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Abstract
It remains an open question whether modern neuroimaging clearly dissociates the Explicit sys-

tem that learns by encoding rules, and the Implicit system that learns by encoding information-

integration boundaries. Further, there are nearly no applications of fNIRS as a modality in studying

category learning. We conduct two behavioural experiments to validate a carefully controlled catego-

rization task intended to dissociate Explicit and Implicit systems. Then we apply fNIRS neuroimag-

ing within-subjects to localize a neuroanatomical dissociation. We localized two effects to R DLPFC

(1) a simple single-dissociation of higher activity in RB categorization, and (2) a negative relationship

between overall task performance and the magnitude of neural activation. We conclude that explicit

and implicit cortical activity are dissociable by neuroimaging, and that fNIRS is a feasible modality

to study human categorization.

Keywords: Category learning, Neuroimaging, fNIRS, Dissociation, COVIS, Explicit, Implicit
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Summary for Lay Audience
It is already well known that there are at least two ways in which humans learn new categories.

The first method applies to categorizing objects such as cups and mugs. How would you distinguish

between cups and mugs? It turns out the mind narrows in on one main property, in this case—the

handle. After seeing many cups and mugs you might notice that most mugs have a handle. You may

come to formulate some kind of a rule: "mugs have handles, cups don’t". With that bit of language,

you have now categorized most of the cups and mugs you’ll ever see. This is known as explicit cate-

gorization.

However, sometimes this explicit method may not work for certain types of objects such as cats

and dogs. If you look closely, you may realize that it’s difficult to narrow in on one ’property’ that

cleanly divides cats and dogs. Is it the size? The amount of fluff? The whisker length? There is no

single clear distinction. However, all of us easily classify cats and dogs. The second way we classify is

based on picking up associations between certain objects we see and a label or action that corresponds

with it. This is called implicit categorization.

If we learn categories in two different ways, does that mean there are two different circuits of the

brain involved? This study aims to answer that question. We do that by designing two tasks, one

explicit task, one implicit. Then we use functional near infrared spectroscopy (fNIRS) to measure

the blood flowing through the brain at different locations. More blood flow tells us that one part of

the brain is working harder. Then we compare blood flow patterns between explicit and implicit.

We find that there was more activity in the right dorsolateral prefrontal cortex (located above your

right eyebrow, where the hairline begins) when people are doing explicit categorization. Our findings

align with previous work on memory, language, and reasoning. We therefore conclude that there is

likely to be distinct underlying brain circuits for explicit and implicit category learning.
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Chapter 1

Introduction

Laozi, in the Tao Te Ching writes of the ‘Ten-Thousand Things’, in reference to human experience

(Laozi, 1868). In this world, no two objects are exactly congruent, yet myriad objects perceived at

various times and places are deftly abstracted to categories by the human mind (Posner & Keele, 1968;

Nosofsky, 1986). Without categorization and generalization, each visual object encountered would

present as an entirely strange and novel object. Precisely how the human mind acquires or performs

categorization is an old question, though remains relevant and active today (Aristotle, 1938).

1.1 Category Learning Systems
Convergent lines of evidence from neuropsychological, behavioral, and comparative cognition liter-

ature have culminated in an influential theory of category learning: Competition Of Verbal and im-

plicit Systems (COVIS), which posits two behaviourally and anatomically distinct systems (Ashby,

Alfonso-Reese, Turken, & Waldron, 1998; Maddox, Todd Maddox, & Gregory Ashby, 2004).

The explicit system tests and stores rules which are snippets of language that segregate stimuli into

two or more categories, each accompanied by a distinct language label, (Ashby et al., 1998) For exam-

ple: Small timepieces are watches, large timepieces are clocks. This rule can be formally represented

in a coordinate space where the axes correspond to relevant feature dimensions of the stimuli. In this

case, size is the relevant dimension. Generally, timepieces exceeding the size of one’s wrist (diameter

> 5 cm) is considered a ‘clock’, while smaller articles (diameter < 5 cm) are considered ‘watches’. In

this way, the language rule can be formally described as a linear decision boundary where (diameter =

5 cm). Objects falling on either side of this boundary would be subsequently categorized as a "watch"

or "clock" (Ashby, 2014; Hélie, Turner, Crossley, Ell, & Ashby, 2017). There will certainly be excep-

tions to the rule, such as a large novelty watch which may exceed the 5 cm decision boundary but

is still deemed a watch. However, the general purpose of category learning is not to achieve perfect

segregation but rather to reduce the complexity of perceptual information in the surrounding envi-

ronment (Posner & Keele, 1968; Nosofsky, 1986). In this regard, exceptions to the rule are tolerated,

provided that the rule is sufficiently useful in compressing the information complexity of the whole

object set (all possible timepieces). The effectiveness of such explicit categorization is self-evident

in the present example, the concept of ‘all possible timepieces’ is rarely discussed in common par-

lance, the word ‘timepiece’ itself is uncommonly used in English (Corpus of Contemporary Amer-

ican English frequency ranking: #27065), whereas ‘watches‘ (COCA: #2375) and ‘clocks‘ (COCA:

1



2 Chapter 1. Introduction

#2725) are universally understood and frequently mentioned words among English speakers (Davies,

2010). During the rule learning process, candidate rules are stored and manipulated in working mem-

ory (WM) and the process is anatomically instantiated as reverberating circuits primarily involving

the prefrontal cortex, anterior cingulate, head of the caudate, and hippocampus (Ashby et al., 1998;

Minda & Miles, 2010). The explicit system can be tested by creating Rule-Based (RB) categories,

stimuli which are segregated by a verbalizable boundary, often unidimensional and linear (Maddox

et al., 2004; Ashby, 2014).

The implicit system functions by reward-mediated procedural learning and it is capable of arbi-

trarily mapping a set of stimuli representations to a set of motor responses (Ashby et al., 1998). Many

object sets do not lend themselves to clean categorization mediated by a verbalizable rule. Consider

that cats and dogs are easily discriminated, yet lack a prominent and obvious discriminating feature

that is easily described by language. In these cases, multiple features such as the height, width, length,

shape, color, texture must be integrated to discern the object set into coherent categories (Ashby et

al., 1998). Formally, the distinction between two implicit categories can also be represented as a deci-

sion boundary dividing a coordinate space into two or more regions (Ashby, 2014; Hélie et al., 2017).

However, implicit boundaries qualitatively differs from rule-based boundaries. Implicit boundaries

must integrate two or more relevant feature dimensions, in a 2D stimuli space, implicit boundaries

must describe a curve that spans both x and y stimuli dimensions. In 3D space, implicit boundaries

must describe a plane or surface spanning all of x, y, and z stimuli dimensions. Further, implicit

boundaries can be both linear or nonlinear, whereas rule-based boundaries are constrained to be lin-

earl only (Ashby & Maddox, 2011). Implicit learning relies on feed-forward architecture, beginning in

extrastriate visual cortex, proceeding sequentially through striatum, globus pallidus, thalamus, and

terminating in the premotor cortex (Ashby et al., 1998; Minda & Miles, 2010). The implicit sys-

tem can be tested by creating Information-Integration (II) categories, stimuli which are segregated

by non-verbalizable boundaries that are multidimensional, and may be linear or nonlinear (Ashby,

2014). Henceforth, the explicit/implicit terminology will strictly refer to the two category learning

systems as posited by COVIS, and the Rule-Based/Information-Integration (RB/II) terminology will

strictly refer to the designed category structure of the stimuli.

COVIS ambitiously attempts to stitch together the computational, algorithmic, and implemen-

tation levels into a cohesive and holistic description of human category learning (Marr, 1982; Ashby et

al., 1998). For simplicity, the organization of computational, algorithmic, and implementational lev-

els may be colloquially approximated as, the ‘behaviour’, ‘information’, and ‘physiology’, respectively

(Marr, 1982). Minor refinements notwithstanding, the computational (’behaviour’) and algorithmic

(’information’) levels of COVIS stands largely intact under critical tests (Maddox et al., 2004; Minda

& Miles, 2010; Ashby & Maddox, 2011). Ambiguity remains at the level of anatomical implementa-

tion—the ‘physiology’ (Nomura et al., 2007; Carpenter, Wills, Benattayallah, & Milton, 2016; Soto,

Waldschmidt, Helie, & Ashby, 2013). Neuroimaging advances of technology and technique present

novel critical tests to COVIS at the level of anatomy. There is currently an active effort to apply mod-

ern neuroimaging methods to probe the question of whether real-time functional activity of explicit

and implicit systems are dissociable. Thus far, conclusive neuroimaging evidence in favour or against

COVIS remains elusive. This is the central problem to which the present study is applied.
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1.2 Imaging, Neuropsychology, Comparative Cognition
There are two fMRI studies of direct relevance to the present work, Nomura and colleagues measured

brain activity of participants learning RB and II categories, and were the first to reported a direct sig-

nificant contrast of explicit and implicit conditions, localizing explicit activation to the left medial

temporal lobe, and implicit activation to the right body of the caudate (Nomura et al., 2007). How-

ever this study was followed by a replication attempt from an independent group, nearly a decade

later, which failed to find a dissociation (Carpenter et al., 2016). In particular, Carpenter’s replica-

tion discussed several critiques of the original study by Nomura. The overarching critique was that

the original study by Nomura did not employ sufficiently stringent controls of ostensibly irrelevant

or minor variables. These are; (1) the standard distance between categories which may confound

functional activation due to representational differences, (2) the number of relevant stimuli dimen-

sions which may cause selective attentional confounds, (3) the categorization performance which may

cause confounds due to cognitive effort, (4) using incorrect trials as a subject-level baseline for con-

trasts which is convenient, but washes out the differential contributions of incorrect feedback to the

learning mechanism of explicit and implicit systems. In sum, Carpenter and colleagues posit that

the differential neural activity reported by Nomura and colleagues may be partially or even totally ex-

plained by the aforementioned unaccounted confounds (Nomura et al., 2007; Carpenter et al., 2016).

Tightening experimental design, Carpenter and colleagues conclusively reported no significant differ-

ences in brain activity between explicit and implicit learning; they replicated the event-related design

of Nomura’s study, analyzed their own block-based design, and attempted to partition participants

by General Recognition Theory (GRT) model-based results, but failed to find a meaningful effect

in all approaches to support the assumptions of COVIS. In fact, Carpenter and colleagues found a

small, antithetical effect of higher implicit related activation in the right parahippocampal gyrus when

comparing later runs against earlier runs (Carpenter et al., 2016).

These two studies are representative of the present state of the neuroimaging literature in ad-

dressing the question of dissociable category learning systems (Nomura et al., 2007; Carpenter et al.,

2016). Studies range widely in their design, intervention, stimuli, imaging modalities, and analytical

approaches. Unsurprisingly, reports are lukewarm in their support for COVIS theory and there are

anatomical inconsistencies across studies that remains to be elucidated (Milton & Pothos, 2011; No-

mura et al., 2007; Gureckis, James, & Nosofsky, 2011; Morgan, Zeithamova, Luu, & Tucker, 2020;

Wu, Fu, & Rose, 2020; Soto et al., 2013; Reber, Gitelman, Parrish, & Mesulam, 2003; Aizenstein et

al., 2000; Helie, Roeder, & Ashby, 2010; Carpenter et al., 2016).

A series of three studies employed an instruction-based intervention of explicit and implicit learn-

ing conditions applied to dot-distortion stimuli (Aizenstein et al., 2000; Reber et al., 2003; Gureckis

et al., 2011; Posner & Keele, 1968). All three report a qualitative difference in the pattern of brain activ-

ity between explicit and implicit category learning but fail to find a quantitative difference—Aizenstein’s

report did not directly contrast explicit and implicit conditions, and both Reber, Gureckis did not

observe a statistically significant direct contrast between explicit and implicit conditions (Aizenstein

et al., 2000; Reber et al., 2003; Gureckis et al., 2011). Further, it can be argued that instruction-based

intervention is subject to confounds due to participant compliance. Without specifically designing

distinct RB and II categories, one must rely solely on participant compliance to preserve integrity of

experimental conditions. Regardless, these studies report a consistent qualitative overlap of explicit

activation across studies, predominantly in subregions of prefrontal cortex (PFC) such as: inferior

frontal gyri, medial frontal gyri, dorsolateral prefrontal cortex (DLPFC), frontal eye fields, and an-
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terior prefrontal cortex which corresponds to Brodmann’s areas (BA) 8, 9, 10, 44, 46. Qualitative

implicit activation patterns predominantly overlapped in the supplementary motor area (SMA) cor-

responding to BA 6 (Aizenstein et al., 2000; Gureckis et al., 2011; Reber et al., 2003).

A multi-voxel pattern analysis approach examined category learning automaticity, which gener-

ally includes over 10,000 trials per participant, and distributed learning over spaced sessions (Soto

et al., 2013). The results of the initial sessions are relevant to the present investigation, which dis-

criminated ventrolateral prefrontal cortex (VLPFC) uniquely associating with explicit learning, while

SMA, premotor cortex (PMd), and primary motor cortex (M1) are uniquely associated with implicit

activity. A canonical general linear model (GLM) based analysis on the same dataset corroborated

the distinction of VLPFC and SMA, corresponding to BA 44, 45, 47 and BA 6, respectively (Helie et

al., 2010). However, another study reported mixed activation of general PFC gyri and SMA in both

explicit and implicit conditions when analyzed by canonical GLM on a small pilot sample (Morgan et

al., 2020). They also applied MVPA to find an unique association of inferior frontal gyri to explicit ac-

tivity, but the choice of stimuli were somewhat idiosyncratic: American football defensive-line forma-

tions. Football formations certainly have increased ecological validity compared to traditional stimuli

such as sine-wave gratings, but they also introduce many additional confounding effects at higher lev-

els of cognition (prior knowledge, cultural idiosyncrasies, complex stimuli dimension interactions)

which may be difficult to account for (Morgan et al., 2020). Another study using novel stimuli sets

also reported unclear dissociation in support of COVIS theory (Milton & Pothos, 2011).

Finally, there exists one fNIRS-based study, which primarily investigated the interaction of au-

dio and visual categorization effects, and happened to discover an effect of visual rule-based category

learning in DLPFC (Wu et al., 2020).

Thus, the present state of the neuroimaging literature with respect to a double dissociation of

COVIS systems is ambiguous. However, these studies were initially motivated by a large variety

of previous work in comparative cognition and neuropsychology which report functional double-

dissociations between explicit and implicit systems.

In these studies, deficits of PFC are frequently targeted to dissociate between explicit and implicit

category learning (Ashby & Ell, 2001; Maddox et al., 2004). Lesions or diseases affecting PFC corre-

spond to functional impairment during explicit categorization tasks (Bozoki, Grossman, & Smith,

2006; Robinson, Heaton, Lehman, & Stilson, 1980; Virag et al., 2015; Maddox & Filoteo, 2001;

Brown & Marsden, 1988). The Wisconsin Card Sorting Task is a classic explicit category learning

task in which patients with prefrontal cortical insult show impairment relative to demographically

matched controls (Robinson et al., 1980; Virag et al., 2015; Janowsky, Shimamura, Kritchevsky, &

Squire, 1989). Patients suffering a variety of frontal lobe lesions such as tumours, hemorrhage, clots,

and infarcts consistently demonstrate impaired explicit learning performance relative to matched

controls (Robinson et al., 1980). These specific lesion studies on the Wisconsin Card Sorting Task

are frequently and well replicated (Ashby & Ell, 2001; Janowsky et al., 1989). Memory studies cor-

roborate these findings; a lesion study of explicit and implicit memory which implemented category

learning of stimuli found that while the explicit memory task was significantly impaired in patients, a

corresponding implicit memory task showed no impairment relative to healthy controls (Gershberg,

1997). The prefrontal cortex is also disproportionately sensitive to neurotoxic effects of chronic alco-

holism (Lewohl et al., 2000). Consequently, chronic alcoholics have impaired executive function and

explicit category learning performance, but retain normal performance in implicit category learning

tasks compared to healthy controls (Virag et al., 2015; Janowsky et al., 1989). Similarly, early stage

Alzheimer’s disease preferentially affects prefrontal cortex and medial temporal lobe; patients suffer-
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ing from Alzheimer’s disease have similar implicit category learning performance and representation

profiles compared to controls (Bozoki et al., 2006). These neuropsychological dissociations are cor-

roborated by comparative cognition data. Monkeys—which have simpler prefrontal cortex develop-

ment relative to humans, are incapable of abstracting a category rule whereas human counterparts

have no difficulty on the same category sets (Shepard, Hovland, & Jenkins, 1961; Smith, Minda, &

Washburn, 2004). Conversely, on implicit-type category learning tasks, the difference between mon-

key and human performance is less drastic (Smith et al., 2004). Comparisons have also been made

within humans across age groups. Children under 5 have not yet reached sufficient prefrontal devel-

opment to abstract and manipulate language-based rules (Minda, Desroches, & Church, 2008). On

the other hand, older adults have reduced executive function—specifically in working memory capac-

ity (Bopp & Verhaeghen, 2005). Across a range of 6 classic—Shepard, Hovland, Jenkins—category

tasks, children under 5 implicitly learn all tasks, even for tasks in which adults can trivially learn the op-

timal rule (Shepard et al., 1961; Minda et al., 2008; Miles & Minda, 2009). In the opposite direction,

comparisons of older and young adults show that older adults are still capable of learning rules, but

when the rule exceeds a certain complexity, their performance deteriorates compared to young adult

controls (Rabi & Minda, 2016). Taken together, these studies show that PFC is critical for successful

RB category learning, whereas PFC insult does not necessary deteriorate implicit category learning

(Maddox & Filoteo, 2001).

In contrast, basal ganglia diseases, specifically those posing strong insult to the striatum and the

caudate body tend to impair implicit category learning while leaving explicit category learning rela-

tively intact (Cools, van den Bercken, Horstink, van Spaendonck, & Berger, 1984; Maddox & Filo-

teo, 2001; Knowlton, Paulsen, Swenson, & Butters, 1996). Note that in many cases explicit category

learning may also be impaired, but the magnitude of impairment is limited whereas implicit category

learning impairment tends to be catastrophic—patients suffering from basal ganglia disorders are

frequently unable to categorize above chance accuracy (Cools et al., 1984; Brown & Marsden, 1988).

Parkinson’s disease, in the early stages primarily disrupts the basal ganglia but not the prefrontal cor-

tex; patient studies demonstrate implicit categorization impairment, but little to no impairment for

both explicit category learning and executive function tests such as Stroop or working memory tasks.

(Cools et al., 1984; Maddox & Filoteo, 2001; Brown & Marsden, 1988). Similarly, Huntington’s dis-

ease primarily targets the striatum and specifically the caudate body, a critical node of the implicit

system (Ashby et al., 1998; Maddox et al., 2004). As a consequence, Huntington’s patients display

marked decreases in probabilistic (implicit) categorization tasks and a comparatively minor decrease

in tasks require verbal function which implicates the PFC (Knowlton et al., 1996). The implicit sys-

tem as defined by COVIS theory specifies the heavy reliance on basal ganglia-thalamocortical circuits

(Ashby et al., 1998; Alexander, DeLong, & Strick, 1986). Dense projections originating from the puta-

men pass through the ventrolateral nuclei of the thalamus and terminate in the PMd and SMA (Dum

& Strick, 2005; Matelli & Luppino, 1996; Alexander et al., 1986). Both SMA and PMd are critical com-

ponents of motor learning; implicit category learning can be thought of as a specific case of motor skill

learning (Ashby et al., 1998). In recent work, the motor component of implicit learning has received

more attention than originally considered (Ashby et al., 1998; Willingham, 1998). Activity of SMA

and PMd are well documented to be active during motor and procedural learning paradigms (Seitz

et al., 1994; Hikosaka, Rand, Miyachi, & Miyashita, 1995; Grafton et al., 1992). Indeed, patients with

focal lesions in PMd or SMA perform significantly worse on sensorimotor learning tasks than even

patients with primary motor cortex lesions (Halsband & Freund, 1990; Halsband & Lange, 2006).

These data taken together suggest that the motor aspect of implicit category learning is critical, and
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that both the striatum and premotor regions must necessarily be intact for proper function of the

implicit system (Ashby et al., 1998; Alexander et al., 1986; Willingham, 1998).

Past work in neuropsychology and comparative cognition has established a compelling view of

neuroanatomical dissociability between explicit and implicit systems (Ashby et al., 1998; Maddox &

Filoteo, 2001). However, the present state of the imaging literature does not unanimously corroborate

the previous view, but rather introduces some new ambiguities (Nomura et al., 2007; Carpenter et al.,

2016; Morgan et al., 2020). Much of the neuropsychological work on implicit categorization specif-

ically interrogate the basal ganglia as it is often the site of early deterioration such as in Parkinson’s

or Hungtington’s disease (Brown & Marsden, 1988; Knowlton et al., 1996). In the present study, we

must constrain target regions of interest to locations accessible via fNIRS neuroimaging, and there-

fore cannot consider the basal ganglia as a region of interest. However, both the PMd and SMA are

downstream of basal ganglia projections and have been shown to be densely connected, and critical

for implicit learning processes (Hikosaka et al., 1995; Halsband & Freund, 1990; Matelli & Luppino,

1996).

Thus, there are four lines of evidence suggesting that a potential double-dissociation can be found

by the application of neuroimaging, (1) neuropsychology, (2) comparative cognition, (3) neuroimag-

ing studies specifying the exact statistical contrast addressing the present research question, and (4)

the other relevant neuroimaging work, though perhaps not specifying the exact statistical contrast,

show qualitative patterns of activity in support of a double-dissociation (Ashby & Ell, 2001; Minda

& Miles, 2010; Nomura et al., 2007; Gureckis et al., 2011). Synthesizing across theses existing lines of

evidence, we expect the following cortical regions of interest: Explicit categorization would be associ-

ated with DLPFC activity, BA 9, 46 (Aizenstein et al., 2000; Reber et al., 2003; Gureckis et al., 2011;

Helie et al., 2010; Wu et al., 2020; Nomura et al., 2007). Implicit categorization would be associated

with SMA/PMd activity, BA 6 (Aizenstein et al., 2000; Reber et al., 2003; Gureckis et al., 2011; Soto

et al., 2013; Helie et al., 2010). Indeed, these are both critical regions specified as belonging to distinct

circuitry by COVIS (Ashby et al., 1998).

1.3 Functional Near-Infrared Spectroscopy
Continuous wave functional near-infrared spectroscopy (fNIRS) is an optical based neuroimaging

technique to quantify changes in concentration of haemoglobin (Hb) species as a function of time

(Hoshi & Tamura, 1993). Continous wave fNIRS is incapable of measuring absolute concentra-

tions, thus inferences of neural activity must be made on the basis of concentration changes in oxy-

haemoglobin (HbO2) or deoxyhaemoglobin (HbR) between two timepoints (conditions or trials)

(Quaresima & Ferrari, 2019). To perform measurements, source and detector optodes are arranged

on the scalp in a grid-like fashion forming measurement channels—parabolic volumes, the troughs

of which penetrate 5-8 mm into superficial cortex (Pinti et al., 2020).

Two or more wavelengths of near-infrared light flanking the isosbestic point of HbO2 and HbR

are selected for measurement; these wavelengths are confined to the near-infrared window of biolog-

ical tissue (Smith, Mancini, & Nie, 2009). Wavelengths ranging from 650 to 1350 nm can maximally

penetrate human tissue including skin, bone, and blood (Smith et al., 2009). To obtain measure-

ments, a predetermined intensity of light is emitted from the source. Adjacent detectors spaced at ap-

proximately 3 cm record the optical density of light post-transmission through the cortex and super-

ficial tissue (Pinti et al., 2020). Optical densities are converted to Hb concentrations via path-length
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adjusted Beer-Lambert law. Finally, relative changes in Hb concentrations between conditions can

be used to causally infer neuronal activity by reference to the neurovascular coupling phenomenon

(Ogawa, Lee, Kay, & Tank, 1990; Huppert, Hoge, Diamond, Franceschini, & Boas, 2006).

As synaptic activity increases in response to some stimuli or process, metabolic byproducts are

released into the local extracellular environment which signal surrounding astrocytes to release NO2,

thereby causing the smooth muscle (pericytes) to relax and increase local cerebral blood flow (Iadecola,

2017). The full mechanism of neurovascular response, and the theories behind why it exists is beyond

the scope of the present work (Iadecola, 2017). However, it has been reliably documented that an

increase in neuronal processing is tightly coupled to a characteristic response profile of blood flow

known as the haemodynamic response function (HRF) (Ogawa et al., 1990). The application of

fNIRS is targeted to detect an HRF in the region of interest as to infer differential activity between

experimentally manipulated conditions or trials (Quaresima & Ferrari, 2019).

When applied to cognitive neuroscience, fNIRS makes a different system of trade-offs compared

to more typical modalities (fMRI), and therefore adds a unique contribution to active discussions

in the field (Ferrari & Quaresima, 2012). The three primary disadvantages of fNIRS is the decreased

spatial resolution (3̃ cm), the constraint of only measuring superficial (8̃ mm) cortical activity, and

the noise component of skin, skull, CSF physiology. The two disadvantages, coarse spatial resolu-

tion and shallow cortical measurement appear to be inherent physical limitations, and are unlikely

to be significantly improved upon in the near future (Pinti et al., 2020). As for the noise compo-

nent, recent developments in technique have dramatically reduced the impact of superficial physi-

ology. In particular, the introduction of short-distance (SD) channels, which are no longer than 1̃5

mm of separation intentionally direct the emitted light beam to scatter only through the superficial

physiology thus measuring the noise associated with scalp, skull, dura, and CSF, without penetrat-

ing cortex (Brigadoi & Cooper, 2015). Within the general linear model framework, the timeseries of

short-distance channels can be added as a regressor to factor out the variance associated physiology.

The success of SD technique has resulted in its wide proliferation and significantly ameliorates the

initially severe disadvantage of employing an fNIRS paradigm (Brigadoi & Cooper, 2015).

At the cost of these aformentioned limitations, fNIRS offers several technically interesting and

practical advantages. Technically, fNIRS can measure both HbO2 and HbR haemospecies which

offers a perspective unavailable to typical fMRI paradigms. The BOLD signal primarily measures

the decreased HbR concentration locally flushing out as the neurovascular response brings in fresh

blood (Ogawa et al., 1990; Huppert et al., 2006). In contrast, fNIRS can directly measure the in-

bound HbO2 component as well as the outbound HbR component simultaneously. It has also been

demonstrated that fNIRS corroborates fMRI measurements with high fidelity in both motor and

prefrontal cortical regions (Sato et al., 2013; Huppert et al., 2006). Further, in the normal physi-

ology of neurovascular response, the concentration changes of the HbO2 component is of greater

magnitude and potentially lends itself to more powerful detection (Pinti et al., 2020). Temporal of

resolution of fNIRS varies from system and often depend on the specific probe design, but in general

fNIRS offers superior temporal resolution with sampling frequency at > 4 Hz compared to the stan-

dard 2 s TR time in fMRI, offering only 0.5 Hz sampling rate. This is to say, all else held equal, fNIRS

has the potential to capture the HRF more accurately, such as the shape and onset of the response

(Poldrack, Mumford, & Nichols, 2011). Practically, fNIRS is more portable, less sensitive to motion

artifact, and more accessible in terms of funding and personnel. In general, research paradigms em-

ploying fNIRS are more naturalistic (participants are not constrained to supine position), and have

the potential to be more ecologically valid. Therefore, fNIRS as an alternative modality may con-
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tribute a unique perspective to the debate on the dissociation of category learning systems.

1.4 Objective
The primary aims of the present study are twofold. (1) To perform a direct, critical test of COVIS,

specifically about the assumptions underlying the implementational level of the theory—that is at

the level of functional neuroanatomy (Ashby et al., 1998; Marr, 1982). (2) To assess the feasibility of

fNIRS as a modality for investigating categorization and category learning in general.

As direct tests of COVIS theory, I postulate one general hypothesis and two precise hypotheses,

all of which are pre-registered on Open Science Framework OSF (osf.io/8tbua). Materials, scripts,

raw data, figures of the present study are publicly available at OSF (DOI 10.17605, osf.io/c3kav).

H1: explicit and implicit category learning will exhibit anatomically distinct patterns of func-

tional cortical activity.

H2: explicit category learning will exhibit higher activation of dorsolateral prefrontal cortices

(DLPFC; BA9, BA46), when compared to implicit category learning.

H3: implicit category learning will exhibit higher activation of premotor and supplementary mo-

tor areas (PMd/SMA; BA6), when compared to explicit category learning.
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Experiment I

The focus of Experiment 1 is to design, and validate category structures and learning task, fit for elicit-

ing dissociation of explicit and implicit systems as measured by fNIRS neuroimaging. We employed

a within-subject design consisting of two experimental conditions where participants learn a Rule-

Based (RB) category structure, and subsequently an Information-Integration (II) category structure

or vice versa; experimental condition order was counterbalanced across subjects. The RB and II cate-

gory sets are designed to bias neural activation of either explicit or implicit category learning systems

respectively, as specified by COVIS. All study procedures for Experiments 1, 2, 3 were approved by

the Non-Medical Research Ethics Board at Western University (REB code: 120100).

2.1 Methods
The experimental stimuli used in the present study are classic sine-wave gratings that only vary mean-

ingfully in two dimensions. Both dimensions are verbalizable: the orientation and frequency of the

gratings. A total of 150 stimuli per category were generated by sampling from bivariate normal dis-

tributions. The RB condition consists of a conjunctive-rule category set in which participants must

combine two single-dimensional rules regarding frequency and orientation dimensions of the stimuli

(Figure 2.1a). Optimal RB classification in this condition results in a L-shaped boundary separating

the two categories. If participants cannot find the optimal rule, their performance will reach a ceiling

of 75%, even then, they are more likely to find a 1D rule rather than the 2D implicit boundary. The II

condition consists of a 2D-linear boundary with a positive slope separating categories A and B. This

optimal II boundary is extremely difficult to explicitly verbalize and favours implicit learning (Figure

2.1b).

To make robust inferences from the neuroimaging data, the behavioural task must only differ in

the optimal categorization strategy while controlling for all other possible confounding variables of

the category sets. The primary aim is to dissociate neural activity of explicit and implicit systems by

use of of RB and II experimental conditions, respectively.

Three possible confounding variables require stringent controls (Carpenter et al., 2016). First,

The mathematical separation between categories; that is the Euclidean distance between category

centroids divided by the mean Euclidean distance of individual exemplars from its respective cate-

gory centroid along the direction across the comparison boundary. Separation is an important con-

trol variable to prevent brain activity from being ambiguously attributed to differences in perceptual

9



10 Chapter 2. Experiment I

(a) Conjunctive-Rule (b) Information-Integration

Figure 2.1: Category structures for the two experimental conditions. Frequency is given in cycles

per image, orientation is given in degrees. Each point represents a single sine-wave grating stimuli.

Squares denote category A, triangles denote category B. The optimal boundaries are shown as lines

separating the two categories.

representation of the two category sets. In the present study, the categories are designed with the

standardized separation of 8.0 arbitrary units. Second, The number of relevant dimensions. Previ-

ous designs used single-dimensional rules which are easier and faster to learn than II category sets.

Participants also only require selective attention towards one relevant dimension. Thus, neural activ-

ity could be wrongly attributed to differential allocation of attention. The present task replaces the

1D rule with a 2D conjunctive-rule to match the 2D-II boundary. Third, the task difficulty, if differ-

ent between conditions may result in differential recruitment of cognitive resources which confounds

the primary aim of dissociating neural activity of explicit and implicit systems. While mathematical

separation and number of relevant dimensions are controlled in the design of category sets, the task

difficulty must be evaluated by empirical performance. The present behavioural pilot employs cate-

gory sets which controls for (1) the mathematical separation, (2) number of relevant dimensions and

empirically validates whether, (3) participant performance is matched in both RB and II conditions.

Participants viewed images of sine-wave grating on a computer screen and responded by pressing

’1’ or ’0’ on the keyboard to classify categories A and B respectively. Over the course of 15 minutes

per condition, 300 trials with correct/incorrect feedback were administered for a fixed interval of 3

seconds. In each trial, the stimuli was presented for a maximum of 2 seconds. If participants respond

within the 2 seconds, feedback is immediately presented for the remaining time summing to 3 seconds

per trial. If participants do not respond within the 2 second stimuli presentation, the feedback "too

slow!" is shown for exactly 1 second. Including both RB and II conditions, the total runtime of the

behavioural task is 30 minutes exactly. These design choices were such that the paradigm could be

easily converted for a later neuroimaging experiment (Experiment 3). We collected data from (n =

119) participants, of which 11 were removed for chance performance, leaving (n = 108) participants
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(a) Learning Curves (b) Boundary Models

Figure 2.2: Experiment 1 Data. (a) Rule-based (RB) and Information-Integration (II) learning curves.

Blue triangle solid line indicates RB category set, red circle dashed line indicates II category set. Error

bars denote 95% confidence intervals of the mean. (b) Proportion of participants best fit by RB and

II boundary models for respective experimental condition. CR indicates the proportion best fit by

2D general conjunctive classifier, II proportion best fit by 2D general linear classifier, RB proportion

best fit by 1D linear classifier. Error bars denote standard error of proportion estimates.

in the analyses. Participants were recruited from Western University’s internal research recruitment

pool. The behavioural task was designed in PsychoPy and administered online through pavlovia.org.

2.2 Results
As mentioned in the methods, the mathematical separation of categories and number of relevant

dimensions were controlled in task design. However, task difficulty is evaluated empirically. A 5 ×

2 (block × condition) mixed-design analysis of variance (ANOVA) revealed main-effect of block,

F (3, 353) = 49.78, p < .001, η2 = .051, and main-effect of experimental condition, F (1, 107) =

6.67, p < .001, η2 = .009. Pairwise comparisons showed higher accuracy in final block compared to

initial block for both Information-Integration, t(107) = 7.25, p < .001, and Rule-Based, t(107) =
7.67, p < .001, conditions indicating that participants successfully learned both category structures.

Direct comparisons of RB and II conditions for each block initially revealed higher RB performance

in block 2 and block 3, but these effects did not survive Holm-Bonferroni correction for multiple

comparisons (Figure. 2.2a). These behavioural data empirically validate our effort to control for the

confound of task difficulty. Participants were capable of learning both category structures and the

overall performance did not differ between RB and II conditions.

Participants responses were also fit to General Recognition Theory (GRT) classifiers. The II con-

dition was designed for optimal fit by 2D general linear classifier. The RB condition consists of a con-
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junctive rule and is thus best fit by the general conjunctive classifier. However, in both conditions,

participants may achieve above chance categorization by using single-dimensional rules and thus 1D

linear classifiers were fit in both orientation and frequency dimensions. Optimal model fits were eval-

uated by Akaike’s Information Criterion (AIC). The proportion of participants using the optimal

strategy in congruence with the experimental condition was 69.4±4.4% for the II set and 51.9±4.8%
for Conjunctive RB set (Figure 2.2b). Though not necessarily finding the optimal conjunctive-rule,

76.8 ± 4.5% of participants in the CR condition applied some form of RB strategy.
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Experiment II

The purpose of Experiment 2 is to adapt the previously validated category structures from Experi-

ment 1 into a suitable fNIRS protocol. Specifically, blocks of rest, and control tasks were introduced

in the latter trials of category learning. The aim is to validate if the tightly controlled category struc-

ture from Experiment 1 are robust to the addition of necessary conditions for neuroimaging.

3.1 Methods
The category learning condition from Experiment 1 (CATG) was adapted to a blocked design (Figure

3.1). Two additional conditions were added, a control (CTRL) condition and a rest (REST) condi-

tion. The REST condition presents a fixation cross where participants are instructed to do nothing,

and the duration is jittered to be one of (12, 14, 16, 18, 20) seconds as to eliminate synchronicity of noise

and experimental condition frequencies. The CTRL condition has been designed to mimic the cat-

egory learning condition as closely as possible with only two differences. One, the stimulus set and

appropriate responses are already known and not meaningfully learned; two, the response decision

is a known to participants a priori, and simple enough as to not meaningfully engage the RB cate-

gory system (Carpenter et al., 2016; Stark & Squire, 2001). During CTRL, participants view uniform

noise figures of ’1’ or ’0’ contrasted against background of different noise density and must respond

by pressing the respective key upon which they will receive correct/incorrect feedback. In this way,

participants are not learning new information unlike the CATG condition. Also the task is simple

enough as not to elicit RB activation, it is closer to a detection problem rather than a categorization

problem.

The first 9 minutes of the experiment is identical to Experiment 1, and consists of 180 uninter-

rupted 3 s trials of category learning to allow participants sufficient time to develop familiarity with

the learning task. When transitioning into the imaging phase, a 20s block of rest is introduced. In

the remaining 11 minutes, CTRL and REST conditions are interleaved with the original CATG task.

REST blocks are jittered to have variable duration’s and are presented exactly in the following order:

(20, 20, 12, 18, 14, 16, 16, 14, 18, 20, 12) s. The conditions are presented in the following order: 24 trials

x 2 s = 48 s of CATG, jittered REST, 24 trials x 2 = 48 s of CTRL, jittered REST. This block order

constitutes one cycle of 128 s on average. The cycle is repeated 5 times for a total of 11 minutes.

Experiment 2 tests whether the results of Experiment 1 are robust to the addition of interleaved

CTRL and REST blocks. Online participants (n = 72) were recruited from the university’s research

13
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Figure 3.1: Learning and imaging protocol for experiments 2 and 3. In Experiment 2 the design was

between-subjects so each participant completed 20 minutes of either RB or II conditions. In experi-

ment 3 the design was within-subjects so the same participant completed 20 minutes of both RB and

II counterbalanced for a total scanning time of 40 minutes per participant.

pool to perform either one of RB or II versions of the task, of which 14 were removed for chance

responding, leaving (n = 58) for the present analyses.

3.2 Results
Repeated-measures 5 × 2 (block × condition) mixed-design ANOVA revealed main-effect of block

F (3, 143) = 25.1, p < .001, η2 = .17, and no effect of condition. Pairwise comparisons showed higher

accuracy in final block compared to initial for both RB t(31) = 6.04, p < .001, and II t(25) = 4.11, p =
.004 conditions. These results indicate that learning performance on the category sets designed in

Experiment 1 are robust to the addition of interleaved CTRL and REST conditions.

GRT models showed that within the II condition, 70 ± 4.4% were best fit by II strategy, and

30 ± 4.4% used RB strategy. Within the RB condition, 36 ± 4.6% of participants were best fit by

the optimal 2D CR strategy, 14 ± 3.4% were best fit by the suboptimal 1D RB strategy, and 50 ±

4.8% were best fit by II strategy. This significant incongruence between categorization strategy and

experimental condition in Experiment 2 indicates that even tightly controlled designs of category

set may not robustly elicit the appropriate optimal strategy in participants and therefore must be

accounted for in the analyses of neuroimaging data.
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(a) Learning Curves (b) Boundary Models

Figure 3.2: Experiment 2 Data. (a) Rule-based (RB) and Information-Integration (II) learning curves.

Blue triangle solid line indicates RB category set, red circle dashed line indicates II category set. Error

bars denote 95% confidence intervals of the mean. (b) Proportion of participants best fit by RB and

II boundary models for respective experimental condition. II proportion best fit by 2D general linear

classifier, RB proportion best fit by 1D linear classifier. Error bars denote standard error of proportion

estimates.
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Experiment III

The focus of Experiment 3 is to acquire functional neuroimaging data associated with the the process

of learning the empirically controlled category structures reported in Experiment 1 & 2. To this end,

we employed optical based fNIRS imaging to measure regional changes in haemoglobin concentra-

tions while participants learned the aformentioned RB and II category structures.

4.1 Methods

4.1.1 Design
The RB and II categorization tasks that were finalized in Experiment 2 contained three conditions

(CATG, CTRL, REST). The exact tasks were used in Experiment 3, with only a minor modification

to send triggers from the experimental computer to the fNIRS hardware (Figure 3.1). We collected

data from (n = 43) participants which were recruited from an undergraduate internal research pool

at Western University, and the local community. The design was within-subjects so the same partic-

ipant completed both the RB and II task, in contrast to Experiment 1 & 2 where each participant

completed exclusively the RB or II task. The duration of each learning task was 20 minutes exactly,

the total scanning time per participant was 40 minutes for both tasks. The order of the tasks were

counterbalanced such that every subsequent participant completed the tasks in reversed order with

respect to the immediately previous participant. However, order effects of a within-subjects design

still may remain, and will therefore be addressed in the analyses.

4.1.2 fNIRS Hardware
Source and detector positions were selected to maximize exposure of measurement channels to two

cortical regions-of-interest (ROI). These are the DLPFC and PMd/SMA. However, considering the

spatial proximity of DLPFC and PMd/SMA and that the stated aim is to dissociate the two, the

number of optodes and channels were selected as to maintain a chasm of non-measurement between

DLPFC and PMd/SMA ROI. The probe is designed with emphasis on the minimization of cross-

talk between channels of different ROI, but at the cost of forgoing maximum coverage. Optimal op-

tode location were determined with the aid of fOLD toolbox, a photon transport simulation-based

software tool which generates a specificity-optimized probe layout given user-defined ROI (Morais,

Balardin, & Sato, 2018). The DLPFC was specified by Brodmann’s areas BA 9, 46; PMd/SMA was

16
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Figure 4.1: Cortical sensitivity of probe layout. Red points are sources, blue points are detectors,

yellow lines joining the points represent the measurement channels between optodes. Note that the

true measurement channels take the form of a concave volume passing through the cortex. Sensitivity

of the probe layout is displayed as heatmap on the surface of cortex ranging from 0.25 mm−1 (blue)

to 1.0 mm−1 (red)
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Table 4.1: Optode Location and ROI Specificity

Channel Source Detector ROI Side Specificity (%)

1 Cz FCz 6 C 83.8

2 FC2 C2 6 R 82.5

3 FC1 C1 6 L 81.8

4 FC1 FCz 6 L 73.2

5 FC2 FCz 6 R 63.0

6 C3 FC3 6 L 61.7

7 C4 FC4 6 R 56.9

8 Cz C1 6 L 56.5

9 Cz C2 6 R 55.4

10 Fz F2 9 R 68.9

11 F4 F2 9 R 68.4

12 F3 F1 9 L 66.6

13 Fz F1 9 L 63.2

14 Fz AFz 9 C 61.8

15 AF4 F2 9 R 51.5

16 AF3 F1 9 L 48.4

17 AF3 F5 46 L 49.3

18 AF4 F6 46 R 47.4

specified by BA 6. Retaining channels with specificityROI > 45% resulted in a 10x10 source-detector

layout with 18 recording channels (Table 4.1). Locations of sources and detectors are placed in ac-

cordance to the 10-20 EEG system. In the AtlasViewer environment, the specified probe layout was

inputted into a Monte Carlo photon migration simulation to generate a estimate of measurement

sensitivity on the cortical surface (Figure 4.1) (Aasted et al., 2015). The simulation confirms that both

of our specified ROI: the DLPFC and PMd/SMA receive adequate coverage by our probe design. To

measure physiological noise correlates originating from non-cortical tissue, four short channels were

placed at 8mm separation on sources at AF3, AF4, C3, C4. These were selected to be in the corners

of the probe as to allow sampling of physiology across the surface of the head. Data were recorded

on the NIRScout system from NIRx Medical Technologies. Two-wavelength (760nm, 850nm) LED

sources measured HbO2 concentrations at a sampling frequency of 6.51Hz. Experimental triggers

for start of task conditions were sent via Cedrus c-pod device to the fNIRS hardware.

4.1.3 fNIRS Analysis
Raw data NIRx datafiles were imported and converted to .nirs and subsequently .snirf files for pre-

processing within the Homer3 of the OpenfNIRS environment (Tucker et al., 2023; Huppert, Dia-
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mond, Franceschini, & Boas, 2009). For each subject, raw voltages were converted to optical density

values. Channels with SNR < 5 were pruned. Motion artifacts were identified by thresholding SD

> 5, and masked over a timerange of 0.5 by recursive PCA correction. A low pass filter at 0.5 Hz was

applied before converting optical density to concentration via Modified Beer-Lambert’s Law with-

out partial path length adjustment (1.0) for both wavelengths. Concentration units are reported in

µM · mm. Haemodynamic response function (HRF) was extracted by GLM which included the

following regressors: highest correlated short-separation channel noise, and consecutive gaussian ba-

sis set to model HRF. GLM was solved by iterated-least squares (Barker, Aarabi, & Huppert, 2013).

Subject-level statistics for experimental conditions were exported for group-level analysis in R.

Subject-level t-contrasts were performed on extracted betas, collapsed across all subjects for both

CR and II conditions. Two contrasts served to discern neural effects of category learning (CATG

> REST), (CATG > CTRL), and one contrast served as a positive control, (CTRL > REST). The

betas representing task-related activation is tested against 0 to determine general relative activation

of the categorization task. In the case of (CATG > REST) the difference in betas is tested against 0.

Multiple comparisons were adjusted for false-discovery rate (FDR).

To analyze categorization conditions of CR and II, full mixed-effects models were computed

channel-wise at the group level including the following fixed effects: condition, order, z-scored perfor-

mance, best fit GRT boundary, and participant as a random effect. Model fits were backwards tested

by sequentially removing fixed effects, and computing AIC to optimize the parsimonious model ex-

plaining variance in haemodynamic response. Subject level contrasts (CATG > REST) represented

the dependent haemodynamic response. Since the only difference of CATG between CR and II con-

ditions is the stimuli set learned, and all other parameters were equivalent, there is no need to account

for the (CATG > CTRL) contrast at the group level. Multiple comparisons were adjusted for FDR.

For GRT boundaries, participants were partitioned as RB if their responses were best fit by either

a single-dimensional general linear classifier (1D-RB), or a conjunctive-rule (2D-CR), otherwise if

they were partitioned as II if they were best fit by a two-dimensional general linear classifier (2D-II).

Model statistics were exported and visualized using the visbrain environment in Python 3 (Combrisson

et al., 2019). Channels were treated as visbrain source objects localized to estimated MNI coordinates

and projected to the surface of the cortical mesh. Projections represent the statistical properties ob-

tained from channels mapped to standard 10-20 EEG locations, not to be confused with interpolation

of activation clusters on the cortex.

4.2 Results

4.2.1 Behavioural
Repeated-measures 5× 2 (block× condition) mixed-design ANOVA on performance revealed main-

effect of block, F (3, 129) = 30.1, p < .001, η2 = .14, main effect of condition, F (1, 41) = 33.4, p <
.001, η2 = .07 (Figure 4.2a). Pairwise comparisons showed higher accuracy in final block compared to

initial for both RB, t(43) = 8.6, p < .001, and II, t(43) = 4.8, p < .001, conditions indicating learning

in both categories. Pairwise comparisons of condition show higher performance in RB conditions for

blocks 2, F (1, 43) = 9.4, p < .001, through block 5, F (1, 43) = 31.6, p < .001. There was a significant

interaction effect of block and condition, F (4, 164) = 4.6, p < .001, η2 = .02, indicating participants

learned RB category at a faster rate.
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(a) Learning Curve (b) RT Curve

Figure 4.2: Experiment 3 Behavioural Data. (a) RB and II. Blue triangle solid line indicates RB cate-

gory set, red circle dashed line indicates II category set. Errorbars denote 95% confidence intervals of

the mean. (b) Reaction times denoted in milliseconds. Errorbars denote 95% confidence intervals of

the mean.

(a) Overall GRT boundary by condition (b) GRT boundary by block

Figure 4.3: GRT modeling results (a) Depicts the best fit GRT boundary by experimental condition.

Errorbars denote standard error of the proportion. (b) Depicts the relative proportion of all partici-

pants best fit respective boundary by cumulative block, all proportions sum to one.
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Repeated-measures 5 × 2 (block × condition) mixed-design ANOVA on reaction time data re-

vealed main-effect of block, F (2, 84) = 52.1, p < .001, η2 = .18, main effect of condition, F (1, 41) =
6.26, p < .001, η2 = .01 (Figure 4.2b). Pairwise comparisons showed lower reaction time in final

block compared to initial for both RB, t(46) = 7.2, p < .001, and II, t(43) = 7.2, p < .001, con-

ditions indicating decrease of reaction time in both conditions. Pairwise comparisons of condition

showed lower reaction times in RB conditions for blocks 4, F (1, 44) = 35.4, p < .001, and block 5,

F (1, 44) = 25.3, p < .001. There was no significant interaction effect, indicating the rate of reaction

time decrease did not differ by condition.

Overall, performance showed moderate negative correlation with reaction time, r(456) = -.34,

p < .001, indicating the effect of learning—as performance increases, the response time to decision

decreases.

GRT models showed that within the II condition, 90 ± 5.1% were best fit by II strategy, and

7.7± 15.4% used RB strategy (Figure 4.3a). Within the RB condition, 72± 8.5% of participants were

best fit by a RB strategy, 31 ± 13.3% were best fit by II strategy. Of the participants within the RB

condition, implementing a RB strategy, 84 ± 2.0% learned the optimal CR boundary. These empir-

ical incongruities between experimental condition and inferred strategy use is nontrivial and must

therefore be addressed. By the final block of the experiment and across both conditions, participants

exhibited a bias towards using an II bound to perform categorization (Figure 4.3b), the relative pro-

portions of participant’s best fit GRT boundary shifts throughout the experiment. Block 2 showed

the highest proportion (65±4.2%) of RB categorization and decreased significantly, χ2(1, N = 78) =

9.9, p = .002, by block 5 (40± 4.3%) suggesting that participants attempted RB strategies by default,

but biased towards II strategies (60 ± 4.3%) by the end of the experiment.

4.2.2 Subject-level fNIRS
Collapsed across all sessions for all subjects. A t-contrast of (CATG > REST) revealed broad activa-

tion of the frontal lobe, with 9 of 18 measurement channels passing significance threshold (Table 4.2).

Adjustments by FDR were applied channel-wise to contrast statistics using the Benjamini-Hochberg

method (Benjamini & Hochberg, 1995). These results were corroborated by the positive control t-

contrast (CTRL > REST), which revealed 6 of 18 channels as significant, all of which were also active

in the (CATG > REST) contrast. These contrasts indicate that both the CATG and CTRL com-

ponents of the behavioural task are capable of eliciting a broad and similar haemodynamic response

relative to rest in PMd/SMA and DLPFC regions bilaterally. These are expected effects for any given

cognitively demanding task that also includes a motor response component such as pressing a button.

To discern possible effects of categorization in and of itself, and unrelated to the motor and percep-

tual aspects of responding to the behavioural task, we performed a direct t-contrast of (CATG >

CTRL), and found two significant channels. Both channels were localized to R DLPFC and showed

significantly decreased haemodynamic response in CATG relative to CTRL. The direction of the

result is unexpected but nonetheless suggests differential activity due to cognition of categorization,

as compared to the control task which endeavors to hold all other extraneous variables constant.

4.2.3 Group-level fNIRS
We performed mixed-effects modeling on subject level betas from (CATG > REST) contrasts. Cate-

gorization condition, participant performance, and best fit GRT bound, were modeled as fixed-effects
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Figure 4.4: Projection of fNIRS channel activation for task condition contrasts. Red represents rela-

tive activation, blue represents relative deactivation. Images are thresholded displaying only channels

with FDR-adjusted p-values < .05 (For full statistics, see Table 4.2) Each disc projection represents the

estimated trough of a measurement channel and spanning 20 mm in diameter. ’A’ denotes anterior

view.
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Table 4.2: Subject-Level Contrasts. Coordinates denote estimated MNI coordinates based on optode

placements according to standard 10-20 EEG positions. BA denote Brodmann’s areas.

Channel x y z ROI BA Side t p pFDR

CATG > REST

10 10 41 50 DLPFC 9 R 3.81 <.001 .004

15 22 52 33 DLPFC 9 R 3.22 .002 .010

18 40 50 16 DLPFC 46 R 3.20 .002 .010

7 52 -4 48 PMd/SMA 6 R 3.00 .004 .015

9 17 -21 75 PMd/SMA 6 R 2.89 .005 .016

16 -23 52 32 DLPFC 9 L 2.46 .016 .036

8 -17 -20 74 PMd/SMA 6 L 2.42 .018 .036

13 -9 41 50 DLPFC 9 L 2.43 .018 .036

17 -39 50 17 DLPFC 46 L 2.32 .022 .040

CTRL > REST

10 10 41 50 DLPFC 9 R 4.09 <.001 .002

7 52 -4 48 PMd/SMA 6 R 3.51 <.001 .005

15 22 52 33 DLPFC 9 R 3.43 <.001 .005

9 17 -21 75 PMd/SMA 6 R 3.32 .001 .05

18 40 16 17 DLPFC 46 R 2.85 .005 .018

17 -39 17 17 DLPFC 46 L 2.43 .017 .046

CATG > CTRL

10 10 41 50 DLPFC 9 R -3.66 <.001 .007

11 30 40 41 DLPFC 9 R -3.29 .002 .012

of interest. Order effects were modeled as a nuisance fixed-effect. With respect to GRT modeling,

participants that were best fit by any 1D-rule or the optimal CR rule were classified as RB learn-

ers, participants that were best fit by GLC were classified as II learners. Participants were modeled

as random effects. Two effects survived corrections for multiple comparisons. Channel 11, which

corresponds to R DLPFC, BA 9 showed a significant effect of best fitting GRT bounds (Figure

4.5a). Participants showed significantly higher haemodynamic response when best fit by RB bound,

β = 12.7, 95%CI[5.4, 20.0], t = 3.74, p = .001, pFDR = .020, relative to participants that were best

fit by II bound (Figure 4.5b). Channel 18, corresponding to R DLPFC, BA 46 revealed an effect of

task performance (Figure 4.6a). Z-scored performance exhibits a significantly negative relationship to

haemodynamic response, β = −10.1, 95%CI[−4.5,−15.7], t = −3.54, p < .001, pFDR = .011, during

categorization relative to rest (Figure 4.6b). We did not find any significant effects due to the RB/II

experimental conditions.

These data support our broad hypothesis H1: explicit and implicit category learning will exhibit

anatomically distinct patterns of functional cortical activity; and our narrow hypothesisH2: Explicit
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(a) Channel 11: DLPFC BA9 (b) HbO2 Haemodynamic Response

Figure 4.5: (a) Channel 11 of R DLPFC exhibited a significant effect of categorization strategy as best

fit by GRT modeling. (b) Average estimated HbO2 haemodynamic response during CATG blocks

for participants partitioned as RB or II learners by best fitting GRT models. Dotted lines indicate

onset and end of CATG trials. Band indicates standard error of mean haemoglobin concentration.

category learning will exhibit higher activation of DLPFC; BA9, BA46, when compared to implicit

category learning. The strategy effect in channel 11 of DLPFC; BA9 clearly demonstrate higher re-

sponse to explicit category learning of a RB boundary relative to implicit category learning of an

II boundary. However, the present data fails to support our narrow hypothesis H3: Implicit cate-

gory learning will exhibit higher activation of PMd/SMA; BA6, when compared to explicit category

learning. No significant differences in neural response were localized to either hemisphere of the

PMd/SMA ROI.

We also attempted to fit mixed effects models by partitioning participants into three levels; 1D-

RB, 2D-CR, 2D-II, but these models did not explain a significantly increased proportion of HRF

variance compared to the two-partition (RB, II) model, and were therefore abandoned.
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(a) Channel 18: DLPFC BA46 (b) HbO2 Haemodynamic Response

Figure 4.6: (a) Channel 18 of R DLPFC exhibits significant negative relationship between perfor-

mance and haemodynamic response. (b) Z-scored performance plotted against haemodynamic re-

sponse. Band denotes standard error of the estimate.
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Discussion

The two primary aims of the study were: (1) To dissociate brain activity of explicit and implicit cate-

gory learning as specified by COVIS theory. (2) To ascertain the feasibility of fNIRS as a neuroimag-

ing modality for investigating category learning generally.

The present study attempted to dissociate neural activity of COVIS specified Explicit and Im-

plicit category learning systems via neuroimaging. I designed and validated a tightly controlled be-

havioural task in Experiment 1, then modified it to be compatible with an imaging protocol in Ex-

periment 2. Finally, in Experiment 3 I employed fNIRS to evaluate the activity of DLPFC and

PMd/SMA. I did not observe a double dissociation but found a single dissociation in the R DLPFC,

showing higher activation in participants best fit by GRT RB > II boundaries. Further, I localized an

negative relationship between performance and haemodynamic response in the R DLPFC.

5.1 Neural Dissociation
The fixed effects of best fit GRT decision boundary supports one of the narrow hypotheses: in the

DLPFC, RB category learning elicits higher neural activation relative to II category learning. Such

an result would be expected in the context of COVIS theory, which specifies only the involvement of

DLPFC in explicit category learning and not implicit category learning. My data of RB > II contrast

corroborates previous work on the topic (Helie et al., 2010; Nomura et al., 2007; Soto et al., 2013;

Aizenstein et al., 2000; Gureckis et al., 2011; Morgan et al., 2020; Wu et al., 2020).

However, these results fail to replicate some findings by Carpenter and colleagues, which share

the most similar experimental design as the present work and reports no significant dissociation be-

tween RB and II category learning conditions (Carpenter et al., 2016). In all other aspects of the

experiment, our designs are very similar, as I have modeled many of the controls after those specified

in the Carpenter’s publication. Both of our studies failed to find an effect of a experimental condition

alone and I share their sentiment that the lack of effect is due to the discrepancy between the exper-

imental condition and the actual categorization boundary learned by the participant (Carpenter et

al., 2016). Experiments 1, 2, and 3 consistently present a nontrivial incongruency between the learned

strategy and the experimental condition, a frequent result in studies that model the decision bound-

ary (Ashby, 2014; Hélie et al., 2017; Donkin, Newell, Kalish, Dunn, & Nosofsky, 2015). Carpenter’s

study, like ours, also modeled haemodynamic response by best fitting GRT models but failed to find

a dissociation between participants utilising RB and II boundaries. We offer the following two ex-

26
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planations for this discrepancy. (1) Carpenter’s analysis only compared participants who were best

fit by CR against participants that were best fit by II and therefore excluded some of the individual

variation in neural activity from participants who learned a suboptimal 1D-rule. In the context of

COVIS, explicit and implicit learning is mediated by discrete anatomical circuitry and would predict

that even 1D-rule use should elicit dissociable neural activity from implicit categorization (Ashby et

al., 1998; Minda & Miles, 2010). Indeed a 1D-rule was previously reported to have elicited significantly

dissociated activity, which initiated the discussion on the present issue (Nomura et al., 2007). By dis-

carding participants who were best fit by 1D-rule in the analysis, Carpenter decreased the degrees of

freedom and therefore the statistical power in the comparison (Carpenter et al., 2016). (2) Carpenter’s

study used fMRI as the imaging modality which is based on the decreased concentration of HbR in

response to task onset. In comparing modalities, it has been well documented that BOLD signal in

fMRI is most greatly correlated with decreased relative HbR concentration as measured by fNIRS

(Huppert et al., 2006; Sato et al., 2013). Further, relative changes in HbO2 concentrations tend to

have a larger magnitude than corresponding relative HbR concentration changes (Pinti et al., 2020;

Huppert et al., 2006; Sato et al., 2013). Therefore, Carpenter’s report of a null-effect of categoriza-

tion strategy could reflect the intrinsic property of the BOLD signal only indirectly measuringHbO2

through the quantification of HbR, whereas fNIRS measures HbO2 chromophore concentrations

directly (Pinti et al., 2020; Huppert et al., 2006; Carpenter et al., 2016).

I reported extensive activation of bilateral DLPFC and PMd/SMA at subject-level contrasts of

CATG > REST across all categorization conditions. These results are in broad agreement with almost

all neuroimaging studies on category learning or any tasks involving sustained attention and recruit-

ment of working memory (Owen, McMillan, Laird, & Bullmore, 2005; Helie et al., 2010; Aizenstein

et al., 2000; Nomura et al., 2007; Carpenter et al., 2016; Sato et al., 2013; Gureckis et al., 2011; Soto

et al., 2013; Morgan et al., 2020; Wu et al., 2020). My positive control contrast of CTRL > REST

revealed a similar though less extensive activation across the same regions. Unexpectedly, the CATG

> CTRL revealed a decreased relative activation of CATG in two channels localized to the DLPFC.

I suspect the inclusion of the positive control condition in conjunction with the experimental de-

sign introduced an unexpected task-switching and response inhibition effect in the CTRL condition

thereby explaining the relative lesser activation of the main CATG task (Kane & Engle, 2002; Hyafil,

Summerfield, & Koechlin, 2009). The imaging protocol specifies that participants were given 120

trials of uninterrupted categorization to familiarize themselves with the categorization task, though

they were provided with instructions prior to the experiment and were aware of the alternate con-

trol condition, the CTRL trials are likely to be perceived as novel upon first introduction after trial

168 of CATG. Moreover, participants may come to view CATG as the main task—rightfully so, and

consequently view CTRL as a distractor thereby compelling participants to maintain as much of the

previously learned boundary information whilst concurrently attending to the CTRL task in a per-

functory manner. This mode of task switching has been documented to tax working memory and

therefore activate DLPFC relative to maintaining a constant performance across continuous uniform

trials (Kane & Engle, 2002; Hyafil et al., 2009; Wang, Zhu, Rehman, & You, 2020). In any case, the

addition of a positive control was important for the present study since the stated aim is to apply a

different modality (fNIRS) than the majority of past work on the subject matter. However, I recom-

mend that a positive control in the form of a control task may be unnecessary for blocked designs in

future work, since the comparison of RB and II conditions will have already accounted for all of the

same perceptual and motor confounds on account of the fact that it would be impossible to directly

interleave RB and II category learning within the same run.
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5.2 Performance Haemodynamics
We reported a negative relationship between task performance and neural response in R DLPFC

4.6b. This effect was not predicted a priori and was therefore not a pre-registered hypotheses. Ex-

periments 1 and 2 made efforts to control for task performance between conditions, but failed to pre-

serve congruent performance in Experiment 3. Therefore, performance was included as a factor in

the mixed-effects model. The simplest explanation of the negative relationship between performance

and neural response is due to decreased processing time (Poldrack, 2000; Kelly & Garavan, 2005).

This view is supported by the reaction time data, which shares a moderate negative correlation with

the overall performance. This particular confluence of improved performance over time, decreased

neural response, and decreased reaction time has been previously reported by an investigation of visu-

ospatial WM which localized a negative relationship between task performance and neural response

to DLPFC, BA46 (Garavan, Kelley, Rosen, Rao, & Stein, 2000). An fNIRS based, load-dependence

working memory study found that relationship between task performance and neural response varied

as a function of working memory load (Meidenbauer, Choe, Cardenas-Iniguez, Huppert, & Berman,

2021). They reported that HbR response magnitude held a negative linear relationship to task accu-

racy in a high working memory load condition, which corresponds to a positive relationship between

neural response and task accuracy (Meidenbauer et al., 2021; Sato et al., 2013; Huppert et al., 2006).

However, the relationship was reversed in the low working memory load condition, HbR response

concentration held a positive relationship with task performance, and therefore indicates a negative

relationship between task performance and neural response, congruent with the observation of the

present report (Meidenbauer et al., 2021; Sato et al., 2013; Huppert et al., 2006). A particular feature

of the presently observed negative relationship between performance and neural response is that it

is agnostic to categorization condition or strategy since there were no significant interaction effects

with condition. Therefore, implicit learners who are not recruiting significant Working memory re-

sources are also contributing to this effect. Indeed, work in visuomotor associative learning of arbi-

trary stimuli, which is highly analogous to visual implicit category learning, has demonstrated this

negative performance relationship localized to the DLPFC (Toni, Ramnani, Josephs, Ashburner, &

Passingham, 2001; Ashby et al., 1998).

While there is precedence in the aforementioned literature describing the negative relationship be-

tween performance on working memory type tasks and neural response in the DLPFC, there is also

a substantial literature suggesting a generic effect in the reversed direction—that task performance

should positively correlate neural response in DLFPC (Owen et al., 2005; Di Rosa et al., 2019; Men-

carelli et al., 2019; Holmes et al., 2019; Webler et al., 2022; Ogawa, Kotani, & Jimbo, 2014). Generally,

working memory load is associated with increased performance, it is assumed that higher performing

individuals on working memory tasks are capable engaging a higher working memory load (Owen

et al., 2005; Mencarelli et al., 2019; Ogawa et al., 2014). Further, interventions aimed at increasing

activity of DLPFC: transcranial direct current stimulation, transcranial magnetic stimulation, and

transcranial infrared laser stimulation have been reported to improve task performance on working

memory type tasks (Webler et al., 2022; Di Rosa et al., 2019; Holmes et al., 2019; Blanco, Saucedo, &

Gonzalez-Lima, 2017). Two of these studies validated stimulation driven activity by concurrent imag-

ing (Webler et al., 2022; Di Rosa et al., 2019). However the majority of these studies are specifically

focused on working memory load, and do not necessarily account for influence of learning effects

over the course of an experiment (Kelly & Garavan, 2005; Poldrack, 2000).

The discrepancy between the presently observed negative relationship and some of the working
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memory literature suggests that there may be another explanation unique to category learning which

accounts for this effect. Participants are defaulting to a RB strategy early on, thus engaging working

memory resources, then gradually abandoning the RB strategy for the alternative II strategy which

concurrently reduces working memory load and increases overall performance (Ashby et al., 1998). It

is well documented that there are individual differences in the default categorization strategy as well

as the duration in which participants attempt their default strategy before switching to an alternative

(Ashby et al., 1998; Smith & Minda, 2002; Le Pelley, Newell, & Nosofsky, 2019; Nosofsky, 1986; Hélie

et al., 2017). Regardless of stimuli type, the majority of participants default to an explicit rule-based

strategy, and incrementally adjust towards the optimal boundary as they are presented with more

trials (Ashby et al., 1998; Hélie et al., 2017). Indeed, GRT modeling by block in the present study

show an early preference for RB categorization which peaks by block 2, and decays towards a bias

for implicit categorization by block 5 (Figure 4.3b). Notably, default categorization strategy may be

a function of culture, though the influence is unreliable and sparsely documented, and doesn’t con-

found the present data since it was broadly sampled entirely within a Western context (Norenzayan,

Smith, Kim, & Nisbett, 2002; Klein, 2005; Murphy, Bosch, & Kim, 2017). Taken together, the neg-

ative relationship between task performance and DLPFC activity may be capturing the default ten-

dency to initiate categorization with a suboptimal RB stategy, thereby explaining low performance

and high DLPFC response, and the gradual adjustment to an optimal strategy, explaining the higher

performance and lower DLPFC activity. Astute readers may notice that most learners within the RB

condition successfully learned the CR boundary, and would therefore still be using a RB strategy

by block 5 and thereby eliciting DLPFC activity. However, the learning curve (Figure 4.2a) shows

that the mean accuracy has exceeded the performance ceiling (.75) of suboptimal 1D rule by block 2.

Therefore, successful participants in the RB condition have already discovered the underlying opti-

mal CR rule by block 2, and subsequent blocks reflect the refinement in the precise position of the

decision bound and not the initial resource-intensive RB learning process. It has been documented

that explicit learning tends to exhibit a step-wise discrete increase in classification accuracy once the

underlying rule has been discovered (Smith et al., 2004; Minda & Miles, 2010). In sum, the cognitive

process incurring the highest recruitment of working memory as specified a priori by COVIS—the

formulation and hypothesis testing of rules—has been abandoned by participants who successfully

discover the CR bound, but penalizes participants’ performance who continue applying the subop-

timal 1D bound, thereby explaining the negative relationship between task performance and DLPFC

activity (Ashby et al., 1998; Minda & Miles, 2010; Meidenbauer et al., 2021).

5.3 Multiple Comparisons
One major limitation of the present study is that there are several other interesting effects that failed

to survive corrections for multiple comparisons (See Appendix Af2a, Af2b), and were therefore not

reported in the main text. This situation can be attributed to one of four possibilities: (1) The design

of the experiment is under-powered, (2) the effects are spurious, (3) corrections for multiple com-

parisons are unnecessarily conservative, or (4) non-independence of fNIRS channels. I acknowledge

that an under-powered design may be a contributing factor, and suggest solutions to improve upon

the present design. I also argue that corrections for multiple comparisons may be unnecessarily con-

servative for the interpretation of channel-wise fNIRS data. The justification I provide is due to the

non-independence problem of measurement that is uniquely associated with the modality of fNIRS.
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First, it is certainly possible that the present experiment is under-powered. This effect is attributable

to the sample size, inter-subject variability and behavioural task design. Examining individual partic-

ipant’s raw time-series revealed large variability of haemodynamic response as measured by fNIRS

across subjects. The most likely culprit is the large variability of hair features across populations such

as color, texture, length, thickness, and density (Khan et al., 2012; Orihuela-Espina, Leff, James, Darzi,

& Yang, 2010). These features directly impact the critical optode-scalp contact that is necessary for

the collection of high quality signal, therefore contributing to inter-subject HRF variability (Khan

et al., 2012). A large HRF variability will, in turn, demand a higher sample size to ascertain a posi-

tive result, especially if the effect size is not intrinsically large. We recruited a sizable sample (n = 43)

compared to the typical neuroimaging experiment, this allowed us to detect two critical main effects,

but jettisons several initially significant effects that do not survive FDR correction (Szucs & Ioanni-

dis, 2020). In regards to the behavioural task, the choice of block design was justified as to provide

a consistent format between Experiments 1, 2, and 3 but isn’t optimized for statistical power with

respect to GLM models. Further, the inclusion of a control (CTRL) condition was to test our sec-

ondary aim, the feasibility of fNIRS for studying categorization. If one were to optimize statistical

power to dissociate Explicit and Implicit category learning systems, it would be reasonable to drop

the CTRL condition completely and double the CATG blocks, since the task is identical across RB

and II conditions which only differ at the pixel-scale by category structure.

Second, it is always a possibility that results do not survive multiple comparisons simply because

they are Type I errors. If the underlying philosophy is to minimize Type I errors at all costs, it is indeed

prudent to only report results that have survived corrections for multiple comparisons, even if Type

II errors are inflated as a consequence.

Third, there is no canonical interpretation of multiple comparisons corrections that is considered

universally acceptable and agnostic to discipline (Saville, 1990; Rothman, 1990). In the case of fNIRS,

the problem of multiple comparisons remains very much an unsolved problem and solutions are of-

ten idiosyncratic depending on study design (Yücel et al., 2021; Singh & Dan, 2006; Uga et al., 2015).

The only generally recommended action is to transparently report the approach, which I presently

endeavor to do, presenting both corrected and uncorrected p-values (Yücel et al., 2021). However, the

present study specified two ROI bilaterally and targeted all channels to be optimized towards those

ROI. That is to say, several channels are measuring the same functional region, and the sensitivity

profiles are overlapping. Therefore, applying channel-wise corrections may be conservative because

Iare statistically accounting for each ROI more than once, whereas our interpretations are largely

conducted at the resolution of a typical Brodmann’s area. Further, the Benjamini-Hochberg method

assumes independence, but fNIRS channels are non-independent as a consequence of spatial corre-

lation. There exists corrections that account for arbitrary assumptions of independence (Benjamini-

Yekutieli), but are even more conservative than the standard Benjamini-Hochberg FDR correction

(Benjamini & Hochberg, 1995; Benjamini & Yekutieli, 2001).

Fourth, the problem of non-independent fNIRS channels can be further illustrated by the fol-

lowing sketch: A single source is flanked by 2 detectors separated at 90 degrees forming a L-shape

(Appendix Af3a). Though measurement channels are often depicted as edges joining two nodes, this

is an oversimplification. Physically, the measurement channels are better approximated by spheri-

cal volumes where the origin is centered at the midpoint of the measurement channel, since this is

the region with the highest density of photons that are back-scattered towards the surface detectors.

Neighboring channels of standard 3cm separation, as in the present study, would measure spheri-

cal volumes that have overlapping sensitivity to the same brain region thus violating the assumption
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of independence. If a cluster of neural tissue, centered in the overlapping region were to activate,

both channels would report a correlated effect, though weaker than a full effect because channel

sensitivity decreases as an exponential function of the measurement depth (Appendix Af3b) (Boas,

Dale, & Franceschini, 2004). Therefore an application of FDR or FWER which assumes indepen-

dence would inflate Type II error, an activated cluster located between neighboring channels would

be deemed insignificant simply because the peak of the activation was not localized at an optimal

location with respect to the probe design. In fMRI literature, this exact issue is often addressed by

the application of random field theory, which corrects activation statistics based on cluster thresholds

rather than for each individual voxel (Friston, Holmes, Worsley, & others, 1994). Some work has been

done to translate these methods into fNIRS by interpolating the data onto inhomogenous gaussian

random fields and computing the excursion probability (p-values) using Sun’s tube formula (Ye, Tak,

Jang, Jung, & Jang, 2009). However, in the absence of a corresponding anatomical MRI or precise

3d coordinates, interpolation methods cannot improve the resolution beyond the standard approach.

Using cluster-based thresholds by interpolation may resolve the ambiguity surrounding dependency

of measurement channels, but effectively trades-off one ambiguity for another (Ye et al., 2009). In-

terpolating without precise 3d-coordinates or an anatomical scan introduces false-spatial resolution

about the location and size of activation. In the present study I specify ROI at the resolution of in-

dividual Brodmann’s areas, thereby preventing false confidence in the spatial resolution. Though I

do provide estimated MNI coordinates of the channel, they do not necessarily represent the precise

location of the activated cluster. We therefore argue that there may be additional effects (interaction

effects, activations) that are informative to the question of dissociating multiple category learning

systems, but are presently sequestered by a conservative approach to channel-wise corrections.

5.4 Feasibility of fNIRS
The majority of neuroimaging research in category learning is done by the modality of fMRI (Nomura

et al., 2007; Carpenter et al., 2016; Soto et al., 2013). Undoubtedly, fMRI offers the highest spatial res-

olution for non-invasive study of human participants, but also contains some physical and practical

constraints due to the inherent properties of the modality. In comparison, fNIRS offers many prac-

tical advantages and a handful of technical advantages, at the cost of spatial resolution (Quaresima &

Ferrari, 2019; Pinti et al., 2020). Examples include, greater participant comfort, portability, ecologi-

cal validity, accessibility with special populations such as patients or children, reduced expense, and

simultaneous recordings from two or more participants known as hyperscanning (Czeszumski et al.,

2020).

To date, only one published study uses fNIRS to study category learning (Wu et al., 2020). In

the present study I have demonstrated the feasibility of using fNIRS to study category learning. I was

able to ascertain neural activity of a general categorization network with simple contrasts on a block

design, collapsed across all runs (CATG > REST). Further, I was capable of detecting subtler effects

of categorization strategy and performance effects based on a mixed-effects modeling approach. I

therefore conclude, that fNIRS is a feasible modality for studying categorization effects, but with

several important caveats.

The fNIRS technology as it currently stands: (1) is incapable of studying subcortical regions

(Quaresima & Ferrari, 2019). Much of the discussion around category learning happens in deep re-

gions such as basal ganglia, and thalamus (Ashby et al., 1998). Therefore, the present study cannot
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make even the weakest claims on the category learning dynamics of these deeper subcortical regions.

(2) likely does not provide high enough spatial resolution to study the effects of representation. The

estimated resolution (which depends on idiosyncratic design of the probe), is approximately 2 cm

(Pinti et al., 2020). Therefore, fNIRS as a modality is unlikely to contribute to the discussion of cat-

egory representations, notwithstanding exceedingly creative applications of the technology. (3) Indi-

vidual variability of categorization is further compounded by large differences in fNIRS haemody-

namic response. Recent work has demonstrated humans have certain default preferences and strate-

gies when category learning (Shen & Palmeri, 2016). If the analytic approach treats individual variance

as a nuisance factor (eg. between-subjects design), this problem may be exacerbated by the high in-

dividual variance of fNIRS signal and haemodynamic responses. Idiosyncratic factors such as hair

length, color, texture, ethnicity (skull shape), in addition to unknown physiological confounds such

as heart rate or blood pressure in the skin, skull, CSF affect the quality of fNIRS signal and conse-

quently the measured haemodynamic response. Researchers will need to be careful in accounting for

the high inter-subject variability especially when studying categorization (eg. within-subjects, high

N, many trials etc).

5.5 Conclusion
I sought to test the feasibility of using fNIRS to find a double dissocation of the neural activity un-

derlying explicit and implicit categorization as specified by COVIS. I observed broad activation across

bilateral DLPFC and PMd/SMA regions in response to general categorization task. I localized a sim-

ple single-dissociation of explicit learning eliciting higher neural response in R DLPFC. I also de-

tected a linear relationship between overall task performance and the magnitude of neural response

in R DLFPC across all subjects. I therefore conclude that explicit and implicit category learning sys-

tems can be dissociated by cortical activity and that fNIRS is indeed a feasible modality for studying

categorization.
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Appendix

Table At1: Basic Participant Demographics. Age displays means, all other variables display percent-

ages relative to sample size for each respective experiment.

Variable Exp.I Exp.II Exp.III

Age 19.7 19.3 20.4

Gender

Female 62 75 56

Male 37 24 44

Other 1 1 0

Ethnicity

White 46 50 44

Black 5 1 2

Asian 36 43 42

Hispanic 3 1 0

Other 10 5 10

Education

Secondary 2 1 0

Diploma 8 9 2

Bachelors 89 86 79

Masters 1 2 4

Doctorate 0 1 2
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(a) Channel 11 (b) Channel 18

Figure Af1: Model diagnostic plots for the significant channels exhibit group effects. Note that model

residuals appear to violate assumption of normality. However with the sample size is >30 (n = 86),

the violation has relatively minimal influence on whether OLS is the best linear unbiased estimator.

(a) Example of insignificant HRF (b) Example of insignificant interaction

Figure Af2: Examples of interesting qualitative effects that are initially significant, but sequestered

by FDR corrections for multiple comparisons. (a) Estimated HRF on channel 14, L DLPFC, BA9,

shows a marked difference between RB and II condition, t = −2.54, p = .04, pFDR = .18, but fails

to survive FDR correction. (b) Performance × condition exhibits a visible interaction effect, t =

2.56, p = .013, pFDR = .17, but fails to survive FDR correction.
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(a) Diagram of neighboring channels (b) Relative signal for respective activation clusters

Figure Af3: Schematic of fNIRS channel non-independence. (a) One source and two detectors,

D1, D2 creates two channels of measurements where the sensitivity profile overlaps. Instances of

cluster activation may happen at a relatively independent measurement location; A, B; or at a non-

independent locations; C. (b) Example of non-independent measurements C failing to pass signif-

icance thresholds post-correction for multiple comparisons. Dashed line of α represents the signif-

icance threshold of the test-statistic pre and post corrections. Note that cluster C would otherwise

pass an uncorrected threshold.
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