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Abstract  

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder with limited early-

stage treatment options. There is an urgent and unmet need for accurate biomarkers 

which can identify patients at risk for AD before cognitive symptoms emerge. Here we 

compared the performance of two analytical methods, univariate and multivariate 

classification, for identifying cognitively normal (CN) and mild cognitive impairment 

(MCI) patients based on their cerebrospinal fluid (CSF) biomarkers of Aβ42, pTau-181, 

sTREM2. Post-hoc analyses were then employed to assess patient progression in each of 

the SNF clusters. We found that SNF identified subgroups within the CN and MCI 

cohorts, based solely on conjoint patterns of CSF, uncaptured by univariate strategies. In 

both CN and MCI, a fast progressor patient cluster was identified. Our findings suggest 

that multivariate modeling of CSF data can uncover predictive patterns of AD 

progression which may help to stratify patients in clinical trials of preventative 

therapeutics.  

Keywords 

Alzheimer’s disease, human, multivariate classification, similarity network fusion, 

longitudinal analysis, cerebrospinal fluid, biomarkers 
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Summary for Lay Audience 

Alzheimer's disease (AD) affects over 50 million people globally, yet reliable pre-

symptomatic diagnosis is lacking. Current treatments focus on symptom management 

during advanced stages of the disease. To address this, low-cost sensitive biomarkers are 

needed to identify individuals at risk before symptoms appear, akin to cholesterol levels 

and heart disease. Such proactive care strategies are currently absent in AD. The 

objective of my thesis is to evaluate whether warning signals in another type of bodily 

tissue, known as cerebrospinal fluid (CSF), can alert clinicians to risk for future AD, even 

when the patient has no signs of dementia. CSF is a liquid that bathes the brain and spinal 

cord and can be reliably and safely collected from the spine. It has proven to be one of 

the most effective tools for early detection, because it is in direct contact with the brain 

making it highly sensitive to abnormal biological processes in the brain. Biological 

markers, known as biomarkers, can be extracted from the CSF and measured to give us 

insight into the biological processes occurring in the brain. Over time, these biomarkers 

interact in ways that can be compared to the performance of an orchestra. In an orchestra, 

each musician (CSF biomarker) contributes to the overall performance (disease), and the 

complexity of the music comes from their coordinated interaction. Similarly, 

understanding the dynamics of AD involves considering each biomarker not just 

individually, but also in their interplay over time. 

Previous research analyzed these biomarkers individually and at one point in time. In this 

thesis, we employed a new technique to understand this 'biomarker orchestra' by tracking 

multiple CSF biomarkers together over the course of multiple years. With this approach, 
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we identified a pattern of biomarkers that can determine patients who are at high risk of 

developing AD, even before clinical symptoms emerge. We hope these analysis 

techniques can be used in combination with CSF biomarkers to identify high risk 

cognitively normal older adults who can then be enrolled in clinical trials to evaluate 

drugs for slowing or even preventing AD progression, akin to strategies in the fields of 

cardiovascular medicine.  
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1 Introduction 

1.1 Biomarkers for preclinical Alzheimer’s disease: an urgent 

and unmet need  

Alzheimer's disease (AD) is the most common neurodegenerative disorder and form of 

dementia in Canada, accounting for 60-80% of all cases parahippocamp. It is estimated 

that the global prevalence of dementia is 57.4 million cases in 2019 and expected to 

increase to 152.8 million cases by 2050 (Nichols et al. 2022). AD is not only a significant 

health concern but also has significant economic implications. In 2010, the global 

economic impact of AD was estimated to be around 604 billion US dollars (Wimo et al. 

2013). Due to the considerable global and societal burden of AD, an estimated $42.5 

billion US dollars have been invested into the research and development of AD drugs 

(Cummings et al. 2022). 

While multiple therapies have been developed to manage symptoms and temporarily 

slow the progression of AD, there is a lack of efficacious drugs that can prevent or cure 

the underlying neurodegenerative disease process (Livingston et al. 2017; Atri 2019; 

Cooper et al. 2013). One potential explanation for the limited effectiveness of drugs for 

AD is the design of clinical trials. Typically, these trials assess drugs in advanced-stage 

AD patients where irreversible brain damage has occurred (Figure 1.1). By this stage, the 

neurodegenerative processes have already caused substantial harm, making it difficult for 

drugs to have a significant impact.  
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A promising strategy for overcoming the inefficacy of current AD therapeutics is to 

develop biomarkers which capture AD pathology in its earliest stages, before the onset of 

clinical symptoms. These biomarkers can then be used to stratify patients in clinical trials 

according to their AD risk (e.g., low versus high risk). Drugs which target the preclinical 

stages of pathology are more likely to be effective at slowing or even preventing AD 

progression. In turn, clinical trials which target patients in the preclinical stages of AD 

are more likely to observe treatment effects. 
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Figure 1.1: A model showing the temporal changes in biomarkers associated with 

Alzheimer’s disease. Biomarkers increasingly become abnormal in the progression 

towards Alzheimer’s disease (AD), following a certain temporal pattern before cognitive 

impairment appears. Cerebrospinal fluid (CSF) Aβ42 shown in purple and positron 

emission tomography (PET) amyloid imaging shown in red represent amyloid-beta (Aβ). 

CSF tau is shown in blue. 18F-fluorodeoxyglucose (FDG) PET paired with structural 

magnetic resonance imaging (MRI) measures neurodegeneration and is shown in orange. 

Cognitive function is shown as a green area with borders denoting low and high risk, as 

function deteriorates from normal to mild cognitive impairment (MCI) to dementia. 

Figure adapted from Jack et al. 2013 

 

To test the sensitivity and specificity of potential preclinical AD biomarkers, we need (1) 

large sample datasets where multiple different biomarkers are collected in parallel across 

multiple different points in time, and (2) data sampled from cognitively normal (CN) 

older adults who may differ in their risk status but are otherwise clinically 

indistinguishable from one another. Large longitudinal multimodal open-access datasets, 
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specifically the Alzheimer’s Disease Neuroimaging Initiative (ADNI), have recruited 

hundreds of CN (i.e., preclinical) and symptomatic older adults and collected years of 

multimodal longitudinal data, such as cerebrospinal fluid (CSF) proteins, Magnetic 

Resonance Imaging (MRI) markers of structural degeneration, and Positron Emission 

Tomography (PET) markers of amyloid-β (Aβ) and tau (R. C. Petersen et al. 2010). 

These extensive data have made it possible to study these biomarkers, and literature has 

shown that many of these biomarkers become abnormal long before clinical symptoms 

emerge (Fagan et al. 2014; Gustafson et al. 2007; Saykin et al. 2006; Yang Wang et al. 

2013; Wolfsgruber et al. 2019; Pascoal et al. 2018). 

Of these multimodal biomarkers, CSF has been shown to exhibit the highest sensitivity 

and specificity to preclinical AD pathology (Blennow et al. 2015; Blennow and Hampel 

2003; Palmqvist, Mattsson, and Hansson 2016; Schmand, Huizenga, and van Gool 2010; 

Hansson et al. 2006). The CSF is in direct contact with the extracellular space of the brain 

and provides a fluid medium for the clearance of cellular waste products, including 

misfolded proteins. The CSF concentration of proteins has been shown to reflect multiple 

different types of pathology related to AD, and to dynamically change with disease 

progression (Brydon et al. 1995; 1996; Blennow et al. 2010). The core CSF biomarkers 

associated with AD include amyloid-β-42 (Aβ42) and phosphorylated-tau-181 (pTau-

181) (Blennow et al. 2010). CSF Aβ42 reflects Aβ plaques in the brain, which are a 

hallmark of AD. Amyloid plaques are aggregates of beta-amyloid protein that accumulate 

extracellularly and interfere with normal brain function. CSF pTau-181 reflects the 

accumulation of intracellular neurofibrillary tangles in the brain, another hallmark 

pathology of AD. These two biomarkers are the best characterized biological fluid 
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markers for AD (Zou, Abdullah, and Michikawa 2020). In addition to the two core 

pathologies of extracellular Aβ and intracellular phosphorylated-tau, emerging evidence 

is pointing towards chronic neuroinflammation as a third core pathology of AD (Zotova 

et al. 2010). This inflammatory response is effectuated by the immune system, with the 

major player being microglia, the resident immune cells in the central nervous system. In 

early AD, neurotoxic Aβ plaques are thought to drive the activation of microglia, which 

subsequently migrate and phagocytose Aβ plaques, resulting in increased clearance of Aβ 

(Kinney et al. 2018; Baik et al. 2016; Simard et al. 2006; Yuyama et al. 2012; 

Chakrabarty et al. 2010; Shaftel et al. 2007). As the inflammatory response is sustained 

however, the microglia become enlarged and less able to clear Aβ (Chakrabarty et al. 

2010; Shaftel et al. 2007; Hickman, Allison, and El Khoury 2008; Bard et al. 2000). The 

action of Triggering Receptor Expressed on Myeloid Cells-2 (TREM2), a receptor 

protein on microglia, is vital for the many functions of the microglia (Takahashi, 

Rochford, and Neumann 2005; N’Diaye et al. 2009; Atagi et al. 2015; Yeh et al. 2016; 

Kleinberger et al. 2014).  

Collectively, CSF Aβ, tau and TREM2 proteins exhibit strong potential as biomarkers for 

preclinical AD. The collection of CSF samples also gives researchers the ability to (1) 

assay multiple diverse types of proteins and (2) perform within-subject longitudinal 

assessments. However, these advantages have created two major technical obstacles. The 

first obstacle concerns how the multiple CSF proteins are statistically analyzed relative to 

one another. Most studies typically use univariate strategies, where each protein is treated 

as a separate variable (Blennow et al. 2019; Salvadó et al. 2023; Hansson et al. 2007; 

Snider et al. 2009; Adamczuk et al. 2015; Shoji et al. 1998). The second obstacle 
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concerns whether and how the CSF proteins are analyzed relative to their own 

longitudinal changes over time. Most studies typically use cross-sectional experimental 

designs, where each protein is measured at only a single timepoint (Blennow et al. 2019; 

Salvadó et al. 2023; Hansson et al. 2007; Snider et al. 2009; Adamczuk et al. 2015; Shoji 

et al. 1998). To provide a categorical boundary for statistical comparison of CSF 

pathology in a cross-sectional design, patients must be grouped according to an 

independent risk variable, such as cognitive status, apolipoprotein E (APOE) genotype or 

amyloid PET abnormality. Hence, univariate statistical analysis and cross-sectional 

designs necessitate multiple parallel statistical comparisons to identify how the central 

tendency, variability, and distribution of each individual protein may differ between 

groups of patients who may also differ on many other characteristics, which are difficult 

to counterbalance. These strategies also do not provide insight into the dynamic 

interrelationships among AD pathologies, which are known to reflect a ‘cascade’ model 

of progression (Hadjichrysanthou et al. 2020; Jack et al. 2013; Palmqvist et al. 2019). 

Under the cascade model, CSF biomarkers do not all become abnormal simultaneously, 

but rather change in a predictive multivariate pattern as the brain’s compensatory 

mechanisms systematically give way to pathology and neurodegeneration. A univariate 

cross-sectional comparison of a single CSF protein would obscure these dynamic 

multivariate patterns. The pervasive use of univariate statistical analysis and cross-

sectional experimental designs may account for the substantial variability in the research 

literature as to which CSF biomarker, Aβ, tau or TREM2, exhibits superior sensitivity 

and specificity to pathology in preclinical stages. Even in longitudinal studies, univariate 
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strategies are typically implemented to assess each CSF protein in parallel (Brys et al. 

2009; Hansson et al. 2007; Mattsson et al. 2009). 

To overcome these obstacles, there is a need for analytical strategies which capture both 

the dynamic (biomarker levels changing over time) and multifactor complexity 

(biomarkers interacting with each other) of CSF protein biomarkers. In this work, we 

therefore explored a novel multivariate strategy for analyzing dynamic longitudinal 

patterns in CSF Aβ, tau and TREM2 data collected in a large, well-characterized sample 

of older adults who were CN at baseline. A key feature of this analytical strategy is that it 

obviates any need for arbitrary selection of a separate grouping factor, such as APOE-ε4 

or cognitive status. Rather, the groups emerge from the multivariate longitudinal patterns 

detected in the CSF, providing an unbiased stratification of preclinical AD risk. 

 

1.2 Background 

1.2.1 Preclinical Alzheimer’s disease pathophysiology 

The pathology of preclinical AD is typically characterized by the accumulation of 

abnormal proteins in the brain, including Aβ plaques and tau tangles. Aβ is a peptide that 

forms from the breakdown of a larger protein called amyloid precursor protein (APP), a 

single transmembrane protein that is highly concentrated in the synapses of neurons in 

the brain (Haass and Selkoe 2007). Once produced, Aβ can form soluble oligomers which 

can aggregate to form larger insoluble Aβ plaques (Golde, Eckman, and Younkin 2000). 

These Aβ plaques are dense clumps of protein that accumulate extracellularly in the 

brain. In healthy individuals, Aβ is cleared from the brain via several mechanisms, 
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namely enzymatic degradation, cellular uptake, and drainage outside the brain (Iwata et 

al. 2001; Eckman et al. 2006; Mawuenyega et al. 2010b; Rasmussen, Mestre, and 

Nedergaard 2018). However, in AD patients, an imbalance between Aβ production and 

clearance results in larger amounts of Aβ plaques, ultimately leading to the activation of 

neuroinflammatory response mechanisms and damage to nearby cells (Mawuenyega et al. 

2010a; Selkoe 2003; Zlokovic et al. 2000; Hardy and Selkoe 2002). Aβ deposition is 

observed in both sporadic and familial AD (FAD) (O’Brien and Wong 2011). FAD is 

associated with mutations in three genes: APP, Presenilin 1 (PSEN1) and Presenilin 2 

(PSEN2) (Duff et al. 1996, 1; Levy-Lahad et al. 1995; Sherrington et al. 1995). The 

presenilin's are catalytic components of the γ-secretase enzyme complex, which cleaves 

APP to produce Aβ (Karch and Goate 2015). Mutations in these genes leads to a 

pathogenic increase in the production of the longer and more amyloidogenic form of Aβ 

called Aβ42, typically resulting in earlier onset (<65 years of age) of AD in individuals 

carrying these genes (Bettens, Sleegers, and Van Broeckhoven 2010). Early onset AD, 

comprising both familial and sporadic AD subtypes, is estimated to represent 1-5% of all 

AD cases (Zhu et al. 2015). The remaining number of cases are sporadic late onset, which 

affect individuals aged 65 or older and have age as the single most important risk factor 

(Van Der Flier 2005). Outside of subtype specific AD risk factors, the APOE-ε4 allele is 

the most important genetic risk factor for late onset AD, where heterozygotes and 

homozygotes have an increased risk of 2-4 times and 8-12 times, revealing a dose-

dependent effect (Lindsay A. Farrer et al. 1997). APOE-ε4 is thought to impair 

processing and clearance of amyloid, differentially impacting Aβ clearance from the 

brain (Verghese et al. 2013; Huynh et al. 2017; Kim, Basak, and Holtzman 2009).  
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Tau is an essential protein encoded by the microtubule associated protein tau (MAPT) 

gene that normally helps to stabilize microtubules within neurons to facilitate the 

transportation of nutrients and other materials across the cell. In AD, tau becomes 

abnormally phosphorylated, leading to the misfolding and aggregation of phosphorylated 

tau (pTau) to form intracellular neurofibrillary tangles, which can disrupt the normal 

functioning of neurons.  

In AD, tau follows a characteristic spatiotemporal pattern when spreading through the 

brain. This stereotyped pattern of progression can be subdivided into six Braak stages. 

Stages I-II represent preclinical AD where tangles are present in the transentorhinal 

cortex. Stages III-IV correspond to incipient AD where tangles are present in the limbic 

regions. Late AD where tau pathology has spread to the neocortex is represented by 

staged V-VI (Braak and Braak 1991).  

This pathogenic cascade of tau hyperphosphorylation followed by misfolding and 

spreading throughout the cortex is thought to be triggered by Aβ (Musiek and Holtzman 

2015). Several studies provide evidence for the complex interplay between Aβ and tau 

(Bennett et al. 2017; Israel et al. 2012; Oddo et al. 2003; Lee et al. 2016; Choi et al. 

2014). Tau pathology is more closely associated with cognitive decline and disease 

severity compared to amyloid burden (Spires-Jones and Hyman 2014; Nelson et al. 

2012). Unlike Aβ, no mutations in MAPT are considered causative of familial AD. 

However, different MAPT gene variants could confer increased or decreased risk of AD 

(Schraen-Maschke et al. 2004; Gerrish et al. 2012; Allen et al. 2014).  
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In addition to the two core pathologies of extracellular Aβ and intracellular 

phosphorylated-tau, emerging evidence is pointing towards chronic neuroinflammation as 

a third core pathology of AD (Zotova et al. 2010). This inflammatory response is 

effectuated by the immune system, with the major player being microglia, the resident 

immune cells in the central nervous system. In their inactive state, microglia are 

responsible for surveying the brain and communicating with other cells. Microglia 

become activated when a threat is detected, such as pathogen or injury. This activation 

process comprises morphological changes including cell enlargement and migration 

(Bolmont et al. 2008; Graeber et al. 1988; Mrak 2012). In early AD, neurotoxic Aβ 

plaques are thought to drive the activation of microglia, which subsequently migrate and 

phagocytose Aβ plaques, resulting in increased clearance of Aβ (Kinney et al. 2018; Baik 

et al. 2016; Simard et al. 2006; Yuyama et al. 2012; Chakrabarty et al. 2010; Shaftel et al. 

2007). As the inflammatory response is sustained, the microglia become enlarged and 

less able to clear Aβ (Chakrabarty et al. 2010; Shaftel et al. 2007; Hickman, Allison, and 

El Khoury 2008; Bard et al. 2000). This results in exacerbation of AD pathology due to 

the compromised clearance of Aβ, coupled with the continued release of pro-

inflammatory cytokines, which acts to aggravate neurodegeneration (Hickman, Allison, 

and El Khoury 2008; Meda et al. 1995; Sheng et al. 1998; Krabbe et al. 2013; Michelucci 

et al. 2009).  

Emerging lines of evidence that highlight the importance of the immune response carried 

out by microglia in AD pathogenesis come from genetic studies that reported the R47H 

variant of the TREM2 gene to be the second strongest genetic risk factor, conferring 

approximately a threefold increase risk of AD (Guerreiro et al. 2013; Jonsson et al. 
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2013). TREM2 is a receptor protein expressed on myeloid lineage cells, including 

macrophages, dendritic cells, osteoclasts, and most importantly for AD, microglia 

(Colonna 2003). TREM2 is a single transmembrane glycoprotein that consists of an 

extracellular immunoglobulin-like domain, a transmembrane domain, and a short, 

cytoplasmic tail (Forabosco et al. 2013). Soluble TREM2 (sTREM2), which is present in 

the blood and CSF, is produced from proteolytic shedding of the receptor ectodomain or 

translation of an alternative spliced TREM2 transcript that lacks the transmembrane 

domain (Del-Aguila et al. 2019; Piccio et al. 2008; Wunderlich et al. 2013).   

Microglia are responsible for engulfing and clearing debris to maintain homeostasis. 

TREM2 is critical for microglial phagocytosis of apoptotic neurons, cellular debris, 

bacteria, lipoproteins, and Aβ (Takahashi, Rochford, and Neumann 2005; N’Diaye et al. 

2009; Atagi et al. 2015; Yeh et al. 2016; Kleinberger et al. 2014). When Aβ plaques are 

complexed with APOE, uptake by microglia is enhanced through TREM2 interaction 

with the lipoproteins (Yeh et al. 2016). Furthermore, TREM2 plays a role in modulating 

the proliferation and survival of microglia. When TREM2 is reduced or absent, 

microglial proliferation appears to decrease (Yaming Wang et al. 2016). Additionally, 

TREM2 is a key factor in promoting survival of microglia (Zheng et al. 2017). 

 

1.2.2 Biomarkers of AD pathology 

The intricate network of pathological events and molecular alterations manifesting in 

preclinical AD, involving the accumulation of Aβ plaques and tau tangles as well as 

chronic neuroinflammation, plays a critical role in the disease's progression.  
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Biomarkers provide measurable and objective characteristics that indicate the presence or 

progress of pathological processes, such as Aβ, or a response to a therapeutic intervention 

(Biomarkers Definitions Working Group. 2001). For AD, biomarkers may be used to 

improve the accuracy of diagnosis, predict conversion between clinical disease states, and 

monitor the effectiveness of treatment (Blennow et al. 2010; Mahaman et al. 2022).  

 

1.2.3 Imaging biomarkers of AD pathology 

Imaging biomarkers have played a significant role in elucidating the pathology of early 

AD. The most widely used imaging techniques include MRI and PET, which can 

quantify structural, functional, and molecular measures of the disease’s pathology.  

MRI enables the quantification of structural alterations, like the shrinkage in cortical 

volume or thickness in specific brain regions. In AD, MRI studies reveal a pattern of 

brain atrophy, beginning in the entorhinal cortex, followed by the hippocampus, 

amygdala, and parahippocampal gyrus (Lehéricy et al. 1994; Chan et al. 2001; Dickerson 

et al. 2001; Killiany et al. 2002). As such, atrophy of the medial temporal lobe structures 

is considered to be a well-established MRI marker of AD (Juottonen et al. 1998; Du et al. 

2001; Duara et al. 2008; Frisoni et al. 2010). It also possesses predictive potential, 

indicating the possible transition from mild cognitive impairment (MCI) to AD (DeCarli 

et al. 2007; Korf et al. 2004).  

PET imaging leverages specific radioactive tracers to generate images of different 

molecular and pathological processes in the brain. Three main types of PET have become 

a mainstay in AD research: [18F]Fluorodeoxyglucose (FDG-PET), amyloid PET, and tau 
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PET. FDG-PET is a measure of glucose metabolism and has demonstrated prognostic 

value in identifying individuals at risk of progression from MCI to AD (Teipel et al. 

2015). Amyloid and tau PET have emerged with the advent of new PET tracers and have 

allowed us to visualize in vivo the fibrillar Aβ plaques and tau neurofibrillary tangles, 

respectively. Amyloid PET serves to confirm AD diagnosis, assists in the early detection 

of MCI patients, and track changes in brain amyloid load due to anti-amyloid therapy 

(Suppiah, Didier, and Vinjamuri 2019). Tau PET, while still in relatively early stages, has 

shown utility in the diagnosis and staging of AD diagnosis (G. C. Petersen et al. 2022).  

Imaging biomarkers, such as MRI and PET have played a crucial role in the detection and 

assessment of AD. However, they also have certain limitations. First, imaging biomarkers 

may not be sensitive enough to detect early pathological changes in the brain during the 

preclinical stages of AD. Instead, these imaging biomarkers may primarily capture the 

effects of disease progression at later stages, wherein symptoms are already evident. 

Second, the interpretation of MRI and PET images requires expertise and trained 

personnel. The identification and quantification of specific biomarkers or pathological 

features requires many analytical steps which may involve subjective judgments. 

Standardization and consensus on imaging protocols and interpretation criteria are crucial 

to ensure reliability and consistency across different centers, but remain lacking for MRI 

and PET. Lastly, MRI and PET imaging techniques are also expensive and may not be 

readily available in all healthcare settings. Limited access to these imaging technologies 

can restrict their widespread use, especially in resource-limited or remote areas.  
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1.2.4 Fluid biomarkers of AD pathology 

Fluid biomarkers comprise CSF and plasma. CSF has been studied extensively and is 

regarded as the most optimal tool for detecting preclinical AD pathology. First, since the 

CSF is in direct contact with the extracellular space of the brain, its concentration of 

proteins has been shown to reflect multiple different types of pathology in the brain that 

are related to AD and to dynamically change with disease progression (Brydon et al. 

1995; 1996; Blennow et al. 2010). Second, changes in CSF biomarkers are observed 

earlier than in MRI or PET (Schmand, Huizenga, and van Gool 2010; Palmqvist, 

Mattsson, and Hansson 2016). Third, a variety of proteins, each of which reflects a 

unique pathology, can be measured from a single CSF acquisition, including the core 

pathologies: Aβ42, pTau-181, and sTREM2.  

CSF is typically extracted through a procedure called lumbar puncture (LP) or spinal tap. 

During this procedure, a healthcare provider will insert a thin, hollow needle into the 

lower back, between the vertebrae in the lumbar region. The needle is inserted into the 

subarachnoid space, which is filled with CSF, and a small amount of the fluid is collected 

for testing.  LPs are considered safe, while serious post-LP complications are rare. More 

common complications following LPs include headache and back pain (Duits et al. 

2016). Unlike the expensive infrastructure required for PET and MRI, CSF acquisition 

requires only a trained nurse and inpatient clinical care. CSF is therefore considerably 

more accessible than imaging biomarkers in real world clinical settings.  

After the CSF aliquot is obtained, it can do undergo different measurement techniques to 

quantify the biomarkers of interest. Most commonly, an antibody-based approach is 
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implemented, such as the enzyme-linked immunosorbent assay (ELISA) or electro-

chemiluminescence immunoassays (ECLIA).  

ELISA is a biochemical technique that uses an enzyme-linked antibody to detect the 

presence of a specific protein or antigen in a sample. In ELISA, a specific antigen is 

immobilized on a surface (such as a microplate well) and a corresponding antibody 

linked to an enzyme (such as alkaline phosphatase or horseradish peroxidase) is added to 

the sample. If the antigen is present in the sample, it will bind to the antibody, forming an 

antigen-antibody complex. After washing away any unbound substances, a substrate 

specific to the enzyme is added to the well. If the enzyme is present, it will catalyze a 

colorimetric reaction of the substrate, producing a detectable signal such as a color 

change, which indicates the presence and amount of the antigen in the sample. 

One significant early challenge for CSF biomarkers of AD pathology was their variability 

in the measured protein concentrations, which was observed to differ between different 

labs and even between repeated analyses of the same samples (Blennow and Hampel 

2003; Olsson et al. 2005; Hort et al. 2010). This variability may be due to differences in 

pre-analytical factors such as sample handling and storage, analytical factors such as 

between/within differences in laboratory procedures, and assay-related factors such as 

variations in kit manufacturing (Hok-A-Hin et al. 2019; Teunissen et al. 2009; 

Andreasson et al. 2018; Teunissen et al. 2010; Fourier et al. 2015). This variability in pre-

analytical techniques was identified in multicenter studies such as ADNI and the Swedish 

BIOFINDER study, leading to international efforts to standardize CSF procedures (Hort 

et al. 2010). To address the issues, Roche Diagnostics developed the CSF Elecsys assays, 

which are fully automated ECLIAs that have been shown to have high analytical 
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performance, reliability, and sensitivity (Bittner et al. 2016; Shaw et al. 2019; Doecke et 

al. 2020).   

In ECLIA, instead of using an enzyme to generate a colorimetric signal, a proprietary 

Sulfo-Tag reporter molecule is used (Bolton et al. 2020). The Sulfo-Tag is a compound 

that produces a chemiluminescent signal when an electrical current is applied. A sample 

is added to the assay plate, and if it contains the antigen of interest, it will bind to the 

antigen coated on the plate. A secondary antibody that recognizes the first antibody is 

added, which is linked to the Sulfo-Tag. The assay plate is then placed in a reader, which 

applies an electric pulse to the plate, triggering a reaction that produces a 

chemiluminescent signal. The signal is detected and measured by a camera in the reader, 

and the amount of signal is proportional to the amount of antigen-antibody complex in 

the sample. 

ECLIA has several advantages over ELISA, including a wider dynamic range, higher 

sensitivity, and better precision (Bolton et al. 2020). In addition, the ECLIA method 

eliminates the potential for variability associated with timing of substrate addition, as the 

substrate is activated by the reader (Bolton et al. 2020). These rigorous methodological 

features have led to standardization of CSF cutpoints on multiple AD pathological 

markers, including Aβ42 and pTau-181. Several studies have evaluated the concordance 

between CSF Aβ42 and pTau-181 as measured by Elecsys assays in different 

populations, including ADNI and the Swedish BIOFINDER studies and converged on a 

common cut-off (Hansson et al. 2018; Shaw et al. 2018; Doecke et al. 2020). The Elecsys 

assay has since been adopted by leading studies, including ADNI, the Swedish 

BioFINDER Study, and the Australian Imaging, Biomarkers and Lifestyle (AIBL) study 
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(Doecke et al. 2020; Lifke et al. 2019; Shaw et al. 2018). Therefore, evidence using these 

new methods supports the reliability issues of CSF have been largely addressed, opening 

the door to its utility as a preclinical biomarker.  

 

1.2.5 Cross-sectional univariate analysis of CSF biomarkers 

The vast majority of research using CSF to study AD pathology has employed cross-

sectional univariate comparisons, where single timepoint measurements of a CSF 

biomarker are used to classify a group of control and AD patients. A quintessential 

example of this approach is the usage of receiver operating characteristic (ROC) analysis 

to assess the diagnostic accuracy of CSF biomarkers for AD. An ROC curve is a 

graphical representation of the performance of a binary classifier as the discrimination 

threshold is varied. In the context of disease diagnosis, the classifier assigns a patient to 

either a positive or negative category based on a biomarker value. Consequently, the 

ROC curve charts the true positive rate (sensitivity) against the false positive rate (1-

specificity) at varying thresholds. 

In the paper by Hansson et al., the authors used ROC analysis to evaluate the diagnostic 

accuracy of CSF biomarkers (Aβ42, t-tau and pTau-181) for identifying AD pathology in 

two independent cohorts of patients (Hansson et al. 2018). The binary classifier was set to 

be amyloid-β PET scans of patients, which were labelled to be positive or negative based 

on blinded visual assessment. The sensitivity and specificity of the different CSF 

biomarkers at different cut-off points would be plotted on the ROC curve, and the 
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optimal cut-off point would be chosen based on the point on the curve that maximizes the 

sum of sensitivity and specificity. 

The univariate approach to biomarker analysis, which typically involves the 

establishment of a cut-off point for a single biomarker or the ratio of two biomarkers, 

offers an array of benefits. Its ease of computation and interpretation has undoubtedly 

contributed to its widespread usage. This approach has seen successes in increasing the 

diagnostic accuracy of AD and, on occasion, predicting progression from MCI to AD 

(Lewczuk et al. 2004; Maddalena et al. 2003; Koopman et al. 2009).  

However, the inherent limitations of this univariate, cut-off-based strategy necessitate 

caution in its application and interpretation. It assumes a linear relationship between 

biomarkers and disease outcomes, whereby higher or lower biomarker values correspond 

linearly to specific outcomes. Yet, this assumption overlooks the potential for non-

linearity in these relationships and fails to account for possible interactions among 

different biomarkers (Toledo et al. 2015; Popescu et al. 2020; de Leon et al. 2018).  

Consider an analogy of an orchestra to illustrate these interactions and their significance. 

In an orchestra, each musician contributes to the overall performance. Listening to 

individual musicians or instruments may provide some insight, but the true beauty and 

complexity of the performance come from the coordinated and harmonious interaction of 

all the musicians. Similarly, understanding the 'orchestra' of biomarkers involved in AD 

necessitates not only looking at each biomarker individually (univariate) but also 

considering their interactions (multivariate) and monitoring them over time 

(longitudinal). 
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Another fundamental limitation of the univariate approach is its attempt to apply a 'one 

size fits all' model in a disease context that is far from homogenous. Establishing a cut-

off point from a general cohort of patients and then applying this globally overlooks the 

substantial variability in the manifestation and progression of AD (Jellinger 2022; 

Birkenbihl et al. 2022; Ferrari and Sorbi 2021; Badhwar et al. 2020). Patients may vary in 

their rate of progression, the severity of symptoms, and the specific cognitive domains 

affected. Additionally, factors like age, sex, genetics, and comorbidities can significantly 

influence disease progression and the associated biomarker profiles.  

Ignoring this heterogeneity can lead to misclassifications and reduced diagnostic 

accuracy. It can also stifle the development of personalized therapeutic approaches and 

complicate drug discovery and screening processes (Ferrari and Sorbi 2021). It might 

contribute to the mixed results of clinical trials, where the potential benefits of a 

treatment could be obscured when tested in a diverse group of patients, as the treatment 

might only be effective for a specific subpopulation.  

Additionally, the cross-sectional nature of this analysis provides a snapshot in time, 

thereby failing to capture the temporal evolution of a disease like AD, characterized by 

its lengthy preclinical phase and gradual changes over time. This limitation may lead to 

missing crucial alterations in biomarker levels that occur over years. 

 

1.2.6 Longitudinal univariate analysis of CSF biomarkers 

Since AD is a progressive disease, studying its pathologies longitudinally provides great 

insight into the dynamics of the pathophysiology of the different stages of the disease as 
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they manifest. However, like cross-sectional CSF studies, most longitudinal CSF studies 

use univariate analysis strategies (Hansson et al. 2007; Brys et al. 2009; Mattsson et al. 

2009; Salvadó et al. 2023). This approach necessitates the concatenation of different 

univariate analyses of Aβ and tau, followed by a qualitative interpretation of their 

interrelationships. These studies also typically use linear analytical strategies, such as 

linear mixed models, linear logistic regression, and K-means cluster analysis (Vlies et al. 

2009; Choo et al. 2013; Anders M. Fjell et al. 2010; Fagan et al. 2014; Alcolea et al. 

2014). While these linear methods have proven useful in many contexts, they fall short in 

modeling the nonlinear patterns and relationships between CSF biomarkers, a critical 

consideration given the intricate pathophysiology of AD (de Leon et al. 2018; Popescu et 

al. 2020; Williams et al. 2011). The linearity assumption these methods rely upon 

oversimplifies the relationships among biomarkers and can lead to less accurate, 

incomplete representations of the disease processes. 

 

1.2.7 Similarity Network Fusion: A multivariate strategy for examining the preclinical 

utility of AD CSF biomarkers 

AD is a multifaceted neurodegenerative disorder, with intricate biological processes and 

heterogeneous manifestations that defy simple explanations or straightforward diagnostic 

paradigms. Given its complex nature, the study of AD calls for robust multivariate 

analytical methods capable of integrating multiple data types to provide comprehensive 

phenotyping and unravel the underlying pathophysiological processes. This is particularly 

pressing in the current era of big data and international collaborative data-sharing 

initiatives, which provide extensive and diverse datasets for exploration.  
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The simplest analytical strategy for integrating multi-view data is concatenation, which 

combines different types of data into a single data structure. This approach has its appeal, 

given its straightforwardness and relatively low computational requirements. However, 

concatenation carries notable limitations, one of which is the potential reduction in 

signal-to-noise ratio, leading to difficulties in identifying true patterns amidst the 

increased noise. Additionally, it overlooks the unique inherent structure within each data 

modality, effectively treating each data type as if it were the same (B. Wang et al. 2014; 

Markello et al. 2021).  

To overcome these challenges, a range of advanced techniques have been developed to 

handle multimodal data. One of these techniques is known as Similarity Network Fusion 

(SNF) (B. Wang et al. 2014; Markello et al. 2021). In the original paper, SNF was 

employed to integrate multiple types of genomic data—mRNA expression, DNA 

methylation, and miRNA expression—obtained from the same group of cancer patients 

(B. Wang et al. 2014). When clustering patients on the multivariate data, SNF revealed a 

previously hidden patient subgroup that was not identifiable when data types were 

considered separately. This subtype had distinctive survival outcomes and therapeutic 

responses. Furthermore, SNF was demonstrated to outperform data concatenation and a 

method based on joint latent variable models in identifying clinically distinct clusters in 

all cases (Cancer Genome Atlas Research Network 2008; B. Wang et al. 2014; Markello 

et al. 2021). Since its inception, SNF has been employed in influential research papers 

with substantial impact. In another study, SNF led to the discovery of a concealed 

subtype in medulloblastoma cancer and stratifying pancreatic ductal adenocarcinoma 

tumors, further reinforcing its usefulness and effectiveness in decoding complex diseases 
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(Cavalli et al. 2017; Raphael et al. 2017). These examples collectively highlight the 

potential of SNF for revealing clinically relevant disease subgroups that might be missed 

by other techniques. 

SNF operates by constructing networks for samples and encompasses two main steps. 

Initially, it establishes individual patient similarity networks for each type of data. These 

networks represent pairwise similarities between patients, with the similarity metrics 

potentially varying based on the data type being integrated. Measures such as Euclidean 

distance, Pearson correlation, or mutual information can serve this purpose.  

Subsequently, SNF fuses these individual patient similarity networks into a single 

integrated data matrix through an iterative, non-linear process. This process 

systematically incorporates the information from each data source, ensuring that the 

incremental value from each additional data source builds upon the previous one. This 

approach allows SNF to capture both shared and complementary information from 

various data types. 

A particularly remarkable feature of SNF is its robustness, even with a limited number of 

samples. It also shows high resilience to varying noise levels and data heterogeneity, 

which is an essential characteristic for handling the complex, multi-layered data involved 

in AD research. By effectively integrating multi-view data and capturing non-linear 

relationships among AD biomarkers, such as those derived from CSF samples, SNF can 

provide a more nuanced understanding of the pathophysiological processes underlying 

AD. Hence, its adoption could be a significant step forward in enhancing our 

understanding of AD and potentially advancing diagnostic and therapeutic strategies. 
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1.2.8 A novel implementation of SNF: Longitudinal CSF biomarkers  

Thus far, patient clustering with SNF has been evaluated primarily in the context of 

integrating cross-sectional data. There has been less attention on evaluating patient 

clustering with SNF in the context of longitudinal data. One particularly interesting and 

unexplored area is using SNF to evaluate clustering of baseline and follow up CSF 

biomarkers in patients at risk for AD. That is, rather than fusing patient networks from 

single snapshot features collected across different data modalities, one would fuse patient 

networks from multiple different temporal features (e.g., baseline, relative change, etc.) 

collected in a single data modality. Multimodal data are expensive and technically 

challenging to acquire in patients. This latter ‘multitemporal’ strategy has the advantage 

of requiring fewer types of different data modalities for classifying patients, making it 

more feasible for patient stratification in clinical trials. 

Before we can implement our multitemporal strategy of modeling CSF with SNF, we 

must first tackle two methodological obstacles to modelling longitudinal biomarker data. 

First, one must interpret relative changes in CSF protein concentrations over time, given 

a certain starting point in baseline pathology. Longitudinal studies often do not report 

whether or how participants differ at baseline CSF values, nor do they explicitly account 

for these potential baseline differences.  Rather they analyze absolute differences (time2 

– time1). This can lead to ambiguous longitudinal differences if there is a systematic bias 

in baseline CSF in one group compared to another. One cannot determine whether the 

difference is due to difference in baseline, follow-up, or both.  
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A second obstacle for longitudinal studies concerns missing data, which can lead to 

variable number of timepoints per subject, variable inter-timepoint intervals, and 

variation in the number among subjects in terms of the intervals between baseline and 

subsequent visits, as well as inconsistencies in baseline levels. These are typically not 

accounted for in longitudinal studies of CSF.  

 To overcome these two obstacles, we and others have developed the annual percent 

change (APC) measure, which explicitly controls for variation in baseline measures and 

timepoint intervals (Rechberger et al. 2022). 

The APC serves as a summary measure of relative change, providing a standardized way 

to examine changes over time. The APC formula is shown below (x1 and x2 as 

measurements obtained at timepoints t1 and t2) 

 
𝐴𝐴𝐴𝐴𝐴𝐴 = ��

𝑥𝑥2
𝑥𝑥1
�

365
𝑡𝑡2 − 𝑡𝑡1

 −  1�  ∙  100% 
(1) 

Typically, x1 and x2 correspond to the participant’s baseline value and final value for a 

variable of interest, respectively. Similarly, timepoints t1 and t2 correspond to the dates of 

the visits during which x1 and x2 were measured (i.e., baseline/first visit and final visit), 

respectively.  For example, to compute the APC of CSF Aβ42 of patient Y, we extract the 

CSF Aβ42 values at the first and the last visits, where the CSF Aβ42 values correspond to 

x1 and x2  and the visit dates correspond to t1 and t2. 

Because the APC calculates the ratio of the two measurements from a given subject, with 

the baseline/starting value in the denominator, the APC accounts for variations in 
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baseline measurements between subjects. In a hypothetical scenario, a researcher intends 

to investigate the longitudinal CSF Aβ42 reduction in two AD patients over a 1-year 

study. At baseline, participant A has a CSF Aβ42 level of 1000 pg/mL, while participant 

B has a CSF Aβ42 level of 400 pg/mL (Figure 1.2). If their final CSF Aβ42 levels are 

800 pg/mL and 200 pg/mL, respectively, both individuals have the same reduction of 200 

pg/mL. However, because participant B started with a lower CSF Aβ42 level, they have 

experienced a 50% reduction per year compared to the 20% reduction per year 

experienced by participant A.  

 

 

Figure 1.2: A hypothetical model demonstrating the utility of APC in controlling for 

baseline variations. A) Two participants with different baseline and follow-up levels of 

CSF Aβ42 exhibit B) equivalent reductions in the raw values, but C) APC provides a 

more accurate measure of relative change.    
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A useful mathematical property of the APC is that by removing the baseline, one obtains 

a pure metric of relative change in the observation window. Baseline values can (and 

should) then be compared as a separate complementary comparison between groups.  

Furthermore, the APC includes and accounts for the time interval between the visits at 

which the measurements were obtained for each subject. In another hypothetical scenario, 

both participants A and B have a CSF Aβ42 level of 1000 pg/mL at baseline (Figure 1.3). 

On their final visits, both participants have a CSF Aβ42 level of 500 pg/ml. However, the 

time interval between the baseline and final visits for participant A is 5 years, while that 

of participant B is 1 year. The reduction for both participants is 500 pg/ml, however due 

to the longer time interval between visits for participant A, the reduction per year that 

participant A exhibits is 13%, while that of participant B is 50%. Additionally, because 

the APC computes relative change (i.e., ratio of two measurements, the APC standardizes 

the unit space.  
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Figure 1.3: A hypothetical model demonstrating the utility of APC in controlling for 

differences in time intervals. A) Two participants with the same baseline and follow-up 

levels of CSF Aβ42 over different time periods exhibit B) equivalent reductions in the 

raw values, but C) APC provides a more accurate measure of relative change.    

 

These features make the APC the ideal tool for comparing longitudinal change between 

subjects, where subjects typically have different baseline levels and varying time 

intervals, as well as between data types in a heterogenous population. 

 

1.3 Rationale 

To our knowledge, SNF has not been used to explore multitemporal measures of CSF 

pathology to cluster patients. In this thesis, we will therefore examine the potential for 

SNF to cluster CN older adults at risk for AD according to their baseline and APC 

-60

-50

-40

-30

-20

-10

0

Participant A Participant B

AP
C

-600

-500

-400

-300

-200

-100

0

Participant A Participant B

R
aw

 c
ha

ng
e

0

200

400

600

800

1000

1200

1 2 3 4 5

C
on

ce
nt

ra
tio

n 
of

  A
β4

2 
(p

g/
m

l)

Time (years)

Participant A
Participant B

A)

B)

C)



28 

 

measure of CSF pathology. Given that CSF Aβ42, pTtau-181 and sTREM2 capture 

multidomain pathology in preclinical AD, we will focus on multitemporal modelling of 

all three of these CSF biomarkers in parallel. A secondary goal of this work is to 

demonstrate the feasibility and potential for using SNF to cluster preclinical AD patients 

on CSF alone, without the addition of MRI or PET imaging data, or cognitive tests. In 

doing so, we hope to demonstrate that SNF, derived from two timepoints of CSF, would 

be sufficient for a widely accessible preclinical diagnostic standard.    

The open-access data in ADNI provides access to hundreds of CN, MCI, and AD 

participants with longitudinal measures of CSF Aβ42, pTau-181 and sTREM2. 

Therefore, to address the limitations of univariate and cross-sectional strategies, we will 

use SNF in combination with baseline and APC measures of multifactor CSF pathology 

(pTau-181, Aβ42 and sTREM2) to better model how these biomarkers move in tandem 

with longitudinal AD progression.  

 

1.4 Objective and hypothesis 

Our study encompasses two main objectives that will be investigated within two distinct 

cohorts: 1) CN older adults and 2) older adults with MCI symptoms using data from three 

CSF biomarkers (Aβ42, pTau-181, and sTREM2). 

Aim 1: Compare the sensitivity and specificity of cross-sectional multivariate SNF to 

standard cross-sectional univariate classification approaches. 
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Aim 2: Evaluate SNF using a novel multitemporal strategy, which includes both baseline 

and longitudinal CSF data.  

We hypothesize that SNF will reveal a high-risk subgroup of cognitively normal older 

adults based on their baseline and/or multivariate longitudinal pattern of CSF biomarkers. 

Additionally, we expect SNF to identify distinct subgroups within the MCI cohort 

depending on their risk level for AD progression. These hypotheses will be validated by 

post-hoc assessments to investigate potential differences in patient clusters, including the 

impact of primary AD risk factors such as APOE-ε4 genotype, age, sex, and multidomain 

markers of cognitive function. 
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2 Methods 

2.1 Data collection 

All data used in the preparation of this study were obtained from the ADNI database 

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led 

by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been 

to test whether serial MRI, PET, other biological markers, and clinical and 

neuropsychological assessment can be combined to measure the progression of MCI and 

early AD. For up-to-date information, see www.adni-info.org. The study received 

approval from the Institutional Review Boards of all participating institutions, and 

informed written consent was obtained from all participants at each site R. C. Petersen et 

al. 2010).  

Older adults were eligible to participate in ADNI if they met the following criteria: 55 to 

90 years old (inclusive), Hachinski Ischemic Score ≤ 4, use of permitted medications 

stable for four weeks prior to screening, Geriatric Depression Scale ≤ 6, study partner 

with 10 hours/week of contact who can accompany the participant to the clinic, 

reasonable visual and auditory acuity to allow for neuropsychological assessment, good 

general health with no diseases precluding enrollment, six grades of education or work 

history equivalent, and fluent in English or Spanish. Additionally, women had to be 2 

years past childbearing potential or sterile. Exclusion criteria included any other 

significant neurologic disease, use of specific psychoactive medications, and history of 

significant head trauma. More details can be found on the ADNI website (www.adni-

info.org). 

http://www.adni-info.org/
http://www.adni-info.org/
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Participants in this study were classified as CN, MCI, or AD based on scores from a 

neuropsychological battery of tests including the Mini-Mental State Examination 

(MMSE), Clinical Dementia Rating (CDR), and Wechsler Memory Scale (WMS-IV). 

The participants underwent baseline and periodic standard neuropsychological 

assessments and provided biological samples (blood, urine, and CSF) at various visits.  

CSF samples were collected after an overnight fast by lumbar puncture into collection 

tubes. Within an hour, they were transferred into polypropylene transfer tubes for 

freezing on dry ice to be shipped overnight to the ADNI Biomarker Core laboratory at the 

University of Pennsylvania Medical Center. Samples were thawed for an hour at room 

temperature and gently mixed for aliquot preparation, which were stored in vials at 

−80°C (Shaw et al. 2009). Roche Elecsys® assays were used to measure Aβ42 and pTau-

181. sTREM2 levels were measured using ELISA based on the MSD platform 

(Kleinberger et al. 2014; Suárez‐Calvet et al. 2016; Suárez-Calvet et al. 2019). 

 

2.2 Data selection and curation  

In this study, we investigated the baseline and longitudinal trajectories of three CSF 

biomarkers, namely Aβ42, pTau-181, and sTREM2, in individuals classified as CN and 

MCI. ADNI participants who were categorized as CN or MCI at their baseline visit and 

possessed a minimum of two visits of each of the aforementioned CSF biomarkers were 

selected. 
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2.3 Cognitive assessments  

The ADNI neuropsychological test battery comprises a diverse array of cognitive tests, 

with several versions for each, such as three for the AD Assessment Scale - Cognition 

(ADAS-Cog) and two for the Rey Auditory Verbal Learning Test (RAVLT). This variety 

poses analytical challenges for integrating and interpreting these data. One solution is to 

create composite scores from these neuropsychological tests (Crane et al. 2012; Gibbons 

et al. 2012). There are several advantages to the composite score strategy. By combining 

elements of all individual test types, a composite score can provide a summary measure 

of cognitive functioning in specific domains. Individual neuropsychological tests can 

have inherent variability and measurement error. By aggregating multiple measures into a 

composite score, the impact of random measurement error can be reduced, leading to a 

more reliable estimate of cognitive functioning. Composite scores can also increase the 

sensitivity to detect cognitive impairment or changes over time. By pooling information 

from various tests, the composite score can capture broader aspects of cognitive 

functioning and potentially detect subtle changes that may not be apparent with 

individual tests alone. Prior work in the ADNI neuropsychological working group used 

an item response theory method for deriving four composite scores from the ADNI 

battery: (1) memory, (2) executive functioning, (3) language, and (4) visuospatial 

functioning. These composite scores were demonstrated to outperform their constituents 

in detecting change and predicting conversion from MCI to dementia. Furthermore, they 

were shown to correlate with a priori relevant neuroimaging markers previously found to 

relate to memory, such as hippocampal volume and thickness of the parahippocampal 
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gyrus, entorhinal cortex, and fusiform gyrus (Yonelinas et al. 2007; Walhovd et al. 2009; 

A. M. Fjell et al. 2008; Murphy et al. 2010; Van Petten et al. 2004).  

In addition to increasing sensitivity and reducing redundancy in analyses of ADNI 

neuropsychological test data, a pertinent property of the composite scores is their linear 

scaling properties (Mungas and Reed 2000; Crane et al. 2008). This means that these 

composite scores maintain an interval level of measurement where a given degree of 

change in score represents the same amount of change in the underlying cognitive ability, 

regardless of the part of the ability continuum in which this change occurs. Thus, a 

specific score change at a lower level of cognitive functioning is equivalent to the same 

score change at a higher level of cognitive functioning. Such linear measurement 

properties are crucial in longitudinal analyses to ensure comparability of changes over 

time and across different cognitive ability levels. 

Therefore, given the numerous advantages of these composite scores, including their 

ability to increase sensitivity, reduce redundancy in analyses, and provide linear scaling 

properties, we opted to use them for our longitudinal analyses. This approach is intended 

to optimize the accuracy of our evaluations and provide the most valuable insights into 

the progression of cognitive impairment and dementia.  

 

2.4 Similarity Network Fusion  

SNF is a data integration method used in biomedical research to integrate multiple data 

modalities for a group of patients or samples. The goal of SNF is to create a single 
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integrated network that captures the shared patterns of similarity between patients across 

multiple data modalities. 

For Aim 1 (comparison of cross-sectional SNF versus cross-sectional univariate 

strategies), we constructed three distinct feature vectors corresponding to the baseline 

measurements of Aβ42, pTau-181, and sTREM2. These were entered into SNF (see 

below). As our benchmark, we used a cutpoint for CSF pTau-181/Aβ42 derived from a 

prior univariate analysis (Hansson et al. 2018). Briefly, univariate ROC analysis was 

employed to determine an optimal cutoff for CSF pTau-181/Aβ42 for concordance with 

PET visual read. The derived cutoff of 0.025 was then validated to predict future 

progression in MCI patients. 

For Aim 2 (evaluation of multitemporal data with SNF), we used both the three baseline 

vectors from Aim1 and added the APC values calculated for each of the CSF biomarkers. 

For participants with n>2 CSF samples, we chose the follow-up visit separated farthest in 

time from the baseline visit, which we refer to as the final visit. This strategy was chosen 

to capture maximal changes in CSF. The APC values of the three CSF biomarkers were 

extracted and used to generate a matrix consisting of three columns. It is important to 

highlight that while the baseline CSF biomarker data have varying ranges for each 

biomarker, the APC shares a common unit space. Consequently, the APC data were 

amalgamated into a single matrix. SNF first constructs separate similarity networks for 

each data modality (three baseline vectors and one APC matrix of Aβ42, pTau-181, 

sTREM2) (Figure 2.1). Then SNF applies a graph fusion technique to these individual 

similarity networks to integrate them into a single network (Figure 2.1). This fusion 

technique involves iteratively computing the weighted average of the adjacency matrices 
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of the individual networks, where the weights are determined based on the similarity 

between nodes (i.e., patients) in the different networks. This process is repeated until 

convergence is achieved, resulting in a final integrated network that captures the shared 

patterns of similarity between patients across all data modalities. The resulting integrated 

network can then be analyzed using graph-based methods to identify patient clusters, 

subgroups, or other patterns of interest.  

 

Figure 2.1: Visualization example of Similarity Network Fusion (SNF). A) Raw data 

representations of cerebrospinal fluid biomarkers (Aβ42, pTau-181, and sTREM2) 

corresponding to baseline (three individual vectors) and to annual percent change (APC). 

B) Patient similarity matrices constructed independently for each data type using 

Euclidean distance from the raw matrices. Each patient similarity matrix corresponds to 

one raw matrix/vector. C) Single fused matrix constructed by iterative fusion of the 

patient similarity matrices showing two clusters. Matrix illustration ordered based on 

obtained spectral clustering solution. In each matrix, darker colors correspond to greater 

similarity between patients. 
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The main steps of SNF are described as follows. Suppose we start with n samples (e.g., 

patients). First, four raw matrices—three n × 1 baseline vectors and one n × 3 APC 

matrix—were created. Then, the four raw matrices were converted into four n × n patient 

similarity matrices 𝐖𝐖, using a scaled exponential similarity kernel. Here, 𝐖𝐖(𝑖𝑖, 𝑗𝑗) denotes 

the similarity between patients i and j:  

 
𝐖𝐖(𝑖𝑖, 𝑗𝑗)  =   exp �−

ρ2�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗�
𝜇𝜇ɛ𝑖𝑖,𝑗𝑗

�   (2) 

where ρ(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗) represents the Euclidean distance between patients i and j, where 𝑥𝑥𝑖𝑖  and 

𝑥𝑥𝑗𝑗  are of sizes 1 × m and correspond to the raw data of patients i and j obtained from the n 

× m raw matrix (in our case, these could be the baseline vectors or the APC matrix). The 

variable 𝜇𝜇 is a hyperparameter that acts as a scaling factor. 

ɛi,j is used to eliminate the scaling problem and is defined as follows: 

 
𝜀𝜀𝑖𝑖,𝑗𝑗  =

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝜌𝜌(𝑥𝑥𝑖𝑖 ,  𝑁𝑁𝑖𝑖)� +  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝜌𝜌�𝑥𝑥𝑗𝑗 ,  𝑁𝑁𝑗𝑗��   +  𝜌𝜌�𝑥𝑥𝑖𝑖 ,  𝑥𝑥𝑗𝑗�
3

 (3) 

where mean(𝜌𝜌(𝑥𝑥𝑖𝑖,𝑁𝑁𝑖𝑖)) is the average Euclidean distance between 𝑥𝑥𝑖𝑖, the raw data of 

patient i, and each of its K most similar neighbors, 𝑁𝑁𝑖𝑖, where K is a hyperparameter 

controlling the number of neighbors. 

 

For the fusion process, a global and a local kernel are computed from each of the 

individual similarity matrices, 𝐖𝐖. The global kernel is an n × n normalized similarity 

matrix 𝐏𝐏. One way to perform the normalization is 𝐏𝐏 =  𝐃𝐃−𝟏𝟏𝐖𝐖, where 𝐃𝐃 represents the 
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diagonal matrix with 𝐃𝐃(𝑖𝑖, 𝑖𝑖)  =  ∑𝑗𝑗𝐖𝐖(𝑖𝑖, 𝑗𝑗), such that ∑𝑗𝑗𝐏𝐏(𝑖𝑖, 𝑗𝑗)  =  1. This normalization 

process may encounter numerical instability due to the inclusion of self-similarities in the 

diagonal entries of matrix, 𝐖𝐖. To address this concern and achieve improved 

normalization, an alternative approach is proposed as follows: 

 

𝐏𝐏(𝑖𝑖 ,  𝑗𝑗)  =  

⎩
⎨

⎧
   

𝐖𝐖(𝑖𝑖,𝑗𝑗)

2 ∑ 𝐖𝐖(𝑖𝑖,𝑘𝑘)
 
𝑘𝑘 ≠ 𝑖𝑖

, 𝑗𝑗 ≠ 𝑖𝑖

1
2

,                                𝑗𝑗  = 𝑖𝑖
 (4) 

 

The matrix 𝐏𝐏 represents information about the similarity between a given patient and all 

other patients. This normalization is stable because it is free of the scale of self-similarity 

in the diagonal entries and ∑𝑗𝑗𝐏𝐏(𝑖𝑖, 𝑗𝑗)  =  𝟏𝟏 remains true. 

 

 

Additionally, the n × n local kernel 𝐒𝐒 was computed to measure local affinity as shown 

below: 

 
𝐒𝐒(𝑖𝑖 ,  𝑗𝑗)  =   �   

𝐖𝐖(𝑖𝑖,𝑗𝑗)

∑ 𝐖𝐖(𝑖𝑖,𝑘𝑘)
 
𝑘𝑘 ∈ 𝑁𝑁𝑖𝑖

, 𝑗𝑗 ∈  𝑁𝑁𝑖𝑖

0 ,                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (5) 

By performing this operation, the similarity values between a patient and its non-

neighboring patients (i.e., patients that are not within the most similar K neighbors) are 

set to zero. Therefore, the matrix 𝐒𝐒 represents information about the similarity between a 

given patient and 𝑁𝑁𝑖𝑖, the patient’s K most similar neighbors. This is based on the 

assumption that local similarities (larger similarity values) bear greater importance or 
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reliability compared to those that are distant—an assumption commonly adopted by 

various manifold learning algorithms. Importantly, matrix 𝐏𝐏 comprehensively 

encapsulates the similarity information of each patient to all other patients, whereas 

matrix 𝐒𝐒 solely captures the similarity values pertaining to the K most similar patients for 

each individual. The algorithm consistently initializes matrix 𝐏𝐏 as the initial state and 

integrates matrix 𝐒𝐒 as the kernel matrix during the fusion process. This approach ensures 

the capacity to effectively capture local graph structures while maintaining computational 

efficiency. 

 

To explain the fusion process, consider the case where we have two data types (i.e., two 

initial raw matrices). First, from two raw matrices, similarity matrices 𝐖𝐖(𝟏𝟏) and 𝐖𝐖(𝟐𝟐), 

corresponding to data types 1 and 2, respectively. Subsequently, from the similarity 

matrices, the global matrices 𝐏𝐏(𝟏𝟏) and 𝐏𝐏(𝟐𝟐) are computed, followed by the kernel matrices 

𝐒𝐒(𝟏𝟏) and 𝐒𝐒(𝟐𝟐). 

 

At iteration t = 0, consider that 𝐏𝐏𝑡𝑡 = 0
(𝟏𝟏)  =  𝐏𝐏(𝟏𝟏) and 𝐏𝐏𝑡𝑡 = 0

(𝟐𝟐)  =  𝐏𝐏(𝟐𝟐). SNF performs the 

fusion through iteratively updating the global matrices of each data type as follows:  

 𝐏𝐏𝑡𝑡 = 0
(𝟏𝟏)   =  𝐒𝐒(1) × 𝐏𝐏𝑡𝑡

(2) × (𝐒𝐒𝟏𝟏)𝑇𝑇 (6) 

 𝐏𝐏𝑡𝑡 = 0
(𝟐𝟐)   =  𝐒𝐒(2) × 𝐏𝐏𝑡𝑡

(1) × (𝐒𝐒𝟐𝟐)𝑇𝑇 (7) 

where 𝐏𝐏𝑡𝑡 + 1
(𝟏𝟏)   and 𝐏𝐏𝑡𝑡 + 1

(𝟐𝟐)  represent the global matrices after t iterations corresponding to 

data types 1 and 2, respectively. This procedure facilitates the simultaneous updating of 

the global matrices through two parallel and interchanging diffusion processes. At each 
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iteration, 𝐏𝐏𝑡𝑡 + 1
(𝟏𝟏)   and 𝐏𝐏𝑡𝑡 + 1

(𝟐𝟐)  underwent normalization as in equation (4). This ensures two 

key properties throughout SNF iterations: maintaining the highest similarity of each 

patient to themselves compared to others and generating a full-rank final network, 

essential for classification and clustering tasks. This normalization also facilitates faster 

convergence of SNF. The final matrix, after t iterations, is computed as follows:  

 
𝐏𝐏(𝑐𝑐)  =  

 𝐏𝐏𝑡𝑡
(1) + 𝐏𝐏𝑡𝑡

(2)

2
  (8) 

 

An alternative representation of equation 6 is 

 𝐏𝐏𝑡𝑡 + 1 
(1) (𝑖𝑖, 𝑗𝑗)  = �     � 𝑆𝑆(1)(𝑖𝑖,𝑘𝑘)

𝑙𝑙 ∈ 𝑁𝑁𝑗𝑗𝑘𝑘 ∈ 𝑁𝑁𝑖𝑖

× 𝑆𝑆(1)(𝑗𝑗, 𝑙𝑙) × 𝑃𝑃𝑡𝑡2(𝑘𝑘, 𝑙𝑙) 
(9) 

and similarly for 𝐏𝐏𝑡𝑡 + 1 
(2) . Remember that 𝑁𝑁𝑖𝑖 and 𝑁𝑁𝑗𝑗 are the K most similar neighbors of 

patients i and j, respectively. This fusion formula highlights that the propagation of 

similarity information occurs exclusively within the common neighborhood. For 

example, this formula will consider patients i and j to likely be from the same cluster if 

they share the same neighbors.  

 

To extend this beyond two data types, consider q distinct data types, where similarity 

matrices 𝐖𝐖(𝑣𝑣) were constructed using equation (2), corresponding to the 𝑣𝑣𝑡𝑡ℎ data type, 

𝑣𝑣 =  1,2,⋅⋅⋅, q. Next, 𝐏𝐏(𝑣𝑣) and 𝐒𝐒(𝑣𝑣) were computed using equations (4) and (5), 

respectively. The equation below represents equations (7) and (8), but for more than two 

data types (i.e., q > 2):  
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𝐏𝐏(𝑣𝑣)  =  𝐒𝐒(𝑣𝑣)  × �

∑ 𝐏𝐏(𝑘𝑘) 
 𝑘𝑘≠𝑣𝑣  
𝑞𝑞  − 1 

�   ×  �𝐒𝐒(𝑣𝑣)�
𝑇𝑇

,  𝑣𝑣  =  1,2,⋅⋅⋅, 𝑞𝑞 
(10) 

 

To ensure optimal data fusion in SNF, we did not pre-select a single pair of parameters 

for fusion. Instead, we conducted an exhaustive parameter search, where we used 100 

values for each of K and μ, of recommended ranges [10, 30] and [0.3, 0.8], respectively 

(B. Wang et al. 2014). Spectral clustering was applied on each fusion. From each of the 

resulting 10,000 fusions, the ideal number of clusters, ranging from 2 to 5, was 

determined using the rotation cost and eigen-gap methods (J. Huang, Nie, and Huang 

2013; S. Park and Zhao 2018).  The clustering solution detected with the highest 

frequency in this parameter sweep was then selected (S. Park and Zhao 2018; B. Wang et 

al. 2014). In sum, this unsupervised, soft clustering method segregates the study 

participants into different subtypes according to the fully fused matrix.  

 

2.5 Post-hoc statistical analyses 

SNF produces clusters of patients derived from fused networks of multivariate CSF data 

only. To interpret whether and how these CSF derived clusters may differentiate patients 

based on concentrations of CSF proteins, longitudinal outcomes, and AD risk factors, we 

performed several types of post hoc analyses on data hidden from SNF.  

CSF comparisons: Baseline, APC and time interval data were not normally distributed 

(Shapiro-Wilk p<0.05 for each) and therefore Mann-Whitney U tests were used to test 

whether each of these variables differed significantly in the clustering solutions. 
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Patient disease conversion: A Log-rank test was performed to evaluate and compare the 

risk of disease status conversion over time between the clustering solutions. 

Patient demographics: Age was normally distributed and therefore two-tailed unpaired t-

tests were used to test whether age differed significantly between the clustering solutions. 

For categorical outcome measures (APOE-ε4 status, sex, ethnicity), Chi-square tests of 

independence (with Monte Carlo simulation, if chi-square test conditions were not met) 

were performed to test for differences between clusters on each variable (Bradley and 

Cutcomb 1977).  

Statistical significance was determined at an alpha<0.05. 
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3 Results 

3.1 Validation of SNF and preclinical utility  

3.1.1 Baseline clustering and conversion risk analysis in CN cohort 

We clustered the CN cohort (n=122) based on the pTau-181/Aβ42 ratio, computed using 

baseline CSF pTau-181 and Aβ42. Using the standard univariate methods, we divided the 

participants into two groups (cluster 1, n=81; cluster 2, n=41), with participants in cluster 

2 having a ratio of ≥0.025 (Hansson et al. 2018). After following each of the participants 

longitudinally, their respective diagnoses at their last visit were extracted and binned into 

either CN, MCI, or AD (Table 3.1). Log-rank tests comparing the risk of conversion to 

MCI or AD between the two clusters yielded no significant differences (p=0.9).  

We performed SNF on the same cohort using only baseline CSF Aβ, pTau-181, and 

sTREM2, which yielded two clusters (cluster 1, n=64; cluster 2, n=58) after the 

parameter sweep (Appendix A). Log-rank tests showed significant differences between 

the two groups in the risk of conversion to MCI or AD, with cluster 1 exhibiting an 

increased likelihood of disease progression (p<0.05). 

Additionally, individual matrices (prior to SNF fusion) were computed for each of the 

CSF biomarkers. Then, spectral clustering was performed (same as SNF). Log-rank tests 

were performed which showed that individual data types did not lead to significantly 

different clusters in terms of disease progression, whereas SNF did (Appendix B). 
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Table 3.1: Number of participants with a diagnosis of cognitively normal (CN), mild 

cognitive impairment (MCI), or Alzheimer’s disease (AD) of the clusters of the CN 

cohort at the last visit available. 

Presented values are counts (%). p value shown as obtained from Log-rank test 

comparing risk of conversion to MCI or AD. 

 

3.1.2 Baseline clustering and conversion risk analysis in MCI cohort 

We divided the MCI (N = 194) cohort into two groups based on the pTau-181/Aβ42 ratio 

as discussed in the previous section (cluster 1, n=56; cluster 2, n=138). Log-rank tests 

performed to compare the risk of conversion to AD between the two clusters yielded no 

significant differences (p=0.87) (Table 3.2). 

The baseline SNF model identified three clusters as the most stable solution (cluster 1, 

n=57; cluster 2, n=104; cluster 3, n=33) (Appendix C). Subsequent analysis using log-

rank tests showed that the three clusters have significantly different risks of conversion to 

AD over time (p<0.001).   

Except for pTau-181, single data type analysis did not lead to clusters with significantly 

different risks of conversion, unlike SNF (Appendix D). 

 

Clustering Method Number of Clusters Cluster 1 Cluster 2 p Value 

pTau-181/Aβ42 ratio  2 CN: 59 (73%) 
MCI: 13 (16%) 
AD: 9 (11%) 

27 (66%) 
9 (22%) 
5 (12%) 

0.9 

Baseline SNF 2 CN: 51 (80%) 
MCI: 9 (14%) 
AD: 4 (6%) 

35 (60%) 
13 (22%) 
10 (17%) 

<0.05 
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Table 3.2: Number of participants with a diagnosis of cognitively normal (CN), mild 

cognitive impairment (MCI), or Alzheimer’s disease (AD) of the clusters of the MCI 

cohort at the last visit available. 

Presented values are counts (%). p value shown as obtained from Log-rank test 

comparing risk of conversion (AD). 

 

3.2 Employing SNF Longitudinally 

From the prior analyses, we confirmed that SNF identified clusters that are statistically 

significant with regards to risk of conversion whereas traditional cross-sectional 

univariate models did not produce significant clusters. In this next section, we examined 

whether and how multitemporal clustering of baseline and APC measures of the CSF data 

may further improve characterization of disease trajectories in the cognitively normal and 

MCI patients.  

 

3.2.1 Cognitively normal cohort 

From the 10,000-parameter sweep, the two-cluster solution was found to be the most 

optimal (Appendix E). Subsequently, spectral clustering of the SNF-derived fused matrix 

of the cognitively normal cohort (n=122) identified two clusters (n=59; n=63) (Figure 

Clustering 
Method 

Number of 
Clusters Cluster 1 Cluster 2 Cluster 3 p Value 

pTau-181/Aβ42 
ratio  

2 
CN: 5 (9%) 
MCI: 32 (57%) 
AD:  19 (34%) 

11 (8%) 
67 (49%) 
60 (43%) 

N/A 0.87 

Baseline SNF 3 
CN:   9 (16%) 
MCI: 37 (65%) 
AD:   11 (19%) 

4 (4%) 
44 (42%) 
56 (54%) 

3 (9%) 
18 (54%) 
12 (36%) 

<0.001 
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3.1). There were no significant inter-cluster differences for age (p=0.07), education 

(p=0.14), study duration (p=0.21), sex (p=0.21), APOE-ε4 (p=0.08), and ethnicity 

(p=0.30) (Table 3.3). 

 

 

Figure 3.1: Single fused matrix constructed by similarity network fusion of the 

cognitively normal cohort. From the Alzheimer’s Disease Neuroimaging Initiative 

study, a cohort of participants who were cognitively normal participants at baseline 

(n=122) were identified. Baseline and annual percent change data of cerebrospinal fluid 

Aβ42, pTau-181, and sTREM2 were integrated by similarity network fusion. Spectral 

clustering on the single fused matrix identified two clusters (n=59; n=63). Warmer colors 

correspond to greater similarity between patients. 
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Table 3.3: Demographic characteristics of clusters of the cognitively normal cohort 

Two-tailed unpaired t-tests or Mann-Whitney U tests were performed for mean ± SEM, 

based on the distribution of the variable and Chi-squared tests of independence for %. 

 

3.2.2 Mild cognitive impairment 

From the 10,000-parameter sweep, the two-cluster solution was found to be the most 

optimal (Appendix F). Therefore, spectral clustering of the SNF-derived fused matrix of 

the MCI cohort (n=194) identified two clusters (n=116; n=78) (Figure 3.2). There were 

no significant inter-cluster differences for age (p=0.22), education (p=0.23), study 

duration (p=0.99), sex (p=1.00), and ethnicity (p=0.26) (Table 3.4). However, APOE-ε4 

status was significantly different between the two clusters (p<0.001). Post-hoc analysis 

Characteristic Cluster 1  
(n = 59) 

Cluster 2 
(n = 63) 

p Value 

Age, mean ± SEM, yr 75.4 ± 0.7 73.4 ± 0.8 0.0725 

Education, mean ± SEM, yr 16.1 ± 0.4 16.9 ± 04 0.1415 

Study duration, mean ± SEM, yr 3.1 ± 0.1 3.0 ± 0.2 0.2084 

% Female  50.8 38.1 0.2053 

APOE-ε4, %   0.0768 

  Carriers  28.8 14.3  

  Noncarriers  71.2 85.7  

Ethnicity, %    0.3042 

  Asian  1.7 1.6  

  African American 3.4 11.1  

  White 94.9 85.7  

  Other 0 1.6  
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revealed that cluster 1 had a significantly higher number of APOE-ε4 carriers than cluster 

2 (p<0.001). 

 

 

Figure 3.2: Single fused matrix constructed by similarity network fusion of the mild 

cognitive impairment cohort. From the Alzheimer’s Disease Neuroimaging Initiative 

study, a cohort of participants with mild cognitive impairment at baseline (n=194) were 

identified. Baseline and annual percent change data of cerebrospinal fluid Aβ42, pTau-

181, and sTREM2 were integrated by similarity network fusion. Spectral clustering on 

the single fused matrix identified two clusters (n=116; n=78). Warmer colors correspond 

to greater similarity between patients. 
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Table 3.4: Demographic characteristics of clusters of the mild cognitive impairment 

cohort. 

Two-tailed unpaired t-tests or Mann-Whitney U test were performed for mean ± SEM, 

based on the distribution of the variable and Chi-squared tests of independence for %. 

 

3.3 Summary measures of CSF biomarkers 

3.3.1 Cognitively normal cohort 

The mean baseline levels of all three CSF biomarkers (Aβ42, pTau-181, and sTREM2) 

were higher in cluster 1 than cluster 2; albeit, only significantly higher for pTau-181 

(p<0.001) and sTREM2 (p<0.001) (Figure 3.3A). In terms of longitudinal patterns, 

cluster 1 demonstrated a significantly greater negative annual percent change of Aβ42 

(p<0.001). Cluster 1 also demonstrated a significantly greater positive annual percent 

Characteristic Cluster 1  
(n = 116) 

Cluster 2 
(n = 78) 

p Value 

Age, mean ± SEM, yr 73.1 ± 0.6 71.8 ± 0.9 0.2232 

Education, mean ± SEM, yr 16.5 ± 0.3 16.1 ± 0.3 0.2340 

Study duration, mean ± SEM, yr 2.9 ± 0.1 2.8 ± 0.1 0.9886 

% Female  39.8 38.5 1.00 

APOE-ε4, %   <0.001 

  Carriers  67.2 34.6  

  Noncarriers  32.8 65.4  

Ethnicity, %    0.2615 

  Asian  0 2.6  

  African American 0.9 2.6  

  White 97.4 92.2  

  Other 1.7 2.6  
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change of pTau-181 (p<0.01), reflecting greater longitudinal increases in p-Tau-181 

compared to cluster 2 (Figure 3.3B). Both clusters showed a positive annual rate of 

change of sTREM2, with cluster 2 being insignificantly greater than cluster 1 (p=0.68). 

Overall, we see significantly increased longitudinal accumulation of the 

neurodegenerative biomarker pTau-181 and decreasing Aβ42—likely reflecting Aβ 

plaque accumulation in the brain in cluster 1, suggestive of a heightened risk for AD.  

 

Figure 3.3: Comparison of the mean A) baseline and B) annual percent change 

levels of the CSF Aβ42, pTau-181, and sTREM2 between clusters of the cognitively 

normal cohort. Baseline CSF pTau-181 and sTREM2 were significantly higher in 

cluster 1 than cluster 2. The rates of change of CSF Aβ42 (negative) and CSF pTau-181 

(positive) for cluster 1 were significantly different from cluster 2. In both clusters, 

sTREM2 increased, with no significance between clusters. Bars represent mean ± 

standard error of mean. Asterisks indicate statistically significant differences (*p<0.05), 

as determined by Mann-Whitney U-tests. 
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3.3.2 Mild cognitive impairment cohort 

The mean baseline level of CSF Aβ42 was significantly lower in cluster 1 than cluster 2 

(p<0.01), while CSF pTau-181 (p<0.001) and sTREM2 (p<0.001) were significantly 

higher in cluster 1 than cluster 2 (Figure 3.4A). Furthermore, cluster 1 demonstrated a 

significantly greater negative APC of Aβ42 (p<0.01) and a significantly lower positive 

APC of sTREM2 (p<0.001), compared to the pattern of change in cluster 2 (Figure 3.4B). 

Both clusters showed a positive annual percent change of pTau-181, with cluster 2 being 

insignificantly greater than cluster 1 (p=0.18). Overall, we see low baseline Aβ42, which 

is further dropping and high starting pTau-181 levels, indicating potentially higher risk of 

AD.   
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Figure 3.4: Comparison of the mean A) baseline and B) annual percent change 

levels of the CSF Aβ42, pTau-181, and sTREM2 between clusters of the mild 

cognitive impairment cohort. Baseline CSF Aβ42 was significantly lower while 

baseline CSF pTau-181 and sTREM2 were significantly higher in cluster 1 than cluster 2. 

The rates of change of CSF Aβ42 (negative) and CSF sTREM2 (positive) for cluster 1 

were significantly different from cluster 2. In both clusters, pTau-181 increased, with no 

significance between clusters. Bars represent mean ± standard error of mean. Asterisks 

indicate statistically significant differences (*p<0.05), as determined by Mann-Whitney 

U-tests. 
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more aggressive AD progression. We next examined with post-hoc tests whether these 

differences in CSF translated to differences in cognitive progression. 

 

3.4.1 Cognitively normal cohort 

At baseline, the memory composite score of cluster 1 was significantly lower than cluster 

2 (p<0.05), while the mean composite scores of executive function and language were not 

significantly different between the two clusters (p=0.13; p=0.14, respectively) (Figure 

3.5A). Similarly, the memory composite score of cluster 1 decreased at a significantly 

greater rate than that of cluster 2 (p<0.01), while the rate of change of the executive 

function and language composite scores for both clusters did not significantly differ 

(p=0.88; p=0.33, respectively) (Figure 3.5B). In summary, even though SNF was blinded 

to measures of cognition, the SNF-derived clusters corresponded to a higher risk group, 

as evidenced by lower baseline and decreasing memory scores, as well as a lower risk 

group.  
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Figure 3.5: Comparison of the mean A) baseline and B) annual percent change 

composite score values of memory, executive function, and language between 

clusters of the cognitively normal cohort. Baseline memory composite score was 

significantly lower in cluster 1 than cluster 2, while baseline executive function and 

language composite scores showed no difference between clusters. Memory composite 

score decreased significantly in cluster 1 compared to cluster 2. Executive function and 

language composite scores decreased in both clusters but were not significantly different. 

Bars represent mean ± standard error of mean. Asterisks indicate statistically significant 

differences (*p<0.05), as determined by unpaired t-tests or Mann-Whitney U-tests. 

 

3.4.2 Mild cognitive impairment cohort 

At baseline, the memory composite score of cluster 1 was significantly lower than cluster 

2 (p<0.05), while the composite scores of executive function and language did not 

A) Mean baseline composite scores of clusters

B) Annual percent change of composite scores of clusters

0

0.2

0.4

0.6

0.8

1

1.2

Cluster 1 Cluster 2

Ba
se

lin
e 

C
om

po
si

te
 S

co
re

Memory

Executive Function

Language

-7
-6
-5
-4
-3
-2
-1
0
1
2

Cluster 1 Cluster 2

An
nu

al
 P

er
ce

nt
 C

ha
ng

e

Memory

Executive Function

Language

*

*



54 

 

significantly differ between clusters (p=0.33; p=0.82, respectively) (Figure 3.6A). 

Similarly, the memory, executive function, and language composite scores of cluster 1 

decreased at a significantly greater rate than cluster 2 (p<0.05) (Figure 3.6B). In 

summary, cluster 1 could indicate a subgroup within the MCI cohort that is at higher risk 

or faster rate of progression to AD as compared to cluster 2.  

 

 

 

 



55 

 

 

Figure 3.6: Comparison of the mean A) baseline and B) annual percent change 

composite score values of memory, executive function, and language between 

clusters of the mild cognitive impairment cohort. Baseline memory composite score 

was significantly lower in cluster 1 than cluster 2, while baseline executive function and 

language composite scores showed no significant difference between clusters. Memory, 

executive function, and language composite scores decreased significantly more in 

cluster 1 compared to cluster 2. Bars represent mean ± standard error of mean. Asterisks 

indicate statistically significant differences (*p<0.05), as determined by unpaired t-tests 

or Mann-Whitney U-tests. 
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3.5 Post-hoc clinical diagnosis at last follow-up 

3.5.1 Cognitively normal cohort 

Similar to Section 3.1.1, diagnosis at last follow-up was extracted for the CN cohort 

(Table 3.5). Log-rank tests were performed to compare the risk of conversion to MCI or 

AD between the two clusters. Cluster 1 exhibited a significantly higher risk of conversion 

compared to cluster 2 (p<0.01). In other words, participants in cluster 1 are significantly 

more likely than participants in cluster 2 to progress towards symptomatic disease stages 

within the same time frame. This result further supports the finding that cluster 1 is a 

high-risk group.  

 

Table 3.5: Number of participants with a diagnosis of cognitively normal, mild 

cognitive impairment, or Alzheimer’s disease of the clusters of the cognitively 

normal cohort at the last visit available.  

Presented values are counts (%). p value shown as obtained from log-rank tests 

comparing the risk of conversion to MCI or AD.  

 

3.5.2 Mild cognitive impairment cohort 

The process of extracting and categorizing the final diagnosis was replicated in the MCI 

cohort. Similar to the CN cohort, log-rank tests showed that cluster 1 had a significantly 

Final diagnosis Cluster 1 Cluster 2 p value 

Cognitively normal 34 (58%) 52 (83%)  

Mild cognitive impairment  13 (22%) 9 (14%)  

Alzheimer’s disease 12 (20%) 2 (3%)  

   <0.01 
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higher risk of conversion to AD compared to cluster 2 (p<0.01) (Table 3.6). In other 

words, during the same time period, MCI patients in cluster 1 are converting to AD at a 

more rapid rate than patients in cluster 2, reinforcing the interpretation that cluster 1 

might comprise a set of MCI patients who progress rapidly. 

 

Table 3.6: Number of participants with a diagnosis of cognitively normal, mild 

cognitive impairment, or Alzheimer’s disease of the clusters of the mild cognitive 

impairment cohort at the last visit available.  

Presented values are counts (%). p value shown as obtained from log-rank tests 

comparing the risk of conversion to AD. 

 

 

 

 

 

 

 

 

 

 

 

 

Final diagnosis Cluster 1 Cluster 2 p value 

Cognitively normal 8 (7%) 8 (10%)  

Mild cognitive impairment  52 (45%) 47 (60%)  

Alzheimer’s disease 56 (48%) 23 (30%)  

   <0.01 
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4 Discussion 

In this study, we aimed to explore the utility of a novel non-linear data integration 

technique, SNF, on baseline and APC CSF Aβ42, pTau-181, sTREM2 in two cohorts: 

CN and MCI. Our first objective was to validate SNF by comparing it to traditional cross-

sectional univariate models. To that end, we performed SNF on baseline CSF Aβ42, 

pTau-181, sTREM2. Our second objective was to test if SNF can identify distinct 

subgroups within each cohort driven by the longitudinal dynamic patterns exhibited by 

CSF biomarkers. To investigate that, we performed SNF using both baseline and 

longitudinal data encoded in APC metrics.  

Consistent with increased sensitivity of multivariate methods for classifying 

presymptomatic patients, the SNF method identified distinct subgroups both in the 

cognitively normal and mild cognitive impairment cohorts, based solely on conjoint 

patterns of CSF pathology, which were not detected by standard univariate strategies. 

Post-hoc validation analyses confirmed that a cluster of cognitively normal and mild 

cognitive impairment patients exhibited a higher risk of accelerated cognitive decline and 

disease progression. In the mild cognitive impairment high risk patient cluster, these 

individuals tended to have higher probability for the APOE4 genotype, which is also a 

higher risk for AD. Our findings suggest that the fusion analysis of CSF data can uncover 

patterns that serve as effective predictors of AD progression, offering a promising avenue 

for stratifying patients in future clinical trials evaluating early-stage preventative 

therapeutics. 

 



59 

 

4.1 Validating SNF 

We conducted a comprehensive comparison on the risk of disease status conversion 

between clustering performed by SNF and univariate statistical methods (Hansson et al. 

2018; Blennow et al. 2019). SNF effectively stratified the CN participants at baseline into 

a low-risk and a high-risk group, demonstrating a greater likelihood of progressing to 

MCI or AD. On the other hand, the two groups identified by the conventional univariate 

statistics showed comparable conversion rates, indicating limited discriminatory power. 

Similarly, for the MCI cohort, SNF identified three unique clusters that exhibited 

different risks of converting to AD, while the univariate method failed to capture this 

information. In a similar fashion to prior studies employing SNF, we also compared 

clustering performance using data prior to SNF fusion (i.e., matrices of individual data 

types; see Appendix A) (B. Wang et al. 2014; Markello et al. 2021). Clusters generated 

based on these data did not significantly differ in their risk of conversion (except for 

clusters based on pTau-181). 

These findings underscore the clear advantage of SNF over traditional univariate 

statistical methods in revealing and capturing complex relationships and patterns within 

the same data and further validate the effectiveness of data fusion. By non-linearly 

integrating multiple variables and their interactions, SNF offers a more comprehensive 

and nuanced analysis, enabling the identification of individuals at greater risk of disease 

progression. As such, we highlight the potential for SNF as a superior tool for predictive 

modeling and risk stratification in the field of neurodegenerative diseases. 

 



60 

 

4.2 Longitudinal SNF  

After validating SNF’s performance relative to univariate approaches, we employed SNF 

longitudinally by clustering on both baseline and longitudinal CSF data, to better 

understand the multivariate profile of disease progression in CSF Aβ42, pTau-181, 

sTREM2. Consistent with our hypothesis, longitudinal SNF identified two subgroups 

within the CN cohort: a high-risk subgroup and a low-risk subgroup. The high-risk 

subgroup displayed lower initial memory scores, a decline in memory composite score 

over time, and a higher likelihood of progressing to MCI or AD. Conversely, the low-risk 

subgroup showed more favorable cognitive outcomes and a lower risk of disease 

progression. Notably, these subgroups exhibited distinct patterns in the levels of CSF 

biomarkers, indicating different underlying disease processes at play. Similar findings 

were observed in the MCI cohort, wherein high-risk and low-risk subgroups were 

discerned. The high-risk subgroup exhibited lower memory scores at baseline, more 

pronounced decline on all composite scores, and an increased probability of converting to 

AD—possibly representing a subgroup of rapid progressors. In contrast, the low-risk or 

slow progressors subgroup showed relatively slower decline of all composite scores and a 

lower risk of disease progression. The key finding of this analysis is that SNF was able to 

effectively differentiate meaningful patient subgroups solely using CSF biomarker data. 

This outcome underscores the predictive potential of these dynamic CSF biomarker 

patterns in forecasting disease progression, thereby providing critical insights for early 

intervention and disease management strategies. 
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4.2.1 SNF clusters 

The two clusters within the CN cohort displayed no significant differences in 

demographic characteristics, such as age, education, study duration, sex, APOE-ε4 status, 

and ethnicity. Similarly, in the MCI cohort, no differences were observed except for 

APOE-ε4 status, where cluster 1 (high-risk) displayed a larger proportion of APOE-ε4 

carriers. This is in line with previous research, as APOE-ε4 has been identified to be the 

strongest genetic risk factor for sporadic AD (L. A. Farrer et al. 1997; Strittmatter et al. 

1993; Corder et al. 1993). Moreover, studies have previously reported an association 

between the presence of APOE-ε4 and increased risk of progression from MCI to AD 

(Fleisher et al. 2007; Elias-Sonnenschein et al. 2011; R. C. Petersen et al. 1995). This 

increased risk is thought to be due to the interaction of APOE-ε4 genotype with AD 

pathologies, including Aβ, tau, and neuroinflammation (Vemuri et al. 2010; Morris et al. 

2010; Leoni 2011; Ghisays et al. 2021; Benson et al. 2022). Our results suggest that SNF 

was successful in capturing the complex interaction between the APOE-ε4 genotype and 

AD-related pathologies, thereby confirming its association with disease risk. These 

findings motivated a more thorough investigation between clusters.  

 

4.2.2 CSF patterns 

Consistent with previous findings, our data support the notion that decreasing CSF Aβ42 

and increasing pTau-181 are predictive of cognitive decline in CN individuals and 

progression to MCI or AD (Fagan et al. 2007; Li et al. 2007). Interestingly, our study did 

not find a significantly lower baseline CSF Aβ42 in the high-risk cluster within the CN 
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cohort, a finding that appears to diverge from previous literature which suggested that 

lower baseline CSF Aβ42 levels can predict subsequent cognitive decline in healthy older 

adults (Stomrud et al. 2007; Roe et al. 2013; Gustafson et al. 2007). Previous 

investigations that supported this observation utilized univariate models. However, recent 

work posited that baseline CSF Aβ42 retains its predictive utility for CN to MCI 

conversion when evaluated independently but loses this predictive capability in a 

multivariable regression model (Prosser et al. 2023). Prosser et al. further emphasized the 

superior predictive performance of their multivariate model over individual models for 

CN to MCI conversion, suggesting that other CSF patterns may supersede the importance 

of reduced baseline Aβ42 and thus reinforcing the relevance of multivariate techniques. 

The pattern of increased pTau-181 and decreased Aβ42 at baseline has been previously 

identified as predictive of conversion from MCI to AD (Hansson et al. 2006; Andreasen 

et al. 2003; Buchhave et al. 2012). Additionally, in the presence of the APOE-ε4 allele, 

elevated pTau-181 has been linked with more rapid disease progression (Blom et al. 

2009; Herukka et al. 2007). This is in line with our observation that cluster 1 of the MCI 

cohort, which exhibited a more rapid decline in composite scores and greater risk of 

conversion, also had higher pTau-181 and lower Aβ42 as well as a greater proportion of 

APOE-ε4 carriers. In contrast to the CN cohort, we did not observe a significant 

difference in the longitudinal rate of change between the two MCI clusters. This finding 

resonates with previous reports that indicated a positive rate of change of pTau-181 

during the preclinical stage, which diminishes at the onset of cognitive impairment 

(Morar et al. 2022; Llibre-Guerra et al. 2019).  
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Baseline sTREM2 was significantly higher in cluster 1 (higher-risk subgroup) of both the 

CN and MCI cohorts, aligning with prior research indicating that CSF sTREM2 increases 

in a disease-stage-dependent fashion along the AD continuum, potentially following a 

non-linear pattern, with peak levels in the early stages (Suárez-Calvet et al. 2016; Suárez‐

Calvet et al. 2016; Biel et al. 2023; Falcon et al. 2019; Pillai et al. 2021). As elevated 

CSF sTREM2 concentrations have been correlated with markers of neuronal damage and 

tau pathology (total-Tau and p-Tau), an early sTREM2 increase is hypothesized to reflect 

an enhanced inflammatory response and reactive microgliosis triggered by tau-induced 

neurodegeneration (Suárez-Calvet et al. 2019; Suárez‐Calvet et al. 2016; Heslegrave et al. 

2016; S.-H. Park et al. 2021; Knapskog et al. 2020; Piccio et al. 2016). In line with these 

studies, our data indicate that the higher-risk subgroups from both cohorts, characterized 

by elevated sTREM2, also exhibited higher levels of pTau. Furthermore, we observe that 

a more rapid increase in sTREM2 is associated with a smaller decline in Aβ42, possibly 

evidencing the neuroprotective role of sTREM2, as observed in animal studies, in 

mitigating plaque formation and toxicity in the brain (Y. Huang et al. 2021; Parhizkar et 

al. 2019). To our knowledge, our study is the first to replicate this finding, recently found 

in a longitudinal study of autosomal-dominant AD, in sporadic AD (Morenas-Rodríguez 

et al. 2022). 

Overall, longitudinal SNF revealed multivariate patterns that are predictive of a higher 

risk of conversion in CN and faster progression in MCI. 
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4.3 Limitations and future improvements 

While our study provides valuable insights into the utility of SNF analysis in analyzing 

longitudinal CSF biomarkers and identifying subgroups within seemingly homogenous 

cohorts, there are several limitations that should be acknowledged.  

Our sample sizes are relatively small due to the strict filtering criteria necessitating at 

least two time points for each CSF biomarker. Therefore, a future direction of this work 

is replicating our findings in a larger independent sample to enhance the validity and 

generalizability of our results.  

Even though we carefully selected a panel of biomarkers that is sensitive to preclinical 

AD and facilitated the uncovering of unique subgroups, the complexity of AD suggests 

that a more diverse set of biomarkers might yield additional insights. Longitudinal SNF 

analysis incorporating this broader range of biomarkers may offer deeper insights into 

concealed patterns, potentially revealing distinct subgroups, thereby providing novel 

insights into the pathophysiology of AD. 

Utilizing two timepoints to capture the longitudinal trajectory of the CSF biomarkers 

proved useful allowing SNF to discern unique dynamic trajectories. However, future 

endeavors should aim to delve deeper into the patterns by collecting data from three visits 

to encapsulate non-linearity more accurately. For instance, employing a dynamic method 

to compute APC as opposed to the current static method could account for the dynamic 

changes across each visit, thereby providing a more detailed summary metric for each 

time point rather than a ‘lump sum’. 
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Additionally, forthcoming studies should focus on extracting the features and patterns 

that SNF used for clustering and encoding these into traditional machine learning 

classifiers. Given the high discriminatory power of SNF observed in the present study, 

such machine learning models could potentially demonstrate high efficacy in classifying 

disease trajectories and distinguishing them from normal aging. 

 

4.4 Implications 

This study underscores the utility of SNF, an advanced multivariate and non-linear data 

fusion method, in illuminating dynamic patterns of CSF biomarkers across the continuum 

of AD. By applying a multivariate longitudinal modeling approach to these biomarkers, it 

is possible to uncover distinct patterns indicative of disease progression during the 

preclinical stage. The identified biomarker patterns could potentially be incorporated into 

the design of clinical trials that assess preclinical treatments, thus enhancing participant 

stratification and recruitment processes. This could substantially enhance the precision of 

these trials to ultimately lead to development of treatments that can slow down or halt 

disease progression at the preclinical stage.  

Identifying subgroups with varying disease risks and progression patterns holds 

substantial prognostic implications. Such information allows healthcare providers to 

make more accurate predictions regarding disease outcomes and tailor management 

strategies to the individual patient's needs. The early identification of individuals at 

higher risk for disease progression could facilitate timely interventions, potentially 

delaying or even preventing the onset of severe cognitive decline. 
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Appendices 

 

Appendix A: The proportions of the best clustering solutions out of the 10,000 parameter 

sweep for baseline similarity network fusion performed on the cognitively normal cohort 

 

Best Clustering Solution Proportion (%) 
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Appendix B: Benchmarking performance using individual data types before similarity 

network fusion (SNF) for the cognitively normal cohort 

 

Comparison Metric Number of clusters p Value 
Aβ42 4 0.2 

pTau-181 3 0.5 
sTREM2 2 0.8 

SNF 2 0.026 
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Appendix C: The proportions of the best clustering solutions out of the 10,000 parameter 

sweep for baseline similarity network fusion on the mild cognitive impairment cohort. 

 

Best Clustering Solution Proportion (%) 
2 17.57 
3 67.87 
4 11.40 
5 2.25 
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Appendix D: Benchmarking performance using individual data types before similarity 

network fusion (SNF) for the mild cognitive impairment cohort 

 

Comparison Metric Number of clusters p Value 
Aβ42 3 0.5 

pTau-181 3 0.02 
sTREM2 2 0.5 

SNF 3 1e-06 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 

 

Appendix E: The proportions of the best clustering solutions out of the 10,000 parameter 

sweep for longitudinal similarity network fusion on the cognitively normal cohort. 

 

Best Clustering Solution Proportion (%) 
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Appendix F: The proportions of the best clustering solutions out of the 10,000 parameter 

sweep for longitudinal similarity network fusion on the mild cognitive impairment 

cohort. 

 

Best Clustering Solution Proportion (%) 
2 68.35 
3 24.46 
4 4.50 
5 2.69 
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