayed 

abnormal reactions were from the thiaminase treatment. Instead of an increase in heart 

rate after injection, these fish displayed either a reduction in heart rate or immediate 

arrythmia. This is potentially linked to the cardiac impairments associated with thiamine 

deficiency, such that fish with a less-fit heart struggled to reach fHmax when stimulated. In 

contrast to a reduced fHpeak, lake trout from the thiaminase treatment did not display any 

reduction in peak cardiac output (Qpeak). It is possible that the greater relative ventricular 

mass in fish from the thiaminase treatment ameliorated any potential in reduction cardiac 

output from a reduced heart rate, since larger ventricles have a greater capacity to pump 

larger volumes of blood. However, I believe that the lack of difference in cardiac output 

between treatments resulted from the high variance in my stroke volume measurements 

(Appendix C). Stroke volume and heart rate are the two components that comprise 

cardiac output, and stroke volume did not change with temperature in this study 

(Appendix C). This indicates that increases in cardiac output during acute warming in this 
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study were driven entirely by increases in maximum heart rate - a common finding in 

fishes (Farrell, 2009; Eliason and Anttila, 2017). Because thiaminase-fed lake trout of the 

Slate strain demonstrated a reduction in maximum heart rate compared to the control 

group, I suspect that cardiac output was also reduced, but the variation introduced from 

my stroke volume measurements masked this difference. Cardiac impairments associated 

with thiamine deficiency have been largely attributed to a variety of factors including 

limited ATP production (McCandles et al., 1970), increased levels of reactive oxygen 

species (Gioda et al., 2010), impaired calcium release from sarcoplasmic reticulum 

(Oliveira et al., 2007), and lactic acidosis (Klein et al., 2004; Karapinar et al., 2008). 

Regardless of the specific cause, my study provides some of the first evidence to suggest 

that the cardiac impairments associated with thiamine deficiency in mammals are also 

present in fish. 

Cardiac structural alterations have often accompanied impaired heart function in 

mammals during thiamine deficiency (Roman-Campos and Cruz, 2014). Contrary to my 

prediction of a reduced relative ventricular mass (RVM) in fish from the thiaminase 

treatment, I found that RVM was greater in lake trout raised on the thiaminase diet than 

in lake trout raised on the control diet. In studies with rats there has been reports of both 

increased heart size (Yoshitoshi et al. 1961; McCandles et al. 1970) and decreased heart 

size (Cohen et al. 1976; Oliveira et al. 2007; Roman-Campos et al. 2009; Gioda et al. 

2010) during thiamine deficiency. My results are most similar to those seen in humans, 

where heart enlargement due to thiamine deficiency is associated with a disease clinically 

known as Shoshin beriberi (Meurin 1996; Chisolm-Straker and Cherkas 2013). The 

mechanisms underlying heart enlargement during thiamine deficiency are unknown. 

However, it has been suggested that a reduction in ATP availability in tissues can result 

in edema (fluid retention) due to impaired ion-pump function (Tanaka et al. 2003; Klein 

et al. 2004). It is also possible that the greater RVM observed in thiaminase-fed lake trout 

is the result of an indirect response to ameliorate reductions in oxygen delivery due to 

reductions in fHmax. However, this conclusion would only be supported in Slate strain fish, 

as there was no difference in fHmax between treatments in Seneca strain fish. Furthermore, 

I did not detect any difference in ventricular shape (VS) between treatments. However, 

there did appear to be a trend towards having longer ventricles in fish from the 
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thiaminase group, particularly in lake trout of the Seneca strain. Similar structural 

changes reflecting more elongated ventricles have been reported in both thiamine 

deficient rats and humans (Yoshitoshi et al., 1961; Park et al., 2007; Coelho et al., 2008). 

Dilated cardiomyopathy — a condition where the muscular wall of a ventricle stretches 

and becomes weaker — has been previously reported during thiamine deficiency and is 

thought to be the result of impaired energy production and elevated ventricular diastolic 

pressure (Mendoza et al., 2003; Park et al., 2007; Panigrahy et al., 2020). It is possible 

that the elongated hearts observed in Seneca strain lake trout from the thiaminase 

treatment are the result of dilated cardiomyopathy. 

In a hatchery-setting, I demonstrated that administering an experimental diet that 

mimicked a diet based on high-thiaminase prey fishes altered cardiac morphology in lake 

trout. Given this demonstrated change in cardiac morphology, I predicted that wild lake 

trout collected from lakes where rainbow smelt have invaded in the Sudbury Basin would 

show similar effects. In agreement with my prediction, lake trout collected from lakes 

with rainbow smelt trended towards having a greater relative ventricular mass compared 

to lake trout from lakes where rainbow smelt are absent. Surprisingly, I also found that 

ventricles were more elongated in lake trout from lakes with rainbow smelt present 

compared to lakes without rainbow smelt. These results represent the first instance of 

cardiac-related effects of thiamine deficiency being reported in wild fish and further 

support my laboratory findings of thiaminase-induced increases in relative ventricular 

mass and possible changes in ventricle shape. 

  Dietary Thiaminase and Thermal Tolerance 

The oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis suggests that 

upper temperature tolerance in fish is limited by the capacity of the cardiorespiratory 

system to meet tissue oxygen demands (Pörtner and Knust, 2007), and that relative 

ventricular mass and peak heart rate are important factors determining the thermal 

tolerance capabilities of fishes (Anttila et al., 2013a; Anttila et al., 2014). Therefore, I 

hypothesized that if dietary thiaminase impaired cardiac function and reduced relative 

ventricular mass in lake trout as it does in mammals, fish raised on the thiaminase diet 



54 

 

would have a reduced ability to tolerate warmer water temperatures. Interestingly, I found 

that lake trout fed dietary thiaminase had a greater relative ventricular mass, but that the 

greater relative ventricle mass was not associated with any advantage in thermal 

tolerance. Instead, I found that lake trout raised on a thiaminase diet had an Arrhenius 

breakpoint temperature that was 1.6°C lower than that of the control group. A similar 

trend was seen with Arrythmia temperature, although it was not statistically significant. 

In thiamine-replete fish, individuals with larger ventricles have been shown to have a 

higher capacity to tolerate elevated temperatures (Anttila et al. 2013a; Ozolina et al. 

2016). It has been suggested that the improved thermal tolerance capabilities in fish with 

larger ventricles may be mediated by an increased percentage of compact myocardium, a 

trait that is associated with greater oxygen delivery in fish that are warm-acclimated and 

whose life histories are more metabolically demanding (Eliason et al., 2011; Muir et al., 

2022). My results suggest that the increased relative ventricular mass in the thiaminase 

treatment does not reflect an increase in compact myocardium but instead may be the 

result of edema (fluid retention), a symptom which has been clinically reported in the 

brain, liver, and heart of humans diagnosed with beriberi (Watanabe et al., 1981; Hazell 

and Butterworth., 2009; Helali et al., 2019; Smith et al., 2021). In humans, cardiac edema 

is associated with a multitude of negative functional implications including reduced 

ventricular contractility and congestive heart failure (Fattal-Valevski, 2011, Helali et al., 

2019).  

Lastly, I found considerable support for the OCLTT hypothesis in this thesis. Metabolic 

optimum temperatures for lake trout have previously been estimated to be between 15-

17°C (Gibson and Fry, 1954; Evans, 2007), which is consistent with the average 

Arrhenius breakpoint temperature (TAB) of control fish observed in this study. The upper 

critical temperature for lake trout has previously been estimated to be 23.5°C (Gibson and 

Fry, 1954; Evans, 2007), which is also comparable to the average arrythmia temperature 

(TArr) of control fish in this study. The close association between the rate transition 

temperatures for maximum heart rate (TAB and TArr) measured in this study and the 

known optimum (TOpt) and upper critical temperature (TCrit) of lake trout further supports 

the notion that TAB and TArr can be used to estimate TOpt and TArr, respectively — as has 

previously been demonstrated in studies with coho salmon (Casselman et al., 2012; 
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Anttila et al., 2013b). Furthermore, my findings of a decreased peak heart rate 

accompanied by reduced thermal tolerance in fish from the thiaminase treatment together 

with a significant correlation between peak heart rate and Arrythmia temperature at the 

individual level are consistent with previous research (Anttila et al., 2014; Muñoz et al., 

2015; Safi et al., 2019). Taken together, these findings represent the first evidence to 

suggest that dietary thiaminase may hinder thermal tolerance in a salmonid.  

 A Cold-Adapted Fish in Hot Water 

Lake trout is a cold water, stenothermal species that typically prefer water temperatures 

between 8-12°C (Christie and Reiger, 2011). Being a cold-adapted species with a narrow 

thermal window, lake trout are particularly susceptible to the effects of global climate 

change (Chu et al., 2005; Sharma et al., 2011; Kovach et al., 2019). Indeed, climate 

change is predicted to have adverse consequences for cold-water fishes, primarily 

through the alteration of thermal profiles in freshwater lakes (Stefan et al. 1998; Ficke et 

al. 2007). Climate models predict surface temperatures of freshwater lakes in Canada to 

increase as much as 18°C by 2100 (Sharma et al. 2007), and an increase of as much as 

3°C is expected to reduce the range and abundance of cold-water salmonids by 20% 

(Casselman, 2002). Increases in surface water temperatures are predicted to increase the 

strength and duration of thermal stratification in temperate lakes which can reduce 

dissolved oxygen concentrations in the hypolimnion where lake trout reside during the 

summer months (Christie and Regier 1988; Stefan et al. 1998; Ficke et al. 2007). A 

reduction in dissolved oxygen concentrations could exacerbate the thermal effects of 

thiamine deficiency in lake trout as environmental hypoxia has previously been linked to 

reductions in thermal tolerance in fish (Pörtner and Lannig, 2009). In Canada, some of 

the highest surface water temperatures in lakes are predicted to occur in Ontario (Sharma 

et al. 2007), where approximately 25% of the lakes that contain lake trout exist globally 

(OMNRF 2015). My results of a reduced thermal tolerance in thiaminase-fed lake trout 

suggest that the effects of climate change may be exacerbated by the presence of invasive 

high-thiaminase prey fishes. This potential interaction presents an even greater challenge 

in the efforts of lake trout conservation and restoration, particularly as climate change 

continues to drive the range expansions of aquatic invasive species (Rahel et al. 2007). 
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Anecdotally, the negative effects of dietary thiaminase on lake trout are likely to be most 

pervasive in the Great Lakes, while the greatest temperature effects of climate change on 

lake trout will likely occur in inland lakes at higher latitudes. Thus, many lake trout 

populations may not experience both stressors at the same time, at least not initially. 

However, this concern may be particularly heightened in areas such as inland lakes of the 

Sudbury Basin where range expansions of rainbow smelt have overlapped with several 

lake trout restoration programs (Selinger et al. 2006). 

 Strain Differences and Management Implications 

Strain-targeted stocking programs present a possible solution to reduce the incidence of 

thiaminase-related health effects and improve survival rates of lake trout in the wild. In 

Lake Ontario, approximately 500,000 yearling lake trout are stocked in Canadian waters 

every year (Lantry et al., 2014). Of these fish, about 60% are of the Seneca strain and 

25% are of the Slate strain (Lantry et al., 2014). In this study, I found notable differences 

in thiaminase tolerance between strains. Perhaps most noteworthy, I found a significant 

strain-specific difference in maximum heart rate (fHmax) between treatments across 

temperature profiles. A strong reduction in fHmax was observed across all temperatures in 

the thiaminase treatment for the Slate strain compared to the control group, while no 

difference between treatments was observed in fish of the Seneca strain at any 

temperature. Though not statistically significant, I also found that Slate strain lake trout 

in the thiaminase treatment demonstrated a greater reduction relative to the control group 

in both thermal tolerance metrics and peak heart rate compared to Seneca strain fish. In 

agreement with my prediction, these findings suggest that Seneca strain lake trout may 

possess local adaptations that help mitigate the effects of dietary thiaminase. These 

results are in agreement with recent findings from Fitzsimons et al. (2021), who 

demonstrated that Seneca strain lake trout have reduced thiamine utilization and a higher 

tolerance for thiamine deficiency compared to other lake trout strains. Of fish fed the 

control diet, I did not find any differences in thermal tolerance or peak cardiac function 

between the two strains. However, I did find strain-specific differences in relative 

ventricular mass, where Seneca strain lake trout had larger ventricles than Slate strain fish 

relative to body mass. It is possible that this difference is the result of population-specific 
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temperature preferences. Since Seneca strain lake trout typically inhabit warmer, 

shallower water compared to Slate strain fish (Elrod et al., 1996), a larger ventricle could 

help facilitate heightened oxygen delivery during extended foraging bouts in water 

temperatures above their thermal optima. In addition, I found that Seneca strain fish had 

wider hearts than Slate strain fish. Because fish with wider ventricles are typically 

associated with more sedentary habits, I suspect that this difference in VS is the result of 

a more-metabolically demanding lifestyle in Slate strain fish as they historically inhabited 

a much larger body of water than Seneca strain lake trout. Altogether, these results 

suggest that Seneca strain lake trout may possess beneficial adaptations that could 

translate to improved survival in the current and potential future environmental 

conditions in Lake Ontario. 

 Connecting the Dots: Linking Cardiac Impairments to 

Whole-body Metrics 

Prior to this study, there has been little direct mechanistic evidence to explain the 

observed physiological and behavioural impairments associated with thiamine deficiency 

in salmonids. Here, I propose that impairments to cardiac function and changes in cardiac 

morphology may contribute to some of the impairments observed at the whole-body level 

during thiamine deficiency. To this point, a variety of whole-body metrics were measured 

throughout this study by Chris Therrien (CT; Therrien et al., un-published data; Appendix 

D). In addition to the various cardiac implications and reduced thermal tolerance 

observed in my study, CT found that lake trout fed dietary thiaminase for 6 months had 

reduced swimming performance, a slower growth rate, changes in skin pigmentation, 

lower tissue thiamine concentrations, and reduced survival (Therrien et al., un-published 

data; Appendix D). Contrary to our prediction of increased thiaminase-tolerance in 

Seneca strain lake trout and to some of the findings from my study, reductions in survival 

and white muscle thiamine concentrations were only observed in Seneca strain lake trout 

from the thiaminase treatment, whereas Slate strain lake trout did not show any difference 

between treatment groups. These seemingly contradictory findings show some striking 

resemblances to manifestations of thiamine deficiency in humans. In humans, thiamine 
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deficiency typically manifests as either dry beriberi (no cardiac impairments), or wet 

beriberi (cardiac impairments; Fattal-Valevski, 2011). This division in clinical diagnoses 

is thought to occur due to differences in pre-existing health conditions among patients 

(i.e. patients with previous heart injuries/conditions are more likely to develop wet 

beriberi; Wiley and Gupta, 2019). It is possible that Seneca and Slate strain lake trout 

differ in their manifestations of thiamine deficiency, where Seneca strain fish display 

signs analogous to dry beriberi and Slate strain fish show signs analogous to wet beriberi; 

however, genetic differences between strains likely underly this difference. Seneca strain 

lake trout in the thiaminase treatment did not show any reductions in cardiac function 

compared to control fish but had reduced survival and swimming performance. Other 

aspects of thiamine deficiency such as neuropathy and immune function impairments 

may be more prominent than cardiac impairments in Seneca strain lake trout, and likely 

drive the reductions in whole-body metrics measured by CT. However, further 

investigations are needed to confirm if neurological and immune system impairments are 

evident in this strain during thiamine deficiency. Surprisingly, the cardiac impairments 

observed in Slate strain lake trout from the thiaminase treatment in my study did not 

translate to reduced survival but were associated with reduced swimming performance 

(Appendix D) and thermal tolerance. This suggests that the cardiac impairments 

associated with thiamine deficiency might be detrimental during periods of physiological 

stress (e.g. vigorous exercise and acute heat stress) and less important when at rest. 

Preliminary data on white muscle and liver thiamine concentrations follow a similar 

pattern, where there was a reduction of tissue thiamine in Seneca strain lake trout of the 

thiaminase treatment and no difference between treatments in Slate strain fish (Appendix 

D). This could be the result of preferential tissue thiamine allocation, which has been 

suggested to occur in coho salmon during thiamine injection (Fitzsimons et al., 2005). It 

is possible that thiamine is preferentially allocated to heart tissue to maintain cardiac 

function under low-thiamine conditions in Seneca strain fish and more-so to liver and 

muscle tissue in Slate strain fish which would explain the strain-specific differences in 

cardiac impairments and tissue thiamine concentrations between treatments. Interestingly, 

CT found an increase in blue colouration in lake trout raised on the thiaminase diet. 

Similar findings have been reported in human patients suffering from thiamine deficiency 
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(clinically reported as cyanosis) and is linked to reduced energy production and 

deteriorating heart function (Engbers et al., 1984; Roman-Campos and Cruz, 2014; 

Barennes et al., 2015). Taken together, my study is the first to provide direct evidence 

suggesting that cardiac impairments due to thiamine deficiency may be a contributing 

factor underlying some of the whole-body manifestations of thiamine deficiency in lake 

trout. 

 Limitations and Future Directions 

A number of questions remain unanswered regarding the mechanism behind dietary 

thiaminase and thiamine deficiency that were beyond the scope of this thesis. While it has 

been shown that bacterially derived thiaminase from the viscera of alewife and rainbow 

smelt can contribute to thiamine deficiency in salmonids (Honeyfield et al., 2002; 

Honeyfield et al., 2005), the mechanisms by which dietary thiaminase contributes to 

thiamine deficiency in wild salmonids are still largely debated. It has been suggested that 

the primary mechanism by which dietary thiaminase contributes to thiamine deficiency is 

through the incorporation of thiaminase-producing bacteria from ingested prey fishes into 

the gut microbiota of salmonids where it interferes with thiamine uptake (Wistbacka and 

Bylund., 2008). However, recent studies have argued that the synthesis of thiaminase in 

prey fishes may actually be de novo (Richter et al., 2012; Richter et al., 2022; Rowland et 

al. in prep). Although I did not conduct any experiments on gut microbiota, Therrien et 

al. (un-published data) found that tissue thiamine concentrations were reduced in lake 

trout fed dietary thiaminase while the thiamine content of the control and thiaminase diets 

were indistinguishable, thereby providing support for the hypothesis that gut microbiota 

play an important role in facilitating thiamine deficiency in salmonids when bacterial-

derived thiaminase is consumed. To this end, a limitation of this study is that a low 

thiamine diet wasn’t administered to control for the effects of bacterial community 

changes in the lake trout gut. Future research may wish to instead administer low- and 

high-thiamine diets to more directly address questions of thiamine deficiency in 

salmonids. However, as the importance of gut microbiota in salmonid-related thiamine 

deficiency becomes increasingly apparent (Ji et al., 1998; Wistbacka and Bylund., 2008), 

future research should also address questions regarding changes in the gut microbiota of 
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thiaminase-fed salmonids to further understand the mechanism by which thiaminase 

contributes to thiaminase deficiency. 

Another challenge in understanding the effects of dietary thiaminase comes from the 

ecological relevance of an experimental thiaminase diet. The thiaminase diet formulated 

by Honeyfield et al. (2005) that provided a framework for the diet used in this study 

mimics a lake trout diet that consists entirely of high-thiaminase prey fishes. Although 

this appears to still be the case in much of Lake Ontario where alewife and rainbow smelt 

continue to dominate the diets of lake trout (Nawrocki et al., 2022), results from this 

study may have a limited capacity to be applied to instances where lake trout feed on a 

greater diversity of prey. For instance, it has been suggested that the invasion of round 

goby (Neogobus melanostomus) in the Great Lakes could provide alleviation from the 

effects of thiamine deficiency in lake trout if their abundance in lake trout diets continues 

to increase (Fitzsimons et al., 2009b). Future studies are needed that address questions 

pertaining to dietary proportions of high-thiaminase prey fishes and thresholds for 

cardiac-related signs of thiamine deficiency. 

Lastly, questions remain regarding the mechanisms behind the apparent thiaminase-

tolerance observed in Seneca strain lake trout from my study. Evidence of genetic 

adaptations to low thiamine conditions at the population level have been demonstrated in 

Atlantic salmon, where strains that consume high-thiaminase prey in their native lakes 

showed smaller reductions in tissue thiamine concentrations than strains with a diet 

lacking thiaminase (Houde et al. 2015a). In lake trout, Fitzsimons et al. (2021) 

demonstrated that Seneca strain fish have reduced thiamine utilization compared to other 

strains, which may explain the smaller reductions in thermal tolerance and cardiac 

function metrics measured in my study. However, the reason for this difference in 

thiamine utilization remains unknown. Local adaptation to dietary thiaminase likely 

involves the selection of genes associated with enzymes in biochemical pathways that are 

dependent on thiamine, such as the TCA cycle, or genes associated with pathways of 

thiamine modification or transport. In Atlantic salmon, over 3600 genes have shown 

differential expression during thiamine deficiency — many of which are associated with 

cardiac function and development (Harder et al., 2020). Furthermore, nearly 1500 genes 
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were highly associated with strain-specific survival during thiamine deficiency (Harder et 

al., 2020). There are a number of possible mechanisms by which strains could adapt to 

low thiamine conditions (Harder et al., 2018). One possibility involves selection acting 

on sequence variation in the genes encoding the various thiamine-dependant enzymes 

involved in carbohydrate metabolism and energy production (i.e. pyruvate 

dehydrogenase, α-ketoglutarate dehydrogenase, and branched chain α-ketoacid 

dehydrogenase). If sequence variation in the genes encoding these enzymes results in 

altered binding affinities for thiamine diphosphate (TDP), and if a greater binding affinity 

results in an increased use-efficiency of TDP, this variation could be selected on in low 

thiamine environments. Second, variation in genes associated with the expression of 

thiamine pyrophosphokinase, the enzyme that converts free thiamine to TDP, could be 

subject to selection if variation in these genes results in an increased expression in 

thiamine pyrophosphokinase and if an increased expression increases the availability of 

TDP. Future studies are needed to identify the particular adaptations associated with 

thiaminase tolerance in Seneca strain lake trout. Additionally, future investigations into 

thiaminase tolerance in other strains of lake trout, particularly those that rely on high-

thiaminase prey in their native lakes, will be worthwhile in advancing lake trout 

conservation efforts in the Great Lakes and elsewhere. 

 Conclusion 

With the threats of anthropogenically mediated biological invasion and climate change on 

the rise, it is becoming increasingly important to understand how these stressors might 

interact to better protect and manage aquatic ecosystems. In this study, I show for the first 

time that the consumption of a diet containing bacterial-derived thiaminase from invasive 

species can impair cardiac function, alter cardiac morphology and reduce thermal 

tolerance in a salmonid. Contrary to my prediction, I found that lake trout raised on a 

thiaminase diet had a greater relative ventricular mass and more elongated ventricles than 

lake trout in the control group. Lastly, I provide evidence to support the hypothesis that 

Seneca strain lake trout possess local adaptions to high-thiaminase prey fishes. Across 

temperature profiles, I observed a significant difference in fHmax between treatments in 

Slate strain fish, while this difference was not observed between treatments in Seneca 
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strain fish. As Seneca strain lake trout maintained cardiac function when fed the 

thiaminase diet, stocking a higher proportion of Seneca strain fish may provide an 

alternative method to improve lake trout survival in Lake Ontario. However, whole-body 

data suggests that Seneca strain lake trout may manifest other non-cardiac related signs of 

thiamine deficiency that translate to lower survival and performance. Altogether, this 

study provides a first assessment of how two prevalent stressors in the Great Lakes — 

warmer water temperatures and invasive high-thiaminase prey fishes — might interact to 

threaten current and future lake trout viability through cardiac impairments.  
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Appendix B. Composition of Vitamin and Mineral Premixes Used 
in Experimental Diets 
 
Appendix D. Thermal Performance of Stroke VolumeAppendix E. 
Composition of Vitamin and Mineral Premixes Used in 
Experimental Diets 

 
Table B.1. Composition of vitamin (5g/kg; Dyets #399751) and mineral (2g/kg; Dyets 
#200030) premixes used in experimental lake trout (Salvelinus namaycush) diets. Mixes 
were prepared and provided by Dyets Inc. (Bethlehem, PA, USA).  
 

Ingredient  Concentration (g/kg) 
Vitamin premix  
Niacin 0.025 
Calcium Pantothenate 0.05 
Pyridoxine HCl 0.015 
Thiamin HCl 0 
Riboflavin 0.0175 
Folic acid 0.005 
Biotin 0.000375 
Vitamin E Acetate (500 iu/g) 0.25 
Vitamin B12 (0.1%) 0.025 
Vitamin D3 (400,000 iu/g) 0.015 
Vitamin A Palmitate (250,000 iu/g) 0.025 
Vitamin K1 Premix (10 mg/g) 1.375 
Dextrose 3.197125 
Total 5 
  
Mineral premix  
Calcium Phosphate, dibasic 1.47 
Calcium Carbonate 0.042 
Sodium Chloride 0.0612 
Potassium Phosphate, dibasic 0.162 
Potassium Sulfide 0.136 
Sodium Phosphate, dibasic 0.0428 
Magnesium Oxide 0.05 
Manganous Carbonate 0.008424 
Ferric Citrate, U.S.P. 0.02328 
Zinc Carbonate 0.00162 
Cupric Carbonate 0.000666 
Potassium Iodide 0.0000144 
Citric acid 0.0019956 
Total 2 



98 

 

Appendix C. Thermal Performance of Stroke Volume 
 
Appendix F. The Effect of Dietary Thiaminase on Whole-body 
Performance MetricsAppendix G. Thermal Performance of Stroke 
Volume 
C.1 Methods 
See section 2.1.5 for detailed methods on how stroke volume was measured in my study. 

Repeated measures ANOVAs were used to assess differences in stroke volume between 

treatments and strains across temperatures. 

C.2 Results 

Stroke volume did not change with temperature in this study (F=1.14; df=1,12; P=0.33; 

Figure C.1), and I did not detect a significant treatment × strain × temperature interaction 

effect on stroke volume according to a three-way repeated measures ANOVA (F=0.55; 

df=1,10; P=0.85).  
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Figure C.1. Effect of acute warming on stroke volume of Slate (A) and Seneca (B) strain 
lake trout (Salvelinus namaycush) raised on a control (dark grey) or thiaminase (light 
grey) diet. Data are presented as means ± SE. 
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Appendix D. The Effect of Dietary Thiaminase on Whole-body 
Performance Metrics 

Figure D.1. A) White muscle thiamine concentration (nmol/g) and B) liver thiamine concentration 
(nmol/g) of juvenile lake trout from the Seneca and Slate Island strains fed either a control (dark grey) 
or thiaminase (light grey) diet for 6 months. Boxplots show the median and first and third quartiles. 
Whiskers show minimum and maximum values. Dots represent outliers according to 1.5 x interquartile 
range. Note: Only 7 samples have been analyzed to date for liver thiamine concentrations and no 
inferential statistics could be implemented.  

Treatment: F1,53 = 1.24, P = 0.30
Strain: F1,53 = 1.52, P = 0.48
Treatment*Strain: F1,53 = 5.66, P = 0.038

All data presented in Appendix D were collected, analyzed, visualized, and interpreted by 

Chris Therrien (CT). 

D.1 Tissue thiamine concentrations 
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Figure D.2. Kaplan-meier survival curves of lake trout from the A) Slate Island (SLT) and B) 
Seneca Lake (SEN) strains after 9 months fed either a control (C) or thiaminase (T) diet. 

Treatment: x21 = 0.2, p = 0.7 Treatment: x21 = 4.0, p < 0.05

D.2 Survival 
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Figure D.3. Critical swim speed (Ucrit) of lake trout from the Seneca and Slate strains fed 
either a control (dark grey) or thiaminase (light grey) diet for 6 months. Boxplots show the 
median and first and third quartiles. Whiskers show minimum and maximum values. Dots 
represent outliers according to 1.5 x interquartile range. 

Treatment: F1,80 = 9.65, P<0.01
Strain: F1,80 = 0.84, P = 0.38
Treatment*Strain: F1,80 = 0.06, P = 0.76

D.3 Swim Performance 
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Treatment: F1,427 = 16.00, P < 0.01
Strain: F1,427 = 66.50, P < 0.001
Treatment*Strain: F1,427 = 0.49, P = 0.50

Figure D.4. Thermal-unit growth coefficient of lake trout from the Slate (SL) and Seneca (SE) 
strains after 6 months of being fed either a control (C) or thiaminase (T) diet. 

D.4 Growth Rate 
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Treatment: F1,49 = 6.89, P < 0.05
Strain: F1,49 = 2.24, P = 0.16
Treatment*Strain: F1,49 = 0.59, P = 0.46

Figure D.5. B colour space (blue-yellow) of lake trout fed either a control (dark grey) or 
thiaminase (light grey) diet for 6 months. Boxplots show the median and first and third 
quartiles. Whiskers show minimum and maximum values. Dots represent outliers according 
to 1.5 x interquartile range. 

D.5 Colouration 
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