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Abstract 

Ultrasound-based microvascular imaging is a promising technique for evaluating tumor 

response to antiangiogenic therapy in preclinical settings. However, challenges such as 

tissue motion and noise can hinder the accuracy and reliability of contrast-free ultrasound 

imaging. Additionally, there is a lack of consensus on how to best combine different 

microvascular ultrasound techniques, like contrast-free and contrast-enhanced ultrasound, 

for detecting treatment response in cancer models. To address these challenges, this thesis 

proposes an optimal shrinkage singular value decomposition (SVD) based clutter filtering 

method. The proposed method significantly enhances visualization and microvascular 

quantification by increasing the signal-to-noise ratio (SNR) and contrast-to-noise ratio 

(CNR).  

Additionally, a scalable preclinical tumor model is presented using ex-ovo chick 

chorioallantoic membrane (CAM) tumor model and machine learning algorithms. The 

model aims to classify renal cell carcinoma (RCC) tumor cell response to antiangiogenic 

treatment based on ultrasound microvascular and perfusion parameters. Perfusion 

parameters derived from optimal shrinkage SVD-based contrast-free ultrasound and 

statistical analysis of contrast-enhanced ultrasound, along with microvascular parameters 

from conventional analysis, are evaluated. Feature selection algorithm identifies the best 

combination of ultrasound-based perfusion parameters for classification.  The study 

expands from using control and treatment groups of a sensitive cell line to using two 

different cell lines with varying sensitivity levels. The model pipeline is also tested on an 

independent cell line with unknown sensitivity to the machine learning model. 

The results demonstrate the effectiveness of the model in studying antiangiogenic treatment 

response using ultrasound microvascular imaging. The newly developed analysis for 

contrast-free and contrast-enhanced ultrasound improves classification results, and the 

model performs well with a separate test set, demonstrating its generalization capabilities 

and robustness. Therefore, the proposed model pipeline has the potential to evaluate 

treatment response in other tumor cells and preclinical translation.  
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In summary, this thesis highlights that optimal shrinkage SVD-based clutter filtering 

method improves microvascular quantification and its vascular quantification parameters 

when used along with other contras-free and contrast-enhanced perfusion parameters 

improves the classification of the RCC tumor responses to antiangiogenic treatment in the 

proposed tumor chick CAM model. The results demonstrate the robustness of this study, 

and its potential for broader preclinical applications. 
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Summary for Lay Audience 

 

Ultrasound imaging holds promise for investigating the response of tumors to a type of 

therapy that aims to degrade the microvessels. However, there are challenges that can 

compromise the accuracy of ultrasound images in detecting microvessels. Furthermore, 

there is currently no established method for determining the optimal combination of 

ultrasound-based microvsessel parameters to effectively assess treatment efficacy. This 

thesis proposes a novel approach to enhance the ultrasound images in detection and 

quantification of mircovessels, facilitating the observation and measurement of tumor 

blood vessels.  

Additionally, this study introduces a scalable preclinical tumor model utilizing machine 

learning models and is based on ultrasound-based microvascular parameters. The objective 

of the model is to assess the response of kidney cancer tumor cells to anti-angiogenic 

treatment by analyzing different ultrasound images and conducting blood flow 

measurements within the tumor. Initially, blood flow measurements and vascular 

quantifications were computed for a responsive tumor cell to the treatment used in this 

study for both the treated group and non-treated group. This analysis was subsequently 

expanded to include two distinct tumor types, each exhibiting different responses to 

treatment. Moreover, the model was evaluated using a new tumor cell to ascertain its ability 

to accurately predict treatment response.  

The study demonstrates that the proposed model is valuable for evaluating the efficacy of 

the treatment in inhibiting tumor blood supply using ultrasound imaging. Furthermore, the 

newly proposed method for enhancing ultrasound imaging exhibits improved 

discriminative capabilities for tumors with varying treatment responses, as facilitated by 

machine learning. The model also demonstrates robust performance when tested with 

independent tumor cells, suggesting its potential for assessing treatment responses in other 

tumor types. Overall, this model has the potential to aid in the study and translation of 

preclinical cancer treatments.  
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In summary, this thesis establishes that the proposed method enhances the measurement of 

tumor blood vessels in a specific ultrasound imaging modality. When combined with other 

ultrasound imaging techniques, it augments the model's ability to differentiate between 

tumor responses to treatment. The study yields robust results, indicating that this approach 

holds promise for broader preclinical applications in evaluating tumor responses to 

treatment.  
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Chapter 1 

1 Introduction 

 

 

1.1 Overview 

Ultrasound-based microvascular imaging, i.e., power Doppler (PD) and Contrast Enhanced 

Ultrasound (CEUS), are popular imaging modalities in preclinical and clinical settings for 

assessing microvascular perfusion parameters including blood flow, blood volume, and 

microvascular density. The technique enables the visualization of small blood vessels, 

providing valuable information on microvascular function, morphology, and density. In 

recent years, microvascular imaging has become an essential tool in both angiogenesis and 

anti-angiogenesis research, especially in the field of cancer research. However, the 

accuracy and reliability of these measurements are still a challenge due to factors such as 

tissue motion, signal attenuation, and noise. To improve the quality and reliability of 

ultrasound-based perfusion imaging, several approaches have been proposed, including 

contrast-enhanced ultrasound imaging and power Doppler ultrasound imaging. 

Machine learning models can be used to analyze these parameters to derive insights into 

the efficacy and the progression of angiogenesis and anti-angiogenesis therapy. Machine 

learning models have been increasingly used in the field of angiogenesis and anti-

angiogenesis therapy, particularly in the context of ultrasound microvascular perfusion 

parameters and have the potential to revolutionize detect tumor treatment response in 

patients with various diseases. These models can identify patterns and changes in the 

images that may not be easily detectable by the human eye, providing a more accurate and 

objective assessment of treatment response. By analyzing parameters such as blood flow, 

vessel density, and perfusion, these models can predict the success of treatment and guide 

clinical decision-making. The use of machine learning models in ultrasound imaging has 
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the potential to improve patient outcomes and enhance the precision of diagnosis and 

treatment in patients with vascular disease. 

Chick Chorioallantois Membrane (CAM) tumor models and mice hindlimb are popular 

preclinical applications for tumor treatment response and angiogenesis of peripheral 

arterial disease studies, respectively. The CAM tumor model is an efficient and cost-

effective preclinical model for angiogenesis studies while mice hindlimb an easily 

accessible, well-defined and reproducible model for studying angiogenesis and perfusion 

in response to different treatments and they are genetically similarity to humans. 

This thesis aimed to determine the essential combination of microvascular ultrasound 

features required to accurately classify the sensitivity of a tumor model (i.e., tumor cells 

engrafted on the CAM of chick embryo) to antiangiogenic treatment using classical 

machine learning methods. The rest of this chapter aims to provide a comprehensive 

overview of the enhancements in microvascular imaging, with a focus on power Doppler 

and CEUS ultrasound imaging and the application of machine learning models anti-

angiogenesis therapy using power Doppler and CEUS ultrasound microvascular perfusion 

parameters CAM tumor model preclinical application of and mice hindlimb. 

1.2 Ultrasound Microvascular Imaging and Its Applications 

Ultrasound microvascular imaging (UMI) [1] is a non-invasive and real-time imaging 

technique providing valuable information on microvascular function, morphology, and 

density. UMI can create high-resolution images of blood flow and vessel structure in real-

time and has the potential to improve patient outcomes and enhance the precision of 

diagnosis and treatment. Traditionally, color and power Doppler have been widely used for 

visualizing microvascular flow without the need for contrast agents. These techniques rely 

on Doppler shift of the reflected sound wave relative to the transmitted wave and both are 

overlayed on bright-mode (B-mode) data using a variety of color hues. Power Doppler and 

color Doppler both use ultrasound to measure blood flow in vessels, rely on the Doppler 

effect, which is the change in frequency of sound waves as they reflect off moving objects, 

and they both produce images that are superimposed on a B-mode ultrasound image. 

https://radiopaedia.org/articles/power-doppler-1
https://radiopaedia.org/articles/power-doppler-1
https://my.clevelandclinic.org/health/diagnostics/22715-doppler-ultrasound
https://my.clevelandclinic.org/health/diagnostics/22715-doppler-ultrasound
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Figure 1.1: Tumor model pipeline to assess tumor treatment response to 

antiangiogenic therapy using ultrasound microvascular parameters 

Color Doppler [2] image is generated by calculating the average Doppler frequency, based 

on the analysis of phase shifts or time delays between the echoes received and displays an 

estimate of the axial blood velocity from mean frequency estimate. Power Doppler 

ultrasound, on the other hand, distinguishes between echoes from moving red blood cells 

and solid tissues by estimating the power of the slow-time signal, which represents blood 

flow over time. The slow-time signal in ultrasound represents the changes in blood flow 

over time in a region of interest. The power of the slow-time signal is proportional to the 

number and movement of red blood cells in the region of interest and reflects the 

concentration of moving blood scatterers. Slow-time signal is different from the fast-time 

signal which represents the spatial distribution of echoes within a single pulse. in the region 

of interest.  The slow-time signal is used to form power Doppler images, while the fast-

time signal is used to form B-mode images.  

The B-mode sequence in ultrasound imaging involves acquiring ultrasound data to generate 

grayscale images of anatomical structures. Focused beam imaging uses a narrow, focused 

ultrasound beam that is mechanically scanned across the region of interest, providing high 
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spatial resolution and detailed visualization at the focal depth. In contrast, plane-wave 

imaging insonifies the entire field of view simultaneously, allowing for rapid image 

acquisition and real-time imaging with a high frame rate. However, the spatial resolution 

of plane-wave imaging is generally lower since the beams are not concentrated on a specific 

target area. 

Nowadays, advanced flow imaging techniques are commercially available on high-end 

ultrasound systems, such as Superb Microvascular Imaging (SMI) from Canon Medical, 

Slow Flow from Siemens Healthineers, Microvascular Imaging (MVI) from GE 

Healthcare, MicroFlow Imaging from Philips, and MV-flow from Samsung. [3]. This 

approach, also known as contrast-free ultrasound, is based on the detection of motion of 

the surrounding tissue caused by blood flow [4]. Contrast-free ultrasound exploits the high 

sensitivity of power Doppler to slow flow signals from small vessels and uses 

spatiotemporal signal processing to suppress the background tissue motion artifacts and 

enhance the signals from the moving blood cells to improve sensitivity to Doppler signals 

with slower flow. Contrast-free ultrasound does not require any contrast agents or 

injections and is therefore non-invasive and safer than contrast-enhanced techniques.  

1.2.1 Overview of Power Doppler Ultrasound Image Acquisition and 

Construction 

The image acquisition process in power Doppler imaging is similar to conventional B-

mode ultrasound imaging. A transducer is placed on the surface and emits high-frequency 

sound waves that penetrate the body tissues. The sound waves are then reflected back by 

the tissue interfaces and detected by the transducer. The reflected signals are processed by 

the ultrasound system to generate a two-dimensional (2D) or three-dimensional (3D) image 

of the tissue being scanned. PD computes the power of the slow-time signal and is color-

coded to indicate the presence of blood flow. 

Unlike color Doppler images that is reconstructed using mean of the Doppler shift, PD uses 

power of the Doppler shift within the received ultrasound echo to reconstruct the image. 

Power Doppler image acquisition typically involves the use of a low pulse repetition 

frequency (PRF) to capture the strength of the Doppler signal over time, rather than the 



5 

velocity. This makes it particularly useful for visualizing slow-flowing or weakly perfused 

tissues, such as those in tumors. However, it does not provide directional or quantitative 

information about blood flow. Also,  because power Doppler ultrasound is more sensitive 

to the detection of low flow signals, it is more susceptible to false positives, which may 

lead to the incorrect identification of blood flow in areas where it does not exist. On the 

other hand, it may also miss some areas of low flow, resulting in false negatives.  

Power Doppler image acquisition is a technique that uses the power of the slow-time signal 

to detect moving matter, such as blood flow, in a region of interest. The slow-time signal 

is obtained from the returned echoes, which have a Doppler shift due to the Doppler effect. 

The power of the slow-time signal is mapped to a color hue according to a predefined color 

scale and superimposed on a B-mode image, which shows the anatomical structures of the 

tissue. Power Doppler image acquisition can provide more sensitive information about 

blood flow than color Doppler image acquisition, which uses the frequency shift of the 

slow-time signal. 

1.2.1.1 Clutter Filtering for Power Doppler and Contrast-free Ultrasound 

Contrast-free microvascular ultrasound imaging is a valuable technique used to visualize 

small blood vessels and blood flow in different organs and tissues. However, this type of 

imaging is prone to motion artifacts, noise, and echoes from tissue structures. Motion 

artifacts which arise from stationary tissue and other non-moving structures can obscure 

the detection of low-velocity blood flow making it difficult to visualize and analyze 

microvascular structures and blood flow. These clutter artifacts can result in false positives 

and reduce the sensitivity and specificity of the imaging technique. Therefore, clutter 

filtering techniques are necessary to improve the accuracy and reliability of power Doppler 

imaging. 

Frequency-based clutter filtering is a commonly used method to address clutter in 

ultrasound imaging by removing echoes from stationary tissue structures. However, this 

method is not effective in microvascular imaging.  One reason for this is that frequency-

based clutter filtering can also remove the low-frequency signals associated with 

microvascular blood flow and slow blood flow signals may be mistakenly filtered out as 
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clutter, resulting in a loss of information and decreased sensitivity. Additionally, the clutter 

in microvascular ultrasound images tends to overlap with blood in both spatial and 

temporal (i.e., frequency) domain.  

This makes spatiotemporal filtering more effective than frequency-based filtering for 

removing clutter in microvascular ultrasound images. These methods take into account 

both spatial and temporal information of the microvascular ultrasound data and utilize it to 

differentiate between blood flow signals and stationary tissue structures. Due to the overlap 

of blood and clutter signals in the spatiotemporal domain, these methods are designed to 

selectively remove clutter without affecting the blood flow signals. This makes it possible 

to accurately identify and measure small blood vessels. 

Several clutter filtering techniques have been proposed, including Infinite Impulse 

Response (IIR), Finite Impulse Response (FIR), as well as singular value decomposition 

(SVD) based clutter filtering methods which are discussed in the following. 

1.2.1.1.1 Conventional Clutter Filtering Methods 

Conventional FIR and IIR filtering methods have been widely used for clutter filtering in 

ultrasound imaging. FIR filters [7] have a linear phase response and are generally stable, 

but the problem is that a length N filter requires a Doppler ensemble with N pulses, so it 

slows the frame rate if N is large. On the other hand, IIR filters [8] have a nonlinear phase 

response and require fewer coefficients, but they can be unstable and prone to artifacts. IIR 

filters have steeper roll-off than FIR for a given order, but also exhibit a longer settling 

time. FIR filters have a short settling time but need a higher order to efficiently discriminate 

clutter from blood signal.  

Doppler uses only time-domain (or temporal-frequency-domain) signal processing to 

separate blood from clutter, however, due to real-time requirements and the use of focused 

ultrasonic beams, the number of temporal samples available in each spatial location is low, 

making these filters difficult to optimize for general Doppler imaging applications. The 

problem of settling time can be reduced by proper initialization in the case of IIR filters, 

but the transient response cannot be completely canceled. Moreover, conventional FIR and 
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IIR clutter filtering methods do not adapt well to variations in tissue motion and clutter 

distribution over time, which can limit their effectiveness. Additionally, these methods 

often rely on assumptions about the data, such as a specific distribution of clutter, and may 

not perform well when those assumptions are not met. Furthermore, selecting the 

appropriate filter parameters, such as the filter order and cutoff frequency, can be a 

subjective and time-consuming process. 

1.2.1.1.2 SVD-based Clutter Filtering in Contrast-Free Ultrasound 

Conventional Doppler imaging often lacks sensitivity in detecting slow-flow vessels due 

to the short Doppler ensemble length and the inability of traditional clutter filtering 

techniques, which rely on high-pass temporal filtering, to differentiate between 

microvasculature and tissue clutter. To overcome this constraint, UMI has emerged based 

on Eigen-based tissue clutter filters and in some studies in combination with high frame-

rate ultrasound plane wave imaging (where considerable number of Doppler ensembles 

within a brief timeframe acquired can enhance the sensitivity of Doppler imaging to detect 

slow flow signals) [9]. SVD clutter filtering can be employed on RF or IQ image sequences 

obtained through various methods, such as focused beam, plane wave, or diverging wave. 

The UMI performed based on in-phase/quadrature (IQ) cine loop of B-mode frames with 

the spatiotemporal SVD-based clutter filtering was applied on the long ensemble of the B-

mode IQ data, to extract the blood flow signals has shown superior performance in tumor 

microvascular detection [10]. 

Eigen-based clutter filters, such as SVD, leverage the inherent distinctions in 

spatiotemporal properties among tissue, blood, and electronic noise, resulting in more 

effective clutter removal. SVD-based filtering works by decomposing the signal into 

orthogonal basis functions (i.e., its singular values and vectors) and filtering out the 

singular values associated with clutter artifacts. Assuming that the acquired beam-formed 

RF signal with dimension of (x, z, t), it can be reshaped as 𝑆 with a dimension of (x × z, t) 

where x, z, and t denote the lateral, axial, and slow-time dimension (i.e., the ensemble size), 

respectively. The SVD of Casorati matrix  𝑆 can be presented as: 

𝑆 = 𝑈∆𝑉𝑇 =  ∑ 𝛾𝑖𝑈𝑖𝑉𝑖
𝑇𝑡

𝑖=1              (1.1) 



8 

where 𝑈 and 𝑉 are the orthonormal matrices with dimensions of (x × z, x × z) and (t, t), 

respectively. 𝑉𝑇 is the transpose of 𝑉. 𝑈𝑖 and 𝑉𝑖 are the ith (i ∈ [1, t]) columns of 𝑈 and 𝑉, 

which correspond to the spatial and temporal singular vectors, respectively. ∆ is a diagonal 

matrix with a dimension of (x × z, t) and the diagonal values are the singular values of 𝑆 in 

a descending order. 𝛾𝑖 represents the ith diagonal value. When decomposing, tissue 

displacements are primarily represented in the first singular values and singular vectors 

due to their high spatiotemporal coherence while blood signal are in lower singular values 

The reason for the low blood singular values can be attributed to two factors. Firstly, the 

scattered power from blood is generally low because blood cells are small, and vessels tend 

to occupy only a small area within the region of interest (ROI). Secondly, the coherence of 

the blood signal is also lower, which results in the signal power being distributed across 

multiple singular vectors. An SVD clutter filter suppresses tissue clutter by selecting a 

threshold rank and attenuating the singular vectors with rank below the threshold. By 

setting a threshold on the singular values, the clutter subspace can be separated from the 

blood flow subspace, and the clutter can be effectively removed. A microvascular image is 

then reconstructed from the filtered data set. 

Various methods for determining the rank threshold have been proposed, including a 

predetermined threshold based on the expected blood-to-clutter signal power ratio [11], or 

an adaptive threshold calculated from the slope of the singular value curve [12]. These 

methods employ a truncated SVD filter, where the singular values at ranks below the blood-

clutter rank threshold are set to zero, and the singular values above the threshold are left 

unchanged. The SVD-based clutter filtering has been shown to reveal previously 

undetected blood flows, such as microvascular networks or blood flows corrupted by 

significant tissue or probe motion artifacts. Recent research has focused on developing 

faster and more efficient methods for SVD-based clutter filtering, such as randomized SVD 

[12] and block-wise adaptive SVD [13]. These methods have been shown to provide 

comparable clutter rejection performance to full SVD while significantly improving 

computational performance.  
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1.2.1.2 PD Quantitative and Morphological Analysis 

Quantitative analysis of power Doppler ultrasound images involves the measurement of 

various parameters such as vessel density and tortuosity. These measurements can be 

obtained using specialized software tools that provide automated image analysis 

capabilities. The use of quantitative analysis has been shown to improve the accuracy and 

reproducibility of power Doppler ultrasound imaging. Morphological analysis and features 

in power Doppler ultrasound imaging involve the evaluation of the shape, size, and 

distribution of vessels in the tissue or organ being examined. Morphological features such 

as vessel length, branching patterns, and diameter can provide valuable information on 

tissue microvasculature and can be used for cancer diagnosis and treatment response 

evaluation [14]. 

PD quantitative information on blood flow is commonly used in clinical practice to assess 

tissue perfusion and vascularization [15-18]. The basic PD metrics include vascular index 

(VI), flow index (FI), and vascular flow index (VFI). VI represents the percentage of the 

image area that contains blood vessels, while FI quantifies the intensity of the blood flow 

signal. VFI is the product of VI and FI, which reflects the volume of blood flow in a given 

area. These metrics can be used to monitor changes in tissue vascularity, which is often 

associated with various pathological conditions such as cancer, inflammation, and 

ischemia. In addition to clinical applications, PD metrics are also used in preclinical 

research to evaluate the efficacy of antiangiogenic therapies or to investigate the 

pathophysiology of vascular diseases. 

Overall, the use of perfusion parameters and morphological and quantitative analysis in 

power Doppler ultrasound imaging can provide valuable insights into the tissue 

microvasculature and aid in the diagnosis and monitoring of various diseases. However, 

there are still several challenges associated with the use of these techniques, such as the 

need for standardized protocols and the limitations of current image analysis tools.  

1.2.2 Overview of Contrast-Enhanced Ultrasound Imaging 

Perfusion imaging utilizing contrast-enhanced ultrasound involves the administration of a 

contrast agent in the form of microbubbles that enhance the signal. This is achieved by 
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administering the contrast agent intravenously. CEUS has several advantages over other 

imaging modalities, such as computed tomography (CT) and magnetic resonance imaging 

(MRI), including its real-time imaging capabilities, lack of ionizing radiation, and 

relatively low cost. CEUS involves the use of microbubble contrast agents that enhance the 

visualization of microvessels and allow for real-time monitoring of the microcirculation. 

Microbubbles are small gas-filled particles that are injected into the bloodstream and are 

highly reflective to ultrasound waves. CEUS has emerged as an important imaging 

modality in various clinical settings, including oncology [19], liver [20], kidney [21,22], 

and many other applications due to its ability to provide real-time, high-resolution images 

with excellent contrast enhancement.  

1.2.2.1 CEUS Image Acquisition and Construction 

Contrast-enhanced ultrasound is capable of detecting signals from the vasculature by 

utilizing microbubbles that have diameters measured in microns. These microbubbles 

significantly enhance the acoustic backscatter signal from blood. To acquire CEUS images, 

the ultrasound probe is placed on the surface and ultrasound waves are emitted from the 

probe. These waves then bounce off the contrast agent bubbles in the blood vessels and 

return to the probe, where they are detected and converted into an image. The imaging 

process is usually performed in real-time, allowing the operator to view the contrast agent 

flow as it occurs [23]. Contrast-enhanced ultrasound (CEUS) can be performed using two 

different methods: bolus enhancement and destruction-reperfusion kinematic models. 

Bolus enhancement [24], is a method that involves the injection of a large quantity of 

indicators into the venous system, and then a series of ultrasound images are acquired over 

time to track the enhancement of the tissue of interest. The main advantages of bolus 

enhancement CEUS provide a rapid assessment of the vascularization and perfusion of the 

organ of interest. It is a simpler technique to use compared to destruction-reperfusion 

techniques since it avoids the complexities of constant infusion, such as the need for 

catheterization, surgical tubing, controlled flow rates, and agitation of the indicator to 

maintain a consistent injection concentration. Furthermore, a single bolus injection requires 

less total indicator and setup time compared to constant infusion. However, there are 

various limitations to its application in quantitative imaging such as not physiologically 
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feasible, particularly when considering the short time scale of contrast-enhanced 

ultrasound imaging. The drawback is that the contrast agent has a short half-life, so the 

imaging window is limited to a few minutes. 

The destruction-reperfusion technique [25], that is used throughout this thesis,  is a unique 

approach to contrast-enhanced ultrasound that differs from relying on an intravenous bolus 

injection of contrast agent washing into the imaging plane. Instead, it utilizes a constant 

infusion of microbubbles into systemic circulation and implements a high-energy 

ultrasound pulse to induce the complete destruction of all indicators within an acoustic 

window. 

1.2.2.2 Statistical CEUS Analysis 

Conventional CEUS image analysis overlooks important information that can be obtained 

from speckle statistics. Many studies have used CEUS to evaluate tumor perfusion 

heterogeneity, including a log-normal perfusion model, micro flow image processing, and 

contrast ultrasound dispersion imaging. However, these methods have limitations, such as 

subjectivity and a lack of spatial heterogeneity quantification.  

In previous research in our lab, Lowerison, et. al., [26] proposed a method for analyzing 

the first-order speckle statistics of sub-harmonic CEUS images from tumors using a 

compound distribution of exponential probability density functions. The proposed method 

can be used to quantify the heterogeneities of the contrast speckle pattern and characterize 

the microbubble concentration among vessel lumina in the tumor. The proposed method 

can quantify spatial heterogeneity and provide an alternative metric for assessing vascular 

network complexity using a single ROI encompassing the entire tumor cross section 

analyzed at two time points during wash-in. 

The proposed model can approximate the local changes in microbubble number density, 

such as a high concentration microbubble bolus surrounded by a low-intensity tissue 

background in a contrast-specific image. It was applied to contrast-specific, amplitude-

modulated, CEUS cine loops acquired from a mouse breast cancer mammary fat pad 

xenograft model treated with a monoclonal anti-vascular endothelial growth factor (anti-
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VEGF) antibody (specifically, the murine analog to bevacizumab). The proposed method 

was able to detect a significant reduction in micro-vascular density due to the anti-

angiogenic therapy and changes in tumor vascular complexity in response to the therapy. 

In this statistical CEUS method [26], the probability density function (PDF) of the contrast-

enhanced signal intensity 𝑓(𝐼), , is modeled as a mixture of exponential PDFs weighted by 

the function 𝑤(𝜃), 

𝑓(𝐼) = ∫ 𝑤(𝜃)𝑝(𝐼|𝜃)𝑑𝜃,  (1.3) 

where 𝑝(𝐼|𝜃) is an exponential distribution conditional on the scale parameter, 𝜃:  

𝑝(𝐼|𝜃) = 𝜃𝑒−𝜃𝑡 .   (1.4) 

The study also assumes, based on [27],  that an arbitrary vascular network can be simplified 

by assuming a fractal branching geometry that yields a distribution of vessel diameters and 

flow velocities governed by a log-normal distribution. Therefore, the weighting function 

in Eq. 1.3 may also be assumed to be log-normal. Different values of 𝜃 can be viewed as 

arising from different local microbubble concentrations, such that 𝑤(𝜃) characterizes the 

spatial heterogeneity of contrast enhancement in the region of interest.  

The gamma family of PDFs can serve as an approximation to the log-weighting function, 

and use of a gamma distribution to estimate the weighting function (Eq. 1.4) leads to a 

Lomax distribution (Eq. 1.5) as an analytic solution for the compound speckle PDF, f(I). 

𝑤(𝜃|𝛼, 𝛽) =  
𝛼𝛽

Γ(𝛽)
𝜃𝛽−1𝑒−𝛼𝜃     (1.5) 

where α and β are hyper-parameters. Substitution of Eq. 1.4 and Eq. 1.5 into Eq. 1.3 yields 

the model’s approximation to the backscatter intensity distribution, a Type-II Pareto 

(Lomax) probability function: 

1
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The hyper-parameters, α and β, of this compound model can be determined by applying 

established maximum likelihood estimators (MLE) to intensity histograms from the image 

sequence.  

A statistical CEUS wash-in curve is constructed by analyzing the change in 𝑤(𝜃) during 

either a bolus infusion or destruction-replenishment. Wash-in time series were constructed 

to characterize the kinematics of contrast enhancement, and the local density random walk 

model (LDRW) was selected for fitting to the bolus wash-in curves [28]. In this kinematic 

analysis, the weighting function is a PDF to describe the expected value of the exponential 

speckle distribution. Areas of overlap with the baseline weighting function indicate 

unenhanced speckle populations. By subtracting the overlapping area from one, we obtain 

the weighting function discrepancy, which was plotted against time to estimate the total 

tracer mass in Fig. 1.1.  

The model's final step is to make explicit the time-dependence of the hyper-parameters and 

the weighting function. Each frame in a CEUS cine loop yields a separate estimate of the 

hyper-parameters, and interpreting the Lomax function as a compound PDF makes the 

model useful for analyzing heterogeneous vascular networks. Quantitative perfusion 

metrics were calculated from the fitting parameters of the LDRW model to the wash-in 

curves. The area under the curve (AUC) of LDRW fit to the time series of the weighting 

function discrepancy curve, was correlated with micro-vascular density (MVD), which is 

a key measure of angiogenesis. This perfusion parameter is of particular interest for this 

study design as successful anti-angiogenic therapy would manifest predictably as a 

decrease in MVD in the mouse tumor model. 
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Figure 1.2: Representative CEUS tumor images (anatomical transverse plane, 14 days 

post inoculation) taken at (a) baseline (unenhanced) and at (b) peak bolus 

enhancement, with (c) corresponding Pareto fits to intensity ROI histograms, and (d) 

weighting functions. The change in area of overlap (yellow region) over time in (d) 

was used to construct wash-in curves as demonstrated in (e) [28] 

Assuming that the Micro bubble (MB) concentration is high, the spatial pattern of the MBs 

becomes the same as the spatial pattern of the vessel and therefore this model  assumes that 

the statistics of CEUS images can be analyzed using the same models as speckle formation 

in B-mode images. The backscatter intensity of microbubble populations is expressed using 

a weighted mixture distribution of speckle sub-regions. Parker et. al. [29], derive several 

probability distributions to describe the first-order statistics of speckle from soft 

vascularized tissues and observed that the Lomax distribution, also known as Pareto Type 

II distribution, describes the expected histogram distribution of echo intensities from a 

fractal branching set of Born cylinders. Thus, if the vascularized tissue can be described by 
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Lomax distribution, then the distribution for MB is Lomax as well. The weighting function 

of the compound distribution is assumed to belong to the gamma family of distributions, 

and the hyper-parameters can be determined by applying maximum likelihood estimators 

to intensity samples from the image. The model is useful for providing an alternative metric 

for assessing vascular network complexity in CEUS images.  

 

Figure 1.3: Perfusion Parameters Based on the Destruction-replenishment Time 

Intensity Curve [30] 

1.2.2.3 Wash-in Curve Perfusion Parameters 

The wash-in curve (WIC) perfusion parameters, defined in Fig. 1.2, which include peak 

enhancement (PE), time to peak (TTP), area under the curve (AUC), and mean transit time 

(MTT), are widely used in CEUS imaging to assess tissue perfusion and diagnose various 

pathologies. PE is the maximum enhancement reached during the first pass of the contrast 

agent through the tissue. It reflects the microvascular density and blood flow velocity of 

the tissue. TTP is the time from contrast agent injection to the maximum enhancement. It 

reflects the tissue's blood flow velocity and the timing of the contrast agent's arrival at the 

tissue. AUC is the total amount of contrast agent that passes through the tissue over time. 

It reflects the microvascular density, blood flow velocity, and blood volume of the tissue. 

MTT is the average time for the contrast agent to pass through the tissue. It reflects the 

blood flow velocity and the tissue's microvascular density. 
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Despite the promising results of WIC perfusion parameters in CEUS imaging, there are 

some challenges that need to be addressed. One of the challenges is the inter- and intra-

observer variability in the measurements of the WIC perfusion parameters. Another 

challenge is the lack of standardization of the contrast agent dose and injection protocol, 

which may affect the WIC perfusion parameters. In addition, the correlation between WIC 

perfusion parameters and histopathological features is not well established, which limits 

their diagnostic value in some cases. 

1.2.3 Utility of Quantitative Ultrasound Imaging in Cancer Research 

Quantitative analysis of ultrasound microvascular imaging has emerged as a valuable tool 

in cancer research due to its ability to provide information on tumor vascularity and 

perfusion. By analyzing ultrasound images of the tumor microvasculature, researchers can 

extract information on blood flow, vessel density, vessel size, and other parameters that 

can help them understand the biology of cancer and evaluate the efficacy of anti-cancer 

therapies. It can provide valuable information on the microvascular architecture and 

function. Several microvascular parameters have been identified and studied, including 

vessel density, vessel diameter, and blood flow velocity. Quantitative analysis of 

ultrasound microvascular imaging has shown promise in different cancer applications.  

One of the key applications of quantitative analysis of ultrasound microvascular imaging 

in cancer research is in the assessment of tumor response to therapy. By monitoring 

changes in tumor vascularity and perfusion following treatment, researchers can evaluate 

the effectiveness of anti-cancer therapies and identify patients who may benefit from 

alternative treatment strategies [31].  Additionally, by analyzing changes in the 

microvasculature over time, researchers can identify tumors that are more likely to progress 

and intervene before they become untreatable thus technique can be used to differentiate 

malignant tumors from benign ones [32] to monitor tumor progression [33]. 

Morphology analysis of the vessel network is another important aspect of microvascular 

imaging and can provide information on the complexity and organization of the 

microvascular network. Several morphological features of the vessel network have been 

studied, including vessel tortuosity, branching, and fractal dimension [14].  
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Overall, the application of quantitative and morphology analysis of ultrasound 

microvascular imaging in cancer research has the potential to improve patient outcomes by 

enabling more accurate diagnosis, better monitoring of treatment response, and early 

detection of recurrence. 

1.2.3.1 Utility of Quantitative Analysis of Ultrasound Imaging in Cancer 

Detection  

Studies have shown that quantitative analysis of power Doppler and CEUS imaging can 

improve the accuracy of cancer detection and characterization, particularly in difficult-to-

image lesions. A study by [34] investigated the diagnostic performance of quantitative 

analysis of CEUS in differentiating benign and malignant breast lesions. The study found 

that perfusion parameters, such as time to peak and wash-in time, were significantly 

different between benign and malignant lesions. Furthermore, the combination of perfusion 

parameters with conventional B-mode ultrasound imaging improved the sensitivity and 

specificity of breast cancer detection. Similarly, another study [35], the author evaluated 

the diagnostic value of quantitative analysis of power Doppler ultrasound in differentiating 

benign and malignant thyroid nodules. The study found that peak intensity and time to peak 

were significantly different between benign and malignant nodules, and the combination 

of perfusion parameters with B-mode ultrasound imaging improved the diagnostic 

accuracy of thyroid cancer. 

1.2.3.2 Utility of Quantitative Analysis of Ultrasound Imaging in Cancer 

Treatment Response Evaluation 

In addition to cancer detection, quantitative analysis of perfusion parameters from power 

Doppler and CEUS imaging can also provide information on tumor response to treatment. 

A study by Faccia et al. [36] investigated the use of CEUS imaging in monitoring the 

response of hepatocellular carcinoma to treatment. The study found that changes in 

perfusion parameters, such as time to peak and wash-out time, were correlated with tumor 

response to treatment, and could be used to predict treatment outcome. For example, [12] 

found that quantitative parameters derived from UMI images provided significantly 

improved evaluation of anti-angiogenic therapy response compared to conventional power 

Doppler imaging. These findings suggest that quantitative analysis of perfusion parameters 

https://www.nature.com/articles/s41598-019-41373-0
https://www.nature.com/articles/s41598-019-41373-0
https://www.nature.com/articles/s41598-019-41373-0
https://www.nature.com/articles/s41598-019-41373-0
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from power Doppler and CEUS imaging has potential as a valuable tool for cancer 

detection and monitoring of treatment response. 

The clutter filtering methods based on SVD are more adept at detecting smaller vessels and 

improving the measurement of vascular morphology parameters. On the other hand, the 

statistical CEUS method, which describes the change in the histogram of image intensity 

during microbubble wash-in, showed that it could improve the reliability of CEUS for 

quantifying anti-angiogenic treatment response in tumors. However, it is not clear whether 

these parameters are superior to those obtained from conventional analysis of PD and 

CEUS. As part of this thesis, the effectiveness of each perfusion parameter was evaluated 

separately, as well as in conjunction with parameters from traditional PD and CEUS 

analysis. This analysis contributed to identifying the optimal combination of features for 

accurately classifying the application of anti-angiogenic treatment in tumors. 

1.3 Preclinical Models Employed in This Thesis 

1.3.1 Chick CAM Tumor Model 

Preclinical models that resemble human tumors play an essential role in cancer research 

[37]. Tumor models are critical tools in cancer research for understanding tumor 

development and response to therapies. CAM tumor model is a promising alternative to 

traditional in vivo animal models due to its low cost, rapid growth, and the ease of handling.  

The CAM is highly vascularized and contains many growth factors and cytokines, making 

it an ideal site for tumor cell implantation [38]. The CAM tumor model is a well-established 

and widely used in vivo model for studying tumor growth, angiogenesis, and metastasis. It 

is based on the observation that tumors implanted on the CAM can grow and produce the 

required microenvironment for tumor cell growth and invasion. The chick embryo is a 

convenient and cost-effective alternative to traditional mouse models that has been widely 

used in preclinical research for studying tumor biology and angiogenesis [39, 40], 

metastasis [41], and drug testing [42].  
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Figure 1.4:  Progression of chick embryo development in weigh boat ex-ovo culture 

vessel used in this study. A shows the CAM vascular development on the 4th day of 

embryonic development (EDD 4), B and C are captured on EDD 10 and EDD 16 

where C shows the tumor engrafted on the CAM shown by cyan arrow. 

Chick CAM is easy to handle and enables direct visualization of tumor growth and 

angiogenesis. The CAM model can be used for both solid and liquid tumors. In this model, 

tumor cells are implanted onto the CAM of a chick embryo, which is then incubated for 

several days. The tumor cells grow and develop on the CAM, and researchers can monitor 

tumor growth, metastasis, and angiogenesis through non-invasive imaging techniques such 

as ultrasound. Both in-ovo and ex-ovo CAM models have been used to study tumor biology 

and angiogenesis. In-ovo models involve growing the tumor on the CAM within the egg, 

while ex ovo models involve growing the CAM outside the egg.  

In-ovo models [43] provide a natural environment for the tumor to grow, allowing for the 

evaluation of the effects of the tumor on the surrounding tissue, as well as the effects of the 

surrounding tissue on the tumor. These models also allow for non-invasive imaging 

techniques, such as ultrasound, to monitor tumor growth and angiogenesis in real-time. 

However, they require specialized skills and equipment, and are limited by the size and 

number of eggs that can be used, which can impact experimental throughput. 

Ex ovo models [44], shown in Fig, 1.3, which is used throughout this thesis, on the other 

hand, offer several advantages over in ovo models. They are easier to set up and do not 

require specialized equipment or skills. They also allow for larger numbers of tumors to be 

grown and monitored simultaneously, which can increase experimental throughput. Ex ovo 

   A B C 
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models also allow for easier access to the tumors for experimental manipulations, such as 

drug treatments or genetic modifications. However, they may not fully recapitulate the in 

vivo tumor microenvironment, as the tumor is not in direct contact with the chick embryo. 

Choosing between the two approaches depends on the specific research question and 

resources available, including expertise, equipment, and experimental throughput needs. 

One of the key advantages of the CAM model is its ability to directly visualize the tumor 

and the surrounding vasculature. This is particularly relevant in studies that aim to evaluate 

angiogenesis and the effects of anti-angiogenic therapies. It allows for the visualization of 

tumor growth and vascularization in real-time, non-invasively, and with high spatial 

resolution. This can provide insights into the behavior of cancer cells and their interaction 

with the surrounding microenvironment. Furthermore, the chick CAM model can be used 

to study both primary and metastatic tumors, making it a useful tool for investigating the 

progression and spread of cancer.  

Despite these advantages, the CAM model also has some limitations and challenges. One 

of the main challenges is the lack of an immune system in the chick embryo, which limits 

its ability to recapitulate the tumor microenvironment and immune response. In addition, 

the CAM model lacks the three-dimensional complexity of tumors and the surrounding 

tissue architecture, which may limit its translatability to human tumors. Additionally, the 

chick embryo is only able to tolerate tumor implants for a limited amount of time, which 

can restrict the duration of experiments. Also, if the chick can't hatch on time or they die 

during the experiment, it can negatively impact the experiment throughput. 

Nonetheless, recent studies have shown that the CAM model can be a valuable tool for 

studying tumor biology and screening potential anti-cancer therapies. The CAM model has 

been successfully used in a variety of tumor types, including kidney cancer, and has shown 

promise in identifying novel anti-cancer compounds. While the CAM model has some 

limitations and challenges, it remains a valuable tool for cancer research. 

Ultrasound imaging has several benefits for monitoring a chick CAM tumor model [45]. 

The non-invasive and real-time imaging capabilities of ultrasound make it an attractive tool 

for longitudinal studies, as multiple imaging sessions can be performed on the same animal 
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over time. Additionally, ultrasound can provide high spatial resolution and can be used to 

visualize the tumor and its surrounding vasculature in great detail. This can be especially 

useful for assessing the efficacy of anti-angiogenic therapies, as changes in the tumor 

vasculature can be observed and quantified. Overall, ultrasound imaging is a powerful tool 

for monitoring the development and treatment of chick CAM tumor models. 

1.3.2 Mouse Hindlimb Perfusion Model  

Peripheral arterial disease (PAD) is a common condition characterized by the narrowing or 

blockage of arteries that supply blood to the limbs. Mouse models have been widely used 

to study PAD due to their genetic similarity to humans and the ability to manipulate their 

genetic makeup. Mouse hindlimb ischemia model is commonly used for PAD, where the 

femoral artery is surgically ligated to induce ischemia in the hindlimb. Several mouse 

models have been used to study PAD, including the femoral artery ligation model [46]. In 

the hindlimb ischemia model, the femoral artery is surgically removed, resulting in 

decreased blood flow to the limb. The femoral artery ligation model involves the occlusion 

of the femoral artery, resulting in ischemia and tissue damage. These models have been 

used to study the mechanisms underlying PAD, including inflammation, oxidative stress, 

and angiogenesis. 

Angiogenesis, the growth of new blood vessels, is a key process in the development of 

collateral circulation in response to ischemia. In addition to investigating underlying 

mechanisms, the hindlimb ischemia model has also been used to test potential therapeutic 

interventions for PAD. Several studies [47] have investigated the use of pro-angiogenic 

therapies to treat PAD, including the administration of growth factors and gene therapy.  

While mouse models have been invaluable in studying the mechanisms underlying the 

development of PAD, there are several challenges associated with these models. One of 

the main challenges is the limited size of the mouse vasculature, which can make it difficult 

to accurately measure blood flow and assess the efficacy of therapeutic interventions. 

Another challenge is the high metabolic rate of mice, which can lead to rapid clearance of 

therapeutic compounds and limit their efficacy. In addition, the hindlimb ischemia model 
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relies on a surgical procedure to induce ischemia, which can introduce variability between 

animals and can also cause tissue damage that can confound results. 

1.4 Application of Machine Learning in Ultrasound 

Machine learning has become a popular tool in medical imaging, particularly in ultrasound 

imaging [51]. The application of machine learning in ultrasound imaging has shown 

promise in improving accuracy, efficiency, and diagnosis of various medical conditions, 

including cancer. Here is an overview of the application of machine learning in ultrasound 

imaging for medical and cancer applications [48-51], 

1.4.1 ML in Ultrasound Image Acquisition and Reconstruction 

Machine learning (ML) has shown great potential in improving the medical imaging 

workflow, from image acquisition and reconstruction and processing [52].  ML algorithms 

are widely used to enhance the quality of ultrasound images by reducing image noise and 

artifacts. ML has also been used to segment anatomical structures in ultrasound images, 

such as the liver, kidney, and heart, which can aid in the diagnosis of various diseases. 

Moreover, ML techniques have been used to optimize ultrasound image acquisition by 

automating the process of adjusting image acquisition parameters, such as gain, depth, and 

focal length, to obtain high-quality images [53] and also to improve the performance of 

beamforming [54]. In addition, ML techniques have been used to quantify ultrasound 

images by automatically measuring anatomical structures and identifying abnormalities.  

1.4.1.1 ML in Ultrasound Image Segmentation 

One of the major applications of ML in ultrasound imaging is image segmentation. 

Segmentation is an essential step in many clinical applications such as identifying tumors, 

tracking the growth of a fetus, and quantifying tissue characteristics. ML algorithms such 

as convolutional neural networks (CNNs) have been applied to segment ultrasound images 

with high accuracy and efficiency [55]. For instance, Badawy et al. [56] proposed a two-

step approach that combines fuzzy logic and deep learning for automatic semantic 

segmentation of tumors in breast ultrasound images and showed it could enhance automatic 

semantic segmentation. Girum et al., [57], designed a high-performance deep learning 

model, combined from convolutional neural network (U-Net)-based architectures, for 

https://arxiv.org/abs/2209.10298
https://arxiv.org/abs/2209.10298
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segmentation of the transrectal ultrasound image. Moreover, Gulame, et al. [58], studied 

different thyroid nodule segmentation methods in clinical ultrasound images and showed 

that deep learning approaches give better performance but require more labeled data.  

1.4.1.2 ML in Ultrasound Image Quality Optimization and 

Quantification 

ML algorithms have also been used to optimize ultrasound image acquisition parameters 

or improve image quality [59]. Ultrasound images are affected by various factors such as 

noise, artifacts, and motion, which can degrade image quality and affect diagnostic 

accuracy. A survey on deep learning in medical image reconstruction [60] found that deep 

learning-based reconstruction methods improve the quality of reconstructed images 

qualitatively and quantitatively. However, deep learning techniques are generally 

computationally expensive, require large amounts of training datasets, lack decent theory 

to explain why the algorithms work, and have issues of robustness. 

1.4.2 ML in Ultrasound Image Interpretation 

Machine learning algorithms, particularly deep learning methods, have shown promise in 

automating and improving the accuracy of ultrasound image interpretation in cancer 

diagnosis in breast cancer [61], prostate cancer [62], and thyroid nodules [63]. By 

leveraging large datasets of ultrasound images, machine learning models can learn to 

identify patterns and features that are indicative of cancerous tissues, enabling more 

accurate and efficient diagnosis and treatment planning. Despite the promising results of 

these studies, there are still several challenges to be addressed in the application of machine 

learning to ultrasound imaging in cancer research.  

One of the challenges is the lack of standardized protocols for ultrasound image acquisition 

and annotation, which can affect the quality and consistency of the datasets used for 

training and testing machine learning models. Moreover, the interpretability and 

transparency of machine learning models in medical imaging remain a concern, as these 

models often work as "black boxes" that are difficult to understand and interpret by 

clinicians. These issues need to be addressed in order to ensure the ethical and responsible 

use of machine learning in medical imaging and cancer research. 

https://www.sciencedirect.com/science/article/pii/S2667102621000061
https://www.sciencedirect.com/science/article/pii/S2667102621000061
https://www.sciencedirect.com/science/article/pii/S2667102621000061


24 

1.4.2.1 ML in Cancer Detection Using Ultrasound Imaging 

In medical diagnostics, ML techniques have played a fundamental role in improving the 

reliability of diagnosis by reducing operator-dependence, standardizing image 

interpretation, providing stable results, enabling rapid decision-making, and relieving the 

heavy workload of radiologists. ML algorithms can be used to detect and classify tumors 

in ultrasound images. These algorithms use various features such as texture, shape, and 

intensity to differentiate between normal and abnormal tissues. Automated detection and 

classification of tumors can provide faster and more accurate diagnoses and reduce the risk 

of false-positive or false-negative results. 

1.4.2.2 ML in Cancer Treatment Evaluation Using Ultrasound Imaging 

One of the most common applications of machine learning in cancer treatment evaluation 

using ultrasound imaging is the classification of tumor response to treatment. Machine 

learning algorithms can analyze changes in tumor size, texture, and vascularization on 

ultrasound images before and after treatment, and classify tumors as responding or non-

responding to the treatment. Several studies have reported high accuracy in tumor response 

classification using machine learning algorithms such as random forests, support vector 

machines, and convolutional neural networks. 

Another application of machine learning in cancer treatment evaluation using ultrasound 

imaging is the assessment of tumor response. By analyzing ultrasound images before and 

after treatment, machine learning algorithms can predict the probability of tumor 

recurrence, metastasis, or progression. Studies have reported promising results in the 

prediction of treatment outcomes using machine learning algorithms such as deep learning 

models. 

Despite the promising results, there are still several challenges in the application of 

machine learning to ultrasound imaging for cancer treatment evaluation. One of the main 

challenges is the lack of standardization in ultrasound imaging protocols and parameters. 

This makes it difficult to compare results from different studies and develop generalizable 

machine learning models. Although using simulated images has been proposed [63] to 

addressed the limited availability of annotated ultrasound images for training machine 
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learning models, it remains a challenges in the field.  This limits the development of large-

scale and accurate machine learning models [64]. 

1.5 Hypotheses and objectives 

The overall hypothesis of this thesis is that microvascular parameters from SVD-based 

clutter-filtered power Doppler and statistical analysis provides additional information 

about tumor angiogenesis than conventional PD and CEUS analysis. To test this 

hypothesis,  initially, we proposed a new SVD-based clutter filtering for contrast-free 

ultrasound imaging was proposed to enhance microvascular detection.  We then proposed 

a pre-clinical tumor treatment response classification model which utilized quantitative 

perfusion features from proposed SVD-filtered reconstructed PD images, as well as those 

from statistical analysis and conventional analysis of CEUS and conventional analysis of 

PD. We evaluated the effectiveness of these features in terms of improved classification 

accuracy, precision, and recall. Therefore, this thesis has been divided into the following 

four specific technical objectives: 

1. Develop and evaluate, by comparison with truncated SVD clutter filtering, an 

optimal shrinkage SVD-based clutter filter to improve microvascular detection and 

quantification of contrast-free microvascular ultrasound images. 

2. Present a scalable pre-clinical ex-ovo chick CAM tumor model based on PD and 

CEUS microvascular and perfusion parameters to evaluate the tumor treatment 

response to anti-angiogenic therapy and determine the best approach to combine 

ultrasound-based microvascular features. 

3. Assess the effectiveness of morphological and perfusion parameters from optimal 

shrinkage SVD filtered PD images and statistical analysis of CEUS to discriminate 

tumor treatment response to antiangiogenic therapies. 

4. Evaluate the generalization of the developed model and evaluate the performance 

of the model in evaluating unseen tumors with unknown sensitivity to 

antiangiogenic therapy. 
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1.6 Thesis outline 

The combination of microvascular ultrasound, machine learning, and CAM tumor models 

provided a unique opportunity to address the research question of identifying essential 

parameters for classifying antiangiogenic treatment sensitivity in a tumor model. The focus 

of this research project was to identify the optimal combination of power Doppler, contrast-

free microvascular, and CEUS features required to classify the antiangiogenic treatment 

sensitivity of a tumor model using classical machine learning methods.  

The incorporation of contrast-free microvascular imaging led to the recognition of an 

opportunity to enhance these images by addressing the overlap between clutter and blood-

signal components in the eigen spectrum, which was solved using the optimum shrinkage 

SVD clutter filter introduced in Chapter 2. The effectiveness of this filter was tested in both 

a preclinical tumor model and mouse hindlimb perfusion, demonstrating its broad potential.  

In establishing the experimental protocol for the cancer anti-angiogenesis application, the 

importance of including both the optimum shrinkage contrast-free images and statistical 

CEUS parameters was demonstrated. Chapter 3 established the essential steps in the 

experimental protocol for the metastatic renal cell carcinoma (mRCC) 

 anti-angiogenesis application by demonstrating the protocol in a simplified scenario 

comparing a highly sensitive tumor cell line to untreated tumors. The results motivated the 

inclusion of both the optimum shrinkage contrast-free images and statistical CEUS 

parameters in subsequent studies.  

Finally, Chapter 4 demonstrated that the multiparametric ultrasound approach was used to 

discriminate between treatment-sensitive and treatment-resistant tumor cell lines, and the 

machine learning model was shown to be generalizable to accurately classify the sensitivity 

of a third cell line that was not used to train the model. Taken together, these findings 

highlight the potential of microvascular ultrasound, use of CAM tumor model and machine 

learning to provide an effective and comprehensive ultrasound-based approach to 

evaluating the efficacy of antiangiogenic treatments in cancer and other diseases. 
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1.6.1 Chapter 2 

Chapter 2 presents a clutter filtering method called optimal shrinkage SVD-based clutter 

filtering, to enhance the microvascular quantification in power Doppler ultrasound. This 

clutter filtering method was applied on both images of tumors engrafted on the CAM of 

chick embryo and the images of mice hindlimb where the mice underwent unilateral 

femoral artery and vein ligation and excision. Optimal shrinkage SVD-based clutter filtered 

images yields a higher-fidelity reconstruction of the microvascular network and also 

demonstrated Improvements in image quality. The proposed method enables the use of 

contrast-free microvascular imaging in applications where the detection and quantification 

of microvessels are essential in diagnosis and treatments.  

1.6.2 Chapter 3 

Chapter 2 presents a scalable preclinical platform to compare methods for classifying anti-

angiogenic treatment response using ultrasound-based multiparametric microvascular 

imaging. The model pipeline consists of human mRCC cell lines engrafted on the CAM of 

ex-ovo chick embryo, imaged with PD and CEUS ultrasound and the microvascular 

parameters from conventional analysis for both PD and CEUS, the statistical analysis and 

microvascular parameters from optimal shrinkage SVD-based clutter filtered PD were 

used. The utility of the newly developed analysis were evaluated and the results showed 

the combination of perfusion and microvascular quantification parameters from statistical 

and conventional analysis can improve the accuracy, precision and sensitivity of the 

classification of treated sensitive cell line with Sunitinib antiangiogenic therapy (i.e., Caki-

1) and control group. 

1.6.3 Chapter 4 

Chapter 4 tested the ultrasound-based multiparametric microvascular classification model 

performance first with two different mRCC tumor cells with two different sensitivity levels 

(i.e., resistant and sensitive tumors to antiangiogenic therapy). Moreover, the model using 

the  combination of all perfusion parameters from both conventional and statistical analysis 

of CEUS as well as conventional and SVD-based optimal shrinkage clutter filtered PD 

images was compared to the model using only selected features. The cross-validation 
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results were promising with high classification capabilities using selected perfusion 

parameters in classifying sensitive from resistant tumors. The model performance analysis 

was then extended to testing it on an independent mRCC tumor cell (i.e., 786-O). The 

results indicated high accuracy. It also demonstrated the potential of microvascular 

ultrasound as a non-invasive and promising tool for determining the sensitivity of new 

preclinical tumor models to anti-angiogenic treatment.  

1.6.4 Chapter 5 

Chapter 5 summarizes the thesis as well as a discussion of the potential future directions 

for this research, including technical improvements and the next steps for preclinical 

validation.  
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Chapter 2 

 

2 Contrast-Free Ultrasound Microvascular 

Imaging with Optimal Shrinkage Clutter 

Filtering to Enhance Vascular Quantification 

 

 

The contents of this chapter have been adapted from  

"Contrast-Free Ultrasound Microvascular Imaging With Optimal Clutter Shrinkage to 

Enhance Tumor Vascular Quantification", published in IEEE International Ultrasonics 

Symposium (IUS), 2020, Las Vegas, NV, USA, pp. 1-4, by M. Bataghva, D. Johnston, N. 

Power, S. Penuela and J. C. Lacefield* 

&  

"Optimal Shrinkage Clutter Filtering to Enhance Vascular Quantification of Contrast-

Free Ultrasound Microvascular Imaging" under preparation for IEEE Transactions on 

Medical Imaging by M. Bataghva, F. Serack, C. Leclerc, D. Johnston, D. Hess, L. Flynn, 

N. Power, S. Penuela and J. C. Lacefield 
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2.1 Introduction 

Ultrasonic power Doppler imaging is widely used to visualize small, slow-flow blood 

vessels without injected contrast media in applications such as imaging of tumor 

angiogenesis or musculoskeletal perfusion. However, the sensitivity of power Doppler for 

microvascular detection and quantification is limited by the overlap of the blood and tissue 

signal components in the Doppler spectrum. In the last decade, the performance of contrast-

free ultrasound for microvessel detection was significantly improved by the introduction 

of eigen-based clutter filtering, with SVD being the most commonly employed eigen 

filtering method. Singular value decomposition separates the echo signal into a set of 

orthogonal singular vectors, where the low-rank, high singular value components contain 

primarily the tissue signal and the higher-rank, lower singular value components contain 

primarily the blood signal and electronic noise [1]. An SVD clutter filter selects a threshold 

rank and attenuates the singular vectors with rank below the threshold to suppress tissue 

clutter. Singular vectors with rank above a second, higher threshold may also be attenuated 

to suppress noise. A microvascular image is then reconstructed from the intermediate-rank 

singular vectors that are retained. 

Various approaches to determining the rank threshold have been described in the context 

of SVD clutter filtering. Some methods use a predetermined threshold based on the 

expected ratio of blood to clutter signal power [2], while other methods use an adaptive 

threshold computed from the slope of the singular value curve [3]. A common feature of 

these methods is that they employ a truncated SVD filter, i.e., the singular values at ranks 

below the blood-clutter rank threshold are set to zero and the singular values above the 

threshold are left unaltered. However, many investigators have speculated that the blood 

and tissue signal components overlap in the eigen spectrum in a manner analogous to their 

overlap in Doppler frequency; see, e.g., [4, Fig. 5]. Empirical evidence for this hypothesis 

was provided by Waraich et al. [5], who used k-means clustering to label each singular 

vector as arising from blood, clutter, or noise and concluded that blood and clutter singular 

vectors may interleave at intermediate ranks. However, like the truncated SVD methods, 

[5] treated each singular vector as representing only one of the three signal components. 
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In this Study, we instead smoothly taper the singular values over the ranks where the blood 

and clutter signal components are assumed to overlap via a process known as singular value 

shrinkage. We demonstrate that singular value shrinkage retains contributions from more 

singular vectors in the filtered image, while reducing the weighting of singular vectors at 

ranks above the rank threshold in a typical truncated SVD clutter filter and yields a higher-

fidelity reconstruction of the microvascular network. To implement this approach, we 

adopt an optimal singular value shrinkage function that was derived by Gavish and Donoho 

[6-7] for generic signal denoising and repurpose their method for clutter filtering of 

microvascular ultrasound image sequences. 

In the context of biomedical imaging, Gavish and Donoho’s formulation for optimal 

singular value shrinkage has been applied to denoise channel data in diffusion-weighted 

magnetic resonance imaging (DW-MRI) [8] and to denoise magnitude signals in functional 

MRI [9]. Other comparable adaptive methods for singular value shrinkage have also been 

evaluated for DW-MRI [10] and for speckle reduction in B-mode optical coherence 

tomography (OCT) [11-12]. In each of those MRI or OCT applications, the objective was 

to eliminate higher-rank singular vectors containing unresolvable features or noise to 

improve visualization of low-rank, resolvable structures. Our approach differs in that it 

reverses the singular value shrinkage process, i.e., we instead attenuate the lowest-rank 

singular vectors to enhance detection of the blood signal contained in the intermediate-rank 

singular vectors. 

We introduced our optimal shrinkage SVD clutter filter in a previous conference 

presentation [13]. We compared the microvessel detection performance of the optimal 

shrinkage clutter filter to a truncated SVD filter in images acquired from a preclinical tumor 

model implanted in the CAM of ex ovo chicken embryos. The performance measures 

assessed the depiction of microvascular structural features, i.e., the number of vessels, 

number of branching points, and mean vessel length, that were estimated by skeletonization 

of filtered microvascular images. The current paper substantially extends the preliminary 

results in [13].  



37 

Section II presents a more complete description of Gavish and Donoho’s optimal shrinkage 

function and its applicability to microvascular ultrasound. In the experimental portion of 

the paper (Sect. III-IV), we supplement the CAM tumor model with images of hindlimb 

muscle perfusion in a mouse model of peripheral arterial disease. The hindlimb provides a 

more challenging microvessel detection task than a CAM tumor model due to the effect of 

the intervening tissue layers on tissue clutter and signal attenuation in the hindlimb. We 

also complement the microvascular structural features by reporting image quality metrics; 

specifically, the intravascular signal-to-noise ratio (SNR) and the contrast-to-noise ratio 

(CNR) of the vessel network are compared for both applications. 

2.2 Theory of Optimal Shrinkage 

2.2.1 Principals of Optimal Shrinkage 

Gavish and Donoho [6,7] considered the signal denoising task of estimating a low-rank 

signal, X, from an m  n matrix of data Y = X + Z, where the elements of Z are independent, 

identically distributed noise samples with zero mean and unit variance and  is the noise 

scaling. A truncated SVD estimate of X may be expressed as: 

�̂�𝑟 = ∑ 𝑦𝑖𝒗𝑖�̃�𝑖
′𝑟

𝑖=1 ,  (2.1) 

where 𝒗𝑖 and �̃�𝑖
′ are the left and right singular vectors of Y with corresponding singular 

values 𝑦𝑖 and 𝑟 < 𝑚 ≤ 𝑛 is the rank threshold. The value of r may be specified directly, 

or it may be determined by first specifying a singular value threshold, yth, in which case r 

is the highest rank for which yi  yth. In comparison, a singular value shrinkage estimate of 

X may be expressed as: 

�̂�𝜂 = ∑ 𝜂(𝑦𝑖)𝒗𝑖�̃�𝑖
′𝑚

𝑖=1 ,  (2.2) 

where 𝜂(𝑦𝑖) is a shrinkage function defined such that 0 ≤ 𝜂(𝑦𝑖) ≤ 𝑦𝑖. The truncated SVD 

method can be considered a special case of singular value shrinkage with 𝜂(𝑦𝑖) = 𝑦𝑖 for i 

 r (or, equivalently, for yi  yth) and 𝜂(𝑦𝑖) = 0 otherwise. 
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Gavish and Donoho derived three forms of an optimal shrinkage function, 𝜂𝑜𝑝𝑡(𝑦𝑖), that 

minimize different loss functions. Our method applies the optimal shrinkage function that 

minimizes Frobenius norm loss, 

𝐿𝑚,𝑛
𝐹𝑟𝑜 (𝑋, �̂�) = ‖𝑋 − �̂�‖

2
= ∑ ∑ |𝑋𝑖,𝑗 − �̂�𝑖,𝑗|

2𝑛
𝑗=1

𝑚
𝑖=1 .  (2.3) 

We chose the Frobenius norm formulation for our proof-of-concept experiments because 

that loss function yields singular value shrinkage that is intermediate in aggressiveness 

compared to the other loss functions considered in [7], operator norm loss and nuclear norm 

loss [7, Fig. 1]. Our intention in choosing an intermediate level of shrinkage was to obtain 

filtered images that are meaningfully different from the microvascular images produced 

using truncated SVD methods while still maintaining consistent visualization of larger 

vessels to permit truncated SVD filtering to be used as a performance benchmark for the 

optimal shrinkage method. 

The optimal shrinkage function under Frobenius norm loss for the signal denoising task 

with an assumption of “natural” noise scaling, i.e., 𝜎 = 𝜎𝑛𝑎𝑡 = 1 √𝑛⁄ , is given by [7, (7)]: 

𝜂𝑜𝑝𝑡(𝑦𝑖) = {

1

𝑦𝑖
√(𝑦𝑖

2 − 𝛽 − 1)2 − 4𝛽     𝑦𝑖 ≥ 1 + √𝛽

0                                               𝑦𝑖 < 1 + √𝛽

,  (2.4) 

where 𝛽 = 𝑚 𝑛⁄  is the aspect ratio of the data matrix. Equation  (2.4) is an asymptotic 

result for the limit n →  with   held constant that was shown numerically in [7] to yield 

accurate results for practically sized data matrices of m = 50 or 100 samples. Observe in 

(4) that the singular value threshold is 1 + √𝛽. This result arises because, under the 

assumptions stated thus far, the histogram of singular values possesses a “bulk edge” near 

𝑦𝑖 = 1 + √𝛽 such that there are only a few, widely separated singular values greater than 

1 + √𝛽 and the slope of the singular value curve changes dramatically as it crosses this 

threshold (see, e.g., the numerical example in [7, Fig. 3]). Gavish and Donoho’s analysis 

therefore yields a singular value threshold that is comparable to the adaptive thresholds 

computed from the slope of the singular value curve in truncated SVD methods for 
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microvascular ultrasound, such as [1]. If the noise level, either assumed a priori or 

estimated from the data, is denoted by �̂� and differs from nat, the optimal shrinkage 

method involves first scaling the data matrix by 𝜎𝑛𝑎𝑡 �̂�⁄ , computing 𝜂𝑜𝑝𝑡(𝑦) by applying 

(2.4) to the scaled singular values, and then rescaling the shrinkage function by multiplying 

it by �̂� 𝜎𝑛𝑎𝑡⁄  before substituting it into Eq. (2.2). The scaling and rescaling steps make the 

effective singular value threshold(�̂� 𝜎𝑛𝑎𝑡⁄ )(1 + √𝛽). 

Gavish and Donoho also outlined a method to estimate the noise scaling from the data 

matrix [7, (47)]: 

�̂� =
𝑚𝑒𝑑(𝑦)

√𝑛𝜇𝛽
= 𝜎𝑛𝑎𝑡

𝑚𝑒𝑑(𝑦)

√𝜇𝛽
,  (2.5) 

where 𝑚𝑒𝑑(𝑦) is the median singular value of Y and 𝜇𝛽 is the median of the Marchenko-

Pastur distribution, which is the theoretical probability density function of singular values 

for the covariance matrix of independent, identically distributed noise samples (see [14] 

for a more detailed review in a medical imaging context). The median singular value is a 

convenient reference for estimating the noise scaling because the assumption that X is low 

rank implies that 𝑚𝑒𝑑(𝑦) will correspond to a purely noise component of Y. The 

Marchenko-Pastur distribution is bounded within the range [𝜎2(1 − √𝛽)
2

, 𝜎2(1 + √𝛽)
2

], 

so this noise model is also the basis for the singular-value threshold applied in (4). 

2.2.2 Application to Contrast-free Microvascular Ultrasound 

In microvascular ultrasound, a Casorati data matrix, YCas, is constructed from a 

sequence of m beamformed radio-frequency images consisting of n pixels each, such that 

the m rows of YCas correspond to the time dimension and the n columns correspond to the 

spatial dimension. The data can be viewed as a superposition of a tissue clutter component, 

C, that possesses relatively high coherence with a lower-coherence blood signal 

component, B, and incoherent electronic noise, N: 

𝑌𝐶𝑎𝑠 = 𝐶 + 𝜎𝐵𝐵 + 𝜎𝑁𝑁 = 𝐶 + 𝜎𝐵 (𝐵 +
𝜎𝑁

𝜎𝐵
𝑁),  (2.6) 
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where B and N are the blood-to-clutter and noise-to-clutter ratios, respectively. 

Application of (2) and (4) to YCas will isolate the most coherent data component, thus 

yielding �̂�𝜂 ≈ 𝐶. Since an image of B is desired, our method subtracts �̂�𝜂 from YCas to 

estimate the term in parentheses on the right-hand side of (6), which we denote as �̂�𝜂.  

�̂�𝜂 ≈  𝐵 +
𝜎𝑁

𝜎𝐵
𝑁.   (2.7) 

This estimator, which is the foundation of our clutter filtering method, can be expressed 

using (2) and (4) as: 

�̂�𝜂 = 𝑌𝐶𝑎𝑠 − �̂�𝜂 = ∑ (𝑦𝑖 −
�̂�𝐵

𝜎𝑛𝑎𝑡
𝜂𝑜𝑝𝑡 (

𝜎𝑛𝑎𝑡

�̂�𝐵
𝑦𝑖)) 𝒗𝑖�̃�𝑖

′𝑚
𝑖=1 .  (2.8) 

The blood-to-clutter ratio cannot be expected to exhibit natural scaling, so (8) incorporates 

an estimate of the blood-signal scaling, �̂�𝐵, to rescale the shrinkage function as outlined in 

sub section 2.2.1. The experiments presented in this paper were performed using high-

frequency (40 MHz) ultrasound, for which blood exhibits a relatively high backscatter 

intensity [15], so, in the present studies, we assume 𝜎𝐵 ≫ 𝜎𝑁 and therefore �̂�𝜂 ≈ 𝐵. The 

assumption of a favorable blood-to-noise ratio is particularly appropriate for chick CAM 

tumor models [16] like the samples imaged in our first set of experiments. Alternatively, 

for applications where the blood-to-noise ratio is lower, an improved estimate of B can be 

obtained by applying either (2.1) or (2.2) to denoise �̂�𝜂, thereby isolating B as it is the more 

coherent component of �̂�𝜂. 

2.3 Methods and Materials 

2.3.1 Ex Ovo CAM Tumor Model  

Caki-1 kidney tumor cells (American Type Culture Collection, Manassas, VA) were 

engrafted onto ex-ovo chick CAMs following the protocol described in [17]. Briefly, 

fertilized chicken eggs (McKinley Hatchery, St. Mary’s, ON, Canada) were incubated in a 

rotating incubator for 3 days and chick embryos were transferred from their shells into 

laboratory weigh boats on the third day of embryonic development (EDD-3) and 

maintained at 37°C in a humid incubator for seven more days. On EDD-10, Caki-1 cells 
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were suspended in Matrigel at a concentration of 106 cells per 10 µL. An abrasion was 

made using sterile filter paper near a branching vessel of the chick CAM and 10 µL of the 

Matrigel/cell mixture was pipetted onto the abraded area. Embryos were immediately 

returned to the incubator after cancer cell engraftment. The images reported in this paper 

depict control tumors from a larger treatment-response study [18] in which dimethyl 

sulfoxide (DMSO) diluted to 1:1000 in phosphate-buffered saline was used as a vehicle 

control. Starting on EDD-12, tumors were treated daily with a topical application of 5 mL 

of the DMSO solution. Tumors were imaged in cross-sectional planes through their centers 

on EDD-18. Data was acquired from 22 tumors. 

2.3.2 Murine Peripheral Arterial Disease Model 

All hindlimb perfusion experiments were performed using 8- to 10-week-old 

NOD.CB17-Prkdcscid/J mice (stock # 001303, Jackson Laboratories, Bar Harbor, ME). To 

induce hindlimb ischemia, the mice underwent unilateral femoral artery and vein ligation 

and excision. Ultrasound imaging was performed 35 days after vessel ligation, by which 

time muscle perfusion is partially restored via angiogenesis induced by the injection of 

hematopoietic progenitor cells within human decellularized adipose tissue. During 

imaging, mice were anesthetized using isoflurane mixed with oxygen (4% 

isoflurane/oxygen, flow rate = 0.5–1.5 L/min) and placed in the supine position on a 37 °C 

heating pad (FujiFilm VisualSonics Inc, Toronto, ON). The hindlimb was scanned along a 

longitudinal cross section in a plane just lateral to the femur. Data was acquired from 8 

mice. All protocols followed in the murine experiments were approved by the Western 

University Animal Use Subcommittee. 

2.3.3 Contrast-Free Microvascular Imaging 

A Vevo 2100 ultrasound system (FujiFilm VisualSonics) equipped with digital radio-

frequency (RF) mode was used to acquire beamformed, quadrature demodulated (IQ) echo 

signals. Two-dimensional power Doppler and B-mode image sequences, m = 100 frames 

in duration, were acquired using focused-beam scanning with a 40 MHz linear array (MS-

550D, FujiFilm VisualSonics). The IQ data included both B-mode and power Doppler data 

(9 pulses per Doppler ensemble) in an interleaved manner, i.e., one frame of B-mode data 
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was acquired following each Doppler ensemble. The B-mode frame rate range was 

different for tumor images and hindlimb images. For hindlimb images, larger field of view 

(FOV) was required resulted in lower frame rate range of 13-18 Hertz (Hz) than for tumor 

application with smaller FOV slightly larger frame rate range of 24-30 Hz. 

SVD-based clutter filtering was applied offline to the B-mode IQ data using either the 

optimal shrinkage clutter filter or a truncated SVD clutter filter implemented in MATLAB 

(version R2019a, The MathWorks, Natick, MA). Casorati matrices were constructed for 

rectangular ROIs that were manually defined to enclose the tumor or hindlimb muscles. 

The ROIs were 172-223 by 98-124 pixels in the tumor images and 190-247 by 180-221 

pixels in the hindlimb images, so the aspect ratio, 𝛽, of the Casorati matrices was 0.0035-

0.0054 in the tumor images and 0.0020-0.0029 in the hindlimb images. Optimal shrinkage 

clutter filtering used (8) with the shrinkage function, 𝜂𝑜𝑝𝑡 (
𝜎𝑛𝑎𝑡

�̂�𝐵
𝑦𝑖), defined as in (4) and 

the blood-signal scaling, �̂�𝐵, estimated using (5) and a numerical evaluation of 𝜇𝛽 that is 

posted as a MATLAB code supplement to [19]. Truncated SVD clutter filtering was 

implemented as: 

�̂�𝑟 = ∑ 𝑦𝑖𝒗𝑖�̃�𝑖
′𝑚

𝑖=r+1 ,   (2.9) 

where the rank threshold, r, was identified as the rank at which the singular value curve 

begins to flatten: 

𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑦𝑖 − 𝑦𝑖+1 ≤ 𝛼).  (2.10) 

In (10),  is a predefined threshold based on an empirically estimated blood-to-clutter 

power ratio. The threshold is calculated based on the gradient of the singular value curve 

shown to identify a turning point from which the curve begins to flatten. The estimated 

threshold, 𝛼, is 8 ± 3 for tumor images and is 14 ± 4 for hindlimb images. After clutter 

filtering, contrast-free microvascular images were constructed by rearranging �̂�𝜂 or �̂�𝑟 into 

a sequence of 100 two-dimensional IQ images and summing the signal power of each pixel 

over all frames. Signal powers were displayed in the same format as a power Doppler image 

using a color heatmap with logarithmic scaling. 
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2.3.4 Morphological Analysis of Vessel Networks 

Vascular skeletonization was applied to the signal power images in a manner similar to 

[20] to obtain objective comparisons of the effectiveness of each SVD clutter filter for 

detection of fine details of vessel networks. A subset of the morphological filtering 

operations described in [20] were used to prepare the images for skeletonization. 

Specifically, we applied a top-hat low-pass spatial filter to smooth the power values 

followed by image binarization, morphological opening (i.e., erosion then dilation) to 

remove small or thin features that were not definitively vessels, and finally centerline 

extraction. Skeletonization was performed in ImageJ. 

Quantitative descriptors of the vascular morphology depicted in each vascular skeleton 

were computed by recursively traversing the skeleton. The morphological features 

measured were the number of vessels (NV), the number of vessel branching points (NB), 

and the mean vessel length (VL) in rectangular ROIs corresponding to the Casorati 

matrices. Paired NV, NB, and VL values obtained after processing the same IQ data using 

the optimal shrinkage and truncated SVD clutter filters were compared to evaluate the 

effect of optimal shrinkage clutter filtering on microvessel detection sensitivity. 

2.3.5 Image Quality Metric 

The SNR and CNR of paired microvascular images were also compared. The SNR, 

expressed in decibels, was computed as the ratio of the mean signal power in an 

intravascular ROI to the mean signal power in a background noise ROI. The CNR in dB 

was computed as:  

𝐶𝑁𝑅 =  
𝑃𝑊𝑣𝑒𝑠𝑠𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅−𝑃𝑊𝑡𝑖𝑠𝑠𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

𝑠𝑡𝑑(𝑃𝑊𝑡𝑖𝑠𝑠𝑢𝑒)
    (2.11) 

Where 𝑃𝑊𝑣𝑒𝑠𝑠𝑒𝑙
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean of Doppler signal in the vessel while 𝑃𝑊𝑡𝑖𝑠𝑠𝑢𝑒

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean of 

Doppler signal in the surrounding tissue. For both SNR and CNR, a rectangular ROI was 

manually defined surrounding visually prominent vessel structures. An intravascular ROI 

was then segmented in a manner similar to [3] by manually outlining connected segments 

of color pixels within the larger rectangular ROI. Pixels within the rectangular ROI but 

outside the intravascular contour were treated as clutter pixels. Background noise ROIs 
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were defined as separate rectangular regions that lacked visually apparent vessel structures. 

To avoid observer bias in selection of the noise ROI, three such regions were selected for 

each image and the mean of the SNR computed using each noise ROI was used as an image 

quality metric for that image. The relative performance of the optimal shrinkage and 

truncated SVD clutter filters was assessed by comparing the means of the single-image 

SNR and CNR estimates for the tumor and hindlimb images. 

2.4 Results 

2.4.1 Visual Comparison of SVD Clutter Filtered Images 

Figure 2.1 displays images of two representative tumors with distinct vascularization 

patterns. The figure includes conventional power Doppler images produced by the Vevo 

2100’s onboard software (panel A), microvascular images constructed using truncated 

SVD clutter filtering (panels B), microvascular images produced using optimal shrinkage 

SVD clutter filtering (panels C), and vessel network skeletons extracted from the optimal 

shrinkage images (panels D). The first tumor image (Fig. 2.1 A-1 to D-1) shows a 

branching network of intra-tumoral vessels radiating outward from a central, axially 

oriented feeding vessel; 12 tumors exhibited this architecture. The bottom row shows a 

dense mesh like network connected to laterally oriented feeding vessels within the CAM; 

the remaining 10 tumors had this phenotype. The power Doppler images show the B-mode 

background used to segment the tumor cross sections (cyan arrows) and provide 

confirmation of the larger vessels that are independent of our offline SVD processing. 
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Figure 2.1: Images of tumors engrafted on the CAM of chick embryo. A) 

Conventional power Doppler (infinite impulse response-filtered) image produced by 

the ultrasound system. B) Image of the same tumor after standard SVD clutter 

filtering. C) Image of the same tumor after optimal shrinkage SVD clutter filtering. 

D) Skeleton of the vascular network extracted from the optimal shrinkage SVD 

clutter filtered image. The cyan arrows show the tumor. 
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  Mouse Hindlimb Sample 1 Mouse Hindlimb Sample 2 
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Figure 2.2: Images of mice hindlimb. A) Conventional (infinite impulse response-

filtered) image produced by the ultrasound system. B) Image of the same hindlimb 

after standard SVD clutter filtering C) Image of the same hindlimb after optimal 

shrinkage SVD clutter filtering. D) Skeleton of the vascular network extracted from 

the optimal shrinkage SVD clutter filtered image. The cyan arrows show the tumor. 

A-3 A-4 

B-3 B-4 

C-3 C-4 

D-3 D-4 

2 mm 



47 

Vascular network skeletons computed from the truncated SVD images are omitted from 

the figure because they differed only subtly from the vascular skeletons extracted from the 

optimal shrinkage images. The SVD-filtered tumor microvascular images depict similar 

large and intermediate-scale vascular structures with clearly enhanced vessel sensitivity 

relative to the power Doppler images. However, in comparison to the truncated SVD 

images (Figs. 2.1, panel B), the optimal shrinkage images (Fig. 2.1 panel C) show sharper 

vessel boundaries with less background clutter in the gaps between adjacent vessels. These 

characteristics of the optimal shrinkage images enable, upon close inspection, detection of 

additional small vessels, clearer identification of additional generations of vessel 

branching, and more complete visualization of the vascular network at the tumor periphery. 

Figure 2.2 presents hindlimb images of two different mice laid out in the same format as 

Fig. 2.1. The advantage of the optimal shrinkage clutter filter, compared to the truncated 

SVD clutter filter, is much more striking in the hindlimb images than in the tumors and 

results in larger differences in background clutter level, improved detection of small 

vessels, and enhanced connectivity of vessel segments. The unfiltered hindlimb data can 

be expected to include more prominent clutter signal than the tumor data due to the 

intervening tissue layers in the hindlimb images as well as substantial backscattering 

intensity from the muscles surrounding the vessels of interest. The difference in relative 

performance of the two SVD filtering methods is therefore attributed to more effective 

attenuation of clutter components by the optimal shrinkage filter. Additional evidence for 

this interpretation is provided in the following subsections. 

Representative singular value curves are presented in Fig. 2.3 for the tumor sample 1, 

and in Fig. 2.4 for the mouse hindlimb sample1. In each panel, the upper boundary of the 

filled regions corresponds to the singular values of the original Casorati matrix, 𝑦𝑖. The 

blue area represents the signal power eliminated by the optimal-shrinkage clutter filter and 

corresponds mathematically to the rescaled shrinkage function, 
�̂�𝐵

𝜎𝑛𝑎𝑡
𝜂𝑜𝑝𝑡 (

𝜎𝑛𝑎𝑡

�̂�𝐵
𝑦𝑖) in (8). 

The orange area represents the singular values retained by the optimal-shrinkage filter, i.e., 

the expression within the outer pair of parentheses in (8), which are assumed to consist 

primarily of blood signals. 
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The rightmost vertical dashed lines in both panels indicate the rank at which the original 

singular value curves intersect the effective singular value threshold, (�̂�𝐵 𝜎𝑛𝑎𝑡⁄ )(1 + √𝛽), 

applied by the optimal shrinkage clutter filter. The leftmost vertical dashed line denotes the 

rank threshold, 𝑟, from (10) that is employed by the truncated SVD clutter filter. The 

truncated SVD filter completely eliminates the signal power from rank 1 to 𝑟 and retains 

all of the signal power at ranks greater than (to the right of) 𝑟. As the figure suggests, the 

total power removed by the optimal-shrinkage clutter filter (the blue area) is always greater 

than the total power removed by the truncated SVD filter, which is reflected in the images 

by visibly reduced background clutter between vessels. 

 

 

 

 

 

 

 

 

 

Figure 2.3: Singular value curves for truncated SVD and an optimal shrinkage SVD-

filtered tumor image shown in Fig. 2.1 (tumor sample 1). The orange area represents 

the singular values of the filtered image, and the blue area represents the singular 

values attenuated by the filter. The blue dashed vertical lines denote the rank 

thresholds for standard truncated SVD clutter filtering (left) and optimal shrinkage 

SVD-based clutter filtering (right). 
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In the tumor example, Fig. 2.3, the singular value curve reached the singular value 

threshold for the optimal shrinkage clutter filter at rank 40, while the rank threshold for the 

truncated SVD filter was 𝑟 = 8. 96.8% of the total power was removed from the original 

data using optimal shrinkage whereas 93.9% of the total power was attenuated using the 

truncated SVD clutter filter. Across all tumors, the singular value threshold for optimal 

shrinkage was reached at ranks between 37-45 , which was always much greater than the 

rank threshold employed by the truncated SVD filter, which ranged from 5 to 11.  

 

 

 

 

 

 

 

Similar observations can be made for the hindlimb singular value curves. In the example 

in Fig. 2.4, the singular value curve reached the singular value threshold for the optimal 

shrinkage clutter filter at rank 50, while the rank threshold for the truncated SVD filter was 

𝑟 = 17. 99.8% of the total power was removed from the original data using optimal 

shrinkage whereas 95.4% of the total power was attenuated using the truncated SVD clutter 

filter. Among all mice, the singular value threshold for optimal shrinkage was reached at 

Figure 2.4: Singular value curves for truncated SVD and an optimal shrinkage SVD-

filtered hindlimb image shown in Fig. 2.2 (mouse hindlimb sample 1). The orange area 

represents the singular values of the filtered image, and the blue area represents the 

singular values attenuated by the filter. The blue dashed vertical lines denote the rank 

thresholds for standard truncated SVD clutter filtering (left) and optimal shrinkage 

SVD-based clutter filtering (right). 
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ranks between 42 and 53, which was always much greater than the rank threshold employed 

by the truncated SVD filter, which ranged from 10 to 18. The results indicate that the 

percentage of the total power removed by optimal shrinkage clutter filtering method is 

higher in hindlimb application than CAM tumor model application by 1.5%.  

2.4.2 Vascular Network Morphological Parameters 

Table 2.1 reports the vascular network morphology parameters (number of vessels, 

number of branching points, and mean vessel length) estimated from the vascular skeletons 

extracted from the truncated SVD and optimal shrinkage images. Data are reported as mean 

 standard deviation for the 22 tumor and 8 hindlimb images. For both imaging 

applications, optimal shrinkage substantially increased the number of vessels and the 

number of branching points detected compared to truncated SVD clutter filtering, which is 

consistent with the visual observations of improved sensitivity to small vessels stated in 

Sect. IV.A.  

Table 0.1: NV = number of vessels, NB = number of branching points, VL = mean 

vessel length. Data are reported as mean ± standard deviation over 22 tumors and 8 

mice hindlimb images. 

Optimal shrinkage also increased the mean vessel length, which indicates that those 

images depict better-connected vessel segments. The number of vessels depicted using 

optimal shrinkage was approximately 50% greater than truncated SVD in the tumor images 

and was doubled in the hindlimb images. Similarly, the mean vessel length using optimal 

shrinkage was approximately 40% greater in the tumor images and almost 75% greater in 

the hindlimb images. The larger relative differences in the hindlimb images in the hindlimb  

Application Clutter Filter NV NB VL 

 

Tumor 

Standard SVD 42.1±7.9 21.1±6.8 137±90 

Optimal Shrinkage 63.8±13.7 33.6±8.7 188±102 

 

 

Hindlimb 

Standard SVD 18.6.8±4.5 9.7±3.1 68±27 

Optimal Shrinkage 37.5±9.6 16.8±3.4 118±24 
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images is again attributed to the presence of more prominent clutter that was more 

effectively removed by the optimal shrinkage filter. 

2.4.3 Image Quality Metric 

Figure 2.5 shows examples of the manually segmented intravascular and background 

ROIs used to compute SNR and CNR for a tumor image (panel A) and a hindlimb perfusion 

image (panel B). Table 2.2 lists the mean  standard deviation of the SNR and CNR for 

each combination of SVD clutter filter and imaging application. In the tumor images, 

optimal shrinkage increased the mean SNR by 2.9 dB and the mean CNR by 2.5 dB 

compared to truncated SVD clutter filtering. In the hindlimb perfusion images, optimal 

shrinkage increased the mean SNR by 3.7 dB and the mean CNR by 4.9 dB. The more 

pronounced improvement using optimal shrinkage in the hindlimb images is consistent 

with the differences in vascular morphology parameters and is again attributed to the 

benefits of the optimal shrinkage method being more evident in the more challenging 

clutter conditions presented by the hindlimb model.  

Figure 2.5: A) A reconstructed optimal-shrinkage-filtered image of tumor sample 1, 

engrafted in CAM model and B) reconstructed optimal-shrinkage-filtered image of 

a mouse hindlimb sample 1. For CNR and SNR evaluation, the pink box defines the 

ROI in which the cyan lines indicate the manual segmentation of vessels and the rest 

of the signal in the white box indicates clutter. The yellow boxed region defines the 

background noise. 

A B 
2 mm 1 mm 
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Table 2.2: SNR and CNR in tumor and hindlimb applications for each the of SVD clutter 

filtering method. For tumor application the values are averaged over 22 tumor images and 

for hindlimb application, the reported values are averaged over 11 mice hindlimb images. 

 

 

 

 

 

2.5 Discussion 

The results indicate that the optimal shrinkage clutter filtering approach outperforms the 

standard SVD clutter filtering method in effectively suppressing the attenuated clutter 

signals in both tumor and hindlimb applications. The optimal shrinkage clutter filtered 

images, represented by panel "C" in both Fig. 2.1 and 2.2, exhibit greater sensitivity to 

microvessels and contain more vessel structures than the truncated SVD filtered images 

depicted by panel "B" in both applications.  

The optimal shrinkage clutter filtering technique produces clearer vessel network 

structures, branching points, and increased vasculature, which is supported by the data 

presented in Table 2.1. Quantitative analysis of morphological parameters reveals that the 

optimal shrinkage clutter filtered images exhibit a greater number of vessels, branching 

points, and mean vessel length than the standard SVD filtered images. Moreover, Fig. 2.3 

and 2.4 demonstrates how the proposed method shrinks down the singular values of the 

singular components with rank between the two dashed lines (thresholds are defined by 

two filtering method of truncated SVD and optimal shrinkage SVD). 

Upon comparing the degree of improvement in vascular visualization between the two 

applications (as illustrated in Fig. 2.1 and 2.2), it becomes evident that the optimal 

shrinkage clutter filtering approach exhibits superior performance for hindlimb images as 

compared to tumor images. Specifically, a comparison between panel "B"  and "C", of Fig. 

Application Clutter Filter SNR CNR 

CAM Tumor  
Standard SVD 56.2±3.5 35.8±2.7 

Optimal Shrinkage 59.1±2.9 38.3±3.8 

 

Mice Hindlimb 
Standard SVD 35.9±4.7 11.9±2.4 

Optimal Shrinkage 39.6±6.9 16.8±3.6 
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2.1 and 2.2, in both applications demonstrates that the optimal shrinkage clutter filtered 

image in hindlimb application detects a greater amount of vasculature as compared to its 

standard SVD filtered counterpart.  

This observation is further supported by the higher degree of enhancement observed in the 

reported values for morphological analysis. Upon comparing the NV, NB, and mean VL 

for the standard SVD filtered images and optimal shrinkage filtered images in both 

applications, a greater increase in the reported values is observed for hindlimb images as 

compared to tumor images. These results indicate that the optimal shrinkage clutter 

filtering approach is more effective in suppressing clutter and enhancing vasculature in 

hindlimb images than tumor images. Furthermore, this phenomenon is clearly discernible 

when analyzing the singular value curves of the two applications, as illustrated in Fig. 2.3. 

Specifically, the singular value curve of the hind limb image exhibits a greater degree of 

clutter shrinkage in comparison to the singular value curve of the tumor image. 

Upon considering the region between the two dashed lines, which indicates the thresholds 

for standard SVD and optimal shrinkage filters, it becomes apparent that the ratio of the 

singular values of the optimal shrinkage filtered images (i.e., the singular values depicted 

by orange) to the attenuated singular values by optimal shrinkage (i.e., the singular values 

depicted by blue) is less for hind limb images (shown in Fig. 2.3) as compared to tumor 

images. This discrepancy can be attributed to the fact that the hindlimb muscle images are 

obtained from deeper regions, resulting in greater attenuation of clutter signals as compared 

to the chick CAM tumor images, where the tumor is situated on the top of the chick embryo 

surface.  

Moreover, if the rank threshold of the truncated SVD clutter filtering method is increased 

toward the threshold used in the corresponding optimal shrinkage clutter filters, the 

appearance of the truncated SVD images shows less distortion by clutter, however with 

less fine vessel structure and microvascular network in the reconstructed image. This 

indicates that in truncated SVD clutter filtering, even though the increase in the blood-

clutter threshold to higher ranks helps with more elimination of tissue clutter attenuation 

in the reconstructed image however with the cost of losing more microvasculature. Thus, 
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increase in the rank of the threshold does not help in detection of more microvasculature 

and still optimal shrinkage clutter filtering outperforms the truncated filtering with 

threshold rank increase. 

The large separation of the two thresholds (i.e., blood-clutter threshold defined by truncated 

SVD and optimal shrinkage clutter filtering method) in the results implies that the clutter 

and blood singular vectors overlap to a much greater extent than is assumed among most 

of the researchers when they state that the clutter signal is low rank. It further shows why 

truncated SVD clutter filtering are not capable of fully eliminating tissue clutter attenuation 

which is due to the assumption that tissues and blood only overlap in the singular 

components below the low-order defined threshold, while the results clearly shows the 

overlap between blood and clutter extended to more than twice the threshold defined by 

truncated SVD clutter filtering methods.  

It is notable that the optimal shrinkage method also retains a small amount of blood signal 

power from singular vectors with rank less than λ, i.e., the much smaller orange area to the 

left of the lower rank threshold in Fig. 2.3 and 2.4, but this additional blood signal makes 

only a minor contribution to the image. The greater power removed from the original data 

by the optimal shrinkage filter improved the Doppler contrast of small vessels in the filtered 

images. Moreover, the rank threshold of optimal shrinkage clutter filtering for hindlimb 

images is generally greater than that of tumor images, i.e., the rank threshold is in the range 

of 42-53 and 37-45 for hindlimb and tumor images respectively. This further confirms that 

there is more overlap between tissue and blood signal in higher singular value ranks in 

hindlimb images and that optimal shrinkage method can further detect, shrink, and 

eliminate the effect of tissue clutter signal in higher ranks.  

In addition, Table 2.2 shows a significant increase in the level of enhancement for SNR 

and CNR in hindlimb images than tumor images. Relatively, there are even more 

enhancements in CNR than SNR. The reason is that in the hindlimb application, contains 

high and that is why even with truncated SVD filtering method, the average CNR value is 

smaller in hindlimb images than in the tumor images. Similarly, the SNR is relatively 

smaller in hindlimb images due to the existence of a very low blood signal attenuation in 
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hindlimb images. The proposed filtering method also showed substantial improvement in 

suppression of the depth-dependent far field tissue clutter. However, it is obvious that the 

optimal shrinkage significantly improves the SNR and CNR in both applications with 

further aligns with the other results presented in this paper.  

There is a clear consistent outcome with all the results shown which all indicates no matter 

how different the two presented applications are, optimal shrinkage clutter filtering always 

outperforms standard SVD clutter filtering in suppressing more clutter attenuation and 

detection of more signal and therefore more blood signal in the filtered images. 

Particularly, when the level of tissue clutter attenuation increases, the enhancements in 

microvessel detection with optimal shrinkage clutter filtering increases both qualitatively 

and quantitatively.  

Noise reduction is not necessary (any technique can be used). The tissue attenuation of the 

chicken embryo tumor model is minimal, and the line-by-line focused imaging used in this 

study had a sufficiently high SNR to make the noise suppression unnecessary in this 

application. Our analysis is designed to show the difference of reconstructed image of two 

mentioned filtering methods and the ability of proposed method in reducing the effect of 

more clutter singular components and thus it is independent of noise reduction techniques. 

In this study we used the standard noise reduction technique with SVD approach which 

zero out the high order singular values to eliminate the effect of low-power noisy singular 

components.  

2.6 Conclusion and Future Works 

This paper presents an SVD-based optimal shrinkage clutter filtering technique that can 

substantially improve clutter rejection and small vessel imaging quality for power doppler 

ultrasound. The proposed technique successfully overcame the challenges of small vessel 

clutter filtering for in vivo human imaging by facilitating robust singular value thresholding 

on a local level and combining the results for improved imaging quality. This method can 

facilitate the translation of high frame rate ultrasound small vessel imaging from laboratory 

to clinic, and has great potential for early detection, diagnosing, and follow up of many 

diseases. 
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Currently the signal characteristics that are used and assumed for optimal shrinkage 

function are not tuned for ultrasound microvascular imaging. Therefore, one possible future 

work is to tune the optimal shrinkage function for microvascular ultrasound. Moreover, the 

performance of this optimal shrinkage clutter filtering can be tested on plane-wave 

ultrasound imaging to evaluate its performance compared to truncated SVD.  
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Chapter 3 

 

3 Ultrasound-Based Microvascular 

Parameters for Classification of Anti-

Angiogenic Tumor Treatment Response  

 

The contents of this chapter have been adapted from  

"Ultrasound-Based Microvascular Parameters for Classification of Anti-Angiogenic 

Tumor Treatment Response: A Scalable Preclinical Approach", published in IEEE 

International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, pp. 1-4, 2020 by M. 

Bataghva, D. Johnston, N. Power, S. Penuela and J. C. Lacefield* 

&  

"Comparison of Contrast-Enhanced Ultrasound Parameters for Classification of Anti-

Angiogenic Tumor Treatment Response" published in IEEE International Ultrasonics 

Symposium (IUS), Xi'an, China, pp. 1-4, 2021 by M. Bataghva, D. Johnston, N. Power, A. 

Ward, S. Penuela and J. C. Lacefield** 
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3.1 Introduction 

Ove the past 25 years, many cancer imaging studies have investigated the efficacy of PD 

and CEUS for assessing tumor vascularity and responses to antiangiogenic drugs. The 

utility of ultrasound imaging for evaluating anti-angiogenic treatment responses in cancer 

models is widely recognized. The recent emergence of techniques such as SVD clutter 

filtering, e.g., [1], and ultrasound localization microscopy [2] have dramatically improved 

the microvessel sensitivity of ultrasound. The rapid expansion in the armamentarium of 

microvascular imaging techniques amplifies the need for more efficient approaches to 

identify combinations of perfusion parameters that correlate with anti-angiogenic treatment 

responses in specific cancers. However, the best approach to combine ultrasound-based 

microvascular features remains unclear.  

This chapter first presents initial steps towards a scalable preclinical platform for 

classifying anti-angiogenic treatment response using ultrasound-based multiparametric 

microvascular imaging. Initially, seven perfusion parameters from two- and three-

dimentional PD and two-dimensional contrast-enhanced ultrasound (CEUS) as well as 

tumor volume are fed into a multivariable logistic regression learning model to classify 

control (modeling resistant) and treated (modeling senstive) tumors engrafted on a chicken 

embryo assay. Classification results indicate that, optimal shrinkage SVD-based filtered 

PD images are valuable for detecting anti-angiogenic treatment responses and the 

microvascular and perfusion parameters derived from these filtered PD images improves 

the classification performance when used along those of conventional analysis of PD and 

CEUS.  

Further in this chapter, the utility of statistical CEUS method, which describes the change 

in the histogram of image intensity during microbubble wash-in, that was developed 

previously in our lab in antiangiogenic treatment response classification is studied. We 

investigated whether the statistical analysis of CEUS as a means of characterizing the 

spatial heterogeneity of tumor perfusion should be preferred to conventional mean-

intensity-based CEUS analysis for classification of anti-angiogenic treatment responses in 
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a preclinical tumor model. The results showed that the learning model combining features 

from both conventional and statistical CEUS analysis more accurately classified anti-

angiogenic response than models using either statistical or conventional features alone. 

Therefore, the statistical CEUS method is best used as a supplement to conventional CEUS 

analysis. 

3.1.1 PD Microvascular Quantification 

PD and CEUS are real-time, inexpensive, and safe tools for microvascular imaging. PD 

ultrasound is sensitive to the squared magnitude of the blood flow signal which is 

correlated with blood volume, making it particularly useful for detecting low-velocity 

blood flow in small vessels. Doppler ultrasound has become an increasingly popular tool 

for microvascular imaging, particularly in cancer research [3], it can be used to assess 

tumor angiogenesis and microvascular perfusion [4], or the formation of new blood vessels 

to support tumor growth [5]. However, power Doppler ultrasound suffers from the presence 

of clutter signals caused by tissue motion and other factors unrelated to blood flow. These 

clutter signals can obscure the low-amplitude signals from slow-flowing blood in small 

vessels, reducing the sensitivity and specificity of power Doppler imaging for 

microvascular perfusion.  

SVD clutter filtering improves the contrast and resolution of power Doppler images, 

allowing for better visualization and quantification of microvascular perfusion. If one 

assumes the eigen spectra of blood and clutter overlap, truncated SVD attenuates the 

lowest-order, highest singular value components and is incapable of removing all clutter 

signals specifically the high-order singular components representing them. On the other 

hand, truncated SVD may remove all low-order singular components representing 

microvessels. Optimal shrinkage clutter filtering introduced in the previous chapter 

demonstrates significant improvements in elimination of low-order clutter singular values 

and therefore allows for better visualization and quantification of microvascular perfusion.  

Microvascular parameters are crucial for understanding the tumor microenvironment and 

assessing treatment effectiveness. Among the microvascular parameters commonly used 

in these applications are the VI, NV, NB, and mean VL. VI represents the percentage of 
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the tumor area occupied by blood vessels while the number of vessels and branching points 

are measures of the density and complexity of the tumor vasculature, respectively. Changes 

in these microvascular parameters can indicate the effectiveness of the treatment in 

inhibiting angiogenesis [6] and monitoring these parameters can also help predict patient 

prognosis and guide treatment selection.  

3.1.2 CEUS Perfusion Analysis 

CEUS imaging, on the other hand, enables rapid, longitudinal quantification of 

microvascular perfusion with the administration of microbubbles. Contrast-enhanced 

ultrasound can be used to quantify changes in perfusion to stratify and monitor anti-

angiogenic treatment responses [7] . However, conventional dynamic CEUS analysis relies 

on the mean backscattered signal intensity from a region of interest, which discounts 

additional information that might be available from heterogeneous contrast enhancement 

in the tumor cross section. To address this limitation, a method for analyzing the change in 

first-order speckle statistics during microbubble wash-in from a time series of nonlinear 

CEUS images was introduced in our lab. 

In statistical CEUS method [8],the PDF of the contrast-enhanced signal intensity, 𝑓(𝐼), is 

modeled as a mixture of exponential PDFs weighted by the function 𝑤(𝜃), 

𝑓(𝐼) = ∫ 𝑤(𝜃)𝑝(𝐼|𝜃)𝑑𝜃               (3.1) 

Where 𝑝(𝐼|𝜃) is an exponential distribution conditional on the scale parameter, 𝜃: 

𝑝(𝐼|𝜃) = 𝜃𝑒−𝜃𝑡                (3.2) 

Different values of 𝜃 can be viewed as arising from different local microbubble 

concentrations, such that 𝑤(𝜃) characterizes the spatial heterogeneity of contrast 

enhancement in the region of interest. A statistical CEUS wash-in curve is constructed by 

analyzing the change in 𝑤(𝜃) during either a bolus infusion or destruction-replenishment. 

In [8], the statistical CEUS method was applied to a murine breast cancer xenograft model 

using a bolus-injection CEUS protocol. Parameters estimated from statistical CEUS wash-

in curves discriminated bevacizumab-treated tumors from untreated tumors more 

accurately than the corresponding parameters from conventional CEUS analysis. Those 
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results suggested that the statistical method could improve the reliability of CEUS for 

quantifying anti-angiogenic treatment response in tumors. However, only pairwise 

comparisons of single parameters from statistical and conventional CEUS were performed 

in that experiment. 

3.1.3 Machine Learning Models for Antiangiogenic Treatment Response 

In recent years, the use of machine learning for medical image analysis and cancer research 

has significantly expanded. One particularly promising application of machine learning in 

cancer imaging is the classification of tumor treatment sensitivity [9]. Evaluation of 

responses to anti-angiogenic drugs requires a machine learning algorithm that can be 

trained to discriminate treatment-sensitive from treatment resistant tumors based on 

features that provide morphological and/or functional information about a tumor’s vascular 

network. Recent advances in imaging technology, such as power Doppler ultrasound and 

contrast-enhanced ultrasound, have provided high-resolution images that can be used to 

extract useful information about the microvascular features of tumors. Training, testing, 

and validation of a classification algorithm often require many images, so the scalability of 

the experimental model used to develop a classifier becomes an important consideration.  

3.2 Methods and Materials 

3.2.1 Study Design 

In this study, we advocate for the use of cancer cell lines xenografted onto the ex-ovo 

chicken embryo CAM as an experimental model that addresses the efficiency and 

scalability requirements outlined in the preceding paragraphs. Chick CAM models are an 

effective tumor angiogenesis assay [10] that yield high-quality, high throughput images 

with high-frequency ultrasound [11]. The efficiency of the platform is a consequence of 

the low cost of fertilized eggs (< $1 each) relative to the immunocompromised rodents 

often used for human cancer xenografts as well as the rapid growth rates of tumor 

specimens in the chick CAM, where treatment endpoints occur at approximately two 

weeks. Scalability is provided by the use of established cell lines, which should produce 

genomically identical initial tumors, thereby permitting data to be pooled over multiple 

serial experiments so large sample sizes may be accumulated within a few weeks. Cell line 
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models are sufficient for our purposes because our emphasis is on the development of new 

ultrasound imaging techniques and image analysis methods.  

As proof of concept, we report here on a treatment response experiment using the Caki-1 

human mRCC cell line. Caki-1 cells exhibit high sensitivity to the anti-angiogenic agent 

Sunitinib [12], which is an approved first-line systemic therapy for mRCC [13] and 

therefore is the drug used in this study. It is worth mentioning that in clinical practice, 

Sunitinib anti-angiogenic treatment is predominantly used for metastatic tumors as they 

have a less established blood supply and are more responsive to anti-angiogenic therapies 

like Sunitinib and that why both the tumor type and therapy was used in this thesis. The 

study design yields a group of tumors with an unequivocally strong treatment response for 

comparison to control specimens that represent tumors with no treatment response. In this 

pilot study, feature selection for the classifiers begins with a maximum of eight inputs: 

endpoint tumor volume, one vascular feature from three-dimensional (3D) PD using 

conventional infinite impulse response (IIR) clutter filtering, three vascular features from 

two-dimensional (2D) PD using an SVD clutter filter, and three perfusion features from 

2D CEUS. Classifier performance is evaluated by determining the accuracy, sensitivity, 

and specificity for discriminating treated tumors from control tumors.  

Moreover, to assess the value of statistical CEUS for detecting anti-angiogenic treatment 

responses, multiparametric classifiers constructed using classical machine learning 

methods (i.e., logistic regression and support vector machine) are compared, thereby 

accounting for correlations among different features. The performance of classifiers using 

only statistical CEUS features is compared to classifiers using only conventional CEUS 

features and classifiers using a combination of statistical and conventional features. Feature 

selection algorithms are also applied to the complete set of parameters to identify the most 

informative features. The results enable an assessment of whether the statistical CEUS 

method should be preferred to conventional analysis for this treatment-monitoring 

application. 

The platform employs high frequency ultrasound imaging of a human metastatic renal cell 

carcinoma cell line engrafted onto the CAM of ex-ovo chicken embryos. Images are 
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acquired from untreated tumors and tumors treated with an anti-angiogenic tyrosine kinase 

inhibitor, Sunitinib. This study design yields a group of tumors with a strong treatment 

response for comparison to control specimens with no treatment response. Use of the CAM 

assay in place of the murine model in [14] provides a more economical tumor model that 

reaches its experimental endpoint more quickly. The CAM assay requires a destruction-

replenishment CEUS protocol, rather than the bolus injection protocol used in [14], 

because it is not feasible to image a CAM tumor model simultaneously with a contrast 

injection into the CAM’s delicate vessel network. 

3.2.2 Ex-Ovo Tumor Model Experiment 

Caki-1 kidney tumor cells (American Type Culture Collection, Manassas, VA) were 

engrafted onto ex ovo chick CAMs following the protocol described in [15]. Briefly, chick 

embryos were transferred from their shells into laboratory weigh boats on the EDD-3 and 

maintained at 37 °C in a humid incubator until EDD-10. On EDD-10, Caki-1 cells were 

suspended in Matrigel at a concentration of 106 cells per 10 µL. An abrasion was made 

using sterile filter paper near a branching vessel of the chick CAM and 10 µL of the 

Matrigel/cell mixture was pipetted onto the abraded area. Embryos were immediately 

returned to the incubator after cancer cell engraftment.  

Sunitinib powder was dissolved in dimethyl sulfoxide (DMSO) at a concentration of 10 

mM. The stock was further diluted to a 1:1000 ratio in phosphate-buffered saline (PBS) to 

create a working solution of 10 µM Sunitinib. DMSO diluted to 1:1000 in PBS was used 

as a vehicle control. Starting on EDD-12, tumors were treated daily with a topical 

application of 5 μL of either the Sunitinib solution or the control solution. The tumor model 

on CAM assay is depicted in Fig. 3.1. The study began with equally sized treated and 

control groups; however, only the chicks that survived through endpoint imaging (22 

treated tumors, 16 control tumors) were included in the data analysis.  
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Figure 3.1: Chick CAM Tumor Model and Development Timeline 

3.2.3 Power Doppler Image Acquisition and Analysis 

At the experimental endpoint on EDD-18, the tumors were imaged using a VisualSonics 

Vevo 2100 ultrasound system (FujiFilm VisualSonics Inc., Toronto, ON) equipped with 

Digital RF mode for acquisition of beamformed, quadrature demodulated echo signals. 

Three-dimensional PD images of the tumor volume and 2D B-mode image sequences, 100 

frames in duration, of a cross-section through the center of the tumor were acquired using 

a 40 MHz linear array (MS-550D). The 3D images were acquired via mechanical 

translation of the array. 

Tumors were manually segmented in all three image types using Vevo Lab analysis 

software (VisualSonics) to define regions of interest (ROIs) for quantitative analysis. 

Tumor ROIs in the 3D PD images were used to estimate the tumor volume and VI, which 

is equal to the proportion of voxels in the ROI with detected blood flow. Clutter filtering 

of the 3D PD images employed the IIR high-pass filter in the VisualSonics software.  

The 2D B-mode sequences were processed in MATLAB (version R2019a, The 

MathWorks, Natick, MA) using the optimal shrinkage SVD clutter filtering method 
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described in chapter 2 to construct PD images with enhanced microvessel sensitivity. 

Vascular network morphological parameters were extracted from the resulting 2D PD 

images using a vessel skeletonization algorithm, implemented in ImageJ [17], that is 

similar to [18]. Briefly, the method involves several sequential processing steps for noise 

and clutter suppression using morphological image processing techniques such as top-hat 

filtering, erosion, and dilation. A vessel enhancement filter was utilized to enhance tubular 

structures followed by skeletonization of the binary image. Quantitative vascular metrics, 

specifically, the NV, NB, and mean VL, were computed by recursively traversing the 

vessel skeleton. 

3.2.4 CEUS Image Acquisition and Analysis 

Also, on EDD-18, CEUS imaging was performed after injecting 0.7 mL of a 2 × 109 

microbubbles/mL solution of Vevo MicroMarker microbubbles (VisualSonics) suspended 

in PBS into a large CAM vessel. Destruction-replenishment sequences of 2D subharmonic 

CEUS images were acquired using a 20 MHz linear array (MS-250). The CEUS image 

plane was matched to the plane of the 2D B-mode sequence as closely as possible given 

that it was necessary to move the chick to perform the microbubble injection. Contrast 

wash-in cine loops were exported as uncompressed intensity signal data files. Tumors were 

manually segmented in B-mode images to define ROIs for quantitative analysis. The study 

began with equally sized treated and control groups; however, only the chicks that survived 

through endpoint imaging (20 treated tumors, 30 control tumors) were included in the data 

analysis. 

In conventional time-intensity CEUS analysis, contrast enhancement was estimated as the 

mean nonlinear signal intensity within the ROI for each frame of the cine loop. Empirical 

wash-in time series were constructed to characterize the kinematics of contrast 

enhancement. Perfusion parameters were derived from the wash-in curves as described 

below using Vevo Lab (VisualSonics) software. Time-intensity analysis of the 2D CEUS 

image sequences was performed using Vevo Lab. The resulting perfusion parameters were 

peak enhancement (correlated with blood volume), time to peak intensity (correlated with 

blood flow), and the area under the wash-in curve (AUC), which is correlated with intra-

tumoral microvessel density.  
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The statistical CEUS method [8] analyzes the change in the first-order statistics of the 

nonlinear intensity signal within the ROI during contrast enhancement. A Lomax 

distribution, 

𝑓(𝐼|𝛼, 𝛽) =
𝛽𝛼𝛽

(𝐼+𝛼)𝛽+1
                     (3.3) 

which approximates a compound distribution of exponential PDFs weighted by a log-

normal function [19], is fit to the histogram of the nonlinear signal intensity, 𝐼, in each 

frame via maximum likelihood estimation. The compound distribution’s weighting 

function, 𝑤(𝜃), is estimated for each frame from the hyperparameters of the Lomax 

distribution, α and β, via [19]: 

𝑤(𝜃|𝛼, 𝛽) =
𝛼𝛽

Γ(𝛽)
𝜃𝛽−1𝑒−𝛼𝜃              (3.4) 

where θ is the scale parameter of the exponential PDF in (3.2). Enhanced tumor fraction at 

time t is defined as one minus the normalized area of overlap between 𝑤(𝜃) at t and 

𝑤(𝜃) estimated from the baseline unenhanced image. An empirical wash-in time series is 

constructed by plotting enhanced tumor fraction as a function of time during microbubble 

replenishment. Statistical CEUS analysis was performed using MATLAB.  

For both conventional and statistical CEUS, wash-in curves were characterized by fitting 

a monoexponential function, 𝐴(1 − 𝑒−𝑡 𝜏⁄ ), to the empirical wash-in time series. Peak 

enhancement (PE, equal to 𝐴), rise time (defined here as the time the fitted curve reaches 

0.95𝐴, which equals 3𝜏)), wash-in rate (defined as the ratio PE/rise time), and the area 

under the wash in curve (AUC, computed from 𝑡 = 0 to 𝑡 = 3𝜏)) were estimated from the 

fitted wash-in curves for conventional CEUS. PE, rise time, and AUC were similarly 

estimated from the statistical method’s wash-in curves. Pearson correlation coefficients 

were computed for each pair of wash-in curve parameters. 

3.2.5 Classification and Feature Selection Algorithms 

Image features were used as inputs to a support vector machine (SVM) and multi-variable 

logistic regression classifiers implemented in Python that were trained to output a binary 

classification of each tumor as sensitive or resistant to Sunitinib. Data were centered and 
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scaled before being input to the classifier. Supervised machine learning was employed 

where the treated tumors were assumed to be sensitive, and the control specimens were 

assumed to model resistant tumors. Leave-one-out cross validation was used to avoid 

overfitting due to the modest sample size.  

For the assessment of the developed model based on ultrasound microvascular parameters, 

different classifiers using different combinations of input features were trained: the first 

model used tumor volume and the three CEUS features (peak enhancement, time to peak, 

AUC), the second one used tumor volume and the four PD features (VI, NV, NB, VL), the 

third model used the best performing combination of features determined using backward 

elimination feature selection, and the fourth model used all eight features.  

On the other hand, to evaluate the effectiveness of statistical analysis of CEUS in 

discriminating treated and untreated tumors, the seven features of PE, rise time, wash-in 

rate, and the AUC estimated from the fitted wash-in curves for conventional CEUS and 

PE, rise time, and AUC from the statistical method’s wash-in curves, were used as inputs 

to SVM and multi-variable logistic regression classifiers. Three different models using 

different combinations of input features were trained with each classification algorithm: 

the first model used only the four features from conventional CEUS analysis  (PE, wash-

in rate, rise time, and AUC), the second model used only the three features from statistical 

CEUS analysis (PE, rise time, and AUC), and the third model included all seven features.  

Classifier performances were evaluated by computing their accuracy, sensitivity, 

specificity, and receiver operating characteristic (ROC) curves for identifying treated 

tumors. Ten-fold cross-validation was used for performance evaluation to avoid overfitting 

due to the modest sample size. Separately from the performance evaluations, three feature 

selection algorithms: principal component analysis, forward feature selection, and 

backward feature elimination using logistic regression, were applied to the complete set of 

seven features to identify the most important features for treatment response classification. 
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Table 3.1: Perfusion parameters from conventional PD, optimal shrinkage SVD 

filtered PD images, conventional CEUS as well as tumor volume. 

3.3 Results 

3.3.1 Power Doppler and CEUS Vascular Parameters 

Table 3-1 lists the means and standard deviations of the vascular parameters for 22 treated 

tumors and 16 control tumors that were estimated using each imaging method. A general 

trend of lower vascularity and smaller tumors was observed in the treated group compared 

to the control group. Therefore, the Caki-1 cell line exhibited the expected high level of 

Sunitinib sensitivity and the experimental design successfully produced two groups of 

tumors with distinctly different vascular architecture and perfusion. 

Figure 3.2 shows CEUS images of the same control tumor, outlined in green, taken at 

baseline (panel a) and at peak enhancement (panel b), while panel c shows that tumor’s 

wash-in curve from the statistical analysis and demonstrates that the reperfusion kinematics 

of the statistical method’s enhanced tumor fraction estimate conform closely to the 

assumed monoexponential curve shape. 

Feature 
Imaging 

technique 

Sunitinib 

(treated) 

DMSO 

(control) 

Tumor volume [mm3] 3D PD 10.6 ± 2.7 17.4 ± 7.6 

Vascularization index 2D PD 3.7 ± 2.7 9.4 ± 2.5 

Time to peak [s] 2D CEUS 5.0 ± 4.2 5.4 ± 4.5 

Peak enhancement [a.u.] 2D CEUS 1.4 ± 1.8 4.8 ± 2.8 

Area under the time-intensity curve [a.u.] 2D CEUS 2.6 ± 2.0 8.4 ± 4.4 

Number of vessels SVD-filtered PD 25.6 ± 8.2 59.8 ± 16.5 

Number of branching points SVD-filtered PD 19.8 ± 5.4 35.3 ± 8.2 

Mean vessel length [ m] SVD filtered PD 168 ± 19 181 ± 121 



71 

Table 3-2 lists the means and standard deviations of the perfusion parameters for 20 treated 

tumors and 30 control tumors that were used as inputs to the classifiers. A consistent trend 

of lower vascularity was observed via the lower PE and AUC in the treated group compared 

to the control group. Therefore, the Caki-1 cell line exhibited the expected high level of 

Sunitinib sensitivity. Also, note that the different units used for PE in the conventional and 

statistical methods result in a larger dynamic range for both PE and AUC in statistical 

CEUS compared to conventional CEUS. Among all pairs of perfusion parameters, the 

highest Pearson correlation coefficients were between AUC from statistical analysis and 

AUC of conventional analysis, AUC from statistical analysis and PE of conventional 

analysis (both at 0.77), and AUC of conventional analysis and PE of conventional analysis 

at 0.80. 

 

 

Figure 3.2: Nonlinear contrast-enhanced ultrasound (CEUS) images of a control tumor 

engrafted on the CAM of a chick embryo. a) Baseline image. b) Image at peak 

enhancement. The manually segmented tumor boundary is shown in green in both 

images. The field of view is 3.5 mm lateral  3.7 mm axial. c) Statistical CEUS 

destruction-replenishment data (blue dots) and fitted monoexponential wash-in curve 

(red line) for the same tumor. 
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Table 3.2: Perfusion parameters from conventional and statistical analysis of CEUS 

 

3.3.2 Tumor Treatment Classification Response 

Table 3.3 reports the classification performance for the four logistic regression models. In 

this data, a Suntinib-sensitive classification was treated as a “positive” decision for 

purposes of defining sensitivity and specificity. The best-performing classifier used VI 

from 3D conventional PD images and two features, NV and NB, from 2D SVD-filtered PD 

images. The model that considered tumor volume and all four PD features yielded the 

second-best performance, the model using tumor volume and the three CEUS features was 

the third most accurate, and the model that included all eight features was the lowest 

performing classifier.  

 

Table 3.3: Classification results using only perfusion parameters from conventional 

CEUS  

Feature Imaging technique Sunitinib (treated) DMSO (control) 

PE [a.u.] Conventional CEUS 2.0 ± 1.7 6.4 ± 3.3 

Rise Time [s] Conventional CEUS 5.9 ± 4.5 6.5 ± 4.4 

AUC [a.u.] Conventional CEUS 7.7 ± 5.3 11.0 ± 4.9 

Wash-in rate [a.u.] Conventional CEUS 3.4 ± 1.8 6.7 ± 5.0 

 

PE [%] Statistical CEUS 2.4 ± 1.8 16.0 ± 9.4 

Rise Time [s] Statistical CEUS 12.8 ± 7.5 8.4 ± 5.2 

AUC [%s] Statistical CEUS 15.4 ± 8.3 93.3 ± 32.7 

 Model Accuracy Sensitivity Specificity 

1 Volume + conventional CEUS-based features 84% 86% 81% 

2 Volume + SVD-filtered PD-based features 89% 86% 94% 

3 Best combination of features (VI, NV, NB) 95% 95% 94% 

4 All features 82% 86% 75% 
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3.3.3 CEUS + conventional PD and optimal shrinkage SVD-filtered PD 

analysis 

Figure 3.3 shows a scatter plot of two of the three features incorporated into the best 

performing classifier to illustrate the inter-tumor variability of the most important features. 

The background shading highlights the boundary between the sensitive (light blue) and 

resistant (pink) decision regions. The high classification accuracy depicted in the figure is 

consistent with the performance metrics listed in Table 3.2 for Model #3. 

 

Table 3.4 reports the classification performance for the three learning models using 

perfusion parameters estimated from conventional analysis, from statistical analysis, and 

both methods as inputs to logistic regression (top 3 rows) and SVM (bottom 3 rows) 

classifiers. The best-performing model, for both classification algorithms, contained all 

perfusion features estimated from both CEUS methods. The models that considered only 

features from statistical CEUS yielded modestly higher performance than the conventional 

CEUS models for both classification algorithms. 

Figure 3.3: Scatter plot of vascularization index and number of branching points 

for Sunitinib-treated (blue circles) and DMSO-control red circles) tumors. The 

background shading highlights the decision boundary. 
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Table 3.4: Classification performance for comparing the usefulness of conventional 

and statistical analysis of CEUS 

Figure 3.4 shows the ROC curves for the three logistic regression classifiers in table 3-5. 

Consistent with the results in Table 3-6, the classifier containing all perfusion parameters 

from both conventional and statistical CEUS (shown in purple) yielded the highest area 

under the ROC curve, 0.95. The areas under the ROC curves for the classifiers using only 

statistical and only conventional CEUS features were 0.94 and 0.91, respectively. The ROC 

curves for the SVM classifiers (not shown) were like the logistic regression ROC curves. 

 Model Accuracy Sensitivity Specificity 

1 Logistic Regression + Conventional CEUS features 0.86 0.85 0.86 

2 Logistic Regression + Statistical CEUS features 0.88 0.90 0.86 

3 Logistic Regression + All CEUS features 0.90 0.90 0.86 

 

4 Support Vector Machine + Conventional CEUS 

features 
0.86 0.95 0.79 

5 Support Vector Machine + Statistical CEUS features 0.90 1.00 0.83 

6 Support Vector Machine + All CEUS features 0.92 1.00 0.86 

Figure 3.4: Receiver Operating Characteristic curves of three logistic regression 

models with different combination of CEUS perfusion parameters 
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3.3.4 Feature Selection 

Table 3.5 lists the features selected using three different algorithms. The results indicate 

that AUC is consistently selected from conventional and statistical CEUS features and thus 

is identified as an important parameter for detecting antiangiogenic responses in the CAM 

assay. Each feature selection algorithm retained at least one feature from both conventional 

and statistical CEUS. 

Table 3.5: Feature Selection Results on all conventional and statistical CEUS 

perfusion parameters 

Feature Selection Algorithm Conventional CEUS Statistical CEUS 

Backward feature elimination AUC, Rise time AUC, PE 

Forward feature selection AUC, PE AUC 

Principal component analysis AUC, Rise time AUC 

3.4 Discussion  

3.4.1 Scalable Preclinical Model for Tumor Treatment Response 

Evaluation 

In this chapter, a scalable and efficient method to model the tumor and evaluate its 

treatment response based on perfusion parameters derived from ultrasound image analysis 

was presented. The objectives of the paper were to demonstrate the effectiveness of the 

chick CAM assay for assessing the marginal utilities of employing additional ultrasound 

imaging modes and of extracting additional image features. The classification 

performances reported in table 3.3 suggest that, for this Caki-1 tumor model, there is little 

additional benefit to acquiring 2D CEUS images when 2D SVD-filtered PD images are 

also available.  

On the other hand, 3D vascular images, even if they are acquired using conventional PD 

with lower vessel sensitivity than SVD-filtered PD, do provide valuable additional 

information about tumor blood flow. Similarly, the comparison of the best performing 

classifier (model #3 in Table 3.3) to the tumor volume + PD features classifier (model #2 

in Table 3.3) illustrates the use of the platform to assess the utility of additional image 
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features. In this case, there was no benefit to adding tumor volume and mean vessel length 

to the three PD features (VI, NV, and NB) that were included in model #3. 

In addition to the low cost of the CAM assay cited in the introduction, the relatively high 

imaging throughput of the assay is another source of its scalability and efficiency. The 

image acquisition performed for this study required about 15 minutes per tumor with two 

investigators working together (one to operate the scanner and the second to perform the 

microbubble injections), so the 38 tumors used to train and validate the classifiers required 

slightly less than 20 person hours of imaging time. Imaging the CAM model is substantially 

faster than imaging a murine model because the tumor is clearly visible on the CAM 

surface and because many of the animal care steps required for murine ultrasonography 

(e.g., induction of anesthesia, depilation of the imaging site, recovery from anesthesia) are 

not needed with the CAM model.  

The observations reported above about the relative utilities of the various image features 

are not intended as generalized recommendations for ultrasound cancer imaging, but it is 

possible to identify aspects of this specific experiment that contributed to the patterns in 

our data. First, the optimal shrinkage SVD clutter filter significantly improves PD 

sensitivity to small vessels, so it is unsurprising that the feature selection method preferred 

features from those images. On the other hand, 3D imaging facilitated tumor segmentation, 

especially in cases where the tumor margin was ambiguous in the 2D planes of the SVD-

filtered PD and CEUS images. The 3D PD image also provided a holistic view of tumor 

blood flow that complements the higher vessel sensitivity in one plane obtained from the 

2D images. This reasoning suggests that the ideal experimental protocol would include 3D 

SVD-filtered images, but the Vevo 2100 does not support that technique because the 

mechanical probe translation employed for 3D imaging provides either one acquisition per 

plane (3D B-mode) or 13 acquisitions per plane (3D PD), but not the long ensembles of 

~100 pulses needed for SVD processing. 

The limited utility of the CEUS features in the logistic regression classifiers observed in 

Table 3.3 was not anticipated. We suspect that this observation reflects recognized sources 

of variability in CEUS imaging [20] exacerbated by the difficulty of performing consistent 
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microbubble injections in the delicate CAM vessel network. Due to the latter problem, 

there were some tumors for which PD images, but no CEUS images, were acquired. This 

factor contributed to the unequal group sizes in the data analysis. 

The significant difference in treated versus control endpoint tumor volumes may be 

surprising considering that Sunitinib is viewed as a cytostatic agent. However, the Sunitinib 

concentration used in this study was higher than the clinical dose, which is < 1 μM. 

Similarly high Sunitinib concentrations have been observed to slow Caki-1 tumor growth 

both in vitro and in murine xenografts. Furthermore, in our experiment, treatment was 

initiated at a relatively early stage of tumor growth, thereby preventing angiogenesis and 

restricting growth, rather than remodeling an established tumor vascular network. 

Logistic regression was used as the learning model for the classifiers. Logistic regression 

is formulated for binary classification problems involving independent observations of 

continuous variables. Both of those assumptions were satisfied in our data: the data set was 

constructed from image parameters estimated from different tumors and the high precision 

of the parameter estimates made them effectively continuous variables. Moreover, SVM 

classifier was used due to its capabilities in performing well with small sample sizes. Also, 

SVM is a robust algorithm that is less affected by outliers than other classifiers. 

This experiment was designed as a preliminary study to demonstrate the CAM assay + 

high-frequency ultrasound platform. Therefore, we chose a mRCC cell line that is known 

to be highly sensitive to Sunitinib [21] to ensure that we obtained two tumor groups with 

distinct blood flow characteristics. A more complete evaluation of the platform would 

include more cell lines (this study design is used in chapter 4) and/or additional therapeutic 

agents to obtain a greater diversity of treatment responses. Furthermore, the classifier 

performance results reported above were obtained via leave-one-out cross-validation. A 

more rigorous evaluation would employ independent data sets for validation and testing of 

the classifiers. 
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3.4.2 Utility of a Statistical CEUS Analysis for Tumor Response 

Evaluation 

Moreover, in this chapter, we investigated the utility of a statistical CEUS analysis method 

for detecting tumor responses to anti- angiogenic treatment. The statistical method was 

assessed in comparison to a conventional method of dynamic CEUS analysis. The 

comparison showed that the relative performance of conventional CEUS, statistical CEUS, 

and hybrid classifiers is consistent with different classification algorithms. Using both 

logistic regression and SVM classifiers, a hybrid model including features from both CEUS 

methods outperforms models containing only conventional or statistical CEUS parameters 

(Table 3.4 and Fig. 2). Moreover, when the feature selection methods listed in Table 3.5 

were applied to the hybrid model, parameters from both conventional and statistical CEUS 

were consistently retained. Therefore, the results suggest that statistical CEUS supplements 

the information obtained from conventional CEUS, such that statistical CEUS is best 

employed in combination with conventional CEUS rather than as a stand-alone 

replacement for the conventional method. 

Two learning models, logistic regression and SVM, were employed to demonstrate that the 

classification results are consistent for learning models with different strengths. Logistic 

regression is an effective learning model that is easy to implement without the need to tune 

its hyperparameters. The high precision of the CEUS parameter estimates made them 

effectively continuous variables, which satisfies a key assumption of logistic regression. 

On the other hand, the experimental data included CEUS feature samples with very high 

variation from their means that may be considered outliers. Therefore, SVM was used 

because it exhibits low sensitivity to outliers in its classification performance. 

Area under the wash-in curve appears to be a particularly important parameter for detecting 

anti-angiogenic responses in a CAM assay because both the conventional and statistical 

CEUS estimates of AUC were retained by all three feature selection methods. In 

destruction replenishment studies, the AUC of a mean-intensity wash-in curve is correlated 

with microvessel density and the AUC for the statistical method’s enhanced tumor fraction 

wash-in curve is also sensitive to microvessel density [8]. It is unclear whether this 

association of AUC with microvessel density holds for destruction-replenishment studies 
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using statistical CEUS, but if so, this observation would be consistent with the expectation 

that the treated tumors should exhibit reduced vascularity compared to the control tumors. 

Feature selection algorithms typically assess the individual importance of features in 

relation to the target variable. By applying basic algebraic calculations, it is possible to 

easily compute the AUC using the values of two other features, namely PE and RT. Here, 

AUC is the feature that was selected from both conventional and statistical CEUS using all 

three feature selection algorithms employed. The construction of AUC as a feature enables 

the capturing of valuable information that is not fully represented by its constituent features 

alone (PE and RT). Consequently, the feature selection algorithms pick AUC as an 

informative feature about intra-tumor microvasculature and thus in treatment response 

classification. The inclusion of AUC, as a constructed feature that incorporates the 

interaction effects between PE and RT, has demonstrated its potential to enhance the 

performance of the model. Hence, it can be inferred that AUC is preferable over PE and 

RT when analyzed separately, as it effectively represents both of these parameters within 

a single feature in CEUS image analysis. 

In the original development of the statistical method [8], a Lomax distribution to 

approximate the first-order statistics of CEUS intensity was justified by assuming that the 

weighting function in (3.1) would have the same form as the distributions of vessel 

diameters and velocities in a microvessel network, which are both log-normal given a 

fractal network architecture [22]. Subsequently, Parker and Poul [23] demonstrated that a 

Lomax distribution also approximates the first-order speckle statistics produced by 

scattering from a fractal microvessel network. Since nonlinear CEUS images emphasize 

signals from microbubbles, which are confined to the intravascular space, Parker and 

Poul’s calculations provide an additional analytical foundation for our statistical CEUS 

approach. 

The complete set of classifier features was unbalanced (four conventional CEUS 

parameters, three statistical CEUS parameters) because wash-in rate was not included 

among the statistical parameters. Wash-in rate was excluded from the statistical features 

because its variability was anomalously high (mean ± standard deviation of 1.9 ± 1.65 and 
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20.2 ± 17.9 for treated and control tumors, respectively), so this feature would have 

interfered with classifier performance. The source of the high variability in the statistical 

CEUS wash-in rate requires further investigation.  

3.5 Conclusion 

In addition to the application to imaging algorithm development demonstrated here, this 

platform may also be employed for preclinical cancer research. When using established 

cell lines for drug development studies, the CAM assay provides an alternative to in vitro 

cell-line panels or tumor spheroid preparations that retains the efficiency of those 

techniques while also acting as a biologically relevant model of tumor angiogenesis [4]. 

High-frequency ultrasound is ideal for imaging the fragile CAM models and can provide 

accurate, nondestructive 3D measurements of tumor volume and perfusion that are difficult 

to obtain using more conventional laboratory methods. The biological fidelity of the CAM 

assay can also be increased by using patient-derived cell lines or tumor xenografts [24] to 

reproduce the intra- and intertumoral heterogeneity of clinical cancers. 

Moreover, the effectiveness of CEUS perfusion features for discriminating highly 

treatment sensitive tumors from untreated tumors was investigated. A more comprehensive 

study should include additional cell lines exhibiting different degrees of treatment 

sensitivity, including resistant and partially sensitive cell lines, and/or additional 

therapeutic agents to obtain a greater diversity of treatment responses. Perfusion 

parameters from power Doppler and other contrast-free microvascular imaging techniques 

could also be included to obtain a more convincing assessment of the utility of the statistical 

CEUS method, e.g., by testing whether statistical CEUS parameters are still retained when 

the feature selection algorithms are presented with more options. Furthermore, classifier 

performance should be evaluated using independent data sets for validation and testing 

rather than the cross-validation approach employed here. 
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Chapter 4 

 

4 Generalization of Multiparametric 

Microvascular Ultrasound Models to Assess 

Tumor Response to Anti-Angiogenic 

Treatment  

 

The contents of this chapter have partially been adapted from  

"Multiparametric Microvascular Ultrasound to Classify Tumor Sensitivity to Anti-

Angiogenic Treatment: Application to Multiple Cell Lines", published in IEEE 

International Ultrasonics Symposium (IUS), Venice, Italy, pp. 1-4, 2022 by M. Bataghva, 

D. Johnston, N. Power, A. Ward, S. Penuela and J. C. Lacefield* 
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4.1 Introduction 

Although the effectiveness of PD and CEUS imaging for evaluating tumor angiogenesis 

has been widely studied, it is difficult to definitively establish the best combination of PD 

and CEUS perfusion parameters for a specific application [1]. In chapter 1 of this thesis, 

we discussed the limitation of conventional PD and CEUS in microvascular detection and 

therefore, to improve the reliability of ultrasound estimates of tumor perfusion, our lab has 

developed a PD clutter filtering method that employs optimal shrinkage of singular values 

[2] (Chapter 2) and a CEUS method that analyzes the change in the first-order statistics of 

contrast signal intensity during a destruction replenishment sequence [3]. The optimal 

shrinkage clutter filter is an SVD method that reweights intermediate singular vectors to 

compensate for overlap of blood and clutter signal components in the eigen domain. The 

statistical CEUS method is designed to characterize spatially heterogeneous contrast 

enhancement more effectively than is possible with methods that only consider the mean 

contrast signal intensity. 

The objective of this study is to conduct a more comprehensive study of Ultrasound-based 

perfusion parameters in tumor antiangiogenic treatment response with parameters from 

both conventional and developed PD and CEUS and identify the best combination of 

features and also evaluate the generalization capabilities of the model pipeline with the best 

combination of perfusion parameters. Therefore, in this chapter, we first, assessed the 

usefulness of the perfusion parameters from SVD-based optimal shrinkage clutter filtered 

PD and statistical histogram-based CEUS images, compared to perfusion parameters from 

conventional PD and mean-intensity-based CEUS images, in improving the antiangiogenic 

tumor treatment response classification of cell lines with differing sensitivity level. 

Secondly, to evaluate the robustness and generalization capabilities of the model pipeline, 

an independent set of tumors whose treatment sensitivity was unknown to the model was 

tested.  
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4.1.1 A more comprehensive study with more perfusion parameters to 

classify resistant and sensitive tumors to antiangiogenic treatment 

In chapter 3, we observed that classical machine learning classifiers (i.e., using logistic 

regression or support vector machine, SVM) that included a combination of perfusion 

parameters from PD using a conventional IIR clutter filter, PD using the more familiar 

truncated SVD method (i.e., rather than optimal shrinkage) for spatiotemporal clutter 

filtering, and conventional mean-intensity-based CEUS analysis provided the highest 

sensitivity and specificity to tumor anti-angiogenic treatment response compared to 

classifiers that included features from only one or two of those imaging modes. Also in 

chapter 3, we demonstrated that a combination of features from conventional and statistical 

CEUS was also more sensitive to anti-angiogenic treatment response than classifiers that 

incorporated features from only conventional or only statistical CEUS. The experiments in 

chapter 3 employed a preclinical tumor model consisting of an established renal cell 

carcinoma (RCC) cell line, Caki-1, implanted onto the CAM of ex-ovo chicken embryos 

and compared images of untreated and treated tumors to tumors. 

This study builds upon chapter 3 by incorporating both optimal shrinkage SVD PD and 

statistical CEUS into the treatment-response classifier and by challenging the classifier 

with tumors from two RCC cell lines (Caki-1 and ACHN) with differing drug sensitivity. 

The objectives of this study are to obtain a more complete assessment, compared to the 

simpler experimental designs of chapter 3, of whether (1) the high vessel sensitivity of PD 

with SVD clutter filtering is sufficient to avoid the need for more expensive and more 

technically difficult CEUS techniques when assessing tumor antiangiogenic responses and 

(2) whether, if CEUS is indicated, our statistical CEUS method should be preferred to or 

used in combination with conventional CEUS analysis. 

4.1.2 Evaluate classification performance on an independent tumor 

Moreover, evaluating the performance of a classification algorithm on a separate test set is 

essential for several reasons. Firstly, it allows for an unbiased estimation of performance. 

When developing a classification algorithm, it is common to use the cross-validation 

method, to test its performance. If the same data is used for both training and testing, the 
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algorithm may overfit the training data, meaning it will perform well on the training data 

but poorly on new, unseen data. Evaluating the algorithm on a separate test set ensures that 

the performance estimates are unbiased, as the algorithm has not seen this data during 

training.  

Secondly, evaluating the algorithm on a separate test set allows for an assessment of its 

ability to generalize to new data, ensuring the generalization of performance. A 

classification algorithm that performs well on a particular dataset does not necessarily 

perform well on new, unseen data. By evaluating the algorithm on a separate test set, we 

can assess its ability to generalize to new data and get a more accurate estimate of its true 

performance.  

Thus, to evaluate the robustness and generalization capabilities of the model pipeline, we 

used an independent set of tumors whose treatment sensitivity was unknown to the model. 

We trained the classifier using two tumor cell lines with distinct (high and low) treatment 

sensitivity and assessed its performance for a third, independent cell line. 

4.1.3 Study Design 

As in chapter 2 and 3, we again employ the ex-ovo chick CAM tumor model due to its 

high-throughput capability. The use of established cell lines is appropriate for the goals of 

this study because each cell line produces a population of tumors that are initially 

genetically identical, so data may be pooled over multiple serial experiments to accumulate 

large sample sizes within a few weeks. The resulting uniformity of tumors from the same 

cell line is desirable because our emphasis is on performance assessment of perfusion 

parameters from the ultrasound techniques, we introduced in chapter 2 and 3, so we wish 

to avoid the inter-tumor biological variability that might confound experiments with more 

clinically relevant models such as patient-derived tumor specimens. 

Also, as in chapter 2 and 3, Sunitinib, an approved first-line systemic therapy for metastatic 

RCC, is the drug used in this study. The Caki-1 cell line used in the study exhibits high 

sensitivity to Sunitinib [6] while ACHN demonstrates little response to Sunitinib [7] and 

parental 786-O showed moderate sensitivity to Sunitinib antiangiogenic treatment [8]. 
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An experiment in which eight different treatment-sensitivity classifiers were constructed 

by feature selection beginning from a maximum of twelve inputs is presented. The 

available features were endpoint tumor volume from 3D ultrasound; VI from 2D 

conventional PD; three vascular network morphology features (NV, NB, and mean VL) 

from 2D SVD-filtered PD; four parameters of PE, RT, WIR, and AUC from mono-

exponential wash-in curves fit to mean-intensity time series from conventional CEUS; and 

three analogous parameters (PE, TTP, and AUC) from mono-exponential wash-in curves 

obtained from the statistical CEUS method. 

Four feature sets were used in classification models trained using each of logistic regression 

and SVM: (1) features from conventional PD and CEUS only, (2) features from SVD-

filtered PD and statistical CEUS only; (3) the most informative features as determined the 

backward elimination feature selection, and (4) all 12 features. Moreover, the SVM 

classifier performance on an independent set of tumors using all 12 perfusion parameters 

and only the selected set of most informative features were evaluated. 

Classification performance was evaluated via the accuracy, sensitivity, specificity, and area 

under the receiver operating characteristic curve (AROC) for discriminating sensitive from 

resistant tumors. The relative importance of the individual features was also compared by 

computing their Shapely additive explanations (SHAP) values [9]. The results highlight 

the diagnostic potential of optimal-shrinkage-SVD-filtered PD and statistical CEUS 

analysis. 

To evaluate model pipeline robustness, we trained the classifier using two tumor above-

mentioned cell lines with distinct (high and low) treatment sensitivity and used it to classify 

a third, independent cell line (i.e., 786-O mRCC cells). A SVM classifier was trained with 

tumor samples from ACHN and Caki-1 cells and tested using twenty 786-O tumor samples. 

The SVM’s performance was evaluated based on its ability to identify 786-O tumors as 

Sunitinib-resistant.  
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4.2 Materials and Methods 

4.2.1 Tumor Model Experiment 

Caki-1, ACHN and 786-O kidney tumor cells (American Type Culture Collection, 

Manassas, VA) were engrafted onto CAMs of ex ovo chicken embryos near a branching 

vessel following the protocol described in [4]. Where Caki-1 and ACHN are metastatic 

RCC cell lines while 786-O is a cell line from primary site [10]. It is important to note that 

both Caki-1 and 786-O are clear cell RCC tumor cells while ACHN is the papillary RCC 

[10].  Staring on embryonic development day 12 (EDD-12), each group of tumors was 

treated by topical application of 5 µL of a 10 µM Sunitinib solution.  

The study began with equal treated tumor sample for Caki-1, ACHN and 786-O groups; 

however, only the chicks that survived through endpoint imaging on EDD-18 (20 Caki-1 

tumors, 25 ACHN tumors and 20 786-O) were included in the data analysis. Tumors were 

imaged using a VisualSonics Vevo 2100 ultrasound system (FujiFilm VisualSonics Inc., 

Toronto, ON) equipped with Digital RF mode for acquisition of beamformed, quadrature 

demodulated echo signals. 

4.2.2 Image Acquisition and Feature Analysis 

Three-dimensional PD images of the tumor volume were acquired using a 40 MHz linear 

array (MS-550D) via mechanical translation of the array. 2D B-mode image sequences, 

100 frames in duration, of a cross-section through the center of the tumor were also 

acquired using the 40 MHz array. CEUS images were acquired after injecting 0.7 mL of a 

2 × 109 microbubbles/mL solution of Vevo MicroMarker microbubbles (VisualSonics) 

suspended in PBS into a large CAM vessel. Destruction-replenishment sequences of 2D 

subharmonic CEUS images were acquired using a 20 MHz linear array (MS-250). Regions 

of interest (ROIs) for image analysis were defined via manual segmentation of the tumors 

using Vevo Lab analysis software (VisualSonics). VI was also computed for the 

conventional PD images using Vevo Lab.  

The 2D B-mode sequences were processed in MATLAB (version R2019a, The 

MathWorks, Natick, MA) using the optimal shrinkage SVD clutter filtering method 
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described in chapter 2. Briefly, the B-mode frames were extracted from a cine loop and 

combined into a 2D Casorati matrix. A singular value shrinkage function optimized for 

Frobenius norm loss [11, Eq. 7] was employed to isolate the most coherent data component. 

Subtraction of the shrinkage function from the singular values of the Casorati matrix 

extracted the blood signal components from the image data. A PD image was then 

reconstructed by rearranging the filtered Casorati matrix into a sequence of 2D images and 

summing the signal power of each pixel over all frames. Vascular network morphological 

parameters were extracted from the resulting 2D PD images using a vessel skeletonization 

algorithm, implemented in ImageJ (National Institutes of Health), that is similar to [12]. 

The vascular network morphology features NV, NB, and VL were computed by recursively 

traversing the vessel skeleton.  

Conventional time-intensity analysis of the 2D CEUS image sequences was estimated as 

the mean nonlinear signal intensity within the ROI for each frame of the cine loop. 

Perfusion parameters were then derived from the wash-in curves using the Vevo Lab 

software. In the statistical CEUS method [3], a Lomax distribution is fit to the histogram 

of contrast signal intensity within the tumor ROI for each frame of the replenishment 

sequence. The Lomax distribution approximates a mixture distribution of exponential 

functions. Enhanced volume fraction in each frame is estimated from the scale parameter 

of the Lomax distribution as detailed in [3]. A wash-in curve is constructed by plotting 

enhanced volume fraction versus time over the contrast replenishment interval. For both 

conventional and statistical CEUS, wash-in curves were characterized by fitting a 

monoexponential function as explained in [5] to estimate PE, RT, and AUC. Wash-in rate 

was also calculated from the monoexponential fit to the conventional CEUS sequence. 

4.2.3 Classification and Feature Selection Algorithms 

The eleven perfusion parameters plus tumor volume were used as inputs to a multivariable 

logistic regression model, as well as an SVM model, which were implemented in Python 

to classify resistant (i.e., ACHN ) and sensitive (i.e., Caki-1) tumors to Sunitinib. The 

models were trained using supervised learning to output a binary classification of each 

tumor as sensitive or resistant to Sunitinib, with the expected sensitivity of the cell line 

(Caki-1 high, ACHN low) used as ground truth.  
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Leave-one-out cross validation was used to avoid overfitting due to the small numbers of 

tumors. For each of logistic regression and SVM, four different classifiers were trained 

using different combinations of input features: (1) features from conventional PD and 

CEUS only; (2) features from SVD-filtered PD and statistical CEUS only; (3) the best 

performing combination of features determined using backward elimination feature 

selection; and (4) all 12 features. Accuracy, sensitivity, specificity, and the AUC of ROC 

were computed to assess the performance of the models. The treatment-sensitive 

classification was treated as a positive result for the purposes of computing sensitivity and 

specificity.  

Similarly, to evaluate the model performance on 786-O as an independent cell line and 

classify it to either sensitive or resistant group, SVM classifier is trained with tumor 

samples from ACHN and Caki-1 with both 12 ultrasound-based microvascular parameters 

and only selected set of parameters, and tested with 786-O. The treatment-sensitive 

classification was treated as a positive result for the purposes of computing sensitivity and 

specificity. Accuracy, sensitivity, specificity, and the AUC of ROC for classification 

performance were reported. 

SHAP is a model-agnostic method for explaining individual predictions made by machine 

learning models and are used here to interpret the relative impact of large and small values 

and positive and negative values of each feature on the classification output [13]. It is based 

on cooperative game theory and aims to provide a unified approach to model interpretation 

by connecting feature importance and feature attribution. The method calculates the 

contribution of each feature to the final prediction for a specific input by calculating the 

difference between the model's prediction for the input with and without the feature. SHAP 

values are then used to rank the features by their importance to the prediction [14]. SHAP 

values were computed as described in [8] for all the eleven perfusion parameters plus tumor 

volume and for the logistic regression classification algorithm only. 
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Table 4.1: Perfusion parameters of conventional and developed PD and CEUS  

 

4.3 Results 

4.3.1 Perfusion parameters for cell lines with different sensitivity level 

to antiangiogenic therapy  

Table 4.1 lists the means and standard deviations of all 12 microvascular ultrasound image 

features for tumors from all three cell lines with sensitivity level to Sunitinib. As expected, 

a general trend of lower vascularity was observed in the Caki-1 mRCC tumor cells, which 

were expected to be Sunitinib-sensitive, compared ACHN mRCC tumor cells, which were 

expected to be resistant to Sunitinib. On the other hand, the 786-O RCC tumor cells from 

Feature 
Imaging 

Technique 

Caki-1 

tumors  

ACHN 

tumors 
786-O tumors 

Tumor volume 

[mm3] 
Conventional PD 10.2 ± 3.1 15.9 ± 6.1 8.9 ± 4.2 

Vascularization 

index 
Conventional PD 3.7 ± 2.7 10.9 ± 3.8 5.8 ± 2.9 

Number of vessels SVD-filtered PD 25.6 ± 8.2 64.1 ± 14.9 34.5 ± 6.4 

Number of 

Branching points 
SVD-filtered PD 19.8 ± 5.4 45.4 ± 10.4 27.5 ± 8.7 

Mean vessel 

Length [m] 
SVD-filtered PD 168 ± 18 170.2 ± 30 150.2 ± 10 

Peak 

enhancement [a.u.] 

Conventional 

CEUS 
2.0 ± 1.7 8.2 ± 2.8 4.6 ± 1.9 

Rise Time [s] 
Conventional 

CEUS 
5.9 ± 4.5 7 ± 3.8 7.1 ± 2.4 

Area under the 

wash-in curve [a.u.] 

Conventional 

CEUS 
7.7 ± 5.3 13.1± 4.2 21.3± 6.5 

Wash-in rate [a.u.] 
Conventional 

CEUS 
3.4 ± 1.8 8.9 ± 4.7 4.3 ± 3.8 

Peak 

Enhancement [%] 
Statistical CEUS 2.4 ± 1.8 16.5 ± 8.4 9.5 ± 4.3 

Rise Time [s] Statistical CEUS 12.8 ± 7.5 9.8 ± 4.4 11.7 ± 3.8 

Area under the 

wash-in curve 

[%s] 

Statistical CEUS 15.4 ± 8.3 89.3 ± 24.8 31.9 ± 11.7 
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primary tumor site exhibited relatively low vascularity, however, the microvascular 

parameters of 786-O tumor cell were slightly higher than that of Caki-1 tumor cells. It is 

mainly because 786-O tumor cells are less sensitive to Sunitinib than that of Caki-1 tumor 

cells. The highlighted features determine those selected by feature selection algorithm.   

4.3.2 Utility of Lab-developed versus Conventional PD and CEUS 

perfusion parameters in Tumor Treatment Response Classification  

Table 4.2 reports the classification performance of resistant from sensitive tumor cell lines 

for the four logistic regression and four SVM models in terms of accuracy, sensitivity, 

specificity and the area under the ROC curve. The best-performing classifier used selected 

perfusion parameters of VI from 3D conventional PD, NV and NB from 2D PD with 

optimal shrinkage SVD clutter filtering, and AUC of wash-in curve and PE from statistical 

CEUS. The model with all of features from both PD and CEUS derived from both 

conventional analysis and the newly developed analysis yielded the second-best 

performing model. 

 

Table 4.2: Classification results using two different tumor cell lines. 

 Model Acc. Sens. Spec. ARO

C 

1 LR + conventional CEUS and PD features 0.87 0.84 0.89 0.92 

2 LR + newly developed CEUS and PD features 0.85 0.91 0.88 0.92 

3 LR + selected CEUS and PD features 0.95 0.97 0.96 0.98 

4 LR + All CEUS and PD features 0.92 0.93 0.90 0.94 

 

5 SVM + conventional CEUS and PD features 0.92 0.90 0.91 0.93 

6 SVM + newly developed CEUS and PD 

features 
0.94 0.93 0.93 0.94 

7 SVM + selected CEUS and PD features 0.98 0.97 0.98 0.98 

8 SVM + All CEUS and PD features 0.95 0.96 0.95 0.96 
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4.3.3 Feature Importance Analysis 

Figure 4.1 shows the impact of each of the features on the classification of tumor treatment 

response. Higher-magnitude SHAP values imply higher impact; lower-magnitude SHAP 

values indicate lower importance. In figure 4.1, the horizontal axis displays the SHAP 

value, and the features are ordered vertically from the highest impact (top) to the lowest 

effect on the prediction (bottom). The violin plots show how the SHAP value for each 

feature changes as that feature’s magnitude varies from low (blue) to high (red). High 

values of NV, NB, and AUC from statistical CEUS have an inverse relationship on the 

prediction (i.e., a high value of one of these parameters suggests a treatment-resistant 

classification) and are the most important features in tumor treatment-response 

classification. 

 

 

 

 

 

 

 

 

 

Figure 4.1: SHAP values of all the twelve features presented in this study. STCEUS 

stands for statistical analysis of CEUS while CONV is the conventional CEUS analysis. 
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Figure 4.2: Feature Importance Analysis 

 

4.3.4 Robustness and Generalization capabilities of the model pipeline 

Table 4.3 reports the classification performance using an independent tumor cell line, i.e.,  

786-O, as sensitive tumor cells to antiangiogenic therapy. The SVM classifier using all 12 

features from PD and CEUS images achieved accuracy, sensitivity, and specificity of 82%, 

78%, and 80%, respectively, with stratified sampling while the results were 87%, 83%, and 

89%, respectively, for the selected parameters. The area under the ROC curve for 

classification of 786-O tumor cells was 0.85 and 0.88 using all and selected features, 

respectively, which was lower than the cross-validation AUC of 0.95 for the labeled cell 

lines. Similar to other performance results, it is expected to have lower AUC ROC when 

testing the model with an unseen test set than cross validation method.  

Table 4.3: Classification results using 786-O tumor cell line. 

 

 Model Acc. Sens. Spec. AROC 

1 SVM + selected CEUS and PD features 0.87 0.83 0.89 0.88 

2 SVM + All CEUS and PD features 0.82 0.78 0.80 0.85 
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4.4 Discussion 

In this study, we investigated the utility of the combination of optimal shrinkage SVD 

clutter filtering for PD and statistical CEUS analysis for classifying tumors as sensitive or 

resistant to Sunitinib antiangiogenic treatment. The results indicate that conventional PD 

should be used in combination with SVD clutter filtered PD in circumstances, such as this 

study, where it is only practical to obtain 3D information from conventional PD. On the 

other hand, the statistical CEUS method may be sufficiently informative to recommend it 

be used in place of conventional mean-intensity CEUS analysis when additional 

information is available from PD modes.   

The performance of the classification models was evaluated using two classification 

algorithms, logistic regression and SVM. The relative performance of the four logistic 

regression and the four SVM models followed a similar trend. With both logistic regression 

and SVM, the model with features selected by backward elimination outperformed the 

other three models, which represent the performance that could be expected if the choices 

of imaging methods are limited in advance (Models 1, 2, 5, and 6 in Table 4.2) or no choices 

are made about which imaging modes to use (Models 4 and 8 in Table 4.2). The consistency 

of performance with logistic regression and SVM demonstrates that the classification 

results are independent of the choice of classification algorithm.  

The results also suggested that the machine learning model had reasonable generalization 

capabilities, but its performance on the 786-O as an independent test set was not as good 

as the cross-validation results. This behavior is common in machine learning models and 

is expected considering that in cross validation the model has already been trained on the 

data that it is being tested with. This discrepancy could be due to overfitting, which is a 

common issue in machine learning when the model starts to fit to the outliers in the training 

data. This means that the model may perform well on the training data (e.g., cross 

validation or leave-one-out method) but fails to generalize well to new, unseen data. One 

way to address the issue of overfitting is to collect more data to improve the model's 

training and generalization capabilities.  
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Higher magnitudes of SHAP values for NV, NB, and AUC from statistical CEUS, 

compared to all other parameters, indicate their greater importance for classifying tumors 

as sensitive versus resistant to antiangiogenic treatment. Also, Fig. 4.1 further demonstrates 

that these features have inverse relation with the “sensitive” classification. This observation 

is consistent with the interpretation that lower NV and NB in the tumor means the 

antiangiogenic drug reduced the tumor vascularity and, therefore, the tumor was sensitive 

to the drug. Moreover, the aforementioned features with higher SHAP values are also the 

top five features selected by the backward elimination. The SHAP analysis is consistent 

with the conclusions about the importance of the features that can be drawn by comparing 

their mean values in Table I and confirms their importance in classification of treatment 

sensitivity.  

The SHAP values also indicate that, for both conventional and statistical CEUS, AUC is 

the most informative wash-in curve parameter for classifying antiangiogenic treatment 

sensitivity. Moreover, Fig. 4.1 agrees with the results in chapter 3 [Table 3.3] where we 

compared the utility of conventional against statistical CEUS. In chapter 3, the backward 

feature elimination method selected AUC and PE from statistical CEUS and AUC and RT 

from conventional CEUS analysis as the best performing combination of CEUS features. 

In Fig. 4.1, we see that these features also have higher SHAP values compared to the other 

CEUS features for both conventional and statistical analysis.  

The feature selection process for the final machine learning (ML) model considered 

features that exhibit both high correlations and interactions. Features are correlated because 

they are all representative of intra-tumoral microvascular structure. They are also with 

interactions since one feature can be calculated based on two other features (i.e., AUC that 

can be calculated based on PE and RT). The selected features from a combination of US 

imaging analysis suggests that both functional and structural features from 2-D and 3D of 

different analysis of PD and CEUS are informative for making classification. The model 

containing selected features outperform the model with all the features due to reduce noise, 

redundancy, and irrelevant information, focusing on the features that best represented the 

underlying microvascular structure and function.  
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The higher performance achieved by the ML model with the selected features compared to 

the model that included all features can be interpreted by enhanced relevance, decrease in 

redundancy and reduction in overfitting. The presence of correlated or redundant features 

in the full feature set can introduce noise or duplicate information, potentially hindering 

the model's performance. The selected features were likely more closely related to the 

target variable and contained stronger predictive power than the non-selected features. By 

excluding redundant features through feature selection, the model focused on the most 

distinct and informative ones, leading to improved discrimination and classification 

capabilities. On the other hand, including all available features in the model can lead to 

overfitting, where the model becomes too complex and fits the training data too closely, 

leading to poor generalization on unseen data. By selecting a subset of features, we are 

mitigating the risk of overfitting and allowing it to generalize better to new instances. 

4.5 Conclusion 

The machine learning models could classify resistant from sensitive tumors with high 

accuracy, precision and specificity using perfusion parameters from both newly developed 

and conventional analysis of PD and CEUS and therefore, the experimental design 

successfully produced two groups of tumors with distinctly different vascular architecture 

and perfusion. Moreover, the classification performance of the machine learning model for 

identifying 786-O as sensitive to therapy was relatively high, indicating its potential for 

accurately predicting the sensitivity of independent tumor test samples and its 

generalization capabilities. 

Although these results of these studies are promising, they likely overestimate the 

classification sensitivity, specificity, and accuracy that can be expected in a clinical setting 

because CAM models using established cell lines do not model the intra and inter-tumor 

heterogeneity that is usually encountered in clinical cases.  
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Chapter 5 

 

5 Conclusion and Future Works 

 

5.1 Summary 

This research study aims to introduce a classification model pipeline based on ultrasound 

imaging microvascular parameters to evaluate the tumor treatment response. However, 

Since the conventional PD ultrasound images are not capable of provide accurate 

microvascular parameters due to the existence of the clutter, we first proposed a novel 

SVD-based clutter filtering for PD images to enhance the vascular quantification of 

ultrasound-based perfusion imaging through the use of optimal shrinkage SVD-based 

clutter filtering. The proposed method was compared to truncated SVD clutter filtering 

methods, and the results demonstrate significant improvements in image quality, 

visualization, and microvascular and perfusion quantification, leading to increased SNR 

and CNR, which, in turn, improve the quantification of tumor microvessels. 

Moreover, to evaluate the tumor treatment response, we presented tumor engrafted on the 

CAM of chick embryo as a scalable and efficient preclinical tumor model to classify renal 

cell carcinoma tumor cell response to antiangiogenic treatment based on multiparametric 

ultrasound microvascular and perfusion parameters. Moreover, we demonstrated the 

effectiveness of the proposed machine learning model pipeline to study antiangiogenic 

treatment response using ultrasound microvascular imaging. We also evaluated the utility 

of microvascular and perfusion parameters derived from optimal shrinkage SVD-based 

power Doppler and statistical analysis of contrast-enhanced ultrasound in the context of 
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tumor treatment evaluation. The results indicated that derived features from these two 

analyses when used along with the microvascular parameters derived from conventional 

analysis will improve the classification of tumor response to antiangiogenic treatment. 

We further assessed the robustness and the generalization capabilities of the 

multiparametric microvascular ultrasound machine learning pipeline with RCC tumor cells 

engrafted on the CAM of chick embryo to classify tumor treatment response on 

independent set of tumor cells with unknown treatment response to the machine learning 

model. The classification results demonstrated that the model pipeline is robust and can 

easily be generalized to any other tumor cell line.  

5.2 Future Works 

5.2.1 Optimal Shrinkage SVD Clutter Filtering 

Real-time implementation of SVD-based clutter filtering can be challenging due to the 

large amount of data that needs to be processed. In medical imaging applications such as 

power Doppler ultrasound, real-time processing is critical for accurately identifying and 

tracking blood flow signals. Future research could focus on developing efficient algorithms 

that can perform clutter filtering in real-time [1]. For example, randomized SVD (rSVD) 

has been shown to successfully accelerate filtering of in vivo stationary tissues [2] were 

two methods of randomized singular value decomposition (rSVD) and randomized spatial 

down sampling were presented to improve the computational performance of singular 

value-based clutter filters for ultrasound blood flow imaging. Both methods were tested on 

a flow phantom and in vivo tissue with the presence of heavy tissue clutter and were found 

to provide comparable clutter rejection performance to full SVD with significantly 

improved computational performance.  

Another possible approach is to use parallel processing techniques to distribute the 

computational load across multiple processors or graphics processing units (GPUs). This 

can help reduce the processing time and enable real-time implementation of SVD-based 

clutter filtering. In addition to developing more efficient algorithms, researchers can also 

investigate the use of machine learning techniques, such as convolutional autoencoders, to 

improve clutter filtering performance. These techniques can learn the underlying patterns 

https://www.researchgate.net/publication/365316589_Fast_and_Robust_Clutter_Filtering_in_Ultrafast_Echocardiography
https://www.researchgate.net/publication/365316589_Fast_and_Robust_Clutter_Filtering_in_Ultrafast_Echocardiography
https://www.researchgate.net/publication/365316589_Fast_and_Robust_Clutter_Filtering_in_Ultrafast_Echocardiography
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and features of clutter signals in a data-driven manner, which can help improve the 

accuracy of clutter filtering. For instance, a recent study [3] has shown that using 

convolutional autoencoders can improve clutter filtering in power Doppler ultrasound 

imaging, particularly in the presence of low signal-to-noise ratios and weak flow signals. 

Furthermore, exploring the use of SVD-based clutter filtering in combination with other 

imaging techniques, such as contrast-enhanced ultrasound or microvascular imaging, can 

also be a promising direction for future research [4]. These techniques can provide 

complementary information about the microvascular structure and perfusion of tissues, 

which can help improve the detection of small blood vessels and slow blood flow signals. 

For example, [5] has shown that combining power Doppler ultrasound with contrast-

enhanced ultrasound can improve the detection of slow blood flow signals in liver tumors. 

Such multimodal imaging approaches can provide more comprehensive and accurate 

information about tissue perfusion and can have potential applications in cancer diagnosis 

and treatment. 

Moreover, the effectiveness of SVD filtering is reduced when blood, clutter, and noise do 

not follow orthogonal bases due to limitations in factorization rank and complex tissue 

motions. This overlap between signals creates a trade-off between clutter rejection and 

preservation of the blood signal. Although longer ensemble sizes improve SVD filtering, 

this is not practical in clinical settings where short ensemble lengths, typically less than 50 

frames, are necessary to achieve real-time Doppler frame rates. For instance, the author in 

[6] presented a new filtering approach, which involved applying high-order SVD 

(HOSVD) to a 3-D tensor of aperture data containing spatial, slow-time, and channel 

dimensions and showed that leveraging spatial, temporal, and aperture features enhance 

the rejection of clutter and noise signals. 

5.2.2 Other Tumor and Animal Models to Study Anti-Angiogenic 

Therapy Effectiveness 

5.2.2.1 Use Patient Derived Xenografts (PDX) Tumors  

In the proposed tumor model, the tumor cell lines are grown on the surface of the chick 

embryo which lacks the complexity of the tumor microenvironment. Patient-derived 



103 

xenografts (PDXs), on the other hand, are considered better than tumor cell lines to 

evaluate antiangiogenic drug treatment for several reasons [7]. First, PDXs are created by 

implanting fragments of human tumors directly into immunocompromised mice and CAM 

of chick embryo. This means that the tumor microenvironment, including the blood vessels 

and surrounding tissues, are preserved in the PDXs, which better mimics the complexity 

of human tumors. Therefore, PDXs are more representative of human tumors and can 

provide a more accurate prediction of the response to antiangiogenic drugs in human 

patients.  

Additionally, using PDX models from actual patients allows for a more personalized 

approach to cancer research and treatment, potentially leading to more effective therapies 

tailored to individual patients. Thus, one possible future direction is to develop a tumor 

treatment response evaluation using the PDX tumor models. This would allow for more of 

a clinical translation of antiangiogenic treatment response of tumors xenografts from either 

primary or metastatic tumor site within the human body and determine their sensitivity to 

clinically used treatments. 

5.2.2.2 Use of Mice Animal Models to Evaluate PDX Response to 

Antiangiogenic Drugs 

On the other hand, mice are considered good preclinical animal models for the growth of 

PDXs for several reasons as well. These models are particularly useful because they closely 

mimic the human tumor microenvironment, allowing researchers to observe and evaluate 

the effectiveness of antiangiogenic therapies on the tumors in a controlled setting and 

makes the results of antiangiogenic treatment more translatable to humans. For instance, 

the study in [8] used a mouse model bearing clear-cell renal cell carcinoma xenograft 

tumors to test the effectiveness of using ultrasound microvascular imaging to evaluate 

response to anti-angiogenic therapy. Although mice animal models have their advantages, 

PDX models are notoriously difficult to establish in any host, so CAM assays may still be 

useful for time- or cost-sensitive applications [9]. 
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5.2.3 Use of Additional Parameters for Tumor Treatment Response 

The findings presented in this thesis demonstrated that ultrasound-based perfusion 

parameters could effectively classify tumor treatment response with decent performance 

when tested on independent tumor cells. However, it is possible to further enhance the 

classification performance by incorporating more features that are descriptive of tumor 

angiogenesis. One potential approach could be to include additional perfusion parameters, 

such as measures of vascular heterogeneity or microvascular density, from histology tests 

and genomics.  

Vessel microstructure and perfusion parameters, such as blood vessel density, can be 

quantified from histological samples of tumors. These parameters provide important 

information about tumor microenvironment, angiogenesis, and the effectiveness of anti-

angiogenic therapies. In addition, genomics-based approaches, such as gene expression 

profiling and DNA sequencing, provide additional information that supplements perfusion 

parameters. The use of perfusion parameters from histology tests and information from 

genomics represents a valuable approach for improving the accuracy of tumor response 

assessment and ultimately, the outcomes of cancer patients.  

Perfusion parameters from genomics and histology tests can be useful when used along 

with ultrasound microvascular parameters in evaluating tumor antiangiogenic treatment 

response. For example, three-dimensional (3D) dynamic contrast enhanced ultrasound 

(DCE-US) perfusion map characterization can be used as an inexpensive, bedside and 

longitudinal indicator of tumor perfusion for prediction of vascular changes and therapy 

response [10]. Models developed using this method have shown excellent prediction of 

response in pre-clinical data and significant correlations with histological assessments of 

tumor vasculature . This approach can identify responders based on early perfusion 

changes, using perfusion properties correlated to gold-standard vascular properties.  

5.2.4 Use of Ultrasound-based Perfusion Parameters in Other Anti-

Angiogenic Treatment Response Evaluation 

At the beginning of this research project, Sunitinib antiangiogenic drug was considered as 

the primary clinical treatment for metastatic renal cell carcinoma (mRCC). However, with 

https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
https://www.nature.com/articles/s41598-020-63810-1
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the advancements in clinical research, immune therapies have now become the main 

treatment for mRCC. Despite this, ultrasound-based perfusion parameters are not limited 

to evaluating the response of Sunitinib anti-angiogenic treatment alone, as explored in this 

thesis. These parameters can also be utilized to evaluate other tumors, such as breast 

tumors, prostate tumors, and thyroid tumors, as well as other antiangiogenic therapies, such 

as bevacizumab. Furthermore, these parameters can also be applied to other diseases with 

antiangiogenic therapies, such as peripheral arterial disease and coronary artery disease. 

These parameters have the potential to be utilized in assessing the efficacy of a wide range 

of angiogenic and antiangiogenic therapies for various diseases. Angiogenic treatments are 

used in various diseases where promoting the formation of new blood vessels is necessary 

for tissue regeneration. For instance, anti-angiogenic treatments are used in various 

diseases where inhibiting the formation of new blood vessels is necessary to prevent tumor 

growth and other disease processes. The use of ultrasound-based perfusion parameters in 

the context of tumor antiangiogenic treatment can be extended to other drugs such as 

bevacizumab, Sunitinib, and sorafenib and in various types of cancer, such as colorectal, 

lung.  

Angiogenic treatments are used for peripheral arterial disease (PAD), which is a condition 

characterized by the narrowing or blockage of blood vessels in the legs, leading to reduced 

blood flow to the affected limbs, to promote the formation of new blood vessels in the 

affected area, improving blood flow to the affected limb. Moreover, angiogenic treatments 

are used for coronary artery disease (CAD), a condition characterized by the narrowing or 

blockage of blood vessels that supply blood to the heart muscle which leads to chest pain 

or heart attack, to promote the formation of new blood vessels in the heart muscle and 

improving blood flow to the affected area.  

5.3 Conclusion 

Overall, this research project highlighted the potential of optimal shrinkage SVD-based 

clutter filtering and machine learning models for improving the accuracy and reliability of 

ultrasound-based microvascular imaging and for studying antiangiogenic therapy response. 

This study has shown that the combination of perfusion parameters form both proposed PD 
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and CEUS ultrasound image analysis are critical for assessing antiangiogenic sensitivity in 

a CAM tumor model. We have identified a minimal set of perfusion/microvascular 

parameters that are essential for evaluating antiangiogenic sensitivity, including selected 

vascularization index, number of vessels and vessel length from optimal shrinkage SVD 

filtered 2D and 3D PD, as well as area under the wash-in curve from 2D CEUS. 
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