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Abstract

This dissertation initially features distributional results related to copulas. Four distinct cop-

ula density estimation methodologies, including Bernstein’s polynomial approximation, are

proposed and criteria for the selection of their tuning parameters are provided. These four

approaches were found to produce similar density estimates, which validates their suitabil-

ity. Moreover, the copula associated with a Wiener process and its running maximum is

determined, and an illustrative numerical example is presented. The principal properties of

Spearman’s, Kendall’s, Blomqvist’ and Hoeffding’s measures of association as well as their

representations in terms of copulas are also discussed. Then, a novel method that is based

on an arctangent transformation is introduced for classifying the tail behaviour of continuous

probability laws. The resulting categories prove consistent with those obtained by applying

available criteria. As well, approximations to the distributions of quadratic forms in gamma,

inverse Gaussian, binomial and Poisson random variables, which hinge on the determination

of their moments via a symbolic approach, are proposed and several applications are pointed

out. Additionally, an accurate density approximation that relies of an extension of the gener-

alized gamma distribution is introduced and the case of quadratic forms in Hermitian matrices

in complex Gaussian vectors is also addressed. Finally, a methodology involving the use of

Fritsch-Carlson monotonic interpolating splines and the Kulback-Leibler measure of diver-

gence is proposed for quantifying the proportion of information that is contained in collections

of distributional moments.

Keywords: Copulas, Brownian motion processes, bivariate density approximation, measures

of association, data modeling, classification of tail behavior, quadratic forms, information in

moments.
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Summary for Lay Audience

In the first part of this dissertation, the focus is on copulas which are mathematical tools utilized

to describe the relationships between random variables. Four distinct methods for estimating

the distribution of copulas are proposed, with the objective consisting of capturing the patterns

and characteristics of sets of observations on two variables. These methods were found to

produce similar results, which confirms their effectiveness. The study also explores the cop-

ula associated with a specific probabilistic model called the Wiener process and its running

maximum. An illustrative example is provided. The thesis further examines four measures of

association and explains how they can be represented as copulas.

A novel methodology is introduced for classifying the behavior of the tails (extreme values)

of continuous probability distributions. This method relies on an arctangent transformation and

proves to be consistent with existing criteria.

The dissertation also presents approximations to the distributions of quadratic forms in var-

ious types of random variables. These approximations depend on the determination of their

moments which are obtained by making use of a symbolic computational approach. The sta-

tistical applications of such quadratic forms are discussed. Furthermore, an accurate approx-

imation involving the density of a generalized gamma distribution is introduced. The case of

Hermitian quadratic forms in complex Gaussian vectors is addressed as well.

Finally, a methodology is proposed for quantifying the amount of information contained in

sets of distributional moments. This approach relies on the use of a non-decreasing curve and

a certain measure of divergence.

Overall, this research contributes to an improved understanding of copulas and other dis-

tributional concepts. The findings and methods presented in this thesis have the potential to

enhance our ability to analyze complex data sets and make informed statistical modeling deci-

sions.
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The journey of a thousand miles starts with

a single step.
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Chapter 1

Introduction

This dissertation comprises several innovative distributional results in connection with the non-

parametric estimation of copula density functions, the representation of four principal measures

of association in terms of copulas, the characterization of the tail behaviour of continuous ran-

dom variables, accurate approximations of the density functions of various types of quadratic

forms, and the proportion of information that is contained in a set of distributional moments.

Since the thesis format is ‘integrated-article’, the six main chapters that follow already

possess their own introduction. Accordingly, this introductory chapter will essentially consist

of describing their contents. It also ought to be noted that given the format of this thesis, some

redundancies may occur.

The next three chapters tackle various distributional aspects arising in connection with

copulas. Actually, copulas encapsulate all the dependencies between two or more variables.

As pointed out in the next chapter, they are currently being utilized in numerous fields of

scientific investigation. In this dissertation, we shall focus on the bivariate case.

For a given bivariate data set, the empirical distribution of the resulting copula is discrete.

To obtain a continuous estimate of the copula density function, the kernel approach is em-

ployed in the second chapter. The resulting estimates manifestly exhibit more flexibility than

known functional copula densities. Another technique being discussed is the approximation of

1
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their distribution by means of Bernstein polynomials. An example involving two stock prices

is presented. A technique for limiting the support of a bivariate density estimate to a parallel-

ogram is also introduced in that chapter. Finally, a copula density function associated with a

Brownian motion process and its running maximum is obtained. The contents of this chapter

can be found in part in papers [2] and [3] as listed in the cv.

In the third chapter, we are first advocating with proper justification a repositioning of the

pseudo-observations which constitute the distributional support of empirical copulas. Then,

four approaches are discussed for securing copula density estimates, including bivariate least-

squares approximations, kernel density estimation, the differentiation of linearized empirical

copulas and the Bernstein polynomial approximation. Criteria for the determination of their

associated tuning parameters such as polynomial orders and kernel bandwidths, will be intro-

duced as well, in order to obtain suitable density estimates. It will also be explained that a

joint density function can be constructed with much flexibility from its marginals and a cop-

ula density estimate. Illustrative examples involving an actual data set will be presented. The

proposed methodologies will as well be applied to a sample generated from a known copula

distribution in order to validate their effectiveness. This chapter corresponds to manuscript [5]

which is included in the cv as a working paper.

The fourth chapter focuses on four known measures of association, namely, Spearman’s,

Kendall’s, Blomqvist’s and Hoeffding’s coefficients, and provides representations thereof in

terms of copulas, in addition to pointing out certain related distributional results of interest.

This chapter contains certain derivations that do not seem to be available in the literature and

also includes missing steps that complete some published proofs. The effectiveness of these

measures of association in assessing the trends present in data sets that were generated from

five distinctive patterns, is assessed in a numerical study. To our knowledge, the four major

measures of association that are discussed therein along with their representations in terms of

copulas, have not been previously treated altogether in a single source. This chapter’s materials

are included in manuscript [4] as listed in the cv.
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The topics covered in the three subsequent chapters which are all distributional in nature,

are unrelated. In the fifth chapter, a methodology based on an arctangent transformation is

proposed to characterize the tail behaviour of a distribution. This approach is applied to an

array of widely utilized distributions, the resulting characterizations of their tail behaviour

being generally consistent with those determined by making use of known criteria. In the case

of a sample of observations, one must initially obtain a density estimate to which the proposed

approach can then be readily applied. Naturally, the larger the sample, the more reliable are the

results. These results can be found in paper [1] which appears in the section Published Papers

of the cv.

In the sixth chapter, a symbolic approach is employed to evaluate the moments of quadratic

forms whose vectors are not necessarily normally distributed. Based on those moments, the

density functions the quadratic forms in various types of randoms variables are approximated

with great accuracy. Several illustrative examples are presented. For each one, the empirical

distribution of a given quadratic form is determined from a large simulated sample. The case

of Hermitian quadratic forms in complex Gaussian vectors is also discussed. Finally, some sta-

tistical properties of a distribution referred to as the extended generalized gamma distribution

are provided. This distribution is then utilized to approximate the density functions of positive

definite and indefinite quadratic forms in normal vectors.

The seventh and last chapter aims at assessing the amount of information that is contained

in a set of distributional moments. No related results could be found after a thorough search

of the statistical literature. Nevertheless, this constitutes a crucial problem in connection with

the application of moment-based density estimation methodologies. Indeed, if it is known that

beyond moment r, only a minute proportion of the total amount of information is available,

then statistical procedures could be reliably based on only the first r moments. Appealing to

a theorem that relates sample moments to sample points, the relative information contained

in h moments will be quantified via the h most representative points of a sample which, as

will be explained, are the set of points having the lowest discrepancy with respect to their
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distribution. Given a certain number of points, an empirical cumulative distribution function is

approximated by means of a Fritsch-Carlson monotonic piecewise cubic interpolation spline,

which is then differentiated to produce a density estimate that is compared to f (x), the target

density, by making use of of the Kullback-Leibler divergence measure. The total amount of

information that could be gained is taken to be the Kullback-Leibler divergence between a

non-informative constant density function and f (x), and the proportion of information that

is contained in the first h moments of a distribution can then be determined. The proposed

methodology which is applied to two distributions and two data sets, yields results that prove

consistent with expectations.

Since much time and effort were devoted to the programming of the original methodologies

featured in this dissertation, the Mathematica code that was created for their implementation is

provided in the Appendix.



Chapter 2

Copula Approximation and an

Application to a Brownian Motion Process

2.1 Introduction

Copulas are principally utilized for modeling dependency features in multivariate distributions.

As measures of dependence, they have for instance found applications in reliability theory,

signal processing, finance, geodesy, hydrology and medicine.

The key idea behind copulas is that the joint distribution of two or more random variables

can be represented in terms of their marginal distributions and a specific correlation structure.

Copulas enable one to separate the effect that the dependence between the variables is causing

from the contribution of each of the marginal variables. We shall address the two-dimensional

case in this chapter.

We now review some basic definitions and theorems in connection with copulas. Additional

results are discussed for instance in Cherubini et al. (2004, 2012), Denuit et al. (2005), Joe

(1997), Nelsen (2006), and Sklar (1959).

In this framework, a copula function is a bivariate distribution whose support is the unit

square 12 = [0 , 1]2 and whose marginals are uniformly distributed. A more formal definition

5
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is now provided.

A function C : 12 7→ 1 is a bivariate copula if it satisfies the two following properties:

1. For every u, v ∈ 1, C(u, 1) = u, C(1, v) = v and

C(u, 0) = C(0, v) = 0.

2. For every u1, u2, v1, v2 ∈ 1 such that u1 ≤ u2 and v1 ≤ w2,

C(u2, v2) −C(u2, v1) −C(u1, v2) +C(u1, v1) ≥ 0.

This last inequality implies that C(u, v) is increasing in both variables.

The following theorem which was introduced by Sklar (1959), constitutes a seminal result

in the theory of copulas and its application.

Result 1 A Bivariate Formulation of Sklar’s Theorem

Let FX(x1, x2) be the joint cumulative distribution function (cdf) of the random variables X1

and X2 whose continuous marginal distribution functions are denoted by FX1(x1) and FX2(x2).

Then, there exists a unique bivariate copula C(·, ·) : 12 7→ 1 such that

FX(x1, x2) = C
(
FX1(x1), FX2(x2)

)
(2.1)

where C(·, ·) is a joint cumulative distribution function having uniform marginals. Conversely,

for any continuous cumulative distribution function FX1(x1) and FX2(x2) and any copula C(·, ·),

the function FX(·, ·) as given in (2.1) is a joint distribution function with marginal distributions

FX1(·) and FX2(·).

Sklar’s theorem provides a technique for constructing copulas. Indeed, the function

C(u, v) = FX
(
F−1

X1
(u), F−1

X2
(v)

)
(2.2)

is a bivariate copula, where the quasi-inverses F−1
X1

(·) and F−1
X2

(·) are given by

F−1
X1

(u) = inf{x1|FX1(x1) ≥ u}, ∀ u ∈ (0, 1), (2.3)
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and

F−1
X2

(v) = inf{x2|FX2(x2) ≥ v}, ∀ v ∈ (0, 1). (2.4)

Copulas are invariant with respect to strictly increasing transformations. More specifically,

letting X1 and X2 be two continuous random variables whose associated copula is C(· , ·), if α(·)

and β(·) are two strictly increasing functions and Cα,β(· , ·) is the copula obtained from α(X1)

and β(X2), then for all (u, v) ∈ 12, Cα, β(u, v) = C(u, v).

We shall denote the probability density function or pdf corresponding to the copula C(u, v)

by

c(u, v) =
∂2

∂u∂v
C(u, v). (2.5)

The following relationship between the joint density function of X1 and X2, denoted by fX(·, ·),

and the associated pdf c(· , ·) can readily be obtained from (2.1) and (2.5):

fX(x1, x2) = fX1(x1) fX2(x2) c(FX1(x1), FX2(x2)) (2.6)

where fX1(x1) and fX2(x2) respectively denote the marginal density functions of X1 and X2.

Accordingly, the copula density function can be expressed as follows:

c(u, v) =
fX(F−1

X1
(u), F−1

X2
(v))

fX1(F
−1
X1

(u)) fX2(F
−1
X2

(v))
. (2.7)

Given a random sample (x11, x21), . . . , (x1n, x2n) from the continuous random variables X1

and X2, let

(ui, vi) = (FX1(x1i), FX2(x2i)), i = 1, . . . , n

where FX1(·) and FX2(·) are the usually unknown marginal cumulative distribution functions or

cdf’s of X1 and X2. Throughout this chapter, n shall denote the sample size. Now, since the

underlying distributions of the variables are assumed to be continuous, the x1i’s are, in theory,

all distinct, and so are the x2i’s. Should a data set happen to contain replicates due to rounding,
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the data could be minimally randomly perturbed to ensure that the ranks on each variable be

distinct.

In Section 2.2, we discuss the use of kernel density estimates (kde’s) in connection with the

determination of copula densities. A moment-based approximation technique that applies to

bivariate continuous functions is presented in Section 2.3. As a result, flexible copula densities–

as opposed to the functional forms that are available—are obtained in a convenient form. An

illustrative example involving the closing prices of two stocks is featured in Section 2.4. A

technique for delimiting the support of a bivariate density estimate is introduced in Section

2.5. A copula associated with a Brownian motion process and its running maximum is consid-

ered in Section 2.6 and an application is presented. Bernstein polynomial approximations to

empirical copulas and their density functions are discussed in Section 2.7 which also includes

illustrative examples. It should be noted that certain aspects of this chapter could be regarded as

preparatory material in connection with some of the results to be developed in the next chapter.

2.2 Copula density based on kernel density estimation

Suppose that a bivariate data set X = {x1, . . . , xn} is at hand. Then, on applying the kernel

density estimation (kde) method, one can obtain an estimate of the bivariate probability density

of X. The kernel density estimator is given by

f̂H(x) =
1
n

n∑
i=1

KH(x − xi) =
1
n
|H|−1/2

n∑
i=1

K(H−1/2(x − xi)), (2.8)

where K denotes the kernel – a continuous bivariate density function – and H is a 2 × 2 band-

width (or smoothing) matrix which is symmetric and positive definite.

In light of equation (2.7), the copula density can also be represented as follows:

ĉ(u, v) =
f̂X(QX1(u),QX2(v))

f̂X1(QX1(u)) f̂X2(QX2(v))
, (2.9)
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where f̂X is a bivariate kde, f̂X1 and f̂X2 are obtained by integration as explained below, and Q(·)

denotes the estimated quantile function. The resulting copula density estimate can be used to

obtain a joint density estimate in light the decomposition given in (2.6). This approach provides

more flexibility than the direct joint density estimation methods that are usually employed.

Thus, one has to determine the marginal density functions f̂X1 and f̂X2 and the inverse cu-

mulative distribution functions (cdf’s), QX1 and QX2 .

The marginal density function f̂X1 can be obtained by integrating out X2 from the bivariate

kde f̂X:

f̂X1(x1) =
∫

A
f̂X(x1, x2) dx2, (2.10)

where A is the support of X2. Similarly, the marginal density function f̂X2 can be obtained as

follows:

f̂X2(x2) =
∫

A′
f̂X(x1, x2) dx1, (2.11)

where A
′

is the support of X1.

For the inverse cdf’s QX1 and QX2 , we can use a moment-based method or the method of

least squares to determine an approximation in polynomial form.

We are then ready to evaluate the copula density ĉ. This copula density is based on the

bivariate kernel density estimate since it involves f̂X and the marginal densities f̂X1 and f̂X2

along with their inverse cdfs, QX1 and QX2 , all of which are obtained from the kde f̂X.

A simple representation of this copula density that is suitable for reporting purposes or

carrying out further algebraic manipulation can also be determined by making use of Result 2

which is stated in Section 2.3.
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2.3 A moment-based bivariate polynomial approximation of

a copula density

Once a copula density is determined from (2.9), it can be approximated by the product of a

base density and a bivariate polynomial whose coefficients are obtained from the joint moments

associated with the copula density. The proposed procedure for achieving this is described in

the next result which is a bivariate extension of a proposition stated in Provost (2005).

Result 2 Moment-Based Bivariate Polynomial Approximation

Let fY(y1, y2) be the density function of a bivariate continuous random variable Y defined in

the rectangle (l1, u1) × (l2, u2). The joint moments of orders i and j of fY are denoted as

µY(i, j) ≡
∫ u1

l1

∫ u2

l2
yi

1 y j
2 fY(y1, y2) dy2 dy1. (2.12)

Let ψY(y1, y2) be a nontrivial base density function of (y1, y2) on the same support (l1, u1) ×

(l2, u2) whose distributional features are reminiscent of those of fY(y1, y2). In the case of a cop-

ula, a uniformly distributed based density is generally suitable. We denote the joint moments

of ψY as

mY(i, j) ≡
∫ u1

l1

∫ u2

l2
yi

1 y j
2 ψY(y1, y2) dy2 dy1. (2.13)

Assuming that the sequence µY(i, j), i = 0, 1, 2, . . . , j = 0, 1, 2, . . . uniquely defines the

distribution of Y, the density function of Y can be approximated by

fn(y1, y2) = ψ(y1, y2)
n∑

i=0

n∑
j=0

ξi, j yi
1 y j

2, (2.14)

where ξi, j can be determined by letting

∫ u1

l1

∫ u2

l2
yh

1 yg
2 fY(y1, y2) dy2 dy1 =

∫ u1

l1

∫ u2

l2
ψ(y1, y2)

n∑
i=0

n∑
j=0

ξi, j yi+h
1 y j+g

2 dy2 dy1, (2.15)
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h = 0, 1, . . . , n; g = 0, 1, . . . , n.

The above equation can be re-expressed as

µY(h, g) =
n∑

i=0

n∑
j=0

ξi, j mY(i + h, y + g), (2.16)

h = 0, 1, . . . , n; g = 0, 1, . . . , n where mY(·, ·) denotes the joint moments associated with ψ(·).

Thus, we can determine the polynomial coefficients ξi, j of fn(y1, y2) from the moments of

fY(·) and ψY(·) by solving the linear system (2.16).

A technique for estimating a copula density is described in Section 2.2. Then, the result

presented in this section can be utilized to express it in a convenient form. The base function

ψY(y1, y2) can be the density function of the continuous uniform distribution on the support or

some other density function selected on the basis of the distributional features of the copula

density. The degree n used in the polynomial adjustment should be selected so that fn provides

an accurate approximation to the estimate of the copula density, which can be determined for

instance by evaluating their integrated squared differences.

2.4 An application: Two stocks’ closing prices

The two stocks selected are GOOG (Alphabet Inc.) and AAPL (Apple Inc.). The bivariate data

are the daily closing prices of (GOOG, AAPL) in the entire year 2019. Each component of the

data has been standardized.

2.4.1 Moment-based approach to approximating the copula density

The bivariate kernel density estimate and the marginals are plotted in Figures 2.1-2.3.
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Figure 2.1: Bivariate kde

Figure 2.2: The marginal pdf of X1 obtained by
integration

Figure 2.3: The marginal pdf of X2 obtained by
integration
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The marginal densities can be approximated by polynomials upon proceeding as explained

in the remainder of this section. Consider for example,

fX1(x1) =
∫

C
fX(x1, x2) dx2.

We can generate a list of points
(
zi, fX1(zi)

)
from fX1(x1) where the zi’s are equidistant and

then, fit a polynomial based on the method of least squares. We proceed similarly for fX2 .

We denote the marginal cdf’s as FX1(x1) =
∫ x1

y=l1
fX1(y) dy and FX2(x2) =

∫ x2

y=l2
fX2(y) dy. Then,

for instance, one can generate a list of sample points
(
FX1(x1i), x1i

)
from FX1(x1), using a inter-

polation technique to obtain a continuous function. The approximation to the inverse cdf of X1

can be determined by applying a moment-based approximation method which is actually the

univariate counterpart to the approximation method described in Section 2.3, to that continu-

ous function. One would then proceed similarly for FX2 . The resulting estimates of the inverse

cdf’s, QX1 and QX2 , are plotted in Figs 2.4 and 2.5.

Figure 2.4: Polynomially approximated inverse
cdf QX1

Figure 2.5: Polynomially approximated inverse
cdf QX2

Given the bivariate kde and the estimates of fX1 , fX2 , QX1 and QX2 , the copula density

is determined from the representation specified in (2.9). Then, one can apply Result 2 as

given in Section 2.3 to obtain an approximation to the copula density. The copula density

and its bivariate polynomial estimate of degree 5 in each variable are plotted in Figures 2.6
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and 2.7. The base function ψ being utilized is the bivariate continuous uniform distribution.

This approach which is based on the joint moments of the copula density estimate provides a

conveniently simple representation of the estimated copula density.

Figure 2.6: The copula density ĉ Figure 2.7: The bivariate polynomial estimate
of the copula density using a uniform base den-
sity

2.4.2 Determining the marginals separately and using ‘InverseFunction’

An alternative approach is described in this subsection. In this instance, the marginal densities

are estimated with kde’s from the data available on each variable rather than by integrating out

the other variable from the joint density. As well, we make use of the built-in Mathematica

function InverseFunction to obtain the inverse of the distribution functions. We observed that

proceeding this way yields a more accurate copula density. Accordingly, it is advocated that

this approach be utilized in future work. However, when the built-in function InverseFunction

cannot be applied, one can always employ the methodology described in the previous subsec-

tion.

The scatter plot and marginal kde’s are plotted in Figures 2.8-2.10. Then, we estimate the

inverse cdf’s from the cdf’s determined from the marginal kde’s by resorting to the function
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InverseFunction. Finally, the copula density is determined by making use of the kde’s and

the approximations to the inverse cdf’s in conjunction with formula (2.9). The estimate of the

inverse cdf’s and the resulting copula density fc are plotted in Figures 2.11-2.13.

Figure 2.8: The scatter plot

Figure 2.9: The marginal kde of X1 Figure 2.10: The marginal kde of X2

Figure 2.11: Approximated inverse cdf QX1 ob-
tained with ‘InverseFunction’

Figure 2.12: Approximated inverse cdf QX2 ob-
tained with ‘InverseFunction’
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Figure 2.13: The copula density ĉ

2.5 Parallelograms as domains for joint density functions

We now propose a technique for confining the domain of a bivariate distribution to a parallelo-

gram. For instance, this approach ought to enable one to readily identify outliers and properly

exclude them from further statistical analyses.

Let Y1 and Y2 be two dependent random variables. On applying the transformation

X1

X2

 = Σ−1/2

Y1 − µY1

Y2 − µY2

 , (2.17)

where Σ is the covariance matrix associated with (Y1,Y2)′ and the µYi’s are the means of Yi’s,

i = 1, 2, one obtains the standardized random variables X1 and X2. The marginal densities of

X1 and X2 are then estimated for instance by making use of kde’s or certain techniques based

on moments. The product of the two marginal density estimates whose support is taken to be

a rectangle outside of which the density function is negligible, is used as the domain of a base

density function that can be adjusted with a bivariate polynomial as explained in Section 2.3.

This yields an estimate of the joint density of X1 and X2. We note that even though X1 and X2

are uncorrelated, they may still be dependent to some extent. The last step consists of applying
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the inverse transformation

Y1

Y2

 = Σ1/2

X1

X2

 +
µY1

µY2

 (2.18)

in order to obtain a joint density estimate for Y1 and Y2 whose support can be bounded by a

parallelogram as explained below. For instance, such a joint density can then be utilized to

determine a copula density.

We now show that when applying the inverse transformation, the support of the joint density

function of Y1 and Y2 turns out to be a parallelogram. Let the domain of the joint density of

(X1, X2) be (a1, a2)× (b1, b2). Denote the line specified by x1 = a1 as ℓ1. We have the following

equations resulting from the transformation (2.18):

y1 = α11a1 + α12x2 + µY1 , (2.19)

y2 = α12a1 + α22x2 + µY2 , (2.20)

which are equivalent to
α22

α12
x1 =

α22

α12
α11a1 + α22x2 +

α22

α12
µY1 , (2.21)

y2 = α12a1 + α22x2 + µY2 , (2.22)

the αi j’s being the entries of the matrix

Σ1/2 =

α11 α12

α21 α22

 . (2.23)

On subtracting (2.21) from (2.22), we obtain the transformed line

ℓ̃1 : y2 =
α22

α12
y1 − (α11α22 − α

2
12)

a1

α12
+ µY2 −

α22

α12
µY1 . (2.24)
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On proceeding similarly, one can obtain the other three transformed lines. The domain of Y1

and Y2 will then be a parallelogram bounded by the following four lines:

ℓ̃1 : y2 =
α22

α12
y1 − (α11α22 − α

2
12)

a1

α12
+ µY2 −

α22

α12
µY1 , when x1 = a1; (2.25)

ℓ̃2 : y2 =
α12

α11
y1 − (α11α22 − α

2
12)

b1

α11
+ µY2 −

α12

α11
µY1 , when x2 = b1; (2.26)

ℓ̃3 : y2 =
α22

α12
y1 − (α11α22 − α

2
12)

a2

α12
+ µY2 −

α22

α12
µY1 , when x1 = a2; (2.27)

ℓ̃4 : y2 =
α12

α11
y1 − (α11α22 − α

2
12)

b2

α11
+ µY2 −

α12

α11
µY1 , when x2 = b2. (2.28)

The joint density of Y1 and Y2 is then set equal to zero for any point (y1, y2) lying outside the

parallelogram.

2.5.1 The two stock’s closing prices revisited

Consider the two stocks’ data as described in Section 2.4. The bivariate data is then standard-

ized using Equation (2.17) and the support of the standardized random vector is a rectangle,

which is (−3.26, 3.04)× (−2.46, 3.09). The joint density function of (Y1,Y2) can be determined

as before except that the domain of (Y1,Y2) being delimited by a parallelogram as previously

explained. The four lines forming its boundary are plotted in Figure 2.14. We now define the

indicator function

I(y1, y2) =


1, if (y1, y2) lies in this domain.

0, otherwise.
(2.29)

The estimated joint density function of (Y1,Y2) is multiplied by this indicator function so that

the density is zero when (y1, y2) lies outside the parallelogram. The indicator function I is

shown in Figure 2.15. The joint density function of (Y1,Y2) and the copula density function are

plotted in Figures 2.16 and 2.17.

In this case, delimiting the domain of the joint density function will not affect the resulting
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estimate of copula density as obtained from the technique described in Subsection 2.4.2.

Figure 2.14: The lines delimiting the domain Figure 2.15: Plot of I(y1, y2)

Figure 2.16: The estimated joint density of
(Y1,Y2)

Figure 2.17: The resulting copula density
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2.6 Copula associated with a Brownian motion process and

its running maximum

2.6.1 Introduction

This section initially presents relevant background information on Brownian motion (BM).

Then, the connection to copulas will be discussed and appropriate references will be provided.

The mathematician Norbert Wiener provided a rigorous formulation of Brownian motion

in 1918; as a result, the alternative name, Wiener process, is also utilized in the literature. BM

constitutes a useful modelling tool in many areas such as Economics, Biology, Communica-

tions Theory, Business Administration and Quantitative Finance.

The standard BM will be denoted by {Wt}t≥0. Letting Mt = max0≤s≤t Ws, we shall con-

sider the joint distributions of Wt and its maximum Mt, which has previously been studied by

Harrison (1985) and Lee (2003), among others.

Darsow et al. (1992, Example 4.3) seem to have been the first to introduce a copula in

connection with the Brownian motion, which is given by

C(u, v) =
∫ u

0
Φ

( √
tΦ−1(v) −

√
sΦ−1(x)

√
t − s

)
dx, (2.30)

for s < t, where Φ(·) is the cumulative distribution function of a standard normal random

variable. Later, Schmitz (2003) developed a copula for a Brownian motion and its supremum.

As explained for instance in Etheridge (2002), Harrison (1990), Karlin and Taylor (1975),

Revuz and Yor (2005) and Rogers and Williams (2000a), the joint distribution of (Wt, Mt) and

the marginal distributions of Wt and Mt are respectively given by

P{Wt ≤ x, Mt ≤ a} ≡ FWt ,Mt(x, a) =


Φ

(
x
√

t

)
− Φ

(
x−2a
√

t

)
if x ≤ a

2Φ
(

a
√

t

)
− 1 if x > a

, (2.31)
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P{Wt ≤ x} ≡ FWt(x) = Φ
(

x
√

t

)
, (2.32)

and

P{Mt ≤ a} ≡ FMt(a) = 2Φ
(

a
√

t

)
− 1, (2.33)

∀ t ∈ R+ (the set of positive real numbers).

As explained in Adès et al. (2022), the copula CWt ,Mt(u, v) generated by a standard BM

and its maximum is

CWt ,Mt(u, v) =


u − Φ

(
Φ−1(u) − 2Φ−1

(
v+1

2

))
if u ≤ v+1

2

v if u > v+1
2 ,

(2.34)

its associated density function cMt(u, v) then being given by

cWt ,Mt(u, v) =
∂2

∂u∂v
CWt ,Mt(u, v)

=

[
2Φ−1

(
v+1

2

)
− Φ−1(u)

]
ϕ
(
2Φ−1

(
v+1

2

)
− Φ−1(u)

)
ϕ
(
Φ−1

(
v+1

2

))
ϕ
(
Φ−1(u)

) (2.35)

whenever u ≤ v+1
2 , and zero otherwise.

Some further related results are available in the statistical literature. For example, rep-

resentations of the joint density function of a BM process and its minimum and maximum,

which are given for instance in Borodin and Salminen (2002), were shown to be convergent

by Choi and Roh (2013). Upper and lower bounds for the distribution of the maximum of

a two-parameter BM process were obtained by Cabaña and Wschebor (1982). Vardar-Acara

et al. (2013) provided explicit expressions for the correlation between the supremum and the

infimum of a BM with drift. Kou and Zhong (2016) studied the first-passage times of two-

dimensional BM processes. Haugh (2004) explained how to generate correlated Brownian

motions and pointed out some applications involving security pricing and portfolio evaluation.

Bibbona et al. (2016) obtained a copula for the Ornstein-Uhlenbeck process. Cherubini
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and Romagnoli (2010) expressed (2.30) in the following form:

C(u, v) =
∫ u

0
Φ

Φ−1(v) − ρ(s, t)Φ−1(x)√
1 − ρ(s, t)2

 dx, (2.36)

where ρ(s, t) =
√ s

t .

Nadarajah et al. (2017) pointed out that it follows from equation (2.30) that independence

corresponds to t − s → ∞, while full dependence corresponds to t − s → 0. Cherubini and

Romagnoli (2010) emphasized the importance of Brownian copulas by pointing out that sev-

eral non-Gaussian processes can be converted into a Brownian motion by means of the time

change technique which is discussed in Dambis (1965), Dubins and Schwarz (1965) and Mon-

roe (1978), among others. Jaworski and Krzywda (2013) and Bosc (2012) obtained the copulas

corresponding to certain correlated Brownian motions. Lagerås (2010) provided an explicit

representation of the copulas associated with Brownian motion processes that are reflected at 0

and 1. Chen et al. (2019) explain that correlated Brownian motions and their associated copu-

las can be utilized in the case of correlated assets occurring in risk management, pairs trading

and derivative’s pricing. Deschatre (2016a,b) proposed to make use of asymmetric copulas

generated from a Brownian motion and its reflection to model and control the distribution of

their difference with applications to the energy market and the pricing of spread options.

2.6.2 A stock’s closing price and its running maximum

The stock selected is AC.TO (Air Canada). The data consists of the daily closing prices of

AC.TO during the entire year 2019. To relate the data to a standard Wiener process, the first

data point should be 0, the differences between successive observations should ideally often

change signs and have a variance of one and there should be one unit of time between succes-

sive observations. Hence the following transformation is applied. Let U1,U2, . . . ,Un denote

the closing prices and V1,V2, . . . ,Vn−1 be the differences between successive closing prices, that

is, Vi = Ui+1 − Ui; denoting by σD the standard deviation of the differences V1,V2, . . . ,Vn−1,
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the following transformation is applied

Wi =
Ui − U1

σD

and the resulting data is denoted by W1,W2, . . . ,Wn. Let Zi be the ith running maximum, that

is, Zi = Max{W1,W2, . . . ,Wi}, i = 1, 2, . . . , n. Then, the resulting bivariate data, (Wi,Zi),

i = 1, 2, . . . , n, has the features of a Brownian motion process and its running maximum. The

distribution of the transformed data and its running maximum along with the joint distribution

are depicted in Figs 2.18-2.23.

The inverse cdf’s which were obtained from the marginal kernel density estimates are plot-

ted in Figs 2.24-2.25. Finally, the resulting copula density fc as defined in (2.9), is shown in

Fig 2.26.

Figure 2.18: Plot of the first component Figure 2.19: Plot of the second component
(running maximum)
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Figure 2.20: The scatter plot of the transformed
data

Figure 2.21: kde of the transformed data

Figure 2.22: The marginal kde of the first
variable

Figure 2.23: The marginal kde of the
second variable

Figure 2.24: The estimate of inverse cdf of
the first variable

Figure 2.25: The estimate of inverse cdf of
the second variable



2.7. Bernstein’s approximation to copulas 25

Figure 2.26: The resulting copula density ĉ

2.7 Bernstein’s approximation to copulas

2.7.1 Introduction

This section initially presents with appropriate references relevant background information on

Bernstein’s empirical copulas and copula densities. A novel methodology for obtaining a cop-

ula density by differentiating an approximation of Deheuvels’ empirical copula is introduced,

and a technique for determining a suitable degree for the polynomials defining a Bernstein

empirical copula density function will be proposed.

First we define Bernstein polynomials, explain how it is utilized to approximate continuous

functions and present some of its properties. A Bernstein polynomial of degree n is defined as

follows:

Bn(x) =
n∑

v=0

βv bv,n(x), (2.37)

where the βv’s are called the Bernstein coefficients and bv,n(x) =
(

n
v

)
xv(1 − x)n−v is the Bern-

stein basis polynomial of degree n, which is also a binomial probability mass function when

x ∈ [0, 1]. Let f be a continuous function on the interval [0, 1]. The Bernstein basis polynomi-

als have the following properties:

• bv,n(x) = 0, if v < 0 or v > n.
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• bv,n(x) ≥ 0 for x ∈ [0, 1].

• bv,n(1 − x) = bn−v,n(x).

• The derivative can be written as a combination of two polynomials of lower degree :

b
′

v,n(x) = n(bv−1,n−1(x) − bv,n−1(x)).

Consider the Bernstein polynomial

Bn( f )(x) =
n∑

v=0

f
(v
n

)
bv,n(x). (2.38)

It can be shown that lim
n→∞

Bn( f ) = f uniformly on the interval [0, 1]. This approximation ap-

proach can be generalized to d dimensions: Letting g(x1, . . . , xd) be a continuous function on

[0, 1]d, g(x1, . . . , xd) can be approximated by

n1∑
v1=0

· · ·

nd∑
vd=0

g
(v1

n1
, . . . ,

vd

nd

) d∏
j=1

bv j,n j(x j). (2.39)

Bernstein’s empirical copula was first proposed and investigated by Sancetta & Satchell

(2004) for identically and independently distributed (i.i.d.) data. Bernstein’s approximation of

order k, k > 0, of a copula function C, the so-called Bernstein copula function, can be defined

as follows:

Bk(u) =
k∑

v1=0

· · ·

k∑
vd=0

C
(v1

k
, . . . ,

vd

k

) d∏
j=1

Pv j,k(u j), for u = (u1, . . . , ud) ∈ [0, 1]d, (2.40)

where k plays the role of bandwidth parameter and Pv j,k(u j) is the binomial probability mass

function:

Pv j,k(u j) =
(

k
v j

)
uv j

j (1 − u j)k−v j . (2.41)
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It has been shown that

lim
k→∞

Bk(u) = C(u), uniformly in u ∈ [0, 1]d.

In addition, under the conditions specified in their Theorem 1, Sancetta & Satchell (2004)

established that Bk in (2.40) is itself a copula. Thus, to estimate the copula function C, they

proposed the following estimator referred to as Bernstein’s empirical copula (cdf):

Ck,n(u) =
k∑

v1=0

· · ·

k∑
vd=0

Cn

(v1

k
, . . . ,

vd

k

) d∏
j=1

Pv j,k(u j), for u = (u1, . . . , ud) ∈ [0, 1]d, (2.42)

where Cn is the standard empirical copula estimator that was introduced by Deheuvels (1979)

and is defined as

Cn(u) =
1
n

n∑
i=1

d∏
j=1

I {F j;n(Xi, j) ≤ u j}, for u = (u1, . . . , ud) ∈ [0, 1]d, (2.43)

where I is the indicator function and F j;n is the empirical cumulative distribution function of

the component X j with n being the sample size. Recently Jansen et al. (2012) have shown that

Bernstein’s empirical copula estimator outperforms the classical empirical copula estimator.

If it exists, the copula density, denoted by c, which corresponds to the copula function C is

given by

c(u) = ∂dC(u)/∂u1 · · · ∂ud. (2.44)

Since the Bernstein copula function in (2.40) is absolutely continuous, it follows that Bern-

stein’s copula density is defined as:

ck(u) =
k∑

v1=0

· · ·

k∑
vd=0

C
(v1

k
, . . . ,

vd

k

) d∏
j=1

P
′

v j,k(u j), (2.45)

where P
′

v j,k
(u j) is the derivative of Pv j,k with respect to u j. Accordingly, Sancetta & Satchell
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(2004) proposed and investigated the following estimator of Bernstein’s copula density:

ĉn(u) =
k∑

v1=0

· · ·

k∑
vd=0

Cn

(v1

k
, . . . ,

vd

k

) d∏
j=1

P
′

v j,k(u j). (2.46)

Later, Bouezmarni et al. (2010) have used Bernstein’s empirical copula density to estimate the

copula density in the presence of dependent data. Recently, Jansen et al. (2014) have reinves-

tigated this estimator by establishing its asymptotic normality under i.i.d. data. Bouezmarni et

al. (2010) also proposed another form of Bernstein’s copula density estimator given by

ĉn(u) =
1
n

n∑
i=1

Kk(u, S i), for u ∈ [0, 1]d, (2.47)

where

Kk(u, S i) = kd
k−1∑
i=1

· · ·

k−1∑
i=1

AS i,v

d∏
j=1

Pv j,k−1(u j), (2.48)

with S i = (Fi;n(Xi1), . . . , Fd;n(Xid)), where F j;n(·), for j = 1, . . . , d, is the empirical distribution

of the random component X j, AS i,v = 1{S i∈Bv}, for Bv = [ v1
k ,

v1+1
k ] × · · · × [ vd

k ,
vd+1

k ].

For a given data set, we will first determine Deheuvels’ empirical copula as given in (2.43)

and approximate it by means of a bivariate least-squares polynomial. Then, on differentiating

this polynomial with respect to both variables, an estimate of the copula density, say, Dc(x, y),

is obtained. Next, Bernstein’s empirical copula density, say, Bck(x, y) as defined in (2.40) is

then evaluated and plotted for various values of the degree k. We will finally select the value of

k that will minimize the integrated squared difference between Bck(x, y) and Dc(x, y) or such

that it is observed that Bck(x, y) and Dc(x.y) share similarly features. Alternatively, we can

select k such that there are no significant differences between the density estimate obtained

with k and those determined with higher values of k.

For example, using the data set considered in Subsection 2.6.2, we can generate Bernstein

copula densities of different degrees and compare them with an estimate of the copula density

Dc(x, y). The copula densities are plotted in Figures 2.27-2.31.
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It is seen from those figures that when k = 75, Bernstein’ s empirical copula density and the

preliminary density estimate Dc(x, y) exhibit similar features. The copula densities obtained

with k = 25 and 50 are clearly not sufficiently accurate. Since the plot resulting from k = 90

does not differ significantly from that obtained for k = 75, we deem that k = 75 is adequate for

modeling the copula density. It should also be noted that this density estimate is similar to that

shown in Figure 2.26 which was obtained independently using a distinct approach.

Figure 2.27: The preliminary copula density
Dc

Figure 2.28: Bernstein copula density,
degree 25

Figure 2.29: Bernstein copula density,
degree 50
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Figure 2.30: Bernstein copula density,
degree 75

Figure 2.31: Bernstein copula density,
degree 90

2.7.2 The two stocks’ closing prices revisited

Using the same data as in Section 2.4, we determined a Bernstein estimate ĉn of the copula

density which is already a bivariate polynomial. The resulting density is plotted in Fig. 2.33. It

shares several features with the preliminary copula density estimate shown in Fig. 2.32, which

was obtained by differentiating a least-square approximation of Deheuvels’ empirical copula.

As expected, the copula density estimate appearing in Figure 2.33 is similar to that shown in

Figure 2.13 which was determined by making use of a completely different approach.

Figure 2.32: The preliminary copula density
Dc

Figure 2.33: The copula density ĉn
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Chapter 3

Nonparametric Copula Density

Estimation Methodologies

3.1 Introduction

This chapter aims at providing objective criteria for the selection of optimal copula density

estimates in conjunction with four main nonparametric approaches. It is assumed that the

reader is already familiar with the notation and results introduced in Section 2.1.

The pseudo-observations (ûi, v̂i), i = 1, . . . , n, are then defined in terms of the empirical

marginal cdf’s denoted by F̂(·) and Ĝ(·), that is,

(ûi, v̂i) = (F̂(xi), Ĝ(yi)), i = 1, . . . , n, (3.1)

where the empirical cdf’s (ecdf’s) are given by

F̂(x) =
1
n

n∑
i=1

I(x j ≤ x) and Ĝ(y) =
1
n

n∑
i=1

I(y j ≤ y), (3.2)

with I(A) denoting the indicator function which is equal to 1 if conditionA is verified and 0,

35
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otherwise. Equivalently, one has

(ûi, v̂i) = (ri/n, ρi/n), (3.3)

where ri is the rank of xi among {x1, . . . , xn} and ρi, the rank of yi among {y1, . . . , yn}. Actu-

ally, (û1, v̂1), . . . , (ûn, v̂n) are copula frequency points with 1/n being the common frequency

associated with these n points which form the support of the empirical copula probability mass

function (pmf).

The the probability mass function or pmf of an empirical copula, which is either equal to 0

or 1/n can be expressed as follows:

ĉ(u, v) =
1
n

n∑
i=1

I(F̂(xi) = u) I(Ĝ(yi) = v)

=
1
n

n∑
i=1

I(ri/n = u) I(ρi/n = v),

(3.4)

and the corresponding empirical copula (distribution function), which is a consistent estimate

of C(u, v), is then given by

Ĉ(u, v) =
1
n

n∑
i=1

I(F̂(xi) ≤ u) I(Ĝ(yi) ≤ v)

=
1
n

n∑
i=1

I(ri/n ≤ u) I(si/n ≤ v).

(3.5)

Additional results related to copulas are discussed in Cherubini et al. (2004, 2012), Denuit

et al. (2005), Joe (1997), Nelsen (2006), and Sklar (1959), among others.

3.1.1 Repositioning of the pseudo-observations

Given a random sample of n bivariate observations, we advance that the favored placement of

the pseudo-observations is at the center of the cells of an n × n grid of the unit square.
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For illustrative purposes, consider the sample {(2, 4), (3, 2), (7, 2), (8, 3)} of size n = 4,

which is plotted in Figure 3.1. In this instance, the ranks of the first component observations are

(1, 2, 3, 4), whereas those of the second component observations are (3, 4, 1, 2). Accordingly,

the pseudo-observations (pso’s), (ûi, v̂i), i = 1, . . . , 4, are {(1/4, 3/4), (1/2, 1), (3/4, 1/4), (1, 1/2)}.

When one makes use of pseudo-observations in the context of kernel density estimation, un-

desirable boundary effects are observed and the resulting copula density functions will be less

concentrated near the origin than they would be when centered as explained below. Moreover,

they will not integrate to one.

For a sample of size n, The corresponding centered pseudo-observations (cpso’s) also re-

ferred to as centered copula points (ccp’s), denoted by (û∗i , v̂
∗
i ), are obtained by subtracting

1/(2 × n) from each coordinate of (ûi, v̂i), i = 1, . . . , n. These pseudo-observations and cen-

tered pseudo-observations are respectively shown in Figures (3.2) and (3.4) for the example at

hand.

Figure 3.1: The four data points Figure 3.2: The pseudo-observations

An approach that is suggested in the literature for mitigating the edge effects consists

of multiplying the pseudo-observations by n/(n + 1). In this case, the resulting points are

(1/5, 3/5), (2/5, 4/5), (3/5, 1/5) and (4/5, 2/5), which are plotted in Figure 3.3. As can be
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seen from this graph, these points occupy irregular positions within the corresponding grid

cells and their uneven distribution will result in a copula density that will be less concentrated

near the ends of the unit intervals in each direction. Discrete uniform marginal distributions

can be achieved by making use of the centered pseudo-observations. The marginal probabilities

will then be 1/n at the points (2i − 1)/(2n), i = 1, . . . , n.

Wang and Fang (1990) and Pérez et al. (2005, p.100) discuss the following measure of

representativeness of a sample S = {x1, x2, . . . , xn} with respect to the distribution function

F(x), which is referred to as F−discrepancy:

DF(S) = supx∈ℜ|Fn(x) − F(x)|

where Fn(x) denotes the empirical distribution function of S. We observe that DF(S) is nothing

but the Kolmogorov-Smirnov statistic for assessing the goodness-of-fit with respect to F(x). In

one dimension,

{F−1( 2i−1
2n ), i = 1, 2, . . . , n}

is the set of points having the lowest F−discrepancy. In that sense, this set of n points form

the most representative sample with respect to the distribution specified by F(x). Thus, when

F(·) is the distribution function of a uniform distribution on the unit interval, the sample hav-

ing the lowest F−discrepancy is { 2−1
2n , . . . ,

2n−1
2n }—precisely the support of the marginals of the

distribution of empirical copula pmf when the centered pseudo-observations are utilized.

As well, note that by constructing cuboidal kernels over the 1/4 × 1/4 grid cells containing

the cpso’s, one actually obtains uniform marginals on the unit intervals as can be seen from

Figure 3.7, the corresponding copula being plotted in Figure 3.8. This clearly would not the

case with any other repositioning of the pseudo-observations. Accordingly, we shall make use

of centered pseudo-observations when determining copula kde’s, which also have the advan-

tage of not lying on the boundary of the support of the copula. We observe that since there are

n distinct ranks with respect to each coordinate, the n pairs of points will fill exactly one grid



3.1. Introduction 39

cell in each row and each column of grid cells. The empirical copulas as determined from the

Figure 3.3: Pseudo-observations × n
n+1 Figure 3.4: Centered pseudo-observations

pseudo-observations and their centered counterparts are respectively shown in Figures 3.5 and

3.6.

Figure 3.5: Empirical copula as evaluated from
the pso’s

Figure 3.6: Empirical copula as evaluated from
the cpso’s

The centered pseudo-observations form a discrete distribution, their respective pmf being

1/n = 1/4. As can be seen from Figure 3.7, continuous discrete uniform marginal pdf’s on
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[0,1] will be achieved by making use of cuboidal kernels density estimates whose bases are the

grid cells at the center of which lie the centered pseudo-observations and whose height is n = 4.

As well, centering the pseudo-observation lessens the boundary issues in the context of kernel

density estimation. A bona fide copula which is plotted in 3.8, can be secured by integrating

this copula density. The kde obtained with cuboidal kernels and the copula determined by

integrating the kde are shown in Figures 3.7 and 3.8.

Figure 3.7: Cuboidal kernel kde Figure 3.8: Copula obtained from the cuboidal
kernel kde

3.1.2 Additional considerations and structure of the chapter

The reader may refer to Section 2.3 for details on implementing a moment-based bivariate

polynomial approximation of continuous functions such as density functions. When the dis-

tributional features of a preliminary estimate of the copula density warrant it, one may select

a nontrivial base density function. However, when the empirical copula appears to exhibit an

irregular pattern, as is often the case, a uniform density function whose support area slightly

exceeds that of the copula, ought to be taken as base density. Accordingly, unless specified

otherwise, we will utilize such a base density for the purpose of approximating or smoothing
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copula densities.

We will make use of integrated squared differences (ISD) or average squared differences

(ASD) to compare the copula density estimates to reference copula density functions over the

unit square. The integrated squared difference between two functions is equal the integral of

the square of their differences over the domain of interest, the average squared difference being

the sum of the square of the differences between the two functions at s selected points divided

by s. When the density estimates fluctuate highly near the boundary, a subset of the unit

square, namely, [0.1, 0.9] × [0.1, 0.9] referred to as the reduced unit square, will be utilized for

comparison purposes. Moreover, in order to ensure that the resulting density function be bona

fide within the unit square, the final approximation will be taken to be c( f̂ (y1, y2)+ | f̂ (y1, y2)|)/2

where c denotes the normalizing constant.

The remainder of this chapter is organized as follows. Section 3.2 proposes four approaches

for securing copula density estimates and specify criteria for determining those that are nearly

optimal. It is explained in Section 3.3 that such density estimates can be utilized to obtain joint

density functions. The proposed copula density estimation techniques are applied to a sample

generated from a bivariate t distribution in Section 3.4. Some concluding remarks are offered

in the last section.

3.2 Methodologies for estimating copula densities

3.2.1 Differentiated least-squares copula estimates as initial density ap-

proximations

Let (x1, y1), . . . , (xn, yn) denote the data set at hand and Ĉ(u, v) be the associated empirical

copula as specified in (3.5). A least-squares approximating polynomial of degree t + 1 in each

variable which is denoted by PLSt+1 (u, v), is fitted to the n2 points ( j/n, k/n, Ĉ( j/n, k/n)) where

j, k = 1, 2, . . . , n. The resulting polynomial is then differentiated with respect to u and v to

obtain a copula density estimate denoted by ĉLSt (u, v) whose domain is delimited by the unit
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square. For a derivation of bivariate least-squares regression polynomials, the reader is referred

to Fox (2015, Section 5.2.1).

By comparing the graphs of density estimates ĉLSt (u, v) for t = 5, 10, 15, . . . , one will notice

that at a certain point, say to, some of the successive plots will fluctuate more. For instance, one

could then select ĉSto+r(u, v), r = 0, 5 or 10 as an initial copula density approximation and utilize

this bivariate polynomial as a yardstick to choose a suitable density estimate as determined by

making use of a different approach. The optimal degree of ĉLSt (u, v) could also be obtained

more formally by evaluating the integrated squared difference between density estimates that

are five degrees apart in the truncated domain [0.9, 0.9]2 for a range of degrees within which

the density functions remain more or less stable.

An illustrative example

The set of observations to which all the proposed copula density estimation techniques will

be applied is the Old Faithful geyser data which consists of 272 bivariate observations on two

variables, the first component being the the duration of an eruption in seconds and the second

one, the waiting time to the next eruption in minutes.

A scatter plot and a kernel density estimate (kde) of the data are shown in Figures 3.9

and 3.10. The linearized copula CL resulting from applying linear interpolation to the points

Ĉ( j/n, k/n), for j, k = 1, . . . , 272, is plotted in Figure 3.11, while Figure 3.12 displays the

probability mass function (pmf) of the empirical copula which is equal to 1/272 at the copula

frequency points (ûi, v̂i), i = 1, . . . , n, as defined in (3.1) and (3.3), and zero, elsewhere.

Given the 272 copula frequency points, a bivariate least-squares approximating polynomial

of degree t + 1 in each variable is determined, and a copula density estimate is then obtained

by differentiation. The resulting copula density estimates are plotted in Figures 3.13-3.20 for

t = 5, 10, . . . , 40, respectively.
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Figure 3.9: Scatter plot of the data Figure 3.10: A bivariate kde

Figure 3.11: The linearized empirical copula Figure 3.12: The empirical copula pmf

Figure 3.13: Estimated copula pdf, t = 5 Figure 3.14: Estimated copula pdf, t = 10
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Figure 3.15: Estimated copula pdf, t = 15 Figure 3.16: Estimated copula pdf, t = 20

Figure 3.17: Estimated copula pdf, t = 25 Figure 3.18: Estimated copula pdf, t = 30

By mere visual inspection, one can observe that the copula density estimates of degrees 20,

25 and 30 are quite similar. Appealing to the principle of parsimony, one could select the copula

density of degree 20 in each variables as a yardstick for the distribution of the copula. This

can be mathematically corroborated by noting that, within the truncated domain, the integrated

squared differences between successive copula estimates indicate that there is little to be gained
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Figure 3.19: Estimated copula pdf, t = 35 Figure 3.20: Estimated copula pdf, t = 40

by choosing copulas of greater than 20, as can be seen from Table 3.1 and Fig 3.21. As well,

the stability of the density estimates for such a wide array of degrees beyond 20 is indicative

of their reliability.

t ISD’s between estimates of degrees t + 5 and t
5 1.75743 × 10−5

10 3.55799 × 10−6

15 1.06553 × 10−6

20 2.65551 × 10−7

25 3.15104 × 10−7

30 1.01601 × 10−7

35 1.11607 × 10−7

Table 3.1: Successive ISD’s

Least-squares polynomial approximations are underfitting when t < 20 as they do not

adequately capture the distinctive features of the copula whereas approximations of degrees at

least 20 in each variable turn out to be quite similar up to degree 40 in which case the value of

the density function at the mode becomes higher, which is indicative of overfitting. Thus the

least-squares copula density estimate of degree 20 is selected as initial reference density.

Although the selected least-squares density estimate can be regarded as preliminary, as it

turns out, it already provides a reasonably accurate representation of the copula density.
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Figure 3.21: ISD’s between successive least-
squares copula estimates

3.2.2 Bernstein’s polynomial approximation and degree selection

The reader is referred to Section 2.3 for an introduction to Bernstein’s polynomial approxima-

tion as applied to copulas. We shall focus on the choice of an appropriate degree when applying

this approximation. This will be achieved by comparing them to the selected least-squares cop-

ula density. In the case of the Old Faithful geyser eruption data set which is being considered

throughout Section 3.2, it was determined that the least-squares polynomial approximation of

degree 20 in each variable would be used as the yardstick copula.

The reference copula density and the Bernstein’s copula densities of degree 25, 50, 75,

100, 125 and 150 are plotted in Figures 3.22-3.28. The integrated squared differences (ISD’s)

between Bernstein’s copulas that are twenty-five degrees apart and the reference least-squares

copula were calculated.
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Figure 3.22: Reference least-squares copula
density

Figure 3.23: Bernstein’s copula density of de-
gree 25

Figure 3.24: Bernstein’s copula density of de-
gree 50

Figure 3.25: Bernstein’s copula density of de-
gree 75
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Figure 3.26: Bernstein’s copula density of of
degree 100

Figure 3.27: Bernstein’s copula density of de-
gree 125

Figure 3.28: Bernstein’s copula density of de-
gree 150

It is seen from Table 3.2 that the ISD’s keep decreasing as the degrees of the Bernstein’s

copula keep increasing from 25 to 200. However, beyond the degree 125, the ISD’s with respect

to the least-squares copula turn out to be of the same order. This can also observed by taking

the relative differences between successive ISD’s, i.e. |ISD(t)-ISD(t+25)|/ISD(t), referring to

Table 3.3 and Figure 3.29.

The minimum relative difference is achieved between degrees 125 and 150. Accordingly,
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t ISD’s of degrees t
25 1.02525 × 10−4

50 3.47305 × 10−5

75 1.57839 × 10−5

100 1.12940 × 10−5

125 8.42562 × 10−6

150 7.08102 × 10−6

175 5.42979 × 10−6

200 5.96616 × 10−6

Table 3.2: ISD’s between Bernstein’s copula and the reference copula

t Relative differences between ISD’s of degrees t + 25 and t
25 0.661248
50 0.545531
75 0.284463

100 0.253973
125 0.159585
150 0.233190

Table 3.3: Successive relative differences between ISD’s

Figure 3.29: Successive relative differences be-
tween ISD’s
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we may conclude that a Bernstein’s copula density of degree 125 in each variable is a suitable

density estimate, which is in agreement with the assessment resulting from a visual comparison

with the selected least-squares density estimate. Since the Bernstein polynomial approximation

technique produces bona fide copula density estimates, it will be utilized as reference copula

estimate with respect to the two subsequent approaches to copula density estimation.

3.2.3 Kernel-based copula density estimates

Among others, Li and Silvapulle (2015), Geenens et al. (2017), and Wen and Wu (2020) have

utilized kernel density estimates (kde’s) to estimate the density functions of copulas. Since

the support of copulas is finite, kde’s can produce what is referred to as ‘boundary bias’. This

drawback has previously been circumvented by making use of Epanechnikov kernels or a trans-

formation method as discussed in Charpentier et al. (2007), or by applying a mirror reflexion

technique as suggested by Gijbels and Mielniczuk (1990). It will be explained that it can as

well be mitigated by repositioning the usual pseudo-observations and making use of biweight

kernels.

Consider the four pseudo-observations discussed in Section 3.1.1 for the purpose of illus-

trating that utilizing centered pseudo-observations significantly alleviates the boundary issues

resulting from the use of the original pseudo-observations when it comes to kernel density

estimation; the kde’s of the copula density obtained from the latter and the former (centered

case) are plotted in Figures 3.30 and 3.31. The corresponding copulas, which were obtained

by integrating the kde’s, are shown in Figures 3.32 and 3.33.

It is seen that two of the kernels centered at the original pseudo-observations are truncated

and as the graph of the cdf indicates, the resulting kde does not integrate to one. This does not

occur when the centered pseudo-observation are utilized.
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Figure 3.30: kde obtained from the original
pseudo-observations

Figure 3.31: kde obtained from the centered
pseudo-observations

Figure 3.32: Copula obtained from the kde
based on the original pseudo-observations

Figure 3.33: Copula obtained from the kde
based on centered pseudo-observations
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Optimal kde bandwidth selection

In the case of kde based copula densities, the narrower the kernels, the higher the peaks and the

lower the troughs. A mathematical criterion for selecting the optimal bandwidth is proposed in

this section. It has been shown that the centered copula points or centered pseudo-observations

can be utilized to obtain improved copula density functions. Then, kde’s of various bandwidths

centered at those points are utilized for comparison purposes with respect to a reliable reference

copula which in this instance is taken to be the selected Bernstein’s copula density estimate of

degree 125.

The selection criterion will rely on the integrated squared difference (on the reduced square)

between the reference copula density and kde’s of bandwidths 0.045, 0.04, 0.035, 0.030 and

0.025 in conjunction with Epanechnikov kernels, which are plotted in Figures 3.34-3.39.

Figure 3.34: Reference copula density Figure 3.35: kde using the ccp’s with band-
width 0.045

It is seen from the resulting ISD’s which are tabulated in Table 3.4 and displayed Figure

3.40, that the smallest one corresponds to a bandwidth of 0.035. Accordingly, the kde having

this bandwidth is selected as being the most suitable one, a conclusion that could also have

been reached by visual inspection.
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Figure 3.36: kde using the ccp’s with band-
width 0.040

Figure 3.37: kde using the ccp’s with band-
width 0.035

Figure 3.38: kde using the ccp’s with band-
width 0.030

Figure 3.39: kde using the ccp’s with band-
width 0.025

Bandwidth ISD
0.045 0.0310480
0.040 0.0249804
0.035 0.0241592
0.030 0.0407768
0.025 0.0796507

Table 3.4: ISD’s between the reference copula density and kde’s having various bandwidths
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Figure 3.40: ISD’s between the reference cop-
ula density and kde’s having various band-
widths

3.2.4 Differentiated linearized empirical copulas

Another novel approach to copula density estimation is described in this subsection. A De-

heuvels’ empirical copula is first determined for the data set at hand. The empirical copula

(cdf) is initially evaluated at grid points of the unit square whose associated spacing along both

directions is denoted by c. Then, linear interpolation is applied to those points and the resulting

surface is then differentiated, which yields an approximate density function. The resulting cop-

ula density which, as explained, is obtained from differentiating the linearized copula, will be

referred to as a DL copula density. The spacing parameter c is selected in such a way that a ref-

erence copula density (for instance, a chosen Bernstein approximation) and the differentiated

linearized copula share similar distributional features. Mathematically, the spacing parame-

ter c is taken to be the minimizer of the integrated squared difference between the selected

differentiated linearized copula and the chosen reference copula density.

Grid points spaced 1/12 apart of the empirical copula are plotted in Figure 3.41 for the Old

Faithful geyser eruption data. The linear interpolation between these points and the resulting

DL copula density are plotted in Figure 3.42-3.43. In this case, the optimal spacing parameter

c based on ISD’s (as shown in Table 3.5) is 1/12. The DL copula density functions are also

plotted for c = 1/11 and c = 1/13 in Figures 3.44-3.45.
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Figure 3.41: Empirical copula at grid points Figure 3.42: Linearly interpolated ecdf of the
empirical copula at grid points spaced 1/12
apart

Figure 3.43: DL copula density with spacing
parameter c = 1/12

Spacing parameter c ISD
1/11 0.396789
1/12 0.360477
1/13 0.488780

Table 3.5: ISD’s between the reference copula density and certain DL copula densities
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Figure 3.44: DL copula density with spacing
parameter c = 1/11

Figure 3.45: DL copula density with spacing
parameter c = 1/13

Smoothing a DL copula density by means of a bivariate polynomial

A smooth eleventh-degree bivariate polynomial approximation of the DL copula density (see

Section 2.3) is shown in Figure 3.46. In this case, the base density was taken to be the uniform

distribution.

Figure 3.46: Smooth bivariate polynomial esti-
mate of the DL copula density
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3.3 On estimating joint density functions via copula density

estimates

3.3.1 Introduction

The following formula which is consequence of Sklar’s theorem, expresses a joint density

function estimate in terms of estimates of the marginal density and distribution functions and a

copula density estimate:

f̂ (x1, x2) ≈ f̂1(x1) f̂2(x2) ĉ(F̂1(x1), F̂2(x2)). (3.6)

Thus, once a copula density estimate has been secured, it is a rather simple matter to obtain

a joint density estimate. More specifically, we proceed as follows: First, the marginal densi-

ties f1(x1) and f2(x2) associated with the random variables X1 and X2 are estimated and their

respective distribution functions are obtained by integration; then, a copula density estimate is

determined by making use of one of the proposed approaches such as those based on smooth-

ing a differentiated linearized copula or evaluating a Bernstein polynomial approximation. This

alternative approach to determining joint density function estimates allows for more flexibility

than the direct approach, as one could for instance rely on some prior knowledge or informa-

tion in order to choose distinct bandwidths for the marginal kde’s and select an appropriate

degree of smoothness for the copula density estimate.

3.3.2 An illustrative example

Consider once again the Old Faithful geyser eruption data as described in Section 3.2.1. A

bivariate histogram of these observations is shown in Figure 3.47. A kde of the copula density

whose optimal bandwidth was found to be 0.03, is plotted in Figure 3.48. Kernel density esti-

mates of the marginal densities have then been obtained. They are superimposed on histograms

of the observations on each variables in Figures 3.49 and 3.50. It is seen that the bivariate kde
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shown in Figure 3.51, which was secured directly from the data, and the estimated joint density

obtained from equation (3.6), which appears in Figure 3.52, share similar features.

Figure 3.47: Bivariate histogram Figure 3.48: Copula kde with a bandwidth of
0.035

Figure 3.49: The estimated marginal density of
the first variable and histogram

Figure 3.50: The estimated marginal density of
the second variable and histogram
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Figure 3.51: Bivariate kde of the copula Figure 3.52: Joint density estimate resulting
from applying Sklar’s theorem

3.4 Estimating a t-distributed copula density

3.4.1 Introduction

In this section, we apply the proposed density estimation approaches to a random sample of

2000 points generated from a know copula distribution, namely a bivariate T on one degree

of freedom, the marginal distributions being assumed to be standard normal and uniform on

the interval [0, 2]. Note that the selected copula is challenging to model as its density function

tends to plus infinity at each of the four vertices of the unit square. The joint density function

and the copula density are plotted in Figures 3.53 and 3.54.

3.4.2 Application of the proposed approaches

Proceeding as explained in Section 3.2.1, it was determined that it is appropriate to use the

differentiated least-squares bivariate polynomial approximation of degree 30 that is plotted in

Figure 3.55, as initial density estimate and reference density.

On following the methodology advocated in Section 3.2.3, it was found that the kde-based

estimate having 0.025 as its bandwidth which is shown in Figure 3.56, is suitable.

Referring to Section 3.2.2, its was determined that an appropriate degree for Bernstein’s
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Figure 3.53: The joint density function Figure 3.54: The bivariate T copula density on
one degree of freedom

Figure 3.55: Differentiated least-squares esti-
mate of degree 30

Figure 3.56: kde-based copula density whose
bandwidth is 0.025
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copula density estimate is 100. This copula density is plotted in Figure 3.57.

Proceeding as explained in Section 3.2.4, the optimal spacing for the DL copula density is

c = 1/12. This copula density is shown in Figure 3.58. We note that the Bernstein polynomial

approximation has the advantage of already having a smooth representation.

Figure 3.57: Bernstein’s copula density of de-
gree 100

Figure 3.58: Differentiated linearized empirical
copula

A copula density estimate can also be obtained from Equation (2.7) which results from

Sklar’s theorem. In this instance, kde’s were first obtained for the joint and marginal density

functions, and the quantile functions were then determined from the latter. The copula density

so obtained is plotted in Figure 3.59.

All these density estimates turn out to be similar to one another and consistent with the un-

derlying distribution, which supports the validity of the various methodologies being advocated

in this chapter. As a further step, bivariate splines could be utilized to approximate them.

3.4.3 Identification of the underlying distribution

Given a previously obtained copula density estimate of the underlying bivariate t copula dis-

tribution, we now verify whether it can be correctly identified when compared to several para-

metric copula density functions by means of the Hellinger distance.
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Figure 3.59: Copula density obtained by ap-
plying Sklar’s theorem

If we denote the probability density functions of two bivariate distributions as f (·) and g(·),

the square of the Hellinger distance is given by

H2( f , g) =
1
2

"
(
√

f (x, y) −
√

g(x, y))2dxdy. (3.7)

The Hellinger distances between the Bernstein copula density approximation of degree

100 that is plotted in Figure 3.57 and the following copula density functions were evaluated:

bivariate Student’s t on 1, 3 and 10 degrees of freedom, bivariate Gaussian, Farlie-Gumbel-

Morgenstern, Ali-Mikhail-Haq, Gumbel-Hougaard, Frank, and Clayton-Pareto. In this in-

stance, the bounds of integration are zero and one.

As anticipated, the Hellinger distance between the estimated copula density and the bivari-

ate t copula density on one degree of freedom turned out to be the smallest. The Hellinger

distance approach constitutes an alternative to the Kullback-Leibler divergence and could be

employed as a goodness-of-fit measure between a given copula density estimate and paramet-

ric copula density functions sharing similar features in order to determine the most appropriate

model.
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3.5 Concluding remarks

Although quite distinct in nature, the proposed approaches to estimating copula density func-

tions were found to produce similar density estimates, which to a certain extent, validates their

suitability. It was explained that such copula density estimates can be utilized to secure joint

density functions. It was also verified that, on the basis of a sample drawn from a known

copula distribution, the density estimation methodologies that were introduced in this chapter

could yield quite accurate density estimates. It should be finally be mentioned that the various

approaches advocated in this chapter can readily be extended to the estimation of multivariate

copula density functions.
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Chapter 4

Representations of Certain Measures of

Association in terms of Copulas

4.1 Introduction

In this chapter, four correlation coefficients, namely, Spearman’s ρ, Kendall’s τ, Blomqvist’s

β and Hoeffding’s Φ2, are expressed in terms of copulas. Representations of their empirical

counterparts are provided as well. As this chapter addresses mainly the bivariate case, such

coefficients measure the strength of association and type of relationship between two variables.

The readers are assumed to be familiar with the notation and results that were introduced in

Section 2.1. Now, given a random sample (x1, y1), . . . , (xn, yn) generated from the continuous

random vector (X,Y), let

(ui, vi) = (F(xi),G(yi)), i = 1, . . . , n (4.1)

where F(·) and G(·) are the usually unknown marginal cumulative distribution functions (cdf’s)

of X and Y . The empirical marginal cdf’s, F̂(·) and Ĝ(·) are then utilized to determine the

pseudo-observations:

(ûi, v̂i) = (F̂(xi), Ĝ(yi)), i = 1, . . . , n, (4.2)

66
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where the empirical cdf’s (ecdf’s) are given by F̂(x) = 1
n

∑n
i=1 I(x j ≤ x) and Ĝ(y) = 1

n

∑n
i=1 I(y j ≤

y), I(ℵ) denoting the indicator which is equal to 1 if the condition ℵ is verified and, 0, otherwise.

Equivalently, one has

(ûi, v̂i) = (ri/n, si/n), (4.3)

where ri is the rank of xi among {x1, . . . , xn} and si, the rank of yi among {y1, . . . , yn}.

The frequencies or probability mass function of an empirical copula can be expressed as

ĉ(u, v) =
1
n

n∑
i=1

I(F̂(xi) = u) I(Ĝ(yi) = v)

=
1
n

n∑
i=1

I(ri/n = u) I(si/n = v),

(4.4)

and the corresponding empirical copula is then given by

Ĉ(u, v) =
1
n

n∑
i=1

I(F̂(xi) ≤ u) I(Ĝ(yi) ≤ v)

=
1
n

n∑
i=1

I(ri/n ≤ u) I(si/n ≤ v),

(4.5)

which is a consistent estimate of C(u, v).

Note that in practice, the ranks are often divided by n+ 1 instead of n so as to avoid certain

boundary effects, and that other adjustments that are discussed in Section 4.2 may also be

applied.

Additional properties of copulas that are not directly relevant to the results presented in this

chapter are discussed for instance in Joe (1997), Cherubini et al. (2004, 2012), Denuit et al.

(2005) and Nelsen (2006).

Finally, it should be pointed out that Pearson’s correlation coefficient cannot be expressed

in terms of copulas since it is a function of the observations themselves rather than their ranks.

This chapter contains certain derivations that do not seem to be available in the literature

and also provides missing steps that complete the published proofs. It is structured as follows:
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Sections 4.2, 4.3, 4.4 and 4.5 respectively focus on Spearman’s, Kendall’s, Blomqvist’s and

Hoeffding’s measures of dependence and provides their representation in terms of copulas,

in addition to pointing out certain related distributional results of interest. The effectiveness

of these measures of association in assessing the trends present in data generated from five

distinctive patterns is compared in a numerical study that is presented in Section 4.6.

To our knowledge, the four major measures of association are herein discussed along with

their representations in terms of copulas, have not been altogether previously treated in a single

source.

4.2 Spearman’s Correlation Coefficient

Spearman’s correlation statistic, also referred to as Spearman’s ρ, measures the extent to which

the relationship between two variables is monotonic—either increasing or decreasing.

First, a theoretical representation of Spearman’s ρ is expressed in terms of a copula denoted

by C(U,V). Then, some equivalent representations of Spearman’s rank correlation nonpara-

metric statistic are provided, and it is explained that one of them can be obtained by replacing

C(U,V) by its empirical counterpart.

Let (X,Y) be a bivariate continuous random vector with joint density function h(x, y) and

F(X) and G(Y) denote the respective marginal distribution functions of X and Y .

Theoretically, Spearman’s correlation is given by

ρS =
Cov[F(X),G(Y)]

√
Var[F(X)]Var[G(Y)]

(4.6)

=

!
R2 F(x)G(y)h(x, y)dxdy − (

∫
R

F(x) dF(x))(
∫

R
G(y) dG(y))√

[
∫

R
F(x)2 dF(x) − (

∫
R
(F(x) dF(x))2][

∫
R

G(y)2 dG(y) − (
∫

R
(G(y) dG(y))2]

(4.7)
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=

∫ 1

0

∫ 1

0
u v c(u, v) dudv − (1/2)(1/2)
√

(1/12)(1/12)
in light of (2.7), (4.8)

with the transformation {x = F−1(u) and y = G−1(v)} whose Jacobian is the

inverse of the Jacobian associated with the following transformation :

{u = F(x) and v = G(y)}, that is, 1/[ f (F−1(u))g(G−1(v))],

= 12
∫ 1

0

∫ 1

0
C(u, v) dudv − 3, (4.9)

where C(·, ·) and c(·, ·) are respectively the copula and copula density associated with X and Y .

It is stated without proof in Kojanovik and Yan (2010) and Schmid and Schmidt (2007) that

the double integral in (4.8) can be expressed as that appearing in (4.9). We now prove that this

is indeed the case. First, recall that the copula density c(u, v) is given by ∂2C(u,v)
∂u∂v . Integrating by

parts twice, one has

∫ 1

0

∫ 1

0
u v dC(u, v) =

∫ 1

0

∫ 1

0
uv
∂2C(u, v)
∂u∂v

dvdu

=

∫ 1

0
u
[∫ 1

0
v
∂

∂v

(
∂C(u, v)
∂u

)
dv

]
du

=

∫ 1

0
u
[
v
∂C(u, v)
∂u

∣∣∣∣∣1
0
−

∫ 1

0

∂C(u, v)
∂u

dv
]

du

=

∫ 1

0
u
[
1 −

∫ 1

0

∂C(u, v)
∂u

dv
]

du, as C(u, 1) = u

=

∫ 1

0
udu −

∫ 1

0

∫ 1

0
u
∂C(u, v)
∂u

dvdu

=
1
2
−

∫ 1

0

[
uC(u, v)

∣∣∣1
0
−

∫ 1

0
C(u, v)du

]
dv

=
1
2
−

1
2
+

∫ 1

0

∫ 1

0
C(u, v)dudv, as C(1, v) = v

=

∫ 1

0

∫ 1

0
C(u, v)dudv.

(4.10)

Now, let (X1,Y1), . . . , (Xn,Yn) be a random sample generated from the random vector (X,Y),

and denote by F̂(X) and Ĝ(Y) the empirical distribution functions of X and Y , respectively.

Throughout this chapter, the sample size will be assumed to be n. On respectively denoting by
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Ri and S j, the rank of Xi among {X1, . . . , Xn} and the rank of Y j among {Y1, . . . ,Yn}, one has

F̂(Xi) = Ri/n ≡ Ui and Ĝ(Y j) = S j/n ≡ V j, where Ui and V j denote the canonical pseudo-

observations on each component. Note that R̄ = S̄ = (n + 1)/2. Then, as a random quantity,

Spearman’s rank correlation admits the following equivalent representations:

ρ̂S =

∑n
i=1(Ri − R̄)(S i − S̄ )√∑n

i=1(Ri − R̄)2 ∑n
i=1(S i − S̄ )2

(4.11)

=
(
∑n

i=1 RiS i) − nR̄S̄√
[(
∑n

i=1 R2
i ) − nR̄2][(

∑n
i=1 S 2

i ) − nS̄ 2)]
(4.12)

=
(
∑n

i=1 F̂(xi) Ĝ(yi)) − n(n + 1)2/4√
[(
∑n

i=1 F̂(xi) 2) − n(n + 1)2/4][(
∑n

i=1 Ĝ(yi) 2) − n(n + 1)2/4]
(4.13)

=
(
∑n

i=1 UiVi) − n(n + 1)2/4√
[(
∑n

i=1 U2
i ) − n(n + 1)2/4][(

∑n
i=1 V2

i ) − n(n + 1)2/4]
(4.14)

=

∑n
i=1(Ui − Ū)(Vi − V̄)√∑n

i=1(Ui − Ū)2 ∑n
i=1(Vi − V̄)2

, (4.15)

where Ū =
∑n

i=1 Ui/n and V̄ =
∑n

i=1 Vi/n.

Of course (4.15) follows directly from (4.11), and it is seen from either one of these ex-

pressions that Spearman’s correlation will not be affected by any monotonic affine transforma-

tion, whether applied to the ranks or the canonical pseudo-observations. Actually, the pseudo-

observations are often taken to be

Ûi =
Ri

n + 1
=

n
n + 1

F̂(xi) =
1

n + 1

n∑
k=1

I(xk ≤ xi) (4.16)

and

V̂ j =
S j

n + 1
=

n
n + 1

Ĝ(y j) =
1

n + 1

n∑
k=1

I(yk ≤ y j), (4.17)

see for instance, Genest et al. (1995).

Another way to keep the pseudo-observations away from the upper bound of each unit
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interval consists of defining them as follows:

Ũi =
Ri

n
−

1
2n
= F̂(xi) −

1
2n

(4.18)

and

Ṽ j =
S j

n
−

1
2n
= Ĝ(y j) −

1
2n
. (4.19)

In a simulation study, Dias (2022) observed that such pseudo-observations have a lower bias

than those obtained by dividing the ranks by n + 1. What is more, it should be observed that

if we extend the pseudo-observations Ũi, i = 1, . . . , n, and Ṽ j, j = 1, . . . , n, by 1
2n on each

side and assign their respective probability, namely 1
n , to each of the n resulting intervals, the

resulting marginal distributions will be uniformly distributed within the interval [0, 1], which

happens to be a requirement for a copula density. However, this will not be the case for any

other affine transformation of the ranks or the empirical distribution functions. The alternative

transformations rank−1/3
n+1/3 and rank−1

n−1 were also respectively considered by Kerman (2011) and

Dias (2022). As established in Dias (2022), the pseudo-observation estimators resulting from

any of the above-mentioned transformations as well as the canonical pseudo-observations are

consistent estimators of the underlying distribution functions.

Kojanovik and Yan (2010) pointed out that ρ̂S as specified in (4.12) can also be expressed

as

ρ̂S =
12

n(n + 1)(n − 1)

n∑
i=1

RiS i − 3
n + 1
n − 1

, (4.20)

where ρ̂S is a consistent estimator of ρS .

As well, it can be algebraically shown that, alternatively,

ρ̂S = 1 − 6
n∑

i=1

(Ri − S i)2

n(n2 − 1)
(4.21)

when the ranks are distinct integers.
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On writing (4.9) as

12
∫ 1

0

∫ 1

0
u v dC(u, v) − 3, (4.22)

and replacing C(u, v) by Ĉ(u, v) as defined in (4.5), the double integral becomes

1
n

n∑
i=1

∫ 1

0
u d(I(ri/n ≤ u))

∫ 1

0
v d(I(si/n ≤ v)).

For instance, on integrating the first integral by parts, one has

u I(ri/n ≤ u)
∣∣∣1
0
−

∫ 1

0
I(ri/n ≤ u) du = 1 − (1 − ri/n) = ri/n.

Thus, the resulting estimator of Spearman’s rank correlation is given by

12
n3

n∑
i=1

RiS i − 3,

which is approximately equal to the representation specified in (4.20).

Now, letting Cθ(u, v) be a copula whose functional representation is known, and assuming

that it is a one-to-one function of the dependence parameter θ, it follows from (4.9) that

ρS (θ) = 12
∫ 1

0

∫ 1

0
Cθ(u, v)dudv − 3, (4.23)

which provides an indication of the extent to which the variables are monotonically related.

Moreover, since ρ̂S as defined in (4.12), (4.20) or (4.21) tends to ρS (θ), an estimate of θ can be

obtained as θ̂ = ρ−1
S (ρ̂S ).

It follows from (4.9) that Spearman’s ρ can be expressed as

ρX,Y = ρC = 12
"

12
[C(u, v) − uv]dudv. (4.24)

If we replace [C(u, v) − uv] in (4.24) by |C(u, v) − uv|, we have a measure based on the
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L1 distance between the copula C and the product copula Π = uv (Nelsen 2006). This is the

so-called Schweizer-Wolff’s sigma that was defined in Schweizer and Wolff (1981), and which

is given by

σX,Y = σC = 12
"

12
|C(u, v) − uv|dudv. (4.25)

The expression (4.25) is a measure of dependence which satisfies the properties of Rényi’s

axioms (Rényi, 1959) for measures of dependence (Schweizer and Wolff, 1981; Lai and Bal-

akrishnan, 2009, p. 145).

Note that the Pearson’s correlation coefficient

r̂ =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2 ∑n

i=1(yi − ȳ)2
(4.26)

only measures the strength of a linear relationship between X and Y whereas Spearman’s rank

correlation ρS assesses the strength of any monotonic relationship between X and Y . The latter

is always well-defined, which is not the case for the former. Both vary between −1 and 1 and

ρS = ±1 indicates that Y is either an increasing or a decreasing function of X.

4.3 Kendall’s Correlation Coefficient

Kendall’s τ is a non-parametric measure of association between two variables, which is based

on the number of concordant pairs minus the number of discordant pairs. Also referred to

as Kendall’s rank correlation coefficient, it is named after Maurice Kendall who introduced

this measure of dependence in an article published in 1938. He also proposed its estimate τ̂

and published several papers and a monograph in connection with certain ordinal measures of

correlation. Further historical details about Kendall’s τ are provided in Kruskal (1958).

Consider two observations (xi, yi) and (x j, y j), with (i, j) ∈ {1, . . . , n} such that i , j, that

are drawn from a vector (X,Y) of continuous random variables. Then, for any such assignment

of pairs, define each pair as being concordant, discordant, or equal, as follows:
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• (xi, yi) and (x j, y j) are concordant if:

{xi < x j and yi < y j or if xi > x j and yi > y j}, or equivalently

(xi − x j)(yi − y j) > 0, i.e., the slope of the line going through the two points

is positive.

• In the same way, (xi, yi) and (x j, y j) are discordant if:

{xi < x j and yi > y j or if xi > x j and yi < y j}, or equivalently

(xi − x j)(yi − y j) < 0, i.e., the slope of the line going through the two points

is negative.

• (xi, yi) and (x j, y j) are equal if xi = x j or yi = y j. Pair equality can be disregarded since

the random variables X and Y are assumed to be continuous.

The empirical Kendall’s τ

Let {(x1, y1), (x2, y2), . . . , (xn, yn)} be a random sample of n pairs drawn from the vector

(X,Y) of continuous random variables. There are Cn
2 =

(
n
2

)
possible ways of selecting distinct

pairs (xi, yi) and (x j, y j) of observations in the sample, with each pair being either concordant

or discordant.

Let S i j be defined as follows:

S i j = sign(Xi − X j) sign(Yi − Y j), (4.27)

where

sign(u) =


−1 if u < 0

0 if u = 0

1 if u > 0.
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Then, the values taken by S i j are:

si j =


−1 when the pairs are discordant

0 when the pairs are neither concordant nor discordant

1 when the pairs are concordant.

Since we have si j = s ji and sii = 0, then there are Cn
2 sets of pairs to consider. Kendall’s

sample τ̂ is defined as follows:

τ̂ =
∑

1≤i< j≤n

si j

Cn
2
=

2
n(n − 1)

∑
1≤i< j≤n

si j. (4.28)

Using an alternative approach, let c denote the number of concordant pairs and d, the num-

ber of discordant pairs, then Kendall’s τ for that sample is given by

τ̂ =
c − d
c + d

=
c − d
Cn

2
=

2(c − d)
n(n − 1)

. (4.29)

As it is assumed that there can be no equality between pairs, Cn
2 = c + d so that

τ̂ =
4c

n(n − 1)
− 1 or τ̂ = 1 −

4d
n(n − 1)

. (4.30)

Note that τ̂ is an unbiased estimator of τ. Additionally, Kendall and Gibbons (1990, Chapter

5) and Valz and McLeod (1990) established that Var(τ̂) = 2(2n+5)
9n(n−1) .

The population Kendall’s τ

Let (X1,Y1) and (X2,Y2) be independent and identically distributed random vectors, with the

joint distribution function of (Xi,Yi) being H(x, y), and let F(x) and G(y) denote the distribution

functions of Xi and Y j, i, j = 1, 2, and the associated copula be C(u, v) = H(F−1(u),G−1(v)).
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The population Kendall’s τ is defined as:

τ = τX,Y = Pr[concordant pairs] − Pr[discordant pairs]

≡ pc − pd

= Pr[(X1 − X2)(Y1 − Y2) > 0] − Pr[(X1 − X2)(Y1 − Y2) < 0] (4.31)

= 2Pr[(X1 − X2)(Y1 − Y2) > 0] − 1 (4.32)

= 4Pr[(X1 < X2,Y1 < Y2)] − 1 (4.33)

= 4
"

R2
Pr(X2 ≤ x,Y2 ≤ y)dH(x, y) − 1, where H(x, y) = C(F(x),G(y)) (4.34)

= 4
"

R2
H(x, y)c(F(x),G(y)) f (x)g(y)dxdy − 1

= 4
"

12

H(F−1(u),G−1(v))c(u, v) f (F−1(u))g(G−1(v))
f (F−1(u))g(G−1(v))

dudv − 1

= 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v) − 1 (4.35)

= 4 E[C(U,V)] − 1, (4.36)

where

• U and V have a Uniform (0, 1) distribution with joint cdf C.

• u = FX(x) and v = FY(y).

• R2 ≡ {(x, y) | x and y are real numbers}.

• dC(u, v) = ∂2C(u,v)
∂u1∂v dudv = c(u, v)dudv.

Note that (4.32) follows from (4.31) since

Pr[(X1 − X2)(Y1 − Y2) < 0] = 1 − Pr[(X1 − X2)(Y1 − Y2) > 0].

Marginal probability of Si j

The marginal probability of S i j is
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pS i j(si j) =


pc, si j = 1

pd, si j = −1

1 − pc − pd, si j = 0 .

Gibbons and Chakraborti (2003) proved that

E(S i j) = 1pc + (−1)pd = τ.

Some properties of τ

• The coefficient correlation τ is invariant with respect to strictly increasing

transformations.

• This correlation coefficient takes on values in the interval of [−1, 1].

• If X1 and Y1 are independent, then the value of τ is zero:

τ(X1,Y1) = 2 Pr[(X1 − X2)(Y1 − Y2) > 0] − 1

= 2{Pr[X1 − X2 > 0,Y1 − Y2 > 0] + Pr[X1 − X2 < 0,Y1 − Y2 < 0]} − 1

= 2
(
1
4
+

1
4

)
− 1 = 0.

•When the number of discordant pairs is 0, then the value of τ is maximum and equals 1,

which means a perfect relationship; the variables are then comonotonic, i.e., one variable is an

increasing transform of the other. If the variables are countermonotonic, i.e., one variable is a

decreasing transform of the other, the correlation coefficient τ equals −1, see Joe (1997).

Note that the last two properties do not hold for Pearson’s correlation coefficient. Moreover,

Kendall’s τ is more appropriate when the joint distribution is not Gaussian.
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4.4 Blomqvist’s Correlation Coefficient

Blomqvist (1950) proposed a measure of dependence similar in its structure to Kendall’s cor-

relation coefficient, except that medians are being used. Blomqvist’s correlation coefficient can

be defined as follows:

β = βX,Y = P[(X − F−1
X (1/2))(Y −G−1

Y (1/2)) > 0]

− P[(X − F−1
X (1/2))(Y −G−1

Y (1/2)) < 0],
(4.37)

where F−1
X (1/2) ≡ x̃ and G−1

Y (1/2) ≡ ỹ are the medians of X and Y respectively, which explain

why this coefficient is also known as the median correlation coefficient.

Now, let X and Y be continuous random variables having H(·, ·) as joint distribution func-

tion, F(·) and G(·) as respective marginals, and C(·, ·) as their copula; then,

F(x̃) = F(F−1
X (1/2)) = G(ỹ) = G(G−1

Y (1/2)) = 1/2,

and

β = βX,Y = 2Pr[(X − F−1
X (1/2))(Y −G−1

Y (1/2)) > 0] − 1 (4.38)

= 2{Pr[X < F−1
X (1/2),Y < G−1

Y (1/2)] + Pr[X > F−1
X (1/2),Y > G−1

Y (1/2)]} − 1 (4.39)

= 4H(F−1
X (1/2),G−1

Y (1/2)) − 1 (4.40)

= 4C(1/2, 1/2) − 1. (4.41)

In the development of these equations, the following relationships were utilized in addition

to H(x, y) = C(F(x),G(y)):

P[(X − F−1
X (1/2))(Y −G−1

Y (1/2)) > 0] = P[X − F−1
X (1/2) > 0,Y −G−1

Y (1/2) > 0]

+ P[X − F−1
X (1/2) < 0,Y −G−1

Y (1/2) < 0];
(4.42)
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P[X > F−1
X (1/2),Y > G−1

Y (1/2)] = P[X < F−1
X (1/2),Y < G−1

Y (1/2)]. (4.43)

Estimation of β

Let x̃n and ỹn be the medians of the samples X1, . . . , Xn and Y1, . . . ,Yn, respectively. The

computation of Blomqvist’s correlation coefficient is based on a 2 × 2 contingency table con-

structed from these two samples.

According to Blomqvist’s suggestion, the x−y plane is divided into four regions by drawing

the lines x = x̃n and y = ỹn.

Let n1 and n2 be the number of points belonging respectively to the first or third quadrants,

and to the second or fourth quadrants.

Blomqvist’s sample βn or the median correlation coefficient is defined by

βn =
n1 − n2

n1 + n2
= 2

n1

n1 + n2
− 1. (4.44)

If the sample size n is even, then, it is obvious that no sample points will fall on the lines x = x̃n

and y = ỹn. Moreover, it follows that n1 and n2 will be even. However, if n is odd, then one or

two sample points must fall on the lines x = x̃n and y = ỹn. In the first case (a single point lying

on a median), Blomqvist proposed that this point shall not be counted. For the second case,

one point has to fall on each line. Then, one of the points is assigned to the quadrant touched

by both points, while the other is not counted, so that, n1 and n2 remain even.

Genest et al. (2013) provide an accurate interpretation of βn as “the difference between

the proportion of sample points having both components either smaller or greater than their

respective medians, and the proportion of the other sample points”. Finally, as pointed out by

Blomqvist (1950), the definition of βn was not new (Mosteller, 1946); however, its statistical

properties had never been fully investigated.
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Some properties of Blomqvist’s correlation coefficient:

• The coefficient β is invariant under strictly increasing transformations of X

and Y .

• The correlation coefficient β takes on values in the interval [−1, 1].

• If X and Y are independent, then C(1/2, 1/2) = F(1/2)G(1/2) = 1/4, and

β = 0.

4.5 Hoeffding’s Dependence Coefficient

To measure the strength of relationships that are not necessarily monotonic, one may make use

of Hoeffding’s dependence coefficient. Letting H(X,Y) denote the joint distribution function

of X and Y , and F(X) and G(Y) stand for the marginal distribution functions of X and Y,

Hoeffding’s nonparametric rank test for bivariate independence, which is consistent against all

bivariate dependence alternatives, is based on

D(x, y) = H(x, y) − F(x)G(y), (4.45)

which is equal to zero if and only if X and Y are independently distributed. The nonparametric

estimator of the quantityD2 = 30
∫

D2(x, y)dH(x, y) results in the statistic,

D̂2 = 30
Q − 2(n − 2)R + (n − 2)(n − 3)S

n(n − 1)(n − 2)(n − 3)(n − 4)
, (4.46)

where

Q =
n∑

i=1

(Ri − 1)(Ri − 2)(S i − 1)(S i − 2), (4.47)

R =
n∑

i=1

(Ri − 2)(S i − 2)Ci, (4.48)
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and

S =
n∑

i=1

(Ci − 1)Ci, (4.49)

Ci being the number of bivariate observations (X j,Y j) for which X j ≤ Xi and Y j ≤ Yi.

We now state Hoeffding’s lemma (1940): Let X and Y be random variables with joint

distribution function H(x, y) and marginal distributions F(x) and G(y). If E(XY) and E(X)E(Y)

are finite, then

Cov(X,Y) =
∫ ∞

−∞

∫ ∞

−∞

[H(x, y) − F(x)G(y)]dxdy. (4.50)

This result became known when it was cited by Lehmann (1966). Jogdeo (1968) proposed an

extension to several variables. Two decades later, Block and Fang (1988) discussed a multi-

variate version of this lemma.

The correlation coefficient is thus given by

Cor(X,Y) =

∫ ∞
−∞

∫ ∞
−∞

[H(x, y) − F(x)G(y)]dxdy
√

Var(X)
√

Var(Y)
(4.51)

or

Cor(X,Y) =

∫ ∞
−∞

∫ ∞
−∞

[C(F(x),G(y)) − F(x)G(y)]dxdy
√

Var(X)
√

Var(Y)
, (4.52)

with (4.52) resulting from Sklar’s theorem.

Using Hoeffding’s lemma, Hofert et al. (2019, p. 47) pointed out two fallacies about

the uniqueness and independence of random variables. Hoeffding made use of his lemma to

identify the bivariate distributions with given marginal distribution functions F(x) and G(y),

which minimize or maximize the correlation between X and Y .

Hoeffding’s Φ2

Hoeffding (1940) defined the stochastic dependence index of the random variables X and Y

as

Φ2
X,Y = 90

∫ 1

0

∫ 1

0
(C(u, v) − uv)2dudv, (4.53)



82 Chapter 4. Representations of CertainMeasures of Association in terms of Copulas

where

Φ2
X,Y =


0 in the case of independence since then C(u, v) = uv

1 in the case of monotone dependence

Φ2 ∈ (0, 1) otherwise,

90 being a normalization factor.

Hoeffding (1940) showed that Φ2
X,Y takes the value 1 in the cases of monotonically increas-

ing and monotonically decreasing continuous functional dependence; it is otherwise less than

1 and greater than zero.

Let X1, . . . ,Xn be an (i.i.d.) random sample generated from the 2-dimensional random

vector X with distribution function H and copula C. We assume that both F and C as well

as the marginal distribution functions Fi, i = 1, 2, are completely unknown. The copula C is

estimated by the empirical copula Ĉn, which is defined as

Ĉn(u) =
1
n

n∑
j=1

2∏
i=1

I(Ûi j,n ≤ ui) for u ∈ [0, 1]2, (4.54)

with pseudo-observations Ûi j,n = F̂i,n(Xi j) for i = 1, 2 and j = 1, . . . , n, and F̂i,n(x) = 1
n∑n

j=1 I(Xi j ≤ x) for x ∈ R. Since Ûi j,n =
1
n (rank of Xi j in Xi1, . . . , Xin), statistical inference

is based on the ranks of the observations. When it is clear from the context, the index n is

suppressed, and the pseudo-observations are denoted by Ûi j.

A nonparametric estimator of Φ2 is then obtained by replacing the copula C in

Φ2 := Φ2(C) = 90
"

12
{C(u) − Π(u)}2du, (4.55)

by the empirical copula Ĉn, i.e.,

Φ̂2
n := Φ2(Ĉn) = 90

"
12
{Ĉn(u) − Π(u)}2du, (4.56)
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where Π(u) = u1u2 denotes the independence copula.

As explained in Gaißer et al. (2010), this estimator can be evaluated as follows:

Φ̂2
n = 90

 1
n2

n∑
j=1

n∑
k=1

2∏
i=1

(1 −max{Ûi j, Ûik}) −
1

2n

n∑
j=1

2∏
i=1

(1 − Û2
i j) +

(
1
3

)2
 . (4.57)

The asymptotic distribution of Φ̂2
n can be deduced from the asymptotic behavior of the em-

pirical copula process which, for instance, has been discussed by Rüschendorf (1976), Gänßler

and Stute (1987), Van der Vaart and Wellner (1996), and Tsukahara (2005).

The quantity Φ2
X,Y was introduced by Blum et al. (1961) without the normalizing factor 90,

as a distribution-free statistic to test for the independence of X and Y .

Referring to Schweizer and Wolff (1981), Nelsen (2006, p. 210) states that “... any Lp

distance should yield a symmetric nonparametric measure of dependence”. For any p, 1 < p <

∞, the Lp distance between the copula C and the product copula Π is given by the following

expression: (
kp

"
12
|C(u, v) − uv|pdudv

) 1
p

, (4.58)

where kp is the normalizing factor. On letting p = 2, one obtains ΦX,Y .

4.6 Illustrative Examples

In order to compare the measures of association discussed in the previous sections, five two-

dimensional data sets exhibiting different patterns are considered.

First, 500 random values of x, denoted by S, were generated within the interval (−3, 3).

Now, letting

• fA(x) = −x/5 + 1 + ϵ,

• fB(x) = −x5 + ϵ,

• fC(x) = sin(x) + ϵ,

• fD(x) = −
√
|x3/2| + ϵ,
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• fE = tan(x)3 + ϵ,

where ϵ represents a slight perturbation consisting of a multiple of random values gener-

ated from a uniform distribution on the interval [−1, 1], the five resulting data sets are A =

{(x, fA(x))|x ∈ S}, B = {(x, fB(x))|x ∈ S}, C = {(cos(x), fC(x))|x ∈ S}, D = {(x, fD(x))|x ∈ S},

and E = {(x, fE(x))|x ∈ S}. These data sets are plotted in Figures 4.1-4.5.

Figure 4.1: Plot of data set A Figure 4.2: Plot of data set B

Figure 4.3: Plot of data set C Figure 4.4: Plot of data set D

We then evaluated Spearman’s, Kendall’s, Blomqvist’s and Hoeffding’s statistics, as well

as Pearson’s correlation coefficient for each data set, and reported their numerical values as

well as their associated p-values in Table 4.1.

Hoeffding’s statistic strongly rejects the null hypothesis of independence since the p-values

are all virtually equal to zero, correctly indicating that in all five cases there exist some func-

tional relationship between the variables.
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Figure 4.5: Plot of data set E

Statistics and p-values A B C D E
Spearman {−0.9963, 0} {−0.9218, 0} {0.0022, 0.9602} {0.1028, 0.0215} {−0.0745, 0.0961}
Kendall {−0.9456, 0} {−0.8072, 0} {0.0071, 0.8136} {0.0919, 0.0021} {−0.0350, 0.2419}

Blomqvist {−0.9600, 0} {−0.6160, 0} {0.0320, 0.4209} {0.0720, 0.0891} {0.0640, 0.1283}
Hoeffding {0.8679, 0} {0.5302, 0} {0.0472, 0} {0.1902, 0} {0.0104, 0}
Pearson {−0.9964, 0} {−0.8207, 0} {0.0202, 0.6529} {0.0555, 0.2152} {−0.0092, 0.8377}

Table 4.1: Five statistics and associated p-values

As expected, Pearson’s correlation coefficient is higher in absolute value in the case of lin-

ear relationship (data set A) with a value of −0.9964 than in the case of a monotonic relationship

(data set B) with a value of −0.8207.

Spearman’s, Kendall’s and Blomqvist’s statistics readily detect the monotonic relationships

that data sets A and B exhibit. Interestingly, at the 5% significance level, Spearman’s and

Kendall’s statistics can reject the independence assumption in favor of the relationship occur-

ring between the variables in data set D, which happens to be monotonically increasing and

then, decreasing.
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Chapter 5

A Criterion for Characterizing the Tail

Behavior of a Distribution

5.1 Introduction

This section provides an overview of certain criteria that have been previously introduced in

the statistical literature for the purpose of labeling distributional tail behavior. When selecting

a base density function for determining a density estimate or approximant that is based on

sample moments, ideally, this function should exhibit a tail behavior that is similar to that of the

underlying distribution. Hence, the need to objectively and efficiently identify this behaviour,

which is the objective of this chapter.

Fairly recently, Klugman et al. (2012) provided several classification categories for identi-

fying light to heavy-tailed distributions, these being based on moments, hazard rate functions

and mean excess loss functions. Previously, Parzen (1979) examined the limiting behavior of

density quantile functions which can be expressed as

f (Q(u)) ∼


(1 − u)α for α > 0 and α , 1

(1 − u) (log 1
1−u )1−β for α = 1 and 0 ≤ β ≤ 1

(5.1)
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where f and Q represent the density and quantile function, respectively, and f1(u) ∼ f2(u)

denotes that the ratio f1(u)/ f2(u) converges to a positive finite constant as u → 1. The param-

eter α determines three types of tail behavior: short tails, medium tails and long tails which

correspond to α < 1, α = 1 and α > 1, respectively.

In order to refine the tail classification advocated by Parzen (1979), Schuster (1984) relied

on two quantities, namely,

α = lim
u→1−
−

1 − u
f (Q(u))

∂ log
[
f (Q(u))

]
∂u

(5.2)

and

c = lim
u→1−

(1 − u)/ f (Q(u)) = lim
u→1−

1/h (Q(u)) , (5.3)

where f , Q, and h represent the density, quantile and hazard function, respectively, to obtain

five categories of tail behavior:

Short 0 < α < 1

Medium-Short α = 1 c = 0

Medium-Medium α = 1 0 < c < ∞

Medium-Long α = 1 c = ∞

Long α > 1.

Actually, this criterion has a theoretical connection with the limiting size of extreme spacings.

The reader may also refer to Rojo (1996), whose classification is based on the residual

lifetime distributions. The aforementioned classification techniques are reviewed in Rojo and

Ott (2010).

As explained in Heyde and Kou (2004), there exists a variety of methodologies for deter-

mining whether a distribution has an exponential or a power tail, including QQ-plots, likelihood

methods, and plots of the mean residual life functions.

As well, Loh (1984) and Doksum (1969), among others, proposed criteria that take into

account the behaviour of a sizeable portion of the distribution at hand. An efficiency-based tail
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ordering technique was introduced by Lehmann (1988) in the context of location experiments.

Another approach consists in relating the limiting distribution of the standardized maximum of

a given distribution (when it exists) to that of the Weibull, Gumbel or Fréchet distributions (the

three extremal distributions), which leads to categorizing the distribution as having a short,

medium or long tail, respectively. It is manifestly desirable to develop procedures that will

yield additional categories with a view to identifying more precisely the tail behavior of a wide

array of distributions.

The conceptually simple technique being advocated in this chapter results in eight cate-

gories. It is applied to numerous theoretical distributions, the resulting tail behaviours being

generally consistent with those determined by making use of other criteria. In the case of a

sample of observations, one must initially obtain a density estimate to which the proposed

approach can then be readily applied. Of course, the larger the sample, the more reliable the

results, which is corroborated by the small-scale simulation study presented in Section 5.3. The

proposed methodology, which is described in Section 5.2, is applied to an array of widely used

distributions in Section 5.4. The proposed methodology is compared with three other criteria

with respect to various distributions in Section 5.5.

5.2 A methodology based on the arctangent transformation

We are proposing to make use of the percentiles of a transformed distribution to define a cri-

terion for characterising the tail behaviour of a given distribution. More specifically, on letting

X represent a distribution having finite mean µ, finite variance σ2 and probability density func-

tion (PDF) f (x), the standardized random variable Y = (X − µ)/σ is mapped onto (−1, 1) or a

subset thereof via the transformation Z = (2/π) arctan(Y). The density functions of certain dis-

tributions that have been so transformed are plotted in Figures 2.1 to 2.14. These distributions

include the normal, Weibull with shape parameters 0.5 and 2, logistic, extreme value, expo-

nential, Student t on 3, 5 and 20 degrees of freedom (df), lognormal, Uniform(0,1), Beta(5,2),
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Type-II Beta(5,3) and (50,30), and Gamma(50,1). The dots indicate the 90th and 99.9999th

percentiles of Z.

Let q(α) represent the (100 × α)th quantile of the distribution of Z. We propose to employ

the difference between the 90th and 99.9999th percentiles of Z as a criterion for classifying the

right-tail behavior of X. We denote this tail index by

p = q(0.999999) − q(0.90). (5.4)

Figure 5.1:
PDF of Z for the normal distribution

Figure 5.2:
PDF of Z for the Weibull distribution (k=2)

Figure 5.3:
PDF of Z for the extreme value distribution

Figure 5.4:
PDF of Z for the logistic distribution
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Figure 5.5:
PDF of Z for the exponential distribution

Figure 5.6:
PDF of Z for the t distribution on 3 df

Figure 5.7:
PDF of Z for the lognormal distribution

Figure 5.8:
PDF of Z for the Weibull distribution (k=0.5)

Figure 5.9:
PDF of Z for the Uniform(0,1) distribution

Figure 5.10:
PDF of Z for the Beta(5,2) distribution
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Figure 5.11:
PDF of Z for the type-II Beta(5,3) distribution

Figure 5.12:
PDF of Z for the t distribution on 5 df

Figure 5.13:
PDF of Z for the Gamma(50,1) distribution

Figure 5.14:
PDF of Z for the t distribution on 20 df
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Figure 5.15:
PDF of Z for the type-II Beta(50,30) distribu-
tion

We define distributions whose mean is finite but whose variance is infinite as having a long

tail and distributions whose mean is undefined as having an extremely long tail. Generally,

the fewer the number of finite moments a distribution possesses, the heavier its tail is. The

proposed tail behavior categories and their associated tail index ranges are:

• Distinctly Short : p < 0.1

• Short : 0.1 ≤ p < 0.2

• Nearly Medium : 0.2 ≤ p < 0.3

•Medium : 0.3 ≤ p < 0.4

• Extended Medium : 0.4 ≤ p < 0.5

• Relatively long : 0.5 ≤ p

• Long : Indefinite second moment

• Extremely Long : Indefinite first moment.

The left-tail behavior of a distribution is similarly characterized by defining the correspond-
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ing tail index as

p∗ = q(0.10) − q(0.000001). (5.5)

The specified ranges for p also apply to p∗.

When this methodology is implemented, a distribution is deemed to be heavy-tailed if it

belongs to one of the following categories: Extended Medium (0.4 ≤ p < 0.5), Relatively

Long (p ≥ 0.5), Long or Extremely Long. For instance, the lognormal, Weibull(k) with k < 1,

Pareto, Student t with fewer than 6 degrees of freedom and Cauchy are such distributions.

Heavy-Tailed distributions belong to the medium-long and long tail categories in Schuster’s

classification.

5.3 An illustration of the convergence of the tail index

We generated samples of sizes 100, 1000, 50000 and 1000000 from the standard exponen-

tial distribution and obtained the following tail indices from their kde’s: 0.300144, 0.309942,

0.342787, 0.361315. We observe that these values indeed tend to the theoretical p-index for

the standard exponential distribution, which is 0.3672. The corresponding density functions of

Z are plotted in Figs. 5.16-5.19.

Figure 5.16:
PDF of Z, 100 Exp(1) sample points

Figure 5.17:
PDF of Z, 1,000 Exp(1) sample points
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Figure 5.18:
PDF of Z, 50,000 Exp(1) sample points

Figure 5.19:
PDF of Z, 1,000,000 Exp(1) sample points

5.4 Application of the tail index criterion

Some illustrative classification results obtained by applying of the proposed tail index criterion

are presented in Table 5.1 for certain commonly utilized distributions.

Table 5.1: The tail behavior of certain distributions

Distribution Tail Behavior Tail Index
Uniform Distinctly Short 0.0646
Beta(5,2) Short 0.1152
Normal Nearly Medium 0.2898

Rayleigh Nearly Medium 0.2998
Type-II Beta(50,30) Medium 0.3444

Extreme value Medium 0.3549
Logistic Medium 0.3562

Exponential Medium 0.3672
Student t on 5 df Extended Medium 0.4244
Type-II Beta(2,5) Extended Medium 0.4591
Student t on 3 df Relatively Long 0.5071

Lognormal Relatively Long 0.5201
Type-II Beta(5,3) Relatively Long 0.5609

Weibull(0.5) Relatively Long 0.5800
Student t on 2 df Long **

Cauchy Extremely Long **
** Moment-based.

It should be noted that for the beta, Weibull, Type-II Beta and lognormal distributions, the

shapes of the standardized densities and thus the tail behavior and the associated value of the
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tail index vary with the parameters.

5.5 Comparison with other criteria

In this section, we compare the tail classification criterion introduced in Section 5.2 with three

other criteria with respect to various distributions. The results are summarized in Table 5.2. It is

observed that, overall, the proposed criterion and three other criteria yield similar classification

results.

Table 5.2: Comparative classification of tail behavior for certain distributions

Distribution Parzen Schuster Rojo Our category p
Uniform Short Short Super-Short Distinctly Short 0.0646

Beta(5, 2) Short Short Super-Short Short 0.1152
Normal Medium Medium-Short Weakly-Short Nearly Medium 0.2898

Weibull (k = 2) Medium Medium-Short Weakly-Short Nearly Medium 0.2998
Extreme value Medium Medium-Short Moderately-Short Medium 0.3549

Logistic Medium Medium-Medium Medium Medium 0.3562
Exponential Medium Medium-Medium Medium Medium 0.3672

Weibull (k = 1) Medium Medium-Medium Medium Medium 0.3672
Lognormal(0, 1) Medium Medium-Long Weakly-Long Relatively Long 0.5201
Weibull (k = 0.5) Medium Medium-Long Weakly-Long Relatively Long 0.5800

Pareto (k = 3) Long Long Weakly-Long Relatively Long 0.5824
Pareto (k = 2) Long Long Weakly-Long Long **
Pareto (k = 1) Long Long Moderately-Long Super-Long **

Pareto (k = 0.5) Long Long Super-Long Super-Long **
Cauchy Long Long Weakly-Long Super-Long **

** Moment-based.

5.6 Conclusion

While being readily implementable, the proposed approach to characterising distributional tail

behaviour produces easily identifiable categories that, generally, prove consistent with those

obtained by making use of other criteria.
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Chapter 6

Distribution of Quadratic Forms in

Various Types of Random Variables

6.1 Introduction

Numerous distributional results are available in connection with quadratic forms in normal

random variables. Several representations of the density function of a quadratic form have

been derived and a number procedures have been introduced for computing percentage points.

Among others, Gurland (1953), Box (1954), Pachares (1955), Ruben (1960, 1962), Shah and

Khatri (1961), and Kotz et al. (1967a,b), obtained various series representations. Gurland

(1956) and Shah (1963) respectively considered central and noncentral indefinite quadratic

forms. Exact distributional results were obtained by Imhof (1961), Davis (1973) and Rice

(1980).

As mentioned in Mathai and Provost (1992), a wide array of test statistics can be expressed

in terms of quadratic forms in normal random vectors. For example, one may consider the

lagged regression residuals developed by De Gooijer and MacNeill (1999) and discussed in

Provost (2005), or certain change point test statistics derived by MacNeill (1978).

Since the case of quadratic forms in real Gaussian variables has been discussed at length

101
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in Mathai and Provost (1992), we will initially focus on approximating the density functions

of quadratic forms in other types of random variables. It will be explained in the next section

that moments of quadratic forms can be obtained symbolically, which enables one to consider

non-Gaussian types of distributions. Additionally, the variables comprising the vector of a

given quadratic form need not be identically distributed when making use of this innovative

approach.

More specifically, we will approximate the distribution of quadratic forms in gamma, in-

verse Gaussian, binomial and Poisson random variables that are not necessarily identically

distributed. Some distributional limit theorems such as those that are discussed in Barrio et

al. (2005) in connection with a certain empirical quantile process, involve quadratic forms in

exponential random variables which are a particular case of gamma random variables. As well,

three test statistics that can be expressed as quadratic forms in exponential random variables,

are described in Donald and Paarsch (2002). Whittle (1960) considered the case of random

variables in Poisson variables in connection with contingency tables. In generalized linear

models, the conditional distribution of the response variable is often taken to be a member of

an exponential family, such as the Gaussian, binomial, Poisson, gamma, or inverse Gaussian

families of distributions, and the determination of the distribution of quadratic forms in such

random variables could contribute to further developments in data modeling.

The accuracy of initial approximations will be improved by applying a technique intro-

duced in Provost (2005), which consists of adjusting an appropriate base density by a polyno-

mial whose coefficients are determined from the moments of the quadratic forms and those of

the base density. As explained in Provost et al. (2009), this approach which is formally stated

in the following result, can also be utilized to approximate discrete distributions.

Result 3 Let fY(y) be the density function of a continuous random variable Y defined in the

interval (a, b), E(Y j) ≡ µY( j), X = (Y − u)/s be an affine transformation (oftentimes, u = E(Y)

and s =
√

Var(Y)), where u ∈ IR and s ∈ IR+, a0 = (a−u)/s, b0 = (b−u)/s, fX(x) = s fY(u+s x)

denote the density function of X whose support is the interval (a0, b0), E(X j) = E[((Y−u)/s) j] ≡
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µX( j), and let the base density function ψX(x) ≡ cT w(x), where cT is a positive normalizing

constant, be an initial density approximation to fX(x) with
∫ b0

a0
x j ψX(x) dx ≡ mX( j). Assuming

that the sequence µX(i), i = 0, 1, 2, . . . , uniquely defines the distribution of X, that mX( j) exists

for j = 0, 1, . . . , 2 n, and that whenever ψX(x) is nontrivial function of x, its tail behavior is

congruent to that of fX(x), the density function of X can be approximated by

fXn(x) = ψX(x)
n∑
ℓ=0

ξℓ xℓ (6.1)

with (ξ0, . . . , ξn)
′

= M−1(µX(0), . . . , µX(n))
′

, where M is an (n + 1) × (n + 1) matrix whose

(h + 1)th row is mX(h), . . . ,mX(h + n), h = 0, 1, . . . , n. The corresponding density approximant

for Y is then

fYn(y) = ψX

(y − u
s

) n∑
ℓ=0

ξℓ
s

(y − u
s

)ℓ
. (6.2)

Let X1, X2, . . . , Xn be random variables and A be a n × n symmetric matrix, where

A =



a11 a12 · · · a1n

a12 a22 · · · a2n

...
...

. . .
...

a1n a2n · · · ann


.

The quadratic form,

Y = X
′

AX,

where X = (X1, X2, . . . , Xn)
′

can be expanded as follows:

Y = a11X2
1 + a22X2

2 + · · · + annX2
n + 2a12X1X2 + 2a13X1X3 + · · · + 2an−1,nXn−1Xn

=

n∑
i=1

aiiX2
ii +

∑
1≤i< j≤n

2ai jXiX j.
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The symbolic approach to the evaluation of the moments of quadratic forms is described in

Section 6.2. Several illustrative examples are provided in Section 6.3. In each of the examples,

the empirical distribution of a given quadratic form is determined from a simulated sample of

size 10,000. The case of Hermitian quadratic forms in complex normal vectors is discussed in

Section 6.4 where several applications are pointed out. In the last section, an extended version

of the generalized gamma density function is shown to provide accurate approximations to the

density functions of indefinite quadratic forms in Gaussian vectors without having to resort to

polynomial adjustments.

6.2 Evaluation of the exact moments of quadratic forms via

the symbolic approach

Suppose that the random vector X follows a distribution with density function fX(x1, x2, . . . , xn).

We can make use of the moments associated with fX(·) to determine the hth moment of the

random variable Y . Let µX(h1, h2, . . . , hn) be the joint moment of order (h1, h2, . . . , hn) of

X1, X2, . . . , Xn. The hth moment of Y is then

E[Yh] = E


 n∑

i=1

aiiX2
ii +

∑
1≤i< j≤n

2ai jXiX j


h

= E

∑
i

ciX
hi1
1 Xhi2

2 · · · X
hin
n

 ,
(6.3)

where the ci’s and hi j’s can be determined by expanding symbolically the expression within the

square brackets. Moreover, in light of the linearity property of mathematical expectations, we

have
E[Yh] =

∑
i

E[ci Xhi1
1 Xhi2

2 · · · X
hin
n ]

=
∑

i

ci µX(hi1, hi2, . . . , hin).
(6.4)
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Thus, we can evaluate the moments of Y from the joint moments of X without having to deter-

mine the exact distribution of Y . The proposed symbolic approach for determining the moments

of quadratic forms applies to any type of quadratic forms and can be readily implemented. Be-

sides, when moment expressions are available, they are usually quite complicated.

For example, letting X = (X1, X2) follow a bivariate normal distribution with mean (−1, 2)
′

and covariance matrix  2 −1

−1 3


and

Y =
(
X1 X2

) 1 4

4 −2


X1

X2

 ,
the second moment of Y is obtained as follows:

E[Y2] = E



(
X1 X2

) 1 4

4 −2


X1

X2




2
= E[X4

1 + 16X3
1 X2 + 60X2

1 X2
2 − 32X1X3

2 + 4X4
2]

= E[X4
1] + 16E[X3

1 X2] + 60E[X2
1 X2

2] − 32E[X1X3
2] + 4E[X2

2]

= µX(4, 0) + 16µX(3, 1) + 60µX(2, 2) − 32µX(1, 3) + 4µX(0, 2)

= 3481,

where µX(i, j) denotes the joint moment of orders i and j of the distribution of X.

One could also evaluate the second moment of Y by integration:

E[Y2] =
∫ ∞

−∞

∫ ∞

−∞


(
x1 x2

) 1 4

4 −2


x1

x2




2

fX(x1, x2) dx1 dx2. (6.5)

However, the proposed approach proves more efficient, especially when n is large.

The moments of a quadratic forms in Gaussian variables can also be evaluated from math-
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ematical representations. As shown in Mathai and Provost (1992), the sth cumulant of X′AX

where X ∼ Np(µ, Σ), which denotes a p-variate normal distribution whose mean is µ and

nonsingular covariance matrix is Σ, is given by

k(s) = 2s−1s!
(
tr(AΣ)s/s + µ′(AΣ)s−1Aµ

)
= 2s−1(s − 1)! θs , (6.6)

where tr(·) denotes the trace of (·) and θs =
∑p

j=1 λ
s
j(1 + s b2

j), s = 1, 2, . . . , the λ j’s, j =

1, . . . , p, denoting the eigenvalues of AΣ, and tr(AΣ)s =
∑p

j=1 λ
s
j. The hth moment of X′AX can

be obtained from its cumulants by means of the following recursive relationship, derived for

instance in Smith (1995):

µ(h) =
h−1∑
i=0

(h − 1)!
(h − 1 − i)! i!

k(h − i) µ(i) , (6.7)

where k(s) is as given in Equation (6.6). Note that the expressions for the cumulants become

more complex in the case of quadratic forms in singular Gaussian vectors.

6.3 Illustrative Examples

In this section, nearly exact density functions are obtained for quadratic forms in four types of

random variables.

6.3.1 Quadratic forms in gamma random variables

First, consider the case where the matrix of the quadratic form is
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A =



1 0 0 0

0 2 1 0

0 1 2 0

0 0 0 3


and the component of the vector X, i.e., X1, X2, X3, and X4 are independently distributed gamma

random variables with respective parameters (2,2), (9,1), (2,1), (12,1), the density function of

a gamma distribution with shape parameter α > 0 and scale parameter β > 0 being given by

f (x) =
1

Γ(α) βα
xα−1e−x/β, x > 0.

The pdf’s of X1, X2, X3, and X4 are plotted in Figure 6.1.

Figure 6.1: pdf’s of the Xi’s

An approximant to the the distribution of Y = (X1, X2, X3, X4)A(X1, X2, X3, X4)
′

is being

sought. Since the exact probability density or cumulative distribution functions of such a

quadratic form are not known, we resort to a histogram of a simulated sample (with 10,000

replications) and the resulting empirical cumulative distribution for assessing the accuracy of

the approximants. We employ the integrated squared difference (ISD) between the empiri-

cal cumulative distribution function and the approximated cumulative distribution function to

determine the degree of the polynomial adjustment. More specifically, we select the degree

beyond which the ISD does not decrease significantly or starts to increase. This criterion will

be utilized for all the quadratic forms in continuous r.v.’s considered in this section.
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We make use of a gamma pdf as base density and determine its parameters by setting

the first two moments of the gamma distribution equal to those of the quadratic form which are

obtained from the symbolic approach. This base pdf and the corresponding cdf are respectively

shown in Figure 6.2 and 6.3. A polynomial adjustment of degree 8 (obtained by applying Result

3 as stated in the Introduction of this chapter) is made in this case. The resulting pdf and cdf

approximants are respectively plotted in Figures 6.4 and 6.5. In this case as well as in all the

other cases presented in this chapter, it is seen that the empirical and approximated cdf’s are

nearly identical.

Figure 6.2: Histogram and base pdf Figure 6.3: Empirical and base cdf’s

Figure 6.4: Histogram and pdf approxi-
mant

Figure 6.5: Empirical and approximated cdf’s

6.3.2 Quadratic forms in inverse Gaussian random variables

Consider the case where the matrix of the quadratic form is
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A =



1 0 0 0

0 2 1 0

0 1 2 0

0 0 0 3


and the component of the vector X, i.e., X1, X2, X3 and X4 are independently distributed inverse

Gaussian random variables with respective parameters (2,5), (3,6), (2,2), (3,4), the density

function of an inverse Gaussian distribution with parameters (λ, µ) being

f (x) =
(
λ

2πx3

)1/2

e−λ(x−µ)2/(2 µ2 x), x > 0, λ > 0, µ ∈ IR.

The pdf’s of X1, X2, X3 and X4 are plotted in Figure 6.6.

Figure 6.6: pdf’s of the Xi’s

An approximant to the distribution of Y = (X1, X2, X3, X4)A(X1, X2, X3, X4)
′

is being sought.

Proceeding as explained in Subsection 6.3.1, a random sample was initially generated and the

resulting empirical cumulative distribution function was determined.

In this case, we make use of a inverse Gaussian density as base density and estimate its

parameters by setting the first two moments of the inverse Gaussian distribution equal to those

of the quadratic form which are obtained from the symbolic approach. This base pdf and the

corresponding cdf are respectively shown in Figure 6.7 and 6.8. A polynomial adjustment of

degree 5 (determined by applying Result 3 and calculating the ISD) was deemed appropriate

in this case. The resulting pdf and cdf approximants are respectively plotted in Figures 6.9 and
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6.10. It is seen that the empirical and approximated cdf’s are in close agreement.

Figure 6.7: Histogram and base pdf Figure 6.8: Empirical and base cdf’s

Figure 6.9: Histogram and pdf approxi-
mant

Figure 6.10: Empirical and approximated cdf’s

As the following subsections illustrate, the methodology also applies in the case of discrete

random variables.

6.3.3 Quadratic forms in binomial random variables

Consider the case where the matrix of the quadratic form is

A =



1 0 0 0

0 2 1 0

0 1 2 0

0 0 0 3
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and the component of the vector X, i.e., X1, X2, X3 and X4 are independently distributed bi-

nomial random variables with respective parameters (2,2), (9,1), (2,1), (12,1), the probability

mass function of a binomial distribution with parameters (n, p) being

p(k) =
(
n
k

)
pk(1 − p)n−k, k = 0, 1, . . . , n.

The cdf’s of X1, X2, X3 and X4 are plotted in Figure 6.11.

Figure 6.11: cdf’s of the Xi’s

An approximant to the distribution of Y = (X1, X2, X3, X4)A(X1, X2, X3, X4)
′

is being sought.

We proceed as explained in Subsection 6.3.1 in order to obtain an approximation of the pdf of

Y . However, in the case of quadratic forms in discrete r.v.’s, the sum of squared differences

(SSD’s) between the empirical and the approximated cdf’s is utilized instead of the ISD in

order to determine the degree of the polynomial adjustment.

We make use of a gamma density as base density and estimate its parameters by setting its

first two moments equal to those of the quadratic form which were obtained by implementing

the symbolic approach. This base pdf and the corresponding cdf are respectively shown in

Figure 6.12 and 6.13. A polynomial adjustment of degree 9 (determined by applying Result

3) was made in this case. The resulting pdf and cdf approximants are respectively plotted in

Figures 6.14 and 6.15. It is seen that the empirical and approximated cdf’s nearly coincide.
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Figure 6.12: Histogram and base pdf Figure 6.13: Empirical and base cdf’s

Figure 6.14: Histogram and pdf approxi-
mant

Figure 6.15: Empirical and approximated cdf’s

6.3.4 Quadratic forms in Poisson random variables

Consider the case where the matrix of the quadratic form is

A =



1 0 0 0

0 2 1 0

0 1 2 0

0 0 0 3


and the component of the vector X, i.e., X1, X2, X3 and X4 are independently distributed Poisson

random variables with respective parameters 3, 4, 5 and 6, the probability mass function of a

Poisson distribution with parameter λ > 0 being

p(k) =
λke−λ

k!
, k = 0, 1, . . . .
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The cdf’s of X1, X2, X3 and X4 are plotted in Figure 6.16.

Figure 6.16: cdf’s of the Xi’s

An approximant to the distribution of Y = (X1, X2, X3, X4)A(X1, X2, X3, X4)
′

is being sought.

Since the random variables are discrete, we proceed as explained in Subsection 6.3.3. We

also make use of a gamma pdf as base density. This base pdf and the corresponding cdf are

respectively shown in Figure 6.17 and 6.18. A polynomial adjustment of degree 10 was deemed

appropriate in this case. The resulting pdf and cdf approximants are respectively plotted in

Figures 6.19 and 6.20. It is seen that the empirical and approximated cdf’s are almost identical.

Figure 6.17: Histogram and base pdf Figure 6.18: Empirical and base cdf’s
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Figure 6.19: Histogram and pdf approxi-
mant

Figure 6.20: Empirical and approximated cdf’s

6.4 Hermitian quadratic forms

A Hermitian quadratic form in a complex Gaussian vector W is an expression of the type

W∗H W where W∗ denotes the conjugate transpose of W and H is a Hermitian matrix, that

is, H = H∗. The distributional properties of Hermitian quadratic forms in complex Gaus-

sian random vectors have been discussed in Bello and Nelin (1962), Khatri (1970), Goodman

(1963), Fang et al. (1990), Sultan (1999) and Mathai (1997), among others. A representation

of the moment generating function is obtained in Shah and Li (2005) by contour integration.

A representation of the characteristic function of Hermitian quadratic forms in complex nor-

mal variables is provided in Turin (1960). The expected values of certain Hermitian quadratic

forms are given in closed forms in Soong (1984).

Hermitian quadratic forms in complex normal variables are frequently encountered in bi-

nary hypothesis testing problems, especially in the performance analysis of systems whose

inputs are affected by random noise such as radars, sonars, communications receivers and sig-

nal acquisition devices. This is explained for instance in Kac and Sieger (1947), Divsalar et

al. (1990) and Kailath (1960). As pointed out by Biyari and Lindsey (1993), the decision

variables in many systems can also be characterized by means of Hermitian quadratic forms

in complex Gaussian vectors. Moreover, as explained in Provost and Rudiuk (1995), several

statistics utilized for testing hypotheses on the parameters of complex random vectors involve

Hermitian quadratic forms. Hermitian quadratic forms were also utilized as cost functions in
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Kwon et al. (1994), and as characteristic functions in correlated Rician fading environments

in Annamalai et al. (2005). Kac and Sieger (1947), Turin (1958, 1959), Kailath (1960), Bello

and Nelin (1962), Simon and Divsalar (1988), Divsalar et al. (1990), Cavers and Ho (1992)

and Biyari and Lindsey (1993) expressed pairwise error probabilities of system output decision

variables in terms of Hermitian forms. As well, Shah and Li (2005) mentioned an application

involving bit error rate calculation in a certain wireless relay network. When studying a full-

duplex decode-and-forward relay system in a Rician fading environment, Zhu et al. (2008)

expressed the highest achievable information rate of the system as a Hermitian quadratic form.

As explained in Kay (1989) and Monzigo and Miller (1980), complex random vectors are used

in several areas of signal processing such as array processing and spectral analysis. An infor-

mative account of various applications involving complex normal vectors and useful related

distributional results are included in Picinbono (1996).

We shall focus on Hermitian quadratic forms in Gaussian vectors since applications of

Hermitian quadratic forms in other types of random vectors do not seem to be discussed in the

statistical literature. It was established in Provost and Chong (2002) that upon diagonalizing

a Hermitian quadratic form in a complex Gaussian vectors via a unitary transformation, it can

be expressed as a real quadratic form. Accordingly, the technique outlined in Section 6.2 for

evaluating the distribution of real quadratic forms will also apply to Hermitian quadratic forms.

As will be explained next, the real and complex components of the complex Gaussian vectors

will then become the components of a real vector that is twice as long, and the quadratic form

will be expressible as a sum of products of some of the components of that real vector. It is thus

important to know the distribution of that vector so that its joint moments could be determined

by making use of their joint moments.

A complex random vector W belonging to Cn, the set of n-dimensional complex vectors, can

be written as W = U + iV where U and V are real random vectors in ℜn. Accordingly,

certain problems involving a complex random vector W, can be re-expressed in terms of the

real random vector (U′,V′)′ in ℜ2n where, for instance, U′ denotes the transpose of U. When
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U and V are correlated n-dimensional real normal vectors with means µU and µV, respectively,

the random vector W = U + iV has the complex normal distribution CNn(µW,Γ,C) where

µW = µU + iµV = E(W),

Γ = E[(W − µW)(W − µ̄W)′] and C = E[(W − µW)(W − µW)′], (6.8)

W denoting the complex conjugate of W. The covariance matrix Γ is Hermitian and non-

negative definite and the relation matrix C is symmetric and non-negative definite. Moreover,

as pointed out in Picinbono (1996), the matrices Γ and C must be such that the matrix Γ̄ −

C̄′Γ−1/2C be also non-negative definite (which will be assumed throughout), Γ−1/2 denoting the

inverse of the symmetric square root of Γ. We note that in many applications, C is taken to be

the null matrix. For instance, that assumption was made in Mathai (1997) when defining the

multivariate normal density in the complex case.

It follows from (6.8) that the matrices Γ and C are related to the covariance matrices asso-

ciated with U and V as follows:

Cov(U) = E[(U − µU)(U − µU)′] =
1
2

Re[Γ +C],

Cov(U,V) = E[(U − µU)(V − µV)′] =
1
2

Im[−Γ +C],

Cov(U,V)′ = E[(V − µV)(U − µU)′] =
1
2

Im[Γ +C],

and

Cov(V) = E[(V − µV)(V − µV)′] =
1
2

Re[Γ −C],

where Re[·] and Im[·] respectively denote the real and imaginary parts of [·].

Thus, the real random vector (U′,V′)′ corresponding to the complex normal random vector

(U′ + iV′) ∼ CNn(µU + iµV,Γ,C) has the following distribution:
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 U

V

 ∼ N2n

(  µU

µV

 ,Σ
)

(6.9)

where

Σ2n×2n =
1
2

( Re[Γ +C] Im[−Γ +C]

Im[Γ +C] Re[Γ −C]

)
(6.10)

and Nν(µ,Σ) denotes a real ν-dimensional normal vector whose mean and covariance matrix

are respectively µ and Σ.

6.4.1 A numerical example

Let

A =


6 −2i 1

2i 2 1 − i

1 1 + i 6

 ,
and Y = (X1, X2, X3)A(X1, X2, X3)∗, where (·)∗ denotes the conjugate transpose and X1, X2 and

X3 are independent complex normal variables, with the respective parameters µ1 = 3; σ1 = 2;

µ2 = −5; σ2 = 1; µ3 = 4; σ3 = 3 for both their real and complex parts. The pdf’s of the real

parts of X1, X2, and X3 are shown in the Figure 6.21.

In this case, we also use a gamma pdf as the base density. The parameters are determined

by setting the first two moments of the gamma distribution equal to those of the quadratic

form, which are obtained by expanding Y and determining the expected value of the resulting

expression and its square.

Since the base pdf is already very accurate, which can be seen from Figure 6.22 and in

particular Figure 6.23, there is no need for an adjustment in this case and this base density

function can serve as an approximation to the density of Y .
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Figure 6.21: pdf’s of the real parts of X1, X2

and X3

Figure 6.22: Histogram and the base pdf Figure 6.23: Empirical and base cdf’s
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6.5 A parametric approach for quadratic forms in Gaussian

random vectors

6.5.1 An extended generalized gamma distribution

The currently available parametric families of distributions may prove inadequate for modeling

purposes. A very flexible model that comprises numerous standard distributions will be utilised

to approximate the distribution of quadratic forms. It is referred to a the q-extended generalised

gamma distribution.

We initially define the q-exponential distribution as an example of a q-analogue distribu-

tion. This distribution generalises the exponential distribution whose pdf is given by

f (x) =


(2 − q)λ eq(−λ x)1{x>0}, 1 ≤ q < 2, λ > 0,

(2 − q)λ eq(−λ x)1{0<x<[(1−q)λ]−1}, q < 1, λ > 0,
(6.11)

where 1{ · } is the indicator function and

eq(y) =


ey, as q→ 1,

[1 + (1 − q) y]1/(1−q), for q , 1, 1 + (1 − q) x > 0,

0, otherwise,

is the q-exponential function. Note that he exponential distribution is retrieved when q tends to

1.

We will use this q-exponential function to secure the q-extended generalized gamma (q-

EGG) distribution. The functional parts of the pdf’s associated with the three types of q-EGG

random variables are given in 6.5.2 where the moments and normalizing constants are given.

This pdf is used in Section 6.5.3 to approximate the distribution of a positive definite quadratic

form as well as an indefinite quadratic form in Gaussian random variables.
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6.5.2 The density function and moments

The generalised gamma density can be expressed as

f (x; a, d, p) =
p/a
Γ(d/p)

(x/a)d−1 e−(x/a)p
, x > 0, a > 0, d > 0, p > 0. (6.12)

On substituting eq
(
−(x/a)p) to e−(x/a)p

in 6.12, on obtains the pdf

f (x; a, d, p, q) ∝
( x
a

)d−1 [
1 − (1 − q)

( x
a

)p] 1
1−q

, x > 0, a > 0, d > 0, p > 0. (6.13)

Now, adding a location parameter ν and reparameterising a, d, and p as a = τ, d = λ δ, and

p = δ, one has

f (x; ν, τ, λ, δ, q) ∝
( x − ν

τ

)λ δ−1
[
1 − (1 − q)

( x − ν
τ

)δ] 1
1−q

, (6.14)

where 1 − (1 − q)[(x − ν)/τ]δ > 0 and λ > 0. We observe that letting τ < 0 and/or δ < 0 still

produces bona fide pdf’s. Accordingly, the parameter space is τ, δ ∈ R \ {0}, λ > 0, ν ∈ R (with

x > ν if τ > 0 and x < ν if τ < 0). We refer to the model whose pdf is specified in 6.14 as the

q-analogue of the extended generalized gamma (q-EGG) distribution.

We consider three types of q-EGG distributions.

• When q < 1, the q-EGG density can be expressed as

f1(x; ν, τ, λ, δ, q) = c1,λ

( x − ν
τ

)λ δ−1
[
1 − (1 − q)

( x − ν
τ

)δ] 1
1−q

, (6.15)

where c1,λ, the normalizing constant which is given in 6.18a, also depends on δ, λ and ν,

with ν ∈ R, τ , 0, λ > 0, δ , 0, and it support is as follows:

1. ν < x < ν + τ (1 − q)−1/δ if τ > 0, δ > 0 and x > ν + τ (1 − q)−1/δ if τ > 0, δ < 0;

2. ν + τ (1 − q)−1/δ < x < ν if τ < 0, δ > 0 and x < ν + τ (1 − q)−1/δ if τ < 0, δ < 0.
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The model 6.15 will be called a type-1 q-EGG distribution.

• When q > 1, we may express (1 − q) as −(q − 1), so that the q-EGG density becomes

f2(x; ν, τ, λ, δ, q) = c2,λ

( x − ν
τ

)λ δ−1
[
1 + (q − 1)

( x − ν
τ

)δ]− 1
q−1

, (6.16)

where c2,λ is the normalizing constant, ν ∈ R, τ , 0, 0 < λ < (q − 1)−1, δ , 0; in this

instance, the support is given by x > ν if τ > 0 and x < ν if τ < 0. The distribution

specified by 6.16 will be referred to as a type-2 q-EGG distribution.

• When q tends to 1, 6.15 boils down to the Amoroso distribution whose density function

is

f3(x; ν, τ, λ, δ) = c3,λ

( x − ν
τ

)λ δ−1
exp

{
−

( x − ν
τ

)δ}
, (6.17)

where c3,λ is the normalizing constant, ν ∈ R, τ , 0, λ > 0, δ , 0. Its support is x > ν if

τ > 0 and x < ν if τ < 0. This model is referred to as a type-3 q-EGG distribution.

As the location parameter ν does not change the normalizing constants c1,λ, c2,λ and c3,λ,

we assume without any loss of generality that ν = 0 in the derivations.

The normalizing constants

It suffices to integrate the probability density functions 6.15,6.16,6.17 and to equate the results

to 1, to secure the normalizing constants which are:

c1,λ =
|δ/τ| (1 − q)λ Γ

(
1 + 1

1−q + λ
)

Γ
(
1 + 1

1−q

)
Γ(λ)

, (6.18a)

c2,λ =
|δ/τ| (q − 1)λ Γ

( 1
q−1

)
Γ
( 1

q−1 − λ
)
Γ(λ)

, (6.18b)

c3,λ =
|δ/τ|

Γ(λ)
. (6.18c)

For example, c1,λ can be obtained as follows.
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Case 1. Assuming that τ > 0 and δ > 0, letting y = x/τ and integrating 6.15, one has

1 = c1,λ τ

∫ (1−q)−1/δ

0
yλδ−1

[
1 − (1 − q) yδ

] 1
1−q dy. (6.19)

With the substitution u = (1 − q) yδ, 6.19 can be expressed as follows:

1 = c1,λ
τ

δ (1 − q)λ

∫ 1

0
uλ−1 (1 − u)

1
1−q du

= c1,λ
τ

δ (1 − q)λ
B
(
λ, 1 + 1

1−q

)
,

where B(α, β) =
∫ 1

0
tα−1 (1 − t)β−1 dt = Γ(α)Γ(β)

Γ(α+β) denotes the beta function. Then,

c1,λ =
(δ/τ) (1 − q)λ

B
(
λ, 1 + 1

1−q

) = (δ/τ) (1 − q)λ Γ
(
1 + 1

1−q + λ
)

Γ
(
1 + 1

1−q

)
Γ(λ)

. (6.20)

Case 2. If τ > 0 and δ < 0, on setting y = x/τ and integrating 6.15, one has

1 = c1,λ τ

∫ ∞

(1−q)−1/δ
yλδ−1 [

1 − (1 − q) yδ
] 1

1−q dy (6.21)

= c1,λ τ

∫ (1−q)1/δ

0
z−λδ−1 [

1 − (1 − q) z−δ
] 1

1−q dz,

with z = 1/y. On letting u = (1 − q) z−δ, one obtains

1 = −c1,λ
τ

δ (1 − q)λ

∫ 1

0
uλ−1 (1 − u)

1
1−q du

= −c1,λ
τ

δ (1 − q)λ
B
(
λ, 1 + 1

1−q

)
.

Consequently,

c1,λ =
(−δ/τ) (1 − q)λ

B
(
λ, 1 + 1

1−q

) = (−δ/τ) (1 − q)λ Γ
(
1 + 1

1−q + λ
)

Γ
(
1 + 1

1−q

)
Γ(λ)

. (6.22)

Cases 3 and 4. Whenever τ < 0, we set y = x/τ. For the cases δ > 0 and δ < 0, we end
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up with 6.19 and 6.21 wherein τ is replaced by −τ. Accordingly, the normalizing constants

corresponding to the cases τ < 0, δ > 0 and τ < 0, δ < 0 are in fact specified by 6.22 and 6.20.

Thus, the normalizing constants c1,λ can altogether be determined from the expression given

in 6.18a.

The normalizing constants specified in 6.18b and 6.18c can be similarly derived.

For all three types, the hth moment is given by

ci,λτ
h

ci,λ+ h
δ

, i = 1, 2, 3.

These results were derived in Chen (2022).

6.5.3 A parametric approximation to the distribution of quadratic forms

We are initially determining the distribution of a positive definite quadratic form by making

use of a q-EGG distribution. We first specify the matrix of the quadratic form which is

A =


1 0 0

0 2 0

0 0 3

 .

The three random variables, denoted as T1,T2 and T3, comprising the vector of this quadratic

form are independent standard normal variables. The quadratic form is denoted as Q =

(T1,T2,T3)A(T1,T2,T3)
′

. The kernel density estimate which is based on 10,000 simulated val-

ues, is plotted in Figure 6.24.
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Figure 6.24: The kernel density estimate of Q

Making use of the method of moments, we first secured a gamma approximation whose pdf

and cdf are shown in Figures 6.25 and 6.26. We employed the integrated squared difference

between cdf’s as goodness-of-fit measure, which in this case is equal to 0.00163148. On the

basis of the results of the gamma approximation, we were able to determine initial intervals

for two of the parameters of a 4-parameter q-EGG approximation. We could then secure more

accurate pdf and cdf approximations which are respectively shown in Figures 6.27 and 6.28, the

associated integrated squared difference, 0.000676887, being smaller than that of the gamma

approximation. The details of the calculations are provided in the Appendix.

Figure 6.25: gamma pdf approximation (blue)
and the kde (red)

Figure 6.26: gamma cdf approximation (blue,
dashed) and the empirical cdf (red)
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Figure 6.27: q-EGG pdf approximation (blue)
and the kde (red)

Figure 6.28: q-EGG cdf approximation (blue,
dashed) and the empirical cdf (red)

We also secured an approximation to the distribution of an indefinite quadratic form which

is based on two q-EGG density approximants. The matrix of this quadratic form is

A =



−12 0 0 0 0

0 −8 0 0 0

0 0 −4 0 0

0 0 0 1 0

0 0 0 0 5


.

Its random vector is (T1,T2,T3,T4,T5) where the independent Ti’s are assumed to have a stan-

dard normal distribution. The kernel density estimate obtained from 10,000 simulated values

is shown in Figure (6.29). Note that only diagonal matrices need be considered since any

symmetric matrix can be diagonalized in light of the spectral decomposition theorem.
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Figure 6.29: The kernel density estimate of the
indefinite quadratic form Z

This quadratic form also has the following representation:

Z = (T1,T2,T3,T4,T5)A(T1,T2,T3,T4,T5)
′

= −(12T 2
1 + 8T 2

2 + 4T 2
3 ) + (T 2

4 + 5T 2
5 ).

Thus, it can be expressed as the difference of two positive definite quadratic forms: X =

(T4,T5)A1(T4,T5)
′

and Y = (T1,T2,T3)A2(T1,T2,T3)
′

, where

A1 =

1 0

0 5

 .
and

A2 =


12 0 0

0 8 0

0 0 4

 .
The distributions of each of the quadratic forms X and Y is approximated with a q-EGG model.

As shown in the Appendix, the parameters of these distributions are obtained by minimizing the

sum of the squares of the differences between the first four theoretical moments of the selected

model and the corresponding moments of each quadratic form. On letting Z = X−Y and W = Y

and applying the transformation of variables technique, on can secure a pdf approximation to

the target distribution from the marginal distribution of Z. We first obtained the approximated
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pdf’s of X and Y , their joint pdf being the product of their density functions. Upon securing

the joint distribution of Z and W, that of Z was obtained by integrating out W. The pdf and cdf

estimates of X and Y and that of the indefinite quadratic form are plotted in Figures 6.30-6.34.

Figure 6.30: The estimated density of X Figure 6.31: The estimated cdf (blue, dashed)
and the empirical cdf (red) of X

Figure 6.32: The estimated density of Y Figure 6.33: The estimated cdf (blue, dashed)
and the empirical cdf (red) of Y
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Figure 6.34: The kernel density estimate (red)
and the approximated density (blue) of the in-
definite quadratic form Z
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Chapter 7

Estimating the Proportion of Information

Contained in Sets of Moments

7.1 Introduction

An approach for quantifying the amount of information that is contained in a set of moments

is proposed in this chapter. This information turns out to be useful in assessing how many

moments ought to be utilized when applying moment-based density estimation methodologies

such as those developed in Provost (2005) and Provost et al. (2022). To our knowledge, this

very problem has not yet been tackled in the statistical literature.

Rather than attempting to solve it directly, we will make use of a set of points that are

representative of the distribution under consideration, which is equivalent to utilizing the cor-

responding number of moments in light of the following result which appeared in Provost et

al. (2022).

Result 4 A set of n observations is uniquely determined by the first n associated sample mo-

ments.

Since the proof is rather short, it is included herein for the sake of completeness.
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Proof Let S = {x1, x2, . . . , xn}, M = {m1,m2, . . . ,mn} and mh =
∑n

i=1 xh
i /n. According to the

fundamental theorem of algebra, p(z) = a0 + a1 z + · · · + an−1 zn−1 + zn is uniquely specified by

its n roots denoted by xi, i = 1, 2, . . . , n.

Moreover, given S, the coefficients of p(x) can be expressed in terms of the sequence of

momentsM via the Newton-Girard identity. Accordingly, a given polynomial of degree n, say

p(x), can be represented as follows:

n∏
i=1

(x − xi) =
n∑

k=0

(−1)n−ken−k xk, (7.1)

where e0 = 1 and

eℓ =
n
ℓ

ℓ∑
j=1

(−1) j−1eℓ− j m j, ℓ = 1, . . . , n. (7.2)

Thus, given the first n sample moments associated with a sample of size n, one can determine

the right hand side of Equation (7.1), whose roots are precisely x1, x2, ..., xn. This establishes

that S is uniquely specified byM.

Although it follows from Result 4 that a set of n data points and its first n associated sample

moments contain exactly the same amount information, only a subset of the latter usually suf-

fices to elicit the relevant characteristics of the underlying distribution. This is indeed the case

since low-order moments are much more informative than those of higher order whereas indi-

vidual data point holds the same proportion of the total information, namely 1/n. Accordingly,

moment-based density estimation techniques ought to prove for instance more efficient than

kernel-based approaches which rely on every sample points—especially in the case of massive

data sets. As the relevant information can be conveyed by a moderate number of moments, it is

in general pertinent to make use of sample moments for modeling, classification or inference

purposes.

In this chapter, our objective consists of quantifying the relative amount of information that

a set of moments up to a certain order holds with respect to a given distribution. The proposed

methodology which is described in Section 7.3 relies on the most representative points of a
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distribution as specified in the next section. As shown is Section 7.4, the approach that is

herein advocated produces results that are consistent with expectations.

7.2 The most representative sample points of a distribution

Since there exists an equivalency between the number of observations in a random samples and

the number of sample moments available, we shall determine the information contained in a

certain number of moments via the information provided by the same number of representative

sample points with respect to a given distribution.

A representative sample of size h is determined as follows. Fang and Wang (1993) proposed

the following measure of representativeness of a sample S = {x1, x2, . . . , xh} with respect to the

distribution function F(x), which is referred to as F-discrepancy:

DF(S) = sup
x∈R
|Fh(x) − F(x)|, (7.3)

where Fh(x) denotes the empirical distribution function of S. We observe that DF(S) is in fact

the Kolmogorov-Smirnov statistic for assessing goodness-of-fit with respect to F(x). In one

dimension, {
F−1

(
2i − 1

2h

)
, i = 1, 2, . . . , h

}
constitutes the set of points having lowest F-discrepancy. In that sense, this set of points form

the most representative sample with respect to a distribution whose cdf is F(x). It is referred to

as a pseudo-random sample.

Remark. Since the information that is solely imparted by the median is not sufficient to pro-

vide a utilizable pdf estimate, the proposed methodology is initially applied to at least two

representative points of the distribution at hand. As well, we note that by letting the base

density function ψX(x) be constant in Equation (6.1), the resulting estimate is a polynomial of

degree n whose coefficients require n moments. Thus, a single point or equivalently a single
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moment would not suffice to produce a satisfactory pdf estimate as a linear function would

manifestly be inadequate. Furthermore, if a distribution happens to have δ distinct modes, one

could only proceed at first with 2δ points/moments since on implementing the moment-based

estimation technique described in Result 3 of Section 6.1, one would need a polynomial of

degree at least 2δ in order to secure a reasonably accurate density estimate. Polynomials of

lesser degrees would inevitably miss some distinctive features of the distribution at hand. For

instance, in the case of a bimodal distribution, a polynomial of degree three could not provide

an adequate pdf estimate. Although it might be of some interest to know how informative in-

dividual moments are, only the number of lower moments corresponding to a large cumulative

proportion of the information—which in most instances, is markedly larger than 2δ—would

customarily be required in applications, as higher moments could be then disregarded.

7.3 Quantifying the proportion of information contained in

sets of moments

In order to quantify the amount of information that moments are holding through the most

representative points, we make use of Fritsch-Carlson (FC) monotonic piecewise cubic in-

terpolants and the Kullback-Leibler (KL) measure of divergence. Fritsch and Carlson (1980)

proposed a method for constructing a monotone piecewise cubic interpolant for a monotone set

of points, which is suitable for approximating cdf’s. Kullback and Leibler (1951) introduced

the concept of the KL divergence, which is a measure of the mean information for discrimi-

nating between two distributions, which can be formally defined as follows: Given continuous

distributions P and Q, the KL divergence from Q to P is the following expectation with respect

to P:

KL(p || q) =
∫ ∞

−∞

p(x) log
(

p(x)
q(x)

)
dx, (7.4)
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where p(·) and q(·) denote the probability density functions corresponding to P and Q. It is also

the relative entropy from Q to P or relative entropy of P with respect to Q. Most relevant in the

context of this chapter, it is also known as the information gain from P over Q. Alternatively,

as pointed out in Burnham and Anderson (2002, p.51), KL(P||Q) represents the amount of

information lost when Q is used to approximate P.

Upper and lower bounds for the support of X, say lb and ub, are specified and added to the

n most representative points. They could be determined for instance from a preliminary kernel

density estimate. We then apply the FC interpolation technique to the following monotonic set

of cdf points:

{
{lb, 0},

{
F−1

(
1

2h

)
,

1
2h

}
,

{
F−1

(
3

2h

)
,

3
2h

}
, . . . ,

{
F−1

(
2h − 1

2h

)
,

2h − 1
2h

}
, {ub, 1}

}
(7.5)

and secure a density estimate denoted by fh(x) by taking the derivative of the FC spline which

incidentally is not a smooth function. The target density denoted by f (x) is either known or

estimated from a sample.

The KL divergence between the target density f (x) and fh(x), i.e., KL( f || fh) is used as a

criterion for determining how much more information remains to be gained with more than h

points/moments. This quantity is denoted by KL f (h).

The uniform distribution on the interval (lb, ub) denoted by f0(x) is viewed as being non

informative. Accordingly, the KL divergence between f (x) and the constant density function

f0(x), i.e., KL( f || f0) is regarded as the total information held by f (x) and is denoted by KL f c.

Then, KL f c − KL f (h) is taken to be the amount of information one can gain by making

use of the first h points/moments. Thus, the proportion of information included in the first h

moments relative to KL f c is evaluated as follows: KL f c − KL f (h)
KL f c . This quantity will increase

from 0 to nearly one as h increases.

Additionally, KL f (h) − KL f (h+s)
KL f c will be taken as the proportion of the total information that

the set of moments of orders h + 1 to h + s are holding.
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7.4 Illustrative examples

Two exact distributions and two data sets possessing distinct distributional features are consid-

ered.

7.4.1 Two exact distributions involving beta random variables

The first distribution being considered in this section is a single skewed beta distribution with

parameters (3,9), the second one being an equal mixture of two beta density functions with

parameters (7,15) and (12,8), which is a bimodal distribution. Their pdf’s are plotted in Figures

7.1 and 7.2. In both instances, the end points are 0 and 1. The Fritsch-Carlson monotonic

piecewise cubic interpolation technique is applied to the points specified in (7.5) and their

derivatives are taken to be the corresponding density estimates of the underlying density. To

visually illustrate the process, plots of the FC cdf interpolants and their derivatives are shown

for selected values of h in Figures 7.3-7.14 for the case of the single skewed beta density

function.

Figure 7.1: A single skewed beta density Figure 7.2: A mixture of two beta densities
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Figure 7.3: Estimate of the skewed beta cdf
with 2 representative points

Figure 7.4: Estimate of the skewed beta density
with 2 representative points

Figure 7.5: Estimate of the skewed beta cdf
with 3 representative points

Figure 7.6: Estimate of the skewed beta density
with 3 representative points

Figure 7.7: Estimate of the skewed beta cdf
with 4 representative points

Figure 7.8: Estimate of the skewed beta density
with 4 representative points
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Figure 7.9: Estimate of the skewed beta cdf
with 5 representative points

Figure 7.10: Estimate of the skewed beta den-
sity with 5 representative points

Figure 7.11: Estimate of the skewed beta cdf
with 10 representative points

Figure 7.12: Estimate of the skewed beta den-
sity with 10 representative points

Figure 7.13: Estimate of the skewed beta cdf
with 20 representative points

Figure 7.14: Estimate of the skewed beta den-
sity with 20 representative points



7.4. Illustrative examples 143

The proportion of information present in the first hth moments which is 1 − KL f (h)
KL f c , h =

2, 3, . . ., and that contained in each subsequent moment i.e. KL f (h−1)−KL f (h)
KL f c are respectively

plotted in Figures 7.15 and 7.16 and Figures 7.17 and 7.18. The numerical values of the

proportion of information present in the first hth moments, h = 2, 3, . . . , 20, i.e., (1− KL f (h)
KL f c ), are

included in Table 7.1 for both distributions.

For the single skewed data case, the results indicate that most of the information is con-

tained in the first two moments, which makes sense since this a simple unimodal density func-

tion. The third moment would have contained relatively more information if the distribution

had been more skewed. For the case of a mixture of two beta densities, the results indicate that

most of the information is contained in the first four moments, which is also sensible. We note

that 95% of the total information is reached with 9 points/moments in the case of the single

beta pdf whereas it takes 19 points/moments to attain this proportion in the case of the mixture

of beta pdf’s.

Figure 7.15: Proportion of information in the
first hth moments of the skewed beta density

Figure 7.16: Proportion of information in the
first hth moments of the mixture of two beta
densities
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Figure 7.17: Proportion of information held in
the first two moments and each subsequent mo-
ment of the single skewed beta density

Figure 7.18: Proportion of information held in
the first two moments and each subsequent mo-
ment of the mixture of two beta densities

h 1 − KL f (h)
KL f c for the skewed beta density 1 − KL f (h)

KL f c for the mixture of two beta densities

2 0.775253 0.540069
3 0.862104 0.675933
4 0.898833 0.779093
5 0.918207 0.823617
6 0.931244 0.853528
7 0.940637 0.873409
8 0.947738 0.888493
9 0.953299 0.900107
10 0.957775 0.909463
11 0.961457 0.917139
12 0.964541 0.923574
13 0.967162 0.929046
14 0.969417 0.933764
15 0.971379 0.937873
16 0.973102 0.941488
17 0.974626 0.944693
18 0.975985 0.947556
19 0.977205 0.950129
20 0.978305 0.952454

Table 7.1: The proportion of information present in the first hth moments for the skewed beta
density with KL f c equal to 0.748641 and for the mixture of two beta densities with KL f c
equal to 0.400459
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7.4.2 Two actual data sets

In this subsection, two real world data sets are considered. The first one is the Buffalo snowfall

data, which consists of the snowfall accumulations in inches in Buffalo, New York, from 1910

to 1972. The second one is the life expectancies in 183 countries/regions for the year 2015 as

recorded by the World Health Organisation.

First, an estimate of the target distribution, namely a kernel density estimate (KDE) in this

instance, is secured for each data sets. These KDE’s which were directly obtained from default

settings, are shown in Figures 7.19 and 7.20. Then, the end points were chosen to be the values

at which the KDE cdf’s equal 10−4 and 1 − 10−4. They are 1.70395 and 151.651 for the first

data set, and 45.1232 and 93.5663 for the second. For each set comprising the representative

points and the end points, an FC interpolating spline was constructed. To visually illustrate the

process, plots of the FC cdf interpolants and their derivatives are shown for selected values of

h in Figures 7.21-7.32 for the case of the life expectancy data.

Figure 7.19: KDE of the Buffalo snowfall data Figure 7.20: KDE of the life expectancy data
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Figure 7.21: CDF estimate of the life ex-
pectancy data with 2 representative points

Figure 7.22: Density estimate of the life ex-
pectancy data with 2 representative points

Figure 7.23: CDF estimate of the life ex-
pectancy data with 3 representative points

Figure 7.24: Density estimate of the life ex-
pectancy data with 3 representative points

Figure 7.25: CDF estimate of the life ex-
pectancy data with 4 representative points

Figure 7.26: Density estimate of the life ex-
pectancy data with 4 representative points
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Figure 7.27: CDF estimate of the life ex-
pectancy data with 5 representative points

Figure 7.28: Density estimate of the life ex-
pectancy data with 5 representative points

Figure 7.29: CDF estimate of the life ex-
pectancy data with 10 representative points

Figure 7.30: Density estimate of the life ex-
pectancy data with 10 representative points

Figure 7.31: CDF estimate of the life ex-
pectancy data with 20 representative points

Figure 7.32: Density estimate of the life ex-
pectancy data with 20 representative points

The proportion of information present in the first hth moments which is 1 − KL f (h)
KL f c , h =
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2, 3, . . ., and that contained in each subsequent moment i.e. KL f (h−1)−KL f (h)
KL f c are respectively

plotted in Figures 7.33 and 7.34 and Figures 7.35 and 7.36. The numerical values of the

proportion of information present in the first hth moments, h = 2, 3, . . . , 20, i.e., (1− KL f (h)
KL f c ), are

included in Table 7.2 for both distributions.

As expected the third moment of the life expectancy data which is skewed contains a larger

proportion of information than the third moment of the Buffalo snowfall data whose first two

moments contain relatively more information.

In all the examples, the proportion of information determined by applying the proposed

methodology is consistent with that being expected.

Figure 7.33: Proportion of information in the
first hth moments of the Buffalo snowfall data

Figure 7.34: Proportion of information in the
first hth moments of the life expectancy data

Figure 7.35: Proportion of information held in
the first two moments and each subsequent mo-
ment of the Buffalo snowfall data

Figure 7.36: Proportion of information held in
the first two moments and each subsequent mo-
ment of the life expectancy data
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h 1 − KL f (h)
KL f c for the Buffalo snowfall data 1 − KL f (h)

KL f c for the life expectancy data

2 0.829169 0.758417
3 0.858646 0.877124
4 0.886463 0.898778
5 0.905378 0.923591
6 0.922889 0.935992
7 0.937178 0.945120
8 0.947716 0.953389
9 0.955368 0.959459

10 0.961226 0.964186
11 0.965893 0.968010
12 0.969669 0.971011
13 0.972754 0.973502
14 0.975338 0.975560
15 0.977521 0.977341
16 0.979390 0.978890
17 0.980992 0.980247
18 0.982397 0.981446
19 0.983639 0.982533
20 0.984737 0.983516

Table 7.2: The proportion of information present in the first hth moments for the Buffalo snow-
fall data with KL f c equal to 0.373586 and for the life expectancy data with KL f c equal to
0.364324
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Appendix A

Mathematica Code

The Mathematica code utilized for implementing the main numerical examples presented in

this dissertation is included in this appendix.
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Chapter 2
Copula Approximation and an
Application to a Brownian Motion Process

Section 2.4
An application : Two stocks' closing prices

Subsection 2.4.1
Moment - based approach to approximating the copula density

1.data

152



GOOG = {1045.85`, 1016.06`, 1070.71`, 1068.39`, 1076.28`, 1074.66`, 1070.33`, 1057.19`,

1044.69`, 1077.15`, 1080.97`, 1089.9`, 1098.26`, 1070.52`, 1075.57`, 1073.9`,

1090.99`, 1070.08`, 1060.62`, 1089.06`, 1116.37`, 1110.75`, 1132.8`, 1145.99`,

1115.23`, 1098.71`, 1095.06`, 1095.01`, 1121.37`, 1120.16`, 1121.67`, 1113.65`,

1118.56`, 1113.8`, 1096.97`, 1110.37`, 1109.4`, 1115.13`, 1116.05`, 1119.92`,

1140.99`, 1147.8`, 1162.03`, 1157.86`, 1143.3`, 1142.32`, 1175.76`, 1193.2`,

1193.32`, 1185.55`, 1184.46`, 1184.26`, 1198.85`, 1223.97`, 1231.54`, 1205.5`,

1193.`, 1184.62`, 1173.02`, 1168.49`, 1173.31`, 1194.43`, 1200.49`, 1205.92`, 1215.`,

1207.15`, 1203.84`, 1197.25`, 1202.16`, 1204.62`, 1217.87`, 1221.1`, 1227.13`,

1236.34`, 1236.37`, 1248.84`, 1264.55`, 1256.`, 1263.45`, 1272.18`, 1287.58`,

1188.48`, 1168.08`, 1162.61`, 1185.4`, 1189.39`, 1174.1`, 1166.27`, 1162.38`,

1164.27`, 1132.03`, 1120.44`, 1164.21`, 1178.98`, 1162.3`, 1138.85`, 1149.63`,

1151.42`, 1140.77`, 1133.47`, 1134.15`, 1116.46`, 1117.95`, 1103.63`, 1036.23`,

1053.05`, 1042.22`, 1044.34`, 1066.04`, 1080.38`, 1078.72`, 1077.03`, 1088.77`,

1085.35`, 1092.5`, 1103.6`, 1102.33`, 1111.42`, 1121.88`, 1115.52`, 1086.35`,

1079.8`, 1076.01`, 1080.91`, 1097.95`, 1111.25`, 1121.58`, 1131.59`, 1116.35`,

1124.83`, 1140.48`, 1144.21`, 1144.9`, 1150.34`, 1153.58`, 1146.35`, 1146.33`,

1130.1`, 1138.07`, 1146.21`, 1137.81`, 1132.12`, 1250.41`, 1239.41`, 1225.14`,

1216.68`, 1209.01`, 1193.99`, 1152.32`, 1169.95`, 1173.99`, 1204.8`, 1188.01`,

1174.71`, 1197.27`, 1164.29`, 1167.26`, 1177.6`, 1198.45`, 1182.69`, 1191.25`,

1189.53`, 1151.29`, 1168.89`, 1167.84`, 1171.02`, 1192.85`, 1188.1`, 1168.39`,

1181.41`, 1211.38`, 1204.93`, 1204.41`, 1206.`, 1220.17`, 1234.25`, 1239.56`,

1231.3`, 1229.15`, 1232.41`, 1238.71`, 1229.93`, 1234.03`, 1218.76`, 1246.52`,

1241.39`, 1225.09`, 1219.`, 1205.1`, 1176.63`, 1187.83`, 1209.`, 1207.68`, 1189.13`,

1202.31`, 1208.67`, 1215.45`, 1217.14`, 1243.01`, 1243.64`, 1253.07`, 1245.49`,

1246.15`, 1242.8`, 1259.13`, 1260.99`, 1265.13`, 1290.`, 1262.62`, 1261.29`,

1260.11`, 1273.74`, 1291.37`, 1292.03`, 1291.8`, 1308.86`, 1311.37`, 1299.19`,

1298.8`, 1298.`, 1311.46`, 1334.87`, 1320.7`, 1315.46`, 1303.05`, 1301.35`, 1295.34`,

1306.69`, 1313.55`, 1312.99`, 1304.96`, 1289.92`, 1295.28`, 1320.54`, 1328.13`,

1340.62`, 1343.56`, 1344.66`, 1345.02`, 1350.27`, 1347.83`, 1361.17`, 1355.12`,

1352.62`, 1356.04`, 1349.59`, 1348.84`, 1343.56`, 1360.4`, 1351.89`, 1336.14`};

153



AAPL = {157.92`, 142.19`, 148.26`, 147.93`, 150.75`, 153.31`, 153.8`, 152.29`, 150.`,

153.07`, 154.94`, 155.86`, 156.82`, 153.3`, 153.92`, 152.7`, 157.76`, 156.3`,

154.68`, 165.25`, 166.44`, 166.52`, 171.25`, 174.18`, 174.24`, 170.94`, 170.41`,

169.43`, 170.89`, 170.18`, 170.8`, 170.42`, 170.93`, 172.03`, 171.06`, 172.97`,

174.23`, 174.33`, 174.87`, 173.15`, 174.97`, 175.85`, 175.53`, 174.52`, 172.5`,

172.91`, 178.9`, 180.91`, 181.71`, 183.73`, 186.12`, 188.02`, 186.53`, 188.16`,

195.09`, 191.05`, 188.74`, 186.79`, 188.47`, 188.72`, 189.95`, 191.24`, 194.02`,

195.35`, 195.69`, 197.`, 200.1`, 199.5`, 200.62`, 198.95`, 198.87`, 199.23`,

199.25`, 203.13`, 203.86`, 204.53`, 207.48`, 207.16`, 205.28`, 204.3`, 204.61`,

200.67`, 210.52`, 209.15`, 211.75`, 208.48`, 202.86`, 202.9`, 200.72`, 197.18`,

185.72`, 188.66`, 190.92`, 190.08`, 189.`, 183.09`, 186.6`, 182.78`, 179.66`,

178.97`, 178.23`, 177.38`, 178.3`, 175.07`, 173.3`, 179.64`, 182.54`, 185.22`,

190.15`, 192.58`, 194.81`, 194.19`, 194.15`, 192.74`, 193.89`, 198.45`, 197.87`,

199.46`, 198.78`, 198.58`, 195.57`, 199.8`, 199.74`, 197.92`, 201.55`, 202.73`,

204.41`, 204.23`, 200.02`, 201.24`, 203.23`, 201.75`, 203.3`, 205.21`, 204.5`,

203.35`, 205.66`, 202.59`, 207.22`, 208.84`, 208.67`, 207.02`, 207.74`, 209.68`,

208.78`, 213.04`, 208.43`, 204.02`, 193.34`, 197.`, 199.04`, 203.43`, 200.99`,

200.48`, 208.97`, 202.75`, 201.74`, 206.5`, 210.35`, 210.36`, 212.64`, 212.46`,

202.64`, 206.49`, 204.16`, 205.53`, 209.01`, 208.74`, 205.7`, 209.19`, 213.28`,

213.26`, 214.17`, 216.7`, 223.59`, 223.09`, 218.75`, 219.9`, 220.7`, 222.77`,

220.96`, 217.73`, 218.72`, 217.68`, 221.03`, 219.89`, 218.82`, 223.97`, 224.59`,

218.96`, 220.82`, 227.01`, 227.06`, 224.4`, 227.03`, 230.09`, 236.21`, 235.87`,

235.32`, 234.37`, 235.28`, 236.41`, 240.51`, 239.96`, 243.18`, 243.58`, 246.58`,

249.05`, 243.29`, 243.26`, 248.76`, 255.82`, 257.5`, 257.13`, 257.24`, 259.43`,

260.14`, 262.2`, 261.96`, 264.47`, 262.64`, 265.76`, 267.1`, 266.29`, 263.19`,

262.01`, 261.78`, 266.37`, 264.29`, 267.84`, 267.25`, 264.16`, 259.45`, 261.74`,

265.58`, 270.71`, 266.92`, 268.48`, 270.77`, 271.46`, 275.15`, 279.86`,

280.41`, 279.74`, 280.02`, 279.44`, 284.`, 284.27`, 289.91`, 289.8`, 291.52`};

Print["{Min[GOOG],Max[GOOG]}=", {Min[GOOG], Max[GOOG]}]

Print["{Min[AAPL],Max[AAPL]}=", {Min[AAPL], Max[AAPL]}]

GraphicsRow[{ListPlot[GOOG, Filling → Axis],

ListPlot[AAPL, AxesOrigin → {0, 120}, Filling → Axis]}, ImageSize → Large]

Y1 = GOOG; Y2 = AAPL;

Print["Length[Y1]=", n = Length[Y1]]

Print["{Mean[Y1],SD[Y1]}=", {m1 = Mean[Y1], sd1 = StandardDeviation[Y1]}]

Print["{Mean[Y2],SD[Y2]}=", {m2 = Mean[Y2], sd2 = StandardDeviation[Y2]}]

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

{HY = Histogram3D[Y, 15, "Probability", ColorFunction → "Rainbow", ImageSize → Medium],

ListPlot[Y, PlotStyle → {Purple}, AxesOrigin → {1000, 120}, ImageSize → Medium]}

(*Standardization*)
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X1 =
Y1 - m1

sd1
;

X2 =
Y2 - m2

sd2
;

X = Table[{X1[[i]], X2[[i]]}, {i, n}];

Print["{Min[X1],Max[X1]=", {Min[X1], Max[X1]} // N]

Print["{Min[X2],Max[X2]}=", {Min[X2], Max[X2]} // N]

edis = EmpiricalDistribution[Y];

EmpCDF = Table[CDF[edis, Y[[j]]], {j, 1, n}];

ListPlot[X, PlotStyle → {Blue}]

2. The joint density of the two variables

 = SmoothKernelDistribution[X, {"Adaptive", Automatic, .2},

"Epanechnikov", PerformanceGoal → "Quality"];

{Plot3D[Evaluate@PDF[, {x, y}], {x, -3, 3}, {y, -3, 3},

PlotRange → All, ColorFunction → "Rainbow", ImageSize → Medium],

ListPlot[X, ImageSize → Medium]}

ClearAll[ff]

ff[x_, y_] := Evaluate@PDF[, {x, y}]

l1 = -3.5; u1 = 3.5; l2 = -3.5; u2 = 3.5;

3.a The density function and the inverse cdf of the first random variable, f11 
and InvF1a

ClearAll[ff1h]

ff1h[x_] :=

ff1h[x] = NIntegrate[Evaluate@PDF[, {x, y}], {y, -3.5, 3.5}, AccuracyGoal → 5]

ta1 = Table[{u, ff1h[u]}, {u, -3.5, 3.5, 0.05}];

Table[ta1[[i]], {i, 1, Length[ta1], 5}]

ClearAll[methodfx]

methodfx[t_] := methodfx[t] = 

ClearAll[f11];

f11[x_] := Fitta1, Tablewi, {i, 0, t}, w /. w → x;

Show[

{ListPlot[ta1] , Plot[f11[u], {u, l1, u1}, PlotStyle → Red]}, PlotLabel → {t}]



Table[methodfx[5 i + j], {i, 1, 4}, {j, 1, 5}] // TableForm

155



(*choose degree=20*)

degree1 = 20;

c11 = NIntegrateFitta1, Tablewi, {i, 0, degree1}, w /. w → x, {x, l1, u1}

ClearAll[f11, F1a]

f11[x_] := f11[x] =

Fitta1, Tablewi, {i, 0, degree1}, w /. w → x

c11

F1a[x_] := F1a[x] = Integrate[f11[u], {u, l1, x}]

f11[x] // N

{Show[{ListPlot[ta1] , Plot[f11[u], {u, l1, u1}, PlotStyle → Red]},

PlotLabel → {degree1}],

Plot[F1a[x], {x, l1, u1}, PlotLabel → {"F1a"}]}

ta11 = Table[{F1a[x], x}, {x, l1, u1, 0.2}];

Table[ta11[[i]], {i, 1, Length[ta11], 5}]

it1 = Interpolation[ta11, InterpolationOrder → 1];

Show[Plot[it1[x], {x, 0, 1}, PlotStyle → Red], ListPlot[ta11]]

ClearAll[methodfx1]

methodfx1[t_] := methodfx1[t] =

ClearAll[mo, InvF1a];

mo[h_] := mo[h] = RationalizeNIntegratexh * it1[x], {x, 0, 1}, 10-300;

M2 = Table[Moment[UniformDistribution[{0, 1}], i + j], {i, 0, t}, {j, 0, t}];

μ2 = Table[mo[i], {i, 0, t}];

coe2 = Inverse[M2].μ2;

InvF1a[y_] := InvF1a[y] = 

i=1

t+1

coe2[[i]] yi-1;

Show[{Plot[InvF1a[w], {w, 0, 1}, PlotStyle → Red, PlotRange → All],

ListPlot[ta11]}, PlotLabel → {t}]

Table[methodfx1[5 i + j], {i, 1, 3}, {j, 1, 5}] // TableForm

156



(*choose degree=15*)

t = 15;

ClearAll[mo, InvF1a];

mo[h_] := mo[h] = RationalizeNIntegratexh * it1[x], {x, 0, 1}, 10-300;

M2 = Table[Moment[UniformDistribution[{0, 1}], i + j], {i, 0, t}, {j, 0, t}];

μ2 = Table[mo[i], {i, 0, t}];

coe2 = Inverse[M2].μ2;

InvF1a[y_] := InvF1a[y] = 

i=1

t+1

coe2[[i]] yi-1;

InvF1a[x] // N

Show[{Plot[InvF1a[w], {w, 0, 1}, PlotStyle → Red, PlotRange → All], ListPlot[ta11]},

PlotLabel → {t}]

3.bThe density function and the inverse cdf of the second random variable, 
f22 and InvF2a

ClearAll[ff2h]

ff2h[y_] :=

ff2h[y] = NIntegrate[Evaluate@PDF[, {x, y}], {x, -3.5, 3.5}, AccuracyGoal → 5]

ta2 = Table[{u, ff2h[u]}, {u, -3.5, 3.5, 0.1}];

Table[ta2[[i]], {i, 1, Length[ta2], 5}]

{{-3.5, 0.}, {-3., 0.}, {-2.5, 0.}, {-2., 0.018962}, {-1.5, 0.144438},

{-1., 0.321815}, {-0.5, 0.376445}, {0., 0.566495}, {0.5, 0.186357}, {1., 0.103897},

{1.5, 0.189698}, {2., 0.102735}, {2.5, 0.0284651}, {3., 0.}, {3.5, 0.}}

ClearAll[methodfy]

methodfy[t_] := methodfy[t] = 

ClearAll[f22];

f22[x_] := Fitta2, Tablewi, {i, 0, t}, w /. w → x;

Show[

{ListPlot[ta2] , Plot[f22[u], {u, l1, u1}, PlotStyle → Red]}, PlotLabel → {t}]



Table[methodfy[5 i + j], {i, 1, 4}, {j, 1, 5}] // TableForm
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(*choose degree=20*)

degree2 = 20;

c22 = NIntegrateFitta2, Tablewi, {i, 0, degree2}, w /. w → x, {x, l1, u1}

ClearAll[f22, F2a]

f22[x_] := f22[x] =

Fitta2, Tablewi, {i, 0, degree2}, w /. w → x

c22

F2a[x_] := F2a[x] = Integrate[f22[u], {u, l1, x}]

f22[x] // N

{Show[{ListPlot[ta2] , Plot[f22[u], {u, l1, u1}, PlotStyle → Red]},

PlotLabel → {degree2}],

Plot[F2a[x], {x, l1, u1}, PlotLabel → {"F2a"}]}

ta22 = Table[{F2a[x], x}, {x, l1, u1, 0.2}];

Table[ta22[[i]], {i, 1, Length[ta22], 5}]

it2 = Interpolation[ta22, InterpolationOrder → 1];

Show[Plot[it2[x], {x, 0, 1}, PlotStyle → Red], ListPlot[ta22]]

ClearAll[methodfy2]

methodfy2[t_] := methodfy2[t] =

ClearAll[mo, InvF2a];

mo[h_] := mo[h] = RationalizeNIntegratexh * it2[x], {x, 0, 1}, 10-300;

M2 = Table[Moment[UniformDistribution[{0, 1}], i + j], {i, 0, t}, {j, 0, t}];

μ2 = Table[mo[i], {i, 0, t}];

coe2 = Inverse[M2].μ2;

InvF2a[y_] := InvF2a[y] = 

i=1

t+1

coe2[[i]] yi-1;

Show[{Plot[InvF2a[w], {w, 0, 1}, PlotStyle → Red, PlotRange → All],

ListPlot[ta22]}, PlotLabel → {t}]

Table[methodfy2[5 i + j], {i, 1, 3}, {j, 1, 5}] // TableForm

158



(*choose degree=15*)

t = 15;

ClearAll[mo, InvF2a];

mo[h_] := mo[h] = RationalizeNIntegratexh * it2[x], {x, 0, 1}, 10-300;

M2 = Table[Moment[UniformDistribution[{0, 1}], i + j], {i, 0, t}, {j, 0, t}];

μ2 = Table[mo[i], {i, 0, t}];

coe2 = Inverse[M2].μ2;

InvF2a[y_] := InvF2a[y] = 

i=1

t+1

coe2[[i]] yi-1;

InvF2a[x] // N

Show[{Plot[InvF2a[w], {w, 0, 1}, PlotStyle → Red, PlotRange → All], ListPlot[ta22]},

PlotLabel → {t}]

4. The copula density

ClearAll[cpdfa]

cpdfa[r_, s_] :=

cpdfa[r, s] = (ff[InvF1a[r], InvF2a[s]]) / (f11[InvF1a[r]] * f22[InvF2a[s]]);

pcpdfa = ListPlot3D[Flatten[Table[{r, s, cpdfa[r, s]},

{r, 2 / 100, 96 / 100, 1 / 100}, {s, 2 / 100, 96 / 100, 1 / 100}], 1],

ColorFunction → "Rainbow", PlotRange → {-.3, 12}, ImageSize → Medium]

Bernstein' s empirical copula has very similar features

5. Approximating the copula density with a moment - based bivariate 
polynomial

ClearAll[jm, f3, mm2]

jm[m_, n_] := jm[m, n] = RationalizeNIntegraterm * sn * cpdfa[r, s],

{r, 0, 1}, {s, 0, 1}, Method → "QuasiMonteCarlo", 10-10;

Needs["MultivariateStatistics`"];

Off[MLE::shdw]; Off[Inner::"normal"];

Off[NIntegrate::izero]; Off[NIntegrate::"slwcon"];

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

mm2[r_, s_] := mm2[r, s] =
1

(r + 1) (s + 1)
;

(*mm2[r_,s_]:=mm2[r,s]=Moment[UniformDistribution[{{0,1},{0,1}}],{r,s}]*)

mm2[0, 0] = 1;

(*Show some degrees*)
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ClearAll[method]

method[t_] := method[t] = 

L3 = Flatten[Table[{j, i}, {i, 0, t}, {j, 0, t}], 1];

P3 = Tablef3[L3[[i]], L3[[j]]], i, 1, (t + 1)2
, j, 1, (t + 1)2 ;

M4 = RationalizeTable[mm2[P3[[i, j]][[1]], P3[[i, j]][[2]]],

{i, Length[L3]}, {j, Length[L3]}], 10-25;

ClearAll[Zv1, Gms, t50, t5];

Zv1[x_, y_] := Zv[x, y] = Flatten[Table[x^j y^i, {i, 0, t}, {j, 0, t}], 1];

Gms[i_] := Gms[i] = jm [L3[[i, 1]], L3[[i, 2]]];

μ = Table[Gms[i], {i, Dimensions[L3][[1]]}];

c4 = Inverse[M4].μ;

t50[x_, y_] := t50[x, y] = c4.Zv1[x, y];

(*remove negative parts and renormalize*)

Print["tc=",

tc = NIntegrate[If[t50[x, y] > 0, t50[x, y], 0], {x, 0, 1}, {y, 0, 1}]];

t5[x_, y_] := t5[x, y] = If[t50[x, y] > 0, t50[x, y], 0] / tc;

{ListPlot3D[Flatten[Table[{r, s, t5[r, s]}, {r, 1 / 100, 99 / 100, 1 / 100},

{s, 1 / 100, 99 / 100, 1 / 100}], 1], ColorFunction → "Rainbow",

PlotLabel → {t}, PlotRange → {All, 12}, ImageSize → Medium], pcpdfa}



result = AbsoluteTiming[Quiet[method[2]]];

Print["AbsoluteTiming=", result[[1]]]

result[[2]]

Repeat with other degrees, degree 7 is selected as the optimal

result = AbsoluteTiming[Quiet[method[7]]];

Print["AbsoluteTiming=", result[[1]]]

result[[2]]

Eliminate the unwanted fluctuations
Obtain a parallelogram support, based on the centered copula points

SeedRandom[0];

X1r = X1 + FlattenTable[RandomReal[-1, 1], {i, 1, Length[X1]}] * 10-8
;

X2r = X2 + FlattenTable[RandomReal[-1, 1], {i, 1, Length[X2]}] * 10-8
;

DuplicateFreeQ[X1r]

DuplicateFreeQ[X2r]

p1 = Position[Sort[X1r], #] & /@ X1r // Flatten;

p2 = Position[Sort[X2r], #] & /@ X2r // Flatten;

n = Length[X1];

ccp = Table
1

n
p1[[i]] -

1

2 n
,
1

n
p2[[i]] -

1

2 n
, {i, n};

ListPlot[ccp]

2. Obtain the parallelogram support of the ccps
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me1 = 

j=1

n

ccp[[j, 1]] / n;

me2 = 

j=1

n

ccp[[j, 2]] / n;

Var =
1

(n - 1)
Sum(ccp[[j, 1]] - me1)2, {j, n},

Sum[(ccp[[j, 1]] - me1) (ccp[[j, 2]] - me2), {j, n}],

Sum[(ccp[[j, 1]] - me1) (ccp[[j, 2]] - me2), {j, n}],

Sum(ccp[[j, 2]] - me2)2, {j, n};

Vhi = MatrixPower[Var, -1 / 2];

Print["Vhi=", Vhi // MatrixForm]

Vh = MatrixPower[Var, 1 / 2];

Print["Vh=", Vh // MatrixForm]

detVhi = Det[Vhi] // N;

V1 = Var[[1, 1]];

V2 = Var[[2, 2]];

sccp1 = Vhi[[1, 1]] (ccp[[All, 1]] - ConstantArray[me1, n]) +

Vhi[[1, 2]] (ccp[[All, 2]] - ConstantArray[me2, n]) // N;

sccp2 = Vhi[[2, 1]] (ccp[[All, 1]] - ConstantArray[me1, n]) +

Vhi[[2, 2]] (ccp[[All, 2]] - ConstantArray[me2, n]) // N;

sccp = Table[{sccp1[[i]], sccp2[[i]]}, {i, n}];

ksccp1 = SmoothKernelDistribution[sccp1, "Silverman"];

ksccp2 = SmoothKernelDistribution[sccp2, "Silverman"];

pk1 = Plot[PDF[ksccp1, x], {x, -4, 4}, PlotRange → All];

pk2 = Plot[PDF[ksccp2, x], {x, -4, 4}, PlotRange → All];

{pk1, pk2}

{a1, a2} = {Round[FindRoot[PDF[ksccp1, x] == 0.001, {x, -2.5}][[1, 2]], 0.01],

Round[FindRoot[PDF[ksccp1, x] ⩵ 0.001, {x, 2}][[1, 2]], 0.01]}

{b1, b2} = {Round[FindRoot[PDF[ksccp2, x] == 0.001, {x, -2}][[1, 2]], 0.01],

Round[FindRoot[PDF[ksccp2, x] ⩵ 0.001, {x, 1.5}][[1, 2]], 0.01]}

s11 = Vh[[1, 1]];

s12 = Vh[[1, 2]];

s21 = Vh[[2, 1]];

s22 = Vh[[2, 2]];
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Clear[s1, s2, s3, s4]

s1[x_] :=
s22

s12
x - s11 * s22 - s122

a1

s12
+ me2 -

s22

s12
me1

s2[x_] :=
s12

s11
x - s11 * s22 - s122

b1

s11
+ me2 -

s12

s11
me1

s3[x_] :=
s22

s12
x - s11 * s22 - s122

a2

s12
+ me2 -

s22

s12
me1

s4[x_] :=
s12

s11
x - s11 * s22 - s122

b2

s11
+ me2 -

s12

s11
me1

ps1 = Plot[s1[x], {x, -2.5, 2.5}, PlotStyle → Red];

ps2 = Plot[s2[x], {x, -2.5, 2.5}, PlotStyle → Blue];

ps3 = Plot[s3[x], {x, -2.5, 2.5}, PlotStyle → Green];

ps4 = Plot[s4[x], {x, -2.5, 2.5}, PlotStyle → Orange];

Show[ps1, ps2, ps3, ps4]

Clear[DI]

DI[x_, y_] := If[y ≤ s1[x] && y ≤ s2[x] && y ≥ s3[x] && y ≥ s4[x], 1, 0]

Plot3D[DI[x, y], {x, -1, 2}, {y, -1, 2}, Mesh → All,

PlotStyle → Cyan(*,PlotPoints→50,MaxRecursion→10*)]

t = 7;

L3 = Flatten[Table[{j, i}, {i, 0, t}, {j, 0, t}], 1];

P3 = Tablef3[L3[[i]], L3[[j]]], i, 1, (t + 1)2
, j, 1, (t + 1)2 ;

M4 = RationalizeTable[mm2[P3[[i, j]][[1]], P3[[i, j]][[2]]],

{i, Length[L3]}, {j, Length[L3]}], 10-25;

ClearAll[Zv1, Gms, t50, t5];

Zv1[x_, y_] := Zv[x, y] = Flatten[Table[x^j y^i, {i, 0, t}, {j, 0, t}], 1];

Gms[i_] := Gms[i] = jm [L3[[i, 1]], L3[[i, 2]]];

μ = Table[Gms[i], {i, Dimensions[L3][[1]]}];

c4 = Inverse[M4].μ;

t50[x_, y_] := t50[x, y] = c4.Zv1[x, y];

(*remove negative parts and renormalize*)

(*Print["tc=",tc=NIntegrate[If[t50[x,y]>0,t50[x,y],0],{x,0,1},{y,0,1}]];*)

t5[x_, y_] := t5[x, y] = If[t50[x, y] > 0, t50[x, y], 0](*/tc*);

{ListPlot3D[Flatten[Table[{r, s, t5[r, s]}, {r, 2 / 100, 96 / 100, 1 / 100},

{s, 2 / 100, 96 / 100, 1 / 100}], 1], ColorFunction → "Rainbow",

PlotLabel → {t}, PlotRange → All, ImageSize → Medium], pcpdfa}

ListPlot3D[Flatten[Table[{r, s, t5[r, s] * DI[r, s]},

{r, 2 / 100, 96 / 100, 1 / 100}, {s, 2 / 100, 96 / 100, 1 / 100}], 1],

ColorFunction → "Rainbow", PlotLabel → {t}, PlotRange → {0, 12}, ImageSize → Medium]
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Subsection 2.4.2
Determining the marginals separately and using ‘InverseFunction’

l1 = -3.5; u1 = 3.5; l2 = -3.5; u2 = 3.5;

k1 = SmoothKernelDistribution[X1, .6, "Triweight"];

k2 = SmoothKernelDistribution[X2, .6, "Triweight"];

ClearAll[f11, f22, InvF1a, InvF2a]

f11[x_] := PDF[k1, x]

f22[x_] := PDF[k2, x]

InvF1a[r_] := InverseFunction[CDF[k1, #] &][r]

InvF2a[s_] := InverseFunction[CDF[k2, #] &][s]

{Plot[PDF[k1, x], {x, l1, u1}],

Plot[PDF[k2, y], {y, l2, u2}]}

{Plot[InvF1a[r], {r, 0, 1}],

Plot[InvF2a[r], {r, 0, 1}]}

ClearAll[cpdfa]

cpdfa[r_, s_] :=

cpdfa[r, s] = (ff[InvF1a[r], InvF2a[s]]) / (f11[InvF1a[r]] * f22[InvF2a[s]]);

ListPlot3D[Flatten[Table[{r, s, cpdfa[r, s]},

{r, 2 / 100, 96 / 100, 1 / 100}, {s, 2 / 100, 96 / 100, 1 / 100}], 1],

PlotRange → All, ImageSize → Medium, ColorFunction → "Rainbow"]

Section 2.5
Parallelograms as domains for joint density functions

1. data
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GOOG = {1045.85`, 1016.06`, 1070.71`, 1068.39`, 1076.28`, 1074.66`, 1070.33`, 1057.19`,

1044.69`, 1077.15`, 1080.97`, 1089.9`, 1098.26`, 1070.52`, 1075.57`, 1073.9`,

1090.99`, 1070.08`, 1060.62`, 1089.06`, 1116.37`, 1110.75`, 1132.8`, 1145.99`,

1115.23`, 1098.71`, 1095.06`, 1095.01`, 1121.37`, 1120.16`, 1121.67`, 1113.65`,

1118.56`, 1113.8`, 1096.97`, 1110.37`, 1109.4`, 1115.13`, 1116.05`, 1119.92`,

1140.99`, 1147.8`, 1162.03`, 1157.86`, 1143.3`, 1142.32`, 1175.76`, 1193.2`,

1193.32`, 1185.55`, 1184.46`, 1184.26`, 1198.85`, 1223.97`, 1231.54`, 1205.5`,

1193.`, 1184.62`, 1173.02`, 1168.49`, 1173.31`, 1194.43`, 1200.49`, 1205.92`, 1215.`,

1207.15`, 1203.84`, 1197.25`, 1202.16`, 1204.62`, 1217.87`, 1221.1`, 1227.13`,

1236.34`, 1236.37`, 1248.84`, 1264.55`, 1256.`, 1263.45`, 1272.18`, 1287.58`,

1188.48`, 1168.08`, 1162.61`, 1185.4`, 1189.39`, 1174.1`, 1166.27`, 1162.38`,

1164.27`, 1132.03`, 1120.44`, 1164.21`, 1178.98`, 1162.3`, 1138.85`, 1149.63`,

1151.42`, 1140.77`, 1133.47`, 1134.15`, 1116.46`, 1117.95`, 1103.63`, 1036.23`,

1053.05`, 1042.22`, 1044.34`, 1066.04`, 1080.38`, 1078.72`, 1077.03`, 1088.77`,

1085.35`, 1092.5`, 1103.6`, 1102.33`, 1111.42`, 1121.88`, 1115.52`, 1086.35`,

1079.8`, 1076.01`, 1080.91`, 1097.95`, 1111.25`, 1121.58`, 1131.59`, 1116.35`,

1124.83`, 1140.48`, 1144.21`, 1144.9`, 1150.34`, 1153.58`, 1146.35`, 1146.33`,

1130.1`, 1138.07`, 1146.21`, 1137.81`, 1132.12`, 1250.41`, 1239.41`, 1225.14`,

1216.68`, 1209.01`, 1193.99`, 1152.32`, 1169.95`, 1173.99`, 1204.8`, 1188.01`,

1174.71`, 1197.27`, 1164.29`, 1167.26`, 1177.6`, 1198.45`, 1182.69`, 1191.25`,

1189.53`, 1151.29`, 1168.89`, 1167.84`, 1171.02`, 1192.85`, 1188.1`, 1168.39`,

1181.41`, 1211.38`, 1204.93`, 1204.41`, 1206.`, 1220.17`, 1234.25`, 1239.56`,

1231.3`, 1229.15`, 1232.41`, 1238.71`, 1229.93`, 1234.03`, 1218.76`, 1246.52`,

1241.39`, 1225.09`, 1219.`, 1205.1`, 1176.63`, 1187.83`, 1209.`, 1207.68`, 1189.13`,

1202.31`, 1208.67`, 1215.45`, 1217.14`, 1243.01`, 1243.64`, 1253.07`, 1245.49`,

1246.15`, 1242.8`, 1259.13`, 1260.99`, 1265.13`, 1290.`, 1262.62`, 1261.29`,

1260.11`, 1273.74`, 1291.37`, 1292.03`, 1291.8`, 1308.86`, 1311.37`, 1299.19`,

1298.8`, 1298.`, 1311.46`, 1334.87`, 1320.7`, 1315.46`, 1303.05`, 1301.35`, 1295.34`,

1306.69`, 1313.55`, 1312.99`, 1304.96`, 1289.92`, 1295.28`, 1320.54`, 1328.13`,

1340.62`, 1343.56`, 1344.66`, 1345.02`, 1350.27`, 1347.83`, 1361.17`, 1355.12`,

1352.62`, 1356.04`, 1349.59`, 1348.84`, 1343.56`, 1360.4`, 1351.89`, 1336.14`};
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AAPL = {157.92`, 142.19`, 148.26`, 147.93`, 150.75`, 153.31`, 153.8`, 152.29`, 150.`,

153.07`, 154.94`, 155.86`, 156.82`, 153.3`, 153.92`, 152.7`, 157.76`, 156.3`,

154.68`, 165.25`, 166.44`, 166.52`, 171.25`, 174.18`, 174.24`, 170.94`, 170.41`,

169.43`, 170.89`, 170.18`, 170.8`, 170.42`, 170.93`, 172.03`, 171.06`, 172.97`,

174.23`, 174.33`, 174.87`, 173.15`, 174.97`, 175.85`, 175.53`, 174.52`, 172.5`,

172.91`, 178.9`, 180.91`, 181.71`, 183.73`, 186.12`, 188.02`, 186.53`, 188.16`,

195.09`, 191.05`, 188.74`, 186.79`, 188.47`, 188.72`, 189.95`, 191.24`, 194.02`,

195.35`, 195.69`, 197.`, 200.1`, 199.5`, 200.62`, 198.95`, 198.87`, 199.23`,

199.25`, 203.13`, 203.86`, 204.53`, 207.48`, 207.16`, 205.28`, 204.3`, 204.61`,

200.67`, 210.52`, 209.15`, 211.75`, 208.48`, 202.86`, 202.9`, 200.72`, 197.18`,

185.72`, 188.66`, 190.92`, 190.08`, 189.`, 183.09`, 186.6`, 182.78`, 179.66`,

178.97`, 178.23`, 177.38`, 178.3`, 175.07`, 173.3`, 179.64`, 182.54`, 185.22`,

190.15`, 192.58`, 194.81`, 194.19`, 194.15`, 192.74`, 193.89`, 198.45`, 197.87`,

199.46`, 198.78`, 198.58`, 195.57`, 199.8`, 199.74`, 197.92`, 201.55`, 202.73`,

204.41`, 204.23`, 200.02`, 201.24`, 203.23`, 201.75`, 203.3`, 205.21`, 204.5`,

203.35`, 205.66`, 202.59`, 207.22`, 208.84`, 208.67`, 207.02`, 207.74`, 209.68`,

208.78`, 213.04`, 208.43`, 204.02`, 193.34`, 197.`, 199.04`, 203.43`, 200.99`,

200.48`, 208.97`, 202.75`, 201.74`, 206.5`, 210.35`, 210.36`, 212.64`, 212.46`,

202.64`, 206.49`, 204.16`, 205.53`, 209.01`, 208.74`, 205.7`, 209.19`, 213.28`,

213.26`, 214.17`, 216.7`, 223.59`, 223.09`, 218.75`, 219.9`, 220.7`, 222.77`,

220.96`, 217.73`, 218.72`, 217.68`, 221.03`, 219.89`, 218.82`, 223.97`, 224.59`,

218.96`, 220.82`, 227.01`, 227.06`, 224.4`, 227.03`, 230.09`, 236.21`, 235.87`,

235.32`, 234.37`, 235.28`, 236.41`, 240.51`, 239.96`, 243.18`, 243.58`, 246.58`,

249.05`, 243.29`, 243.26`, 248.76`, 255.82`, 257.5`, 257.13`, 257.24`, 259.43`,

260.14`, 262.2`, 261.96`, 264.47`, 262.64`, 265.76`, 267.1`, 266.29`, 263.19`,

262.01`, 261.78`, 266.37`, 264.29`, 267.84`, 267.25`, 264.16`, 259.45`, 261.74`,

265.58`, 270.71`, 266.92`, 268.48`, 270.77`, 271.46`, 275.15`, 279.86`,

280.41`, 279.74`, 280.02`, 279.44`, 284.`, 284.27`, 289.91`, 289.8`, 291.52`};

Print["{Min[GOOG],Max[GOOG]}=", {Min[GOOG], Max[GOOG]}]

Print["{Min[AAPL],Max[AAPL]}=", {Min[AAPL], Max[AAPL]}]

GraphicsRow[{ListPlot[GOOG, Filling → Axis],

ListPlot[AAPL, AxesOrigin → {0, 120}, Filling → Axis]}, ImageSize → Large]

Y1 =
GOOG - Mean[GOOG]

StandardDeviation[GOOG]
; Y2 =

AAPL - Mean[AAPL]

StandardDeviation[AAPL]
;

Print["Length[Y1]=", n = Length[Y1]]

Print["{Mean[Y1],SD[Y1]}=", {m1 = Mean[Y1], sd1 = StandardDeviation[Y1]}]

Print["{Mean[Y2],SD[Y2]}=", {m2 = Mean[Y2], sd2 = StandardDeviation[Y2]}]

{Min[Y1] - StandardDeviation[Y1], Max[Y1] + StandardDeviation[Y1]}

{Min[Y2] - StandardDeviation[Y2], Max[Y2] + StandardDeviation[Y2]}

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

{HY = Histogram3D[Y, 15, "Probability", ColorFunction → "Rainbow"],

ListPlot[Y, PlotStyle → {Purple}]}

2. Obtain the parallelogram support of the joint density of (Y1, Y2)
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me1 = 

j=1

n

Y1[[j]] / n;

me2 = 

j=1

n

Y2[[j]] / n;

Var =

1

(n - 1)
Sum(Y1[[j]] - me1)2, {j, n}, Sum[(Y1[[j]] - me1) (Y2[[j]] - me2), {j, n}],

Sum[(Y1[[j]] - me1) (Y2[[j]] - me2), {j, n}], Sum(Y2[[j]] - me2)2, {j, n};

Vhi = MatrixPower[Var, -1 / 2];

Print["Vhi=", Vhi // MatrixForm]

Vh = MatrixPower[Var, 1 / 2];

Print["Vh=", Vh // MatrixForm]

detVhi = Det[Vhi] // N;

V1 = Var[[1, 1]];

V2 = Var[[2, 2]];

X1 = Vhi[[1, 1]] (Y1 - ConstantArray[me1, n]) +

Vhi[[1, 2]] (Y2 - ConstantArray[me2, n]) // N;

X2 = Vhi[[2, 1]] (Y1 - ConstantArray[me1, n]) +

Vhi[[2, 2]] (Y2 - ConstantArray[me2, n]) // N;

X = Table[{X1[[i]], X2[[i]]}, {i, n}];

kX1 = SmoothKernelDistribution[X1, "Silverman"];

kX2 = SmoothKernelDistribution[X2, "Silverman"];

pk1 = Plot[PDF[kX1, x], {x, -4, 4}, PlotRange → All];

pk2 = Plot[PDF[kX2, x], {x, -4, 4}, PlotRange → All];

{pk1, pk2}

{a1, a2} = {Round[FindRoot[PDF[kX1, x] == 0.001, {x, -3}][[1, 2]], 0.01],

Round[FindRoot[PDF[kX1, x] ⩵ 0.001, {x, 2}][[1, 2]], 0.01]}

(*Let the domain for X1 be {-3.26,3.04}*)

{b1, b2} = {Round[FindRoot[PDF[kX2, x] == 0.001, {x, -2}][[1, 2]], 0.01],

Round[FindRoot[PDF[kX2, x] ⩵ 0.001, {x, 2}][[1, 2]], 0.01]}

(*Let the domain for X2 be {-2.46,3.09}*)

s11 = Vh[[1, 1]];

s12 = Vh[[1, 2]];

s21 = Vh[[2, 1]];

s22 = Vh[[2, 2]];
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Clear[s1, s2, s3, s4]

s1[x_] :=
s22

s12
x - s11 * s22 - s122

a1

s12
+ me2 -

s22

s12
me1

s2[x_] :=
s12

s11
x - s11 * s22 - s122

b1

s11
+ me2 -

s12

s11
me1

s3[x_] :=
s22

s12
x - s11 * s22 - s122

a2

s12
+ me2 -

s22

s12
me1

s4[x_] :=
s12

s11
x - s11 * s22 - s122

b2

s11
+ me2 -

s12

s11
me1

ps1 = Plot[s1[x], {x, -5, 5}, PlotStyle → Red];

ps2 = Plot[s2[x], {x, -5, 5}, PlotStyle → Blue];

ps3 = Plot[s3[x], {x, -5, 5}, PlotStyle → Green];

ps4 = Plot[s4[x], {x, -5, 5}, PlotStyle → Orange];

Show[ps1, ps2, ps3, ps4]

Clear[DI]

DI[x_, y_] := If[y ≤ s1[x] && y ≤ s2[x] && y ≥ s3[x] && y ≥ s4[x], 1, 0]

Plot3D[DI[x, y], {x, -5, 5}, {y, -5, 5}, Mesh → All,

PlotStyle → Cyan(*,PlotPoints→50,MaxRecursion→10*)]

3. Determine the joint density of (Y1, Y2) on the parallelogram support

 = SmoothKernelDistribution[Y, {"Adaptive", Automatic, .2},

"Epanechnikov", PerformanceGoal → "Quality"];

(*set domain for Y1,Y2 and renormalize*)

cff = Quiet[NIntegrate[PDF[, {x, y}] * DI[x, y],

{x, -5, 5}, {y, -5, 5}, Method → "QuasiMonteCarlo"]]

ClearAll[ff]

ff[x_, y_] := Evaluate@PDF[, {x, y}] * DI[x, y] / cff

{Plot3D[Evaluate@PDF[, {x, y}],

{x, Min[Y1] - StandardDeviation[Y1], Max[Y1] + StandardDeviation[Y1]},

{y, Min[Y2] - StandardDeviation[Y2], Max[Y2] + StandardDeviation[Y2]},

PlotRange → All, PlotStyle → Cyan, ImageSize → Medium],

Plot3D[ff[x, y], {x, Min[Y1] - StandardDeviation[Y1],

Max[Y1] + StandardDeviation[Y1]},

{y, Min[Y2] - StandardDeviation[Y2], Max[Y2] + StandardDeviation[Y2]},

PlotRange → All, PlotStyle → Cyan, ImageSize → Medium]}

4. Marginal Densities and their Inverse CDFs

k1 = SmoothKernelDistribution[Y1, 0.6, "Triweight"];

k2 = SmoothKernelDistribution[Y2, .6, "Triweight"];

{Pk1 = Plot[PDF[k1, x], {x, Min[Y1] - StandardDeviation[Y1],

Max[Y1] + StandardDeviation[Y1]}, PlotRange → Full],

Pk2 = Plot[PDF[k2, y], {y, Min[Y2] - StandardDeviation[Y2],

Max[Y2] + StandardDeviation[Y2]}, PlotRange → Full]}
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ClearAll[f11, f22, InvF1a, InvF2a]

f11[x_] := PDF[k1, x]

f22[x_] := PDF[k2, x]

InvF1a[r_] := InverseFunction[CDF[k1, #] &][r]

InvF2a[s_] := InverseFunction[CDF[k2, #] &][s]

{Plot[InvF1a[x], {x, 0, 1}, PlotRange → All],

Plot[InvF2a[x], {x, 0, 1}, PlotRange → All]}

5. The copula density

ClearAll[cpdfa]

cpdfa[r_, s_] :=

cpdfa[r, s] = (ff[InvF1a[r], InvF2a[s]]) / (f11[InvF1a[r]] * f22[InvF2a[s]]);

cp0 = ListPlot3D[Flatten[Table[{r, s, cpdfa[r, s]},

{r, 2 / 100, 96 / 100, 1 / 100}, {s, 2 / 100, 96 / 100, 1 / 100}], 1],

ColorFunction → "Rainbow", PlotRange → {-.3, 12}, ImageSize → Medium]

Section 2.6
Copula associated with a Brownian motion process and 
its running maximum

(*1. Data generated using the Air Canada stock prices*)
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X = {25.83`, 25.11`, 26.69`, 26.72`, 26.66`, 26.77`, 26.54`, 27.22`, 27.53`, 27.57`,

28.04`, 28.34`, 28.28`, 28.46`, 27.98`, 27.98`, 28.44`, 28.54`, 28.61`, 28.93`,

29.24`, 29.67`, 30.22`, 30.28`, 31.21`, 31.32`, 31.18`, 31.36`, 31.68`, 31.69`,

31.64`, 31.98`, 33.15`, 33.02`, 32.89`, 33.3`, 33.14`, 33.4`, 33.92`, 34.27`,

33.11`, 34, 33.6`, 33.02`, 32.78`, 33, 33.16`, 33.36`, 32.04`, 32.01`, 31.89`,

31.66`, 31.42`, 31.75`, 31.44`, 31.46`, 31.61`, 30.96`, 31.92`, 32.2`, 32.13`,

32.21`, 33.56`, 33.58`, 33.49`, 33.03`, 32.98`, 32.88`, 32.32`, 32.37`, 32.79`,

32.53`, 31.95`, 31.66`, 32.24`, 32.59`, 32.14`, 31.57`, 31.45`, 32.06`,

31.82`, 31.95`, 32.16`, 32.87`, 32.57`, 33.62`, 35.28`, 35.5`, 36.3`, 35.87`,

36.21`, 38.21`, 38.8`, 38.88`, 40.4`, 40.86`, 40.78`, 39.72`, 39.49`, 40.43`,

41.22`, 40.72`, 40.51`, 40.35`, 39.9`, 39.16`, 39.41`, 39.34`, 39.03`, 39.08`,

38.62`, 39.97`, 39.8`, 39.88`, 39.99`, 39.54`, 39.54`, 40.73`, 39.46`, 40,

40.17`, 39.5`, 39.36`, 40.6`, 39.69`, 40.6`, 41.06`, 41.89`, 41.73`, 41.49`,

40.76`, 41.76`, 41.88`, 42.51`, 42.87`, 43.35`, 43.45`, 44.32`, 44.21`, 44.1`,

44.22`, 44.5`, 44.07`, 45.55`, 45.09`, 46.69`, 45.41`, 44.98`, 44.41`, 44.16`,

43.31`, 44.47`, 44.5`, 43.76`, 43.5`, 42.32`, 41.86`, 43.58`, 43.67`, 43.21`,

44.21`, 43.9`, 43.1`, 42.45`, 42.71`, 42.69`, 43.55`, 44.75`, 43.62`, 43.57`,

44.09`, 44.56`, 44, 42.38`, 42.7`, 42.91`, 43.13`, 41.81`, 44.01`, 43.4`,

43.03`, 42.75`, 43.04`, 43, 43.13`, 43.14`, 42.95`, 43.21`, 43.12`, 42.54`,

43.1`, 43.27`, 43.24`, 42.88`, 43.66`, 44.81`, 45.55`, 45.63`, 45.38`, 45.54`,

45.26`, 46.23`, 45.43`, 45.73`, 46.01`, 45.99`, 45.72`, 47.42`, 46.56`, 46.9`,

46.99`, 47.28`, 47.06`, 48.6`, 47.33`, 48.63`, 48.13`, 48.56`, 48.87`, 49.3`,

49.36`, 49.56`, 49.88`, 49.75`, 49.45`, 49.17`, 49.85`, 50.54`, 50.2`, 50.64`,

50.05`, 49.47`, 49.37`, 49.2`, 49.19`, 49.03`, 48.87`, 48.56`, 49.39`, 48.8`,

49.5`, 49.88`, 50.33`, 50.01`, 49.35`, 49.7`, 49.69`, 49.6`, 49.68`, 48.85`};

Print["length=", t = Length[X]]

To relate the data to a standard Wiener process, the first data point should be 0,  the  differences  
between successive observations should ideally often change signs and have a variance of one  
and there should be one unit of time between successive observations (as was assumed). Hence 
the following transformation. 

data = (X - X[[1]]) / StandardDeviation[Table[X[[i + 1]] - X[[i]], {i, t - 1}]];

ListPlot[data, Filling → Axis]

dd = Table[data[[i + 1]] - data[[i]], {i, t - 1}];

Print["max[dd]=", Max[dd]]

Print["var[dd]=", Variance[dd]]

n = Length[data];

(*1.1 The first variable is the data after the transformation, a1*)

a1 = data;

Print["{mean[a1],var[a1]}=", {mn = Mean[a1], va = Variance[a1]}]

Print["{min[a1],max[a1]}=", {Min[a1], Max[a1]}]

{mean[a1],var[a1]}={21.7377, 120.204}

{min[a1],max[a1]}={-1.13638, 39.1579}

(*1.2 The second variable is the running maximum, mc*)
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ClearAll[mc]

mc[j_] := Max[Table[a1[[i]], {i, 1, j}]]

tmc = Table[mc[j], {j, n}];

Print["{mean[tmc],var[tmc]}=", {Mean[tmc], Variance[tmc]}]

Print["{min[tmc],max[tmc]}=", {Min[tmc], Max[tmc]}]

ListPlot[tmc, Filling → Axis]

(*1.3 The bivariate data, pa*)

pa = Table[{a1[[j]], mc[j]}, {j, n}];

(*2. The joint density of the two variables*)

ListPlot[pa]

 = SmoothKernelDistribution[pa, Automatic, "Triweight", PerformanceGoal → "Quality"];

{Plot3D[PDF[, {x, y}], {x, -10, 50}, {y, -10, 50},

PlotRange → All, ColorFunction → "Rainbow", ImageSize → Medium],

ListPlot[pa, ImageSize → Medium]}

ClearAll[ff]

cff = NIntegrate[If[x ≤ y, PDF[, {x, y}], 0],

{x, -10, 50}, {y, -10, 50}, Method → "AdaptiveQuasiMonteCarlo"]

ff[x_, y_] := ff[x, y] = If[x ≤ y, PDF[, {x, y}], 0] / cff

{Plot3D[ff[x, y], {x, -10, 50}, {y, -10, 50},

PlotRange → All, ColorFunction → "Rainbow", ImageSize → Medium],

ListPlot[pa, ImageSize → Medium]}

(*3.Marginal Densities and their Inverse CDFs*)

l1 = -10; u1 = 50; l2 = -10; u2 = 50;

k1 = SmoothKernelDistribution[a1, 8.8, "Triweight"];

Pk1 = Plot[PDF[k1, x], {x, l1, u1}, PlotRange → Full]

k2 = SmoothKernelDistribution[tmc, 6, "Triweight"];

Pk2 = Plot[PDF[k2, y], {y, l2, u2}, PlotRange → Full]

ClearAll[f11, f22, InvF1a, InvF2a]

f11[x_] := PDF[k1, x]

f22[x_] := PDF[k2, x]

InvF1a[r_] := InverseFunction[CDF[k1, #] &][r]

InvF2a[s_] := InverseFunction[CDF[k2, #] &][s]

{Plot[InverseFunction[CDF[k1, #] &][x], {x, 0, 1}],

Plot[InverseFunction[CDF[k2, #] &][x], {x, 0, 1}, PlotRange → All]}

(*4. The copula density*)

ClearAll[cpdfa]

cpdfa[r_, s_] :=

cpdfa[r, s] = (ff[InvF1a[r], InvF2a[s]]) / (f11[InvF1a[r]] * f22[InvF2a[s]]);
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ListPlot3D[Flatten[Table[{r, s, cpdfa[r, s]},

{r, 5 / 100, 95 / 100, 1 / 100}, {s, 5 / 100, 95 / 100, 1 / 100}], 1],

PlotRange → All, ColorFunction → "Rainbow", ImageSize → Medium]

Section 2.7
Bernstein’s approximation to copulas

Subsection 2.7.1

(*1. Data generated using the Air Canada stock prices*)

X = {25.83`, 25.11`, 26.69`, 26.72`, 26.66`, 26.77`, 26.54`, 27.22`, 27.53`, 27.57`,

28.04`, 28.34`, 28.28`, 28.46`, 27.98`, 27.98`, 28.44`, 28.54`, 28.61`, 28.93`,

29.24`, 29.67`, 30.22`, 30.28`, 31.21`, 31.32`, 31.18`, 31.36`, 31.68`, 31.69`,

31.64`, 31.98`, 33.15`, 33.02`, 32.89`, 33.3`, 33.14`, 33.4`, 33.92`, 34.27`,

33.11`, 34, 33.6`, 33.02`, 32.78`, 33, 33.16`, 33.36`, 32.04`, 32.01`, 31.89`,

31.66`, 31.42`, 31.75`, 31.44`, 31.46`, 31.61`, 30.96`, 31.92`, 32.2`, 32.13`,

32.21`, 33.56`, 33.58`, 33.49`, 33.03`, 32.98`, 32.88`, 32.32`, 32.37`, 32.79`,

32.53`, 31.95`, 31.66`, 32.24`, 32.59`, 32.14`, 31.57`, 31.45`, 32.06`,

31.82`, 31.95`, 32.16`, 32.87`, 32.57`, 33.62`, 35.28`, 35.5`, 36.3`, 35.87`,

36.21`, 38.21`, 38.8`, 38.88`, 40.4`, 40.86`, 40.78`, 39.72`, 39.49`, 40.43`,

41.22`, 40.72`, 40.51`, 40.35`, 39.9`, 39.16`, 39.41`, 39.34`, 39.03`, 39.08`,

38.62`, 39.97`, 39.8`, 39.88`, 39.99`, 39.54`, 39.54`, 40.73`, 39.46`, 40,

40.17`, 39.5`, 39.36`, 40.6`, 39.69`, 40.6`, 41.06`, 41.89`, 41.73`, 41.49`,

40.76`, 41.76`, 41.88`, 42.51`, 42.87`, 43.35`, 43.45`, 44.32`, 44.21`, 44.1`,

44.22`, 44.5`, 44.07`, 45.55`, 45.09`, 46.69`, 45.41`, 44.98`, 44.41`, 44.16`,

43.31`, 44.47`, 44.5`, 43.76`, 43.5`, 42.32`, 41.86`, 43.58`, 43.67`, 43.21`,

44.21`, 43.9`, 43.1`, 42.45`, 42.71`, 42.69`, 43.55`, 44.75`, 43.62`, 43.57`,

44.09`, 44.56`, 44, 42.38`, 42.7`, 42.91`, 43.13`, 41.81`, 44.01`, 43.4`,

43.03`, 42.75`, 43.04`, 43, 43.13`, 43.14`, 42.95`, 43.21`, 43.12`, 42.54`,

43.1`, 43.27`, 43.24`, 42.88`, 43.66`, 44.81`, 45.55`, 45.63`, 45.38`, 45.54`,

45.26`, 46.23`, 45.43`, 45.73`, 46.01`, 45.99`, 45.72`, 47.42`, 46.56`, 46.9`,

46.99`, 47.28`, 47.06`, 48.6`, 47.33`, 48.63`, 48.13`, 48.56`, 48.87`, 49.3`,

49.36`, 49.56`, 49.88`, 49.75`, 49.45`, 49.17`, 49.85`, 50.54`, 50.2`, 50.64`,

50.05`, 49.47`, 49.37`, 49.2`, 49.19`, 49.03`, 48.87`, 48.56`, 49.39`, 48.8`,

49.5`, 49.88`, 50.33`, 50.01`, 49.35`, 49.7`, 49.69`, 49.6`, 49.68`, 48.85`};

Print["length=", t = Length[X]]

To relate the data to a standard Wiener process, the first data point should be 0,  the  differences  
between successive observations should ideally often change signs and have a variance of one  
and there should be one unit of time between successive observations (as was assumed). Hence 
the following transformation. 

data = (X - X[[1]]) / StandardDeviation[Table[X[[i + 1]] - X[[i]], {i, t - 1}]];

ListPlot[data, Filling → Axis]
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dd = Table[data[[i + 1]] - data[[i]], {i, t - 1}];

Print["max[dd]=", Max[dd]]

Print["var[dd]=", Variance[dd]]

n = Length[data];

(*1.1 The first variable is the data after the transformation, a1*)

a1 = data;

Print["{mean[a1],var[a1]}=", {mn = Mean[a1], va = Variance[a1]}]

Print["{min[a1],max[a1]}=", {Min[a1], Max[a1]}]

(*1.2 The second variable is the running maximum, mc*)

ClearAll[mc]

mc[j_] := Max[Table[a1[[i]], {i, 1, j}]]

tmc = Table[mc[j], {j, n}];

Print["{mean[tmc],var[tmc]}=", {Mean[tmc], Variance[tmc]}]

Print["{min[tmc],max[tmc]}=", {Min[tmc], Max[tmc]}]

ListPlot[tmc, Filling → Axis]

(*1.3 The bivariate data, pa*)

pa = Table[{a1[[j]], mc[j]}, {j, n}];

(*Joint Density and Scatterplot*)

T = EmpiricalDistribution[pa];

 = SmoothKernelDistribution[pa, {"Adaptive", 3, .2}, PerformanceGoal → "Quality"];

GraphicsRow[{Plot3D[Evaluate@PDF[, {x, y}],

{x, -10, 50}, {y, -10, 50}, PlotRange → All, PlotStyle → Cyan],

ListPlot[pa]}, ImageSize → Large]

(*Approximating the empirical copula by a least-squares approximating polynomial

and estimating its associated copula density function by differentiating the

polynomial. This provides an initial representation of the copula density,

which can be utilized to calibrate the parameter k of Bernstein’

s empirical copula density.*)

data1 = Sort[a1];

data2 = tmc;

tbcop = Rationalize

Flatten[Table[{j / Length[a1], k / Length[a1], CDF[T, {data1[[j]], data2[[k]]}]},

{j, Length[a1]} , {k, Length[a1]}], 1], 10-10

ecp1 = ListPlot3D[tbcop, ColorFunction → "Rainbow"];

A least-squares approximating polynomial P2(x,y) is fitted to the points tbcop 

ClearAll[P2]

b2 = FlattenTablexi yj, {i, 0, 25}, {j, 0, 25};

P2 = Fit[tbcop, b2, {x, y}];
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Show[Plot3D[P2, {x, .01, .99}, {y, .01, .99},

PlotStyle -> Opacity[.2], PlotStyle -> GrayLevel, PlotRange → {0, 1}],

Graphics3D[{Blue, PointSize[0.0002], Map[Point, tbcop]}]]

(*P2 is differentiated to obtain a preliminary copula density

which will inform the choice of k in Bernstein’s empirical copula:*)

ClearAll[f2]

f2[x_, y_] := D[P2, x, y]

Plot3D[f2[x, y] /. {x → u, y → v}, {u, .03, .92}, {v, .05, .97},

ColorFunction → "Rainbow", PlotRange → {-1, 18}, PlotStyle -> Opacity[.6]]

(*Determining Bernstein's empirical copula density*)

ED1 = EmpiricalDistribution[a1];

ED2 = EmpiricalDistribution[tmc];

ClearAll[Cn]

Cn[x_, y_] := Cn[x, y] =
1

Length[a1]



i=1

Length[a1]

Which[CDF[ED1, a1[[i]]] > x, 0, CDF[ED2, tmc[[i]]] > y, 0, True, 1]

k = 25;

ClearAll[dbin]

dbin[u_, v_] := dbin[u, v] = D[PDF[BinomialDistribution[k, x], v], x] /. x → u

dbin[u, v]

dbin[0.5, 2]

ClearAll[bcop]

bcop[x_, y_] := bcop[x, y] = 

i=0

k



j=0

k

Cn
i

k
,
j

k
 * dbin[x, i] * dbin[y, j]

pbcop = ListPlot3D[Flatten[Table[{r, s, bcop[r, s]},

{r, 1 / 100, 99 / 100, 1 / 100}, {s, 1 / 100, 99 / 100, 1 / 100}], 1],

ColorFunction → "Rainbow", ImageSize → Medium, PlotRange → {0, 12}, PlotLabel → k]

(*repeat the above code with k=50,75 and 90*)

Subsection 2.7.2

(*input data*)
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GOOG = {1045.85`, 1016.06`, 1070.71`, 1068.39`, 1076.28`, 1074.66`, 1070.33`, 1057.19`,

1044.69`, 1077.15`, 1080.97`, 1089.9`, 1098.26`, 1070.52`, 1075.57`, 1073.9`,

1090.99`, 1070.08`, 1060.62`, 1089.06`, 1116.37`, 1110.75`, 1132.8`, 1145.99`,

1115.23`, 1098.71`, 1095.06`, 1095.01`, 1121.37`, 1120.16`, 1121.67`, 1113.65`,

1118.56`, 1113.8`, 1096.97`, 1110.37`, 1109.4`, 1115.13`, 1116.05`, 1119.92`,

1140.99`, 1147.8`, 1162.03`, 1157.86`, 1143.3`, 1142.32`, 1175.76`, 1193.2`,

1193.32`, 1185.55`, 1184.46`, 1184.26`, 1198.85`, 1223.97`, 1231.54`, 1205.5`,

1193.`, 1184.62`, 1173.02`, 1168.49`, 1173.31`, 1194.43`, 1200.49`, 1205.92`, 1215.`,

1207.15`, 1203.84`, 1197.25`, 1202.16`, 1204.62`, 1217.87`, 1221.1`, 1227.13`,

1236.34`, 1236.37`, 1248.84`, 1264.55`, 1256.`, 1263.45`, 1272.18`, 1287.58`,

1188.48`, 1168.08`, 1162.61`, 1185.4`, 1189.39`, 1174.1`, 1166.27`, 1162.38`,

1164.27`, 1132.03`, 1120.44`, 1164.21`, 1178.98`, 1162.3`, 1138.85`, 1149.63`,

1151.42`, 1140.77`, 1133.47`, 1134.15`, 1116.46`, 1117.95`, 1103.63`, 1036.23`,

1053.05`, 1042.22`, 1044.34`, 1066.04`, 1080.38`, 1078.72`, 1077.03`, 1088.77`,

1085.35`, 1092.5`, 1103.6`, 1102.33`, 1111.42`, 1121.88`, 1115.52`, 1086.35`,

1079.8`, 1076.01`, 1080.91`, 1097.95`, 1111.25`, 1121.58`, 1131.59`, 1116.35`,

1124.83`, 1140.48`, 1144.21`, 1144.9`, 1150.34`, 1153.58`, 1146.35`, 1146.33`,

1130.1`, 1138.07`, 1146.21`, 1137.81`, 1132.12`, 1250.41`, 1239.41`, 1225.14`,

1216.68`, 1209.01`, 1193.99`, 1152.32`, 1169.95`, 1173.99`, 1204.8`, 1188.01`,

1174.71`, 1197.27`, 1164.29`, 1167.26`, 1177.6`, 1198.45`, 1182.69`, 1191.25`,

1189.53`, 1151.29`, 1168.89`, 1167.84`, 1171.02`, 1192.85`, 1188.1`, 1168.39`,

1181.41`, 1211.38`, 1204.93`, 1204.41`, 1206.`, 1220.17`, 1234.25`, 1239.56`,

1231.3`, 1229.15`, 1232.41`, 1238.71`, 1229.93`, 1234.03`, 1218.76`, 1246.52`,

1241.39`, 1225.09`, 1219.`, 1205.1`, 1176.63`, 1187.83`, 1209.`, 1207.68`, 1189.13`,

1202.31`, 1208.67`, 1215.45`, 1217.14`, 1243.01`, 1243.64`, 1253.07`, 1245.49`,

1246.15`, 1242.8`, 1259.13`, 1260.99`, 1265.13`, 1290.`, 1262.62`, 1261.29`,

1260.11`, 1273.74`, 1291.37`, 1292.03`, 1291.8`, 1308.86`, 1311.37`, 1299.19`,

1298.8`, 1298.`, 1311.46`, 1334.87`, 1320.7`, 1315.46`, 1303.05`, 1301.35`, 1295.34`,

1306.69`, 1313.55`, 1312.99`, 1304.96`, 1289.92`, 1295.28`, 1320.54`, 1328.13`,

1340.62`, 1343.56`, 1344.66`, 1345.02`, 1350.27`, 1347.83`, 1361.17`, 1355.12`,

1352.62`, 1356.04`, 1349.59`, 1348.84`, 1343.56`, 1360.4`, 1351.89`, 1336.14`};
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AAPL = {157.92`, 142.19`, 148.26`, 147.93`, 150.75`, 153.31`, 153.8`, 152.29`, 150.`,

153.07`, 154.94`, 155.86`, 156.82`, 153.3`, 153.92`, 152.7`, 157.76`, 156.3`,

154.68`, 165.25`, 166.44`, 166.52`, 171.25`, 174.18`, 174.24`, 170.94`, 170.41`,

169.43`, 170.89`, 170.18`, 170.8`, 170.42`, 170.93`, 172.03`, 171.06`, 172.97`,

174.23`, 174.33`, 174.87`, 173.15`, 174.97`, 175.85`, 175.53`, 174.52`, 172.5`,

172.91`, 178.9`, 180.91`, 181.71`, 183.73`, 186.12`, 188.02`, 186.53`, 188.16`,

195.09`, 191.05`, 188.74`, 186.79`, 188.47`, 188.72`, 189.95`, 191.24`, 194.02`,

195.35`, 195.69`, 197.`, 200.1`, 199.5`, 200.62`, 198.95`, 198.87`, 199.23`,

199.25`, 203.13`, 203.86`, 204.53`, 207.48`, 207.16`, 205.28`, 204.3`, 204.61`,

200.67`, 210.52`, 209.15`, 211.75`, 208.48`, 202.86`, 202.9`, 200.72`, 197.18`,

185.72`, 188.66`, 190.92`, 190.08`, 189.`, 183.09`, 186.6`, 182.78`, 179.66`,

178.97`, 178.23`, 177.38`, 178.3`, 175.07`, 173.3`, 179.64`, 182.54`, 185.22`,

190.15`, 192.58`, 194.81`, 194.19`, 194.15`, 192.74`, 193.89`, 198.45`, 197.87`,

199.46`, 198.78`, 198.58`, 195.57`, 199.8`, 199.74`, 197.92`, 201.55`, 202.73`,

204.41`, 204.23`, 200.02`, 201.24`, 203.23`, 201.75`, 203.3`, 205.21`, 204.5`,

203.35`, 205.66`, 202.59`, 207.22`, 208.84`, 208.67`, 207.02`, 207.74`, 209.68`,

208.78`, 213.04`, 208.43`, 204.02`, 193.34`, 197.`, 199.04`, 203.43`, 200.99`,

200.48`, 208.97`, 202.75`, 201.74`, 206.5`, 210.35`, 210.36`, 212.64`, 212.46`,

202.64`, 206.49`, 204.16`, 205.53`, 209.01`, 208.74`, 205.7`, 209.19`, 213.28`,

213.26`, 214.17`, 216.7`, 223.59`, 223.09`, 218.75`, 219.9`, 220.7`, 222.77`,

220.96`, 217.73`, 218.72`, 217.68`, 221.03`, 219.89`, 218.82`, 223.97`, 224.59`,

218.96`, 220.82`, 227.01`, 227.06`, 224.4`, 227.03`, 230.09`, 236.21`, 235.87`,

235.32`, 234.37`, 235.28`, 236.41`, 240.51`, 239.96`, 243.18`, 243.58`, 246.58`,

249.05`, 243.29`, 243.26`, 248.76`, 255.82`, 257.5`, 257.13`, 257.24`, 259.43`,

260.14`, 262.2`, 261.96`, 264.47`, 262.64`, 265.76`, 267.1`, 266.29`, 263.19`,

262.01`, 261.78`, 266.37`, 264.29`, 267.84`, 267.25`, 264.16`, 259.45`, 261.74`,

265.58`, 270.71`, 266.92`, 268.48`, 270.77`, 271.46`, 275.15`, 279.86`,

280.41`, 279.74`, 280.02`, 279.44`, 284.`, 284.27`, 289.91`, 289.8`, 291.52`};

Print["{Min[GOOG],Max[GOOG]}=", {Min[GOOG], Max[GOOG]}]

Print["{Min[AAPL],Max[AAPL]}=", {Min[AAPL], Max[AAPL]}]

GraphicsRow[{ListPlot[GOOG, Filling → Axis],

ListPlot[AAPL, AxesOrigin → {0, 120}, Filling → Axis]}, ImageSize → Large]

Y1 = GOOG; Y2 = AAPL;

Print["Length[Y1]=", n = Length[Y1]]

Print["{Mean[Y1],SD[Y1]}=", {m1 = Mean[Y1], sd1 = StandardDeviation[Y1]}]

Print["{Mean[Y2],SD[Y2]}=", {m2 = Mean[Y2], sd2 = StandardDeviation[Y2]}]

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

HY = Histogram3D[Y, 15, "Probability", ColorFunction → "Rainbow"]

ListPlot[Y, PlotStyle → {Purple}, AxesOrigin → {1000, 120}]

(*Standardization of the components*)
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X1 =
Y1 - m1

sd1
;

X2 =
Y2 - m2

sd2
;

X = Table[{X1[[i]], X2[[i]]}, {i, n}];

Print["{Min[X1],Max[X1]=", {Min[X1], Max[X1]} // N]

Print["{Min[X2],Max[X2]}=", {Min[X2], Max[X2]} // N]

edis = EmpiricalDistribution[Y];

EmpCDF = Table[CDF[edis, Y[[j]]], {j, 1, n}];

ListPlot[X, PlotStyle → {Blue}]

l1 = -3.5; u1 = 3.5; l2 = -3.5; u2 = 3.5;

H1 = Histogram[X1, {l1, u1, 0.2}, "PDF",

ChartElementFunction → "FadingRectangle", ChartStyle → Green, PlotLabel → "X1"];

H2 = Histogram[X2, {l2, u2, 0.2}, "PDF", ChartElementFunction → "FadingRectangle",

ChartStyle → Green, PlotLabel → "X2"];

HX = Histogram3D[X, 15, "Probability", ColorFunction → "Rainbow"];

GraphicsRow[{H1, H2, HX}, ImageSize → Large]

kp = SmoothKernelDistribution[X, "Silverman"];

P2 =

Plot3D[PDF[kp, {x, y}], {x, l1, u1}, {y, l2, u2}, PlotRange → Full, PlotStyle → Cyan];

H1 = Histogram3D[X, 15, "PDF", ChartStyle → Red];

GraphicsRow[{P2, H1}, ImageSize → Large]

(*Approximating the empirical copula by a least-

squares approximating polynomial and estimating its associated

copula density function by differentiating the polynomial.

This provides an initial representation of the copula density,

which can be utilized to calibrate the parameter k of Bernstein’

s empirical copula density.*)

T = EmpiricalDistribution[X];

data1 = Sort[X1];

data2 = Sort[X2];

tbcop = Rationalize

Flatten[Table[{j / Length[X1], k / Length[X1], CDF[T, {data1[[j]], data2[[k]]}]},

{j, Length[X1]} , {k, Length[X1]}], 1], 10-10

ecp1 = ListPlot3D[tbcop, ColorFunction → "Rainbow"]

A least-squares approximating polynomial P2(x,y) is fitted to the points tbcop 

ClearAll[P2]

b2 = FlattenTablexi yj, {i, 0, 25}, {j, 0, 25};

P2 = Fit[tbcop, b2, {x, y}];

Show[Plot3D[P2, {x, .01, .99}, {y, .01, .99},

PlotStyle -> Opacity[.2], PlotStyle -> GrayLevel, PlotRange → {0, 1}],

Graphics3D[{Blue, PointSize[0.0002], Map[Point, tbcop]}]]
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(*P2 is differentiated to obtain a preliminary copula density

which will inform the choice of k in Bernstein’s empirical copula:*)

ClearAll[f2]

f2[x_, y_] := D[P2, x, y]

Plot3D[f2[x, y] /. {x → u, y → v}, {u, .03, .92}, {v, .05, .97},

PlotRange → {-1, 18}, ColorFunction → "Rainbow", PlotStyle → Opacity[0.6]]

(*Determining Bernstein's empirical copula density*)

ED1 = EmpiricalDistribution[X1];

ED2 = EmpiricalDistribution[X2];

ClearAll[Cn]

Cn[x_, y_] := Cn[x, y] =
1

Length[X1]



i=1

Length[X1]

Which[CDF[ED1, X1[[i]]] > x, 0, CDF[ED2, X2[[i]]] > y, 0, True, 1]

k = 75;

ClearAll[dbin]

dbin[u_, v_] := dbin[u, v] = D[PDF[BinomialDistribution[k, x], v], x] /. x → u

dbin[u, v]

ClearAll[bcop]

bcop[x_, y_] := bcop[x, y] = 

i=0

k



j=0

k

Cn
i

k
,
j

k
 * dbin[x, i] * dbin[y, j]

AbsoluteTiming[

pbcop = ListPlot3D[Flatten[Table[{r, s, bcop[r, s]}, {r, 1 / 100, 99 / 100, 1 / 100},

{s, 1 / 100, 99 / 100, 1 / 100}], 1], ColorFunction → "Rainbow",

ImageSize → Medium, PlotRange → {0, 12}, PlotLabel → k]] // TableForm

For k = 75, Bernstein' s empirical copula density and the preliminary density estimate exhibit 
similar features. The copula densities obtained with k=25 and 50 are not sufficiently accurate.
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Chapter 3
Nonparametric copula density estimation 
methodologies

Section 3.1 Introduction
An illustrative example involving four points
The data:

dt = {{2, 4}, {3, 12}, {7, 2}, {8, 3}}

n = Length[dt]

The empirical cdf of the data:

T = EmpiricalDistribution[dt];

cdc =

Flatten[Table[{x, y, CDF[T, {x, y}]}, {x, 0, 8, 1 / 10}, {y, 0, 12, 1 / 10}], 1]

ListPointPlot3D[cdc, ColorFunction -> "Rainbow", PlotRange -> All]

Graphics[{PointSize[Large], Point[{{2, 4}, {3, 12}, {7, 2}, {8, 3}}]},

GridLines → {Range[0, 9], Range[0, 13]}, Ticks → Automatic,

TicksStyle → Blue, PlotRange → {{0, 9}, {0, 13}}, Axes → True]

The original Deheuvels' copula points

The components of each variable:

Y1 = Table[dt[[i, 1]], {i, n}]

Y2 = Table[dt[[j, 2]], {j, n}]

The ranks of the components:

p1 = Position[Sort[Y1], #] & /@ Y1 // Flatten

p2 = Position[Sort[Y2], #] & /@ Y2 // Flatten

Deheuvels' copula frequency points whose pmf is 1/n :

Table[{p1[[i]], p2[[i]]}, {i, n}] / n

GraphicsPointSize[Large], Point4 
1

4
,
3

4
, 

1

2
, 1, 

3

4
,
1

4
, 1,

1

2
,

GridLines → {Range[0, 4], Range[0, 4]},

Ticks → {{{0, 0}, {1, 1 / 4}, {2, 1 / 2}, {3, 3 / 4}, {4, 1}},

{{1, 1 / 4}, {2, 1 / 2}, {3, 3 / 4}, {4, 1}}},

TicksStyle → Blue, PlotRange → {{0, 4}, {0, 4}}, Axes → True
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When utilized for example in conjunction with kernel density estimation, these copula points 
produce undesirable boundary effects and the resulting empirical copula pdf’s will noticeably be 
less concentrated near zero within the interval [0,1]. 

Ranks divided by n + 1

The usual approach that is advocated in the literature to attenuate the edge effects consists of 
multiplying Deheuvels' copula points by n/(n+1), which in this case results in the following points: 


1

5
, 3

5
, 

2

5
, 4

5
, 

3

5
, 1

5
, 

4

5
, 2

5
.

GraphicsPointSize[Large], Point4 
1

5
,
3

5
, 

2

5
,
4

5
, 

3

5
,
1

5
, 

4

5
,
2

5
,

GridLines → {Range[0, 4], Range[0, 4]},

Ticks → {{{0, 0}, {1, 1 / 4}, {2, 1 / 2}, {3, 3 / 4}, {4, 1}},

{{1, 1 / 4}, {2, 1 / 2}, {3, 3 / 4}, {4, 1}}},

TicksStyle → Blue, PlotRange → {{0, 4}, {0, 4}}, Axes → True

These points occupy various positions within the corresponding grid cells. Their uneven distribu-
tion will result in an empirical copula pdf that will be less concentrated near the ends of the unit 
interval and thus be inadequate as regards to achieving a uniform distribution on [0,1] in each 
variable.

Centered Copula Points

Conceptually, the copula points which merely depend on the ranks of the components of each 
variable, should preferably be uniformly spread out within the unit intervals. It is thus sensible to 
place each one of them at the center of the grid cell to which they belong. This is achieved by 
subtracting 1/(2n) from each of Deheuvel’s copula points coordinates. 
Note that there are only 4 pairs of points that are allocated to 16 grid cells in such a way that there 
will be only one point in each column and one point in each row, as there are 4 distinct ranks with 
respect to each coordinate.

The repositioned copula points which are centered in the corresponding grid cell and referred to as 

Centered Copula Points or CCPs:

ccp = Table
1

n
p1[[i]] -

1

2 n
,
1

n
p2[[i]] -

1

2 n
, {i, n}

GraphicsPointSize[Large],

Point4 ×
1

8
, 4 ×

5

8
, 4 ×

3

8
, 4 ×

7

8
, 4 ×

5

8
, 4 ×

1

8
, 4 ×

7

8
, 4 ×

3

8
,

GridLines → {Range[0, 4], Range[0, 4]}, TicksStyle → Blue,

Ticks → {{{0, 0}, {1, 1 / 4}, {2, 1 / 2}, {3, 3 / 4}, {4, 1}},

{{1, 1 / 4}, {2, 1 / 2}, {3, 3 / 4}, {4, 1}}}, PlotRange → {{0, 4}, {0, 4}}, Axes → True

With these points, the support of the marginal distributions constitutes the lowest discrepancy 
deterministic sequence with respect ot the uniform distribution in the unit interval. They form a 
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 sequence  respect  They
discrete distribution, their respective pmf being 1/n. Continuous discrete uniform marginal pdf' s 
on [0,1] will be achieved by making use of a kde with cuboidal kernels whose height is n and 
whose bases are the cells containing the CCPs. The marginals are then uniformly distributed as 
Sklar’s theorem stipulates. As well, the CCPs mitigate the boundary issues when used in conjunc-
tion with the kernel density estimation.

Constant cuboidal kernels kn[i,x,y] whose height is n over the n cells (of the nxn grid) containing 
the copula points

ClearAll[kn, kde, Ck]

kn[i_, x_, y_] := kn[i, x, y] = If[ccp[[i, 1]] - 1 / (2 n) ≤ x < ccp[[i, 1]] + 1 / (2 n) &&

ccp[[i, 2]] - 1 / (2 n) ≤ y < ccp[[i, 2]] + 1 / (2 n), n, 0]

ccp[[2, 1]]

kn[2, 3 / 8, 7 / 8]

The copula density whose marginal distributions are uniformly distributed over the interval [0,1]:

kde[x_, y_] := kde[x, y] = 

j=1

n

kn[j, x, y]

ListPointPlot3D[Table[{x, y, kde[x, y]}, {x, 0, 1, 1 / 200}, {y, 0, 1, 1 / 200}],

ColorFunction → "LightTemperatureMap", PlotRange → All]

The copula cdf obtained by integration of this copula density :

Ck[u_, v_] := Ck[u, v] =



j=1

n

Integrate[kn[j, x, y], {x, ccp[[j, 1]] - 1 / (2 n), u}, {y, ccp[[j, 2]] - 1 / (2 n), v }]

Ck[1 / 2, 2 / 3]

Ck[3 / 4, 5 / 6]

Ck[1, 1]

Plot3D[Evaluate[Ck[u, v]], {u, 0, 1}, {v, 0, 1}, ColorFunction → "LightTemperatureMap"]

The resulting copula is smoother than Deheuvels' copula which is obtained below. 

Deheuvels' copula

Y1 = {2, 3, 7, 8};

Y2 = {4, 12, 2, 3};

ED1 = EmpiricalDistribution[Y1];

ED2 = EmpiricalDistribution[Y2];

ClearAll[Cnn]
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Cnn[x_, y_] := Cnn[x, y] =
1

Length[Y1]



i=1

Length[Y1]

Which[CDF[ED1, Y1[[i]]] > x, 0, CDF[ED2, Y2[[i]]] > y, 0, True, 1]

ftp = Flatten[Table[{i / n, j / n, Cnn[i / n, j / n]}, {i, 1, n}, {j, 1, n}], 1]

Cnn[1, 1]

p0 = ListPointPlot3D[{{0.02, 0.02, 0}, {0.02, .98, 0}, {.98, 0.02, 0}, {1, 1, 1}},

PlotStyle → {Blue, PointSize[0.02]}];

p3 = Plot3D[Cnn[u, v], {u, 0, 1}, {v, 0, 1},

PlotRange → {0, 1}, ColorFunction → "LightTemperatureMap"];

Show[p0, p3, PlotRange → {0, 1}]

The copula obtained from the CCPs

GraphicsPointSize[Large],

Point4 ×
1

8
, 4 ×

5

8
, 4 ×

3

8
, 4 ×

7

8
, 4 ×

5

8
, 4 ×

1

8
, 4 ×

7

8
, 4 ×

3

8
,

GridLines → {Range[0, 4], Range[0, 4]}, TicksStyle → Blue,

Ticks → {{{0, 0}, {1, 1 / 4}, {2, 1 / 2}, {3, 3 / 4}, {4, 1}},

{{1, 1 / 4}, {2, 1 / 2}, {3, 3 / 4}, {4, 1}}}, PlotRange → {{0, 4}, {0, 4}}, Axes → True

ccp = Table
1

n
p1[[i]] -

1

2 n
,
1

n
p2[[i]] -

1

2 n
, {i, n}

Dc = EmpiricalDistribution[ccp];

Cnt[x_, y_] :=

Cnt[x, y] =
1

Length[Y1]


i=1

Length[Y1]

Which[CDF[ED1, Y1[[i]]] - 1 / (2 n) > x, 0,

CDF[ED2, Y2[[i]]] - 1 / (2 n) > y, 0, True, 1]

ftr = Flatten[Table[{i / n, j / n, Cnt[i / n, j / n]}, {i, 1, n}, {j, 1, n}], 1]

ListPlot3D[Flatten[Table[{u, v, Cnt[u, v]}, {u, 0, 1, 1 / 100}, {v, 0, 1, 1 / 100}], 1],

PlotRange → {0, 1}, ColorFunction → "LightTemperatureMap"]

Plot3D[CDF[Dc, {x, y}], {x, 0, 1}, {y, 0, 1},

PlotRange → {0, 1}, ColorFunction → "Rainbow"]

Section 3.2 Methodologies for estimating copula 
densities
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Subsection 3.2.1
Differentiated least-squares copula estimates as initial density 
approximations

Data

Note that whether or not the data is standardized, the same copula will be obtained since it is 
only based on ranks and the standardization process does not affect the ranks.

faithful = ExampleData[{"Statistics", "OldFaithful"}];

Y = faithful;

Y1 = faithful[[All, 1]];

Y2 = faithful[[All, 2]];

n = Length[Y1];

m1 = Mean[Y1]; sd1 = StandardDeviation[Y1];

m2 = Mean[Y2]; sd2 = StandardDeviation[Y2];

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

Y1 = SmoothKernelDistribution[Y1];

Y2 = SmoothKernelDistribution[Y2];

Y = SmoothKernelDistribution[Y];

{Plot[PDF[Y1, x], {x, Min[Y1] - sd1, Max[Y1] + sd1}],

Plot[PDF[Y2, x], {x, Min[Y2] - sd2, Max[Y2] + sd2}],

Plot3D[PDF[Y, {x, y}], {x, Min[Y1] - sd1, Max[Y1] + sd1},

{y, Min[Y2] - sd2, Max[Y2] + sd2}, PlotStyle → Cyan, PlotRange → All],

HY = Histogram3D[Y, 15, "Probability", ColorFunction → "Rainbow", ImageSize → Small],

ListPlot[Y, AxesOrigin → {1, 30}, ImageSize → Small]}

Express the copula frequency points in terms of the ranks

p1 = Position[Sort[Y1], #] & /@ Y1 // Flatten;

p2 = Position[Sort[Y2], #] & /@ Y2 // Flatten;

The centered copula frequency points and their common frequency (= 1/n)

ccfp = Table[{p1[[i]] / n, p2[[i]] / n} - 1 / (2 n), {i, n}];

ccfpf = Table[{p1[[i]] / n - 1 / (2 n), p2[[i]] / n - 1 / (2 n), 1 / n}, {i, n}];

ListPointPlot3D[ccfpf, Filling → Bottom, PlotStyle → Blue]

182



(*Standardization*)

X1 =
Y1 - m1

sd1
;

X2 =
Y2 - m2

sd2
;

X = Table[{X1[[i]], X2[[i]]}, {i, n}];

Print["{Min[X1],Max[X1]=", {Min[X1], Max[X1]} // N]

Print["{Min[X2],Max[X2]}=", {Min[X2], Max[X2]} // N]

edis = EmpiricalDistribution[Y];

EmpCDF = Table[CDF[edis, Y[[j]]], {j, 1, n}];

Xs = TableRationalizeX1[[i]], 10-12, RationalizeX2[[i]], 10-12, {i, 1, n};

{l1, u1} = {-3, 3};

{l2, u2} = {-3.5, 3.5};

H1 = Histogram[X1, {l1, u1, 0.2}, "PDF", ChartElementFunction → "FadingRectangle",

ChartStyle → Green, PlotLabel → "X1", ImageSize → Small];

H2 = Histogram[X2, {l2, u2, 0.2}, "PDF", ChartElementFunction → "FadingRectangle",

ChartStyle → Green, PlotLabel → "X2", ImageSize → Small];

HX = Histogram3D[Xs, 15, "Probability", ColorFunction → "Rainbow", ImageSize → Small];

LX = ListPlot[X, PlotStyle → {Blue}, ImageSize → Small];

kp = SmoothKernelDistribution[X, "Silverman"];

PD = Plot3D[PDF[kp, {x, y}], {x, l1, u1},

{y, l2, u2}, PlotRange → Full, PlotStyle → Cyan, ImageSize → Small];

{H1, H2, LX, HX, PD}

Linearized copula FI

X1r = FlattenTableX[[i, 1]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]}, 1;

X2r = FlattenTableX[[i, 2]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]}, 1;

D1 = EmpiricalDistribution[X1r];

D2 = EmpiricalDistribution[X2r];

The empirical copula to which linear interpolation is applied:

ClearAll[Cn]

Cn[x_, y_] :=

Cn[x, y] =
1

n


i=1

n

Which[CDF[D1, X1r[[i]]] > x, 0, CDF[D2, X2r[[i]]] > y, 0, True, 1]

ftp = FlattenTable
i

n
,
j

n
, Cn

i

n
,
j

n
, {i, 1, n}, {j, 1, n}, 1;
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ClearAll[FI]

FI = Interpolation[ftp, InterpolationOrder → 1];

FI[.55, .79]

Plot3D[Evaluate[FI[x, y]] /. {x → w, y → z}, {w, 0, 1},

{z, 0, 1}, ColorFunction → "LightTemperatureMap"] // Quiet

Least-squares approximation of the copula (cdf) and its derivative

A least-squares approximating polynomial F2d[u, v]is fitted to the points tbcop. 

T = EmpiricalDistribution[X];

data1o = SortTableX[[i, 1]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

data2o = SortTableX[[i, 2]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

tbcop = RationalizeFlatten[

Table[{j / Length[X1], k / Length[X1], CDF[T, {data1o[[j, 1]], data2o[[k, 1]]}]},

{j, Length[X1]} , {k, Length[X1]}], 1], 10-10;

d = 5;

b2d = FlattenTablexi yj, {i, 0, d}, {j, 0, d};

P2d = Fit[tbcop, b2d, {x, y}];

F2d_[u_, v_] := F2d[u, v] = P2d /. {x → u, y → v};

Empirical copula pdf obtained by differentiation of the least - squares approximation of the 
copula cdf

f2d_[x_, y_] := f2d[x, y] = D[P2d, x, y];

ListPlot3D[

Flatten[Table[{u, v, Evaluate[(Abs[f2d[x, y]] + f2d[x, y] /. {x → u, y → v}) / 2 ]},

{u, .1, .9, .005}, {v, .1, .9, .005}], 1],

ColorFunction → "LightTemperatureMap", PlotLabel → d, ImageSize → Medium]

Repeat the above codes for d=10, 15, 20, ...

Although the resulting density estimates can be regarded as preliminary, they turn out to be quite 
representative of the distributional features of the copula.

Since the least-squares polynomial approximations become unstable in the neighborhood of the 
boundary of the domain, we shall consider a subset thereof that is truncated by 10% on each side.

Finding the optimal degree

By mere visual inspection, one can observe that the copula density estimates of degrees 20, 25.30, 
and 35 are quite similar. Appealing to the principle of parsimony, one could select the copula 
density of degree 20 in each variables as a yardstick for the distribution of the copula. 
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This can be mathematically corroborated by noting that, within the truncated domain, the inte-
grated squared difference between successive copula estimates are quite small  when the degree 
is greater than or equal to 20.

Least-squares polynomial approximations for d < 20 are under-fitting as they do not adequately 
capture the structure of the data whereas approximations of degrees at least 20 in each variable 
turn out to be adequate up to degree 40 in which case the value of the pdf at the mode (around 7) 
is noticeably higher, which is indicative of overfitting.

ClearAll[ISDcdf]

ISDcdf[t_] :=

ISDcdf[t] = NIntegrate(F2t+5[x, y] - F2t[x, y])2, {x, 0.1, 0.9}, {y, 0.1, 0.9} // Quiet

{Table[{5 * t, ISDcdf[5 t]}, {t, 1, 7}] // Insert[{"t", "ISDcdf[t]"}, 1] // MatrixForm,

ListLinePlot[Table[{5 t, ISDcdf[5 t]}, {t, 2, 7}],

Mesh → All, ImageSize → Medium, PlotRange -> All]}

Subsection 3.2.2 
Bernstein’s polynomial approximation and degree selection

1. Data
Note that whether or not the data is standardized, the same copula will be obtained since it is 
only based on ranks and the standardization process does not affect the ranks.

faithful = ExampleData[{"Statistics", "OldFaithful"}];

Y = faithful;

Y1 = faithful[[All, 1]];

Y2 = faithful[[All, 2]];

n = Length[Y1];

m1 = Mean[Y1]; sd1 = StandardDeviation[Y1];

m2 = Mean[Y2]; sd2 = StandardDeviation[Y2];

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

Y1 = SmoothKernelDistribution[Y1];

Y2 = SmoothKernelDistribution[Y2];

Y = SmoothKernelDistribution[Y];

{Plot[PDF[Y1, x], {x, Min[Y1] - sd1, Max[Y1] + sd1}],

Plot[PDF[Y2, x], {x, Min[Y2] - sd2, Max[Y2] + sd2}],

Plot3D[PDF[Y, {x, y}], {x, Min[Y1] - sd1, Max[Y1] + sd1},

{y, Min[Y2] - sd2, Max[Y2] + sd2}, PlotStyle → Cyan, PlotRange → All],

HY = Histogram3D[Y, 15, "Probability", ColorFunction → "Rainbow", ImageSize → Small],

ListPlot[Y, AxesOrigin → {1, 30}, ImageSize → Small]}
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X1 = (Y1 - m1) / sd1;

X2 = (Y2 - m2) / sd2;

X = Table[{X1[[i]], X2[[i]]}, {i, n}];

Print["{Min[X1],Max[X1]=", {Min[X1], Max[X1]} // N]

Print["{Min[X2],Max[X2]}=", {Min[X2], Max[X2]} // N]

edis = EmpiricalDistribution[Y];

EmpCDF = Table[CDF[edis, Y[[j]]], {j, 1, n}];

Xs = TableRationalizeX1[[i]], 10-12, RationalizeX2[[i]], 10-12, {i, 1, n};

{l1, u1} = {-3, 3};

{l2, u2} = {-3.5, 3.5};

H1 = Histogram[X1, {l1, u1, 0.2}, "PDF", ChartElementFunction → "FadingRectangle",

ChartStyle → Green, PlotLabel → "X1", ImageSize → Small];

H2 = Histogram[X2, {l2, u2, 0.2}, "PDF", ChartElementFunction → "FadingRectangle",

ChartStyle → Green, PlotLabel → "X2", ImageSize → Small];

HX = Histogram3D[Xs, 15, "Probability", ColorFunction → "Rainbow", ImageSize → Small];

LX = ListPlot[X, PlotStyle → {Blue}, ImageSize → Small];

kp = SmoothKernelDistribution[X, "Silverman"];

PD = Plot3D[PDF[kp, {x, y}], {x, l1, u1},

{y, l2, u2}, PlotRange → Full, PlotStyle → Cyan, ImageSize → Small];

{H1, H2, LX, HX, PD}

2. Bernstein copula density

ED1 = EmpiricalDistribution[X1];

ED2 = EmpiricalDistribution[X2];

ClearAll[Cn]

Cn[x_, y_] := Cn[x, y] =
1

Length[X1]



i=1

Length[X1]

Which[CDF[ED1, X1[[i]]] > x, 0, CDF[ED2, X2[[i]]] > y, 0, True, 1]

Plot3D[Cn[x, y], {x, 0, 1}, {y, 0, 1}, ColorFunction → "LightTemperatureMap"]

ClearAll[bin, bcdf]

bin[k_, u_, v_] := bin[k, u, v] = PDF[BinomialDistribution[k, u], v];

bcdf[k_, u_, v_] := 

i=0

k



j=0

k

Cn
i

k
,
j

k
 * bin[k, u, i] * bin[k, v, j]

bcdf[25, 0.3, 0.1]

bcdf[25, 0.2, 0.1]

bcdf[50, 0.1, 0.1]

Plot3D[bcdf[25, x, y], {x, 0, 1}, {y, 0, 1}, ColorFunction → "LightTemperatureMap"]
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ClearAll[dbin, bcop]

dbin[k_, u_, v_] := dbin[k, u, v] = D[PDF[BinomialDistribution[k, x], v], x] /. x → u;

bcop[k_, x_, y_] := bcop[k, x, y] = 

i=0

k



j=0

k

Cn
i

k
,
j

k
 * dbin[k, x, i] * dbin[k, y, j] ;

bcop[25, 0.1, 0.1]

Plots of Bernstein' s copula densities

d = 25;

ListPlot3D[

Flatten[Table[{u, v, bcop[d, u, v]}, {u, .1, .9, .005}, {v, .1, .9, .005}], 1],

ColorFunction → "LightTemperatureMap", PlotLabel → d, ImageSize → Medium]

Repeat the above code with d = 50, 75, 100, 125, 150

3. Optimal degree selection

Using the least-squares copula cdf with degree 20 as the reference copula. 
Calculate the ISD between the reference copula and Bernstein copula cdf’s of different degrees.

The reference (or yardstick) copula is the LS approximating polynomial denoted by Fy that was 

selected in the previous section.

T = EmpiricalDistribution[X];

data1o = SortTableX[[i, 1]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

data2o = SortTableX[[i, 2]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

tbcop = RationalizeFlatten[

Table[{j / Length[X1], k / Length[X1], CDF[T, {data1o[[j, 1]], data2o[[k, 1]]}]},

{j, Length[X1]} , {k, Length[X1]}], 1], 10-10;

d = 20;

b2 = FlattenTablexi yj, {i, 0, d}, {j, 0, d};

P2 = Fit[tbcop, b2, {x, y}];

ClearAll[Fy]

Fy[u_, v_] := Fy[u, v] = P2 /. {x → u, y → v};

Plot Fy

ListPlot3D[

Flatten[Table[{u, v, Evaluate[(Abs[Fy[x, y]] + Fy[x, y] /. {x → u, y → v}) / 2 ]},

{u, .1, .9, .005}, {v, .1, .9, .005}], 1],

ColorFunction → "LightTemperatureMap", PlotLabel → 20, ImageSize → Medium]

ISDs and relative differences based on ISD between t+25 and t

ClearAll[ISD]

TablePrint"{t,ISD}=", t, QuietISD[25 * t] =

NIntegrate(bcdf[25 * t, x, y] - Fy[x, y])2, {x, 0, 1}, {y, 0, 1}, {t, 8}
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{Table[{25 * n, ISD[25 * n]}, {n, 8}] // Insert[{"n", "ISD"}, 1] // MatrixForm,

ListLinePlot[Table[{25 * n, ISD[25 * n]}, {n, 8}],

Mesh → Full, PlotLabel → "ISD", ImageSize → Medium, PlotRange → All]}

Add relative differences between ‘successive’ ISD’s 25 degrees apart

A1 =

"n" "ISD"

25 0.00010252481955737453`

50 0.00003473051580290645`

75 0.00001578393420385734`

100 0.00001129399461435525`

125 8.425623652017525`*^-6

150 7.081017244973576`*^-6

175 5.429791820783687`*^-6

;

{v1 =

Table[{(i - 2) * 25, Abs[(A1[[i, 2]] - A1[[i - 1, 2]])] / A1[[i - 1, 2]]}, {i, 3, 8}] //

MatrixForm,

ListLinePlot[Table[{(i - 2) * 25, Abs[(A1[[i, 2]] - A1[[i - 1, 2]])] / A1[[i - 1, 2]]},

{i, 3, 8}], Mesh → Full,

(*PlotLabel→"successive relative difference based on ISD",*)

ImageSize → Medium, PlotRange → All, PlotStyle → Red]}

Subsection 3.2.3 
Kernel-based copula density estimates

CCP example

With Deheuvels’ copula points

dcp = 
1

4
,
3

4
, 

1

2
, 1, 

3

4
,
1

4
, 1,

1

2
;

ddc = SmoothKernelDistribution[dcp, .05, "Epanechnikov"];

Plot3D[PDF[ddc, {x, y}], {x, 0, 1}, {y, 0, 1},

ColorFunction → "LightTemperatureMap", PlotRange → All]

Plot3D[CDF[ddc, {x, y}], {x, 0, 1}, {y, 0, 1},

ColorFunction → "LightTemperatureMap", PlotRange → All]

The density function is truncated on parts of the boundary and does not integrate to one. This 
does not occur with the CCPs. Moreover, the marginal distributions are more evenly distributed 
over the unit intervals when making use of the CCPs. 

With the CCPs

n = Length[dcp];

ccp = 
1

4
,
3

4
, 

1

2
, 1, 

3

4
,
1

4
, 1,

1

2
 -

1

2 n
;

cdc = SmoothKernelDistribution[ccp, .05, "Epanechnikov"];
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Plot3D[PDF[cdc, {x, y}], {x, 0, 1}, {y, 0, 1},

ColorFunction → "LightTemperatureMap", PlotRange → All]

Plot3D[CDF[cdc, {x, y}], {x, 0, 1}, {y, 0, 1},

ColorFunction → "LightTemperatureMap", PlotRange → All]

Optimal kde bandwidth selection

1. Data
Note that whether or not the data is standardized, the same copula will be obtained since it is 
only based on ranks and the standardization process does not affect the ranks.

faithful = ExampleData[{"Statistics", "OldFaithful"}];

Y = faithful;

Y1 = faithful[[All, 1]];

Y2 = faithful[[All, 2]];

n = Length[Y1];

m1 = Mean[Y1]; sd1 = StandardDeviation[Y1];

m2 = Mean[Y2]; sd2 = StandardDeviation[Y2];

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

{ListPlot[Y1, AxesOrigin → {0, 3}, ImageSize → Small],

ListPlot[Y2, AxesOrigin → {0, 60}, ImageSize → Small],

HY = Histogram3D[Y, 15, "Probability", ColorFunction → "Rainbow", ImageSize → Small],

ListPlot[Y, AxesOrigin → {1, 30}, PlotStyle → {Purple}, ImageSize → Small]}

X1 =
Y1 - m1

sd1
;

X2 =
Y2 - m2

sd2
;

X = Table[{X1[[i]], X2[[i]]}, {i, n}];

Print["{Min[X1],Max[X1]=", {Min[X1], Max[X1]} // N]

Print["{Min[X2],Max[X2]}=", {Min[X2], Max[X2]} // N]

edis = EmpiricalDistribution[Y];

EmpCDF = Table[CDF[edis, Y[[j]]], {j, 1, n}];

Xs = TableRationalizeX1[[i]], 10-12, RationalizeX2[[i]], 10-12, {i, 1, n};

{l1, u1} = {-3, 3};

{l2, u2} = {-3.5, 3.5};
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H1 = Histogram[X1, {l1, u1, 0.2}, "PDF", ChartElementFunction → "FadingRectangle",

ChartStyle → Green, PlotLabel → "X1", ImageSize → Small];

H2 = Histogram[X2, {l2, u2, 0.2}, "PDF", ChartElementFunction → "FadingRectangle",

ChartStyle → Green, PlotLabel → "X2", ImageSize → Small];

HX = Histogram3D[Xs, 15, "Probability", ColorFunction → "Rainbow", ImageSize → Small];

LX = ListPlot[X, PlotStyle → {Blue}, ImageSize → Small];

kp = SmoothKernelDistribution[X, "Silverman"];

PD = Plot3D[PDF[kp, {x, y}], {x, l1, u1},

{y, l2, u2}, PlotRange → Full, PlotStyle → Cyan, ImageSize → Small];

{H1, H2, LX, HX, PD}

2. Use the Bernstein polynomial approximation of degree 125 as the yardstick

ED1 = EmpiricalDistribution[X1];

ED2 = EmpiricalDistribution[X2];

ClearAll[Cn]

Cn[x_, y_] := Cn[x, y] =
1

Length[X1]



i=1

Length[X1]

Which[CDF[ED1, X1[[i]]] > x, 0, CDF[ED2, X2[[i]]] > y, 0, True, 1]

k = 125;

ClearAll[dbin, bcop];

dbin[u_, v_] := dbin[u, v] = D[PDF[BinomialDistribution[k, x], v], x] /. x → u;

bcop[x_, y_] := bcop[x, y] = 

i=0

k



j=0

k

Cn
i

k
,
j

k
 * dbin[x, i] * dbin[y, j] ;

ListPlot3D[Flatten[Table[{u, v, bcop[u, v]}, {u, .1, .9, .005}, {v, .1, .9, .005}], 1],

ColorFunction → "LightTemperatureMap", PlotLabel → 125, ImageSize → Medium]

3. KDE based copula densities and bandwidth selection criterion

The narrower the kernels, the higher the peaks and the lower the troughs .
Thus, it seems reasonable to have a bandwidth selection criterion that is a function of the dis-
tance between the reference LS - copula pdf and a given KDE . 

SeedRandom[0];

X1r = TableX[[i, 1]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

X2r = TableX[[i, 2]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

p1 = Position[Sort[X1r], #] & /@ X1r // Flatten;

p2 = Position[Sort[X2r], #] & /@ X2r // Flatten;

The repositioned copula points (which form the lowest discrepancy n point set whose discrepancy 
is 1/(2n)).
These points are located at the center of each cell of an nxn grid of the unit square. There will be 
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 points  grid  square.
referred to as the Centered Copula Points or ccp’s. The pmf at each point is 1/n

ccp = Table
1

n
p1[[i]] -

1

2 n
,
1

n
p2[[i]] -

1

2 n
, {i, n};

Try bandwidth 0.045, 0.040, 0.035, 0.030, 0.025

cd45 = SmoothKernelDistribution[ccp, .045, "Epanechnikov"];

cd40 = SmoothKernelDistribution[ccp, .040, "Epanechnikov"];

cd35 = SmoothKernelDistribution[ccp, .035, "Epanechnikov"];

cd30 = SmoothKernelDistribution[ccp, .030, "Epanechnikov"];

cd25 = SmoothKernelDistribution[ccp, .025, "Epanechnikov"];

Show plots

Plot3D[PDF[cd45, {x, y}], {x, 0, 1},

{y, 0, 1}, ColorFunction -> "LightTemperatureMap",

PlotRange -> All, PlotLabel → .045, ImageSize → Medium]

Plot3D[PDF[cd40, {x, y}], {x, 0, 1},

{y, 0, 1}, ColorFunction -> "LightTemperatureMap",

PlotRange -> All, PlotLabel → .040, ImageSize → Medium]

Plot3D[PDF[cd35, {x, y}], {x, 0, 1},

{y, 0, 1}, ColorFunction -> "LightTemperatureMap",

PlotRange -> All, PlotLabel → .035, ImageSize → Medium]

Plot3D[PDF[cd30, {x, y}], {x, 0, 1},

{y, 0, 1}, ColorFunction -> "LightTemperatureMap",

PlotRange -> All, PlotLabel → .030, ImageSize → Medium]

Plot3D[PDF[cd25, {x, y}], {x, 0, 1},

{y, 0, 1}, ColorFunction -> "LightTemperatureMap",

PlotRange -> All, PlotLabel → .025, ImageSize → Medium]

Comparison
ISD on a subset of the unit square, (0.1, 0.9)^2

ISD[45] = NIntegrate(kde45[x, y] - bcop[x, y])2, {x, 0.1, 0.9},

{y, 0.1, 0.9}, Method → "QuasiMonteCarlo" // AbsoluteTiming

ISD[40] = NIntegrate(kde40[x, y] - bcop[x, y])2, {x, 0.1, 0.9},

{y, 0.1, 0.9}, Method → "QuasiMonteCarlo" // AbsoluteTiming

ISD[35] = NIntegrate(kde35[x, y] - bcop[x, y])2, {x, 0.1, 0.9},

{y, 0.1, 0.9}, Method → "QuasiMonteCarlo" // AbsoluteTiming

ISD[30] = NIntegrate(kde30[x, y] - bcop[x, y])2, {x, 0.1, 0.9},

{y, 0.1, 0.9}, Method → "QuasiMonteCarlo" // AbsoluteTiming

ISD[25] = NIntegrate(kde25[x, y] - bcop[x, y])2, {x, 0.1, 0.9},

{y, 0.1, 0.9}, Method → "QuasiMonteCarlo" // AbsoluteTiming
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Show the ISDs in table and figure

{(A2 = Table[{i * 0.001, ISD[i]}, {i, {45, 40, 35, 30, 25}}]) //

Insert[{"Bandwidth", "ISD"}, 1] // MatrixForm,

ListLinePlot[A2, Mesh → Full, PlotLabel → "Bandwidth vs ISD",

ImageSize → Medium, PlotRange → All]}

Subsection 3.2.4
Differentiated linearized empirical copulas

data

OF = ExampleData[{"Statistics", "OldFaithful"}];

n = Length[OF];

mx1 = Max[Table[OF[[i, 1]], {i, n}]];

mx2 = Max[Table[OF[[i, 2]], {i, n}]];

The data is slightly perturbed to avoid replicates . 
This is how to proceed to obtain the *same * vectors Y1 and Y2 every time the notebook is run .

ClearAll[Y1, Y2]

Y1 = FlattenNTableOF[[j, 1]] + {SeedRandom[j + 5];

RandomReal[{-1, 1}]} mx1 10-8, {j, n}, 8, 1;

DuplicateFreeQ[Y1]

Y2 = FlattenNTableOF[[j, 2]] + {SeedRandom[j];

RandomReal[{-1, 1}]} RandomReal[{-1, 1}] mx2 10-8, {j, n}, 8, 1;

DuplicateFreeQ[Y2]

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];
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m1 = Mean[Y1];

sd1 = StandardDeviation[Y1];

m2 = Mean[Y2];

sd2 = StandardDeviation[Y2];

MinY1 = Min[Y1];

MaxY1 = Max[Y1];

MinY2 = Min[Y2];

MaxY2 = Max[Y2];

k1 = SmoothKernelDistribution[Y1, "LeastSquaresCrossValidation"];

P1 = Plot[PDF[k1, y1], {y1, MinY1 - sd1, MaxY1 + sd1},

PlotRange → Full, PlotStyle → Cyan, ImageSize → Small];

k2 = SmoothKernelDistribution[Y2, "LeastSquaresCrossValidation"];

P2 = Plot[PDF[k2, y2], {y2, MinY2 - sd2, MaxY2 + sd2},

PlotRange → Full, PlotStyle → Cyan, ImageSize → Small];

LY = ListPlot[Y, PlotStyle → {Blue}, ImageSize → Small];

kp = SmoothKernelDistribution[Y];

Pk =

Plot3D[PDF[kp, {y1, y2}], {y1, MinY1 - sd1, MaxY1 + sd1}, {y2, MinY2 - sd2, MaxY2 + sd2},

PlotRange → Full, PlotStyle → Cyan, ImageSize → Small];

{P1, P2, LY, Pk}

Express the copula frequency points in terms of the ranks

p1 = Position[Sort[Y1], #] & /@ Y1 // Flatten;

p2 = Position[Sort[Y2], #] & /@ Y2 // Flatten;

The centered copula frequency points and their common frequency (= 1/n)

ccfp = Table[{p1[[i]] / n, p2[[i]] / n} - 1 / (2 n), {i, n}];

ccfpf = Table[{p1[[i]] / n - 1 / (2 n), p2[[i]] / n - 1 / (2 n), 1 / n}, {i, n}];

ListPointPlot3D[ccfpf, Filling → Bottom, PlotStyle → Blue]

Differentiated linearized empirical copulas

The empirical copula (cdf) is initially evaluated at all the intersection points of a 1/c x 1/c grid of 
the unit square which comprises  1/c x 1/c squares of dimension c2.
Then, linear interpolation is applied to those copula points and the resulting surface is differenti-
ated, which yields an approximate density function referred to as a differentiated linearized 
copula. 
The selected spacing parameter c is such that the chosen Bernstein approximation and the 
differentiated linearized copula share similar distributional features, the neighborhoods wherein 
the reference density approximation increases sharply, if any,  being discarted. 
The spacing parameter c is taken to be the minimizer of the  integrated squared difference, 
denoted by ISD(c) between the selected differentiated linearized copula and the chosen Bernstein 
density approximant denoted by bcop[ ]. Since ISD[1/12] is smaller than ISD[1/11] and ISD[1/13], 
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density approximant  by bcop[
we let c equal 1/12 = 0.08333. The resulting density estimate shares similar distributional features 
with the other density approximants and could as well be utilized to identify suitable copula 
models.

The centered empirical copula

D1 = EmpiricalDistribution[Y1];

D2 = EmpiricalDistribution[Y2];

Ds = EmpiricalDistribution[Y];

Empirical copula (cdf)

ClearAll[Cn];

Cn[x_, y_] :=

Cn[x, y] =
1

n


i=1

n

Which[CDF[D1, Y1[[i]]] > x, 0, CDF[D2, Y2[[i]]] > y, 0, True, 1]

The copula is evaluated at points from 0 to 1 by increments of c in each directions  where  c can be 
calibrated so that the resulting copula and the reference copula share similar distributional 
features; for instance, its value at the mode should be approximately the same as that of the 
chosen LS copula density or that of the selected Bernstein copula density- about 4 in this case.   

c = 1/11

ftp11 = Flatten[Table[{x, y, Cn[x, y]}, {x, 0, 1, 1 / 11}, {y, 0, 1, 1 / 11}], 1];

fI11 = Interpolation[ftp11, InterpolationOrder → 1];

ListPlot3D[Flatten[Table[{w, z, Evaluate[D[fI11[x, y], x, y] /. {x → w, y → z}]},

{w, 0, 1, 1 / 121}, {z, 0, 1, 1 / 121}], 1],

ColorFunction → "LightTemperatureMap", PlotLabel → 1 / 11]

c = 1/12

ftp12 = Flatten[Table[{x, y, Cn[x, y]}, {x, 0, 1, 1 / 12}, {y, 0, 1, 1 / 12}], 1];

fI12 = Interpolation[ftp12, InterpolationOrder → 1];

ListPlot3D[Flatten[Table[{w, z, Evaluate[D[fI12[x, y], x, y] /. {x → w, y → z}]},

{w, 0, 1, 1 / 144}, {z, 0, 1, 1 / 144}], 1],

ColorFunction → "LightTemperatureMap", PlotLabel → 1 / 12]

c = 1/13

ftp13 = Flatten[Table[{x, y, Cn[x, y]}, {x, 0, 1, 1 / 13}, {y, 0, 1, 1 / 13}], 1];

fI13 = Interpolation[ftp13, InterpolationOrder → 1];

ListPlot3D[Flatten[Table[{w, z, Evaluate[D[fI13[x, y], x, y] /. {x → w, y → z}]},

{w, 0, 1, 1 / 169}, {z, 0, 1, 1 / 169}], 1],

ColorFunction → "LightTemperatureMap", PlotLabel → 1 / 13]

ClearAll[dbin, bcop]

dbin[k_, u_, v_] := dbin[k, u, v] = D[PDF[BinomialDistribution[k, x], v], x] /. x → u;

bcop[k_, x_, y_] := bcop[k, x, y] = 

i=0

k



j=0

k

Cn
i

k
,
j

k
 * dbin[k, x, i] * dbin[k, y, j] ;
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(*Choose Bernstein's copula density with degree 125 as reference copula density*)

NIntegrate((Evaluate[D[fI11[u, v], u, v]] - bcop[125, u, v]) /. {u → x, v → y})2,

{x, 0, 1}, {y, 0, 1}, Method → "AdaptiveQuasiMonteCarlo", MaxRecursion → 200

NIntegrate((Evaluate[D[fI12[u, v], u, v]] - bcop[125, u, v]) /. {u → x, v → y})2,

{x, 0, 1}, {y, 0, 1}, Method → "AdaptiveQuasiMonteCarlo", MaxRecursion → 200

NIntegrate((Evaluate[D[fI13[u, v], u, v]] - bcop[125, u, v]) /. {u → x, v → y})2,

{x, 0, 1}, {y, 0, 1}, Method → "AdaptiveQuasiMonteCarlo", MaxRecursion → 200

This suggests that letting the spacings equal 1/12 is appropriate. This agrees with a visual assess-
ment of the distributional features of the differentiated linearized empirical copulas as compared 
with the reference distributions.

Polynomial copula density estimate (h[x,y]) obtained from the joint moments (jm[r,s]) of the 
derivative of the linearized copula.
The marginals are approximately uniformly distributed:

ClearAll[df, df1, df2]

df[w_, z_] := D[fI12[x, y], x, y] /. {x → w, y → z}

df1[w_] := NIntegrate[df[w, z], {z, 0, 1}]

Plot[df1[w], {w, 0, 1}, PlotRange → {0, 1.1}]

df2[z_] := NIntegrate[df[w, z], {w, 0, 1}]

Plot[df2[z], {z, 0, 1}, PlotRange → {0, 1.1}]

Smoothing a DL copula by means of a bivariate polynomial

ClearAll[jm]

jm[r_, s_] := jm[r, s] = RationalizeNIntegratexr ys df[x, y], {x, 0, 1}, {y, 0, 1},

Method → "CartesianRule", MaxRecursion → 20, PrecisionGoal → 50, 10-200
 // Quiet

Various options to NIntegrate could be tried so as to obtain more precision.

The support of the uniform distribution is extended by 10 % in each direction.  

ClearAll[f3, base, mm2]

Needs["MultivariateStatistics`"];

Off[MLE::shdw]; Off[Inner::"normal"];

Off[NIntegrate::izero]; Off[NIntegrate::"slwcon"];

f3[L1_List, L2_List] := Inner[Plus, L1, L2, List];

base[x_, y_] := base[x, y] = 100 / 144;

mm2[k_, h_] := mm2[k, h] =
100

144

(11 / 10)k+1 - (-1 / 10)k+1

k + 1

(11 / 10)h+1 - (-1 / 10)h+1

h + 1
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t = 11;

ClearAll[Zv1, Gms, t5, h];

L3 = Flatten[Table[{j, i}, {i, 0, t}, {j, 0, t}], 1];

P3 = Tablef3[L3[[i]], L3[[j]]], i, 1, (t + 1)2
, j, 1, (t + 1)2 ;

M4 =

Table[mm2[P3[[i, j]][[1]], P3[[i, j]][[2]]], {i, Length[L3]}, {j, Length[L3]}];

Zv1[x_, y_] := Zv1[x, y] = Flatten[Table[x^j y^i, {i, 0, t}, {j, 0, t}], 1]

Gms[i_] := Gms[i] = jm[L3[[i, 1]], L3[[i, 2]]]

(*The vector of the joint moments of the selected linearized empirical copula*)

μ = Table[Gms[i], {i, Dimensions[L3][[1]]}];

(*The polynomial coefficients:*)

c4 = Inverse[M4].μ;

t5[x_, y_] := t5[x, y] = c4.Zv1[x, y];

h[x_, y_] := h[x, y] = base[x, y] * t5[x, y];

Unprotect[Power]; 00 = 1; Protect[Power];

ListPlot3D[Flatten[

Table[{x, y, Abs[h[x, y]] / 2 + h[x, y] / 2}, {x, 0, 1, 1 / 100}, {y, 0, 1, 1 / 100}], 1],

PlotRange → {0, 5}, ColorFunction -> "LightTemperatureMap", PlotLabel → t]

Section 3.3
On estimating joint density functions via copula density 
estimates

1. Data

faithful = ExampleData[{"Statistics", "OldFaithful"}];

Y = faithful;
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Y1 = faithful[[All, 1]];

Y2 = faithful[[All, 2]];

n = Length[Y1];

m1 = Mean[Y1]; sd1 = StandardDeviation[Y1];

m2 = Mean[Y2]; sd2 = StandardDeviation[Y2];

Y = Table[{Y1[[i]], Y2[[i]]}, {i, n}];

Y1 = SmoothKernelDistribution[Y1];

Y2 = SmoothKernelDistribution[Y2];

Y = SmoothKernelDistribution[Y];

Plot[PDF[Y1, x], {x, Min[Y1] - sd1, Max[Y1] + sd1}],

Plot[PDF[Y2, x], {x, Min[Y2] - sd2, Max[Y2] + sd2}],

Plot3DPDF[Y, {x, y}],

x, Min[Y1] -
sd1

2
, Max[Y1] +

sd1

2
, y, Min[Y2] -

sd2

2
, Max[Y2] +

sd2

2
,

ColorFunction -> "LightTemperatureMap", PlotRange → All,

HY = Histogram3D[Y, 15, "Probability", ColorFunction → "Rainbow", ImageSize → Small],

ListPlot[Y, AxesOrigin → {1, 30}, ImageSize → Small]

2. Applying Sklar' s result

SeedRandom[0];

Y1r = TableY[[i, 1]] + RandomReal[-1, 1] 10-8, {i, 1, Length[Y1]};

Y2r = TableY[[i, 2]] + RandomReal[-1, 1] 10-8, {i, 1, Length[Y1]};

p1 = Position[Sort[Y1r], #] & /@ Y1r // Flatten;

p2 = Position[Sort[Y2r], #] & /@ Y2r // Flatten;

The repositioned copula points have the lowest discrepancy for an n point set - whose discrepancy 
is 1/(2n).
These points are located at the center of each cell of an nxn grid of the unit square. There will be 
referred to as the Centered Copula Points or CCPs. The pmf at each point is 1/n. The undesirable  
edge effects encountered with the original Deheuvels’ copula points when utilized in conjunction 
with the kde approach to density estimation, are mitigated when the CCPs are used.

ccp = Table
1

n
p1[[i]] -

1

2 n
,
1

n
p2[[i]] -

1

2 n
, {i, n};

The selected copula kde with bandwidth 0.035

cd35 = SmoothKernelDistribution[ccp, .035, "Epanechnikov"];

Plot3D[PDF[cd35, {x, y}], {x, 0, 1}, {y, 0, 1},

ColorFunction -> "LightTemperatureMap", PlotRange -> All, PlotLabel → .035]

Marginal Distributions
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kde1 = SmoothKernelDistribution[Y1, 0.75, "Triweight"];

ClearAll[g1, G1]

g1[x_] := PDF[kde1, x]

G1[x_] := CDF[kde1, x]

pd1 = Plot[g1[x], {x, Min[Y1] - sd1, Max[Y1] + sd1}, ImageSize → Medium];

ShowHistogramY1, Min[Y1] - sd1, Max[Y1] + sd1,
Max[Y1] - Min[Y1]

15
,

"PDF", ChartElementFunction → "FadingRectangle", ChartStyle → Green, pd1

kde2 = SmoothKernelDistribution[Y2, 10, "Triweight"];

ClearAll[g2, G2]

g2[x_] := PDF[kde2, x]

G2[x_] := CDF[kde2, x]

pd2 = Plot[g2[x], {x, Min[Y2] - sd2, Max[Y2] + sd2}, ImageSize → Medium];

ShowHistogramY2, Min[Y2] - sd2, Max[Y2] + sd2,
Max[Y2] - Min[Y2]

15
,

"PDF", ChartElementFunction → "FadingRectangle", ChartStyle → Green, pd2

Product of the marginal pdfs

Plot3D[g1[w] * g2[z], {w, Min[Y1] - sd1, Max[Y1] + sd1}, {z, Min[Y2] - sd2, Max[Y2] + sd2},

PlotRange → All, ColorFunction → "LightTemperatureMap"]

Application of Sklar' s result

Psk = Plot3Dg1[w] * g2[z] * Evaluate[PDF[cd35, {G1[w], G2[z]}]],

w, Min[Y1] -
sd1

2
, Max[Y1] +

sd1

2
, z, Min[Y2] -

sd2

2
, Max[Y2] +

sd2

2
,

PlotRange → All, PlotStyle → Cyan, ImageSize → Medium

Bivariate KDE obtained directly from the data

bandwidthy1 = 0.27;

kdeY = SmoothKernelDistribution[Y, {bandwidthy1, 10 * bandwidthy1}, "Cosine"];

Plot3DPDF[kdeY, {x, y}],

x, Min[Y1] -
sd1

2
, Max[Y1] +

sd1

2
, y, Min[Y2] -

sd2

2
, Max[Y2] +

sd2

2
,

ImageSize → Medium, PlotRange → All, PlotStyle → Cyan
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Section 3.4
Estimating a t-distributed copula density

1. Data

2000 points are generated from a bivariate T copula on one degree of freedom, the marginal 
distributions being standard normal and uniform on the interval [0, 2].

jointpdf = CopulaDistribution[{"MultivariateT", {{1, 0}, {0, 1}}, 1},

{NormalDistribution[], UniformDistribution[{0, 2}]}];

Plot3D[PDF[jointpdf, {x, y}], {x, -4, 4}, {y, 0, 2}, Evaluated -> True,

ColorFunction -> "LightTemperatureMap"] // Quiet

The copula density :

pdfcop = CopulaDistribution[{"MultivariateT", {{1, 0}, {0, 1}}, 1},

{UniformDistribution[{0, 1}], UniformDistribution[{0, 1}]}];

Plot3D[PDF[pdfcop, {x, y}], {x, 0, 1}, {y, 0, 1}, Evaluated -> True,

ColorFunction -> "LightTemperatureMap", PlotRange -> {0, 5}] // Quiet

SeedRandom[13];

n = 2000;

X = RandomVariate[jointpdf, n];

ListPlot[X, PlotStyle -> Red]

X1 = Table[X[[i, 1]], {i, n}];

X2 = Table[X[[i, 2]], {i, n}];

HX = Histogram3D[X, 10, "PDF", ColorFunction -> "LightTemperatureMap"]

kdeX = SmoothKernelDistribution[X];

Plot3D[PDF[kdeX, {x, y}], {x, -4, 4}, {y, 0, 2},

ImageSize -> Medium, ColorFunction -> "LightTemperatureMap"]

kdeX1 = SmoothKernelDistribution[X1];

Plot[PDF[kdeX1, x], {x, -4, 4}, ImageSize -> Medium, ColorFunction -> Blue]

kdeX2 = SmoothKernelDistribution[X2];

Plot[PDF[kdeX2, x], {x, 0, 2}, ImageSize -> Medium, PlotRange -> {0, .6}]

2. Differentiated least - squares approximations of the empirical copula as 
initial density estimates

T = EmpiricalDistribution[X];

data1o = SortTableX[[i, 1]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

data2o = SortTableX[[i, 2]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

The empirical copula cdf evaluated at 40,000 points lying on a 200 x 200 grid. This subsample is 
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 empirical copula  points lying  grid.  subsample
used to make the calculations more manageable in this section.

tbcop = RationalizeFlatten[Table[{10 j / Length[X1],

10 k / Length[X1], CDF[T, {data1o[[10 j, 1]], data2o[[10 k, 1]]}]},

{j, 1, Length[X1] / 10} , {k, 1, Length[X1] / 10}], 1], 10-10;

A least-squares approximating polynomial P2(x,y) is fitted to the points tbcop and differentiated. 
The copula density approximation is taken to be half the sum of the resulting polynomial and its 
absolute value to ensure nonnegativity on the unit square.

d = 5;

b2d = FlattenTablexi yj, {i, 0, d}, {j, 0, d};

P2d = Fit[tbcop, b2d, {x, y}];

F2d_[u_, v_] := F2d[u, v] = P2d /. {x → u, y → v};

f2d_[x_, y_] := f2d[x, y] = D[P2d, x, y];

Pf2 = Plot3D[(Abs[f2d[x, y]] + f2d[x, y] /. {x → u, y → v}) / 2 , {u, 5 / 100, 95 / 100},

{v, 5 / 100, 95 / 100}, ColorFunction → "LightTemperatureMap",

PlotLabel → d, ImageSize → Medium, PlotLabel → d]

Repeat the above procedure similarly with d = 10, 15, 20, 25, 30, 35, 40

The degree selection criterion is based on the integrated squared difference between cdf approxi-
mations that are 5 degrees apart of over [0.1, 0.9]2 so as to avoid the less stable behavior of the 
approximations close to the boundary of the unit square.

Visually, the graphs of the approximate copula densities for degrees 20 to 40 are similar. Since the 
difference between d30 and d35 is relatively small, the approximation of degree 30 in each vari-
able can be chosen as reference distribution.

ClearAll[ISDcdf]

ISDcdf[t_] :=

ISDcdf[t] = NIntegrate(F2t+5[x, y] - F2t[x, y])2, {x, 0.1, 0.9}, {y, 0.1, 0.9} // Quiet

{Table[{5 * t, ISDcdf[5 t]}, {t, 1, 7}] // Insert[{"t", "ISDcdf[t]"}, 1] // MatrixForm,

ListLinePlot[Table[{5 t, ISDcdf[5 t]}, {t, 2, 7}],

Mesh → All, ImageSize → Medium, PlotRange -> All]}

3. KDE based copula densities and bandwidth selection criterion 

The narrower the kernels, the higher the peaks and the lower the troughs .
Thus, it seems reasonable to have a bandwidth selection criterion that is a function of the dis-
tance between the reference Least-Squares copula pdf and a given KDE . 

n = Length[X];

X1r = TableX[[i, 1]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};

X2r = TableX[[i, 2]] + RandomReal[-1, 1] 10-8, {i, 1, Length[X1]};
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p1 = Position[Sort[X1r], #] & /@ X1r // Flatten;

p2 = Position[Sort[X2r], #] & /@ X2r // Flatten;

The repositioned copula points (which form the lowest discrepancy n point set whose discrepancy 
is 1/(2n)).
These points are located at the center of the corresponding cells of an nxn grid of the unit square. 
They will be referred to as the Centered Copula Points or CCPs. The pmf at each point is 1/n. The 
kernels of the density estimates are located at these points.

ccp = Table
1

n
p1[[i]] -

1

2 n
,
1

n
p2[[i]] -

1

2 n
, {i, n};

Bandwidth .025

cd25 = SmoothKernelDistribution[ccp, .025, "Epanechnikov"];

Plot3D[PDF[cd25, {x, y}], {x, 0, 1}, {y, 0, 1},

ColorFunction -> "LightTemperatureMap", PlotRange -> All, PlotLabel → .025]

4. Bernstein polynomial copula densities and model selection

ED1 = EmpiricalDistribution[X1];

ED2 = EmpiricalDistribution[X2];

ClearAll[Cn]

Cn[x_, y_] :=

Cn[x, y] =
1

n


i=1

n

Which[CDF[ED1, X1[[i]]] > x, 0, CDF[ED2, X2[[i]]] > y, 0, True, 1]

degree 100

ED1 = EmpiricalDistribution[X1];

ED2 = EmpiricalDistribution[X2];

ClearAll[Cn]

Cn[x_, y_] :=

Cn[x, y] =
1

n


i=1

n

Which[CDF[ED1, X1[[i]]] > x, 0, CDF[ED2, X2[[i]]] > y, 0, True, 1]

ClearAll[cdfbcop, bcop]

k = 100;

ClearAll[dbin, bin]

dbin[u_, v_] := dbin[u, v] = D[PDF[BinomialDistribution[k, x], v], x] /. x → u

dbin[u, v]

dbin[0.5, 4]

bin[u_, v_] := bin[u, v] = PDF[BinomialDistribution[k, x], v] /. x → u

bin[u, v]

bin[0.5, 3]
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ClearAll[cdfbcop]

cdfbcop[x_, y_] := cdfbcop[x, y] = 

i=0

k



j=0

k

Cn
i

k
,
j

k
 * bin[x, i] * bin[y, j]

The cdf ISD within the unit square

NIntegrate(cdfbcop[x, y] - F230[x, y])2, {x, 0, 1},

{y, 0, 1}, Method → "AdaptiveQuasiMonteCarlo", MaxRecursion → 200

This is the smallest cdf ISD with respect to the reference LS copula and bcop can also be utilized 
as a reference copula density function.

bcop[x_, y_] := bcop[x, y] = 

i=0

k



j=0

k

Cn
i

k
,
j

k
 * dbin[x, i] * dbin[y, j]

pbcop =

ListPlot3D[Flatten[Table[{r, s, bcop[r, s]}, {r, 0, 1, 1 / 100}, {s, 0, 1, 1 / 100}], 1],

ColorFunction → "Rainbow", ImageSize → Medium, PlotRange → {0, 6}, PlotLabel → k]

5. Differentiated linearized empirical copulas 

ftp12 = Flatten[Table[{x, y, Cn[x, y]}, {x, 0, 1, 1 / 12}, {y, 0, 1, 1 / 12}], 1];

fI12 = Interpolation[ftp12, InterpolationOrder → 1];

Plot3D[Evaluate[D[fI12[x, y], x, y] /. {x → w, y → z}], {w, 0, 1}, {z, 0, 1},

ColorFunction → "LightTemperatureMap", PlotRange → All, PlotLabel → 1 / 12]

NIntegrate((Evaluate[D[fI12[u, v], u, v]] - bcop[u, v]) /. {u → x, v → y})2,

{x, .1, .9}, {y, .1, .9}, Method → "AdaptiveQuasiMonteCarlo", MaxRecursion → 200
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Chapter 4
Representations of Certain Measures of
Association in terms of Copulas

Section 4.6 
Illustrative Examples

SeedRandom[1];

uni = RandomReal[{-3, 3}, 500];

f[x_] := 

{x, -x / 5 + 1 + RandomReal[{-.05, .05}]},

x, -x5 + RandomReal[{-5.5, 5.5}],

{Cos[x], Sin[x] + RandomReal[.15]},

x, -SqrtAbsx3/2 + RandomReal[.35],

x, Tan[x]3 + RandomReal[{-1.9, 1.9}]

data = f /@ uni;

Table[ListPlot[data〚All, i〛, Frame → True, Axes → None,

PlotStyle → {Directive[PointSize[.007]], Purple}], {i, 5}]

NumberForm[

Table[HoeffdingDTest[Sequence @@ Transpose[data〚All, i〛], "TestDataTable"], {i, 5}],

{4, 4}] // Chop

NumberForm[Table[SpearmanRankTest[Sequence @@ Transpose[data〚All, i〛],

"TestDataTable"], {i, 5}], {4, 4}] // Chop

NumberForm[Table[KendallTauTest[Sequence @@ Transpose[data〚All, i〛], "TestDataTable"],

{i, 5}], {4, 4}] // Chop

NumberForm[Table[BlomqvistBetaTest[Sequence @@ Transpose[data〚All, i〛],

"TestDataTable"], {i, 5}], {4, 4}] // Chop

NumberForm[Table[PearsonCorrelationTest[Sequence @@ Transpose[data〚All, i〛],

"TestDataTable"], {i, 5}] // Quiet, {4, 4}] // Chop
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Chapter 5
A Criterion for Characterizing the Tail 
Behavior of a Distribution

Section 5.2 
A methodology based on the arctangent transformation

ClearAll[tail];

tail[_] :=

μ = Mean[];

σ = StandardDeviation[];

Qt9 =
2

π

ArcTan[(Quantile[, 0.9] - μ) / σ];

Qt999999 =
2

π

ArcTan[(Quantile[, 0.999999] - μ) / σ];

lpt = ListPlot[{{Qt9, 0}, {Qt999999, 0}}, PlotStyle → Red];

Print["p=", Qt999999 - Qt9];

PrintShowPlot PDF[, σ Tan[(π / 2) y] + μ] σ (π / 2) Sec[(π / 2) y]2,

{y, -1, 1}, PlotRange → All, PlotLegends → {}, lpt;

dis = {

NormalDistribution[0, 1],

WeibullDistribution[0.5, 1], WeibullDistribution[2, 1],

ExtremeValueDistribution[0, 1],

ExponentialDistribution[1],

StudentTDistribution[3], StudentTDistribution[5], StudentTDistribution[20],

LogNormalDistribution[0, 1],

UniformDistribution[{0, 1}],

BetaDistribution[5, 2],

BetaPrimeDistribution[5, 3], BetaPrimeDistribution[50, 30],

GammaDistribution[50, 1],

LogisticDistribution[0, 1]};

Table[tail[dis[[i]]], {i, 1, Length[dis]}]
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Section 5.3
An illustration of the convergence of the tail index

ClearAll[simulation]

simulation[n_] := (

 = ExponentialDistribution[1];

SeedRandom[5];

X0 = Sort[RandomVariate[, n]];

P0 = SmoothKernelDistribution[X0];

tail[P0]

)

Table[simulation[n], {n, {100, 1000, 50 000, 1 000 000}}]

Section 5.4
Application of the tail index criterion

dis1 = {RayleighDistribution[1],

BetaPrimeDistribution[2, 5]};

Table[tail[dis1[[i]]], {i, 1, Length[dis1]}]

(*Comparison with other criteria*)

dis = {

WeibullDistribution[1, 1],

ParetoDistribution[1, 3]

};

Table[tail[dis[[i]]], {i, 1, Length[dis]}]
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Chapter 6
Distribution of Quadratic Forms in Various 
Types of Random Variables

Section 6.3
Illustrative examples

Subsection 6.3.1 
Quadratic forms in gamma random variables

(*A={{1,0,0,0},{0,2,1,0},{0,1,2,0},{0,0,0,3}}*)

A = {{1, 0, 0, 0}, {0, 2, 1, 0}, {0, 1, 2, 0}, {0, 0, 0, 3}};

% // TableForm

Eigenvalues[A] // N

α1 = 2; β1 = 2; α2 = 9; β2 = 1;

α3 = 2; β3 = 1; α4 = 12; β4 = 1;

Plot[{PDF[GammaDistribution[α1, β1], y], PDF[GammaDistribution[α2, β2], y],

PDF[GammaDistribution[α3, β3], y], PDF[GammaDistribution[α4, β4], y]},

{y, 0, 25}, PlotRange → All, PlotLegends → {"X1", "X2", "X3", "X4"}]
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1 = GammaDistribution[α1, β1];

2 = GammaDistribution[α2, β2];

3 = GammaDistribution[α3, β3];

4 = GammaDistribution[α4, β4];

size = 10 000;

SeedRandom[1];

data1 = RandomVariate[1, size];

SeedRandom[2];

data2 = RandomVariate[2, size];

SeedRandom[3];

data3 = RandomVariate[3, size];

SeedRandom[4];

data4 = RandomVariate[4, size];

data = Sort[Table[{data1[[i]], data2[[i]], data3[[i]], data4[[i]]}.

A.{data1[[i]], data2[[i]], data3[[i]], data4[[i]]}, {i, 1, size}]];

ED = EmpiricalDistribution[data];

ClearAll[F]

F[x_] := F[x] = CDF[ED, x];

ub = 3000;

F[ub]

H1 = Histogram[data, {0, ub, ub / 30}, "PDF"]

Plot[CDF[ED, x], {x, 0, ub}]

ClearAll[μ];

μ[h_] := μ[h] = Expand({X1 , X2, X3, X4}.A. {X1 , X2, X3, X4})
h
 /.

X1
j_.

⧴ Moment[GammaDistribution[α1, β1], j],

X2
j_.

⧴ Moment[GammaDistribution[α2, β2], j],

X3
j_.

⧴ Moment[GammaDistribution[α3, β3], j],

X4
j_.

⧴ Moment[GammaDistribution[α4, β4], j]

α =
μ[1]2

μ[2] - μ[1]2
, β =

μ[2] - μ[1]2

μ[1]


ClearAll[fb, Fb];

fb[y_] := fb[y] = PDF[GammaDistribution[α, β], y]

Fb[y_] := Fb[y] = CDF[GammaDistribution[α, β], y]

pf = Plot[fb[y], {y, 0, ub}];

Show[H1, pf]

Plot[{F[y], Fb[y]}, {y, 0, ub}, PlotRange → All, PlotLegends → {"Empirical", "Base"}]

ISD = QuietNumberFormNIntegrate(F[y] - Fb[y])2, {y, 0, ub}, 4
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n = 8;

M1 = Table[Moment[GammaDistribution[α, β], i + j], {i, 0, n}, {j, 0, n}];

μ1 = Table[μ[i], {i, 0, n}];

coe1 = Inverse[M1].μ1;

ClearAll[p, f1, F1]

p[y_] := p[y] = 

i=1

n+1

coe1[[i]] yi-1

f1[y_] := f1[y] = fb[y] × p[y]

pf1 = Plot[f1[y], {y, 0, ub}, PlotRange → All];

Show[H1, pf1, PlotLabel → n]

F1[y_] := F1[y] = NIntegrate[f1[x], {x, 0, y}]

Plot[{F[y], F1[y]}, {y, 0, ub}, PlotRange → All,

PlotLegends → {"Empirical", "Approximated"}, PlotLabel → n]

ISD1 = QuietNumberFormNIntegrate(F[y] - F1[y])2, {y, 0, ub}, 4

Subsection 6.3.2 
Quadratic forms in inverse Gaussian random variables

(*A={{1,0,0,0},{0,2,1,0},{0,1,2,0},{0,0,0,3}}*)

A = {{1, 0, 0, 0}, {0, 2, 1, 0}, {0, 1, 2, 0}, {0, 0, 0, 3}};

% // TableForm

Eigenvalues[A] // N

α1 = 2; β1 = 5; α2 = 3; β2 = 6;

α3 = 2; β3 = 2; α4 = 3; β4 = 4;

Plot[{PDF[InverseGaussianDistribution[α1, β1], y],

PDF[InverseGaussianDistribution[α2, β2], y],

PDF[InverseGaussianDistribution[α3, β3], y],

PDF[InverseGaussianDistribution[α4, β4], y]}, {y, 0, 10},

PlotRange → All, PlotLegends → {"X1", "X2", "X3", "X4"}]
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1 = InverseGaussianDistribution[α1, β1];

2 = InverseGaussianDistribution[α2, β2];

3 = InverseGaussianDistribution[α3, β3];

4 = InverseGaussianDistribution[α4, β4];

size = 10 000;

SeedRandom[1];

data1 = RandomVariate[1, size];

SeedRandom[2];

data2 = RandomVariate[2, size];

SeedRandom[3];

data3 = RandomVariate[3, size];

SeedRandom[4];

data4 = RandomVariate[4, size];

data = Sort[Table[{data1[[i]], data2[[i]], data3[[i]], data4[[i]]}.

A.{data1[[i]], data2[[i]], data3[[i]], data4[[i]]}, {i, 1, size}]];

ED = EmpiricalDistribution[data];

ClearAll[F]

F[x_] := F[x] = CDF[ED, x];

ub = 900;

F[ub]

H1 = Histogram[data, {0, ub, ub / 30}, "PDF"]

Plot[CDF[ED, x], {x, 0, ub}, PlotRange → All]

ClearAll[μ];

μ[h_] := μ[h] = Expand({X1 , X2, X3, X4}.A. {X1 , X2, X3, X4})
h
 /.

X1
j_.

⧴ Moment[InverseGaussianDistribution[α1, β1], j],

X2
j_.

⧴ Moment[InverseGaussianDistribution[α2, β2], j],

X3
j_.

⧴ Moment[InverseGaussianDistribution[α3, β3], j],

X4
j_.

⧴ Moment[InverseGaussianDistribution[α4, β4], j]

α = μ[1], β =
μ[1]3

μ[2] - μ[1]2


ClearAll[fb, Fb];

fb[y_] := fb[y] = PDF[InverseGaussianDistribution[α, β], y]

Fb[y_] := Fb[y] = CDF[InverseGaussianDistribution[α, β], y]

pf = Plot[fb[y], {y, 0, ub}, PlotRange → All];

Show[H1, pf]

Plot[{F[y], Fb[y]}, {y, 0, ub}, PlotRange → All, PlotLegends → {"Empirical", "Base"}]

ISD = QuietNumberFormNIntegrate(F[y] - Fb[y])2, {y, 0, ub}, 4
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n = 5;

M1 = Table[Moment[InverseGaussianDistribution[α, β], i + j], {i, 0, n}, {j, 0, n}];

μ1 = Table[μ[i], {i, 0, n}];

coe1 = Inverse[M1].μ1;

ClearAll[p, f1, F1]

p[y_] := p[y] = 

i=1

n+1

coe1[[i]] yi-1

f1[y_] := f1[y] = fb[y] × p[y]

pf1 = Plot[f1[y], {y, 0, ub}, PlotRange → All];

Show[H1, pf1, PlotLabel → n]

F1[y_] := F1[y] = NIntegrate[f1[x], {x, 0, y}]

Plot[{F[y], F1[y]}, {y, 0, ub}, PlotRange → All,

PlotLegends → {"Empirical", "Approximated"}, PlotLabel → n]

ISD1 = QuietNumberFormNIntegrate(F[y] - F1[y])2, {y, 0, ub}, 4

Subsection 6.3.3 
Quadratic forms in binomial random variables

(*A={{1,0,0,0},{0,2,-1,0},{0,-1,2,0},{0,0,0,3}}*)

A = {{1, 0, 0, 0}, {0, 2, -1, 0}, {0, -1, 2, 0}, {0, 0, 0, 3}};

% // TableForm

Eigenvalues[A] // N

α1 = 20; β1 = 1 / 4; α2 = 30; β2 = 1 / 2;

α3 = 20; β3 = 1 / 2; α4 = 30; β4 = 1 / 3;

Plot[{CDF[BinomialDistribution[α1, β1], y], CDF[BinomialDistribution[α2, β2], y],

CDF[BinomialDistribution[α3, β3], y], CDF[BinomialDistribution[α4, β4], y]},

{y, 0, 30}, PlotRange → All, PlotLegends → {"X1", "X2", "X3", "X4"}]
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1 = BinomialDistribution[α1, β1];

2 = BinomialDistribution[α2, β2];

3 = BinomialDistribution[α3, β3];

4 = BinomialDistribution[α4, β4];

size = 10 000;

SeedRandom[1];

data1 = RandomVariate[1, size];

SeedRandom[2];

data2 = RandomVariate[2, size];

SeedRandom[3];

data3 = RandomVariate[3, size];

SeedRandom[4];

data4 = RandomVariate[4, size];

data = Sort[Table[{data1[[i]], data2[[i]], data3[[i]], data4[[i]]}.

A.{data1[[i]], data2[[i]], data3[[i]], data4[[i]]}, {i, 1, size}]];

ED = EmpiricalDistribution[data];

ClearAll[F]

F[x_] := F[x] = CDF[ED, x];

ub = 1600;

F[ub] // N

H1 = Histogram[data, {0, ub, ub / 20}, "PDF"]

Plot[CDF[ED, x], {x, 0, ub}, PlotRange → All]

ClearAll[μ];

μ[h_] := μ[h] = Expand({X1 , X2, X3, X4}.A. {X1 , X2, X3, X4})
h
 /.

X1
j_.

⧴ Moment[BinomialDistribution[α1, β1], j],

X2
j_.

⧴ Moment[BinomialDistribution[α2, β2], j],

X3
j_.

⧴ Moment[BinomialDistribution[α3, β3], j],

X4
j_.

⧴ Moment[BinomialDistribution[α4, β4], j]

α =
μ[1]2

μ[2] - μ[1]2
, β =

μ[2] - μ[1]2

μ[1]


ClearAll[fb, Fb];

fb[y_] := fb[y] = PDF[GammaDistribution[α, β], y]

Fb[y_] := Fb[y] = CDF[GammaDistribution[α, β], y]

SDD = NumberFormSum(F[y] - Fb[y])2, {y, 0, ub}, 4 // N

pf = Plot[fb[y], {y, 0, ub}];

Show[H1, pf]

Plot[{F[y], Fb[y]}, {y, 0, ub}, PlotRange → All, PlotLegends → {"Empirical", "Base"}]
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n = 9;

M1 = Table[Moment[GammaDistribution[α, β], i + j], {i, 0, n}, {j, 0, n}];

μ1 = Table[μ[i], {i, 0, n}];

coe1 = Inverse[M1].μ1;

ClearAll[p, f1, F1]

p[y_] := p[y] = 

i=1

n+1

coe1[[i]] yi-1

f1[y_] := f1[y] = N[fb[y] × p[y]]

pf1 = Plot[f1[y], {y, 0, ub}, PlotRange → All];

Show[H1, pf1, PlotLabel → n]

F1[y_] := F1[y] = NIntegrate[f1[x], {x, 0, y}]

Plot[{F[y], F1[y]}, {y, 0, ub}, PlotRange → All,

PlotLegends → {"Empirical", "Approximated"}, PlotLabel → n]

SDD = NumberFormSum(F[y] - F1[y])2, {y, 0, ub}, 4

Subsection 6.3.4 
Quadratic forms in Poisson random variables

(*A={{1,0,0,0},{0,2,-1,0},{0,-1,2,0},{0,0,0,3}}*)

A = {{1, 0, 0, 0}, {0, 2, -1, 0}, {0, -1, 2, 0}, {0, 0, 0, 3}};

% // TableForm

Eigenvalues[A] // N

α1 = 3; α2 = 4;

α3 = 5; α4 = 6;

Plot[{CDF[PoissonDistribution[α1], y], CDF[PoissonDistribution[α2], y],

CDF[PoissonDistribution[α3], y], CDF[PoissonDistribution[α4], y]},

{y, 0, 20}, PlotRange → All, PlotLegends → {"X1", "X2", "X3", "X4"}]
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1 = PoissonDistribution[α1];

2 = PoissonDistribution[α2];

3 = PoissonDistribution[α3];

4 = PoissonDistribution[α4];

size = 10 000;

SeedRandom[1];

data1 = RandomVariate[1, size];

SeedRandom[2];

data2 = RandomVariate[2, size];

SeedRandom[3];

data3 = RandomVariate[3, size];

SeedRandom[4];

data4 = RandomVariate[4, size];

data = Sort[Table[{data1[[i]], data2[[i]], data3[[i]], data4[[i]]}.

A.{data1[[i]], data2[[i]], data3[[i]], data4[[i]]}, {i, 1, size}]];

ED = EmpiricalDistribution[data];

ClearAll[F]

F[x_] := F[x] = CDF[ED, x];

ub = 1000;

F[ub]

H1 = Histogram[data, {0, ub, ub / 20}, "PDF"]

Plot[CDF[ED, x], {x, 0, ub}, PlotRange → All]

ClearAll[μ];

μ[h_] := μ[h] = Expand({X1 , X2, X3, X4}.A. {X1 , X2, X3, X4})
h
 /.

X1
j_.

⧴ Moment[PoissonDistribution[α1], j],

X2
j_.

⧴ Moment[PoissonDistribution[α2], j],

X3
j_.

⧴ Moment[PoissonDistribution[α3], j],

X4
j_.

⧴ Moment[PoissonDistribution[α4], j]

α =
μ[1]2

μ[2] - μ[1]2
, β =

μ[2] - μ[1]2

μ[1]


ClearAll[fb, Fb];

fb[y_] := fb[y] = PDF[GammaDistribution[α, β], y]

Fb[y_] := Fb[y] = CDF[GammaDistribution[α, β], y]

SDD = NumberFormSum(F[y] - Fb[y])2, {y, 0, ub}, 4 // N

pf = Plot[fb[y], {y, 0, ub}];

Show[H1, pf]

Plot[{F[y], Fb[y]}, {y, 0, ub}, PlotRange → All, PlotLegends → {"Empirical", "Base"}]
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n = 10;

M1 = Table[Moment[GammaDistribution[α, β], i + j], {i, 0, n}, {j, 0, n}];

μ1 = Table[μ[i], {i, 0, n}];

coe1 = Inverse[M1].μ1;

ClearAll[p, f1, F1]

p[y_] := p[y] = 

i=1

n+1

coe1[[i]] yi-1

f1[y_] := f1[y] = N[fb[y] × p[y]]

pf1 = Plot[f1[y], {y, 0, ub}, PlotRange → All];

Show[H1, pf1, PlotLabel → n]

F1[y_] := F1[y] = NIntegrate[f1[x], {x, 0, y}]

Plot[{F[y], F1[y]}, {y, 0, ub}, PlotRange → All,

PlotLegends → {"Empirical", "Approximated"}, PlotLabel → n]

SDD = NumberFormSum(F[y] - F1[y])2, {y, 0, ub}, 4

Section 6.4
Hermitian quadratic forms

Subsection 6.4.1 
A numerical example

A = {{6, -2 ⅈ, 1}, {2 ⅈ, 2, 1 - ⅈ}, {1, 1 + ⅈ, 6}};

MatrixForm[A]

es = Eigensystem[A] // N

α1 = 3; β1 = 2; α2 = -5; β2 = 1; α3 = 4; β3 = 3;

Plot[{PDF[NormalDistribution[α1, β1], y],

PDF[NormalDistribution[α2, β2], y], PDF[NormalDistribution[α3, β3], y]},

{y, -10, 15}, PlotRange → All, PlotLegends → {"X1", "X2", "X3"}]

1 = NormalDistribution[α1, β1];

2 = NormalDistribution[α2, β2];

3 = NormalDistribution[α3, β3];

1c = NormalDistribution[α1, β1];

2c = NormalDistribution[α2, β2];

3c = NormalDistribution[α3, β3];

size = 10 000;

SeedRandom[1];

data1 = RandomVariate[1, size];

SeedRandom[2];

data2 = RandomVariate[2, size];

SeedRandom[3];

data3 = RandomVariate[3, size];
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SeedRandom[4];

data1c = RandomVariate[1c, size];

SeedRandom[5];

data2c = RandomVariate[2c, size];

SeedRandom[6];

data3c = RandomVariate[3c, size];

data = Chop[Table[{data1[[i]] - ⅈ data1c[[i]], data2[[i]] - ⅈ data2c[[i]],

data3[[i]] - ⅈ data3c[[i]]}.A.{data1[[i]] + ⅈ data1c[[i]],

data2[[i]] + ⅈ data2c[[i]], data3[[i]] + ⅈ data3c[[i]]}, {i, 1, 10 000}]];

ub = 3000;

H1 = Histogram[data, {0, ub, ub / 30}, "PDF"]

ED = EmpiricalDistribution[data];

ClearAll[F]

F[x_] := F[x] = CDF[ED, x];

F[150];

Plot[CDF[ED, x], {x, 0, ub}, PlotRange → All]

ClearAll[μ];

μ[h_] :=

μ[h] = Expand({X1 - ⅈ X1 c, X2 - ⅈ X2 c, X3 - ⅈ X3 c}.A. {X1 + ⅈ X1 c, X2 + ⅈ X2 c, X3 + ⅈ X3 c})
h
 /.

X1
j_.

⧴ Moment[NormalDistribution[α1, β1], j],

X2
j_.

⧴ Moment[NormalDistribution[α2, β2], j],

X3
j_.

⧴ Moment[NormalDistribution[α3, β3], j],

X1 c
j_.

⧴ Moment[NormalDistribution[α1, β1], j],

X2 c
j_.

⧴ Moment[NormalDistribution[α2, β2], j],

X3 c
j_.

⧴ Moment[NormalDistribution[α3, β3], j]

μ[1];

μ[2];

α =
μ[1]2

μ[2] - μ[1]2
, β =

μ[2] - μ[1]2

μ[1]
;

ClearAll[fb, Fb];

fb[y_] := fb[y] = PDF[GammaDistribution[α, β], y]

Fb[y_] := Fb[y] = CDF[GammaDistribution[α, β], y]

Show[H1, Plot[fb[y], {y, 2, ub}, PlotRange → All]]

Plot[{F[y], Fb[y]}, {y, 0, ub}, PlotLegends → {"Empirical", "Base"}]

ISD = QuietNIntegrate(F[y] - Fb[y])2, {y, 0, 1500}

Section 6.5
A parametric approach for quadratic forms in Gaussian
random vectors
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Subsection 6.5.3
A parametric approximation to the distribution of quadratic forms

Example 1

A = {{1, 0, 0}, {0, 2, 0},

{0, 0, 3}};

MatrixForm[A]

es = Eigensystem[A] // N

Simulated distribution

α1 = 0; β1 = 1; α2 = 0; β2 = 1; α3 = 0; β3 = 1;

Plot[{PDF[NormalDistribution[α1, β1], y]}, {y, -4, 4}, PlotRange → All];

1 = NormalDistribution[α1, β1];

2 = NormalDistribution[α2, β2];

3 = NormalDistribution[α3, β3];

size = 10 000;

SeedRandom[1];

data1 = RandomVariate[1, size];

SeedRandom[2];

data2 = RandomVariate[2, size];

SeedRandom[3];

data3 = RandomVariate[3, size];

data = Chop[Table[{data1[[i]], data2[[i]], data3[[i]]}.

A.{data1[[i]], data2[[i]], data3[[i]]}, {i, 1, 10 000}]];

ED = EmpiricalDistribution[data];

ClearAll[F]

F[x_] := F[x] = CDF[ED, x];

sP = Plot[CDF[ED, x], {x, 0, 40}, PlotRange → All]

 = SmoothKernelDistribution[data, {"Adaptive", Automatic, .45}];

pkde = Plot[PDF[, x], {x, -1, 30}, PlotStyle → Red]

The moments

ClearAll[μ];

μ[h_] := μ[h] = Expand({X1 , X2, X3}.A. {X1 , X2, X3})
h
 /.

X1
j_.

⧴ Moment[NormalDistribution[α1, β1], j],

X2
j_.

⧴ Moment[NormalDistribution[α2, β2], j],

X3
j_.

⧴ Moment[NormalDistribution[α3, β3], j]

μ[1]

μ[2]

μ[3]

μ[4]

μ[5]
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The Gamma approximation

Using the method of moments, we have

α =
μ[1]2

μ[2] - μ[1]2
, β =

μ[2] - μ[1]2

μ[1]


ClearAll[fb, Fb];

fb[y_] := fb[y] = PDF[GammaDistribution[α, β], y]

Fb[y_] := Fb[y] = CDF[GammaDistribution[α, β], y]

pg = Plot[fb[y], {y, 0, 30}, PlotRange → All];

Show[pg, pkde]

ep = Plot[F[y], {y, 0, 30}, PlotRange → All,

PlotStyle → Red, PlotLegends → {"The empirical cdf"}];

bp = Plot[Fb[y], {y, 0, 30}, PlotRange → All, PlotStyle → Dashed,

PlotLegends → {"The estimated cdf of the gamma approximation"}];

Show[

ep,

bp]

ISD = QuietNIntegrate(F[y] - Fb[y])2, {y, 0, 100}

The 4 - parameter q - EGG estimate:

Note that since the quadratic form is distributed as a linear combination of chi - square r.v.' s, the 
upper bound of the support is + infinity. Thus, the appropriate type of q - EGG distribution is 
type-2 (q >1) in which case the condition λ < (q - 1)-1 must be satisfied.

Since the gamma approximation produces an excellent approximation, we will seek a solution  in 
the neighborhood of α =

9

7
, β =

14

3
. Now referring to the particular cases, it is seen that the 

gamma distribution is obtained by letting  δ  = 1 and  q → 1 with τ being β and λ being α.

This suggests as a useful modelling approach to begin with a distribution having fewer parame-
ters and then to proceed with q-EGG distributions having more parameters.

Type-2  q-EGG pdf:

ClearAll[g]

g[x_, q_, τ_, λ_, δ_] :=

g[x, q, τ, λ, δ] =

Abs
δ

τ
 (q - 1)λ Gamma

1

q-1


Gamma
1

q-1
- λ Gamma[λ]

x

τ

λ*δ -1

1 + (q - 1)
x

τ

δ -
1

q-1

First attempt:  1 < q < 1.05, 4.5 < τ < 4.8, 1.1 < λ < 1.4, .98 < δ < 1.02.
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NMinimize

(τ)
1
(q - 1)

-1

δ Gamma
1

q-1
-

1

δ
- λ Gamma

1

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 6

2

+

(τ)
2
(q - 1)

-2

δ Gamma
1

q-1
-

2

δ
- λ Gamma

2

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 64

2

+

(τ)
3
(q - 1)

-3

δ Gamma
1

q-1
-

3

δ
- λ Gamma

3

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 1008

2

+

(τ)
4
(q - 1)

-4

δ Gamma
1

q-1
-

4

δ
- λ Gamma

4

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 21 312

2

,

1 < q < 1.05, 4.5 < τ < 4.8, 1.1 < λ < 1.4, λ < (q - 1)-1, .98 < δ < 1.02,

{q, τ, λ, δ}, MaxIterations → 10 000

Since the set lower limit of 4.5 is reached for the estimate of τ , that interval was extended:  4.2 < τ 
< 4.8.

NMinimize

(τ)
1
(q - 1)

-1

δ Gamma
1

q-1
-

1

δ
- λ Gamma

1

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 6

2

+

(τ)
2
(q - 1)

-2

δ Gamma
1

q-1
-

2

δ
- λ Gamma

2

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 64

2

+

(τ)
3
(q - 1)

-3

δ Gamma
1

q-1
-

3

δ
- λ Gamma

3

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 1008

2

+

(τ)
4
(q - 1)

-4

δ Gamma
1

q-1
-

4

δ
- λ Gamma

4

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 21 312

2

,

1 < q < 1.05, 4.2 < τ < 4.8, 1.1 < λ < 1.4, λ < (q - 1)-1, .98 < δ < 1.02,

{q, τ, λ, δ}, MaxIterations → 10 000
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qo = %[[2, 1, 2]];

τo = %%[[2, 2, 2]];

λo = %%%[[2, 3, 2]];

δo = %%%%[[2, 4, 2]];

ClearAll[f]

f[x_] := Chop[g[x, qo, τo, λo, δo]]

f[2]

px = Plot[Evaluate[f[x]], {x, 0, 30}, PlotRange → All,

PlotLegends → {"PDF Estimate (Method of Moments)"},

PlotLegends → {"The estimated density of the q-EGG approximation"}];

Show[

px,

pkde]

ClearAll[F1];

F1[y_] := F1[y] = NIntegrate[f[x], {x, 0, y}]

F1[5]

p2 = Plot[F1[x], {x, 0, 30}, PlotStyle → Dashed, PlotRange → All,

PlotLegends → {"The estimated CDF of the q-EGG approximation"}];

Show[

ep,

p2]

ISD = QuietChopNIntegrate(F[y] - F1[y])2, {y, 0, 100}

As expected, the ISD is smaller (by approximately a factor of 2) than in the case of the gamma 
approximation.

Example 2 
Approximating the distribution of an indefinite quadratic form

A = {{-12, 0, 0, 0, 0}, {0, -8, 0, 0, 0},

{0, 0, -4, 0, 0}, {0, 0, 0, 1, 0}, {0, 0, 0, 0, 5}};

MatrixForm[A]

es = Eigensystem[A] // N

Q = {X1 , X2, X3, X4 , X5}.A. {X1 , X2, X3, X4, X5}

Q = X - Y;
X = X42 + 5 X5

2;
Y = 12 X12 + 8 X2

2 + 4 X3
2;
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α1 = 0; β1 = 1; α2 = 0; β2 = 1; α3 = 0; β3 = 1; α4 = 0; β4 = 1; α5 = 0; β5 = 1;

Plot[{PDF[NormalDistribution[α1, β1], y]}, {y, -4, 4}, PlotRange → All]

1 = NormalDistribution[α1, β1];

2 = NormalDistribution[α2, β2];

3 = NormalDistribution[α3, β3];

4 = NormalDistribution[α4, β4];

5 = NormalDistribution[α5, β5];

size = 10 000;

SeedRandom[1];

data1 = RandomVariate[1, size];

SeedRandom[2];

data2 = RandomVariate[2, size];

SeedRandom[3];

data3 = RandomVariate[3, size];

SeedRandom[4];

data4 = RandomVariate[4, size];

SeedRandom[5];

data5 = RandomVariate[5, size];

data = Chop[Table[{data1[[i]], data2[[i]], data3[[i]], data4[[i]], data5[[i]]}.A.

{data1[[i]], data2[[i]], data3[[i]], data4[[i]], data5[[i]]}, {i, 1, 10000}]];

ED = EmpiricalDistribution[data];

ClearAll[F]

F[x_] := F[x] = CDF[ED, x];

sP = Plot[CDF[ED, x], {x, -120, 50},

PlotRange → All, PlotLegends → {"Exact CDF(the whole density)"}]

 = SmoothKernelDistribution[data, {"Adaptive", Automatic, .45}];

pkde = Plot[PDF[, x], {x, -120, 50}, PlotStyle → Red, PlotRange → All]

Table[Quantile[data, i / 25], {i, 25}]

ClearAll[μ];

μ[h_] := μ[h] = Expand({X1 , X2, X3, X4, X5}.A. {X1 , X2, X3, X4, X5})
h
 /.

X1
j_.

⧴ Moment[NormalDistribution[α1, β1], j],

X2
j_.

⧴ Moment[NormalDistribution[α2, β2], j],

X3
j_.

⧴ Moment[NormalDistribution[α3, β3], j],

X4
j_.

⧴ Moment[NormalDistribution[α4, β4], j],

X5
j_.

⧴ Moment[NormalDistribution[α5, β5], j]

μ[1]

μ[2]

μ[3]

μ[4]

μ[5]

Distribution of Y:
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datan =

Chop[Table[{data1[[i]], data2[[i]], data3[[i]]}.{{12, 0, 0}, {0, 8, 0}, {0, 0, 4}}.

{data1[[i]], data2[[i]], data3[[i]]}, {i, 1, 10 000}]];

EDn = EmpiricalDistribution[datan];

ClearAll[Fn]

Fn[x_] := Fn[x] = CDF[EDn, x];

sPn = Plot[CDF[EDn, x], {x, 0, 100}, PlotRange → All, PlotStyle → Red]

n = SmoothKernelDistribution[datan, {"Adaptive", Automatic, .45}];

pn = Plot[PDF[n, x], {x, 0, 100}, PlotStyle → Red, PlotRange → All]

A1 = {{12, 0, 0}, {0, 8, 0}, {0, 0, 4}};

ClearAll[μ];

μ[h_] := μ[h] = Expand({X1 , X2, X3}.A1. {X1 , X2, X3})
h
 /.

X1
j_.

⧴ Moment[NormalDistribution[α1, β1], j],

X2
j_.

⧴ Moment[NormalDistribution[α2, β2], j],

X3
j_.

⧴ Moment[NormalDistribution[α3, β3], j]

μ[1]

μ[2]

μ[3]

μ[4]

α =
μ[1]2

μ[2] - μ[1]2
, β =

μ[2] - μ[1]2

μ[1]


ClearAll[g]

g[x_, q_, τ_, λ_, δ_] :=

g[x, q, τ, λ, δ] =

Abs
δ

τ
 (q - 1)λ Gamma

1

q-1


Gamma
1

q-1
- λ Gamma[λ]

x

τ

λ*δ -1

1 + (q - 1)
x

τ

δ -
1

q-1

221



NMinimize

(τ)
1
(q - 1)

-1

δ Gamma
1

q-1
-

1

δ
- λ Gamma

1

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 24

2

+

(τ)
2
(q - 1)

-2

δ Gamma
1

q-1
-

2

δ
- λ Gamma

2

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 1024

2

+

(τ)
3
(q - 1)

-3

δ Gamma
1

q-1
-

3

δ
- λ Gamma

3

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 64 512

2

+

(τ)
4
(q - 1)

-4

δ Gamma
1

q-1
-

4

δ
- λ Gamma

4

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 5 455872

2

,

1 < q < 1.05, 18.2 < τ < 18.8, 1.1 < λ < 1.5, λ < (q - 1)-1, 0.99 < δ < 1.01,

{q, τ, λ, δ}, MaxIterations → 10 000

qo = %[[2, 1, 2]];

τo = %%[[2, 2, 2]];

λo = %%%[[2, 3, 2]];

δo = %%%%[[2, 4, 2]];

ClearAll[f, F]

f[x_] := g[x, qo, τo, λo, δo]

F[y_] := NIntegrate[f[x], {x, 0, y}]

f[x]

ep = Plot[f[x], {x, 0, 100}, PlotRange → All]

Show[pn, ep]

cdf = Plot[F[y], {y, 0, 100}, PlotRange → All,

PlotStyle → Dashed, PlotLegends → {"CDF estimation(Negative part)"}];

Show[

cdf,

sPn]

Distribution of X:

A2 = {{1, 0}, {0, 5}};

datap =

Chop[Table[{data4[[i]], data5[[i]]}.A2.{data4[[i]], data5[[i]]}, {i, 1, 10 000}]];

EDp = EmpiricalDistribution[datap];

ClearAll[Fp]

Fp[x_] := Fp[x] = CDF[EDp, x];

sPp = Plot[CDF[EDp, x], {x, 0, 50}, PlotRange → All, PlotStyle → Red]
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1 = SmoothKernelDistribution[datan, {"Adaptive", Automatic, .45}];

p1 = Plot[PDF[1, x], {x, 0, 50}, PlotStyle → Red, PlotRange → All]

ClearAll[μ];

μ[h_] := μ[h] =

Expand({X4 , X5}.A2. {X4, X5})
h
 /. X4

j_.
⧴ Moment[NormalDistribution[α4, β4], j],

X5
j_.

⧴ Moment[NormalDistribution[α5, β5], j]

μ[1]

μ[2]

μ[3]

μ[4]

α =
μ[1]2

μ[2] - μ[1]2
, β =

μ[2] - μ[1]2

μ[1]


ClearAll[g]

g[x_, q_, τ_, λ_, δ_] :=

g[x, q, τ, λ, δ] =

Abs
δ

τ
 (q - 1)λ Gamma

1

q-1


Gamma
1

q-1
- λ Gamma[λ]

x

τ

λ*δ -1

1 + (q - 1)
x

τ

δ -
1

q-1

NMinimize

(τ)
1
(q - 1)

-1

δ Gamma
1

q-1
-

1

δ
- λ Gamma

1

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 6

2

+

(τ)
2
(q - 1)

-2

δ Gamma
1

q-1
-

2

δ
- λ Gamma

2

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 88

2

+

(τ)
3
(q - 1)

-3

δ Gamma
1

q-1
-

3

δ
- λ Gamma

3

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 2160

2

+

(τ)
4
(q - 1)

-4

δ Gamma
1

q-1
-

4

δ
- λ Gamma

4

δ
+ λ

Gamma
1

q-1
- λ Gamma[λ]

- 74 880

2

,

1 < q < 1.05, 8.2 < τ < 8.8, 0.3 < λ < 0.8, λ < (q - 1)-1, 0.99 < δ < 1.01,

{q, τ, λ, δ}, MaxIterations → 10 000

qo = %[[2, 1, 2]];

τo = %%[[2, 2, 2]];

λo = %%%[[2, 3, 2]];

δo = %%%%[[2, 4, 2]];
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ClearAll[f2, F2]

f2[x_] := g[x, qo, τo, λo, δo]

f2[x]

Plot[f2[x], {x, 0, 50}, PlotRange → {0, 0.2}]

F2[y_] := NIntegrate[f2[x], {x, 0, y}]

cdf2 = Plot[F2[y], {y, 0, 50}, PlotRange → All,

PlotStyle → Dashed, PlotLegends → {"CDF estimation(Negative part)"}];

Show[

cdf2,

sPp]

ClearAll[gj, g1]

gj[z_, w_] :=

0.0297755 w0.224522241

1 + 0.000869 w1.01`
59.549088

*
0.17570

(z + w)0.32280 1 + 0.003029 (z + w)1.00045`
39.61737

gj[z, w]

g1[z_] := NIntegrate[gj[z, w], {w, 0, ∞}]

L1 = Plot[g1[z], {z, 0, 50}, PlotRange → All]

ClearAll[gt]

gt[z_] := NIntegrate[gj[z, w], {w, -z, Infinity}, MaxRecursion → 500] // Quiet

L2 = Plot[gt[z], {z, -120, 0}, PlotRange → All]

Show[pkde, L2, L1]
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Chapter 7
Estimating the Proportion of Information 
Contained in Sets of Moments

Section 7.4
Illustrative examples

Subsection 7.4.1
Two exact distributions involving beta random variables

Single skewed beta

Generate points from a single skewed beta density . 

The ideal sample with size n consists of the (i/n-1/2n)*100th percentiles (i=1,2,...,n) of the distribu-
tion.

The percentiles can be determined using the function Quantile[dist,q] in Mathematica.

The underlying distribution

α1 = 3; β1 = 9;

 = BetaDistribution[α1, β1];

ClearAll[f]

f[x_] := f[x] = PDF[, x]

lb = 0; ub = 1;

{Plot[PDF[, x], {x, 0, 1}, ImageSize → Medium],

po = Plot[CDF[, x], {x, 0, 1}, ImageSize → Medium]}

Determining the   i
n
-

1
2 n

th percentiles and calculating the Kullback-Leibler (KL) divergence (also 

called relative entropy)
https://blogs.sas.com/content/iml/2020/06/01/the-kullback-leibler-divergence-between-continu-
ous-probability-distributions.html

ClearAll[c, point, sample, KLf]
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n=2~20

ClearAll[method1]

method1[n_] :=

point[n] = TableQuantile,
i

n
-

1

2 n
, {i, n} // N;

sample[n] = Tablepoint[n][[i]],
i

n
-

1

2 n
, {i, 1, n} // Insert[{lb, 0}, 1] //

Insert[{ub, 1}, -1];

c[n] := ResourceFunction["CubicMonotonicInterpolation"][

sample[n], Method → "FritschCarlson"];

KLf[n] = Quiet[NIntegrate[f[x] * (Log[f[x]] - Log[c[n]'[x]]), {x, lb, ub}]];

Print["sample[", n, "]=", sample[n]];

Print["KLf[", n, "]", "=", NumberForm[KLf[n], {4, 4}]];

Plot[{f[x], c[n]'[x]}, {x, lb, ub},

AxesOrigin → {lb, 0}, PlotStyle → {, Red}, PlotLabel → n, PlotRange → All]

Table[method1[n], {n, 2, 20}]

Also show some cdf’s with the representative sample points

ClearAll[method2]

method2[n_] :=

point[n] = TableQuantile,
i

n
-

1

2 n
, {i, n} // N;

sample[n] = Tablepoint[n][[i]],
i

n
-

1

2 n
, {i, 1, n} // Insert[{lb, 0}, 1] //

Insert[{ub, 1}, -1];

c[n] := ResourceFunction["CubicMonotonicInterpolation"][

sample[n], Method → "FritschCarlson"];

{Show[Plot[CDF[, x], {x, lb, ub}], Plot[c[n][x], {x, lb, ub}, PlotStyle → Red],

ListPlot[sample[n], PlotStyle → Black], PlotLabel → n],

Plot[{f[x], c[n]'[x]}, {x, lb, ub}, AxesOrigin → {lb, 0},

PlotStyle → {, Red}, PlotRange → All, PlotLabel → n]}

Table[method2[i], {i, {2, 3, 4, 5, 10, 20}}]

Results

Note that the uniform distribution whose pdf is a constant and is therefore non-informative. 

Proportion of information in the first h moments
KLf[h] means KL[f[x], c[h]’[x]]

Table[{h, NumberForm[KLf[h], {6, 6}]}, {h, 2, 20}] //

Insert[{"h", "KLf[h]"}, 1] // MatrixForm
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Results based on 1 -
KLf[h]

KLfc

1. Proportion info in the first hth moment

2. Successive info in hth moment (in first two and in the third~20 th)

KLfc = NIntegratef[x] * Log[f[x]] - Log
1

ub - lb
 , {x, lb, ub}

Tableh, NumberForm1 -
KLf[h]

KLfc
, {6, 6}, {h, 2, 20} //

Insert"h", "1-
KLf[h]

KLfc
", 1 // MatrixForm,

ListLinePlotTableh, 1 -
KLf[h]

KLfc
, {h, 2, 20} // Insert[{0, 0}, 1],

PlotLabel → "1-
KLf[h]

KLfc
", ImageSize → Medium,

PlotMarkers → Automatic, PlotRange → {All, 1}

info = Tableh,
KLf[h - 1] - KLf[h]

KLfc
, {h, 3, 20} // Insert2, 1 -

KLf[2]

KLfc
, 1;

info // Insert"h", "
KLf[h - 1] - KLf[h]

KLfc
(
KLfc - KLf[2]

KLfc
when h=2)", 1 // MatrixForm,

DiscretePlot[info[[h - 1, 2]], {h, 2, 20},

ImageSize → Medium, PlotStyle → Red, PlotRange → {All, {All, 1}}]

Mixture of  beta pdf’s

Generate points from an equal mixture of two beta densities . 

The ideal sample with size n consists of the (i/n-1/2n)*100th percentiles (i=1,2,...,n) of the distribu-
tion.

The percentiles can be determined using the function Quantile[dist,q] in Mathematica.

The underlying distribution

α1 = 7; β1 = 15; α2 = 12; β2 = 8;

1 = BetaDistribution[α1, β1];

2 = BetaDistribution[α2, β2];

ClearAll[f]

f[x_] := f[x] =
1

2
(PDF[1, x] + PDF[2, x])

lb = 0; ub = 1;

 = ProbabilityDistribution[f[x], {x, 0, 1}];

{Plot[f[x], {x, 0, 1}, PlotRange → All, ImageSize → Medium],

po = Plot[CDF[, x], {x, 0, 1}, ImageSize → Medium]}

Determining the   i
n
-

1
2 n

th percentiles and calculating the Kullback-Leibler (KL) divergence (also 

called relative entropy)
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https://blogs.sas.com/content/iml/2020/06/01/the-kullback-leibler-divergence-between-continu-
ous-probability-distributions.html

ClearAll[c, point, sample, KLf]

n=2~20

ClearAll[method1]

method1[n_] :=

point[n] = TableQuantile,
i

n
-

1

2 n
, {i, n} // N;

sample[n] = Tablepoint[n][[i]],
i

n
-

1

2 n
, {i, 1, n} // Insert[{lb, 0}, 1] //

Insert[{ub, 1}, -1];

c[n] := ResourceFunction["CubicMonotonicInterpolation"][

sample[n], Method → "FritschCarlson"];

KLf[n] = Quiet[NIntegrate[f[x] * (Log[f[x]] - Log[c[n]'[x]]), {x, lb, ub}]];

Print["sample[", n, "]=", sample[n]];

Print["KLf[", n, "]", "=", NumberForm[KLf[n], {4, 4}]];

Plot[{f[x], c[n]'[x]}, {x, lb, ub},

AxesOrigin → {lb, 0}, PlotStyle → {, Red}, PlotLabel → n, PlotRange → All]

Table[method1[n], {n, 2, 20}]

Also show some cdf’s with the representative sample points

ClearAll[method2]

method2[n_] :=

point[n] = TableQuantile,
i

n
-

1

2 n
, {i, n} // N;

sample[n] = Tablepoint[n][[i]],
i

n
-

1

2 n
, {i, 1, n} // Insert[{lb, 0}, 1] //

Insert[{ub, 1}, -1];

c[n] := ResourceFunction["CubicMonotonicInterpolation"][

sample[n], Method → "FritschCarlson"];

{Show[Plot[CDF[, x], {x, lb, ub}], Plot[c[n][x], {x, lb, ub}, PlotStyle → Red],

ListPlot[sample[n], PlotStyle → Black], PlotLabel → n],

Plot[{f[x], c[n]'[x]}, {x, lb, ub}, AxesOrigin → {lb, 0},

PlotStyle → {, Red}, PlotRange → All, PlotLabel → n]}

Table[method2[i], {i, {2, 3, 4, 5, 10, 20}}]

Results

Note that the uniform distribution whose pdf is a constant and is therefore non-informative. 
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Proportion of information in the first h moments
KLf[h] means KL[f[x], c[h]’[x]]

Table[{h, NumberForm[KLf[h], {6, 6}]}, {h, 2, 20}] //

Insert[{"h", "KLf[h]"}, 1] // MatrixForm

Results based on 1 -
KLf[h]

KLfc

1. Proportion info in the first hth moment

2. Successive info in hth moment (in first two and in the third~20 th)

KLfc = NIntegratef[x] * Log[f[x]] - Log
1

ub - lb
 , {x, lb, ub}

Tableh, NumberForm1 -
KLf[h]

KLfc
, {6, 6}, {h, 2, 20} //

Insert"h", "1-
KLf[h]

KLfc
", 1 // MatrixForm,

ListLinePlotTableh, 1 -
KLf[h]

KLfc
, {h, 2, 20} // Insert[{0, 0}, 1],

PlotLabel → "1-
KLf[h]

KLfc
", ImageSize → Medium,

PlotMarkers → Automatic, PlotRange → {All, 1}

info = Tableh,
KLf[h - 1] - KLf[h]

KLfc
, {h, 3, 20} // Insert2, 1 -

KLf[2]

KLfc
, 1;

info // Insert"h", "
KLf[h - 1] - KLf[h]

KLfc
(
KLfc - KLf[2]

KLfc
when h=2)", 1 // MatrixForm,

DiscretePlot[info[[h - 1, 2]], {h, 2, 20},

ImageSize → Medium, PlotStyle → Red, PlotRange → {All, {All, 1}}]

Subsection 7.4.2
Two actual data sets

Buffalo snowfall data

An actual data set, Buffalo snowfall data.
The ideal sample with size n consists of the (i/n-1/2n)*100th percentiles (i=1,2,...,n) of the distribu-
tion.

The percentiles can be determined using the function Quantile[dist,q] in Mathematica.

The underlying distribution is a density estimate based on the data set

Y = ExampleData[{"Statistics", "BuffaloSnow"}]

Length[Y]

{Mean[Y], StandardDeviation[Y]}

{Min[Y], Max[Y]}

Use a KDE as the underlying distribution
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 = SmoothKernelDistribution[Y];

(*Plot[PDF[,x],{x,Min[Y]-StandardDeviation[Y],Max[Y]+StandardDeviation[Y]}]*)

lb = FindRootCDF[, x] ⩵ 10-4, {x, 20}[[1, 2]],

ub = FindRootCDF[, x] ⩵ 1 - 10-4, {x, 130}[[1, 2]];

Print["{lb,ub}=", {lb, ub}]

{po = Plot[CDF[, x], {x, lb, ub}, ImageSize → Medium],

Plot[PDF[, x], {x, lb, ub}, ImageSize → Medium]}

Determining the   i
n
-

1
2 n

th percentiles and calculating the Kullback-Leibler (KL) divergence (also 

called relative entropy)
https://blogs.sas.com/content/iml/2020/06/01/the-kullback-leibler-divergence-between-continu-
ous-probability-distributions.html

ClearAll[c, point, sample, KLf, f]

f[x_] := f[x] = PDF[, x]

n=2~20

ClearAll[method1]

method1[n_] :=

point[n] = TableQuantile,
i

n
-

1

2 n
, {i, n} // N;

sample[n] = Tablepoint[n][[i]],
i

n
-

1

2 n
, {i, 1, n} // Insert[{lb, 0}, 1] //

Insert[{ub, 1}, -1];

c[n] := ResourceFunction["CubicMonotonicInterpolation"][

sample[n], Method → "FritschCarlson"];

KLf[n] = Quiet[NIntegrate[

f[x] * (Log[f[x]] - Log[c[n]'[x]]), {x, lb, ub}, Method → "QuasiMonteCarlo"]];

Print["sample[", n, "]=", sample[n]];

Print["KLf[", n, "]", "=", NumberForm[KLf[n], {4, 4}]];

Plot[{f[x], c[n]'[x]}, {x, lb, ub},

AxesOrigin → {lb, 0}, PlotStyle → {, Red}, PlotLabel → n, PlotRange → All]

Table[method1[n], {n, 2, 20}]

Also show some cdf’s with the representative sample points
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ClearAll[method2]

method2[n_] :=

point[n] = TableQuantile,
i

n
-

1

2 n
, {i, n} // N;

sample[n] = Tablepoint[n][[i]],
i

n
-

1

2 n
, {i, 1, n} // Insert[{lb, 0}, 1] //

Insert[{ub, 1}, -1];

c[n] := ResourceFunction["CubicMonotonicInterpolation"][

sample[n], Method → "FritschCarlson"];

{Show[Plot[CDF[, x], {x, lb, ub}], Plot[c[n][x], {x, lb, ub}, PlotStyle → Red],

ListPlot[sample[n], PlotStyle → Black], PlotLabel → n],

Plot[{f[x], c[n]'[x]}, {x, lb, ub}, AxesOrigin → {lb, 0},

PlotStyle → {, Red}, PlotRange → All, PlotLabel → n]}

Table[method2[i], {i, {2, 3, 4, 5, 10, 20}}]

Results

Note that the uniform distribution whose pdf is a constant and is therefore non-informative. 

Proportion of information in the first h moments
KLf[h] means KL[f[x], c[h]’[x]]

Table[{h, NumberForm[KLf[h], {6, 6}]}, {h, 2, 20}] //

Insert[{"h", "KLf[h]"}, 1] // MatrixForm

Results based on 1 -
KLf[h]

KLfc

1. Proportion info in the first hth moment

2. Successive info in hth moment (in first two and in the third~20 th)

KLfc =

NIntegratef[x] * Log[f[x]] - Log
1

ub - lb
 , {x, lb, ub}, Method → "QuasiMonteCarlo"

Tableh, NumberForm1 -
KLf[h]

KLfc
, {6, 6}, {h, 2, 20} //

Insert"h", "1-
KLf[h]

KLfc
", 1 // MatrixForm,

ListLinePlotTableh, 1 -
KLf[h]

KLfc
, {h, 2, 20} // Insert[{0, 0}, 1],

PlotLabel → "1-
KLf[h]

KLfc
", ImageSize → Medium,

PlotMarkers → Automatic, PlotRange → {All, 1}
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info = Tableh,
KLf[h - 1] - KLf[h]

KLfc
, {h, 3, 20} // Insert2, 1 -

KLf[2]

KLfc
, 1;

info // Insert"h", "
KLf[h - 1] - KLf[h]

KLfc
(
KLfc - KLf[2]

KLfc
when h=2)", 1 // MatrixForm,

DiscretePlot[info[[h - 1, 2]], {h, 2, 20},

ImageSize → Medium, PlotStyle → Red, PlotRange → {All, {All, 1}}]

Life expectancy data

An actual data set
Life expectancy data in 183 countries/regions for the year 2015 recorded by WHO
This data set is a left skewed

The ideal sample with size n consists of the (i/n-1/2n)*100th percentiles (i=1,2,...,n) of the distribu-
tion.

The percentiles can be determined using the function Quantile[dist,q] in Mathematica.

The underlying distribution is a density estimate based on the data set

Y = {65, 77.8, 75.6, 52.4, 76.4, 76.3, 74.8, 82.8, 81.5, 72.7, 76.1, 76.9, 71.8, 75.5, 72.3,

81.1, 71, 60, 69.8, 77, 77.4, 65.7, 75, 77.7, 74.5, 59.9, 59.6, 53.3, 73.3, 68.7,

57.3, 82.2, 52.5, 53.1, 85, 76.1, 74.8, 63.5, 64.7, 79.6, 78, 79.1, 85, 78.8,

76, 59.8, 86, 63.5, 73.9, 76.2, 79, 73.5, 58.2, 64.7, 77.6, 64.8, 69.9, 81.1,

82.4, 66, 61.1, 74.4, 81, 62.4, 81, 73.6, 71.9, 59, 58.9, 66.2, 63.5, 74.6, 75.8,

82.7, 68.3, 69.1, 75.5, 68.9, 81.4, 82.5, 82.7, 76.2, 83.7, 74.1, 72, 63.4, 66.3,

74.7, 71.1, 65.7, 74.6, 74.9, 53.7, 61.4, 72.7, 73.6, 82, 65.5, 58.3, 75, 78.5,

58.2, 81.7, 63.1, 74.6, 76.7, 69.4, 68.8, 76.1, 74.3, 57.6, 66.6, 65.8, 69.2,

81.9, 81.6, 74.8, 61.8, 54.5, 81.8, 76.6, 66.4, 77.8, 62.9, 74, 75.5, 68.5, 77.5,

81.1, 78.2, 82.3, 72.1, 75, 75, 66.1, 75.2, 73.2, 74, 67.5, 74.5, 66.7, 75.6,

73.2, 51, 83.1, 76.7, 88, 69.2, 55, 62.9, 57.3, 82.8, 74.9, 64.1, 71.6, 58.9,

82.4, 83.4, 64.5, 69.7, 74.9, 75.7, 68.3, 59.9, 73.5, 71.2, 75.3, 75.8, 66.3,

62.3, 71.3, 77.1, 81.2, 61.8, 79.3, 77, 69.4, 72, 74.1, 76, 65.7, 61.8, 67};

Length[Y]

{Mean[Y], StandardDeviation[Y]}

{Min[Y], Max[Y]}

Use a KDE as the underlying distribution

 = SmoothKernelDistribution[Y];

(*Plot[PDF[,x],{x,Min[Y]-StandardDeviation[Y],Max[Y]+StandardDeviation[Y]}]*)

lb = FindRootCDF[, x] ⩵ 10-4, {x, 55}[[1, 2]],

ub = FindRootCDF[, x] ⩵ 1 - 10-4, {x, 85}[[1, 2]];

Print["{lb,ub}=", {lb, ub}]

{po = Plot[CDF[, x], {x, lb, ub}, ImageSize → Medium],

Plot[PDF[, x], {x, lb, ub}, ImageSize → Medium]}

Determining the   i
n
-

1
2 n

th percentiles and calculate the Kullback-Leibler (KL) divergence (also 

called relative entropy)
https://blogs.sas.com/content/iml/2020/06/01/the-kullback-leibler-divergence-between-continu-
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ous-probability-distributions.html

ClearAll[c, point, sample, KLf, f]

f[x_] := f[x] = PDF[, x]

n=2~20

ClearAll[method1]

method1[n_] :=

point[n] = TableQuantile,
i

n
-

1

2 n
, {i, n} // N;

sample[n] = Tablepoint[n][[i]],
i

n
-

1

2 n
, {i, 1, n} // Insert[{lb, 0}, 1] //

Insert[{ub, 1}, -1];

c[n] := ResourceFunction["CubicMonotonicInterpolation"][

sample[n], Method → "FritschCarlson"];

KLf[n] = Quiet[NIntegrate[

f[x] * (Log[f[x]] - Log[c[n]'[x]]), {x, lb, ub}, Method → "QuasiMonteCarlo"]];

Print["sample[", n, "]=", sample[n]];

Print["KLf[", n, "]", "=", NumberForm[KLf[n], {4, 4}]];

Plot[{f[x], c[n]'[x]}, {x, lb, ub},

AxesOrigin → {lb, 0}, PlotStyle → {, Red}, PlotLabel → n, PlotRange → All]

Table[method1[n], {n, 2, 20}]

Also show some cdf’s with the representative sample points

ClearAll[method2]

method2[n_] :=

point[n] = TableQuantile,
i

n
-

1

2 n
, {i, n} // N;

sample[n] = Tablepoint[n][[i]],
i

n
-

1

2 n
, {i, 1, n} // Insert[{lb, 0}, 1] //

Insert[{ub, 1}, -1];

c[n] := ResourceFunction["CubicMonotonicInterpolation"][

sample[n], Method → "FritschCarlson"];

{Show[Plot[CDF[, x], {x, lb, ub}], Plot[c[n][x], {x, lb, ub}, PlotStyle → Red],

ListPlot[sample[n], PlotStyle → Black], PlotLabel → n],

Plot[{f[x], c[n]'[x]}, {x, lb, ub}, AxesOrigin → {lb, 0},

PlotStyle → {, Red}, PlotRange → All, PlotLabel → n]}

Table[method2[i], {i, {2, 3, 4, 5, 10, 20}}]

233



Results

Note that the uniform distribution whose pdf is a constant and is therefore non-informative. 

Proportion of information in the first h moments
KLf[h] means KL[f[x], c[h]’[x]]

Table[{h, NumberForm[KLf[h], {6, 6}]}, {h, 2, 20}] //

Insert[{"h", "KLf[h]"}, 1] // MatrixForm

Results based on 1 -
KLf[h]

KLfc

1. Proportion info in the first hth moment

2. Successive info in hth moment (in first two and in the third~20 th)

KLfc =

NIntegratef[x] * Log[f[x]] - Log
1

ub - lb
 , {x, lb, ub}, Method → "QuasiMonteCarlo"

Tableh, NumberForm1 -
KLf[h]

KLfc
, {6, 6}, {h, 2, 20} //

Insert"h", "1-
KLf[h]

KLfc
", 1 // MatrixForm,

ListLinePlotTableh, 1 -
KLf[h]

KLfc
, {h, 2, 20} // Insert[{0, 0}, 1],

PlotLabel → "1-
KLf[h]

KLfc
", ImageSize → Medium,

PlotMarkers → Automatic, PlotRange → {All, 1}

info = Tableh,
KLf[h - 1] - KLf[h]

KLfc
, {h, 3, 20} // Insert2, 1 -

KLf[2]

KLfc
, 1;

info // Insert"h", "
KLf[h - 1] - KLf[h]

KLfc
(
KLfc - KLf[2]

KLfc
when h=2)", 1 // MatrixForm,

DiscretePlot[info[[h - 1, 2]], {h, 2, 20},

ImageSize → Medium, PlotStyle → Red, PlotRange → {All, {All, 1}}]
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