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Abstract

There are several situations where tasks can be performed better robot-

ically rather than manually. Among these are situations (a) where high ac-

curacy and robustness are required, (b) where difficult or hazardous working

conditions exist, and (c) where very large or very small motions or forces are

involved. Recent advances in technology have resulted in smaller size robots

with higher accuracy and reliability. As a result, robotics is finding more

and more applications in Biomedical Engineering. Medical Robotics and

Cell Micro-Manipulation are two of these applications involving interac-

tion with delicate living organs at very different scales.

Availability of a wide range of imaging modalities from ultrasound and X-

ray fluoroscopy to high magnification optical microscopes, makes it possible to

use imaging as a powerful means to guide and control robot manipulators. This

thesis includes three parts focusing on three applications of Image-Guided

Robotics in biomedical engineering, including:

• Vascular Catheterization: a robotic system was developed to insert a

catheter through the vasculature and guide it to a desired point via vi-

sual servoing. The system provides shared control with the operator to

perform a task semi-automatically or through master-slave control. The

system provides control of a catheter tip with high accuracy while re-

ducing X-ray exposure to the clinicians and providing a more ergonomic

situation for the cardiologists.

• Cardiac Catheterization: a master-slave robotic system was developed

to perform accurate control of a steerable catheter to touch and ablate

faulty regions on the inner walls of a beating heart in order to treat

arrhythmia. The system facilitates touching and making contact with

a target point in a beating heart chamber through master-slave control

with coordinated visual feedback.

• Live Neuron Micro-Manipulation: a microscope image-guided robotic

system was developed to provide shared control over multiple micro-
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manipulators to touch cell membranes in order to perform patch clamp

electrophysiology.

Image-guided robot-assisted techniques with master-slave control were im-

plemented for each case to provide shared control between a human operator

and a robot. The results show increased accuracy and reduced operation time

in all three cases.

Keywords

Biomedical Robotics, Visual Servoing, Image-guided Robotics, Angioplasty,

Cardiac Ablation, Patch Clamp Electrophysiology, 3D Visualization, Master-

slave Control
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Chapter 1

Introduction

There are various problems in biomedical applications where robot-assisted

techniques can play an important role in achieving higher accuracy and re-

liability while requiring less time and providing a more ergonomic interface

for manual operation. This includes applications ranging from research in

medicine and biology to medical diagnosis and treatment. The availability

of various imaging modalities along with the evolving computational power

of modern computers, makes it efficient to use real-time or online imaging to

guide or control robots to perform a task.

1.1 Image-Guided Robotics

Figure 1.1 represents a block diagram of image-guided robotics in its simplest

form where the imaging data is not directly used to control the robot. In this

configuration, the tool-organ interaction is controlled by the human operator

and the overall control loop is closed via visual feedback provided to the user.

This is the common configuration used in robotic surgery in systems such as

Intuitive Surgical’s da Vinci R©. Peters [1] has studied various applications of

image-guided robotics of this type applied to surgical procedures. The same

concept is also used in conventional methods of cell micromanipulation where

the user looks at live microscope images while moving a tool installed on a

micromanipulator using manual control knobs as in patch clamp electrophys-
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iology [2].

Figure 1.1: Image-guided robotics in biomedical applications

Although visual feedback to the operator can make the procedure more

efficient, there is much more information in the images that can be used as

feedback to the robot controller. Figure 1.2 represents an alternative configu-

ration where image-based tracking of the tool or the organ is performed on the

intra-operative images online or in real time. The user can still get a visual
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feedback and interact with the controller through a haptic device or a graph-

ical user interface while an internal control loop performs sub-tasks by using

feedback provided by image-based tracking algorithms.

The configuration shown in Figure 1.2 can represent a supervised control

(autonomous or semi-autonomous) or a master-slave control scheme. This can

provide shared control between the human operator and the controller [3].

1.2 Applications to Medicine and Biology

There are several biomedical applications for image-guided robotics, three of

which form the topics of this thesis.

1.2.1 Intravascular Interventions: Angioplasty

Certain diseases can be treated by inserting a long flexible tube (i.e., catheter)

through the vasculature and performing a minimally invasive intervention. Ar-

teriosclerotic vascular disease (ASVD) is a result of build-up of fatty materials

in arteries which may partially or completely block the blood flow to different

organs [4]. Angioplasty is an intravascular intervention where the narrowed or

blocked blood vessel is mechanically widened. A collapsed balloon is inserted

to the narrowed location, the balloon is then inflated to open up the blood

vessel. Sometimes a superelastic stent is also deployed to keep the blood ves-

sel open [5]. The major challenges of the conventional methods of angioplasty

include: (a) the X-ray exposure to the clinician and (b) the high accuracy

and reliability required for positioning the catheter tip [6]. An image-guided

robot-assisted technique was proposed to address these challenges. This work

is described in more details in Chapter 2. This work was performed in col-

laboration with Dr. Jayender who developed an active catheter and also the

controllers for a robot manipulator used for catheter insertion. Details of his

work can be found in his PhD thesis [7] and are not included this thesis.
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Figure 1.2: Image-guided robotics with visual servoing in biomedical applica-
tions
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1.2.2 Intracardiac Interventions: Cardiac Ablation

Some of cardiac diseases can be treated by inserting a catheter into the heart

chambers through the vasculature. Cardiac arrhythmia is a condition where

the heart beat may become too fast or too slow or may become irregular. This

can cause different problems ranging from annoying palpitations (conscious

awareness of the heart beat) to cardiac arrest. Cardiac arrhythmia is caused

by abnormal electrical activity in the heart chambers. One treatment method

is to insert a catheter into the heart chambers in order to destroy the faulty

regions by burning or freezing part of the endocardium [8]. Major challenges

in conventional methods of cardiac ablation include (a) accurate positioning of

the catheter tip, and (b) keeping contact with a target point despite the beating

heart motion. An image-guided robotic system was proposed to facilitate the

positioning of the catheter tip through a master-slave control scheme with

coordinated visual feedback. Details of this work are included in Chapter 3.

1.2.3 Cell Micromanipulation: Patch Clamping

There are several applications where micromanipulation of live cells is required.

Pronuclear DNA injection, indentation of cell membranes to measure their

mechanical properties and several other applications require mechanical mi-

cromanipulation of cells. Patch clamp electrophysiology is another application

where electrodes are attached to ion channels of excitable cells (e.g. neurons)

in order to record their electrophysiological activities [2]. This can be used to

study the effect of different drugs for treatment of neurological disorders such

as epilepsy. The major challenge rises from the fact that it is very difficult to

locate and guide micro-electrodes under microscope images because of the lim-

ited field of view. A microscope image-guided micromanipulation technique

was developed in order to address these challenges. Detailed description of

this work is included in Chapter 4.
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1.3 Thesis Outline and Organization

In this thesis we study three applications of image-guided robotics with biomed-

ical engineering applications. In Chapter 2, an image-guided robot-assisted

technique for catheter insertion is described where the main application is

aimed at intravascular interventions such as angioplasty. In Chapter 3, an

image-guided robotic system for intracardiac catheterization is described that

focuses on cardiac ablation. In Chapter 4, a microscope image-guided micro-

manipulation system is presented where the main application is micromanip-

ulation of neurons in live brain tissues for patch clamp electrophysiology. The

thesis is prepared in the integrated articles format and each of the Chapters

2, 3 and 4 includes a complete description of the corresponding work as well

as review of the related literature for each part. Chapter 5 contains an overall

conclusion for the work with suggestions for future research. An outline of the

work in each of the three parts of the thesis is as follows:

• Chapter 2 starts with an introduction in Section 2.1 which is followed

by a description of the experimental setup in Section 2.2. The image-

based tracking catheter tip algorithm is described in Section 2.3 while

Section 2.4 discusses the fusion of image-based and magnetic tracking

of the catheter tip using Kalman filtering. Section 2.5 focuses on au-

tonomous guidance of a catheter and master-slave insertion of a catheter

is described in Section 2.6. Experimental results are discussed in Sec-

tion 2.7. Some remarks and conclusions are given in Sections 2.8 and

2.9.

• Chapter 3 starts with an introduction to the cardiac ablation problem.

The experimental setup used in this part of the work is described in

Section 3.2. Section 3.3 describes the robotic system for actuation and

control of steerable catheters and Section 3.4 discusses modeling and

control of a steerable catheter. Online 3D reconstruction of ultrasound

images is described in Section 3.5 while Section 3.6 covers the master-

slave control. Results are given in Section 3.7 and Section 3.8 concludes

this chapter.
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• The experimental setup used in Chapter 4 is described in Section 4.2.

Section 4.3 discusses the design and implementation of algorithms for au-

tomatic focusing on micropipettes and tissue slices while Section 4.4 de-

scribes the calibration and registration algorithms and methods. Image

processing algorithms for detection and tracking of micropipette tips us-

ing microscope images are described in Section 4.5. Section 4.6 presents

the image processing algorithm for detection of water surface contact

using microscope images captured through a water immersion objective

lens. The visual servoing of micropipette tip positions is described in

Section 4.7. Sections 4.8 and 4.9 present the artificial potential field

algorithm for calculation of collision avoidance forces and the haptic in-

terface for master-slave control of the micropipettes, respectively. Online

3D reconstruction and visualization of neurons using microscope images

is discussed in Section 4.10. Section 4.11 contains the software archi-

tecture, and the experimental results for this chapter are presented in

Section 4.12.

1.4 Contributions and Publications

This thesis can be divided to three main parts that are covered in Chapters

2, 3 and 4. The major contributions made by the author in each part of the

thesis are as follows:

1.4.1 Chapter 2: Angioplasty

The work described in Chapter 2 is the first image-guided robotic system

for catheter insertion using visual servoing and supporting different modes of

control. This work has been published in a number of peer-reviewed conference

proceedings and journal papers including [6, 9–11] and [12].
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1.4.2 Chapter 3: Cardiac Ablation

The research described in Chapter 3 is novel in context of a master-slave

robotic system which is able to actuate conventional steerable catheters pro-

viding online 3D visualization of the beating heart. This work was the latest

part of the thesis and part of the results were published in [13]. Continuation

of this work could be the subject of another PhD thesis.

1.4.3 Chapter 4: Patch Clamping

The system described in Chapter 4 is the first system reported for performing

image-guided robot-assisted multiple electrode patch clamp electrophysiology

that can be applied to existing patch clamp setups. Parts of this work have

been published or are under review in a number of peer-reviewed conference

proceedings and journal papers [14–18].
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Chapter 2

Angioplasty

Exposure to X-ray radiation is a great risk for cardiologists during long in-

travascular interventional procedures. Angioplasty is an intravascular proce-

dure used for treatment of arteriosclerotic vascular diseases wherein the clin-

ician guides a catheter into the femoral artery in the leg (or less commonly

through the radial or brachial artery) under X-ray fluoroscopy. The angio-

plasty procedure often extends to over an hour. A clinician performs several

hundred such procedures over his/her lifetime, leading to an accumulation of

the total radiation he/she is exposed to. In this part of the thesis, we in-

vestigate an image-guided robot-assisted technique for catheter insertion and

catheter tip position control. The tip of an active catheter is tracked in real-

time to provide information on the location of the catheter which determines

the optimal stroke length of insertion for a robot manipulator and the nec-

essary bending angle for an active catheter. The catheter is autonomously

guided from the point of entry to the site of plaque buildup, thereby shielding

the clinician from harmful radiation due to the X-rays used for imaging and

providing a more ergonomic approach for catheter insertion. Experimental

results are given to illustrate the robot-assisted catheter insertion procedure

using image guidance.
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2.1 Introduction

Angioplasty is a minimally invasive procedure that involves the insertion of a

catheter into a blood vessel for removal of blockages in blood flow. There are

several problems associated with the conventional way of performing angio-

plasty. The arteries through which the catheter passes are extremely complex

and delicate. The repeated insertion of a catheter through several trials could

tear a blood vessel at a junction and cause bleeding [1]. Furthermore, the

clinician has no feedback on the force applied by the tip of the catheter on the

walls of the blood vessel. Excessive force could rupture the blood vessel or dis-

lodge plaque. The clinician could have prolonged exposure to radiation and be

subjected to a high-level of fatigue caused by poor ergonomics of the current

procedure. These pose danger and/or discomfort to the clinicians who perform

the procedure over a prolonged period of time [2], [3]. There is therefore a need

to develop technology for a more accurate, safer and more reliable approach

for catheter insertion that can reduce the potential for injury to patients and

radiation exposure and discomfort to clinicians.

In this part of the thesis, we explore the possibility of employing a robotic

system to insert a catheter into the vasculature and control its tip position

inside the vasculature based on information received from image processing

algorithms. Position/force control of a robot end-effector and design and con-

trol of an active catheter were the subject of another PhD thesis that can be

found in [4]. A brief description of the active catheter design and control is

included in Appendix B. This chapter is focused on the author’s work on three

main parts including (a) real-time image-based tracking of catheter tip, (b)

fusion of image and magnetic tracking information, and (c) shared control of

the catheter insertion procedure.

There are a few research groups that have studied the problem of employ-

ing a master-slave robotic system to aid in the insertion of a catheter. Fukuda

et al. [5], [6], [7] have developed a system with 3 degrees of freedom (DOF)

controlled by a joystick. Thakur et al. have developed a master-slave catheter

insertion mechanism [8]. Two recent companies, Corindus Inc. [9], [10] and
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Hansen Medical [11], [12], [13] have also developed master-slave systems with

2-DOFs (insertion/retraction and twisting) to insert a catheter into the vascu-

lature using a joystick. However, none of these systems uses the information

provided by the imaging system in order to control the catheter. In other

words, only the position of the proximal end of the catheter is being controlled

and the distal tip position is not controlled by a closed-loop system. This can

be a major drawback because the catheter is a flexible system operating in a

constrained environment (i.e., the vasculature). The catheter shows nonlinear

behavior; therefore it is not trivial to control the proximal end and expect that

the distal tip follows the same motion. Any abrupt motion of the distal end

of the catheter may cause damage to the blood vessels or may dislodge plaque

and cause fatal conditions. It is worth mentioning that the robot developed by

Hansen Medical is specific for application in cardiac ablation, which requires

significantly larger catheters (8Fr) and minimal guidance through the vascu-

lature since the path from the point of insertion in the femoral vein to the

heart is quite straightforward. This is not the case with angioplasty wherein

a much smaller catheter (typically 5Fr) is used to open blockages in remote

arteries. Another company, Stereotaxis [14] has developed a magnetic naviga-

tion system that can be used to navigate the distal end of a catheter in 3D

using strong magnetic fields. This system requires giant magnets, specialized

catheters equipped with permanent magnets and only controls the orientation

of the distal end rather than its position while it is being inserted into the

vasculature.

Jayender et al. [15] have developed an Augmented Hybrid Impedance Con-

trol (AHIC) scheme to perform catheter insertion for angioplasty by control-

ling the force of insertion, preventing buckling of the catheter by controlling

the moments in the orthogonal directions to the direction of insertion and

maintaining a remote center of motion. A brief description of the Augmented

Hybrid Impedance Control scheme is included in Appendix C. Jayender et al.

have also developed an active catheter instrumenting a catheter with Shape

Memory Alloy actuators and controlling the strain in the actuators using PI

control, the gains of which are obtained by optimizing certain cost functions to
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ensure robust stability and performance [4]; This is described in Appendix B.

We have used this system to develop a visually servoed autonomous catheter

insertion algorithm to guide the catheter from the point of entry to the desti-

nation using image processing algorithms while performing closed-loop control

over its distal tip position (or velocity). A block diagram of this image-guided

robot-assisted catheter insertion system is shown in Figure 2.1. The benefits of

developing such a system are considerable - reduction in the amount of stress

and fatigue to the clinician, reduction in the harmful X-ray exposure to the

clinician, higher accuracy in position control of the distal tip of a catheter, and

easier navigation of the active catheter within the complex vasculature using

image guidance.

For closed-loop control of the catheter distal tip position, it is required to

track the end of the catheter in real time. There are different methods for

real-time tracking of the tip of a catheter inside the body: (a) one is by using

magnetic tracking by RF-coils and MR scanning, which can achieve a tracking

rate of 10fps as reported in [16]; (b) another method is using image processing

techniques on real-time images captured by X-ray fluoroscopy, MRI, ultra-

sound or other medical imaging modalities; (c) magnetic tracking can also be

used for tracking the catheter tip. MR image-guided catheter tracking, as

reported in [17], can achieve a maximum rate of 3.1fps. In [18], an off-line al-

gorithm (based on adaptive spatial-temporal filtering) has been developed to

detect the end of a catheter in X-ray fluoroscopic images. A catheter tracking

algorithm based on 3-D ultrasound imaging is discussed in [19]. Novotny et

al. [20] have developed a real-time tracking method based on 3D ultrasound

images. This method was used for visual servoing of a catheter in order to

compensate for heart beat motion in mitral valve repair procedures by Kesner

et al. [21], [22]. We have developed a novel real-time tracking algorithm to

follow the motion of the tip of a catheter inside the body using X-ray fluo-

roscopy images. The tracking algorithm finds the tip of the catheter in each

frame (when a motion is detected) in real time. An image-based visual servo-

ing approach is then used to determine the stroke length of insertion for the

robot and desired bending angle for the active catheter in order to control the
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Figure 2.1: Autonomous Insertion Algorithm
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distal tip position of the catheter and guide it through the vasculature. We

have also developed a data fusion technique to combine image-based tracking

and magnetic tracking to achieve higher accuracy and reliability.

The author believes that this is the first work which has developed a vi-

sually servoed robotic catheter insertion and guidance system. The active

catheter can be guided from the point of insertion to the target under the

supervision of a cardiologist autonomously or using a master-slave control

scheme. In the autonomous mode, the clinician provides the initial and final

destination through a Graphical User Interface (GUI) and maintains supervi-

sory control over the robot while the slave robot inserts the catheter into the

body based on the images obtained. Image processing algorithms have been

implemented to track the end-point of the catheter in real time. Based on

information obtained from the image processing algorithm, the autonomous

guidance algorithm provides the stroke of insertion to the Robot Control block

shown in Figure 2.1 and the desired angle of bending in the catheter to the

Catheter Control. The robot control block implements an augmented hybrid

impedance (AHIC) control scheme in order to control the position of the end-

effector as well as the force exerted by the end-effector on the environment [23].

The catheter control block ensures accurate tracking of the desired bending

angle. In the master-slave control mode, the catheter distal tip position is

controlled using image-based visual servoing in order to track the user’s hand

motion on the master [24].

2.2 Experimental Setup

The experimental setup is shown in Figure 2.2. A 7-DOF Mitsubishi PA10-

7CE robot has been employed to perform robot-assisted catheter insertion. In

our laboratory, it is controlled by a host computer via the ARCNET proto-

col1. A two-client/one-server architecture has been implemented to perform

the experiments. The clinician interacts with a GUI running on the server,

1ARCNET(Attached Resource Computer NETwork) is a local area network (LAN) pro-
tocol which is popular in the area of embedded systems (http://www.arcnet.com/).
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which is a Pentium IV 2.4 GHz, 1 GB RAM computer running Windows XP.

The orientation of the catheter tip is measured by means of a 5-DOF mag-

netic sensor. More details on the magnetic tracking system are included in

Appendix H. The magnetic tracking system is interfaced to one of the clients,

which is a Pentium IV 3.0 GHz, 1 GB RAM computer running Windows XP.

A periodic timer running at 35 ms is responsible for obtaining the magnetic

sensor data. The second client computer (Intel Pentium 3.0 GHz, 1.5 GB

RAM) controls the robot and sends data packets via the ARCNET protocol

to the servo controller. An ATI Gamma 6-DOF force/torque sensor has been

used as the wrist force sensor on the robot to measure the force exerted by the

robot end-effector while inserting the catheter into the testbed.

The active catheter developed for the experiments uses a typical 5Fr guide

catheter from Medtronics Inc. The testbed built to validate the catheter in-

sertion algorithm consists of vinyl tubes of varying internal diameters (3.0mm,

4.5mm and 6.0mm). The diameters of the tubes chosen are smaller than the

normal size of the femoral artery, which is 8.75mm ± 2.11mm [25], [26]. The

bending angles and radii of the tubes are close to those of arteries in the hu-

man body to make the testbed as realistic as possible for a proof-of-concept.

The second bifurcation chosen along the desired path was placed at a random

angle in 3D space. The image processing algorithms determine the angles of

the various branches offline and provide the necessary bending angles to the

active catheter when its distal tip reaches a bifurcation. The process is similar

to making a roadmap of the vasculature using angiography.

The desired specifications for the catheter insertion problem are as follows:

(a) The robot should be programmed to move along a pre-determined path to

insert the catheter into the body; (b) the force of insertion should be regulated

to ensure that there is no damage to the epithelial cells of the blood vessel;

(c) the position of the tip of the catheter should be tracked and the speed of

insertion should be controlled to achieve a smooth trajectory near the branches

and the target; (d) at a bifurcation point, the active catheter should precisely

bend by the amount specified by the image processing algorithm. Items (a)

and (b) are addressed in [4] and items (c) and (d) are described in this chapter.
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Figure 2.2: Experimental setup for catheter insertion
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2.3 Image-based Tracking

In order to develop a visual servoing control scheme with autonomous image

guidance, the first step is to develop real-time image-based tracking of the

distal end of the catheter. Based on the position of the tip of the catheter,

the future course of insertion is decided. In our laboratory tests, we have used

a fire-wire digital camera capturing 1024 × 768 pixel 8-bit gray scale images

at 30fps to obtain images as the catheter is inserted into the testbed. The

maximum frame rate is limited by two bottlenecks. One is the time resolution

of the imaging device (X-ray fluoroscopy) and the other is the time required for

processing a captured frame. Most of the modern X-ray fluoroscopy systems

have a time resolution of up to 30 frames per second [27]; therefore the selection

of a 30fps camera is realistic. The images obtained from this camera are similar

to X-ray fluoroscopic images in terms of brightness, contrast and frame capture

rate. However, X-ray fluoroscopic images have a higher resolution as compared

to the images obtained from the fire-wire camera. These similarities highlight

that the algorithm developed should work with X-ray fluoroscopic images and

its accuracy can be further improved with higher resolution X-ray images.

The spatial resolution of a GE Series 7700 rotational C-arm X-ray fluoroscopy

machine is reported by Zhang et al. [28] to be as good as 0.651mm/pixel

which is better than the resolution of the firewire camera which has a spatial

resolution of around 1.0mm/pixel in our case. A sample X-ray image of a

part of our testbed and the active catheter is shown in Figure 2.3. As seen

in this image, the SMA and magnetic sensor wires improve the contrast and

make the catheter more visible. A clinical fluoroscopic image of a catheter and

guide-wire in the human body is shown in Figure 2.4 where the catheter is a

standard (non-active) catheter and is clearly visible. An active catheter will

result in a higher contrast as seen in Figure 2.3.

2.3.1 Off-line camera calibration and registration

Two cameras, one on top of the testbed and another at one side of the testbed,

were used for building a 3D roadmap of the tubes. The two cameras are non-
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Figure 2.3: Part of the testbed and catheter under X-ray
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Figure 2.4: X-ray image of a catheter and guide-wire inside a vessel in the
thorax area. Image courtesy of Philips Healthcare.
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parallel. The side camera emulates an alternate angle of the C-Arm around

the patient.

Camera calibration

To remove the barrel effect (due to lens distortion) and to find the perspective

parameters, each of the cameras was calibrated using Zhang’s method [29], [30].

This method is simple and is mainly based on different non-parallel views of

a planar pattern (e.g. a chessboard).

We have used a quadratic radial distortion model with four parameters.

If the coordinates of a point in the undistorted image are (ξ, η), then the

coordinates of the same point in the distorted image, (ξ̂, η̂) are obtained as

follows:

ξ̂ = ξ(1 + k1r
2 + k2r

4 + 2p1η + 2p2ξ) + p2r
2

η̂ = η(1 + k1r
2 + k2r

4 + 2p1ξ + 2p2η) + p2r
2 (2.1)

where r =
√
ξ2 + η2 and k1, k2, p1 and p2 are the coefficients of radial distor-

tion. The perspective transformation matrix is assumed as:

A =

 fξ α cξ

0 fη cη

0 0 1


where (cξ, cη) is the principal point of the image (near the center of the image),

α is the parameter describing the skewness of the two image axes and fξ, fη

are the focal lengths along the horizontal and vertical axes of the image, re-

spectively. The algorithm that is used for computing intrinsic and distortion

parameters is as follows: a) Capture different non-parallel views of a 5 × 7

black and white planar chessboard pattern; b) detect the corners of the pat-

tern in each of the views; c) find a homography for all points in the set of

images, where a homography is a matrix of perspective transforms between
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the calibration pattern plane and the camera view plane; d) initialize intrinsic

parameters, and set the distortion parameters to zero; e) find extrinsic param-

eters for each image of the pattern; f) minimize the error of the projection

points with all the parameters using a maximum likelihood algorithm. For

more details, please refer to [29], [30].

The distortion parameters k1, k2, p1, p2 and the intrinsic parameters

fξ, fη, α, cξ, cη, resulting from this algorithm for each of the cameras are

listed in Tables 2.1 and 2.2, respectively.

k1 k2 p1 p2
Side -0.257098 0.281629 0.0 0.0

Top -0.250099 0.200001 0.0 0.0

Table 2.1: Distortion parameters for the top and side cameras
fξ fη α cξ cη

Side 585.933 560.612 6.959 335.826 151.475

Top 1033.32 1031.90 -20.145 641.685 346.308

Table 2.2: Intrinsic parameters for the top and side cameras

The accuracy of this calibration method has been studied by Sun et al. [31]

and has been reported to be 1.0028 pixel.

Registration

A non-planar chessboard pattern, as shown in Figure 2.5, is used to register

the two cameras to the universal coordinates. The registration process is as

follows:

• The coordinates of the corners of the non-planar pattern are obtained

by means of a magnetic sensor and are logged into the image processing

server. The set of the coordinates obtained from this process is denoted

by M.

• Images of the non-planar pattern are obtained from each of the cameras

(side and top cameras). We denote these images as Is and It respectively.
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Figure 2.5: Different views of the testbed from the top and side cameras:
(a) the non-planar chessboard pattern used for registration, (b) out of plane
junction

• The images Is and It are undistorted using the distortion parameters

obtained in the offline camera calibration for each camera. We call the

undistorted images I ′s and I ′t respectively.

• A pattern recognition algorithm based on Harris corner detection [32] is

used to find the coordinates of all the corner points in the images I ′s and

I ′t separately. We denote the set of corner points obtained from I ′s and

I ′t as Ps and Pt respectively.

• The recognized points from both cameras are arranged in the same order

as the points in M . The set of the points Ps and Pt arranged in the new

order are denoted by P ′s and P ′t respectively.

• A least-squares method is applied to find a transformation that maps

the coordinates of points in both cameras to the coordinates of those

points in the universal frame (i.e., the coordinate frame of the magnetic

tracking system).

We take P ′s = {(ξsk , ηsk)|k = 1 · · ·n} and P ′t = {(ξtk , ηtk)|k = 1 · · ·n} and

M = {(xk, yk, zk)|k = 1 · · ·n} where n is the number of points used for regis-

tration. We also define Q and P matrices as follows:
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Q =


ξt1 · · · ξtn

ηt1 · · · ηtn

ξs1 · · · ξsn

ηs1 · · · ηsn

 , P =

 x1 · · · xn

y1 · · · yn

z1 · · · zn



Now we solve the following optimization problem for the 3× 4 matrix T :

min
T
||TQ− P ||

This optimization problem will have a unique solution for an appropriate num-

ber of points (at least 4 points) which are not in the same plane. As our pattern

(shown in Figure 2.5) has 8 points located in two non-parallel planes, it should

result in a unique optimal solution. We call this solution, To. The matrix To

is then used to reconstruct the 3D coordinates, based on the information from

the two images. If a point p is detected in both cameras with the coordi-

nates ps = [ξs ηs]
T and pt = [ξt ηt]

T , then its 3D coordinates in the universal

coordinate frame (p = [x y z]T ) will be:

p = To

 pt

· · ·
ps


This registration method is an efficient algorithm developed for this ap-

plication based on similar methods that can be found in the computer vision

literature [33]. In a clinical application, the registration process would be

modified by using a non-planar pattern that can be recognized in the X-ray

images. Images of this pattern from different angles (by rotating the C-arm),

can be used to find the transformation. Krueger et al. [34] have developed a

2D-3D registration scheme by attaching an magnetic tracking system to the

C-arm.
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The magnetic sensor that we use is the Aurora 5-DOF sensor from Northern

Digital Inc. The RMS error for this sensor is in the range of 0.9mm to 1.3mm

depending on the location of the sensor coil with respect to the field generator.

The error has around the same value as the spatial resolution of the camera

(1.0mm) and the calibration algorithm error (1.0028 pixel [31]). The quality

of the registration can be improved only if the accuracy of both the magnetic

sensor and the camera is improved. For X-ray fluoroscopic images which have

higher spatial resolution, we can use a wire grid with pre-known geometry.

This wire grid can also be used for calibration [28].

2.3.2 Extracting mask image (Roadmap)

An off-line algorithm has been developed to extract a mask image, which

represents the pattern of the tubes in the testbed (representing the pattern

of blood vessels in the body). Although it is only shown for the top camera,

a mask image is generated for each of the cameras. Using the mask images,

the image processing is limited to areas of the image which contain the blood

vessels, thereby speeding up the algorithm and making it robust to illumination

and contrast variations.

As there is no movement of the testbed during the procedure, the mask

image is a still image. However, an online calibration technique can be used

to modify the mask image according to changes in the position of the vessels

due to involuntary motions of the patient.

To generate the mask, a number of frames are captured and time filtering

is applied on these frames (assuming there is no movement in the testbed

during capturing of these frames). After time filtering, a single image will be

available. Then a spatial Gaussian filter is applied to this image to filter out

noise, the result is shown in Figure 2.7(b). A Canny filter [35], [36] is then

applied to detect edges in the image.

The resulting image (Figure 2.7(c)), which mainly consists of contours

showing the edges in the main image, may have some single points or extra

pieces of contours which should be removed. It may also have some disconti-
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nuities in the main contours which should be connected. A heuristic algorithm

is applied to this image to do these tasks. This algorithm searches for tube-

like objects (i.e., two parallel curves) which are connected. It connects the

disconnected parts of the curves and removes single points and curves which

are not detected to be part of the tubes. The main parameters used for closing

discontinuities are lmax, lmin, dmax and dmin, all measured in pixels. The pa-

rameter lmax is the radius of the quarter circle slice centered at the endpoint of

a contour and in the same direction as the contour is expected to be continued.

The contour connection algorithm searches this area for the continuation of

the contour. If no continuation is found at both two ends of a piece of contour,

that piece will be omitted. The continuation should have a length of at least

lmin pixels. The parameters dmin and dmax are the minimum and maximum

distances across the contour that the algorithm searches for the other edge of

the tube. If no other contour is found in this area, the contour is considered

as a single linear object and omitted. The values of dmin and dmax are set by

the user based on the diameter of the tubes. The user also sets an initial point

on the detected contours which determines the starting point for the contour

connection algorithm. The user can also connect contours or remove parts of

the image by clicking on the image. This is required when the algorithm fails

to connect the contours or remove the extra parts. The resulting image con-

sists of connected contours which show the borders of the tubes/vessels. The

algorithm works well on the existing testbed as shown in Figure 2.7(d), but

it may need to be slightly modified to fit the clinical application with X-ray

images.

Then a flood-filling algorithm is applied to this image which fills the areas

between the contours covering the tubes/vessels in the image (Figure 2.7(e)).

Since there could be some small motions in the tubes during catheter insertion

(due to the flexibility of the tubes and the force applied by the catheter on the

walls of the tubes), we apply a ”blow-up” algorithm to make the flood-filled

areas larger. This increases the search area to maintain tracking in case the

tubes deform slightly. Mask blow-up is done using a heuristic algorithm which

is basically an iterative sequence of spatial Gaussian filters and block-based
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thresholding that acts in the same way as a dilation operation around the

centerline of the tubes (vessels). The spatial Gaussian filtering of the black

and white image (Figure 2.7(e)) creates a gray scale image with shades around

the tubes. Using a block-based thresholding algorithm creates a new black and

white image with blown-up tubes. This process is repeated until we get the

final mask image as shown in Figure 2.7(f). The amount of dilation can be

adjusted by four parameters: the standard deviation of the Gaussian filter,

the block size and the threshold level of the block-based thresholding, and the

number of iterations.

The resulting image is called the Mask Image. The images obtained at each

time instant are masked by the mask image (using the logical operation AND).

The resulting image includes the areas around the tubes/vessels neglecting

the parts outside these areas. This increases the processing speed as well as

makes the algorithm more robust. The robustness results from the fact that

the algorithm ignores any movement or illumination variations outside of the

tubes.

Figure 2.6: Mask image generation block diagram

A block diagram of the mask generation algorithm is shown in Figure 2.6.

The results of the mask generation algorithm applied to our testbed are shown
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in Figure 2.7 which shows the step-by-step result of the algorithm.

The mask image acts as the roadmap in the clinical case. There are sev-

eral issues that need to be considered for extending the algorithms for clinical

applications.

• The assumption of a still roadmap is not valid for the clinical case as

cardiac contraction (heart beat) and respiration cause movement and

deformation of the blood vessels in the thorax. As an example the right

coronary artery (RCA) moves up to 3.0mm due to cardiac motion and the

RCA root moves up to 10.5mm due to respiratory motion [37]. Timinger

et al. [38], [39] have developed an elastic motion compensation algorithm

which uses ECG data as well as the data from a magnetic tracking sensor

to compensate for the motion of the roadmap due to cardiac contraction

and respiratory motion.

• In the clinical case, a contrast agent is injected into the vascular system

to make the blood vessels visible under X-ray images. An important

factor for detecting the tubular structures is the CNR (contrast to noise

ratio) of the vessels with respect to the background. The contrast media

will help to improve the CNR to a relatively higher level than what it is

in our testbed. This will help in segmentation of the vascular tree [40].

2.3.3 Database creation and selection

A pattern recognition algorithm based on the images from both cameras is

used to determine the junctions, and the transformation obtained from the

registration algorithm is used to find the 3D positions and orientations with

reference to the universal coordinate frame. To detect the bifurcations, we

have used block search and correlation analysis with a set of 3 × 3 block

patterns representing possible Y-shaped bifurcations and the π
4

rotations of

these patterns [41]. The block size is adjusted according to the width of the

tubes in the mask image and the latter is searched to find the matches. Once
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Figure 2.7: Mask image generation: step by step - (a) Sample original noisy
image, (b) filtered image after temporal (moving average) and spatial (Gaus-
sian) filtering, (c) Edges detected by Canny filtering, (d) Connected contours
with extra pieces removed, (e) Flood-filled inside the tube borders, (f) Final
mask image (blown-up tubes). (Note that the colors are changed in (c), (d)
to increase visibility)
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a match is found, the algorithm tries fine tuning to find the orientation of

the bifurcation with higher accuracy. This algorithm is applied to the mask

images of both of the cameras. The bifurcations found in the two images are

matched using the transformation found by registration and the user is asked

to confirm each bifurcation. Zifan et al. have used a similar approach to detect

the bifurcations in a vascular tree using X-ray angiogram images [42].

The starting point, the location of bifurcation points, and the 3D orienta-

tion of branches are stored in a database. The database is loaded each time

the program starts. The user chooses the desired path and sets the target

point on the image, as shown in Figure 2.8.

Figure 2.8: Desired path selected by the user



32

2.3.4 Tracking the tip of the catheter

The images are processed using a novel real-time algorithm to track the tip of

the catheter [43]. The block diagram for real-time tracking is shown in Figure

2.9. Some of the parameters of this algorithm are set by the autonomous

guidance algorithm. For example, the search area is different for normal and

slow insertion, as determined by the autonomous guidance algorithm. The

algorithm mainly consists of the following steps:

Figure 2.9: Block diagram of the tracking algorithm

• The video stream consists of a stream of frames grabbed by the top

camera at 30fps.
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• The pre-processing filter block consists of a set of filters for suppressing

noise, masking the image and improving the contrast of the image.

• The frame queue is an image buffer structure managed by the queue

manager block. This queue provides the appropriate input for the time

gradient algorithm.

• The time gradient algorithm takes the time gradient of the images in the

frame queue. It concentrates on an area around the previously known

catheter tip position to limit the search area and decrease the processing

time.

• The post-gradient filters suppress the noise in the gradient image and

make it useful for the motion detection algorithm.

• The motion detection algorithm searches for the catheter tip in a neigh-

borhood around the previously known position of the catheter tip. The

neighborhood is a rectangle which extends more to the previously known

direction of motion and its size is determined by the autonomous guid-

ance algorithm.

• When the new position of the catheter tip is detected, the algorithm

calculates the speed vector of the catheter by subtracting the previous

catheter tip position from the new detected tip position. The calculated

speed vector is then filtered using a moving average filter.

• The algorithm also generates a true/false flag called motion flag by

thresholding the linear speed (norm of the speed vector). This flag is

true when a motion is detected.

The signals generated by the motion detection algorithm are fed back to

the autonomous guidance algorithm. The image processing algorithm is not

synchronous and has a varying frame-rate from 14fps (as the worst case) to

30fps. The algorithm was tested on an Intel P4 2.4GHz CPU, with 1GB

of RAM running under Windows XP. The image processing algorithm can
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be further improved by optimizing the algorithm and implementing it on a

platform with higher processing power and a hard real-time operating system.

2.3.5 Direction Selection

When the autonomous guidance algorithm detects the tip of the catheter at

a bifurcation point, the direction selection algorithm is called to choose the

direction according to the path selected by the user. The algorithm determines

the desired angles of bending (in the horizontal and vertical planes) for the

active catheter, depending on the bifurcation.

2.4 Sensor Fusion

To perform autonomous catheter insertion, closed-loop position control of the

distal tip of the catheter is required during insertion. Therefore accurate real-

time position feedback is needed for this purpose. We have developed a real-

time image-processing algorithm for catheter tip position tracking as described

in Section 2.3. The performance of the image-based tracking algorithm has

been shown to be acceptable, however it has a major drawback: It is sensitive

to X-ray image artifacts caused by bones and dense tissues. A magnetic track-

ing system (MTS) is another modality that has also been used for catheter tip

position tracking [44]. The performance of MTS is good within certain limits;

however it has two major deficiencies. First, the existing magnetic tracking

systems have a limited range which cannot cover the whole catheter inser-

tion path for angioplasty - from the groin to the thorax, and second they are

sensitive to external interferences produced by ferrous metals and oscillating

magnetic fields. Combining the measurement data provided by both imaging

and magnetic sensors can compensate for the deficiencies of each and can also

improve the robustness of catheter tip position tracking.

Multisensor data fusion has a wide range of applications in different areas.

Sensory information from different sources can be applied to extract the maxi-

mum amount of information possible about the sensed object(s) (e.g. catheter)
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under various conditions (e.g. in case of an occlusion), in real time. This will

result in higher performance and reliability in the presence of uncertain sensory

data. It may also help in achieving higher data rates as a result of sampling at

different time instants. The purpose of data fusion is to produce a model or

representation of a system from a set of independent data sources, from which

a single view or perception of the system is detected; Normally, a state-space

model of the process is used for this purpose. The combination of informa-

tion from different sensors and the subsequent state estimation should result

in reduced uncertainty. The data fusion algorithm should be able to handle

multiple observations and multiple sensors, and at the same time it should be

able to consider faults in sensory data. A common application of data fusion

techniques is the estimation of target position/velocity information from mul-

tiple measurements from a single or multiple sensors. Two essential processes

are involved in the derivation of position/velocity: (a) data association and

(b) state estimation. Data association is done to distinguish between the true

information and clutter. State estimation refers to optimal estimation of the

variables, e.g., the position and velocity of the target, using the observation

data after the data association process has been performed [45].

Kalman filtering is the best known and most widely applied state estima-

tor algorithm [46]. The Kalman filter gives a linear, unbiased, and minimum

error variance recursive algorithm to optimally estimate the unknown state of

a linear dynamic system from Gaussian distributed noisy observations. The

Kalman filtering process can be considered as a predict-estimate-update for-

mulation. The algorithm uses a predefined (linear) model of the system to

predict the state and its covariance at the next time step. Then the mea-

surement data is used to estimate the optimal Kalman gain and this gain

is then used to update the estimate for the system state and its covariance.

The Kalman gain is calculated to minimize the mean-square error of the state

estimate.

Kalman filtering has found widespread application in data fusion prob-

lems [45]. Kalman filtering based data fusion models can be classified into

two categories [47]: (a) measurement level fusion and (b) state level fusion.
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Measurement level fusion methods are further divided into two subcategories:

(1) augmented observation and (2) minimum mean-squared measurement es-

timate fusion. State level fusion techniques are basically different variations

of Bar-Shalom’s track to track fusion method [47], [48].

To combine the data from the two different sources, the coordinates of

the MTS and the imaging system need to be registered. An off-line registra-

tion algorithm has been developed that finds the transformation between the

coordinates of the two sensors. To compensate for the nonlinearities of the

imaging system (e.g. radial distortion), a camera calibration method has been

used that finds the intrinsic parameters of the imaging system. A Kalman filter

has been developed which uses the measurements of both sensors to provide

accurate and reliable position feedback. The results show robust and accurate

tracking regardless of occlusions in the images or interferences in the magnetic

field. It also provides a higher sampling rate by interpolating the estimated

data. This method provides accurate and reliable position feedback that can

be used by a robotic system to control the catheter tip position in real-time.

2.4.1 Magnetic tracking system

We have used a 5-DOF magnetic tracking sensor, implemented at the tip of

the catheter to detect the tip position. More details on the magnetic tracking

system is included in Appendix H. The RMS error for this sensor is in the

range of 0.9mm to 1.3mm depending on the location of the sensor coil with

respect to the field generator. This sensor is able to measure 3-DOF position

and 2-DOF orientation of the catheter tip.

Offset calibration

The magnetic sensor is usually not located at the tip of the catheter but at a

fixed distance from the tip. An off-line calibration needs to be performed to

measure this offset. The value obtained for the offset is then used to calculate

the actual position of the catheter tip in real-time. Zhang et al. [49] have

designed a simple pivot calibration algorithm. We have used this pivot cali-
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bration algorithm with three different points in the workspace and obtained

1000 samples for each point, by fixing the tip of the catheter at that point and

changing the orientation. The results show an offset of 17.7323mm with an

RMS error of 0.9973mm.

2.4.2 Registration of the two sensors

Figure 2.10: Registration pattern; The coordinate system of the camera is
shown by Xi, Yi and the coordinate system of the magnetic tracking system
is shown by Xm, Ym, Zm. The four corner points are marked as A,B, C and
D

A planar chessboard pattern with known size, as shown in Figure 2.10,

is used to register the image tracking and the magnetic tracking coordinate
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systems. The registration process is as follows:

• The coordinates of the four outer corners of the non-planar pattern (as

marked by A,B, C and D in Figure 2.10) are obtained by means of the

magnetic sensor and are logged into the computer. Three of these points

are enough to obtain the geometry of the pattern and the fourth point

is only used to reduce the errors.

• The registration algorithm calculates the 3D coordinates of the inner

corners of the pattern using the coordinates of outer corners and the

pre-known geometry of the pattern. The set of the coordinates obtained

from this process is denoted by M.

• An image of the pattern (I) is obtained from the camera and undis-

torted using the distortion parameters obtained in the off-line camera

calibration procedure. We call the undistorted image as I ′.

• A pattern recognition algorithm is used to find the coordinates of all the

corner points in the undistorted image I ′. We denote the set of corner

points obtained from I ′ as P ′.

• The obtained set of points P ′ is rearranged corresponding to the order

of the points in M ; The rearranged matrix is called P .

• A least-squares method is applied to find a 2D-3D transformation that

maps the 2D coordinates of points in the image plane to the 3D coordi-

nates of the points in the magnetic tracking system.

We take P = {(ξk, ηk)|k = 1 · · ·n} and M = {(xk, yk, zk)|k = 1 · · ·n} where

n is the number of points used for registration. We also define matrices Q and

R as follows:

Q =

[
ξ1 · · · ξn

η1 · · · ηn

]
, R =


x1 · · · xn

y1 · · · yn

z1 · · · zn

1 · · · 1


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Now we solve the following optimization problem for the 2 × 4 matrix T ,

minT ||TR − Q||. This optimization problem will have a unique solution for

an appropriate number of points (at least four points). As our pattern (shown

in Figure 2.10) has 5 × 8 points located on the same plane, it should result

in a unique optimal solution. We call this solution, To. The matrix To is

then used for registration of the undistorted image plane coordinates to the

coordinates of the magnetic tracking system. A point p = [x y z]T detected by

the magnetic tracking system, will be corresponding to the point q = [ξ η]T in

the undistorted image plane, where q = To
[
pT 1

]T
. This registration method

is similar to what we used to register the top and side cameras in Section 2.3.

We have measured the RMS registration error and it has an average value

of 1.1269mm. For X-ray fluoroscopic images, we can use a wire grid with

pre-known geometry.

2.4.3 Modeling the catheter tip motion

The catheter is usually moved slowly and without sudden velocity changes to

avoid rupturing the blood vessels; Therefore we can ignore the acceleration and

develop the motion model at velocity level. The catheter tip motion model for

real-time tracking can be described as a state-space equation [46]:Pt(k + 1) = Pt(k) + Vt(k) + ωP (k)

Vt(k + 1) = Vt(k) + ωV (k)
(2.2)

and the augmented output equations for our application can be modeled as:PI(k) = Pt(k) + νI(k)

PM(k) = Pt(k) + νM(k)
(2.3)

where Pt(k) and Vt(k) are the states of the system at time instant k, Pt(k) =

[xt(k) yt(k)]T is the position of the distal tip of the catheter in the two dimen-

sional undistorted image plane and Vt(k) = [vxt(k) vyt(k)]T is the 2D displace-

ment vector, at the time instant k; ωP (.), ωV (.) and νI(.), νM(.) are inde-

pendent zero mean white Gaussian two dimensional random processes which
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characterize the process noise and measurement noise respectively.

We also need to calculate the actual length of the catheter inserted into

the vascular model. To calculate this variable, we integrate the catheter tip

displacements along the centerline of the tube/vessel over the time samples.

The depth of the catheter inserted into the vasculature is then used in catheter

tip position control by the robot client. Vt(k) is the displacement vector for

the catheter tip at the time instant k, but it may have a deflection around the

centerline of the vessel, specially when it is near the curvatures. This is shown

in Figure 2.11. The centerline is extracted from the mask image by dilation of

mask image and fitting polynomials to each segment.

Figure 2.11: The catheter may have a deflection w.r.t the centerline of the
tubes because of the curvatures.

To obtain the amount of displacement along the centerline of the tubes/vessels,

we use the projection of the displacement vector Vt(k) on the unit vector along

the centerline at that point. The direction of the unit vector is chosen to point

forward to the direction of insertion, this helps to distinguish whether the

catheter is being pushed in or being pulled out. The unit vector D(.) is a

function of the current position of the catheter tip, Pt(k), and depends on the

a priori knowledge of the geometry of the vasculature.

s(k + 1) = s(k)+ < Vt(k), D(Pt(k)) > (2.4)
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where < . , . > represents the inner product of two vectors. The variable s(.)

is used by the robot client to control the catheter tip position.

2.4.4 Data fusion algorithm design

We have used Kalman-filter based data fusion at the measurement level which

provides optimal tracking compared to the sub-optimal tracking performance

of Bar-Shalom’s method [47]. The fusion is performed at the observation level

and as we have similar sensors (i.e., the sensors measure the same variables),

the performance will be equivalent to the performance provided by the mini-

mum mean-squared measurement estimate fusion [47]. The overall structure

of the data fusion scheme is shown in Figure 2.12 and the structure of the

Kalman-filter is shown in Figure 2.13.

The augmented state-space equations for the system can be described as:Xk = FXk−1 + ωk−1

Yk = CXk + νk
(2.5)

where Xk =
[
P T
t (k), V T

t (k)
]T

is the system state and Yk =
[
P T
I (k), P T

M(k)
]T

is the augmented system output at time instant k. Using Equations (2.2) and

(2.3), we obtain:

F =

[
I2×2 I2×2

02×2 I2×2

]
, C =

[
I2×2 02×2

I2×2 02×2

]
(2.6)

where I2×2 is the 2×2 identity matrix. The process noise is ω(k) =
[
ωTP (k), ωTV (k)

]T
,

the measurement noise is ν(k) =
[
νTP (k), νTV (k)

]T
and the process and mea-

surement noise covariances are Qk and Rk respectively.

The Kalman filter process performs data fusion using the augmented mea-

surements as shown in Figure 2.13. The three steps of Kalman filtering, in-

cluding prediction, estimation and updating are formulated as follows [46]:

• Predict the state and its covariance:

– X̂k|k−1 = FX̂k−1|k−1
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Figure 2.12: Block diagram of the whole system: the internal structure of the
Kalman-based data fusion block is shown in Figure 2.13
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Figure 2.13: The Kalman-filter based data fusion block diagram
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– Pk|k−1 = FPk−1|k−1FT +Qk−1

• Estimate the innovation, its covariance and the optimal Kalman gain,

based on the prediction:

– Ỹk = Ya(k)− CX̂k|k−1

– Sk = CPk|k−1CT +Rk

– Kk = Pk|k−1CTS−1k

• Update the state and its covariance:

– X̂k|k = X̂k|k−1 +KkỸk

– Pk|k = (I −KkC)Pk|k−1

where Pk|k = cov(Xk − X̂k|k), Pk|k−1 = cov(Xk − X̂k|k−1) and Sk = cov(Ỹk).

Results are included in Section 2.7.

2.5 Autonomous Guidance

A finite-state machine (FSM) structure is designed and implemented to control

the insertion process. The structure is shown in Figure 2.14.

2.5.1 Path following

The algorithm chooses a path connecting the starting point to the target point

as chosen by the user, based on the information stored in the database. The

algorithm can also allow the clinician to choose the desired path for catheter

insertion. A simple graphical user interface (GUI ) has been developed to

interact with the user/clinician. The user selects the starting point and the

target point by clicking on the image and verifying his/her selection. The

user can click on the bifurcations/joints on the path between the starting

point and the target point to specify the selected path using the interactive

GUI. The selected path can be saved in a profile in the database and the

profile can be loaded using the assigned profile number in case of repeated
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Figure 2.14: Autonomous Guidance Finite State Machine
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insertions. Direction selection is done based on the selected path. At each

bifurcation/junction, the direction is set towards the next bifurcation/junction

in the path using the database information.

2.5.2 Catheter tip position control

The tip position of the catheter is controlled in the proximity of the branches

and near the target to provide smooth movement and prevent any damage to

the epithelial cells of the blood vessel or dislodging of plaque. Near a branch,

the catheter insertion slows down gradually until the tip of the catheter reaches

the bifurcation. At the junction, the robot stops insertion of the catheter

and the active catheter bends in the desired direction. When the bending

is complete, the robot inserts the catheter using a single stroke to insert the

catheter into the desired path. After the actuators have regained their original

shape, the robot resumes the insertion process by increasing the stroke length

gradually until it reaches normal speed. This process is repeated at each

junction in the path. Near the target, the robot slows down the insertion to

gradually reach the target. The tip position follows a smooth trajectory to

prevent any damage to the inner lining of the arteries and to avoid dislodging

plaque.

The tip position control also takes care of the difference between the actual

stroke length and the tip position movement via image-based visual servoing.

It is observed that the catheter tip does not necessarily follow the motion of the

robot’s gripper because of the significant amount of flexibility in the catheter

and frictional forces acting along the length of the catheter. The catheter may

flex inside the tubes and not advance as the robot pushes the catheter. This

is more predominant close to junctions and the target point when the stroke

length of insertion is small. In such cases the controller increases the stroke

length to compensate for this effect.

We have implemented a PI controller with saturation to control the tip

position of the catheter while approaching the branches and the target since

we need a smooth motion without any overshoot. The integral term in the
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controller provides zero steady-state error and compensates for the flexing of

the catheter due to frictional forces between the catheter and the walls of the

tubes (blood vessels). The controller gains are set to provide a smooth motion.

A block diagram of the controller is shown in Figure 2.15. We have used a

high gain proportional controller for the speed-up phase beyond the branch.

Figure 2.15: Block diagram for the catheter tip position control; a PI controller
is applied before the branching and before the target during slow-down, while
the high-gain proportional controller is applied after passing a branch during
speed-up.

The implemented PI controller is a model-free visual servoing controller

which is only applied for catheter tip position control and its performance is

good since the catheter motion is very slow. Robot manipulator control is done

using Augmented Hybrid Impedance Control (AHIC) which is also shown to

have good performance. The catheter insertion problem has some similarities

with the problem of needle steering, e.g., see [50], [51], [52]. However, the con-

straints imposed by the complexity of the vasculature, the significantly higher

flexibility and the longer length of the catheter make the two problems sub-
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stantially different. Modeling and model-based control of the catheter inside

the vascular system is a challenging problem as the catheter is a constrained

under-actuated hyper-redundant dynamic system.

2.6 Master-Slave Control

Although autonomous catheter insertion provides high accuracy for catheter

tip position control and significantly reduces X-ray exposure to clinicians,

the latter may need more control over the procedure. A master-slave con-

trol scheme was developed in order to involve a cardiologist directly in the

control loop via a haptic device without being exposed to harmful X-ray ra-

diations. Visual servoing is used as an internal control loop in order to make

sure that the catheter distal tip position follows the user’s hand motion on the

haptic device.

It should be noted that the dynamics of the slave, i.e, the catheter is highly

complex, and depends on factors such as the material of the catheter, geometry

of the path, static and dynamic friction coefficients, force of insertion, diameter

of the vessel and catheter, initial orientation of insertion, fluid flow, etc. In

addition, the catheter is indirectly manipulated using a robot at the remote

site of insertion. Due to the high flexing of the catheter inside the arteries, the

robot end-effector velocity is not necessarily equal to the velocity of the tip of

the catheter. The desired value for the robot end-effector velocity is generated

based on the catheter tip position and velocity measured by the image-based

tracking algorithm, as given by the following equation:

ẋrd = Kp(xsd − xs) +Kd(ẋsd − ẋs) +Ki

∫
(xsd − xs)dt (2.7)

where ẋrd is the desired robot end-effector velocity, xsd and ẋsd are the desired

catheter tip position and velocity provided by the master-slave teleoperation

and xs and ẋs are the actual catheter tip position and velocity measured

by the image-processing algorithm or provided by the data-fusion algorithm.

The parameters Kp, Ki and Kd are the proportional, integral and derivative
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controller gains. The desired velocity, ẋrd is provided to the robot end-effector

controller as described in [4]. The desired catheter tip position and velocity,

xsd and ẋsd can be directly set by the master position and velocity (xm and

ẋm) or can be applied through a teleoperation scheme. We have studied the

application of wave-variables for this purpose [24].

2.7 Experimental Results

In this section, we have included some of the experimental results for au-

tonomous and master-slave catheter insertion, sensor fusion and also the non-

linear behavior of the catheter inside the vascular model.

2.7.1 Autonomous catheter insertion

A desired path on the testbed is chosen by the user, as shown in Figure 2.8.

The path consists of two active branches - at the first branch the catheter bends

to the left (−24.70 in the horizontal plane and −3.850 in the vertical plane)

and at the second, the catheter bends right and down (20.460 in the horizontal

plane and 22.170 in the vertical plane). The robot inserts the catheter into

the testbed while controlling the force of insertion. The image processing

algorithm tracks the distal end of the catheter, as it is inserted into the testbed.

A proportional-integral controller (PI-controller during slow-down and a high

gain P-controller during speed-up) with saturation controls the position of the

tip of the catheter near the branches and the target. Figure 2.16, shows twelve

images as the image processing algorithm tracks the end of the catheter. The

results for the entire experiment are shown in Figure 2.16. As the catheter

enters a region in the proximity of the junction, the stroke of insertion is

reduced gradually, as shown in Figure 2.16 - region b (hereafter denoted as

Figure 2.16:b). At the junction (shown in Figure 2.16:c,h), the stroke is zero

and a command is given to the catheter to bend in the appropriate direction.

The one stroke insertion after the catheter is bent ensures that the catheter

enters the desired branch, as shown in Figure 2.16:d,i. The robot waits until
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the actuators have cooled down and have regained the original shape before

resuming further insertion of the catheter. After the actuators have cooled

down, the stroke length is increased gradually until it reaches the normal

stroke-length, as shown in the speedup phase in Figure 2.16:e,f and Figure

2.16:j,k. This is controlled using the speedup proportional controller. Regions

(l) and (m) of Figure 2.16 show the slowing down of the insertion near the

target. It can be observed that in region (l) the stroke length is reduced as the

catheter approaches the target point. However, due to flexing in the catheter

and frictional forces, the end of the catheter does not advance. The integral

term, in order to minimize the steady state error, increases the stroke length,

as can be seen in region (m) in Figure 2.16(ii). This controls the position of

the catheter and advances the catheter towards the target point.

The position of the end-effector is shown in Figure 2.16(iii). The stroke

length is gradually varied as the catheter reaches and leaves a junction to

enable the catheter to enter the appropriate branch. The average force of

insertion increases as the catheter is inserted into the tube mounted in the

testbed due to an increase in frictional forces, as shown in Figure 2.16(iv).

The actual force measured in the direction of insertion shown in Figure 2.16(v)

indicates peak insertion force of 0.13N. The peak insertion force is less than

the maximum force of insertion of 0.63N [26], which is the amount of force

that could damage the epithelial cells of the artery.

2.7.2 Nonlinear Behavior of a Catheter

As mentioned before, a catheter shows nonlinear behavior inside the vascular

model. A number of experiments were performed in order to study these

nonlinearities.

Catheter Insertion at Constant Desired Velocity

In this set of experiments, the flexing of the catheter was studied while it is

being inserted into the testbed. The stroke length of the robots end-effector

was kept constant throughout the experiment and a constant desired velocity
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Figure 2.16: (i) shows the insertion depth (cm) vs. time (sec), (ii) shows
the stroke length set-point (digitized from 0 (min.) to 31 (max.)) vs. time,
(iii) shows the desired and the actual trajectory of the end effector of the
robot (mm) vs. time, (iv) shows the average force of insertion over one stroke
(N) vs. time and (v) shows the actual force of insertion (N) vs. time. The
tip of the catheter has been shown in the images above. Different phases of
insertion are shown as: (a) normal insertion before the first branch, (b) slow-
down before the first branch, (c) no insertion, catheter bends at junction (d)
one stroke insertion, (e) speed-up insertion after the first branch, (f) normal
insertion before the second branch, (g) slow-down before the second branch,
(h) no insertion, catheter bends at junction (i) one stroke insertion, (j) speed-
up insertion after the first branch, (k) normal insertion before the target, (l)
slow-down before the target (m) increase in stroke length due to flexing of
catheter.
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of 7mm/sec was applied. The experiments were repeated 10 times, keeping

the parameters constant, to obtain reliable predictions by looking at the en-

semble averages of the results. Figure 2.17(a) shows the ensemble averaged

maximum tracking error between the master and slave as a percentage of the

master reference. The difference between the maximum robot end-effector and

the catheter tip movements as a percentage of the slave movement is shown in

Figure 2.17(b). As can be seen in Figure 2.17(a), the tracking error varies from

4 to 13% of the reference which proves that the visual servoing controller pro-

vides good tracking despite the nonlinearities of the catheter. The difference

between the maximum robot end-effector and the catheter tip movements as

shown in Figure 2(b) varies between 57 and 126%. This difference is mainly

caused by the flexing of the catheter and by frictional forces acting along the

catheter.

Figure 2.17: (a) Ensemble averaged maximum master-slave tracking error
(percentage of the peak master reference) vs. insertion depth (b) Ensem-
ble averaged difference between the maximum robot end-effector and catheter
tip movements (percentage of the maximum slave movements) vs. insertion
depth

Figure 2.18 shows the ensemble averaged deadband vs. insertion depth.

The deadband is the time it takes for the tip of the catheter to start moving
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after the master starts moving. There are four main factors that affect the

deadband:

• vision tracking delay

• network delay (negligible)

• stiction along the contact points between the catheter and the tube

• flexing of the catheter

As the delay caused by vision tracking is constant and is a small percentage

of the total deadband (less than 15%) and the network delay is negligible, we

can conclude that the main factors causing the deadband delay are stiction and

flexing. Stiction depends on the number of contact points between the catheter

and the tube, the curvatures of both the catheter and the tube at the points

of contact, physical properties of the tube and the catheter and the friction

coefficients. Stiction can be modeled as a semi-static effect. The deadband

delay varies between 0.66 and 0.87 seconds with a standard deviation between

0.01 and 0.065 seconds over 10 ensembles, proving the reliability of the results.

Figure 2.18: Ensemble averaged deadband (s) vs. insertion depth (mm)
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In Figure 2.19 the average force of insertion is shown versus the insertion

depth. The average force of insertion increases as the catheter advances into

the testbed due to an increase in friction acting along the length of the catheter.

Figure 2.19: Ensemble averaged force of insertion (N) vs. insertion depth
(mm)

Catheter Insertion at Variable Desired Velocities

In the next set of experiments, the flexing of the catheter was observed as a

function of the master velocity. For each insertion performed, the desired ve-

locity was kept constant. Several such experiments were performed by varying

the desired velocity from 3mm/sec to 7mm/sec. The mean deadband delay

was measured to be 0.73 seconds with a standard deviation of 38ms. The av-

erage tracking error over the entire insertion is within ±10% of the reference

for different desired velocities. As shown in Figure. 2.20, for high insertion

speeds, the deadband delay decreases. This is generally expected since the

catheter overcomes stiction forces sooner due to higher insertion speeds.
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Figure 2.20: Average deadband (sec) vs. insertion speed (mm/sec) and linear
regression of the data.

Catheter Insertion at Variable Stroke Lengths

In this set of experiments, the unactuated catheter was inserted into the

testbed with varying stroke lengths of the robots end-effector. It was observed

that the mean deadband delay is 0.76 second and the standard deviation is

63ms for a variation in stroke length from 12mm to 30mm. Figure 2.21 shows

the average tracking error over the entire insertion plotted against the stroke

length. The graph shows that the average tracking error is lower for higher

stroke lengths. This is quite expected since the flexing of the catheter is more

pronounced for lower stroke lengths, resulting in greater tracking error.

2.7.3 Master-Slave Control Results

In the master-slave control mode, a catheter is inserted into the testbed using a

haptic device. The catheter was instrumented with SMA actuators to control

the orientation of the distal end of the catheter. The user inserts the active

catheter into the testbed using a haptic device. The overhead camera (sim-

ulating X-ray fluoroscopy) captures images of the testbed in real time. The
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Figure 2.21: Average master-slave tracking error (percent) vs. stroke length
(mm) and linear regression of the data

position of the distal tip of the catheter detected by the image-based tracking

algorithm, is overlayed with the captured images to provide a visual feedback

to the user. In addition, the image processing algorithm also provides the user

with indications to control the stroke length provided from the haptic device -

away from the bifurcations, the algorithm provides normal stroke length com-

mand; close to the junctions the algorithm recommends to the user to reduce

the stroke length; at the junction, it provides the user with the necessary the

information to stop insertion and bend the catheter in the desired direction.

Images obtained from a secondary camera also provide the user with visual

information about the position of the end-effector of the robot with respect to

the port of entry on the testbed.

In the experiments performed here, the user remotely commanded the robot

to insert the catheter into the testbed. During the test, the user was suffi-

ciently isolated from the robot and the testbed and operated the robot and

the catheter using only the images provided to him/her, thereby mimicking an

actual remotely controlled master-slave catheter insertion. The path consists

of two junctions, at the first the user has to bend the catheter to the right
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and at the second the user has to bend it to the left. The overall path length

from the point of entry to the target is roughly about 1.7m. The results of

the experiment are shown in Figure 2.22.

Figure 2.22: Experimental results: (i) shows the master (haptic device), slave
(catheter tip) and robot end-effector position vs. time during catheter insertion
(ii) shows the force of insertion measured at the robot end-effector along the
direction of insertion. Different phases of insertion are shown as: (a) normal
insertion before the first branch, (b) slow-down before the first branch, (c) no
insertion, catheter bends at junction (d) insertion after bending is complete
at the first junction, (e) wait for SMA actuators to cool (f) normal insertion
before the second branch, (g) slow-down before the second branch, (h) no
insertion, catheter bends at junction (j) insertion after bending is complete at
the second junction, (k) wait for SMA actuators to cool (l) normal insertion
before the target

As seen in Figure 2.22(a), the user inserted the catheter into the testbed

with the maximum stroke. The visual servoing control algorithm ensured that

the tip of the catheter followed the reference generated by the haptic device.

Figure 2.22(i) shows the position of the end-effector along with the position of

the master and the tip of the catheter.

Figure 2.23 shows a magnified view of the positions of the master, the

robot end-effector and the catheter tip in region (a) of Figure 2.22. It can

be seen that the catheter tip followed the reference generated by the haptic

device quite accurately. The robot end-effector motion is nearly 50% higher
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Figure 2.23: Magnified view of normal insertion in region (a) of Figure 2.22

than the catheter tip position in order to compensate for the flexing in the

catheter. The figure also shows a significant delay in advancing the distal end

of the catheter due to the frictional forces and high flexibility of the catheter.

Close to the junctions, the user reduced the stroke length using the haptic

device. The image processing algorithm tracked the tip of the catheter and

provided the desired suggestions to the user based on the proximity of the

catheter from the junction. At the junction (Figure 2.22:(c)&(h)), the user

was informed by the image processing algorithm to stop inserting the catheter.

On pressing a key, the robot was disabled and the haptic device now controlled

the active catheter. The user commanded the catheter to bend in the desired

direction while the force exerted on the tip of the catheter was reflected to the

stylus of the haptic device. Once the catheter reached the desired orientation,

the user re-activated the robot to continue insertion of the catheter into the

desired branch, as shown in Figure 2.22:(d)&(j). The user then waited for

the actuators on the catheter to cool and regain their original shape before

resuming normal insertion, as shown in Figure 2.22:(e)&(k). The force of

insertion for the entire procedure is shown in Figure 2.22(ii).

The mean master-slave error was 9.72% of the master reference with a stan-

dard deviation of 0.1475%. It can be observed from the results that both over-
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shoot and undershoot occur while the catheter tip tracks the master reference,

thereby proving the non-linear nature of the dynamics of catheter insertion.

The mean difference between the robot end effector motion and the catheter

tip motion is 106.11% of the catheter tip motion, reaching a maximum around

600% near the second junction. The relatively large motion of the end-effector

compared to the catheter tip is to compensate for the flexing of the catheter

within the tubes. The deadband delay is variable and lies between 0.4 and 0.9

seconds.

2.7.4 Sensor Fusion Results

We have used a Firewire digital camera which captures images at rates up

to 30Hz and a 5-DOF magnetic tracking sensor (Appendix H) which can

capture the position and orientation at a sampling rate of up to 40Hz. A

multi-threaded application has been developed to perform the image-based

tracking and capture the magnetic sensor data as well as the Kalman filtering,

in real time. The image processing thread is performed asynchronously when-

ever a new frame is grabbed; The magnetic sensor measurement is updated

at the same time instant. The Kalman filtering is run synchronously every

3 ms, the robot client is controlled at the same rate. As the catheter tip posi-

tion measurement is done in a lower rate than the Kalman filter update rate,

we have used a zero-order hold to match the lower rate with the higher rate,

i.e., the last valid measurement is used in each iteration of the Kalman filter

update. The initial value for the system state X0 is set to [x0, y0, 0.0, 0.0]T

where (x0, y0) is the position of the start point (in the undistorted image place

coordinates), which is the point where image-based tracking and data fusion

start working. The initial state covariance P0 is set to diag(1, 1, .01, .01).

The process noise covariance matrix is assumed to be constant but the mea-

surement noise covariance is varied during the process; The noise covariance

for the magnetic sensor is increased whenever it is unable to provide valid

measurement data and generates a data missing error.

Three sets of experiments were performed to evaluate the performance of
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the data fusion scheme:

1. In the first experiment set, all the conditions were normal, i.e., there

was no major occlusion in the camera’s view and there was no major

electromagnetic interference within the working area of the MTS. The

results are shown in Table 2.3. and Figure 2.24. As seen in Table 2.3,

the standard deviation of the difference between the estimated value

and each of the measured values is less than the standard deviation of

the difference between the data from two sensors; This means that the

uncertainty has decreased due to data fusion.

x-coordinate std(xI − xM) std(xM − x̂) std(xI − x̂)
Values 5.0523 3.7553 2.3331

Percentage 100 74.3285 46.1792

y-coordinate std(yI − yM) std(yM − ŷ) std(yI − ŷ)
Values 5.0251 3.8876 2.4971

Percentage 100 77.3638 49.6935

Table 2.3: Tracking and data fusion results in normal conditions

2. In the second experiment set, all the conditions were normal except

that there were significant occlusions at two different regions (as shown

in Figure 2.25(f)), i.e., the view was totally blocked when the catheter

was within these regions. As a result, the image-based tracking fails to

detect the catheter tip position in these areas. The results are shown in

Table 2.4 and Figure 2.25. As seen in Table 2.4, the standard deviation

of the difference between the estimated value and each of the measured

values is less than the standard deviation of the difference between the

data from the two sensors; This means that the uncertainty has decreased

due to data fusion although the image-based tracking had a major failure

twice during the experiment. As seen in Figure 2.25(e), the estimated

catheter insertion depth is not affected by the failure of the image-based

tracking sensor.
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Figure 2.24: Normal image and magnetic tracking data fusion when there is
no occlusion and no EM interference: (a) and (b) show X and Y coordinates
of the catheter tip in pixels vs. time (sec) for image-based tracking (red),
magnetic tracking (blue) and the estimated value by Kalman filer (black). (c)
and (d) represent the estimated catheter tip displacements Vx and Vy in pixels
vs. time (sec). (e) shows the estimated depth (mm) of catheter inserted into
the vascular model vs. time (sec).
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Figure 2.25: Image and magnetic tracking in case of occlusion: (a) and (b)
show X and Y coordinates of the catheter tip in pixels vs. time (sec) for
image-based tracking (red), magnetic tracking (blue) and the estimated value
by Kalman filer (black). (c) and (d) represent the estimated catheter tip
displacements Vx and Vy in pixels vs. time (sec). (e) shows the estimated
depth (mm) of catheter inserted into the vascular model vs. time (sec).



63

x-coordinate std(xI − xM) std(xM − x̂) std(xI − x̂)
Values 7.0261 4.8755 2.6704

Percentage 100 69.3907 38.0063

y-coordinate std(yI − yM) std(yM − ŷ) std(yI − ŷ)
Values 6.8302 4.7697 2.6443

Percentage 100 69.8324 38.7149

Table 2.4: Tracking and data fusion results in case of occlusion

3. In the third experiment set, all the conditions were normal except that

there was a considerable amount of electromagnetic interference (EMI).

EMI was intentionally created by putting a wire carrying AC current,

near the testbed as shown in Figure 2.26(f). The MTS became very

noisy when it approached this area and lost tracking within this region.

The results are shown in Table 2.5 and Figure 2.26. As seen in Table 2.5,

the uncertainty has decreased due to data fusion although the magnetic

tracking system had a major failure during the experiment. As seen in

Figure 2.26(e), the estimated catheter insertion depth is not affected by

the failure of the magnetic tracking sensor.

x-coordinate std(xI − xM) std(xM − x̂) std(xI − x̂)
Values 28.4498 10.0257 23.4819

Percentage 100 35.2400 82.5379

y-coordinate std(yI − yM) std(yM − ŷ) std(yI − ŷ)
Values 22.2869 5.3636 20.1194

Percentage 100 24.0662 90.2747

Table 2.5: Tracking and data fusion results in case of electromagnetic inter-
ference

2.8 Remarks

The experimental results show the autonomous and master-slave insertion of

a catheter instrumented with SMA actuators (active catheter) into a testbed



64

Figure 2.26: Image and magnetic tracking in case of electromagnetic (EM)
interference: (a) and (b) show X and Y coordinates of the catheter tip in
pixels vs. time (sec) for image-based tracking (red), magnetic tracking (blue)
and the estimated value by Kalman filer (black). (c) and (d) represent the
estimated catheter tip displacements Vx and Vy in pixels vs. time (sec). (e)
shows the estimated depth (mm) of catheter inserted into the vascular model
vs. time (sec).
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depicting a layout of arteries in the body. In these experiments, we have

used a Mitsubishi PA10 7-DOF robot to insert the catheter into the testbed

using a gripper, while controlling the force of insertion to prevent buckling at

the proximal end of the catheter. The force sensor on the wrist of the robot

measures the force of insertion and its readings are fed to the AHIC scheme to

regulate the force along the direction of insertion. It should be noted that this

force reading is not representative of the actual force acting at the tip of the

catheter since the catheter is highly flexible. The force measured is the sum of

the frictional and other forces acting along the catheter and the force acting

at the tip of the catheter. We have also developed a master-slave system for

performing semi-autonomous catheter insertion. In this work, all 7 degrees of

freedom of the PA10 robot are required to control the position and orientation

of the end-effector of the robot while regulating the force of insertion. The

image processing algorithms need modifications for clinical applications. The

image-based tracking algorithm may fail in case of an occlusion. We have also

developed a data fusion scheme to combine both magnetic tracking and image-

based tracking data as well as the roadmap information to make catheter tip

tracking more reliable and robust, specifically with regard to occlusions.

2.9 Conclusion

The objective of this work was to develop a safe and reliable way to perform

robot-assisted catheter insertion and guidance through a blood vessel. A novel

method was proposed for performing catheter insertion based on image-based

real-time tracking of the tip of the catheter. In our experimental testbed, we

have used a Mitsubishi 7-DOF PA 10-7C robot to perform catheter insertion

using a catheter instrumented with SMA actuators. We have demonstrated

the concept of autonomous guidance of a catheter to the site of plaque buildup

using visual servoing. We believe that the use of this system can reduce the

amount of stress and fatigue to the clinician. In addition, implementation

of the approach using a master-slave control scheme would also reduce the

exposure of the clinician to the X-ray radiation present during conventional
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angioplasty while providing direct control for the clinician.

We have developed a teleoperation framework to perform robot-assisted ac-

tive catheter insertion. The tip of the catheter very closely follows the motion

of the haptic device. In addition, we have shown that the robot end-effector

moves up to nearly 600% more than the tip of the catheter in order to compen-

sate for flexing in the catheter. By controlling the tip of the catheter (instead

of the robot end-effector) as the slave, the clinician is provided with a more

transparent procedure, wherein the tip of the catheter very closely follows the

motion of the master. We have also studied various factors influencing flexing

in a catheter inside a vasculature. These results should help in developing

a more accurate model for flexing of the catheter and aid in improving the

accuracy of image-guided robot-assisted catheter insertion for different appli-

cations.

We have also introduced a Kalman filter for data fusion of image-based

and magnetic tracking systems in a catheter insertion application. The results

indicate reduced uncertainty in the estimated data. The standard deviation

of the difference between the image-based and magnetic sensor tracking data,

represents a measure of uncertainty of the measured variables (x and y). The

standard deviations of the differences between the measurements of each sen-

sor and the corresponding estimated variable, show decreased uncertainty after

data fusion. The percentage of uncertainty after data fusion to before data

fusion is shown in the third and sixth rows of Tables. 2.3, 2.4 and 2.5 for dif-

ferent experiments with different conditions. The data fusion scheme provides

better estimation with more accuracy and less uncertainty compared to each

of the sensors individually. It also provides an estimation of the displacement

in each direction (x and y) which is then used to estimate the catheter inser-

tion depth. The estimate of the insertion depth (the length of the catheter

inserted into the vasculature) is then used to control the catheter tip position

in the vasculature. The estimator can also provide higher-frequency feedback

compared to each of the sensors, by interpolating the data. This would be very

useful for efficient catheter tip position control using robot-assisted insertion.
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Chapter 3

Cardiac Ablation

There are commercial products which provide 3D rendered volumes, recon-

structed from pre-operative CT or MRI images of patient’s heart with tools

for highlighting target locations for cardiac ablation applications. However, it

is not possible to update the 3D volume intra-operatively to provide the inter-

ventional cardiologist with more up-to-date feedback at each instant of time.

There are also commercial products for robot-assisted cardiac ablation which

require specialized catheters or guide catheters. In this part of the thesis,

we describe the system we have developed for master-slave robotic actuation

and control of conventional steerable catheters as well as real-time three di-

mensional visualization for cardiac ablation. A 4D ultrasound probe is used

to acquire and update a 3D image volume. A magnetic tracking device is

used to track the distal part of the ablation catheter in real time. 3D ultra-

sound image volumes go through some processing to make the heart tissue

and the catheter more visible. The ultrasound probe is also equipped with a

magnetic tracker which is used for online registration of the ultrasound image

volumes. We have used transthoracic echocardiography (TTE) instead of the

conventional transesophageal (TEE) or intracardiac (ICE) echocardiogram. A

beating heart model has been used to perform the experiments. This method

can be used both for diagnostic and therapeutic applications as well as train-

ing interventional cardiologists. A master-slave control system was developed

for catheter tip position control.
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3.1 Introduction

Cardiovascular diseases are among the major causes of death around the world.

Among these is cardiac arrhythmia, which is caused by abnormal electrical

activity in the heart. Cardiac arrhythmia may cause fast, slow or irregular

heart beats. It may become life threatening and cause cardiac arrest or it may

only become annoying as a result of the conscious awareness of the heart beat

(palpitations). Cardiac ablation is an invasive procedure for destroying faulty

electrical pathways which cause arrhythmia. One method of cardiac ablation

involves inserting a catheter into the heart chambers in order to destroy the

faulty electrical activity by burning or freezing parts of the endocardium [1].

Keane [2] has studied and compared different catheter-based techniques for

cardiac ablation. Radiofrequency (RF) ablation is the most commonly used

cardiac ablation technique [2]. The major challenges in RF ablation include

(a) accurate positioning of the catheter tip, and (b) keeping contact with a

target point in the presence of the beating heart motion. The success rate

of cardiac ablation is highly dependent on the ability to exactly ablate the

specified faulty region. Therefore accurate positioning of the catheter tip is

required. On the other hand, the size and depth of the lesions depend on the

integral of the force at the catheter tip during the ablation [3]. Applying extra

force during ablation may cause perforation of the heart wall and insufficient

contact force may result in incomplete therapy and recurrence of arrhythmia.

In catheter-based cardiac ablation procedures, usually an electro-anatomical

mapping of the patient’s heart chambers is constructed and visualized, and

the target locations are marked on the 3D image. CARTO (Biosense Webster,

USA) and EnSite NavX (StJude Medical, St Paul, MN, USA) systems can

also combine a pre-operative 3D CT or MRI scan of the patient’s heart with

a detailed electro-anatomical mapping of the heart [4, 5]. Use of pre-operative

3D imaging improves the understanding of the locations of ablation lesions

with respect to structures such as the esophagus but studies show that it does

not provide significant improvement in terms of reducing the X-ray fluoroscopy

time [5] which means that intraoperative imaging feedback is still required for
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localizing the catheter within the anatomical structure. Therefore, intraoper-

ative 3D imaging can be very useful. The ablation catheter is also visualized

in some of the existing systems. However, there are some drawbacks which

limit the capabilities of these systems, including: (a) the lack of depth per-

ception, (b) the 3D image of the heart is not updated during the procedure,

and (c) specific arrangements are required to capture preoperative images and

align them with the intraoperative system. We have used 4D ultrasound imag-

ing which can provide updated 3D images of the heart during the procedure

through a transthoracic apical view of the heart. The same approach can also

be used with transesophageal ultrasound imaging. We have also used a mag-

netic tracking system to localize the distal end of the catheter and to register

the catheter to the 3D ultrasound volume, intraoperatively. It is expected that

these will improve the overall perception for the interventional cardiologists,

of the catheter tip position in a beating heart.

On the other hand, ablation catheters are usually guided manually using

a pull-wire mechanism by manual actuation of knobs on the catheter handle.

This makes it very difficult to coordinate steering of the catheter tip with the

3D visual feedback. Robotic manipulation of the catheter can be used to solve

this problem and provide a more ergonomic interface for the clinicians to per-

form cardiac ablation. Hansen Medical (Mountain View, CA) has developed

a catheter control system (SenseiTM Robotic Catheter System) that allows

a remotely-located operator to control catheters [6]. Stereotaxis (St. Louis,

MO) has developed a magnetic catheter navigation system (NIOBE R© Mag-

netic Navigation System [7]). In this system, a soft catheter with a magnetic

tip is manipulated using two large external permanent magnets. However,

the SenseiTM system uses a specialized steerable guide catheter [8–10] and the

NIOBE R© system uses a special magnetic catheter and also requires two large

permanent magnets around the patient [11]. It would be ideal to develop a

robotic system that can work with existing steerable catheters.

In this part of the thesis, an image-guided robotic system is proposed to fa-

cilitate the positioning of the catheter tip using a master-slave control scheme

with coordinated visual feedback. It has been shown that force feedback can
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improve the results of cardiac ablation [12, 13]. Several projects have been

aimed at mounting miniature force sensors at the tip of a catheter [14–17].

The developed system is capable of implementing haptic feedback and bilat-

eral teleoperation provided that the catheter is equipped with a force sensor.

The developed method was tested on a beating heart phantom. In this part

of the thesis, general aspects of the developed system, including the catheter

actuation mechanism and online 3D visualization are described. The exper-

imental setup is shown in Section 3.2 where various parts of the system are

described along with a discussion about the system calibration and registra-

tion. The design of the robotic system for actuation of a steerable catheter is

described in Section 3.3 while modeling and control of a steerable catheter is

discussed in Section 3.4. The 3D reconstruction and visualization algorithms

are discussed in Section 3.5. Section 3.6 describes the master-slave control.

Results are given in Section 3.7, and Section 3.8 concludes this part of the

thesis.

3.2 Experimental setup

The experimental setup is shown in Figure 3.1. A beating heart phantom with

a realistic model of the left and right ventricles has been used. A 4D ultra-

sound probe (4DC7-3/40) was used with the SonixTouch ultrasound system

(Ultrasonix, Vancouver, BC, Canada). A magnetic tracking system, Aurora

(Northern Digital Inc., Waterloo, ON, Canada) was also used to track the

distal part of the catheter and to register the ultrasound probe coordinates.

Figure 3.2 shows an overall view of the experimental setup. A custom

designed catheter actuation mechanism with two degrees of freedom (DOF)

was used for actuation of steerable catheters. The catheter actuation mecha-

nism is mounted on a Mitsubishi PA10-7C robot manipulator. The actuation

mechanism is used to move the knobs on a steerable catheter handle in order

to actuate the distal part of the catheter using pull wires. The PA10 robot

manipulator is used to insert/retract and twist the catheter as well as position

the actuation mechanism close to the port of entry (where the catheter is in-



78

Figure 3.1: The ex-vivo experimental setup: (a) Beating heart phantom (Shel-
ley Medical Imaging Technologies), (b) 4D ultrasound probe, (c) Ultrasound
probe holder; An ablation catheter is inserted to a ventricle while the ultra-
sound probe captures images from an apical view.
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serted into the body) while maintaining a remote center of motion. Figure 3.3

represents a block diagram of the system showing different elements of the

overall system with their interconnections.

Figure 3.2: The image-guided robotic system for catheter insertion.

3.2.1 Calibration and Registration

Figure 3.4 shows the distal part of a steerable catheter with the magnetic

trackers installed on it. Offset calibration should be performed to estimate the

position/orientation offset of magnetic trackers mounted on the catheter.

Figure 3.5 shows a schematics of the magnetic tracking sensors mounted

on the catheter; δ1, δ2, δ3 are the linear offsets of M1,M2,M3 with reference to

O0, O1, O3, respectively. We assume that the central axis of M1,M2,M3 is par-

allel to the central axis of the catheter, Z with angular offsets of φ1, φ2, φ3 with

respect to the X axis. The lateral offsets of the magnetic sensors (r1, r2, r3)

are assumed to be equal to the addition of the catheter and magnetic sensor

diameters which is a known value. In order to calibrate for the offsets, we put

the distal part of the catheter in a nonmagnetic straight tube to make sure
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Figure 3.3: Block diagram of the system.
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Figure 3.4: Three magnetic tracking sensors (M1,M2,M3) mounted on the
distal part of a steerable catheter and fixed using heat-shrink tubes.

the distal part of the catheter stays straight during calibration. The linear

and angular offsets are then estimated by pivoting the catheter tip at a point

and then using the method developed by Zhang et al. [18]. The problem is

well-posed because (a) the offset calibration is independent of the roll angle

for each 5-DOF magnetic tracker, and (b) the number of unknowns is limited

to 6 while we can collect data in many different poses by pivoting the catheter

around a point in a limited time.

Freehand ultrasound image calibration is performed offline using a catheter

instrumented with magnetic trackers [18, 19]. Online registration of each ul-

trasound image volume to the reference coordinates is performed based on the

probe location/orientation measured by a 6-DOF magnetic tracker mounted

on the probe. The magnetic tracker is evaluated at the moments when the

motorized probe is turned off to avoid magnetic interference. This is used to

register the coordinates of the catheter with respect to the 3D ultrasound vol-

ume. This registration information is then used to coordinate the motion of

the master haptic device with the actual motion of the catheter as seen in the

3D visual feedback. This is very important to provide an intuitive interface

to control the distal tip of the catheter. It can also be used to visualize the

catheter tip as a virtual tool in the reconstructed 3D ultrasound image in a

virtual reality environment.
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Figure 3.5: A schematics of the three magnetic sensors mounted on the distal
part of the catheter. The points O0, O1, O2, O3, O4 are the origins of coordinate
systems shown in Figure 3.8 where O4 is the distal tip of the catheter.

3.3 Robotic System Design

Conventional steerable catheters are usually actuated manually using knobs

on the handles of each catheter. Rotary or prismatic knobs are most com-

mon and steerable ablation catheters use a pull-wire mechanism to transfer

the motion from the knobs to the distal section of the catheter. Steerable

catheters usually have one or two bending sections. The idea was to develop a

catheter actuation mechanism which can manipulate a conventional steerable

ablation catheter without making any modifications to the catheter. A 2-DOF

actuation mechanism was designed that holds a steerable catheter handle and

actuates the manual knobs using servo motors through small adapters. The

CAD design of this actuation mechanism is shown in Figure 3.6.

Although the catheter actuation mechanism deploys the pull-wires of the

catheter to bend its distal section, extra degrees of freedom are required to

insert/retract and twist the catheter as well as to locate and orient the proximal
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Figure 3.6: CAD design of the catheter actuation mechanism.

part of the catheter with respect to the port of insertion in the patient’s body

(i.e., usually through the femoral vein in the groin). Therefore, we have used

a commercial robot manipulator, Mitsubishi PA10-7C to provide these extra

degrees of freedom. This 7-DOF robot holds and moves the 2-DOF catheter

actuation mechanism, where 3 DOFs are used to adjust the position with

respect to the patient’s body, 2 DOFs to align the orientation of the catheter

at the proximal end, 1 DOF for insertion/retraction of the catheter and the

last remaining DOF for twisting the catheter. Figure 3.7 shows the whole

robotic system.

3.4 Steerable Catheter Modeling and Control

A continuum robot model [20], [21] has been developed for the steerable part of

the catheter. Continuum robot models have been used to describe kinematics

of single section steerable catheters by Jayender et al. [22] and Ganji et al. [23],
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Figure 3.7: Steerable ablation catheter, catheter actuation mechanism and the
Mitsubishi PA10 robot after assembly.
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[24], [25]). The coordinates of the virtual joints used for modeling of a two-

section steerable catheter are shown in Figure 3.8. The associated Denavit-

Hartenberg (D-H) parameters [26], are shown in Table 3.1.

1 2 3 4 5 6 7 8 9 10 11 12 13
αi−1 0 π

2
π
2

π
2

π
2

π
2

0 π
2

π
2

π
2

π
2

π
2

0
ai−1 0 0 0 0 0 0 0 0 0 0 0 0 0
di δd1 0 0 d4 0 0 d7 0 0 d10 0 0 d13
θi 0 θ2

π
2
+θ3 0 π + θ5 θ6 0 θ8

π
2
+θ9 0 θ11 π + θ12 0

Table 3.1: D-H parameters for the continuum robot model of a steerable
catheter.

The independent joint variables are: δd1, θ2, θ3 and θ9. The continuum

robot model poses constraints on some of the joint variables. The revolute

joints should satisfy the following constraints:

θ2 + θ6 = π
2

θ3 + θ5 = π
2

θ6 = θ8

θ8 + θ12 = π
2

θ9 + θ11 = π
2

(3.1)

On the other hand, the prismatic joints d4 and d7 are coupled with θ3 and θ9,

respectively. The coupling equations are described as follows:d4 = L1
π
2
−θ3 cos(θ3)

d10 = L2
π
2
−θ9 cos(θ9)

(3.2)

where L1 and L2 are the lengths of the first and second bending sections,

respectively. We assume there is no elongation in the catheter when each

section bends; d7 and d13 are constant lengths.

For the experiments in this chapter, we have used an ablation catheter,

Bard ScorpionTM 2 (Bard Electrophysiology Division, C. R. Bard, Inc., Lowell,

MA, US). The parameters of this catheter are reported in Table 3.2
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Figure 3.8: Kinematic modeling of a steerable catheter as a continuum robot.

Parameter L1 L2 d7 d13
Value 56.03mm 11.19mm 6.81mm 11.16mm

Table 3.2: Specifications of the Bard ScorpionTM 2 ablation catheter.
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Although the D-H parameters are used to obtain the forward kinematics

and the Jacobian matrix for the steerable catheter, the actuated variables are

not the same as the independent variables δd1, θ2, θ3 and θ9. The catheter is

actuated at its proximal end and the actuated variables are:

• δd which is the displacement along the catheter axis at its proximal end.

• θtwist which determines the rotation of the catheter around its axis at its

proximal end.

• αknob which is the angle of the rotary knob.

• γknob which is the position of the prismatic knob.

The relationship between the actuated variables (δd, θtwist, αknob, γknob) and

the controlled variables (δd1, θ2, θ3, θ9) is not linear due to several parameters

including: (a) flexing of the catheter in the vasculature, (b) interaction with the

walls of the vessels (e.g., friction), (c) backlash and hysteresis in the catheter

pull-wire mechanism. We have shown the nonlinearities due to flexing of the

catheter which determine the mapping from δd to δd1 in Chapter 2. Mapping

from θtwist to θ2 shows similar nonlinearities due to torsion of the catheter

inside the vasculature. Ganji et al. [25] developed a simple model for the map-

ping between a steerable catheter knob angle and the bending angle of its distal

end. However, we do not use models for the dead zone, backlash, hysteresis

and other nonlinearities in these mappings. We use a roughly estimated linear

model between the actuated variables and the controlled variables where the

coefficients of this linear model are determined experimentally.

To adjust the position and orientation of the proximal part of the catheter

with respect to the patient’s body (or vascular model), the robot is put on

gravity compensation mode. Appendix A describes the gravity compensation

torque required for the PA10 robot. A real-time controller calculates gravity at

each instant of time based on the current configuration of the robot and applies

the calculated torques to the joint motors. Once the user adjusts the position

and orientation of the robot with respect to the vasculature (this requires 5
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degrees of freedom), a Jacobian transpose controller is used to control the

remaining 2 DOFs, i.e., insertion/retraction of the catheter along the adjusted

orientation and also twisting the catheter.

3.5 Online 3D volume reconstruction

3D ultrasound images are captured in real time. The capturing rate is 1.5

volumes per second with 31 frames per volume. The volume covers a fan-

shaped scan with a field of view of 45.4o with 1.46o for each frame. The

motorized probe is controlled and images are captured using a customized

application developed based on Porta SDK [27] (Ultrasonix, Vancouver, BC,

Canada). The pre-scan converted B-mode ultrasound frames are transferred

over a TCP/IP network to the master computer using the OpenIGTLink [28]

protocol. The Pando SDK [29] (Ultrasonix, Vancouver, BC, Canada) is used

for scan conversion, i.e., converting from linear B-scan data into geometrically

correct images. This method reduces network traffic, by sending the linear

data and performing the conversion (and interpolation) on the destination

computer. The linear B-scan image size is 192 × 584 pixels and the B-mode

image size is 640×480 pixels after conversion. We use an 8-bit data depth and

therefore the image size is 109.5KB before conversion vs. 300KB after con-

version. Therefore, this method saves 63.5% in network traffic. The net data

rate is approximately 4.97MBps (over a 1Gbps network) without considering

the OpenIGTLink protocol overhead.

It is shown that 3D volumetric processing after 3D reconstruction, results

in better quality 3D ultrasound images compared to 2D image processing tech-

niques applied before reconstruction [30]. However, 3D volumetric processing

is very time consuming and computationally intensive. Fast 2D image pro-

cessing is performed on each captured frame to reduce noise and speckles by

replacing each pixel by the maximum of mean and median in a region around

that pixel [31]. The processing also includes a simple segmentation algorithm

consisting of adaptive thresholding. Adding the information of each image slice

to the volume is performed based on the angle of the probe at each step. The
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compounding of 2D pixels into 3D voxels is then performed using the weighted

accumulation compounding technique developed by Gobbi et al. [32]. The 3D

ultrasound image capturing is performed at a rate of 1.5 volumes per second

which is higher than the beating rate of the dynamic heart phantom (i.e.,

0.5Hz or less).

3.5.1 Stereoscopic visualization

The 3D scene (augmented with the representation of a catheter as a virtual

tool) can be visualized using VTK in order to provide better depth perception

and 3D understanding of the scene to the user. The user can activate the

stereoscopic view in order to see the scene using stereoscopic goggles while

he/she manipulates the catheter through a haptic device. The coordination

of the haptic and visual interface provides an intuitive way of controlling the

distal tip of the catheter.

3.6 Master-slave control

A unilateral master-slave control scheme has been developed. The OpenIGTLink

[28] protocol [33] is used for real-time communication over TCP/IP. Figure. 3.9

shows the master and slave user interfaces. The master interface includes a

graphical user interface which embeds the 3D visualization as well. It also

includes a haptic interface through which the user controls the motion of the

catheter tip. The graphical user interface on the slave side includes tools to ini-

tialize and control the robot manipulator and catheter actuation mechanism.

The graphical user interfaces have been developed using KWWidgets.

The slave robot is controlled asynchronously at an average rate of 1.5KHz.

The real-time communication between the master and slave computers is per-

formed at a rate of 1KHz synchronously. A PHANTOM R© DesktopTM hap-

tic device is used as the master device, connected to the master computer

through an Enhanced Parallel Port (EPP) interface. The haptic device is con-

trolled asynchronously at an average rate of 1KHz using the OpenHaptics [34]
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Figure 3.9: Left: Slave graphical user interface, Right: Master graphical user
interface and the haptic device.

API (SensAble Technologies, Inc., Wilmington, MA). The interconnections be-

tween various parts of the system are shown in Figure 3.3.

3.7 Results

We have tested the developed system on a realistic beating heart phantom.

The results are illustrated in Figure 3.10 where an ultrasound image slice as

well as different views of the reconstructed volume are shown. The ablation

catheter is clearly visible in the reconstructed volume. The catheter can also be

visualized as a virtual tool using its coordinates captured through the magnetic

trackers mounted on the catheter; This can be performed at a higher rate (up

to 30Hz).

The volume capturing is performed at 1.5Hz which is more than three

times the beating rate of the dynamic heart phantom (i.e., 0.5Hz or less).

Although the sampling rate is enough based on the Nyquist criterion, there

will be some motion artifacts in the 3D reconstructed volumes. There are two

methods to reduce these artifacts: (a) using ECG gating [35] to overcome the

artifacts caused by a beating heart, and (b) using 4D ultrasound probes with

a higher capturing rate. Using ECG gating reduces the motion artifacts signif-

icantly but the overall reconstruction rate will be much slower (approximately
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1-2 volumes per minute) when ECG gating is involved. This method is also

sensitive to cardiac arrhythmia. Higher capturing rates (close to 30 volumes

per second) can be provided using non-mechanical 4D ultrasound probes [36].

3.8 Conclusion

We have applied intraoperative transthoracic echocardiography for cardiac ab-

lation applications. We have developed 4D ultrasound image reconstruction

that can be used to visualize the heart chambers as well as ablation catheters.

Magnetic trackers have been used to register the coordinates of the ultra-

sound probe as well as track the distal end of the catheter. We also devel-

oped a master-slave control scheme with robot-assisted actuation of a steerable

catheter. We expect this method to improve the cardiac ablation procedure

by providing intraoperative 3D ultrasound-based visual feedback coordinated

with a haptic device at a master console. Changes in the condition and mo-

tion of the patient will have minimal effect whereas in the case of using pre-

operative images, registration should be updated if the patient moves. The

accuracy of catheter steering will also be improved by providing a stereoscopic

(3D) view of the catheter with respect to the heart along with master-slave

control of the ablation catheter. The contributions of this work include: (a)

application of transthoracic intraoperative ultrasound for catheter guidance

in cardiac ablation; (b) use of intraoperative 3D ultrasound instead of preop-

erative CT/MR images for (stereoscopic) visualization of the heart; and (c)

robot-assisted actuation of steerable ablation catheters using a master-slave

control scheme.

Bibliography

[1] Shoei K. Stephen Huang and Mark A. Wood, editors. Catheter Ablation

of Cardiac Arrhythmias. Saunders, 2006.



92

Figure 3.10: Ultrasound Imaging and 3D Reconstruction of a Heart Phantom
with a 7-Fr Ablation Catheter: (a) a single slice of ultrasound images; (b,c,d)
3D reconstruction represented from different points of view. The different
parts shown in this image are: (1) Left ventricle, (2) Interventricular Septum,
(3) Ablation catheter, (4) Right Ventricle and (5,6,7) the ablation catheter
from different points of view.



93

[2] David Keane. New catheter ablation techniques for the treatment of

cardiac arrhythmias. Cardiac Electrophysiology Review, 6:341–348, 2002.

[3] Dipen C Shah, Hendrik Lambert, Hiroshi Nakagawa, Arne Langenkamp,

Nicolas Aeby, and Giovanni Leo. Area Under the Real-Time Contact

Force Curve (Force-Time Integral) Predicts Radiofrequency Lesion Size

in an In Vitro Contractile Model. Journal of cardiovascular electrophysi-

ology, pages 1038–1043, March 2010.

[4] Peter M Kistler, Kim Rajappan, Mohammed Jahngir, Mark J Earley,

Stuart Harris, Dominic Abrams, Dhiraj Gupta, Reginald Liew, Stephen

Ellis, Simon C Sporton, and Richard J Schilling. The impact of CT image

integration into an electroanatomic mapping system on clinical outcomes

of catheter ablation of atrial fibrillation. Journal of cardiovascular elec-

trophysiology, 17(10):1093–101, October 2006.

[5] Brian D Powell and Douglas L Packer. Does image integration improve

atrial fibrillation ablation outcomes, or are other aspects of the ablation

the key to success? Europace : European pacing, arrhythmias, and cardiac

electrophysiology, 11(8):973–4, August 2009.

[6] Hansen medical’s sensei robotic catheter system. http://www.

hansenmedical.com/sensei.

[7] Stereotaxis’s Niobe, Magnetic Catheter Navigation System. http://www.

stereotaxis.com/niobe.html.

[8] A. Amin, J. Grossman, and P. Wang. Early experience with a comput-

erized robotically controlled catheter system. Journal of Interventional

Cardiac Electrophysiology, 12:199–202, 2005.

[9] N. Marrouche, J. Brachmann, O. Wazni, V. Shibgilla, S. Beheiri, J. Guen-

ther, and A. Natale. Preliminary human experience using a novel robotic

catheter remote control. Heart Rhythm, 2:S63, 2005.



94

[10] Prapa Kanagaratnam, Michael Koa-Wing, Daniel T Wallace, Alex S

Goldenberg, Nicholas S Peters, and D Wyn Davies. Experience of robotic

catheter ablation in humans using a novel remotely steerable catheter

sheath. Journal of Interventional Cardiac Electrophysiology, 21(1):19–26,

January 2008.

[11] Luigi Di Biase, Tamer S Fahmy, Dimpi Patel, Rong Bai, Kenneth Civ-

ello, Oussama M Wazni, Mohamed Kanj, Claude S Elayi, Chi Keong

Ching, Mohamed Khan, Lucie Popova, Robert a Schweikert, Jennifer E

Cummings, J David Burkhardt, David O Martin, Mandeep Bhargava,

Thomas Dresing, Walid Saliba, Mauricio Arruda, and Andrea Natale.

Remote magnetic navigation: human experience in pulmonary vein abla-

tion. Journal of the American College of Cardiology, 50(9):868–74, August

2007.

[12] Aravinda Thiagalingam, Andre D’Avila, Lori Foley, J. Luis Guerrero,

Hendrik Lambert, Giovanni Leo, Jeremy N. Ruskin, and Vivek Y. Reddy.

Importance of catheter contact force during irrigated radiofrequency abla-

tion: Evaluation in a porcine ex vivo model using a force-sensing catheter.

Journal of Cardiovascular Electrophysiology, (4):1–6, 2009.

[13] C. Weiss, M. Antz, O. Eick, K. Eshagzaiy, T. Meinertz, and S. Willems.

Radiofrequency catheter ablation using cooled electrodes: Impact of ir-

rigation flow rate and catheter contact pressure on lesion dimensions.

Pacing and Clinical, 25(4 Pt 1):463–469, April 2002.

[14] M Tanimotol, F Arail, T Fukuda, H Iwata, K Itoigawa, Y Gotohx M

Hashimoto, and M Negoro. Micro force sensor for intravascular neu-

rosurgery and in vivo experiment. The Eleventh Annual International

Workshop on Micro Electro Mechanical Systems, pages 504–509, 1998.

[15] Tobias Schaeffter, Lakmal Seneviratne, and Kaspar Althoefer. A fibre-

optic catheter-tip force sensor with MRI compatibility: A feasibility

study. Annual International Conference of the IEEE Engineering in

Medicine and Biology Society (EMBC), pages 1501–054, 2009.



95

[16] Pinyo Puangmali, Tobias Schaeffter, and Reza Razavi. Novel miniature

MRI-compatible fiber-optic force sensor for cardiac catheterization pro-

cedures. IEEE International Conference on Robotics and Automation

(ICRA), pages 2598–2603, 2010.

[17] Katsuaki Yokoyama, Hiroshi Nakagawa, Dipen C Shah, Hendrik Lambert,

Giovanni Leo, Nicolas Aeby, Atsushi Ikeda, Jan V Pitha, Tushar Sharma,

Ralph Lazzara, and Warren M Jackman. Novel contact force sensor incor-

porated in irrigated radiofrequency ablation catheter predicts lesion size

and incidence of steam pop and thrombus. Circulation. Arrhythmia and

electrophysiology, 1(5):354–362, December 2008.

[18] Hui Zhang, Kevin Cleary, Filip Banovac, and Amy White. Freehand

3D ultrasound calibration using an electromagnetically tracked needle.

Proceedings of SPIE, 6141:61412M:1–12, 2006.

[19] P.W. Hsu, R.W. Prager, A.H. Gee, and G.M. Treece. Freehand 3D ultra-

sound calibration: a review. Advanced Imaging in Biology and Medicine,

(December):47–84, 2007.

[20] B.A. Jones and I.D. Walker. Kinematics for multisection continuum

robots. IEEE Transactions on Robotics, 22(1):43 – 55, 2006.

[21] E. Tatlicioglu, I.D. Walker, and D.M. Dawson. New dynamic models for

planar extensible continuum robot manipulators. Magnetic Resonance in

Medicine, Wiley InterScience, 55(5):1454–1459, May 2007.

[22] Jagadeesan Jayender, Rajni Patel, Gregory Michaud, and Nobuhiko

Hata. Optimal transseptal puncture location for robot-assisted left atrial

catheter ablation. In Medical Image Computing and Computer-Assisted

Intervention MICCAI 2009, volume 5761 of Lecture Notes in Computer

Science, pages 1–8. Springer Berlin / Heidelberg, 2009.

[23] Yusof Ganji, Farrokh Janabi-Sharifi, and Asim Cheema. Robot-assisted

catheter manipulation for intracardiac navigation. International Journal

of Computer Assisted Radiology and Surgery, 4:307–315, 2009.



96

[24] Y. Ganji and F. Janabi-Sharifi. Kinematic characterization of a cardiac

ablation catheter. In IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1876 –1881, 2007.

[25] Y. Ganji and F. Janabi-Sharifi. Catheter kinematics for intracardiac nav-

igation. IEEE Transactions on Biomedical Engineering, 56(3):621 –632,

2009.

[26] John J. Craig. Introduction to Robotics: Mechanics and Control. Pearson

Education, 3 edition, 2005.

[27] Porta SDK. http://www.ultrasonix.com/wikisonix/index.php?

title=Porta.

[28] OpenIGT Link Protocol. http://www.na-mic.org/Wiki/index.php/

OpenIGTLink/Protocol.

[29] Pando SDK. http://www.ultrasonix.com/wikisonix/index.php?

title=Pando.

[30] Flemming Forsberg, Vincenzo Berghella, Daniel A. Merton, Keith Rych-

lak, Joann Meiers, and Barry B. Goldberg. Comparing image processing

techniques for improved 3-dimensional ultrasound imaging. Journal of

Ultrasound in Medicine, 29(4):615–619, 2010.

[31] K. Thangavel, R. Manavalan, and I. Laurence Aroquiaraj. Removal of

speckle noise from ultrasound medical image based on special filters:

Comparative study. ICGST International Journal on Graphics, Vision

and Image Processing, 9:25–32, 2009.

[32] David Gobbi and Terry Peters. Interactive intra-operative 3D ultrasound

reconstruction and visualization. In Takeyoshi Dohi and Ron Kikinis,

editors, Medical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 2489 of Lecture Notes in Computer Science, pages

156–163. Springer Berlin / Heidelberg, 2002.



97

[33] Junichi Tokuda, G.S. Fischer, Xenophon Papademetris, Ziv Yaniv,

L. Ibanez, Patrick Cheng, Haiying Liu, Jack Blevins, Jumpei Arata,

A.J. Golby, and Others. OpenIGTLink: an open network protocol for

image-guided therapy environment. The International Journal of Medical

Robotics and Computer Assisted Surgery, 5(4):423–434, 2009.

[34] OpenHaptics Toolkit, Sensable Technologies. http://www.sensable.

com/products-openhaptics-toolkit.htm.

[35] D. Pace, D. Gobbi, C. Wedlake, J. Gumprecht, J. Boisvert, J. Tokuda,

N. Hata, and T. Peters. An open-source real-time ultrasound reconstruc-

tion system for four-dimensional imaging of moving organs. In Medical Im-

age Computing and Computer-Assisted Intervention (MICCAI). Springer,

2009.

[36] Shelten G. Yuen, Nikolay V. Vasilyev, Pedro J. del Nido, and Robert D.

Howe. Robotic Tissue Tracking for Beating Heart Mitral Valve Surgery.

Medical Image Analysis, 5528:97–103, July 2010.



98

Chapter 4

Patch Clamping

An image-guided technique is presented that facilitates multiple electrode

patch clamping. In conventional methods of patch clamp electrophysiology,

placement of electrodes is a time-consuming and complicated task due to the

lack of depth perception, small depth of field, limited field of view and the

possibility of collision between micropipettes. Microscope image processing is

used to partially avoid these limitations. In this chapter, image processing

algorithms are applied for system calibration and to perform autofocusing,

relative depth estimation, distance estimation, tracking of the micropipettes

in the images without making any major changes in the existing patch clamp

equipment, and detection of lens/water contact. An autofocusing algorithm

was developed and the relative depth estimation was performed based on aut-

ofocusing. A micropipette tip detection algorithm was also developed which

could be used to initialize or reset a tracking algorithm. An image-based

tracking algorithm was developed to track a micropipette tip in real time. A

combination of these image processing techniques is used to assist the user to

focus and find target cells in a tissue and locate multiple micropipettes close

to the target neurons. Once this is done, the user can move the micropipettes

through a master-slave control scheme in order to perform patch clamping.
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4.1 Introduction

Patch clamp electrophysiology is a technique that permits the study of single or

multiple ion channels in cells. The technique can be applied to a wide variety of

cells, but is especially useful in the study of excitable cells such as neurons and

cardiomyocytes [1]. To do patch clamp recordings glass micropipettes having

an open tip diameter of about 0.2µm, and outside tip diameter of about 0.4µm

are used to electrically isolate a membrane surface area or patch which may

contain as few as one or two ion channel molecules. The micropipette is pressed

against a cell membrane and suction is applied to assist in the formation of

a high resistance seal between the glass and the cell membrane (a GigaOhm

(GΩ) seal or Gigaseal since the electrical resistance of that seal should be more

than a GΩ). The high resistance of this seal makes it possible to electronically

isolate the currents measured across the membrane patch with little competing

noise thereby resulting in a high signal to noise ratio. It also provides some

mechanical stability to the recording. The interior of the micropipette is filled

with a solution matching the ionic composition of the interior of the cell.

A differential amplifier is used along with a bath electrode, which allows a

researcher to keep the voltage constant while observing changes in current.

Alternatively, the cell can be current clamped in whole-cell mode, keeping the

current constant while observing changes in the membrane voltage.

Neher and Sakmann first introduced the patch clamping technique in 1976

[2]. Their work received the Nobel Prize in Physiology or Medicine in 1991.

While this technique has been employed for more than twenty years it is a diffi-

cult and time consuming process, requiring the use of micromanipulators hav-

ing high precision (< 0.2µm), no vibration and no drift over long (> 2hours)

periods of time. It is also difficult to train researchers to perform patch clamp-

ing experiments and hence the data throughput is extremely low [3]. Even for

someone with patch clamping experience, patch clamping is a very time con-

suming and tedious task. These difficulties become significant when more than

one simultaneous recording is attempted. Only a handful of laboratories rou-

tinely do more than one recording at a time. While recordings of three or
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more at a time are done by only one or two laboratories in the world. Some

of these difficulties include the following: (a) Each micromanipulator is moved

individually and there is no coordination between the micromanipulators; (b)

the microscope is moved independently of the micromanipulators; on the other

hand a high level of magnification is required and therefore the depth of field

and field of view are very limited. This makes it very difficult for the user

to follow the micromanipulator movement when it is out of the field of view;

(c) focusing needs to be done manually and it is like a blind search for an

object before it comes close to the field of view; (d) there is a high possibility

of collision between micro-pipettes or a micro-pipette and the objective or the

substrate; (e) it is very difficult to relocate a micro-pipette tip at its previous

location after it is changed. It is usually required to change a micropipette

frequently during the procedure.

There are several automated patch clamp tools in the market today but

almost all of them use a different approach than conventional patch clamp-

ing. Farre et al. [3] have listed most of the automated patch clamping sys-

tems available in the market. Most can only record from cells that approach

the micropipettes instead of the conventional way of approaching a cell by

a micropipette. Therefore, this approach cannot be used to monitor the

electrophysiological activity of cells located in tissue (such as a brain slice).

Instead, this approach is generally used by the pharmaceutical industry to

screen for drugs that affect ion channel activity [3], [4]. To the best of our

knowledge, there is no system available for automated/semi-automated multi-

channel patch clamping which could be used on living cells in tissue, i.e.,

approaching cells by multiple micropipettes.

The problem under study can be viewed as cell micromanipulation with

special considerations. Sun and Nelson [5] have studied different techniques of

cell manipulation including (a) optical trapping, (b) dielectrophoresis(DEP),

and (c) mechanical micromanipulation. The first two methods can only be

applied to isolated cells. The third method has the potential to be applied for

cells in tissue. Mechanical micromanipulation has several applications includ-

ing measuring mechanical properties of cells [6], [7] and microinjection [8], [9].
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Unless otherwise specified, hereafter in this chapter, cell micromanipulation

refers to mechanical micromanipulation of cells.

Sun and Nelson [10], [5] have developed an automated system for cell in-

jection. They have used a 3-DOF micromanipulator to approach a mouse

embryo cell (average 55µm diameter) and inject DNA into the cell while an-

other micropipette is used to hold the embryo cell in place. They have used a

generalized Hough transform to detect the nuclei of cells and a sum of squared

differences for tracking the micropipette. An image-based visual servoing con-

troller is used to bring the micropipette tip close to the nucleus and a hybrid

position control is used to perform the automatic injection. An automatic fo-

cusing algorithm based on template matching has been used. Wang et al. [9, 11]

have extended these techniques for automated pronuclear injection of zebrafish

embryo (> 400µm diameter) at a rate of 15 embryos per second.

Almost all of the techniques for cell micromanipulation have been devel-

oped and tested on isolated cells [5, 11, 12]. However, micromanipulation of

live cells located in a tissue is far more challenging due to factors such as:

(a) light/tissue interaction which causes image artifacts and images with low

contrast and poor quality compared to isolated cell images; (b) tool/tissue

interaction which causes motion of the cell even before the tool tip reaches

the cell membrane; and (c) mechanical limitations posed by the fact that the

tissue should be floating in a specially prepared oxygenated liquid to keep the

cells alive. Therefore, simple image processing techniques used for detection

and tracking of micropipettes, segmentation of cells or nuclei and automa-

tion using image-based visual servoing cannot be applied to the case of cell

micromanipulation in tissue.

In contrast to techniques used for automating cell micromanipulation, it

would be ideal to develop techniques to help a user perform multi-electrode

patch clamping more easily and quickly while making minimal changes to the

existing equipment. We have developed an approach that provides microscope

image processing tools and techniques in order to make patch clamping faster

and easier. This approach can be applied to existing commercially available

equipment used for patch clamping. We have developed a software platform
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which is able to control the position of the objective lenses as well as the tip

positions of the micropipettes individually. This software platform makes it

possible to automatically focus on different objects, move the manipulators or

the microscope lens to desired positions selected by the user and avoid collisions

between the micropipettes. It also provides a graphical user interface (GUI)

with different control tools and the capability of visualization of the process.

The software also makes it possible to use a haptic device to move any of the

micromanipulators or the microscope lens through master-slave control. The

haptic device exerts forces on the user’s hand, using the concept of artificial

potential fields to generate forces for the collision avoidance algorithm and

act when the micropipette comes close to an obstacle (which can be another

micropipette).

In this part of the thesis, we describe the image processing techniques

developed for this system which include the autofocusing algorithm and mi-

cropipette tip detection and tracking methods. This is part of the overall

project which also includes microrobot control, collision avoidance, master-

slave control and haptic feedback. The outline of the rest of this chapter is

as follows: The experimental setup is described in Section 4.2. In Section 4.3,

the autofocusing algorithm is discussed. Calibration of the system is briefly

presented in Section 4.4, while Section 4.5 contains algorithms for detection

and tracking of micropipette tips. Section 4.6 presents an algorithm for de-

tection of lens-water contact. Section 4.7 describes the visual servoing control

of micropipette tip positions. The collision avoidance technique is presented

in Section 4.8. Section 4.9 describes the haptic-enabled master-slave control

and Section 4.10 presents an online algorithm for partial 3D reconstruction

and visualization. The architecture of the developed software is described

in Section 4.11. Experimental results are given in Section 4.12 and finally,

Section 4.13 concludes the chapter.
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4.2 Experimental Setup

Figure 4.1 shows the experimental setup including the microscope, lenses, cam-

era, micromanipulators and other equipment. Appendix D lists the equipment

used in the system with various associated features. An objective lens changer

was designed for automatic changing of the lenses [13], more details can be

found in Appendix E.

Figure 4.1: The experimental setup: all the equipment is installed on an anti-
vibration table and located in a Faraday cage. The high-speed camera is used
for voltage-sensitive fluorescent dye imaging and the image frames captured by
the CCD camera are used for visualization and processing purposes in patch
clamping. The head-stage is a signal conditioner that holds the micropipette.
The linear actuators (M4(1..4) in Appendix D) are used to move the 3-DOF
micromanipulators (M3(1..4) in Appendix D) in and out to facilitate replacing
micropipettes.
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4.3 Autofocus (AF) Algorithm

Autofocus (AF) is the process of automatically adjusting the camera lens po-

sition to obtain maximum focus of a scene. Focus is defined in terms of sharp-

ness, the sharpness of the image is changed by changing the focal length. The

goal of autofocusing is to find a focal length where the obtained image has

maximum sharpness. Image processing techniques are applied to estimate a

focus measure of the acquired image which is maximum when the image is in

focus.

There are different focus measures which can be used to evaluate an image

or a region of interest (ROI) in an image in terms of being focused or being

out of focus. A good focus measure should have its maximum value when the

image is in focus, it should also be computationally inexpensive and robust to

noise and illumination changes. It is desired to have a unimodal focus measure

which has a single global maximum rather than multiple local maxima. Yap

et al. [14] have developed a method based on discrete orthogonal Chebyshev

moments of the image, which is robust to both additive Gaussian noise and

changes in illumination, but it is computationally intensive. Riaz et al. [15]

have used generalized Laplacian as a focus measure for depth estimation and

3D shape recovery. Shih has compared several different methods for autofo-

cusing by their unimodality and accuracy [16]. Sun et al. [17] have studied

18 different AF measures with different observation methods. Our goal is not

to find an optimal AF measure with the best accuracy; we are looking for a

computationally efficient AF measure with reasonable precision (repeatability)

and unimodality (factors not studied by Sun et al. [17]). Therefore, we have

studied different AF measures in order to find the optimal solution for our

application.

Two kind of focus measures should be defined for this application: (a) for

the whole image or a region of interest (ROI) in the image of a tissue slice and

(b) for the tip of a linear object (i.e., micropipette). The reason for choosing

a special focus measure for a micropipette tip is that applying the general

focus measure to a region around the micropipette tip may not be a good
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option when the micropipette tip is close to another object. In such cases, the

maximum focus measure may occur when the other object is in focus and the

software may fail to focus on the micropipette tip. Among several possible

focus measures, we study those which are computationally more efficient (i.e.,

we choose methods based on filters with simple kernels like Sobel). For a

M ×N image I, different focus measures are defined in Appendix. I.

We evaluate different focus indices based on the following criteria: uni-

modality, precision, sensitivity to illumination changes, and computational

efficiency of the algorithm. In most of the cases, we are not dealing with flat

objects parallel to the focal plane, so it might not be possible to determine the

accuracy by comparing the results to what a human user specifies. Therefore

the precision (repeatability) of each focus measure is studied. The focus index

is measured for an object with the objective lens position varying in a range

of ±100µm. The results are shown in Table 4.1. The peak detected by the

Laplacians L1,L3,L5 is slightly (around 4µm) different from that detected by

the Gradients1 and Laplacian L7.

Method Td(ms) U σ(µm) R(µm) SI(µm)

L1 3.4430 33 1.540 5.4 2.936
L3 3.4483 12 1.587 4.8 0.404
L5 4.2155 8 1.184 3.5 1.353
L7 13.1246 4 1.318 4.0 0.723
C 4.2234 4 2.019 6.3 1.447
S3 4.1962 4 2.018 6.3 1.447
S5 6.3077 4 1.445 4.4 0.7095
S7 7.9062 4 1.852 5.5 1.922
M 4.7983 4 1.663 4.7 1.531

Table 4.1: Comparing different focus measures for the dry objective.

In Table 4.1, the left part shows the normalized AF measure vs. lens posi-

tion within ±100µm and the right part represents information to compare dif-

ferent AF measures based on their properties; The first column represents the

1Scharr, Sobel and Morphological
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Figure 4.2: Normalized autofocus measure vs. vertical lens position.
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autofocusing method, the second column shows Td(ms) which is the average

evaluation time measured by running each method for 1000 times and taking

the average time it takes to run2. The third column represents the unimodality

index U which is the number of local maxima for each autofocus measure [16].

Less U means better unimodality. The fourth and fifth columns show σ(µm)

and range(µm); Each autofocus measure is being evaluated 100-times and the

location of maximum autofocus is detected each time. The standard deviation

(σ(µm)) of these locations shows how precise the method could be and how

repeatable the results are. We have also recorded the range(µm) in which

the maximum focus is being found. Each method is being evaluated under

three different illumination intensities (low, medium and high), the location of

maximum sharpness is detected under each condition and standard deviation

of these locations are evaluated as SI and shown in the last column.

To choose the best AF measure based on the data in Table 4.1, we first

sort them based on U because unimodality is very important in achieving

the global maximum of the AF; L1, L3 and L5 are not good choices based

on this factor. Among the rest of the AF measures, we choose those with

smaller σ and SI to have better precision and less sensitivity to illumination

changes: i.e., L7 and S5. Although L7 has slightly better precision, but it

is more computationally intensive and more sensitive to illumination changes

compared to S5. We choose S5 based on this comparison, it takes less than

half computation time while its precision is only slightly less compared to L7.

These results have been obtained under a 4X dry objective and the preci-

sion of each AF index will be much better (i.e., in sub-micron range) using a

20X water-immersion objective lens which provides a smaller pixel size. The

same method is applied to the water immersion objective.

4.3.1 Focusing on a micropipette tip

Autofocusing on a micropipette tip is different from autofocusing on an image

or a rectangular region of interest. It can be performed in two different modes

2Although absolute values of Td might be different being run on a different computer or
a different image size, but the relative values remain the same.
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either by moving the microscope lens to focus on a micropipette tip or by

moving a micropipette to bring it to the focal plane. The autofocus algorithm

is the same in both modes, the only difference is the object which is moved

to achieve the focusing objective. Subbarao et al. [18] have shown that the

optimal focusing measure might be different for different objects. We have

modified the AF measure to obtain a better performance in autofocusing on

a micropipette tip. First, the general AF algorithm is performed on a ROI

around the micropipette tip; Then the micropipette tip position and its central

axis direction is being estimated as described in Section. 4.5; Then the AF

algorithm is applied again, but with a different AF measure which uses the

directional gradient of the image in a ROI around the micropipette tip and

along the direction orthogonal to the micropipette central axis.

If
[
ux uy

]T
is a unit vector along the central axis of a micropipette, then[

−uy ux

]T
points in the orthogonal direction. Then the new AF measure

will be defined as:

ΦD(I) =
1

MwNw

∑
(i,j)∈W

∣∣∣∣∣
〈[

(Sx ∗ I)i,j

(Sy ∗ I)i,j

]
,

[
−uy
ux

]〉∣∣∣∣∣ (4.1)

where Mw and Nw are the ROI window width and height in pixels where we

take Mw = Nw = 64 by default but can be modified by the user; W is a

Mw × Nw window centered at (px, py) which is the approximate position of

the tip; 〈·, ·〉 is the inner product of two vectors and | · | is the absolute value

operator. Sx and Sy are defined in Appendix. I, for various focus measures.

We have evaluated this focus measure for the micropipette tip 100-times

and the standard deviation of this method is 2.680µm while S5 applied to

the same ROI around the micropipette tip results in a standard deviation of

2.799µm. Therefore, the directional gradient method has improved the AF

measure for micropipette tips slightly.

The reason that the standard deviation of autofocusing on a micropipette

tip is higher compared to the whole image is that we are processing a smaller

area of the image but the pixel size is the same, this means that less information
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is being collected which results in increased uncertainty and less precision. If

we apply a whole image AF to focus on a micropipette, the results will not

be acceptable because the micropipette always makes an angle with the focal

plane, so the AF will not focus on the tip but on an average of the whole

length of the micropipette visible in the image.

4.3.2 Optimization

We define the focus measure as ΦI(z) where z is the position of the lens in

the direction orthogonal to the image plane or the position of a micropipette

in the same direction when the lens is fixed. The index I is used to show the

dependence of Φ on the image. The optimization problem is stated as:

max
z∈[zl,zu]

ΦI(z) (4.2)

The autofocus (AF) approach is based on moving the lens or a micropipette

up and down (orthogonal to the image plane) to find a place where the AF

index is maximum. However it is very important to find the maximal point

with the minimum amount of movement to keep the total time required for

each autofocus as small as possible. To quantify this minimum amount of

movement and incorporate it in the optimization procedure, consider the se-

quence of the evaluated points represented by: z0, z1, · · · , zn, where z0 is the

starting point and zn = zopt is the final optimal point. The objective function

is defined:

J(z0, · · · , zn) =
n∑
k=1

|zk − zk−1| (4.3)

The problem is then solved via the optimization problem in Equation. 4.2

while keeping J as low as possible. J is proportional to the total time it

takes for the AF optimization algorithm to converge. In an ideal case, starting

from z0 and stopping at zopt without changing the direction of motion, results

in Jmin = |zopt − z0| + J0, where J0 is a small distance for initial gradient

estimation. The worst case would be a blind search, scanning the whole range
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of [zl, zu] with the smallest possible step size, resulting in Jmax = min(|z0 −
zl|, |z0−zu|)+|zu−zl|. As we normally do not know which direction ends in the

autofocus, usually a symmetric range of search is chosen, i.e., z0 = 1
2
(zl + zu).

So we can simplify Jmax = 3
2
|zu − zl|.

The steepest descent method could be the best option, but as shown in

Table 4.1, each of the focus measures might have multiple local maxima and

the steepest descent might become trapped in one of these local optima. Based

on our experiments, all of the local maxima for the selected AF measure are

located within ±10µm of the global maximum for the selected AF measure.

We have used a mixed optimization method to keep J as low as possible

while avoiding local maxima traps. This method is a combination of the

steepest descent method and blind search. A steepest descent approach is

used to find the maximum within a ±10µm range and then a blind search

is performed around this point. The steepest descent method provides a fast

convergence while we avoid its zig-zag property and the local maxima traps in

a neighborhood of the global maximum, by switching to blind search. Using

this method, we obtain J ≤ (Jmin + 30µm). Although we cannot guarantee

that this results in the minimum possible value of J , it results in a method

which is fast enough considering a black box optimization problem without a

priori information about the objective function gradient.

4.4 System Calibration

System calibration includes estimation of critical system parameters including

microscope lens and camera parameters, registration of relative coordinates

of the micromanipulators and micropipettes with respect to a reference coor-

dinate system and relative coordinates of external obstacles with respect to

the reference coordinate system if applicable. Image processing algorithms are

used for calibration and registration. A brief description of the calibration

procedure as follows:

• Microscope camera calibration: The microscope is moved around on a

random pattern and a micropipette tip is detected at each position. This
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information is used to find the pixel size and skewness of microscope

images.

• Coarse registration using stereo vision: A stereo vision tracking system

is used for detection and tracking of markers on the substrate, micro-

manipulators and objective lenses with a sub-millimeter accuracy. This

is used to achieve initial coarse registration of different coordinate sys-

tems in order to bring the micropipettes into the field of view of the

microscope.

• High accuracy registration using microscope images: The micropipette

tips are moved around on a random pattern. A combination of auto-

focusing and tip detection algorithms is used to focus and detect the

micropipette tip at each step. RANSAC (RANdom SAmple Consensus)

and least-squares error optimization algorithms are used for rigid regis-

tration of each micropipette to the microscope coordinate frame [19].

• Calibration procedure: The system calibration can be performed fully

autonomously or semi-autonomously. In the autonomous mode, there is

no user interaction but in semi-autonomous mode, the user is responsible

for bringing each micropipette tip into the field of view, moving the

microrobots to different locations and clicking on specified micropipette

tips.

System calibration involves estimation of critical system parameters in-

cluding microscope lens and camera parameters, relative coordinates of the

micromanipulators and micropipettes with respect to a reference coordinate

system, and relative coordinates of external obstacles with respect to the refer-

ence coordinate system if applicable. Figure 4.3 illustrates different coordinate

systems on a schematic of the setup.

• Cref is the reference Cartesian coordinate system which specifies the task

space.
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• Cmic is the coordinate system attached to the microscope’s micromanip-

ulator and moves with it.

• Cmann is the coordinate system attached to nth micromanipulator and is

fixed with respect to Cref . This coordinate system specifies the micro-

manipulator’s joint space, i.e., its axes are along the micromanipulator’s

prismatic joints and the micropipette tip is at the origin when the robot

is in home position.

• Cpipetten is the coordinate system attached to the tool on the nth micro-

manipulator, its origin is at the same point as Cmann but its X-axis is

along the micropipette’s central axis.

• Cimage is the coordinate system attached to the center of the image as

shown in Figure 4.13. The focal plane is orthogonal to Zmic.

• Chaptic is attached to the haptic device as shown in Figure 4.13.

In order to register different coordinate systems to the reference coordinate

system, we define a number of homogenous transformation matrices. The

transformation matrices are all 4×4 matrices. T refmic is the transformation that

maps Cmic to Cref . Therefore:

T refmic =


1 0 0 xmic

0 1 0 ymic

0 0 1 zmic

0 0 0 1

 (4.4)

where (xmic, ymic, zmic) is the position of the microscope’s micromanipulator

with respect to the reference. Cmic is identical to Cref when the microscope’s

robot is in its initial position.

It could be assumed that all micromanipulators have parallel Z coordi-

nates, i.e., ∀n, Zman
n ||Zmic [19]; however this may become a source of error

because (a) large vertical displacements are involved, and (b) there may be

machining imperfections. Without making such assumption, we use T refmann as

the transformation matrix which maps Cmann to the Cref .
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Figure 4.3: Illustration of the coordinate systems on a schematic of the setup:
Cartesian coordinate systems Cref and Cmic and coordinate system Cman for
one of the micromanipulators and Cpipette(Xp, Y p, Zp) for another manipulator
are shown. Background image courtesy of Sutter Instruments.
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The image coordinate system Cimage is attached to Cmic, i.e., the center of

the image lies on the origin of Cmic with parallel z-coordinates. Therefore, the

mapping between the image and microscope coordinates can be stated as:

Tmic
∗

image =


sx cos θI −sy sin θI 0 0

sx sin θI sy cos θI 0 0

0 0 1 0

0 0 0 1

 (4.5)

where we have used a simple camera model in which sx and sy determine the

pixel size in xI and yI-directions, respectively; and θI is a rotation angle to

map (xI , yI) to (xmic, ymic). This is defined and measured for the dry objective

lens (4× magnification) when the microscope magnification is on 1× (default

magnifications). A correction term is used for other objectives/magnifications.

Therefore:

Tmic
∗

mic (mobjective,mmicroscope) =


α 0 0 κx

0 α 0 κy

0 0 1 κz

0 0 0 1

 (4.6)

where α is the effective magnification factor compared to the default magni-

fication. Due to imperfect optics, we cannot use the nominal magnification

factors to calculate α for each case. α and κx,y,z are system dependent param-

eters that are functions of mobjective, mmicroscope which specify the objective

and microscope magnification factors, respectively.

The micropipette coordinate system Cpipetten has a fixed angle Θn around

the Y -axis compared to Cmann . Therefore, Tmannpipetten
= Ty(Θn) which is a pure

rotation without translation around the Y -axis. We also define the image

Jacobian Jn for each robot. This is to relate displacements/velocities in Cimage

to Cmann .

δPmann = JnδP
image (4.7)
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where δPmann is the displacement of an object in Cmann and δP image = [δxI δyI 0]T

is the displacement of the same object in Cimage. The Jacobian matrix Jn is

simply part of the transformation matrix Tmannimage :

Tmannimage = Tmannref T refmicT
mic
mic∗T

mic∗

image =

[
Jn Dn

01×3 1

]
(4.8)

Therefore Jn is a function of the objective and microscope magnification levels.

4.4.1 Calibration Procedure

The system calibration consists of two major steps: (a) coarse calibration, and

(b) fine (high-accuracy) calibration. The coarse calibration is performed using

macro-scale stereo vision tracking, and the fine calibration is performed using

the microscope images.

Coarse calibration

Coarse calibration is performed mainly to bring the micropipettes to the FOV

of the microscope. The coarse calibration is not necessary if the user brings

the micropipette tips into the FOV or if a previous calibration of the system

is still valid and can be used to roughly locate the micropipette tips in the

FOV. The overall process of coarse calibration is described here.

We have used a MicronTracker S60 optical tracking system (Claron Tech-

nologies, Toronto, ON, Canada) to find a coarse estimation of the position

and orientation of the micromanipulators and the microscope up to a sub-

millimeter accuracy. Black and white printed markers are attached to each

part as shown in Figure 4.1. If the stereo camera is used only at a single

position, all the markers may not be visible due to occlusions. So the stereo

camera is put in at least two positions to be able to detect all of the markers.

The camera is mounted on a passive adjustable manipulator and it can be

easily relocated. The marker on the substrate is used as a reference to relate

coordinates for the different poses of the camera. The transformation of each

marker with respect to the substrate marker is calculated. This removes de-
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pendence on the location of the stereo camera. Θn can be easily estimated for

each micromanipulator using this method.

Ideally it should be possible to calibrate the system once and then use the

same calibration to roughly locate each micropipette tip in the FOV in order

to perform a fine calibration. The problem however rises from the fact that all

the micromanipulators use stepper motors with an open-loop control (without

encoders). Therefore, if a part of the system is moved manually, then it is not

possible to track the motion. The major problem is when the user tries to

move the objectives up/down using the coarse focus knob shown in Figure 4.1.

The other parameter estimated by the coarse calibration is the change in the

vertical position of the objectives. It is assumed that the other parts of the

system are not moved manually, so that the previously saved calibration of the

system is updated in order to correct for any manual changes in the objective’s

height.

If the system has been reconfigured, e.g., there has been a change in the

micromanipulators base position and/or orientation (which is very unlikely

once the system is installed), or if there is no previously saved calibration, it is

expected that the user brings all the micropipette tips to the FOV manually

and performs a fine calibration.

High-accuracy calibration

Once the micropipettes are in the FOV of the microscope, the fine calibration

can be performed fully autonomously or semi-autonomously. In autonomous

mode, there is no user interaction but in semi-autonomous mode, the user

is responsible for moving the micromanipulators to different locations and

clicking at specified micropipette tips. The calibration algorithm is as follows:

1. Camera Calibration: estimating Tmicimage including estimation of the

image pixel size and rotation with respect to the base.

(a) Click on a fixed reference object in the FOV (i.e., the tip of an

micropipette); In the autonomous mode, the tip of a specified mi-

cropipette is detected as described in [20].
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(b) Record the 3D location of the microscope’s micromanipulator (PM)

and the 2D location of the point in the image (PI).

(c) Move the microscope to a different location in the same plane, such

that the specified point is still in the FOV. In autonomous mode,

this is a random motion in the Xmic − Y mic plane. The amount of

displacement is generated by a pseudo-random number generator

with uniform distribution and the range of displacement depends

on the pixel-size, size of the image and the original location of the

micropipette in the image.

(d) Repeat items 1b to 1d at least 3 times (at least 3 of the selected

points should not lie on a line, otherwise the problem would become

singular).

(e) Run the RANSAC (RANdom SAmple Consensus) algorithm with

least-squares error estimation to find the calibration matrix (refer

to Section 4.4.1 for details).

2. Registration of micromanipulator Coordinate Systems: registra-

tion of micromanipulator coordinates to a reference coordinate system,

i.e., estimating T refmann :

(a) Autofocus on the micropipette tip.

(b) Click on the location of the tip of the nth micropipette; In the

autonomous mode, the tip is detected automatically as described

in [20].

(c) Record the 3D location of the microscope (PM), the 3D location of

the micromanipulator (PR) and the 2D location of the point in the

image (PI).

(d) Move the micromanipulator to a different location, such that the

micropipette is still in the FOV and then perform AF to focus

on the micropipette tip. In autonomous mode, this is a random

motion. The amount of displacement is generated as described in

the camera calibration step 1c.
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(e) Repeat items 2b to 2d at least 4 times (at least 4 of the selected

points should not lie in a plane, otherwise the problem would be-

come singular).

(f) Run the RANSAC algorithm with least-squares error estimation to

find the registration matrix.

3. micropipette Calibration: estimating Tmannpipetten
is equivalent to esti-

mating the angle Θn. The estimation of this angle can be simply pro-

vided by reading the protractor on the micromanipulator where it holds

the headstage (as shown in Figure 4.1) or using the coarse calibration

information. Although this estimation may not be very accurate, it is

only used to perform coaxial movement along the micropipette axis: (a)

to pull an micropipette in/out to avoid collisions with the substrate and

objectives during replacements, and (b) to approach the cell membrane

when the micropipette tip is in the vicinity of the cell. Small misalign-

ments will not affect these procedures significantly.

Parameter Estimation

We have used the RANSAC algorithm to estimate the parameters of the reg-

istration matrices based on the measured data. The RANSAC algorithm can

be described as follows [21]:

1. Select randomly the minimum number of points required to determine

the model parameters (3 or 4).

2. Solve for the parameters of the model (i.e., using the least-squares error

(LSE) optimization algorithm to estimate the parameters).

3. Determine how many points from the set of all points fit with a predefined

tolerance.

4. If the fraction of the number of inliers over the total number of points in

the set exceeds a predefined threshold, re-estimate the model parameters

using all the identified inliers and terminate.
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5. Otherwise, repeat steps 1 through 4 (maximum of N times).

We take u as the probability that any selected data point is an inlier and p

the probability that at least one of the sets of random samples does not include

an outlier. Then we can simply conclude that 1− p = (1−um)N [22] where N

is the number of iterations and m is the minimum number of samples required

for estimation. Now if we choose p = 0.99 and u = 0.9 (which is considered as

the worst case when 10% of the selected points are wrong), then we will have

N = d log(1−p)
log(1−um)

e. In case of 1, we have m = 3 and therefore N = 4 and in

case of 2, we have m = 4 and therefore N = 5. In other words, the RANSAC

algorithm should converge in 4 and 5 iterations for the camera calibration and

micromanipulator registration cases, respectively.

4.5 Micropipette Tip Detection and Tracking

There are several occasions when we need to find a micropipette tip in a mi-

croscope image automatically; A major application would be automatic tip

detection for replacing user clicks and obtain faster calibration. Figure 4.4

illustrates what a micropipette tip looks like under dry (4X) and water im-

mersion (20X) objective lenses.

Figure 4.4: Micropipette tip under (a) dry and (b,c) water immersion objective
lenses. In (b) the micropipette is filled with water, but in (c) only part of it is
filled. There are tiny air bubbles visible in (b,c) and some undesired particles
are visible in (c).

Wang et al. [8] have developed a pipette tip detection and tracking al-

gorithm for contact detection in microrobotic cell manipulation, a 5µm tip
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micropipette has been used and a submicron accuracy has been reported. Sun

et al. [5] have used a sum-of-squared-differences (SSD) optical flow tracking

algorithm which is both sensitive to illumination changes and needs an ac-

curate initialization. In our case a micropipette with sub-micron tip should

be detected accurately and the tip detection should be robust to noise and

illumination changes. We have developed different methods for the dry and

water immersion objectives, the details will follow.

4.5.1 Detection under a dry objective

A novel approach has been developed to detect a micropipette tip under dry

objective. The tip detection algorithm consists of four steps:

1. Mask image construction: In a microscope image, there might be

several moving objects other than a micropipette; There might also be

intensity changes which are not really associated with any moving ob-

ject but are created by illumination changes or noise. It is important

to recognize the pixels of the image associated with the specified mi-

cropipette. To achieve this goal, we define a mask image which is a

binary image with white pixels on and around the specified micropipette

and black pixels otherwise. To construct such a mask image, we use a

spatio-temporal filtering technique. A micropipette is moved to within

a small range of its current location in the lateral direction (orthogonal

to the projection of micropipette’s central axis in the image plane) with

a fixed frequency fv(Hz). Images are captured at a rate of 30Hz and a

band-pass temporal frequency filter is applied to the stream of images,

pixel by pixel. The filter passes frequencies around fv(Hz) and rejects

other frequencies. The pixels that pass this filter should specify the

points on and around the specified micropipette, because it is the only

object vibrating at this frequency. To choose an appropriate frequency

fv, there are different considerations to be taken into account:

• Our sampling rate is 30Hz so we should have fv < 15.0 to satisfy

the Nyquist sampling theorem.
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• The micromanipulators’ maximum operation frequency is 12.57Hz

due to a 79.5ms delay for execution of each command. So we should

have fv < 12.57.

• The frequency should be away from the frequency ranges of any

mechanical vibrations or optical noises affecting the equipment and

images.

• Higher frequencies result in shorter time of detection, but affect the

life of the micromanipulator.

Considering all the above-mentioned limitations, we have chosen fv =

5.0Hz and we only run it for 5 cycles which takes 1.0sec. This tempo-

ral filtering results in a gray-scale image Ign where n (n ∈ {1, 2, 3, 4}
in this case) is the index for the specified micropipette. This gray-

scale image is then thresholded. The threshold level is adjusted to

τn = max
(
ςn,

1
2
max(Ign)

)
, where ςn = Īgn + 2.5σ(Ign) determines the noise

level, Īgn is the average intensity of Ign and σ(Ign) is the standard deviation

of the pixel intensities in Ign. The result is a binary image Ibn. Using ς

helps to avoid false detection when there is no significant motion. When
1
2
max(Ign) ≤ ςn, the threshold is set to ςn which indicates that there is

no significant motion with the specified frequency which usually means

that micropipette is out of the field of view, totally out of focus or there

is not enough illumination. In such cases, the user is asked to check if

micropipette is visible and then repeat the procedure.

The resulting binary image Ibn might have some pixel noise and also

the detected region may have some gaps. A morphological opening and

closing is then applied to the binary image Ibn to remove pixel noise and

fill in the gaps in the binary image [23].

Imn = (Ibn ◦M o
n) •M c

n (4.9)

The result is a binary image Imn which is called the mask image. M o
n, M

c
n

are 5×5 cross shaped structuring elements for the morphological opening
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and closing operations.

2. Orientation Detection: To detect the orientation of the central axis of

a micropipette, we use a technique based on the Hough transform [24]. In

an arbitrary situation, two images are captured: In(0,−δy) which is the

image captured when the micropipette is moved−δy(µm) with respect to

its original position in a direction orthogonal to its central axis parallel

to focal plane and In(0, δy) which is captured when the micropipette

is moved δy(µm) in the reverse direction. After capturing these two

images, we construct two new images by thresholding the differences of

these images: Iny− = τ (In(0,−δy)− In(0,+δy))

Iny+ = τ (In(0,+δy)− In(0,−δy))
(4.10)

A Progressive Probabilistic Hough Transform (PPHT ) [25] is then ap-

plied to the resulting binary images Iny− and Iny+ to detect the orienta-

tion of the micropipette. The orientation of the strongest line segment

detected in each of the images is selected and the bisector of these line

segments is determined as the orientation of the central axis of the mi-

cropipette as shown in Figure 4.5 (c) and (d). Due to the cone-like shape

of the micropipette, the two line segments detected in Iny− and Iny+ will

not be parallel, we use this fact to find the direction that points towards

the micropipette tip.

3. Tip proximity detection: To detect the proximity of the tip, we use a

similar approach as in the previous step. We obtain two images In(0, 0)

and In(−δx, 0) representing the images captured when the micropipette

is in its original position and when it is moved back δx(µm) along its

central axis, respectively. δx is selected based on the pixel size of the im-

age. Then we calculate the absolute value of intensity difference between

these two images and mask it by Imn to make sure it is only showing pix-

els in the proximity of the nth micropipette tip. Then we threshold the
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result to obtain a binary image Inx :

Inx = τ (|In(0, 0)− In(−δx, 0)|.Imn ) (4.11)

Then a morphological opening and closing is applied to Inx . The result

is a binary image which is white in a small proximity of the tip (as shown

in Figure 4.5(d)) and black all over the image.

4. Accurate tip detection: To search for the exact location of the tip,

the binary image Inx is searched along the direction of the micropipette

detected in previous steps and the ultimate pixel with intensity of 1 is

detected as the micropipette tip.

All of this procedure is illustrated in Figure 4.5.

Figure 4.5: Tip detection algorithm – results: (a) original image, (b) mask im-
age (negated for better visibility), (c) overlapped Iny− and Iny+ , (d) proximity
of the micropipette tip as detected in Inx , negated to increase visibility, and
(e) the detected line segment along the central axis of the micropipette.

4.5.2 Detection under a water-immersed objective

It is desirable to use the same tip detection algorithm in both cases but this

might reduce the performance and efficiency of such an algorithm because

the micropipette tip looks different using each objective lens as shown in Fig-

ure 4.4. An intensity based approach works for micropipette tip detection

under a dry lens because there is enough contrast between the micropipette

tip area and its neighborhood, whereas intensity based methods are not very

useful for a water-immersed lens because the magnification is 5 times higher
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in this case so that the inner part of the micropipette becomes visible and the

intensity pattern depends on whether it is filled in with water or not. The

other issue is that there might be a lot of air bubbles and particles moving

in the images obtained by the water immersion lens. Although the higher

magnification of the water immersion lens makes it difficult to use an intensity

based approach, it makes the cone-like shape of the micropipette tip visible

(compare Figure 4.4 (a) and (b)). We take advantage of this feature to detect

the micropipette tip using template matching techniques, i.e., searching for a

predefined template in the image. The algorithm consists of three steps:

1. Orientation detection: This is exactly the same as the orientation

detection approach described for the dry objective. The same algorithm

works except that the range of motion δy is smaller due to the higher

magnification of the water immersion objective.

2. Initial estimation: When the orientation detection algorithm is per-

formed, there are two lines detected in Iny− and Iny+ which are not

parallel as described earlier. The intersection of these two lines is taken

as the initial estimation.

3. Template matching: To obtain a more accurate estimation of the mi-

cropipette tip, we use a template of the shape of a micropipette tip

aligned with the detected orientation. Then we calculate the cross-

correlation between this template and the area of the image around the

initial estimation. By detecting the maximum cross correlation, we can

obtain an accurate estimation of the tip position. A detailed description

of this cross correlation technique is given in Section 4.7.1.

4.5.3 Image-based Tracking of Micropipettes

There are different methods for tracking a moving object in a sequence of

images in real time. We have used two different techniques for micropipette

tip tracking under dry and water-immersion objectives. The algorithm for

tracking under a dry objective is described below and illustrated in Figure 4.6.
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• ROI Extraction: At iteration k, a region of interest (ROI) is being

extracted from the latest captured image frame. The ROI is a rectan-

gular window around the previous micropipette tip P I
n(k − 1). P I

n(0) is

provided by the tip detection algorithm.

• Background Subtraction: There are different methods for background

subtraction in digital images. We have used a simple method which is

suitable for this application. The average intensity is subtracted from

each pixel in the ROI and then the absolute value of each pixel intensity

is taken.

• Adaptive Thresholding: The resulting image is adaptively thresh-

olded. For each pixel, the threshold value is the Gaussian weighted

average of a 5× 5 block around that pixel.

• Morphological Opening and Closing: The resulting binary image

might have pixel noise and gaps. A morphological opening/closing se-

quence is applied to this binary image to obtain a clean segmentation of

the micropipette as described in Section 4.5.1.

• Hough Line Detection: A Progressive Probabilistic Hough Transform

[25] is then applied to detect the central axis of the micropipette.

• Accurate Tip Detection: Same as that described in Section 4.5.1.

This can be modified to obtain sub-pixel accuracy [8].

Yilmaz et al. [26] have listed different methods for object tracking. One

category of image-based object tracking algorithms relies on using registration

techniques to register the current image frame to a predefined template. The

template can be a region of the previous image around the known position

of the object. As a micropipette tip is initially detected using the tip detec-

tion algorithm described in Section 4.5.2, micropipette tip tracking can be

performed by registering each image frame to its previous frame in a region

around the previously known micropipette tip position. This method is partic-
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Figure 4.6: Image-based tracking under dry objective: (a) Original Gaussian
smoothed ROI, (b) Background subtracted, (c) Adaptive thresholded, (d) Mor-
phological opening and closing, (e) Hough line detection, (f) tip detected. All
images except (a) have been negated to increase visibility.
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ularly suitable for the water-immersed objective, where the micropipette has

a special triangular shape as described in Section 4.5.2.

In our case, the amount of scale change between two consecutive frames

(caused by lens distortions) is negligible in each small ROI. The same holds for

rotation because the micromanipulators do not rotate and the micropipettes

are rigid. A registration method can be used for detecting translation be-

tween two consecutive frames in an ROI around the prior known position of

the micropipette tip. Phase correlation is an area-based registration method

using the shift property of the Fourier transform [27] and it can be used to

find translation, rotation and scaling between two images or an image and

a template with a pixel or even sub-pixel accuracy [28, 29]. It has gained a

lot of popularity in global or local image registration due to its accuracy and

robustness to uniform variations of illumination and noise in images [29]. We

have used the phase correlation motion estimation technique [30] to track the

micropipettes in microscope images in real time. This method consists of the

following steps:

• Initialization: includes detection of micropipette tip and static calibra-

tion to initialize the starting point.

• Feature extraction: Using the original images may not result in a

robust registration technique because the contrast is not high enough and

a big proportion of each image is the background which does not contain

enough spectral information while we use an FFT-based technique which

relies heavily on comparing 2D image spectra. To achieve more robust

and accurate results some features of the images should be extracted.

• Image augmentation: To achieve a more robust and reliable perfor-

mance of the phase correlation technique, we can augment the original

images with some of its features to highlight the role of features in the

image. In our case, the augmented image is a superposition of the origi-

nal image and a Canny filtered image. As an example, the original image

(In) and the results after applying Canny filter and augmentation (In)

of these images is shown in Figure 4.7.
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• Registration of In(k) to In(k− 1): To detect the displacement of the

micropipette between the two image frames, we have used a phase cor-

relation technique. First the 2D discrete Fourier transform is calculated

for both images:

Gn,k = F {In(k)} , Gn,k−1 = F {In(k − 1)} (4.12)

Then the cross-power spectrum is calculated by pixel-wise normalized

multiplication of Gn,k into the complex conjugate of Gn,k−1: Rn,k =
Gn,k·G∗n,k−1

|Gn,k·G∗n,k−1|
. Then we calculate the normalized cross-correlation of the

images by taking the inverse discrete Fourier transform of R: rn,k =

F−1 {R}. However to obtain a meaningful peak location, we should

swap the first and third quadrants and the second and fourth quad-

rants. Then we determine the peak location in rn,k which gives us the

amount of displacement between the consecutive image frames as shown

in Figure 4.8(a): (δxn,k, δyn,k) = argmax(x,y) rn,k. An illustration of

the displacement between the two consecutive images is shown in Fig-

ure 4.8(b). The calculations are performed simultaneously for all mi-

cropipettes or those selected by the user, by processing an ROI around

previously known position of each micropipette. An accurate tip detec-

tion can be performed once in a while to reset the tracking error.

4.6 Detection of Water Surface Touch

A water immersion lens should touch the water surface before it can be used.

The objective lens is moved down slowly until it touches the water surface and

then it goes back to its original height while pulling the water via its surface

tension. The three steps of this procedure are shown in Figure 4.9.

Water surface contact is detected by a sudden change in illumination of

the image. The temporal gradient of the images is calculated at each time

step and when it is higher than a pre-defined threshold, the software stops the

objective and asks the user to verify if the objective has actually made contact
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Figure 4.7: Augmentation of images to improve robustness of the phase corre-
lation: (a) Original previous image frame In(k−1) and (b) after augmentation
In(k − 1); (c) Original current image frame In(k) and (d) after augmentation
In(k).



130

Figure 4.8: Phase correlation results: (a) cross correlation rn,k of the aug-
mented images In(k) and In(k − 1) with its peak located at (20, 10); (b)
overlapped images with the displacement vector; the augmented images are
used to increase visibility.

Figure 4.9: Water Surface Touch: (a) Before touching the water surface; (b)
while touching; and (c) back up with stretched water surface.
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with the water surface. Then the objective is moved up to its original position

or it keeps moving down if the goal has not been achieved. The user can stop

the motion in case the water surface has been touched but the software has

failed to recognize it. We calculate a normalized integrated temporal gradient

of the images as Fz(I):

Fz(I) =
||∇tI||
||I||

=

∑M
i=1

∑N
j=1 |Ik(i, j)− Ik−1(i, j)|∑M
i=1

∑N
j=1 Ik−1(i, j)

(4.13)

The threshold is determined empirically by the user. For our experiments,

a threshold of τ = 0.05(5%) works well. It should be mentioned that if the ini-

tial illumination is too high, i.e., a very bright image is captured out of water,

this method may not work properly because the image is already saturated;

Also if the initial illumination is too low, there will not be enough light to

detect the change. The method may also fail if the user suddenly changes the

light intensity when the algorithm is running. Fz(I) and also the normalized

average image intensities (Ī(k) =
∑M
i=1

∑N
j=1 Ik(i,j)

MNImax
) have been evaluated in four

different cases with the initial Ī changing roughly from 30% to 70% repre-

senting a broad range of variation in light intensity. The results are shown

in Figure 4.10. The method is robust to different illumination levels. Peaks

are easily detectable in Fz(I) at the moment when the objective touches the

water surface as shown in Figure 4.10.

4.7 Image-Based Tracking and Control

Using the dry objective lens with 4× magnification, the patch clamping can-

not be performed. The reason is that the pixel size in this case is > 1.5µm

which makes it very difficult to locate and patch ion-channels in small neu-

rons. A 20× water immersion objective lens is then used to provide a higher

magnification as well as a high numerical aperture (NA) due to higher refrac-

tive index of water with respect to air [31]. In conventional methods of patch

clamping the lower magnification lens is used to locate the target cells and

then a higher magnification lens is used to perform the actual patch clamp
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Figure 4.10: The graphs on the left show Fz(I) vs. z and the graphs on the
right show Ī vs. z for four experiments with different light intensity.
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procedure. We have used the same approach: the 4× objective lens is used

for initial system calibration and registration of the micromanipulator coordi-

nate systems. The target cells are selected and then the objective is changed

to the 20× water immersion lens. The water immersion lens is then placed

at the approximate location of the target cells. The software is then used to

bring the water immersion objective in contact with the layer of water covering

the specimen and it automatically focuses on the target; details are described

in [13]. The user clicks on the target cells where he/she wants to do patch

clamping. The micropipettes are then brought close to the selected locations

and in the FOV. Then the user has the ability to use the haptic device to move

each micropipette around and perform patch clamping precisely at the desired

locations.

Although the calibration procedure can provide a useful tool for positioning

MP tips at desired locations, but the accuracy is limited by the accuracy of the

microscope camera calibration. The mismatch of refractive indices of the tissue

slice and water (and also the air in the case of the dry objective), causes image

distortion. This becomes a bottleneck for the accuracy of microscope camera

calibration, considering the fact that the amount of distortion is dependent

on: (a) the objective lens’s vertical position; (b) the thickness of the tissue

slice; and (c) the water level. To compensate for this source of error, there are

two main methods that can be applied:

1. Objective Lens distortion correction [32]: There are several models and

algorithms developed for lens distortion correction. Most of these meth-

ods require a calibration grid of known size and dimensions which is very

difficult to apply to our case. Putting such a grid in and out while the

setup is working is very difficult if not impossible. Other than a calibra-

tion grid, the only existing references in our setup are the micropipettes

which can be used to find the distortion pattern. However, there are sev-

eral disadvantages associated with this method, including: (a) moving

an micropipette tip all around the workspace is a time-consuming task;

and (b) the distortion pattern changes when the tissue slice is changed.
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2. Dynamic tracking of the micropipette tip: The main objective of system

calibration was to find the coordinates of the image with respect to the

coordinates of the micromanipulators and this is done to control the

position of the micropipette tips when the reference target is given in

image coordinates. It is possible to track the MP’s tip position in real-

time without any knowledge of the distortion pattern.

We have justified the application of real-time micropipette tip tracking

when a global static distortion map cannot be evaluated or the calibration

and/or registration data are not very accurate. The real-time tracking data

can be used for visual servoing of the micromanipulators to obtain accurate

and robust control of micropipette tips when there is uncertainty in the envi-

ronment model. The algorithm is described below:

• The micropipette tip detection algorithm is used to detect the initial

position of each micropipette tip in a microscope image as described

in [20].

• Each micropipette is calibrated individually using the static method de-

scribed in 4.4. This is done to find an estimation of the registration

matrices and the Jacobians.

• Each micropipette tip is tracked in real time. Visual servoing is per-

formed based on the tracking results while there might be uncertainties

in the initial estimation of the Jacobians.

• If the micropipette goes out of the FOV, the registration data could be

used to move the micropipette or the microscope to bring the tips of the

micropipettes into the FOV3.

4.7.1 Visual Servoing

Figure 4.11 illustrates the visual servoing block diagram where P I
t , P I

n and

δP I
n are the target position, the current micropipette tip position estimated

3The user can activate an option which forces the micropipettes to remain in the FOV
by applying virtual forces when the tip of the pipette comes close to the image borders.
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by the object tracking algorithm, and the tip position error of nth micropipette

produced by the trajectory generation algorithm, all measured in the image

coordinate system Cimage. I(k) and I(k − 1) are current and previous image

frames, δPmann is the displacement command applied to the nth micromanip-

ulator controller, Jn is the image Jacobian relating displacement (velocity) in

Cimage to displacement (velocity) in Cmann , f Ir is the collision avoidance force

in Cimage as described in Section. 4.8, α and K are scaling factors adjusting

the relative weight of trajectory following versus collision avoidance and λ is

a positive constant damping factor in the damped least squares method. The

whole control loop consists of several parts which are described below:

Trajectory Generation

The robot controller has a closed architecture, i.e., a new move command

cannot be issued before the previous displacement has been completed and

the controller approves it by sending an acknowledgement signal back to the

PC. In other words, the feedback loop for the visual servoing is open when

the robot is moving. The amount of delay for completion of each command

depends on the amount of displacement as shown in Equation 4.19. To have

an effective control on each micropipette tip position, ||δPman
n || should be small

enough to keep the control loop feedback closed.

When a target point P I
t is specified, the trajectory generation algorithm

calculates a displacement δP I
n based on the current location of the micropipette

tip:

δP I
n = η

P I
t − P I

n

||P I
t − P I

n ||
(4.14)

where η is a constant (in pixels) which can be adjusted by the user. As shown

in Equation 4.14, δP I
n is a displacement vector with a length of η pixels in the

direction from the current location of the tip P I
n to the target position P I

t .
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Trajectory Tracking

When a trajectory is generated by the trajectory generation block, a controller

is required to make the system follow this trajectory. The displacement δP I
n

is measured in Cimage while the robot controller works in its own coordinate

system Cmann . In other words, we need to convert δP I
n to δPman

n . This can be

stated as an inverse kinematics control problem by assuming Cmann as the joint

space for the nth robot and taking Cimage as the task space. There are different

methods to solve an inverse kinematics problem including a direct analytic

approach, a Jacobian inverse/pseudoinverse approach, a Jacobian transpose

approach and a Damped least squares approach [33].

The inverse kinematics problem in our case is a non-singular problem be-

cause the task space and joint space are three dimensional Cartesian spaces

which are related by an affine transformation which is invertible. Although

such a problem can generally be solved using a direct analytic method or an

inverse Jacobian method we have chosen a damped least squares method to

do this. The reason is that it is not trivial to incorporate task space forces in

an inverse kinematics problem unless the solution uses a Jacobian transpose

method or one of its variants. The damped least squares technique [33] (also

called the Levenberg-Marquardt technique) uses a Jacobian transpose based

pseudo-inverse method which allows us to involve task-space forces while hav-

ing a numerically stable inverse kinematics solution.

δPman
n = JTn

(
JnJ

T
n + λ2I

)−1
δP I

n (4.15)

When there is a task-space force f Ir , the equation can be modified to:

δPman
n = JTn

[(
JnJ

T
n + λ2I

)−1
KδP I

n + αf Ir

]
(4.16)

where K and α are scaling factors which are adjusted by the user. The ratio
α
||K|| represents the importance of collision avoidance forces with respect to

position errors.

The actual image Jacobian varies depending on the current location of the

micropipette tip, due to image distortions. The Jacobian matrix is basically an
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affine matrix in our problem. The uncertainty in the Jacobian matrix consists

of scale and rotation uncertainties and can be modeled as:

Ĵn = δJn(p)Jn(p) (4.17)

where Ĵn is the Jacobian matrix estimated for the nth micromanipulator through

system calibration, Jn(p) is the Jacobian matrix when the nth micropipette tip

is located at the point p in Cimage, and δJn(p) is the multiplicative uncertainty

of this Jacobian at that point. However, the feedback loop is robust enough

to compensate for small uncertainties as shown in the experimental results in

Section. 4.12. To achieve a more efficient controller, the Jacobian matrix can

be modified using an adaptive algorithm [34].

4.8 Collision Avoidance

Considering the limited space of operation, there is a high chance of collision

among the micropipettes or between micropipettes and fixed obstacles. It is

not possible to rely on the human operator to avoid collisions manually because

the micropipette tip is very small, tips become very close to each other and

they may also collide outside the FOV of the microscope.

Artificial potential fields have been used in several different real-time obsta-

cle avoidance applications for robot manipulators and mobile robots [35], [36].

An artificial potential field (APF ) algorithm has been implemented to avoid

collision among micropipettes and obstacles in the workspace. A virtual force

is generated based on this APF. The micropipette under control is assumed

as an object with positive charge. Other micropipettes, the microscope lens

and the bath are also assumed as objects with positive charges. To keep the

algorithm computationally efficient, we have assumed point charges concen-

trated at a point. The virtually positive-charged point of an obstacle is the

closest point of that obstacle to the micropipette under control. The virtual

positive charge on the controlled micropipette, is assumed to be located on the

closest point of that micropipette to each obstacle. Although it is also possible
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to extend artificial potential fields to perform full navigation including target

tracking and collision avoidance at the same time by assigning an opposite

charge to the target [37], we have only used APF for collision avoidance to

avoid the local minima problem associated with this method.

All calculations are based on the assumption that micropipette tips are

located in the focal plane and calculations are done in this plane. A possible

scenario is shown in Figure 4.12.

Figure 4.12: Collision avoidance forces are calculated based on the closest
distance to other obstacles. Pk shows the kth micropipette. Fi is the repulsion
force acting on Pi and generated by other micropipettes.

For each micropipette Pi, Pi,j is the vector connecting the closest points
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between Pi and Pj, pointing towards Pi. If the vector with minimum length

is Pi,kmin , then:

Fi = γi
∑
k∈Si

Pi,k
||Pi,k||3

, Si = {k | ||Pi,k|| ≤ (1 + εi)||Pi,kmin ||} (4.18)

where γi is the repulsion factor which determines the amount of force used for

collision avoidance on Pi and Si is the set of indices of the closest obstacles to

Pi, and kmin is the index of the closest obstacle to Pi. εi is taken into account

to exclude those micropipettes/obstacles which are not closest to Pi. To be on

the safe side, it is taken as εi = 0.1, ∀i to cover up to 10% of the distance to

closest obstacle around Pi. Without a small enough εi, the superposition of the

repulsion forces may vanish and a collision may occur. A collision margin is

defined by the user in terms of pixels. The collision avoidance force is ignored

if the minimum distance is out of this margin.

To mark fixed obstacles (other than micropipettes), user should move an

micropipette close to each obstacle manually and the software would register

the coordinates of that obstacle in Cref . It is also possible to focus and click

to register fixed obstacles (such as the mesh).

4.9 Haptic Interface

A haptic device is used to give the user the opportunity to move a specified

micromanipulator while feeling virtual forces which help the user to ensure that

the micromanipulators do not collide with each other or with the environment.

This is an intuitive and easy to use interface which accelerates the process of

positioning the micropipettes. The coordinates of the haptic device are aligned

with the coordinates of the live image on the screen which makes it intuitive

for a novice to work with the system. An illustration of the coordinates of the

system is given in Figure 4.13.
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Figure 4.13: Haptic-enabled control: the coordinates of the haptic device are
aligned with those of the microscope in such a way that Xh, Yh are matched
with Xi, Yi, and Zh is matched with the depth. There are four modes defined
for master-slave control: (a) In-depth motion, where the motion of the haptic
device is limited along Zh; (b) planar motion, where the haptic device is limited
to move in a plane orthogonal to Zh and the corresponding micropipette moves
almost only in the image plane; (c) 3D motion, where the haptic device can
move in 3D and the user has full control over the corresponding micropipette;
and (d) coaxial motion where Zh is mapped on to the X-axis in Cpipetten .
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4.9.1 Master-Slave Control

All of the micromanipulators used in the system have a closed-architecture

controller which means that a user-specified control scheme cannot be used.

In a robot with a closed-architecture controller, it is not possible to do direct

torque or velocity control and it is only possible to issue position or velocity

commands and read motor torques and/or forces (contact forces measured

by a force sensor) in defined time intervals with specific protocols through a

network connection. When a command is issued, the controller replies with an

acknowledgement response after accomplishment of the task, or generates an

error code when the task cannot be completed. When an inquiry is issued, the

controller responds with appropriate data or an error code if the inquiry cannot

be completed. Inquiries usually take a certain (fixed) amount of time while

control commands can take variable time. For example, if a move command

is issued, it takes more time if the requested displacement is longer.

In the system considered here, the closed-architecture robot takes position

commands and responds to inquiries on the position of the robot. Each inquiry

for the position of the robot takes Ti = 15.5ms and each move command takes

approximately Tc(ms) to complete, where:

Tc =

T0, when ||d|| ≤ ||d0||

T0 + ||d||−||d0||
v

, when ||d|| > ||d0||
(4.19)

where T0 = 64.0ms is the minimum delay and v is the constant speed of the

corresponding micromanipulator as reported in Appendix D.

Therefore, each iteration of the control loop takes at least min(Tc + Ti) =

79.5ms for the MP-265. Adding a delay of 33.4ms for capturing an image

frame and assuming the calculation of collision forces is performed in 1.0ms,

the minimum total delay would be Td = 113.9ms which gives us a maximum

bandwidth of 8.78Hz on the slave side. Although large delays in master-slave

systems might create serious instability problems [38], [39], the amount of delay

in our case lies within the human reaction time and is not expected to create

instabilities. Brooks [40] has reported a minimum bandwidth of 3.9Hz and a
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maximum desired bandwidth of 9.7Hz (according to 100ms human reaction

time) based on the consensus of teleoperation experts. We do not expect any

stability problems resulting from the inherent delays of the closed-architecture

controllers, because:

• There is no significant extra delay induced by the communication channel

between the master and the slave (i.e., for master and slave controllers

running on the same PC)

• The slave bandwidth (8.78Hz) is within the desired range reported in

[40]. It is actually close to the maximum desired bandwidth (9.7Hz).

• The environment model, including the artificial potential field used for

collision avoidance is passive, i.e., there is no active component in the

environment.

A block diagram of the master-slave control system is represented in Fig-

ure 4.14.

Figure 4.14: Master-Slave control architecture: J−1 is the Jacobian inverse as
defined in Section 4.4. Each time the user presses the stylus switch on the
haptic device, the integrator is reset; This is done to increase the workspace
resolution of the haptic device. The user should keep the switch pressed in
order to move the slave, this is a useful safety feature.
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4.9.2 Studying Performance of the Master-Slave Con-

trol

As stated before, we do not expect any instability in the master-slave control

due to the passive nature of the environment and the bandwidth of the slave

system. The experimental results show that the system is stable and the per-

formance of the master-slave control system is quite acceptable in practice as

shown in Section 4.12. To study the performance of the master-slave system,

we have recorded the position of the master and the slave as well as the re-

flecting forces in an actual experiment, when the slave micromanipulator is

moving the micropipette through a path close to other micropipettes as shown

in Figure 4.31. The forces reflected on the haptic device are a combination of

the collision avoidance forces with a small viscosity term created by the damp-

ing factor B. As shown in Figure 4.33, the reflected forces are pretty smooth

and no jerk was observed in practice. The results are discussed in more detail

in Section. 4.12.6.

4.10 Online 3D Visualization

There are applications where micromanipulation of a live cell in tissue is re-

quired. Patch clamp electrophysiology is one such application where micro-

electrodes are used to study ion channels of excitable cells such as neurons

and cardiomyocytes [1]. In such problems, there are two major challenges:

(a) bringing single/multiple tool(s) close to cell(s) repeatedly and (b) manip-

ulating the cell(s) using the tool(s) once a tool is located close to a target

cell. To address the first challenge, we have developed microscope image-

guided, robot-assisted techniques to locate micromanipulators close to target

cells [20, 41, 42]. A master-slave control scheme has also been developed [41]

which makes the user able to manipulate multiple micropipettes using a hap-

tic device. Although the master-slave control of the micromanipulators along

with the real-time 2D visual feedback and the autofocusing capability makes

it easier for the user to perform cell micromanipulation, part of the second
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challenge still remains. This is due to (a) lack of depth perception, (b) limita-

tions of 2D visual feedback which is always partially defocused because of the

limited depth of view in conventional microscopes, and (c) lack of knowledge

about the 3D shape and relative position of the target cell(s) with respect to

the tool(s). This makes cell manipulation difficult and time consuming, e.g.,

in an application such as patch clamping, the user may tear a cell membrane

or may not be able to patch the cell successfully which usually results in the

need for changing the micropipette and/or selecting a new target cell, which is

undesirable and time consuming. Therefore, real-time 3D visual feedback ca-

pable of illustrating the 3D shape of the target cell(s) and tool(s), can be very

helpful in micromanipulation of live cells especially when located in tissue.

Ideally, a 3D volume can be reconstructed by creating a stack of images

(optical sections) captured by moving the objective up/down with respect to

the specimen. Confocal microscopy is an optical imaging technique which is

based on elimination of out of focus light and is used widely in 3D recon-

struction, however it cannot be used for live cell manipulation [31] and the 3D

reconstruction is usually performed offline. Conventional wide-field microscopy

is normally used for working on live cells; However, the problem is that the

out-of-focus light in a conventional wide-field microscope blurs the images in

such a way that the 3D structures in the specimen will not be clearly visible.

The blurring effect can be modeled by convolution of the 3D image into a

3D Point Spread Function (PSF). There have been several methods developed

for deconvolution of the 3D reconstructed images such as inverse filtering,

Wiener deconvolution, Tikohnov regularization etc., where almost all of them

need an accurate estimation of the PSF. For a conventional wide-field micro-

scope, it is very difficult to end up with an accurate estimation of the PSF due

to the existence of noise in experimental methods and the effect of microscope

optic aberrations on theoretical methods. Blind deconvolution techniques have

been developed to estimate the microscope PSF and the 3D specimen image

simultaneously [43]. However, blind deconvolution techniques are based on

iterative approximations. At each iteration, multiple 3D convolutions are re-

quired which makes the algorithm very slow and therefore not suitable for
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real-time applications.

To develop a real-time 3D reconstruction algorithm, methods should be

used which do not need knowledge of the PSF. Pure 2D (no-neighbor) deblur-

ring methods are very fast and time efficient [44]. These methods are basically

spatial high-pass filters while microscope images of most of the specimens, e.g.,

neuron cells, are combinations of low and high spatial frequency components.

The main disadvantage of such methods is that they may remove a part of

the specimen as well. In case of live cells in a tissue, there are plenty of unde-

sirable high frequency regions in the images which can not be omitted using

no-neighbor methods. This will leave a lot of undesirable tissue texture which

will make it very difficult to recognize a cell.

An alternative approach, the nearest neighbor method, is based on sub-

tracting a weighted combination of the nearest neighbor slices on top and

bottom of each slice. The out of focus light in each image slice is a combi-

nation of the light coming from all other slices, but in the nearest neighbor

approach, it is assumed that the main contribution is from the adjacent slices.

This method is also very fast and computationally efficient but it has the

disadvantage of creating undesirable artifacts in the slices specially when the

slices are very close.

Partial 3D reconstruction can also be performed using focus/defocus mea-

sures [45]. This method is based on estimating the associated depth of each

pixel by finding the image slice with maximum focus measure at that pixel [46].

This method cannot be directly applied to our case due to low contrast im-

ages where the tissue is also visible along with the cells. Therefore, we have

modified the ”shape from focus” method and developed an algorithm which

is computationally efficient enough to be implemented online. We have then

defined a measure of accuracy by comparing the results of our algorithm to

manual segmentation of the cell membrane. We have also studied two differ-

ent methods to reduce the time required for reconstruction by down-sampling

and/or processing a region of interest.
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4.10.1 3D Surface Reconstruction

We have developed a partial 3D surface reconstruction scheme based on fo-

cus/defocus measures. For each pixel of the image, all slices are searched to

find the slice with the maximum local sharpness value [20], then the vertical

location of the corresponding slice is recorded. A 3D surface can then be re-

constructed based on these points but in most of the cases, it will be full of

noise and spikes created by the tissue so that the target cell cannot be recog-

nized. Pre-processing and post-processing of the images is required to obtain

a smooth surface, free of noise and spikes.

Capturing an Image Volume

In order to capture an image volume, the user specifies z0, zl and δz which are

the vertical location of the objective with respect to the reference coordinate

system for the first and last slices, and the distance between the slices, respec-

tively. The number of captured slices will be Nz = |zl−z0|
δz

+ 1. A default range

of |zl− z0| = 51.0µm and δz = .2µm is used in the software; the reason is that

usually most of neuron cells fit in such a range, the step size is small enough

to capture the required details and also the number of slices will be Nz = 256

which fits well for an 8-bit representation; However, the user can modify these

settings based on the requirements in each experiment. The microscope objec-

tive is moved according to the range and step size set by the user to capture

Nz image slices. Samples of three slices captured in one of our experiments

are shown in Figure 4.15. However, the raw image volume is useless without

processing, because (a) each image slice contains out of focus information, and

(b) all parts of the tissue are visible which makes it very difficult to recognize

a cell.

Preprocessing and Segmentation

The original captured volume is called V(x, y, z) which consists of image slices

Iz(x, y) captured at different depth levels of the tissue. To increase the contrast

of the images, we equalize the histogram of each image Iz and call it Ieqz and the
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Figure 4.15: A single neuron cell viewed at different depths: (a) bottom slice,
(b) middle slice and (c) top slice. All the images have been contrast enhanced
by histogram equalization because the original image contrast is very poor
(Figure 4.16(a)). The image plane is not parallel with the focal plane and
the slice thickness is also not uniform, therefore we observe non-uniform light
illumination and out-of-plane focus effects from top to bottom across the image
slice.

corresponding volume is called Veq. Then we associate a focus measure to each

image slice Ieqz by evaluating the standard deviation of the pixel intensities in a

neighborhood of each pixel resulting in Igz with a corresponding image volume

Vg(x, y, z). A circular neighborhood with Nf pixels radius is used. The user

can specify the radius. Increasing Nf will slow down the algorithm while a

very small value degrades the results; default value is set to Nf = 7. There

are different measures that can be used to evaluate the focus of a region in an

image [18]. The standard deviation measure creates smooth results which is

better suited for depth from focus applications [47]. Vg(x, y, z) is the called

the local sharpness (focus) measure at each point (x, y) in each image slice

Iz. Results of the sequence of these filters on a sample slice are shown in

Figure 4.16.

The corresponding surface can be reconstructed as

S(x, y) = arg max
z
Vg(x, y, z) (4.20)

At the next step, we adjust the dynamic range of S(x, y). This process

is called normalization: Sa(x, y) = S(x,y)−z0
zl−z0

.(2N − 1) where z0 and zl are the
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Figure 4.16: Results of the preprocessing filter sequence: (a) Original image
Iz, (b) Histogram equalized image Ieqz and (c) High-pass filtered image Igz .

height of the first and last image slices, respectively, and N is the number

of digits used for quantization chosen according to dlog2Nze; (we have used

N = 8 as the default value.). Please note that the voxel size is adjusted based

on the pixel size of the image and the distance between the slices. This whole

procedure is illustrated in Figure 4.17.

The Sa(x, y) can be considered as an image which is then warped as a

surface by associating the grayscale value to a height (in the z-direction) for

each pixel. This is shown in Figure 4.18. However the warped surface Sa(x, y)

will be full of spikes and noise as shown in Figure 4.18(b) and the cell structure

cannot be recognized in most of the cases. We apply two levels of filtering to

remove these spikes and undesirable parts.

Post-processing

We perform two levels of filtering to remove undesirable parts of the recon-

structed surface. The overall block diagram of the algorithm is shown in

Figure 4.19.

• First-level filtering:

To construct the first-level filter, we make a mask image:

N (x, y) = max
z
Vg(x, y, z) (4.21)
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Figure 4.18: (a) Sa and (b) the corresponding warped surface. The cell cannot
be recognized due to the overwhelming existence of undesirable parts, further
processing is required.

as shown in Figure 4.17. The mask image has lots of undesirable point

as shown in Figure 4.20(a) that should be removed and only parts of the

image which are representing the cell structure should remain; In order

to do this, the mask image N is thresholded and the result is denoted by

N τ . There are different thresholding techniques [48] which are used to

determine an optimal threshold value to segment images into foreground

and background. We used Kapur’s method [49] which is based on maxi-

mizing the sum of the background and foreground entropies. The result

is shown in Figure 4.20(b).

Then we apply the mask image to Sa using the AND logical operator.

SaN (x, y) = Sa(x, y).N τ (4.22)

However, there are still spikes and undesired objects in the reconstructed

surface as can be seen in Figure 4.21(b); These are mostly created by

parts of the image which have high spatial spectral components in image

slices but have a low spatial spectral component across the slices.
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Figure 4.20: First-level mask image N , (a) before and (b) after thresholding
(N τ ).

Figure 4.21: (a) SaN and (b) the corresponding warped surface.
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• Second-level filtering:

As our second-level filter, we construct a mask image M(x, y) where

each pixel is the standard deviation of the corresponding pixel across all

slices.

M(x, y) = σVeq(x,y,.) (4.23)

Figure 4.22(a) showsM(x, y) for a sample case. This mask image is then

thresholded, eroded and dilated (as shown in Figure 4.22 to highlight

connected parts of the data where there is a significant change across

the image slices. The resulting mask image is denoted by Mc(x, y). We

apply the mask image to SaN (x, y).

Sc(x, y) = SaN (x, y).Mc(x, y) (4.24)

To reduce noise in the reconstructed surface while preserving the edges,

we apply a 2D median filter to Sc(x, y) resulting in Ss(x, y), a 7 × 7

window median filter usually works well for our application.

Improving the processing speed

As reported in Section. 4.12.7, processing takes 49.35sec for 201 image slices

with a size of 640×480 pixels. There are several methods which can be used to

improve the processing speed of the proposed reconstruction algorithm. Some

of these methods are categorized as:

1. Reducing the size of the input data

• Down-sampling the input image volume

• Processing on a region of interest (ROI )

2. Using a different processing technique

• Using a faster processor.
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Figure 4.22: Second-level mask image: (a)M, (b)Mτ , (c)Mτ after morpho-
logical erosion, (d)Mc which isMτ after morphological erosion and dilation,
(e) Sc (masked) and (f) Ss (median filtered).
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• Re-implementation of the algorithm for a parallel processing envi-

ronment such as a multi-core CPU or GPU.

• Performing parts of processing while capturing images.

We have developed methods according to the first category to reduce the

size of the input data. The second category is mostly related to implementation

of the algorithm and is the subject of further research.

• Down-sampling:

We have used a Gaussian Pyramid technique for down-sampling images

[50]. Each slice is down-sampled by a power of two and the slice thickness

is also adjusted accordingly. This method reduces the processing time

due to smaller size of the input data. It will also reduce the time required

for capturing image volumes because of the smaller number of slices are

being captured due to increased slice thickness. A sample slice on a

Gaussian Pyramid is shown in Figure 4.23.

Figure 4.23: Down-sampling on a Gaussian Pyramid.

This method results in faster processing but it decreases the accuracy

of the algorithm. The trade-off between accuracy and the speed of the

algorithm is studied in Section. 4.12.7.

• Region of interest processing:
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Another method to reduce the processing time is to decrease the size of

the input data by processing a region of interest instead of the entire

image. The advantage of this method is that it does not sacrifice the

spatial resolution while it adds another step to the algorithm to obtain

region(s) of interest where cells are located. This can be done manu-

ally by asking the user to click on to cells or through an automatic 2D

segmentation of the cells.

We have developed a simple segmentation algorithm to automatically

determine the region of interest where a cell is located. This can be used

when minimum user interaction is desired. The slice with the maximum

overall sharpness, Izmax is selected where:

zmax = arg max
z

{∑
x

∑
y

|Vg(x, y, z)|

}
(4.25)

Then a circular Hough transform (CHT ) was used to determine the

location of cells in the corresponding image slice, Izmax . The results are

shown for the sample image in Figure 4.24.

The thresholding method used for the whole image masks N ,M is not

suitable for processing a region of interest around the cell. The entropy

maximization removes parts of the cell structure in order to make a bal-

ance between background and foreground entropies. To solve this prob-

lem, we have used Otsu’s thresholding method to minimize the weighted

sum of pixel variances in background and foreground clusters [51]. This

method is fit for the cases where the image is almost equally divided into

two clusters [48] and therefore provides satisfactory results for a region

of interest but no good result for the whole image.

We have tested this algorithm on three different image volumes. In

each case 26 image slices around the Izmax have been used. Location of

the center of the detected Hough circle was determined with an average

standard deviation of 5.2566 pixels (equal to 0.8936µm). An average

error of 6.1927 pixels (equal to 1.0528µm) was obtained compared to a
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Figure 4.24: Finding the region of interest around a cell: (a) original image
Izmax , (b) Ieqzmax , (c) Igzmax , (d) after thresholding, (e) after a sequence of dila-
tion, erosion, dilation, Gaussian smoothing and (f) circular Hough transform.
The region of interest is selected as a 128× 128 pixels square co-centered with
the detected circle.
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manual reference when a user was asked to draw a circle on the target

cell.

Representation

The resulting warped surface is shown in Figure 4.25. However, the warped

3D surface representation may have some limitations specially when we want

to combine the reconstructed 3D structure with a live 2D microscope image.

We have also created an alternative representation by adding voxels at each

Vr(x, y, z) = (x, y,S(x, y)) where Ss(x, y) > 0. We have applied a linear cubic

voxel interpolation to get a better representation of the reconstructed volume.

The result is shown in Figure 4.26(b).

Figure 4.25: Reconstructed surface as a result of warping the Ss(x, y).
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Figure 4.26: (a) Part of the gray-scale image Ss(x, y) before warping, colors
inverted to increase visibility, and (b) snapshot of the 3D representation of
interpolated voxels in Vr(x, y, z).

4.10.2 Master-Slave Control

A haptic device was used as the master and is capable of measuring user hand

motions and at the same time applying forces on his/her hand. The haptic

device is used for two different purposes:

1. Master-slave control of each manipulator.

2. Changing the camera pose of the 3D scene.

The registration information along with the virtual camera position and

orientation is used to coordinate the motion of the haptic device with the mo-

tion of the 3D tools displayed in the 3D image. The haptic device coordinates

are aligned with the display coordinates in such a way that the user can intu-

itively move the specified micropipette in the desired orientation. A collision

avoidance algorithm is used to generate haptic forces to prevent the user from

going too close to another micropipette. For more details please see [41].

4.10.3 Real-time Visual Feedback

The reconstructed scene, either the volume or the warped surface is dis-

played and rendered in real-time along with the micropipettes. The posi-

tion/orientation of each micropipette is calculated based on its current posi-

tion and the calibration/registration information. The 3D scene is updated
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and rendered in real-time. The user can select to look at the 3D reconstructed

volume, the warped surface or the 2D image. The user can also superimpose

the live 2D microscope image on the 3D reconstructed volume. The system

is capable of stereoscopic image display and the user can activate this mode

and put on stereoscopic goggles to get better depth perception as shown in

Figure 4.27.

4.11 Software Architecture

The developed system involves several hardware access routines as well as

user interaction and visualization processes; Hence it is very important to use

a versatile software design that avoids any collision among hardware access

routines, provides real-time visual feedback to the user and at the same time

incorporate user commands during real-time processes. As an example, when

the Haptic mode is enabled, the user interacts with the software through the

haptic device and the graphical user interface (GUI ) at the same time. The

haptic device controller, visual servoing, micromanipulator control and visual-

ization and rendering are running on the same system and accessing the same

resources. We have developed an event-driven multi-threaded software envi-

ronment that handles all of the required tasks and takes care of mutual access

problems and real-time coordination among different threads.

This software has different operation modes, including the AF mode, differ-

ent haptic interaction modes, the calibration mode, etc. To have coordination

among different operation modes, we have used a finite state-machine architec-

ture which prevents any confusion among the different modes and tasks. Each

program thread may have a different functionality at each different state.

We have used VTK (Visualization Toolkit) for graphics and visualization

purposes [52] and KWWidgets (a GUI Toolkit based on VTK) to create the

graphical user interface [53]. A snapshot of the GUI can be seen Figure 4.13.
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Figure 4.27: Graphical user interface, haptic device, and stereoscopic goggles
are shown for a sample experiment. The represented 3D scene is an augmented
reality environment consisting of the partial 3D cell reconstruction, the live
2D microscope image and a virtual representation of the micropipettes.
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4.12 Experimental Results

The procedure for patch clamping using the developed platform is as follows:

The user places the brain slice (or other tissue to be studied) on the substrate

and performs the conventional preparation routine. Then the micropipettes

are placed in the field of view of a dry lens (4X in this case) under the micro-

scope either manually or using the rough calibration information. Accurate

calibration and registration routines are then performed either automatically

or semi-automatically (by user intervention) as described in Section. 4.4. Then

the user moves the slice under the microscope to locate the region of the slice

that contains the appropriate cells. This is an initial guess and can be modi-

fied later. The software can be used to autofocus on this region and register

the coordinates of this location. Micropipettes are then moved close to the

specified region at a height that is slightly above the top layer of the slice. The

location of each micropipette is registered, the micropipettes are pulled out

slightly to avoid collisions during the lens change and then the objective lens is

switched to the higher magnification water immersion lens using a motorized

lens slider [13]. Software is then used to bring the objective over the previ-

ously registered location. The lens-water contact detection algorithm is used

to moved the objective down until it comes into contact with the water surface

(almost nothing can be seen before that) and then it is moved up again to its

previous position. The micropipettes are automatically moved back to their

registered locations. Then the objective and micropipettes are moved down

slowly until the cells in the slice are visible. The user can move the objective

around to search for good cells while the micropipettes follow the objective or

are brought into the field of view after appropriate cells are found by the user.

Then the haptic device is used to bring each micropipette into close proximity

to a cell and move it diagonally (using coaxial mode) to touch the cell mem-

brane. An artificial potential field algorithm is used to prevent any collisions

between micropipettes [19]. Once the membrane is touched, suction is applied

to achieve a Gigaseal. If the resistance is high enough, recording of voltage

and current clamping can be performed [19], [13]. The results obtained using
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the algorithms described in the previous sections are discussed below.

4.12.1 Autofocusing

We have evaluated some features of the autofocusing algorithm. Autofocus-

ing is repeatedly performed on the same scene and the mean and standard

deviation of zopt (vertical position of objective lens when it is in focus) are de-

termined. The results for various methods are represented in Table 4.1. The

precision was measured to be 2.680µm for the focusing on the micropipette tip

in Section. 4.3. To measure the accuracy of the autofocusing algorithm on a

micropipette tip, the position of the micropipette was used as a reference. We

repeated the autofocusing task several times and measured the average value

of zopt. We then moved the micropipette vertically with sub-micron accuracy

and repeated the measurements. This whole process was performed 100 times.

The difference between the average zopt in two consecutive experiments was

compared to the amount of movement of the micropipette. The average value

of |δzobjective − δzmicropipette| shows the accuracy of autofocusing which is esti-

mated to be 2.6µm for the dry objective. This method ignores any fixed offset

in focusing since a fixed offset is not important in our application because we

are using focusing as a method for relative depth estimation. Better accuracy

and precision can be achieved for the water immersion objective because of

the higher magnification.

4.12.2 System Calibration

There are several factors that cause errors in calibration, including but not lim-

ited to, (a) micropipette tip detection error, (b) unmodeled image distortions,

(c) vibrations in the setup, and (d) limited accuracy of the micromanipulators.

We have used a method to evaluate the calibration error and the results of this

evaluation are reported below.

An micropipette is moved on a 7 × 5 grid in the FOV. At each node the

micropipette tip is detected using the tip detection algorithm. The error be-

tween the detected tip point and the tip point calculated using T imageman is ob-
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tained at each point. This is repeated for 10 different objective lens heights.

The error on this set of 350 points is then processed to evaluate the calibra-

tion/registration algorithm. The average square root error in the X and Y

directions (mean(
√
e2x + e2y)) is estimated to be 5.642µm (dry lens, 1× mag-

nification).

We have evaluated the magnification adjustment parameters as shown in

Equation 4.6. Table 4.2 lists these parameters for the dry objective lens. The

magnification adjustment parameters for the water immersion objective are

reported in the last row in Table 4.2. A detailed description for measurement

of these parameters can be found in [13]. It should be noted that the κz value

in the last row of this table depends on the water level; more details are given

in [13].

Magnification Parameters
Objective Microscope α κx(µm) κy(µm) κz(µm)

4×
1× 1.0 0 0 0
2× 1.91 46 -68 -123
4× 3.81 73 -68 -167

20× 1× 5.03 20 323 3534

Table 4.2: Objective and microscope magnification adjustment parameters.

Table 4.3 gives the magnification adjustment parameters for different mi-

croscope magnification levels in the case of the water immersion objective.

The values in this table are measured with respect to the same objective with

microscope magnification at 1×.

Magnification Parameters
Objective Microscope α κx(µm) κy(µm) κz(µm)

20×
1× 1.0 0 0 0
2× 1.89 9 -9 -8
4× 3.68 16 -9 -10

Table 4.3: Objective and microscope magnification adjustment parameters for
the 20× water immersion objective.

To measure the magnification adjustment parameters, we used the AF
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algorithm to focus on an micropipette tip. We also used a modified visual ser-

voing algorithm to locate the micropipette tip at the center of the image, by

moving the microscope micromanipulator after changing the microscope mag-

nification. The overall amount of the microscope micromanipulator motion

determines the κx,y,z values in Tables 4.2 and 4.3. The value of α was deter-

mined by dividing the average pixel sizes after performing camera calibration

for each microscope magnification separately.

4.12.3 Tip Detection Error

To determine the accuracy of tip detection, the software moves a micropipette

all over the image and the user is asked to click on the tip of the micropipette.

The tip detection algorithm is also performed for each case and the results

are recorded and processed. An average absolute error of 0.4706 pixels is

achieved in X direction and an average absolute error of 0.4314 pixels in Y

direction. Maximum error in each direction is 1 pixel. The average norm of

error (mean(
√
e2x + e2y)) is 0.7871 pixels which is within 1 pixel error of the

reference user clicks. Detailed results are represented in Table 4.4.

mean(ex) 0.0784 mean(ey) 0.1176
mean(|ex|) 0.4706 mean(|ey|) 0.4314
std(ex) 0.6883 std(ey) 0.6526

Table 4.4: Tip detection errors chart

To evaluate the precision of the tip detection algorithm, a random point is

chosen, the micropipette tip detection is performed a 100 times for that point

and the standard deviation of the measurement is evaluated. The process is

repeated for 12 points on a 4 × 3 grid all over the image and the precision

is calculated as the average of the measurement standard deviations for all

points. The tip detection precision is 0.2412 pixels in X direction, 0.2600

pixels in Y direction and 0.3125 pixels in both direction.
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4.12.4 Image-Based Tracking

To evaluate the image-based tracking algorithm described in Section 4.7.1, the

user was asked to move a micropipette using the haptic device on an arbitrary

path in the field of view. The tracking algorithm has been running during

the experiment in a separate thread and the results have been recorded. The

tracking results are shown in Figure. 4.28 along with the results calculated

using calibration information and encoder readings of the micropipette at each

instant of time.

Figure 4.28: Image tracking results showing tracked Pt vs. calculated Pi coor-
dinates: (a) Xt vs. Xi, (b) EX = Xt −Xi, (c) Yt vs. Yi and (d) EY = Yt − Yi.

The average absolute error is X and Y directions are 0.8642 and 1.4073

pixels respectively. The average square root error in both directions is 1.8594

pixels. The worst-case maximum error is 4 pixels in each direction. The

results were obtained using the dry objective. The tracking algorithm for

the water immersion objective also shows acceptable. However, the calibra-
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tion/registration for water immersion objective is not very accurate and there-

fore cannot be used as a reference to evaluate the tracking results. This is

mainly due to image distortions, variable water levels and other factors such

as difference of refraction index between the tissue and water. In each case,

the tracking algorithm can be reset using the tip detection algorithm if the

tracking is lost for any reason.

4.12.5 Visual Servoing

Test results for the visual servoing algorithm are shown for an arbitrary path in

proximity to an obstacle (another micropipette). The parameters have been

adjusted to λ = 0.1, K = I (identity matrix), α = 0.5, η = 2.0, and the

collision safety margin has been set to 150 pixels. The results are shown in

Figure 4.29.

Figure 4.30 represents the starting and target points and the straight path

between them, the obstacle, moving micropipette at the start and the end

of the path, and the virtual collision avoidance forces at each point of the

path. As observed in Figure 4.30, the Jacobian transpose controller shown

in Figure 4.11 takes a curved path around the obstacle instead of following a

straight path to the target. To increase the speed, η can be increased.

4.12.6 Master-Slave Control

Master-slave control of an micropipette in proximity to another micropipette is

performed for an arbitrary path selected by the user. In other words, the user

is able to move each micropipette around while the virtual collision avoidance

forces are reflected to user’s hand and prevent him/her from approaching the

obstacles. Figure 4.31 represents the path followed by an micropipette during

an actual experiment. The micropipette under control is shown at the start,

in the middle and at the end of the path along with a fixed obstacle which is

another micropipette in this case. The collision avoidance forces are also illus-

trated as arrows in Figure 4.31. The slave coordinates during the experiment

are shown in Figure 4.32 in both Cman and Cimage.
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Figure 4.29: Results of visual servoing in proximity of an obstacle: (a), (b)
represent Xt and Yt which are the image-based tracking results and (c), (d)
represent the collision avoidance forces in each direction. As observed in (c,d),
the virtual forces are zero during the first 9.0 seconds because the minimum
distance between the moving micropipette and the obstacle is beyond the
specified margin.
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Figure 4.30: Visual servoing in proximity to an obstacle. The moving mi-
cropipette goes from the starting point to the target location under visual ser-
voing control while collision avoidance forces cause the path to bend around
the obstacle instead of following a straight line.
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Figure 4.31: The trajectory of an micropipette while passing close to another
micropipette is shown. Collision avoidance forces are represented as arrows.
The length and orientation of each arrow shows the magnitude and orientation
of the repulsion force at each point on the trajectory. The collision force
is not applied to the haptic device when the minimum distance is out of a
range as described in Section. 4.8. The controlled micropipette is shown at
the beginning, in the middle and at the end of the trajectory. The 4× dry
objective is used in this experiment.
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Figure 4.32: Slave coordinates in Cman and Cimage.
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The master-slave tracking results and the forces applied to the user’s hand

are shown in Figure 4.33. The results show very good tracking in the X and

Y directions except for the fact that an inherent delay of around 100msec

is observed. This is due to the closed architecture of the micromanipulator’s

controller. The slave does not follow the master along the Z direction as

observed in Figure 4.33 because the system is in a planar control mode which

is supposed to keep the micropipette in the focal plane. The force Fhz is

applied to the user’s hand to limit the haptic device motion in a plane.

Figure 4.33: Master-slave tracking results: the left column shows the master
(blue) vs. the slave (red) displacements along the X, Y and Z axes, the
right column shows the haptic force along the same axes. Master-slave control
was performed in planar mode where tracking is only done in the X and Y
directions. The master coordinates are in mm while the slave coordinates are
in µm.
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4.12.7 3D Reconstruction

We have tested the developed system on a 200µm coronal mouse brain slice

(piriform cortex). Brain slicing, incubation and slice perfusion were done ac-

cording to a published methodology [54]. To show the validation of the algo-

rithm, we report a sample case of 3D reconstruction by capturing 201 image

slices (640× 480, 0.2µm steps).

Accuracy

To validate the reconstruction results, two different references can be used:

(a) a morphological reconstruction of the same cell by a confocal microscope

after the experiments, and (b) manual segmentation of the image slices. The

problem with the first method is that the reconstruction is performed after

the experiments, i.e., after the cell goes through deformations when it is being

touched by a micropipette and has been fixed for more than 24 hours; It is also

necessary that the cell is patched successfully and the contrast dye is spread

in the cell. Therefore, the first method cannot provide a reliable reference

to evaluate the accuracy of our algorithm. Considering these limitations, we

chose the second approach. The user segments the cell borders in each image

slice by moving the mouse pointer and clicking on the images. This method

provides a more reliable reference, although it requires some time and effort

to generate the reference point sets.

We consider the result of automatic reconstruction and manual segmenta-

tion as sets of points in three dimensional space, as Wa and Wm respectively.

The reconstruction error is then defined as:

E =
1

|Wa|
∑
pa∈Wa

D(pa,Wm) (4.26)

where |Wa| is the cardinality (number of members) of Wa and D(pa,Wm) is

the distance between the point pa and the set Wm defined as:

D(pa,Wm) = min
pm∈Wm

||pa, pm||2 (4.27)
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user id 1 2 3
E(µm) 0.9227 1.0302 0.4615

Table 4.5: Accuracy with respect to manual segmentation. The results are
averaged for 3 different cases.

It is difficult to find a very exact reference to evaluate the reconstruction

error because the cell borders are not sharp. It can be observed in Figure 4.15

that there is not a single contour that can be considered as cell membrane

in each slice. Therefore we need to study the robustness of the defined error

measure E . We asked 3 different users (non-experts) to manually segment

the images in the slices for 3 different image volumes and then we calculated

the errors, the results are reported in Table 4.5. Each user chose a different

strategy for segmentation: (1) The first user chose to segment the cell in slices

where it was fully visible, (2) the second user chose to segment the cell every

4 slices (as adjacent slices are similar), (3) the third user segmented the cell

in every slice. The users did not have a priori knowledge of the automatic

segmentation results.

In all three different cases, the segmentation error is around 1µm or less.

The manual segmentation performed by the third user is used as a reference

as it is performed on all of the slices in the corresponding image volume. The

reconstruction error E , only evaluates the accuracy of the automatic segmen-

tation and it does not determine what portion of the cell surface has been

reconstructed. The number of reconstructed points is also reported to provide

a rough estimate of the portion of the reconstructed cell membrane.

Speed

It only takes T0 = 0.837sec for the robot to move the microscope 40µm ver-

tically. If the images are captured while the robot is moving, we can capture

the whole volume very quickly in about 6.7sec which is max(T0, N/f), where

N = 201 is the number of slices and f = 30Hz is the capturing frequency.

However, there are major drawbacks that prevent us from using this method:

(a) There will be motion artifacts in the images, (b) the vertical location of



176

each image slice will depend on the time when it is captured. Therefore, the

microscope is moved vertically and stops to capture each image slice. Captur-

ing 201 images takes 53.527sec which is mainly because the robot should stop

200 times to capture an image when the microscope is not in motion.

Accuracy vs. Speed

There is a trade-off between the accuracy and the speed of the algorithm.

We have studied this trade-off for the two cases of down-sampling and ROI

processing.

• Down-sampling:

To increase the speed of the algorithm we can (a) down-sample the im-

ages in 2D, and (b) increase the slice thickness (i.e., the distance between

two image slices). This will reduce the time required for computation and

also reduce the capturing time. If the image volume is down-sampled by

a factor of n, the spatial resolution is decreased by the same factor and

it is expected that E will also increase. If n is increased more than a cer-

tain threshold, the cell will not be detectable anymore and the algorithm

fails to detect the cell membrane and the error increases drastically. The

trade-off between the accuracy and speed of the algorithm is represented

in Table 4.6, the results are averaged for three different image volumes.

The reconstruction algorithm generates an empty set for n = 8 as the

cell is not detectable in a 80×60 image. When n is increased, E increases

while Tt decreases, as observed in Table 4.6; Therefore there should be

an optimal scaling factor to compromise between reconstruction error

and time. We define an optimization criterion to determine the optimal

scaling factor.

nopt = arg min
n
E(n), E(n) = E(n).

√
Tt(n) (4.28)

The optimization criterion is chosen to minimize the reconstruction error

and the total reconstruction time simultaneously. The square root of



177

scale (1/n) 1 1/2 1/4 1/8 ROI processing

E(µm) 0.4615 0.6749 1.0424 ∞ 2.1531

Tc(sec) 53.527 26.845 13.495 7.571 53.527

Tr(sec) 49.35 6.682 1.363 0.699 4.213

Tt(sec) 102.877 33.527 14.858 8.27 57.74

E 4.6809 3.9047 4.0180 ∞ Not defined

Na 2442 687 96 0 6565

Table 4.6: Accuracy vs. speed for the reconstruction algorithm, n is the down-
sampling factor, E is the reconstruction error, Tc, Tr are the capturing and re-
construction time respectively. Tt is the overall time required for capturing and
reconstruction and E is the optimization criterion defined in Equation. 4.28.
The last column reports the results for the case of processing a region of inter-
est. The last row represents the number of points in the reconstructed surface
for each case; Number of manual segmentation points was Nm = 19441.

scale (1/n) Volume size Voxel Size

1 640× 480× 201 .17× .17× 0.2µm3

1/2 320× 240× 100 .34× .34× .4µm3

1/4 160× 120× 50 .68× .68× .8µm3

1/8 80× 60× 25 1.32× 1.32× 1.6µm3

ROI 128× 128× 201 .17× .17× .2µm3

Table 4.7: Volume sizes for the reconstruction algorithm in different cases
reported in Table 4.6
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the overall reconstruction time Tt is used to put more emphasis on the

reconstruction error E . As observed in the last row of Table 4.6, nopt = 2

results in an optimal value. It is a good compromise compared to n = 1,

because we gain almost 4 times faster reconstruction time Tt while having

only 30% degradation of the accuracy E .

• ROI processing:

We have used the generalized Hough transform to roughly segment a cell

membrane as a circle. This can also be replaced by asking the user to

click on a point where a cell is located. We can then select a region of

interest containing the target cell and perform the processing only on

that specific region. We have selected a 128 × 128 pixels square as the

region of interest. This covers a 21.76µm × 21.76µm area which covers

most of neuron cells4.

This method does not reduce the time required for capturing images (Tc)

and only affects the processing time Tr. The results are shown in the last

column of Table 4.6. The resulting warped surface is also represented in

Figure 4.34.

This method results in reconstruction of more points and shows a more

complete 3D shape of the cell as shown in Figure 4.34. At the same

time, it results in increased reconstruction error. This method can be

used in combination with down-sampling to speed up the reconstruction

even further.

4.12.8 Patch Clamping Results

The procedure of patch clamping with the assistance of the developed plat-

form includes: (a) system calibration using the dry objective; (b) locating

the region of the slice which contains the appropriate cells; (c) autonomous

placement of the micropipettes at the user specified locations by using cal-

ibration/registration information, visual servoing or the haptic device or a

4Average diameter of neuron cells is around 10µm.
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Figure 4.34: Reconstructed surface in the case of ROI processing.
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combination of these methods; (d) changing the objective to water immersion

lens automatically [13]; (e) bringing the objective and micropipettes down

close to target cells automatically; and (f) using the haptic device to approach

each cell membrane individually in order to perform patch clamping.

4.12.9 Brain slicing procedures and tissue maintenance

Coronal rat brain slices (350µm; 1.5 to −0.3mm relative to bregma) were

performed according to published methodology [54]. Slicing, incubation, and

storage are all performed in choline solution. Ringer’s solution used during

electrical recordings is similar to choline solution except that pyruvate and

ascorbate are removed, equimolar NaCl replaces the choline Cl, and MgCl2

is used at a 2mM concentration. All solutions are maintained at pH 7.4 and

bubbled with 5%− CO2 / 95%−O2 (carbogen).

4.12.10 Electrophysiology

Patch electrodes were pulled from borosilicate glass capillaries (10cm length,

1.5mm O.D. and 1.17mm I.D.) and filled with K-gluconate solution (300

mOsm, pH 7.3-7.4). Voltage-gated currents and excitability of cells in lay-

ers II and III of piriform cortex were monitored by means of voltage-clamp

and current-clamp protocols (PulseFit v 8.0; Heka, Germany). The results are

shown in Figures 4.35.

4.12.11 Immunohistochemistry and image acquisition

In order to reconstruct the morphology and understand where the recordings

are made, biocytin was included in patch microelectrode solution. After the

completion of a recording, the slice was removed from the microscope chamber

and fixed in 4% paraformaldehyde (PFA) for at least 24 h. After rinsing [55]

the slices were incubated in streptavidin-conjugated Alexa Fluor-594 (5µg/ml;

Molecular Probes) and mounted onto Fisher SuperFrost slides and mounted

with glass coverslips in Prolong Gold Antifade mounting medium (Molecu-
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Figure 4.35: (a) Voltage clamp recording of a patch clamped interneuron
(downward traces showing sodium current flow) and (b) Neuronal firing pat-
tern of a patch clamped interneuron (upward traces indicate action potentials)
in layer III of rat piriform cortex.

lar Probes, Eugene, OR). Confocal images were taken on an Olympus IX 60

inverted microscope outfitted with a Perkin Elmer Spinning Disk Confocal at-

tachment with a 20× (N.A. = 0.50) objective. The microscope was equipped

with a Hamatsu Orca ER CCD camera (1300× 1030 pixels), and images were

acquired in Volocity software (Improvision, Lexington, MA). Each image rep-

resents a stack of 40–50 images 0.2µm apart in the z-plane. For morphological

reconstruction of the dendritic arborization of patched neurons, the stacks

of confocal images were deconvolved with AutoQuant software (AutoQuant

Imaging, Media Cybernetics, Inc., Bethesda, MD) and then processed with

Imaris Filament Tracer module in surpass mode (Bitplane, Zurich, Switzer-

land). To mark the cell bodies, an Isosurface was then created. This process

creates a cell body from the stack of images that is then merged with the

dendritic morphology (Figure 4.36).

The system calibration and visual servoing technique are used to bring

MP tips close to target cells and the master-slave control is used to touch

the membranes in order to patch them. Figure 4.37 shows the four patched

micropipettes in the tissue slice after the recording. Figure 4.38 shows an

micropipette tip pushing against a cell membrane when the cell is ready to

be patched. Figure 4.39 shows four micropipettes patching four neurons while
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Figure 4.36: Morphological reconstruction of four interneurons in layer III
of piriform cortex as shown in Figure 4.37. Partial cell body and dendritic
arborization reconstruction for cell C and D indicate a lighter biocytin staining
of these neurons.
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the recording is being performed.

Figure 4.37: Closer view of micropipettes, objective lenses and the substrate
when four pipettes are patched. The objective lens is changed in order to
increase visibility.

4.13 Conclusion

To the best of our knowledge, this is the first computer-integrated robot-

assisted patch clamping system that is able to work with existing patch clamp

setups while requiring minimal hardware modifications. The experimental re-

sults show very accurate autofocusing for depth estimation and system calibra-

tion. This makes it easy for the user to find and focus on desired objects under

the microscope. The micropipette tip detection algorithm helps in automating

the calibration and coordinate registration procedure. The developed real-time

micropipette tip tracking along with the calibration information, makes it pos-
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Figure 4.38: Micropipette tip is pushing against a cell membrane, the cell is
ready for patch clamping.
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Figure 4.39: Four neurons patched.
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sible to locate the micropipette tip at a desired location by just clicking on

that point. The overall system makes it easy for a user to perform successful

patch clamping very quickly by providing automated/semi-automated tools to

select the desired cells and move the micropipettes into close proximity of the

cells and then using the haptic device to patch the cell membranes.
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Chapter 5

Concluding Remarks and

Future Work

Each of the three parts of the thesis in Chapters 2, 3 and 4 includes a con-

clusions section. In this chapter, overall concluding remarks and suggestions

for future work are given. We have studied the application of image-guided

robotics to provide shared control between a human operator (e.g., a cardiolo-

gist and a neurobiologist) and a computer. This was applied to three different

cases in biomedical engineering - intravascular and intracardiac interventions

and cell micromanipulation. The existing imaging modalities in each case (i.e.,

x-ray fluoroscopy, ultrasound and microscope imaging) have been efficiently

used to provide feedback to the robot and/or the human operator. Master-

slave control as well as supervised autonomous or semi-autonomous control

schemes were developed to enable the user to perform the task according to

the requirements of any specific task. Robot manipulators were controlled at

scales ranging from multiple centimeters to sub-micrometers.

5.1 Remarks

Concluding remarks for the research described in each of the Chapters 2, 3

and 4 are included here.
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5.1.1 Angioplasty

An image-guided robotic system was developed for catheter insertion in in-

travascular interventions. An image-based tracking algorithm was developed

to track the distal tip of a catheter in real time. Image-based and magnetic

tracking of the catheter tip were deployed through a sensor fusion scheme

using Kalman filtering to provide more robust and reliable feedback of the

catheter tip position. Feedback control (mainly based on visual servoing) was

implemented for accurate positioning of the distal tip of a catheter inside a

vascular model. An autonomous guidance algorithm was developed to guide

the catheter to a target point in the vasculature. Shared control between

the human operator and the computer is implemented which allows for dif-

ferent control modes including supervised autonomous control or teleoperated

master-slave control. To the best of our knowledge, this is the first time vi-

sual servoing has been demonstrated for catheter insertion control with shared

control for intravascular interventions. The results show accurate tracking and

control of the distal tip of a catheter. Robot-assisted insertion of the catheter

with autonomous guidance and master-slave control reduces the X-ray expo-

sure to the clinicians significantly. However, the tracking algorithms need to be

modified to compensate for beating heart and respiratory motions. A model-

free controller has been used for catheter tip position control. Using a model

that describes the nonlinear behavior of a flexible catheter and its interaction

with vasculature, could help to improve the performance of the tip position

controller.

5.1.2 Cardiac Ablation

A master-slave controlled robotic system was developed for actuation of con-

ventional steerable ablation catheters. Online 3D visualization was also de-

veloped based on transthoracic ultrasound images captured using a motorized

ultrasound probe. The position of the distal end of the catheter is controlled to

follow the motion of a master device while live visual feedback of the beating

heart and the catheter is provided to the user. The position of the ultrasound
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probe and the distal part of the catheter are measured using magnetic trackers.

This is used to control the position of the catheter tip as well as orienting the

master device coordinates with the visual feedback. The system described in

this part of the thesis provides the necessary tools for implementing bilateral

teleoperation with haptic feedback to provide a sense of touch to the user while

performing cardiac ablation.

5.1.3 Patch Clamping

A microscope image-guided robotic system was developed for multiple elec-

trode patch clamping. The developed system includes: (a) master-slave con-

trol of micropipettes with sub-micron motion resolution, (b) microscope image-

based detection and tracking as well as visual servoing of the micropipette tips,

(c) partial 3D reconstruction and online 3D visualization of neurons, (d) al-

gorithms for collision avoidance and haptic feedback to avoid collisions among

micropipettes (or between micropipettes and obstacles), (e) an autofocusing

algorithm to provide relative depth perception, and (f) a graphical user inter-

face that provides intuitive interaction with the user to control the system.

This work also included the design and implementation of an objective lens

changing mechanism as well as algorithms for calibration and registration. To

the best of our knowledge, this is the first computer-integrated robot-assisted

patch clamping system that is able to work with existing patch clamp setups

while requiring minimal hardware modifications. This system provides tools

to facilitate multiple-electrode patch clamping, however the interaction with

the cell membrane is done manually. Automatic control of rupturing pressure

by using resistance measurements and visual feedback can make the overall

procedure faster.

5.2 Future Research

Possible directions for future research in each of the topics of the thesis are

discussed below.
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5.2.1 Angioplasty

A possible area of future work is the development of an adaptive data fusion

scheme which can update the noise characteristics (Q(k) and R(k)) based on

the varying errors in the observed values. This will help to penalize the sensor

having more uncertainty and favour the sensor with less uncertainty. The

image-based tracking can also be modified to compensate for beating heart

and respiratory motion in order to use it for clinical cases in percutaneous

coronary angioplasty applications. The catheter tip position controller was a

model-free PID controller. The accuracy of the controller and the amounts

of overshoot/undershoot at the distal tip of a catheter can be improved by

model-based compensation of some of the nonlinearities including deadband.

It would also be helpful to obtain an estimation of friction forces between the

catheter and the vasculature during insertion, based on the robot end-effector

force sensor readings as well as the shape of the vasculature (as provided by

the roadmap). Active compensation of this friction force can result in much

smoother catheter insertion. Although the proof of concept was done using a

commercial robot, it would be worthwhile to design a catheter insertion robot

small enough for clinical tests in an operating room.

5.2.2 Cardiac Ablation

Evaluation of the system by comparing experimental results of this system

to those obtained by conventional methods using pre-operative images can

be part of future research. The system should be evaluated through several

experiments and the results should be compared at least for three different

cases: (a) with and without stereo vision, (b) with and without intra-operative

imaging, and (c) with master-slave control and with manual actuation of the

catheter. Positioning accuracy should be studied in each case. It is anticipated

that the developed system will improve the positioning accuracy in each case.

We have used simple and fast 2D pre-processing of ultrasound image slices.

However, 3D volumetric processing after 3D reconstruction is shown [1] to

provide better quality 3D ultrasound images compared to 2D image processing
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techniques applied before reconstruction. Volumetric processing is more time

consuming and computationally intensive; therefore a possible area of future

research could be using Graphics Processing Units (GPUs) to achieve higher

quality reconstructed 3D ultrasound images in real time.

It is also expected that modeling the nonlinearities of steerable catheters

results in more accurate control of the distal tip position. Future research

could include modeling the nonlinear behavior of the steerable catheter and

design of controllers to compensate for these nonlinearities. Deployment of a

force sensing catheter and providing force feedback to the user can also be a

future research direction.

5.2.3 Patch Clamping

Studying the effect of light refraction by brain tissue slices is one possible re-

search topic. This has a nonlinear effect on the accuracy of depth estimation

when the micropipette tip moves inside the tissue. Currently the system pro-

vides facilities for moving micropipettes to desired locations, but the actual

patch needs to be done by a human operator. Development of a more com-

plicated control scheme to perform patch clamping automatically by visually

guided contact force control between a micropipette and a cell can also be the

subject of future research.

5.3 Towards supervised automation in biomed-

ical robotics

Although a majority of the applications of visual servoing have been aimed

at enabling the user (e.g. a clinician) to perform a procedure more efficiently,

there is interest in making certain procedures autonomous using visual servo-

ing and under supervision of a human operator. Development of visual servo

controllers depends greatly on the robustness of image-based detection and

tracking algorithms. While there have been many developments in image pro-

cessing and computer vision techniques, there are several drawbacks in terms
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of using imaging to automate certain surgical procedures. As an example Na-

geotte et al. [2] have studied the kinematic analysis of an optimal stitching

task which can be used to automate complicated tasks such as suturing and

stitching, through visual servoing. The same phenomenon can be applied to

cell micromanipulation and other biomedical applications. On the other hand,

visual servoing can provide reliable feedback control without using complicated

nonlinear models for flexible tools such as catheters and tool/tissue interac-

tions. Availability of robust and reliable feedback of the position, orientation

or deformations measured at the same location as the controlled variables,

makes it possible to perform efficient feedback control with simplistic linear

models or even without any model of the tool or tool/tissue interaction. We

expect that advances in imaging and processing technologies will make it pos-

sible to meet the requirements listed in Section 5.3.1 and therefore, result in

more robust and reliable visual servoing techniques. This will provide increas-

ing applications of supervised automation of biomedical robotic procedures.

5.3.1 Visual servoing

A common theme in this thesis, mainly in Chapters 2 and 4 is the application

of visual servoing. The results and issues in each case have been discussed in

the corresponding chapters. We include a brief overall discussion on the main

requirements and challenges of using visual servoing for biomedical robotic

applications. The following is a list of these major requirements and challenges:

• Direct access to image data in real time

• Imaging resolution and tracking accuracy

• Computational efficiency of the image processing algorithms

• Image capture rate which is usually much lower than servo rate

• Robustness and reliability of image-based detection and tracking algo-

rithms
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• Effect of latency caused by the time required for image capture, transfer

and processing in the control loop

Most of these items depend on the technology used for imaging and im-

age capturing and processing. New technologies provide higher capturing and

processing rates and less latency in the loop. However, the accuracy, robust-

ness and reliability of image-based feedback is very much dependent on the

algorithms used. Future research can be focused on developing more accurate

and robust image-processing algorithms, data fusion and intelligent detection

of faults in the algorithms while using new technologies which provide higher

quality images and faster image capturing and processing.

5.3.2 Open access to raw imaging data

As Bachta et al. [3] have suggested, direct access to the medical imaging data

in real time can boost the application of visual servoing techniques in vari-

ous areas of medical robotics. Although few of the medical imaging products

provide an open architecture for accessing the raw imaging data, specialized

hardware and privileged access is required to access raw data for a majority

of the currently available medical imaging devices [4]. Therefore several visual

servoing applications still rely on analog video outputs which pose limitation

such as a maximum 30Hz frame rate, low resolution and no control over the

imaging system parameters. Novotny et al. [5] incorporated real-time pro-

cessing of 3D ultrasound image volumes using a Philips Sonos 7500 machine

through a privileged access which is not commercially available to the gen-

eral research community. Open access to raw imaging data can provide more

flexibility in the design of algorithms for tracking tools and/or organs.
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Appendix A

Mitsubishi PA10 Robot

An ARCNET card (PCI-20U from Contemporary Controls Inc.) has been used

to communicate with the Mitsubishi PA10-7CE control unit. Considering θi,

i = 0, 1, 2, 3, 4, 5, 6 as the joint angles of the robot, we define si = sin(θi) and

ci = cos(θi) to make the equations concise.

A.1 Jacobian

Entries of the 6× 7 Jacobian matrix, Ji,j are calculated as follows:

J0,0 = −a3s6c5c4s1c2c3−a3s6c5c4c1s3+a3s6c5s1s2s4+a3s6s5s1c2s3−a3s6s5c1c3−
a3c6s4s1c2c3−a3c6s4c1s3−a3c6s1s2c4−a2s4s1c2c3−a2s4c1s3−a2s1s2c4−s1s2a1

J0,1 = −c1(a3s6c5s2c3c4 + a3s6c5c2s4 − a3s6s2s3s5 + a3c6s2c3s4 − a3c6c2c4 +

a2s2c3s4 − a2c2c4 − c2a1)
J0,2 = −a3s6c5c4c1c2s3−a3s6c5c4s1c3−a3s6s5c1c2c3+a3s6s5s1s3−a3c6s4c1c2s3−

a3c6s4s1c3 − a2s4c1c2s3 − a2s4s1c3
J0,3 = −a3s6c5s4c1c2c3+a3s6c5s4s1s3−a3s6c5c1s2c4+a3c6c4c1c2c3−a3c6c4s1s3−

a3c6c1s2s4 + a2c4c1c2c3 − a2c4s1s3 − a2c1s2s4
J0,4 = −a3s6(s5c4c1c2c3 − s5c4s1s3 − s5c1s2s4 + c5c1c2s3 + c5s1c3)

J0,5 = −a3(−c6c5c4c1c2c3 + c6c5c4s1s3 + c6c5c1s2s4 + c6s5c1c2s3 + c6s5s1c3 +

s6s4c1c2c3 − s6s4s1s3 + s6c1s2c4)

J0,6 = 0
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—————

J1,0 = a3s6c5c4c1c2c3−a3s6c5c4s1s3−a3s6c5c1s2s4−a3s6s5c1c2s3−a3s6s5s1c3+
a3c6s4c1c2c3−a3c6s4s1s3+a3c6c1s2c4+a2s4c1c2c3−a2s4s1s3+a2c1s2c4+c1s2a1

J1,1 = −s1(a3s6c5s2c3c4 + a3s6c5c2s4− a3s6s2s3s5 + a3c6s2c3s4− a3c6c2c4 +

a2s2c3s4 − a2c2c4 − c2a1)
J1,2 = −a3s6c5c4s1c2s3+a3s6c5c4c1c3−a3s6s5s1c2c3−a3s6s5c1s3−a3c6s4s1c2s3+

a3c6s4c1c3 − a2s4s1c2s3 + a2s4c1c3

J1,3 = −a3s6c5s4s1c2c3−a3s6c5s4c1s3−a3s6c5s1s2c4+a3c6c4s1c2c3+a3c6c4c1s3−
a3c6s1s2s4 + a2c4s1c2c3 + a2c4c1s3 − a2s1s2s4

J1,4 = −a3s6(s5c4s1c2c3 + s5c4c1s3 − s5s1s2s4 + c5s1c2s3 − c5c1c3)
J1,5 = −a3(−c6c5c4s1c2c3− c6c5c4c1s3 + c6c5s1s2s4 + c6s5s1c2s3− c6s5c1c3 +

s6s4s1c2c3 + s6s4c1s3 + s6s1s2c4)

J1,6 = 0

—————

J2,0 = 0

J2,1 = −a3s6c5c2c3c4 + a3s6c5s2s4 + a3s6c2s3s5 − a3c6c2c3s4 − a3c6s2c4 −
a2c2c3s4 − a2s2c4 − s2a1

J2,2 = s2(a3s6c5s3c4 + a3s6c3s5 + a3c6s3s4 + a2s3s4)

J2,3 = a3s6c5s2c3s4 − a3s6c5c2c4 − a3c6s2c3c4 − a3c6c2s4 − a2s2c3c4 − a2c2s4
J2,4 = a3s6(s5s2c3c4 + s5c2s4 + s2s3c5)

J2,5 = a3(−c6c5s2c3c4 − c6c5c2s4 + c6s2s3s5 + s6s2c3s4 − s6c2c4)
J2,6 = 0

—————

J3,0 = 0

J3,1 = −s1
J3,2 = s2c1

J3,3 = −c3s1 − c2c1s3
J3,4 = c2s4c1c3 − s3s1s4 + s2c4c1

J3,5 = −c2c4s5c1c3 − c3c5s1 − c5c2c1s3 + s2s5s4c1 + s3s5s1c4

J3,6 = s6c5c4c1c2c3−s6c5c4s1s3−s6c5c1s2s4−s6s5c1c2s3−s6s5s1c3+c6s4c1c2c3−
c6s4s1s3 + c6c1s2c4

—————
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J4,0 = 0

J4,1 = c1

J4,2 = s2s1

J4,3 = −c2s1s3 + c3c1

J4,4 = c2s4s1c3 + s2c4s1 + s3c1s4

J4,5 = c3c5c1 − c5c2s1s3 − s3s5c1c4 + s2s5s4s1 − c2c4s5s1c3
J4,6 = s6c5c4s1c2c3+s6c5c4c1s3−s6c5s1s2s4−s6s5s1c2s3+s6s5c1c3+c6s4s1c2c3+

c6s4c1s3 + c6s1s2c4

—————

J5,0 = 1

J5,1 = 0

J5,2 = c2

J5,3 = s2s3

J5,4 = −s2s4c3 + c2c4

J5,5 = s2c4s5c3 + s5c2s4 + c5s2s3

J5,6 = −s6c5s2c3c4 − s6c5c2s4 + s6s2s3s5 − c6s2c3s4 + c6c2c4

where a0 = 0.317, a1 = 0.450, a2 = 0.480 and a3 = 0.35.

A.2 Gravity Compensation

τg is a vector of torques that compensates for the effect of gravity on the robot

at each joint.

τg[0] = 0.0

τg[1] = −(g(s2(l3(m3 +m4 +m5 +m6 +m7)−m3ry3 +m2rz2 + c4(l5(m5 +

m6 +m7)−m5ry5 +m4rz4 + c6(m6rz6 +m7(l7 + rz7)))− c5(m6rz6 +m7(l7 +

rz7))s4s6) + c2(c3(l5(m5 + m6 + m7) − m5ry5 + m4rz4 + c6(m6rz6 + m7(l7 +

rz7)))s4 + (m6rz6 +m7(l7 + rz7))(c3c4c5 − s3s5)s6)))

τg[2] = gs2((l5(m5 + m6 + m7) − m5ry5 + m4rz4 + c6(m6rz6 + m7(l7 +

rz7)))s3s4 + (m6rz6 +m7(l7 + rz7))(c4c5s3 + c3s5)s6)



204

τg[3] = −(g(l5(m5 + m6 + m7) − m5ry5 + m4rz4 + c6(m6rz6 + m7(l7 +

rz7)))(c3c4s2 + c2s4)) + c5g(m6rz6 +m7(l7 + rz7))(−(c2c4) + c3s2s4)s6

τg[4] = g(m6rz6 +m7(l7 + rz7))(c5s2s3 + (c3c4s2 + c2s4)s5)s6

τg[5] = −(g(m6rz6 + m7(l7 + rz7))(c6(c5(c3c4s2 + c2s4)− s2s3s5) + (c2c4 −
c3s2s4)s6))

τg[6] = 0.0

where g = 9.81m
s2

is the gravity constant and m2 = 8.41Kg, m3 = 3.51Kg,

m4 = 4.31Kg, m5 = 3.45Kg, m6 = 1.46Kg, m7 = 0.24Kg + mL are the link

masses for PA10 robot and mL = 1.82Kg is the effective mass for the catheter

actuation mechanism. rz2 = 0.06325m, ry3 = 0.08944m, rz4 = 0.04609m,

ry5 = 0.1647m, rz6 = −0.03m, rz7 = −0.029m are the centers of mass for the

PA10 robot links. l1 = 0.115m, l3 = 0.450m, l5 = 0.50m and l7 = 0.08m are

the offset distances of the robot links.
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Appendix B

SMA-Actuated Catheter

The contents of this appendix has been published in [1] and [2].

An active catheter has been developed for easy guidance of the catheter

into a branch based on an input received from the image processing algo-

rithm, as shown in Fig. B.1. Shape memory alloy (SMA) wires have been

employed in developing the active catheter. Three SMA wires, spaced around

the catheter at 1200, have been employed to obtain the bending of the active

catheter in all directions. Using an average energy of 420J/cm2, these wires

are microwelded to stainless steel pads in an Argon atmosphere, as shown in

Fig. B.2. The stainless steel pads are obtained by laser machining a tube of

inner diameter equal to the outer diameter of the catheter. The pads have

an arc length of 1.5mm ensuring a gap of 0.67mm between each pad. These

pads are then glued in place by means of medical grade epoxy glue. Multiple

sections of SMA actuators have been integrated into the catheter to obtain

varying bending angles and radii. It should be noted here that the developed

active catheter is for proof-of-concept. The final design of the active catheter

would have two lumens - one channel would serve as a guide for the wires of

the SMA actuators and the second lumen would be hollow to allow for the

passage of a stent as well as the balloon used for angioplasty. In an actual

application, care needs to be taken to shield the SMA actuators from cardiac

tissue. It has been reported in the literature that epithelial cells and cardiac

tissue can withstand a maximum of 500C [3]. There are two ways to ensure
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that tissue is not damaged by the active catheter, first, by using an SMA of

lower transition temperature from Martensite to Austenite phase [4] and sec-

ond, by appropriate packaging of the active catheter to ensure that the tissue

is insulated from the generated heat. We have packaged the catheter with a

high temperature resistant polytetrafluoroethylene (PTFE) film (HM350 film

from Saint Gobain Performance Plastics Corporation) to ensure that the SMA

wires are appropriately shielded from the artery walls. Several tests were per-

formed to check the insulation capability of the film. The temperature inside

the insulation and on the outer surfaces of the film were monitored to check

the performance of the PTFE film during operation of the active catheter

in water at 370C. The active catheter was actuated to its maximum possible

deformation for 10 seconds and cooled to an ambient temperature and this

process was repeated for 5 cycles. The maximum temperature attained on the

outer surface of the catheter was 430C and that inside the insulation was 390C,

although the Martensite to Austenite transformation temperature was 850C,

thereby confirming the insulation capability of the PTFE film. The model and

control developed in this paper, however, remain the same for both cases with

changes made only to the parameters of the model. The strain in each SMA

wire changes continuously, therefore the active catheter is capable of bending

in any direction in a continuous manner rather than in discrete steps. The

closed loop control designed for the active catheter ensures that the orienta-

tion of the active catheter follows the desired reference, as determined by the

autonomous guidance algorithm. In order to control bending in the active

catheter, a mathematical description of the behavior of SMAs is required. A

model based on the physics of the process has been proposed by Jayender et

al. [5], [6].

B.0.1 Closed-loop Control

A closed-loop control of the active catheter using the robust H∞ loop-shaping

controller was developed by Jayender et al. [5], [6]; The results of which are

summarized in Table B.1. The difference between this controller and the

previously developed controller in [6] is that the strain in the SMA actuators
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Figure B.1: Active catheter

is not directly fed back to the control loop. A 5-DOF magnetic sensor (model

Aurora from NDI Inc.) placed at the tip of the catheter provides feedback on

the orientation of the catheter. The transformation from the orientation in

the active catheter to the strain in the SMA is inaccurate due to machining

intolerances. Therefore an outer PID loop is necessary to ensure that the

orientation of the catheter follows the desired trajectory, as shown in Fig. B.3.

The output of the PID block is given by the following equation

uβ = Kp(eb) +Kd(ėb) +Ki

∫
ebdt (B.1)

uγ = Kp(eg) +Kd(ėg) +Ki

∫
egdt (B.2)

where eb is the error between the desired yaw orientation βd and the orientation

of the active catheter β. Similarly eg is the error between the desired pitch

orientation γd and the orientation of the active catheter γ. Kp, Ki and Kd are

the Proportional, Integral and Derivative gains respectively of the closed-loop



208

Figure B.2: SMA wires laser micro-welded to stainless steel pads

Figure B.3: Closed-loop control for the Active Catheter
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controller. A linear transformation was chosen to map the orientation angle

to strain in the SMA actuators. Accordingly the strain in the SMA actuators

is resolved according to the following equations:

ε1 = −(1− u(γi))(γi/γmax)εmax −

(1− u(βi))(βi/βmax)εmax/ cot(600) +

u(βi)(βi/βmax)εmax/ cot(600)

ε2 = u(γi)(γi/γmax)εmax/ sin(600)−

(1− u(βi))(βi/βmax))εmax/ sin(600)

ε3 = u(γi)(γi/γmax)εmax/ sin(600)−

u(βi)(βi/βmax)εmax/ sin(600) (B.3)

where ε1, ε2 and ε3 are the strains in the three SMA actuators, γi and βi are

the input orientation to the “Angle to Strain Transformation” block and u(.)

is a unit step function.

Perturbation Error

Simulation results No (Air) 0.29

Experimental results No (Air) 0.73
Load (Air) 2.78

Cooling-rate (Air) 1.03
No (Water) 1.21

Cooling-rate (Milk) 2.69

Table B.1: RMS error (%) for H∞ control

The transformation block in the outer-loop takes γc = γref + uγ and βc =

βref + uβ as the input orientation and generates the reference strain for the

three SMAs, εref1 , εref2 and εref3 . A saturation limit of εmax was placed for

the three reference strains. Three separate robust H∞ loop-shaping controllers
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ensure accurate tracking of the reference strains generated for the three SMAs.

Each robust controller has the same structure as described in [6]. The output

of the robust controller u is provided to the three SMA actuators which make

the active catheter bend in the desired direction. The robust controller ensures

that the strain in the SMA actuators follows the desired reference generated by

the outer loop and compensates for any load or cooling rate disturbances which

affects the performance of the SMA actuators. The output of the “Active

Catheter” block is the orientation of the catheter, γ and β, which is measured

by means of a 5-DOF magnetic sensor at the tip of the catheter. The strain

in the SMA actuators is estimated by means of the transformation (B.3) by

providing γ and β as the input orientation to complete the feedback in the

inner loop.

For the initial experiments, the reference trajectory for the active catheter

is provided from a 6-DOF haptic device. The orientation of the haptic device

γ (pitch) and β (yaw) are used to orient the catheter in space. The real-time

implementation of the SMA model and control is done on a Windows based

PC at a sampling rate of 30Hz. The results of the closed-loop tracking of the

reference generated by the haptic device are shown in Fig. B.4. The figures

show excellent tracking of the reference trajectory generated by the haptic

device with an RMS error of 0.40.
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Appendix C

Augmented Hybrid Impedance

Control

The contents of this appendix has been published in [1] and [2].

For performing catheter insertion, the robot should have the ability to con-

trol the amount of force being exerted while inserting the catheter and should

also precisely follow a pre-defined trajectory in Cartesian space. An Aug-

mented Hybrid Impedance Control (AHIC) scheme has been implemented on

a Mitsubishi PA 10-7C robot to control the force of insertion and the position

of the end-effector in Cartesian space. The task space in AHIC is divided such

that force control is performed in the direction of insertion, moment control in

the orthogonal directions and position control in all the remaining directions.

A brief overview of the algorithm is given below.

In the AHIC scheme, there are basically two control loops - the outer loop

generates the position and force profiles that have to be tracked in real-time

and determines the desired Cartesian acceleration that is fed to the inner loop.

The inner loop converts the Cartesian acceleration to a joint level acceleration

and the desired torques for each of the links are generated to track both the

desired position and force profiles. The block diagram is given in Fig. C.1.
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C.1 Augmented Hybrid Impedance Controller

The AHIC module can be defined by the following equations:

MdẌ t = [−Fe + (I − S)F d −Bd(Ẋ t − SẊd)−KdS(X t −Xd)] + SẌd(C.1)

Ẍr = Ẍ t +Kv(Ẋ t − Ẋ) +Kp(X
t −X) (C.2)

where Md and Bd are the desired mass and damping parameters, Fd and Fe

are the desired force and environment contact force, X, Ẋ and Ẍ are the

Cartesian position/orientation, and the corresponding velocity and accelera-

tion respectively. The matrix S denotes the selection matrix which defines

the force and position controlled subspaces. The constraints of the catheter

insertion problem are reflected in the S matrix. It should be noted that both

linear and angular trajectories are specified in equations (C.1) and (C.2). The

terms Kp and Kv in (C.2) are diagonal matrices with positive diagonal entries

which are chosen to ensure good tracking performance.

C.2 Redundancy Resolution

The inner loop which consists of the redundancy resolution module converts

the Cartesian acceleration to a desired joint level acceleration which is provided

to the joint-based controller. Since the Mitsubishi PA 10-7C robot has 7-DOFs,

the Jacobian is not square. As a result an additional task, which fixes the

redundant joint S3, is included to make the Jacobian square [3]. A damped

least-squares solution at the acceleration level is implemented to damp out

the joint velocities in the null-space of the Jacobian as given by the following

equation:
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θ̈t = [JTe WeJe + JTc WcJc +Wv]
−1[JTe We(Ẍ

r − J̇eθ̇) + JTc Wc(Z̈)−Wvλθ̇](C.3)

where Je and Jc are the Jacobian matrices corresponding to the primary and

the secondary tasks, We and Wc are weight matrices, Wv is the singularity

robustness factor and λ is the velocity damping factor. The joint accelerations

are integrated to obtain the desired joint velocities and positions and fed to

the joint control module after canceling the gravity term.

C.3 Joint based controller

Each of the 7 joints is controlled to follow a certain desired trajectory. The

dynamic model for a rigid-link manipulator is given by:

τ = M(θ)θ̈ + V (θ, θ̇) +G(θ) + f(θ, θ̇) (C.4)

where M(θ) is the mass matrix, V (θ, θ̇) is the vector of Coriolis and centrifugal

terms, G(θ) is the vector of gravity terms and f(θ, θ̇) is the joint friction vec-

tor, which has not been modeled. For medical robots, the joint velocities are

generally quite small. Therefore the V (θ, θ̇) term can be assumed to be negli-

gible. In addition, since there is very little change in the robot’s configuration

during catheter insertion, the M(θ) term can be assumed to be constant. The

gravity terms are obtained in closed-form. The joint level controller therefore

simplifies to

τ = θ̈t +Kpj(θ
t − θ) +Kdj(θ̇

t − θ̇) +G(θ) (C.5)

where θ corresponds to the joint angles, θt and θ̇t are the desired joint angles

and velocities, and Kpj and Kdj are the proportional and derivative gains of

the joint level controller.

In order to determine the accuracy of the PA10-7C robot, experiments were

performed to follow desired trajectories with continuous position and veloc-
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ity profiles in Cartesian space. The robot followed the reference trajectories

accurately with an average RMS position error of 0.27mm in x, 0.30mm in

y and 0.43mm in z directions. The average RMS errors for tracking the ori-

entation trajectories were 0.18 degrees, 0.06 degrees and 0.17 degrees for α,

β, and γ Euler angles respectively. The results showed accurate tracking of

the reference trajectories even in the presence of inaccuracies in the model.

Force control experiments conducted with the PA10-7C robot indicated that

the robot end-effector was able to track force trajectories with an average RMS

error of 0.05N. An accurate dynamic model of the PA10-7C robot can be used

to obtain greater robustness to external disturbances [4], [5]. In a recent pa-

per, Kennedy and Desai [4] have developed a model for the PA10-7C robot and

have performed position control using inverse kinematics. An RMS error of

2cm for following a position trajectory in Cartesian space has been reported.

However, improvements in the model have been made in [5] and an RMS error

of 0.8mm in position tracking has been reported. The controller in [5] does not

regulate the force exerted by the robot on its environment since redundancy

resolution is performed at the velocity level.
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Appendix D

Micromanipulators in Patch

Clamping Setup

Specifications for the micromanipulators used in the system described in Chap-

ter 4 are given in the following table.

M1 M2 M3(1..4) M4(1..4)

Max. Speed 2.9 4.0 4.0 5.0

Max. Resolution 40 50 62.5 50

Motion Range (xyz) 25.4 60 25, 12.5, 25 150

Interface RS-232 RS-232 USB RS-232

Manufacturer Sutter Zaber Sutter Zaber

Model MP-265 T-LA60A-S MPC-200 T-LSR150A

What’s Moved? Microscope Objectives MPs M3(1..4)

Table D.1: Specifications of micromanipulators used in the patch clamping
setup.
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Appendix E

Lens Changing Mechanism

A prismatic objective lens changing mechanism was designed. A cross section

of the CAD design is shown in the figure below. A miniature linear actuator

was used to push a lens holding plate on a set of linear bearings. Two springs

were used to pull the plate back. The linear actuator, T-LA60A-S, Zaber

technologies [1] was used which had a maximum travel range of 60mm, mini-

mum step size of 0.05µm with accuracy of ±16µm, repeatability of 1µm and

backlash of 4µm with a maximum continuous force of 15N (25N peak). The

maximum linear speed was 4mm/sec. The model was made using a 3D print-

ing machine (Dimension Elite [2]) using ABS thermoplastic [3]. The stainless

steel extension springs had an overall length of 2.044in, outside diameter of

0.24in, wire diameter of 0.022in with a 75N/m spring constant.
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Appendix F

Steerable Catheter Actuation

Mechanism

A CAD model of the 2-DOF catheter actuation mechanism is shown in Fig-

ure 3.6. DC motors, gear heads and encoders were chosen from Maxon motors

(Maxon Precision Motors, Inc., Fall River, MA, US).

For the rotary actuator, a rotary DC motor (RE-max 29) with a planetary

gearhead (GP 26) with a reduction rate of 128 was used. An optical encoder

(Encoder MR, Type ML, 3 Channels) with 1000 counts per turn was chosen

to provide feedback.

For the prismatic actuator, a rotary DC motor RE-max 24 was used along

with a spindle drive (GP 22) for rotary to linear motion conversion. An optical

encoder (Encoder MR, Type M, 2/3 Channels) with 512 counts per turn was

used.
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Appendix G

SensAble Haptic Devices

Two haptic devices were used, both manufactured by SensAble Technologies

[1]. The OpenHaptics Toolkit [2] was used to interface to the haptic devices.

A PHANTOM Omni haptic device [3] was used for the works reported in

Chapters 2 and 4 and a PHANTOM Desktop [4] was used for the work reported

in Chapter 3. The haptic device control loop was updated at a rate of 1KHz.

The properties of these haptic devices are listed in the following table.

PHANTOM Omni PHANTOM Desktop
Position Resolution 0.055mm 0.023mm

Maximum Exertable Force 3.3N 7.9N
Continuous Exertable Force 0.88N 1.75N
Workspace (WxHxD-mm) 160x120x70 160x120x120

Position Sensing 6DOF 6DOF
Force Exertion 3DOF 3DOF
Apparent Mass 45g 45g

Interface IEEE1394 (Firewire) Parallel (EPP mode)

Bibliography

[1] http://www.sensable.com

[2] http://www.sensable.com/products-openhaptics-toolkit.htm



223

[3] http://www.sensable.com/haptic-phantom-omni.htm

[4] http://www.sensable.com/haptic-phantom-desktop.htm
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Appendix H

Magnetic Tracking

For the work reported in Chapters 2 and 3, we have used the NDI Aurora

electromagnetic measurement system [1] (Northern Digital Inc., Waterloo, ON,

Canada). The Aurora magnetic tracking system consists of sensor coils and

a sensor interface unit (SIU) for each sensor coil, a field generator device and

a system control unit. The system control unit is connected to the computer

through an RS-232 link. It also provides the power for the field generator.

Sensor coils are connected to the system control unit via sensor interface units.

5-DOF miniature magnetic tracking sensors (0.5mm diameter, 8.0mm length)

were used. The NDI magnetic tracking system connects through a RS-232

connection at a baud rate of up to 115Kbps. The sensor position/orientations

can be updated at rates of up to 40Hz. The spatial range of the magnetic

tracking system is greater than a cube of 500×500×500mm3 around the field

generator. Position and orientation sensing with an accuracy of 0.9mm and

0.3o respectively and precision of 0.6mm and 0.1o respectively, is achieved.

The magnetic tracking system is sensitive to electromagnetic interference and

ferromagnetic materials in its workspace.

Bibliography

[1] http://www.ndigital.com/medical/aurora.php
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Appendix I

Auto Focus Measures

Different autofocusing measures (indices) used in Section 4.3 are defined in

this appendix.

• Scharr: ΦScharr(I) = 1
MN

∑M
i=1

∑N
j=1

√
(Cx ∗ I)2i,j + (Cy ∗ I)2i,j, where: Ker-

nel: Cx =

 -3 0 3

-10 0 10

-3 0 3

 , Cy = CTx

• Sobel: ΦSobel(I) = 1
MN

∑M
i=1

∑N
j=1

√
(Skx ∗ I)2i,j + (Sky ∗ I)2i,j , where:

S3x =

 1 0 -1

2 0 -2

1 0 -1

, S5x =


-1 -2 0 2 1

-4 -8 0 8 4

-6 -12 0 12 6

-4 -8 0 8 4

-1 -2 0 2 1

, S7x =



-1 -4 -5 0 5 4 1

-6 -24 -30 0 30 24 6

-15 -60 -75 0 75 60 15

-20 -80 -100 0 100 80 20

-15 -60 -75 0 75 60 15

-6 -24 -30 0 30 24 6

-1 -4 -5 0 5 4 1


,

Sky = ST
kx
, k = 3, 5, 7

• Laplacian: ΦLaplacian(I) = 1
MN

∑M
i=1

∑N
j=1 ||∆I(i, j)||, where: L1 =

 0 1 0

1 -4 1

0 1 0

,

L3 =

 2 0 2

0 -8 0

2 0 2

, L5 =


2 4 4 4 2

4 0 -8 0 4

4 -8 -24 -8 4

4 0 -8 0 4

2 4 4 4 2

, L7 =



2 8 14 16 14 8 2

8 24 24 16 24 24 8

14 24 -30 -80 -30 24 14

16 16 -80 -160 -80 16 16

14 24 -30 -80 -30 24 14

8 24 24 16 24 24 8

2 8 14 16 14 8 2



• Morphological Gradient:

∇MorphI = I ⊕M− I 	M

ΦMorphI = 1
MN

∑M
i=1

∑N
j=1 ||∇MorphI(i, j)||

where ⊕ and 	 denote the dilation and the erosion, respectively and

M =

 0 1 0

1 1 1

0 1 0

 is the Structural Element.
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Appendix J

Ultrasound Imaging

In the work reported in Chapter 3, we have used a SonixTouch ultrasound

machine [2] (Ultrasonix, Richmond, BC, Canada) to provide real-time imaging

in the second part of the project for cardiac ablation applications. A motorized

curvilinear transducer 4DC7−3/40 with 104o field of view and 55mm length of

array, was used to provide online 3D ultrasound images. This probe can work

on any of 2.5, 4.0, 5.0MHz B-Mode frequencies. The probe was used to provide

an online 3D apical view of the heart phantom, which mimics transthoracic

echocardiography (TTE) [3]. The Ulterius SDK [1] was used to control the

ultrasound machine and stream the images over the network in real time using

an ethernet connection.

Bibliography

[1] http://www.ultrasonix.com/wikisonix/index.php?title=Ulterius

[2] http://ultrasonix.com/products/sonixtouch/research

[3] http://en.wikipedia.org/wiki/Transthoracic_echocardiogram
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Appendix K

X-ray Fluoroscopy

In the work reported in Chapter 2, we have used an OEC 9900 Elite X-

ray fluoroscopy machine to test the image-based tracking algorithms. It can

provide 1.0 megapixels images at a rate of 30fps(frames per second). However

we used the analog video output and a frame grabber to capture 640 × 480

pixels images at 30fps. A Matrox Morphis [2] frame grabber was used for this

purpose. The robotic tests were performed using a digital camera simulating

X-ray fluoroscopy imaging. A Dragonfly2 camera [3] (Point Grey Research,

Richmond, BC, Canada) was used for simulating real-time X-ray imaging. The

camera has a Firewire (IEEE 1394) interface and can capture 0.78MP images

at a rate of 30fps.

Bibliography

[1] http://www.gehealthcare.com/euen/surgery/products/

oec-9900-elite

[2] http://www.matrox.com/imaging/en/products/frame_grabbers/

morphis/morphis

[3] http://www.ptgrey.com/products/dragonfly2
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