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Abstract
This thesis focuses on the concept of Conditional Independence (CI) and its testing, which

holds immense significance across various fields, including economics, social sciences, and
biomedical research. Notably, within computer science, CI has become an integral part of
building probabilistic and causal models. It aids efficient inference and plays a key role in
uncovering causal relationships.

The primary aim of this thesis is to broaden the scope of CI beyond its testing aspect. We
introduce the pioneering problem of data repair, designed to adhere to particular CI constraints.
The value and pertinence of this problem are highlighted through two contrasting applications.
The first application is debiasing data and developing fair machine learning (ML) models.
As fairness becomes a central issue in machine learning, exploring techniques for debiasing
data to construct more equitable models is crucial. The proposed data repair methodology
supports this, assisting in creating fairer models. The second application is about improving
data quality and cleaning processes. Maintaining data quality is a continuous challenge across
various fields, and our repair methods present a novel way to address this, enhancing the overall
quality and reliability of the data.

The proposed repairs use optimal transport (OT) and Earth Mover’s distance as dissimilarity
measures. This approach ensures the preservation of the underlying probability distribution’s
geometry. In the context of fairness, this contributes to increased downstream model accuracy.
In the realm of data cleaning, it offers a robust method for error detection. To facilitate the
efficient generation of the repairs, we present novel techniques, including relaxed OT and block
coordinate descent methods. The effectiveness of the repair methodologies is validated through
experiments conducted on synthetic and real-world datasets. This comprehensive exploration
highlights the potential of data repair in addressing critical issues in machine learning and data
quality, offering a new perspective on using CI in these fields.

Keywords: Conditional independence, optimal transport, Wasserstein distance, fairness,
data-cleaning
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Lay Summary
This thesis delves into conditional independence (CI), a principle commonly used in eco-

nomics, social sciences, and healthcare research. In simpler terms, CI is a way to understand
how two random variables in a probabilistic model are connected or influence each other when
a third random variable is considered. In computer science, this principle is fundamental to
building models that can predict or figure out cause-effect relationships.

The main aim of this research is to extend the use of this concept to fix issues in data so it
aligns with certain rules of CI. This idea is explored through two main applications. The first
application involves making data more fair and unbiased, which in turn helps create machine
learning models that treat all information fairly. In essence, this means creating a model that
does not favor one set of data over another based on biased or unequal information. The second
application focuses on improving the overall quality of data and making it error-free. This is a
critical step because high-quality, clean data is essential for accurate predictions and decision-
making. To fix or repair the data, the study uses methods that consider the difference between
how data is distributed in its original and repaired states. This approach ensures the essence of
the original data is maintained while enhancing the accuracy of the models built from it.

The study also introduces new techniques to make these repairs more efficient and tests the
effectiveness of the repair methods using both made-up and real-world datasets. Overall, this
research shines a light on how the principle of CI can be used innovatively to address critical
issues in machine learning and data quality.
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Chapter 1

Introduction

Conditional Independence (CI) is a central concept that permeates numerous disciplines, pro-
viding a critical framework for understanding and modeling the interplay between variables.
This core statistical concept is represented as X⊥⊥Y | Z, where X,Y,Z are random variables.
The relationship translates that the value of variable X imparts no additional information about
variable Y (and vice versa), given the values of Z. In other words, when fixing the value of Z,
changing the value of variable X doesn’t change the probability of possible values of variable Y .
This foundational principle is pivotal in fields such as statistics, machine learning [16, 47, 50],
bioinformatics [58], and genetics [28], where it underpins key concepts such as sufficiency,
ancillary, causal discovery, and inference [41].

In the domain of computer science, the role of CI is accentuated in the construction and in-
terpretation of graphical models [33]. These models, including Bayesian networks and Markov
Random Fields, use CI assumptions to simplify intricate probability distributions, rendering
them more manageable for computation. This aspect is particularly vital when probing causal
relationships among variables, where CI tests serve as a fundamental tool for delineating the
true causal structure, especially in scenarios where experimental interventions are infeasible.
Additionally, the arena of feature selection and engineering in machine learning applications
reaps significant benefits from CI testing. Feature selection is integral to the identification of
relevant input variables, thereby enhancing the predictive prowess of machine learning mod-
els, mitigating overfitting, and optimizing computational efficiency. In this regard, CI facil-
itates the selection of a subset of features that exert the most predictive power for the target
variable, considering the other features. The influence of CI further permeates the specialized
areas of machine learning such as domain adaptation and transfer learning [40, 15]. In these
subfields, where the objective is to transfer knowledge derived from one task to another re-
lated task, CI enables researchers to model alterations in underlying data-generating processes
across domains or tasks. This assists in identifying which components of the model should be
transferred and which require adaptation. This expansive influence of CI underscores its impor-
tance across diverse domains, attesting to its role as a cornerstone in statistical understanding
and application.

The application of CI extends to the discipline of genetics and bioinformatics, where CI
testing forms the bedrock for identifying genomic mutations linked directly to diseases, thereby
propelling the design of personalized therapies. CI helps isolate the direct correlations between
genetic variations and diseases, even within a high-dimensional milieu of potential confound-
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2 Chapter 1. Introduction

ing variables.

1.1 Motivation and Knowledge Gap
As previously outlined, CI is vital in establishing and validating the relationships between vari-
ables in various applications. It allows us to assess if two variables retain their independence
when influenced by another variable, forming the backbone of decision-making strategies in
many domains. However, there are scenarios where the data or its underlying distribution fail
to comply with the anticipated CI conditions. In such instances, an intriguing yet relatively
uncharted avenue is to ”repair” the data or its distribution to satisfy the CI constraints. This
approach to data repair draws parallels to the concept of database repair, a well-established
practice in the realm of databases.

Database repair, specifically in the context of relational databases, is a fundamental oper-
ation that focuses on modifying a database to conform to specified integrity constraints, such
as functional dependencies and inclusion dependencies [2, 5, 3]. Functional dependencies,
for instance, denote a relationship where the value of one set of attributes (the determinant)
determines the value of another set of attributes. Inclusion dependencies, on the other hand,
represent a constraint between two sets of attributes in a relational database, typically used to
specify a foreign key constraint. Although the satisfaction of the integrity constraints are usu-
ally ensured by DBMSs, in some applications a given database might violate a constraint; e.g.,
when a new constraint is added to the system. In those cases, repair operations are executed to
ensure compliance. The repair should ideally be minimal, implying that the least possible mod-
ifications are made to the database to satisfy the constraints. Such operations become critical in
ensuring the robustness of databases, preserving data integrity, and improving query process-
ing efficiency. Classic applications of database repair include resolving data inconsistencies
caused by data integration, dealing with imperfect data inputs, or correcting errors that arise
due to updates or deletions [37, 56, 11]. These repair operations typically involve correcting or
eliminating data that violates the given constraints, which can be challenging if the constraints
are complex or if there are dependencies between them.

Similarly, in our context, when the CI constraints in the data or its distribution are not met,
one can adapt the concept of database repair to ”repair” the data. Existing work already draws a
connection between testing CI and multivalued dependencies in databases [54, 17]. Repairing
with respect to CI can be executed by minimally modifying the data or distribution to satisfy
the CI conditions. Like database repair, this process can potentially maintain data integrity,
enhance data usability, and facilitate more efficient data analysis. In the following sections,
we will delve deeper into this concept, discussing specific examples where such data repair
operations were necessitated due to initial CI testing failures. These examples illustrate the
potential of data repair in statistical and machine learning applications, introducing an exciting
new avenue for research.

1.1.1 Interventional Fairness
Our application of fairness utilizes the principle of “interventional fairness” outlined in Salimi
et al. [48], deploying a causal pre-processing technique to promote fairness. In the realm of
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Figure 1.1: Graphical model representing the variables’ relationships in the admission example.

fairness, pre-processing techniques address bias before data enters the machine learning model,
modifying the training data to diminish bias. This makes such techniques universally adaptable,
unlike in-processing fairness methods that infuse fairness into model training, adjusting the
learning algorithm or introducing constraints to balance fairness and accuracy. Causal fairness
strategies alleviate bias by eliminating spurious causal connections between protected attributes
and outcomes, resulting in unbiased decisions.

To illustrate interventional fairness, we refer to a university admission example from Sal-
imi et al. [48]. The goal is to develop a prediction model for admissions, considering applicant
information such as qualifications, hobbies, and the department applied to, and providing an
admission or rejection outcome. In constructing a fair model, we aim to sever any causal
links between the protected attribute, i.e., gender, and the outcome, i.e., the admission result.
The straightforward approach of excluding protected attributes before inputting data into the
machine learning model referred to as “fairness through unawareness”, has proven ineffec-
tive [25, 34]. The remaining attributes often correlate with the protected attributes, maintain-
ing spurious connections between the protected and outcome attributes. For instance, hobbies
are closely related to gender and thus carry the unintended impact of gender on the outcome.
Another approach might suggest eliminating any attribute correlating with the protected at-
tributes, but this is clearly impractical as it would lead to the exclusion of numerous attributes
and a significant loss of information for the model.

Interventional fairness goes beyond “fairness through unawareness”, removing all spurious
causal connections between the protected attribute and the outcome. Consider the graphical
model in Figure 1.1 to elaborate on this concept. Here, attributes are divided into four cate-
gories: protected attributes S , e.g., gender; the outcome attribute Y , e.g., admission; admissible
attributes A, e.g., department; and inadmissible attributes N, e.g., hobby. Both admissible and
inadmissible attributes correlate with protected attributes, influencing the outcome. The impact
of admissible attributes is acceptable; for example, the choice of the department can affect the
chance of admission and may, therefore, carry the impact of gender on the outcome – an impact
considered acceptable. In contrast, inadmissible attributes like hobbies carry an unacceptable,
spurious influence of gender on the outcome. These spurious links are emphasized by dashed
red lines in Figure 1.1.

Interventional fairness aims to remove these spurious links between the protected attribute
and the outcome. This is done in two steps: first, enforcing a CI σ : N⊥⊥S | A, and sec-
ond, removing the protected attribute S . The CI in the first step ensures that when admissible
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attributes A are held constant, there is no correlation between the protected attribute S and
the inadmissible attribute N. Thus, the unwanted impact of the protected attribute on the out-
come is removed, as inadmissible attributes no longer carry information from the protected
attribute once the admissible attributes are fixed. This is preferred over removing inadmissible
attributes, as their correlation with the outcome, which can contribute to a better prediction,
is still preserved. The second step is intended to remove the direct impact of the protected
attribute as in fairness through unawareness.

1.1.2 Cleaning through Data Repair with respect to CIs
Our data quality application draws upon the concept of “statistical constraints” as outlined in
Yan et al. [57], representing instances of probabilistic dependence or independence. Consider,
for instance, the task of creating a regression model to predict car prices. In this scenario,
certain expectations of dependence and independence should exist between the input variables
(such as color, model, and fuel type) and the target variable (in this case, price). For example,
the car model and price are generally not independent, while price and color often are, partic-
ularly when the model and make of a car are specified. If these statistical constraints are not
satisfied in the training data, the cause could be errors that decrease accuracy when the model
is used on unseen test data that don’t exhibit the same errors.

The work by Yan et al. [57] presents statistical constraints as conditional dependences or
independences expected to be found in a dataset. They also draw comparisons and make con-
nections between statistical constraints and integrity constraints, such as functional dependen-
cies and multi-valued dependencies in databases. In the realm of data quality applications, they
showcase how these constraints can aid in error detection. However, they overlook the poten-
tial use of these constraints in data cleaning through data repairs, which alter data to satisfy
the constraints. In our work, we expand beyond mere error detection and leverage statistical
constraints in the form of CI to rectify and clean errors. We note that CI constraints repre-
sent a specific form of statistical constraints wherein independence is assumed as opposed to
dependence.

1.2 Optimal Transport for Data Repair
This thesis delves into the unique territory of data repair, specifically focusing on CI con-
straints. However, our approach deviates from conventional techniques that apply repair mech-
anisms directly to the dataset. Instead, we operate within a probabilistic framework, inferring
a probability distribution from the given dataset and modifying this distribution to comply
with the CI constraints. This methodology aligns with the fundamental premise of data repair:
achieving an optimal repair strategy that satisfies a specific set of constraints—in this case, the
CI constraints—while preserving the integrity of the original data as much as possible.

In data repair, the notion of “distance” is crucial. It measures the deviation from the initial
data representation, effectively quantifying the extent of the repair. While numerous metrics,
such as f-divergences like the Kullback-Leibler (KL) divergence, could serve as this distance
measure, this study opts for the Optimal Transport (OT) theory and its associated Wasserstein
distance [53]. The theory of OT, rooted in mathematical economics, offers a robust and intuitive
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framework for transforming one distribution into another cost-effectively. In this context, the
term “cost” is quantified by the Wasserstein distance, a well-defined metric that calculates
the least “work” required to reshape one distribution into another. The notion of work here
corresponds to the product of the amount of distribution mass moved and the distance it is
moved.

In recent years, OT and the Wasserstein distance have gained significant traction due to their
potential to handle discrepancies in complex, high-dimensional data distributions. They have
found applications in fields as diverse as computer graphics [6], image recognition [19], and
machine learning [13, 4, 21], where they are often used for tasks such as domain adaptation,
generative modeling, and clustering. The robustness, intuition, and theoretical soundness of OT
and the Wasserstein distance make them ideal for quantifying the distance between probability
distributions. Hence, they’re well-suited for our probabilistic approach to data repair.

The Wasserstein distance choice over measures like the KL-divergence offers two key ad-
vantages in our setting. First, it incorporates the mass and spatial location of the distributions
in the feature space, resulting in a more natural and intuitive measure of distance. It considers
the amount of probability mass and the effort in moving this mass from its original location
to a new one. This enables the Wasserstein distance to capture differences in shape, spread,
and location between two distributions more holistically than many other metrics. Second, the
Wasserstein distance remains finite and well-defined even when the support of the distribu-
tions does not overlap. This attribute is particularly beneficial when dealing with distributions
with disparate or disjoint supports, a scenario frequently encountered in complex data-driven
applications.

1.3 Thesis Contributions and Structure
In this thesis, the principal objective is to tackle the problem of data repair concerning CI
constraints, leveraging the powerful concept of OT. We make the following contributions to
this thesis:

• We formalize the problem of data repair with respect to CI constraints where we use OT
as a principled way to compare probability distributions and measure the deviation of
repair from its initial distribution.

• We cast the repair problem to a Quadratically Constrained Linear Program (QCLp). This
representation provides an analytical pathway to identify the OT plan. The plan aims to
minimize the distance between the original and repaired data distribution while ensur-
ing adherence to the imposed CI constraints. Existing optimization techniques can be
employed to solve the QCLP model and yield a precise solution.

• We present a novel algorithm based on relaxed OT and block coordinate descent (BCD)
to address the scalability issues inherent to the QCLP approach in data repair. Utilizing
entropic regularization and a relaxed version of the OT problem, this method transforms
the original non-convex problem into a regularized optimization problem, providing a
scalable and efficient solution for large-scale datasets. The developed algorithm ensures
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adherence to CI constraints and effectively maintains data fidelity, showcasing its supe-
riority over conventional methods through comprehensive experiments.

• We conduct extensive experiments to showcase the effectiveness of our solutions in min-
imizing OT for optimal repair and demonstrate the usefulness of repair with respect to
CI in the two applications of fairness and data cleaning.

This thesis is structured as follows. In Chapter 4, we delve into the formal definition of our
repair problem and unveil our algorithms, built upon QCLP and the relaxed OT. Before this, we
provide some necessary background information in Chapter 3, covering aspects such as OT, its
entropic and relaxed versions, BCD, and QCLP. Our experimental results, which demonstrate
the effectiveness and practicality of our proposed methodologies, are then thoroughly discussed
in Chapter 5. Chapter 2 offers a comprehensive review of related concepts, exploring the
realms of algorithmic fairness and data quality and cleaning. Finally, in Chapter 6, we provide
a summary of our work, its implications, and potential directions for future research.



Chapter 2

Related Work

2.1 Fairness in Machine Learning

The concept of fairness in Machine Learning (ML) has evolved over the years, gaining sub-
stantial attention due to its far-reaching implications in ML systems’ outcomes.

Measures of fairness are divided into two groups: Group fairness and individual fairness.
Satisfying a measure from one of these groups does not necessarily make an improvement for
measures from another group. Group fairness measures partition records into some groups
usually based on their value of protected attributes (like race, gender, etc.), and checks how
similar the outcomes for different partitions are. A widely recognized measure of group fair-
ness is demographic parity [9], which necessitates that decisions are independent of protected
attributes. In other words, all demographic groups should have equal probabilities of receiving
a particular decision outcome, irrespective of their proportions in the population. An extension
of demographic parity is conditional statistical parity [12], which allows for fairness adjustment
based on specific non-sensitive attributes. The idea is to achieve a balance within subgroups
defined by such attributes, ensuring the decision system does not discriminate against a partic-
ular demographic when these attributes are controlled. Furthermore, measures like equalized
odds and equal opportunity focus on fairness at the outcome level [26]. Equalized odds require
that the True Positive Rate (TPR) and False Positive Rate (FPR) should be the same for differ-
ent demographic groups. Similarly, equal opportunity requires equal true positive rates across
groups, thereby emphasizing the need for fairness among individuals who should receive the
same outcome.

Individual fairness, on the other hand, posits that similar individuals should be treated sim-
ilarly. This involves defining a similarity metric based on the task, allowing for nuanced in-
terpretations of fairness. Since the choice of similarity metric is arbitrary, it needs careful
consideration and domain knowledge, making it less applicable in cases where this informa-
tion is unavailable. For counterfactual fairness as a member of this group, it is shown in the
literature that its estimation is not possible from data. [46, 44, 45]

Fairness measures can also be categorized from a different point of view to be either asso-
ciational or causal measures. Associational fairness is a fundamental group of measures that
primarily revolves around statistical dependencies between sensitive attributes and decisions.
It doesn’t take into consideration how attributes impact each other and what their relationship

7



8 Chapter 2. RelatedWork

is. It basically computes some statistical values (like TPR, FPR, etc.) from data and uses
them for reporting fairness level. Demographic parity and equalized odds are some examples.
Many methods are proposed in the literature for enforcing associational fairness measures by
pre/post-processing input and output data [18, 10, 26] and also modifying decision-making
algorithm [9].

While associational measures only consider the statistical constraints, causal fairness, also
known as fairness in causality, represents another paradigm in fairness based on causal reason-
ing rather than purely statistical correlations [29, 22]. The premise is to consider the underlying
causes of decisions to ensure fairness, not just the associations observed in the data. For finding
discriminatory impacts on outcome attribute, many methodologies can be used, such as causal
inference techniques. Then it will be addressed by debiasing data used for training ML mod-
els [48] or mitigating the models themselves [29, 39]. So there are no universal solutions for
measuring and enforcing these measures, as the sources of discrimination may vary in different
cases.

Counterfactual fairness [34] is a prime measure in the domain of causal fairness and belongs
to the family of individual fairness measures, which proposes that a decision is fair towards an
individual if the same decision would have been made in a ”counterfactual” world where the
individual belonged to a different demographic group. A challenging part about counterfactual
fairness is that its computation can not be done by having only data itself since when we flip
the value of the protected attribute, there might not be any record in the dataset with that value
telling us the outcome.

Interventional fairness [49] is another example of causal fairness measures that introduces
the concept of interventions in causal models. It postulates that a decision is fair if it remains
unchanged when an intervention is made on the protected attribute. By ignoring protected and
outcome attributes, it considers all subsets of other attributes and fixes their values by removing
all edges going to them in the causal graph. Then the distribution of outcome must be equal
when trying all possible values of the protected attribute.

2.1.1 Bias in Machine Learning and Approaches to De-Biasing
While fairness measures aim to ensure equitable decisions, biases in ML can undermine these
efforts, leading to fairness issues. Bias can infiltrate ML systems at various stages, including
data collection, preprocessing, model training, and deployment. One common form of bias
is sampling bias, which arises when the training data is not representative of the population.
Another type is measurement bias, which occurs when certain demographic groups are sys-
tematically misclassified due to limitations in measurement processes. Further, latent bias can
emerge from seemingly innocuous features heavily correlated with protected attributes, lead-
ing to indirect discrimination. Prejudices in society can also manifest as historical bias in ML
systems, propagating and amplifying societal inequalities.

To counteract these biases, researchers have proposed three general approaches to de-
biasing machine learning models: preprocessing, in-processing, and post-processing. Prepro-
cessing methods aim to modify the training data to reduce or eliminate biases before the learn-
ing process begins. Techniques like reweighing, oversampling, or undersampling can adjust
the representation of different demographic groups. Other preprocessing methods may involve
modifying the features used by the model to prevent correlations with sensitive attributes. In-
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processing, or in-training, techniques aim to incorporate fairness constraints directly into the
learning process. This often involves modifying the model’s objective function to include a
term that penalizes unfair predictions. This approach enables the model to balance the trade-
off between accuracy and fairness during training. Post-processing techniques, on the other
hand, adjust the model’s predictions after training to meet specific fairness criteria. For exam-
ple, they may recalibrate the model’s output probabilities or adjust the decision threshold for
different demographic groups to ensure fair treatment. Each method offers unique advantages
and trade-offs and may be more or less suited to different contexts or applications. The un-
derstanding of these de-biasing techniques informs the methodologies used in this thesis, as
the pursuit of fairness and the mitigation of bias are both integral to our work of designing an
algorithm for optimal data repair that respects fairness constraints.

2.2 Data Cleaning and Data Repair
The fundamental importance of error detection and data cleaning in data management is high-
lighted by the development of a wide range of strategies aimed at improving data quality. Our
extensive survey of the literature reveals that these data-cleaning solutions can be grouped into
four broad categories: rule-based methods, probabilistic and statistical approaches, machine
learning techniques, and automated machine learning (AutoML) systems.

Rule-based Methods: These methods are often considered the most traditional form of data
cleaning. They involve the application of pre-defined rules or constraints derived from domain
knowledge or database schema to identify and correct inconsistencies. The concept here is
to transform the data cleaning task into a data repair process, where the goal is to modify
the data in a way that respects the set rules, thereby preserving the integrity of the original
data [24, 56, 11]. For instance, one might employ a rule-based approach to ensure that no
employee in a dataset is listed with a salary below the minimum wage. The major limitation of
rule-based methods is that they rely heavily on the quality of the defined rules: if the rules are
incomplete or incorrectly specified, the cleaning will be suboptimal. Despite this limitation,
rule-based methods remain popular due to their transparency and simplicity.

Probabilistic and Statistical Approaches: With the rise of big data, probabilistic and statis-
tical techniques have been introduced to tackle the uncertainty and complexity inherent in mod-
ern datasets. These methods typically build probabilistic models that represent what ”clean”
data should look like and then apply these models to identify and correct errors in ”dirty”
data. For example, HoloClean, developed by Ilyas et al., uses probabilistic soft logic to infer
the likelihood of various data values being errors and predicts the correct values to replace
them [42]. By taking into account the inherent uncertainty of data, these methods can handle
complex error patterns and dependencies among data attributes, thereby providing more robust
data cleaning solutions.

Machine Learning Techniques: Machine learning techniques, especially deep learning, of-
fer a data-driven approach to data cleaning. These methods require labeled training data, which
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they use to learn patterns of errors and generate models to identify and correct similar errors
in new data. For example, Baran, a system proposed by Heidari et al., employs active learning
to iteratively improve its understanding of data quality rules [27]. Due to their ability to learn
high-level patterns and generalize from training data, machine learning techniques can detect
and correct complex and subtle data errors that may be missed by other methods.

Automated Machine Learning (AutoML) Systems: The latest trend in data cleaning in-
volves integrating the above methods into automated end-to-end systems, commonly referred
to as AutoML systems. These systems, such as Raha and HoloClean, provide comprehensive
solutions for data cleaning, encompassing error detection, data repair, and subsequent data
analysis tasks [42, 38]. By automating the data cleaning pipeline, these systems minimize the
amount of manual work and domain expertise required, thereby enabling non-expert users to
clean their data efficiently and effectively.

The current field of data cleaning is highly diverse, with a variety of methods available, each
with its own strengths and trade-offs. Notably, the work presented in this thesis on a repair with
respect to CI constraints could be considered a fusion of the first two approaches: rule-based
methods and probabilistic/statistical techniques. It combines the use of rule-based logic, in this
case, CI constraints, with probabilistic and statistical modeling to handle uncertainty and com-
plexity in the data. This represents a promising direction for future data cleaning strategies,
providing a balance between the interpretability and domain-specificity of rule-based methods
and the robustness of probabilistic and statistical approaches. The ongoing challenge for re-
searchers and practitioners is to continue refining these methods, innovating new strategies,
and integrating different approaches to effectively handle the increasing complexity of modern
datasets while ensuring data privacy and maintaining the high quality of the cleaned data.



Chapter 3

Background

This chapter introduces the fundamental concepts that are vital to the understanding of the rest
of the thesis. Starting with probability theory (Section 3.1), it guides the reader through es-
sential domains such as optimal transport (Section 3.2), evaluation metrics for both accuracy
and fairness (Section 3.3), optimization programs including Quadratically Constrained Lin-
ear Programs (Section 3.4), block coordinate descent (Section 3.5), and non-negative matrix
factorization (Section 3.6).

3.1 Basic Concepts from Probability Theory

A probability space (Ω,F , µ) is a mathematical construct that comprises three elements; the
sample space Ω that represents the set of all possible outcomes of a random experiment, the
event space F that is a collection of events, where each event is a subset of the sample space,
and the probability measure µ that assigns a probability to each event within the event space.
For (Ω,F , µ) to form a valid probability space, it has to satisfy certain properties. F must
be non-empty, contain Ω, and be closed under complement and countable union. Also, µ
must be a valid probability measure, which means the probability of the union of any disjoint
events must equal the sum of the probabilities of each event individually, and the probability
of the entire sample space occurring must be one. In essence, a probability space models a
random procedure by delineating the possible outcomes and assigning probabilities to certain
subsets of those outcomes. The pair (Ω,F ), without the probability measure µ, is often called
a measurable space.

Other essential concepts in probability theory include random variables and probability
distributions. Given a sample spaceΩ, a random variable X is a real-valued function X : Ω 7→ R
that maps the samples in Ω to real numbers. Ω is often called the support of X, which we
denote by X. In this work, we consider discrete random variables where the range of X in R
is a countable set. A probability distribution P with the random variable X is a function that
specifies the likelihood of the values or subsets of values in the range of X, e.g., P(X ≤ x)
for x ∈ R is the likelihood that X returns a value less than x. Also, P(X = x), which is often
shortened to P(x), is the likelihood that X returns exactly x. Note that the probabilities returned
from P correspond to the probabilities of the samples mapped to those values returned from X
occur. Thus, a probability distribution P with random variable X, specifies a probability space

11
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(Ω,FX, µX) where |FX | = 2Ω and µX is µX(A) =
∑

x∈A P(X = x) for any A ∈ FX.
Given two random variables X and Y with respective sample spaces ΩX and ΩY , the joint

probability distribution of X and Y is a function PX,Y that specifies the likelihood of any sub-
set of ΩX × ΩY , e.g., PX,Y(X = x,Y = y) = PX,Y(x, y) specifies the likelihood that samples
from ΩX and ΩY happen that are mapped to x and y. The marginal probability of X is ob-
tained by summing the joint probability over all possible values of Y , and similarly for Y:
PX(x) =

∑
y PX,Y(x, y) and PY(y) =

∑
x PX,Y(x, y). For the joint probability distribution PX,Y ,

the conditional probability of X given Y is defined as PX|Y(x | y) = PX,Y(x, y)/PY(y) where
PY(y) > 0.

Let us assume a set V of random variables. We use bold capital letters to refer to sets
of random variables. Let V include three random variables X,Y,Z ∈ V. We denote X as
being conditionally independent (CI) of Y in P, given Z, represented as σ : Y⊥⊥X | Z, if the
conditional joint probability PX,Y |Z(x, y|z) equals the product of the conditional probabilities
PX|Z(x|z) and PY |Z(y|z). We define σ : Y⊥⊥X | Z as a CI constraint. A probability distribution
P is said to be consistent with σ or to satisfy σ, represented as P |= σ if the conditional
independence Y⊥⊥X | Z holds in P. A CI constraint is termed saturated if V = {Y, X,Z}. A
set of CI constraints, represented as Σ, is satisfied by P (i.e., P |= Σ) if P satisfies every CI
constraint present in Σ. A CI constraint naturally extends to sets of random variables X,Y, and
Z in V.

When σ : Y⊥⊥X | Z is not satisfied by P, we quantify the violation using conditional mutual
information (CMI), denoted as I(X; Y | Z). This measure captures the information gained about
Y by knowing X, given Z. For CI, PX,Y |Z should equal PX|Z ⊗ PY |Z, where ⊗ is the product of
two functions, so it is natural to measure their divergence. CMI uses Kullback-Leibler (KL)
divergence for this purpose for every fixed value of Z:

I(X; Y | Z) = EZ[KL(PX,Y |Z || PX|Z ⊗ PY |Z)]

=
∑
c∈Z

PZ(c)
∑
a∈X

∑
b∈Y

PX,Y |Z(a, b | c) log
(

PX,Y |Z(a, b | c)
PX|Z(a | c) · PY |Z(b | c)

)
(3.1)

As a result, it returns zero when CI holds.
Consider a dataset D = {r1, ..., rn} with attributes A1, ..., Am. We use Dom(A j) to refer to

the domain of attribute A j and ri[A j] to refer to the value of ri for attribute A j. The empirical
distribution of D, denoted by PD, is a joint probability distribution with m random variables
X1, ..., Xm with supportsX j = Dom(A j). The sample spaceΩ of PD is the set of possible records
Dom(A1) × .... × Dom(Am) and PD is defined as PD(r) = fD(r)/n where fD(r) is a function that
returns the number of times record r appears in D. In this work, when given a dataset D, we
estimate the probability distribution from which the dataset is sampled using PD. However, our
problem formulation and algorithms are amendable to other ways of estimating a distribution
from data.

3.2 Optimal Transport
The Optimal Transport (OT) problem seeks to determine the most efficient way of transfer-
ring mass from one probability distribution to another while preserving the total mass. The
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OT problem’s classical formulation is the Monge problem where the objective is to identify a
transport map T that pushes a measure from a source measurable space forward to a measure
in a target measurable space. Here, we explain it using probability distribution functions as a
special case. T pushes a probability function P with random variables X forward to a distribu-
tion function Q with random variables Y, while minimizing the total cost of transporting mass.
Formally, Q, known as the pushforward of P under the transport map T , is a new distribution
function defined as Q(A) = P(T −1(A)) for any set A ⊆ Y. In other words, the pushforward Q
characterizes the distribution of the images of P under the map T from X to Y.

With this definition, the Monge problem can be formally defined as follows: Given two
distributions P and Q supported on finite discrete domains X and Y, respectively, and a cost
function c : X × Y → R≥0, the goal is to find a transport map T : X → Y that pushes forward
P to Q, such that the total cost of transporting mass is minimized:

OTMonge(P,Q) = argmin
T :X→Y

∑
ā∈X

c(ā,T (ā)), (3.2)

where T is a transport map and T#P = Q.
The Monge problem does not always have a solution, meaning a pushforward may not exist

between two distributions. This can be shown by a counterexample where the support of P is
one and the support of Q is greater than one. Since mass can not be split, no transport map
can result in the final measure, regardless of the choice of the cost function. To address this
limitation, the Kantorovich relaxation relaxes the Monge problem to allow for couplings (or
transport plans). A coupling is a joint distribution M over a discrete space X × Y that has
marginal probabilities P and Q over X and Y: P = MX and Q = MY. We use Π(P,Q) to refer
to the set of all such couplings. The Kantorovich relaxation of the Monge problem is referred
to as the primal Kantorovich problem and is defined as follows:

OT(P,Q) = argmin
M∈Π(P,Q)

∑
ā∈X

∑
b̄∈Y

c(ā, b̄)M(ā, b̄). (3.3)

The optimal coupling M minimizes the transport cost in Equation 3.3 which is referred to as the
Wasserstein distance between P and Q, denoted by W(P,Q), when c is the Euclidean distance.

3.2.1 Entropic Optimal Transport

Finding the optimal coupling in Equation 3.3 is costly, and entropic regularization is used to
optimize it. The entropic OT is defined as follows:

argmin
M∈Π(P,Q)

∑
ā∈X

∑
b̄∈Y

c(ā, b̄)M(ā, b̄) −
1
ρ

H(M), (3.4)

where H(M) is the entropic regularizer:

H(M) =
∑
ā∈X

∑
b̄∈Y

M(ā, b̄) log(M(ā, b̄)),
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with the entropic regularization parameter 1/ρ. The coupling M in Equation 3.4 has marginals
P and Q, similar to the formulation in Equation 3.3. We denote the distance obtained from the
entropic OT by Wρ(P,Q).

The entropic OT formulation allows an efficient iterative algorithm, called the Sinkhorn
algorithm, for finding M, which consists of the following steps (see [14] for more detail):

1. Initialize a vector of variables v̄ with 1̄dY , the 1-vector of size dY = |Dom(Y)|.

2. Compute the matrix K = e−ρC−1 where C is a matrix of size dX × dY representing the cost
function c.

3. Iteratively update two vectors of variables ū and v̄ as follows until convergence:

ū = ā ⊘ (K · v̄) and v̄ = b̄ ⊘ (K⊤ · ū)

where ā and b̄ are vectors of size dX and dY, respectively, and represent the probability
values in the probability functions P and Q, and ⊘ is the element-wise vector division.

4. Compute the matrix diag(ū) · K · diag(v̄)) of size dX × dY where diag(ū) and diag(v̄) are
the diagonal matrices of sizes d2

X and d2
Y with entries from the vectors ū and v̄, respec-

tively. Then use the matrix to generate a coupling M and return it.

The parameter 1/ρ ∈ [0,+∞) controls the amount of smoothing in the solution; a smaller
value of 1/ρ (close to 0) results in a more precise but possibly spiky solution, while a larger
value of 1/ρ results in a smoother but possibly less precise solution. The algorithm converges
linearly[32], resulting in a coupling M that provides an approximate solution to the optimal
transport problem. This means Wρ(P,Q) is an estimation of W(P,Q) and reduces to W if ρ is
large enough.

Relaxed Optimal Transport Relaxed OT was first introduced in [21] for measuring training
loss. It is also used in [1] for sparse matrix factorization. The main idea is to replace the hard
constraints for marginal distributions with soft penalties with respect to KL divergence to be
added to Equation 3.4:

argmin
M:X×Y→R≥0

∑
ā∈X

∑
b̄∈Y

c(ā, b̄)M(ā, b̄) −
1
ρ

H(M) + λ(KL(MY,Q) + KL(MX, P)). (3.5)

Here, MY and MX(x) are the marginal probability functions obtained from the coupling M, λ
is the relaxation regularization coefficient, and KL refers to the KL divergence between two
probability distributions. Compared with the entropic OT in Equation 3.4, The space of M
is relaxed to be any function with domain X × Y and range R≥0, and the new regularizer
λ(KL(MY,Q) + KL(MX, P)) represents a soft constraint that requires M to be a probability
distribution with marginals equal to P and Q. We denote the distance obtained from this relaxed
entropic OT by WRx(P,Q).

The Sinkhorn algorithm also works for the relaxed version of the entropic OT in Equa-
tion 4.4 but with different update rules for ū and v̄ that considers the regularization parameters
ρ and λ (see [21, Proposition 4.2] for more detail):

ū = (ā ⊘ (K · v̄))
ρλ
ρλ+1 and v̄ = (b̄ ⊘ (K⊤ · ū))

ρλ
ρλ+1 (3.6)

We use relaxed OT and its soft constraint to represent the CI constraints in our repair.
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3.3 Evaluation Measures
In our experimental chapter, we use several measures to evaluate the accuracy and fairness of
the machine learning models in this work. We briefly review these measures in this section.

3.3.1 Accuracy Measures
Machine learning models are typically evaluated using a variety of measures that capture dif-
ferent aspects of the model’s performance. This thesis uses the following measures: accuracy,
precision, recall, F1 score, and AUC.

• Accuracy is the most straightforward metric, defined as the ratio of correctly predicted
observations to the total observations. It generally measures how well the model per-
forms across all classes.

• Precision is the ratio of correctly predicted positive observations to the total predicted
positives. High precision indicates a low false positive rate, meaning the model is reliable
when it predicts a positive class.

• Recall (Sensitivity) is the ratio of correctly predicted positive observations to all obser-
vations in the actual class. It captures the ability of the model to find all the positive
instances.

• F1 Score is the harmonic mean of precision and recall, balancing the two metrics. It is
beneficial in situations where the data has imbalanced classes.

• AUC stands for Area Under the Receiver Operating Characteristics curve or ROC. It il-
lustrates the performance of a binary classifier as its discrimination threshold is varied.
The AUC measures the entire two-dimensional area underneath the ROC curve, provid-
ing an aggregate performance measure across all possible classification thresholds. A
model whose predictions are 100% wrong has an AUC of 0.0, while a model whose
predictions are 100% correct has an AUC of 1.0.

Each of these metrics provides different insights, and their use depends on your machine learn-
ing task’s specific objectives and constraints. The best measure will depend on these factors,
as well as the specific characteristics of your data.

3.3.2 Fairness and Bias Measures
The widespread use of machine learning models in critical decisions that significantly impact
individuals’ lives, such as in credit scoring, hiring, or criminal justice, has raised concerns about
fairness. Fairness in machine learning refers to the absence of systematic bias or discrimination
in the decisions made by machine learning models. A fair model does not disproportionately
harm or benefit any particular group of individuals based on their protected attributes, such
as race, gender, age, or religion. However, achieving fairness is challenging due to biases in
training data that reflect historical or societal inequalities. Furthermore, fairness is subjective
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and context-dependent, with different stakeholders holding varied perspectives on what fair-
ness entails in a given context. Multiple fairness measures have been proposed, though no
single measure can capture all fairness aspects, and appropriateness depends on the context. A
comprehensive evaluation may involve multiple metrics, considering their strengths and limi-
tations.

Fairness assessment in machine learning can be approached from individual or group per-
spectives, resulting in two primary fairness categories: Individual and group fairness. Individ-
ual fairness pertains to treating similar individuals, while group fairness ensures fair outcomes
for groups concerning a protected attribute. This project primarily focuses on improving group
fairness, using various metrics, including:

• Demographic parity (DP) measures whether the positive outcome probability is the same
across different groups concerning a protected attribute.

• Equal Opportunity (EO) measures if the true positive rate is the same across different
groups concerning a protected attribute.

Beyond DP and EO, several other standard fairness measures, such as Equalized Odds
(EOD), Treatment Equality (TE), Predictive Parity (PP), False Positive Rate Equality (FPR
Equality), False Negative Rate Equality (FNR Equality), Overall Accuracy Equality (OAE),
and Disparate Impact (DI), contribute to different facets of fairness. A single measure cannot
encapsulate all fairness aspects; hence, the context determines the suitability of each mea-
sure. A thorough fairness assessment may necessitate multiple metrics, carefully considering
their relative strengths and application-specific limitations. To evaluate the fairness of ma-
chine learning models in this work, we employ DP and EO because of their widespread use,
simplicity, and straightforward implementation. We also use a less common measure called ra-
tio of observational discrimination (ROD) that is specifically useful to evaluate interventional
fairness [48]. We explain ROD in detail in Section 5.1.

3.4 Optimization Programs
This section provides an overview of linear optimization programs and quadratically con-
strained quadratic programs, which will be used to solve the repair problem in this thesis.
Linear Optimization Programs (LOPs) are optimization problems where the objective function
and constraints are linear functions of a set of variables. More precisely, the objective function
and the constraints are often written in the following general forms:

f (x̄) = c̄T x̄ (3.7)
Ax̄ ≤ b̄ (3.8)

where x̄ is the vector of decision variables and has size n, c̄ ∈ Rn is the coefficient vector
that defines the objective function f (x̄) in Equation 3.7. The constraints in Equation 3.8 are
characterized by the constraint matrix A ∈ Rm×n and the vector b ∈ Rm that specify constraint
bounds. The goal in LOPs is to find the values of the decision variables x̄ that optimize the ob-
jective function in Equation 3.7 while satisfying the linear constraints Equation 3.8. LOPs have
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been extensively studied and can be efficiently solved using algorithms such as the Simplex or
interior-point methods.

Quadratically Constrained Linear Programs (QCLPs) are a type of optimization problem
involving linear objective functions and quadratic constraints. They generalize LOPs and are a
particular case of Quadratically Constrained Quadratic Programs (QCQP), where both the ob-
jective and constraints are the decision variables’ quadratic functions. The general formulation
of a QCQP is as follows:

f (x̄) =
1
2

x̄T F0 x̄ + c̄T x̄ (3.9)

1
2

x̄T Fi x̄ + āT
i x̄ ≤ bi, i ∈ {1, 2, . . . ,m} (3.10)

where x̄ is the vector of variables, F0, Fi ∈ R
n×n are symmetric matrices, c̄, āi ∈ R

n are coeffi-
cient vectors, bi ∈ R are scalar constants bounds, and m is the number of quadratic constraints.

The objective function in Equation 3.9 and the constraints in Equation 3.10 are quadratic.
QCQPs are more general and flexible than linear optimization problems. QCQP and QCLP are
non-convex optimization problems that cannot be solved efficiently. Solving QCQPs is gener-
ally NP-hard, but some relaxations make it feasible in practice. Interior-point, Semi-Definite
Programming (SDP), Second-Order Cone Programming (SOCP), and Linear Programming
(LP) relaxations are some of them which can guarantee the exact solution in different scenar-
ios. If diagonal elements of Fis are all zero, then the optimal value returned by SDP, SOCP, and
LP would be equal [31]. It is shown that when solving non-convex QCQPs with non-positive
off-diagonal elements in Fks, SDP and SOCP relaxations are equivalent to solving the origi-
nal problem [30]. Also, if all coefficient matrices are positive-definite, the problem becomes
convex and interior-point and SDP methods can be used.

The problem in this thesis is QCLP, a particular case of QCQP, where the objective func-
tion is linear as in Equation 3.7, and the constraints are quadratic as in Equation 3.10. These
programs are solved using the same techniques for QCQP and are computationally expensive.

3.5 Block Coordinate Descent
The concept of local search is the backbone of a fundamental optimization algorithm known
as gradient descent. Given a differentiable function f : Rn → R, the procedure begins with an
arbitrary starting point x̄0 ∈ R

n and improves this guess iteratively by advancing in the direction
of the steepest descent. This direction is determined by the negative gradient of the function at
the current point, −∇ f (x̄k). The gradient descent update rule can formally be stated as follows:

x̄k+1 = x̄k − α∇ f (x̄k), (3.11)

where ∇ f (x̄k) is the gradient of f evaluated at the point x̄k, and α is the step size. The choice of
α is crucial as it influences the convergence properties of the algorithm and the speed at which
it converges. An excessively large α can cause the algorithm to oscillate or diverge, while a
very small α may result in very slow convergence.

However, the standard gradient descent method may prove inefficient when it comes to non-
convex optimization problems, such as QCLP. Non-convex functions can have several local
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minima, complicating the search for the global minimum. As a local optimization method,
gradient descent is more likely to converge to a local minimum, the selection of which is
heavily influenced by the choice of the initial starting point.

One way to navigate the complex landscape of non-convex optimization problems is through
the Block Coordinate Descent (BCD) method. In BCD, the parameter vector x̄ is partitioned
into m subsets, referred to as “blocks” or “coordinates.” These blocks may correspond to single
parameters or groups of parameters. The optimization process then cyclically minimizes the
objective function for one block at a time while holding all other blocks constant.

Formally, the BCD update rule can be written as follows:

x̄i
k+1 = x̄i

k − α∇ fi(x̄i
k), (3.12)

where x̄i
k denotes the i-th block at the k-th iteration, and ∇ fi(x̄i

k) is the gradient of f with respect
to the i-th block evaluated at x̄i

k. The main advantage of BCD is its ability to significantly cut
down the computational cost of each iteration, particularly when the problem can be easily
minimized for each block.

Despite its efficiency and simplicity, BCD, like its parent gradient descent, can also con-
verge to non-optimal stationary points in the case of non-convex problems, including local
minima or saddle points. However, it has gained wide acceptance in many practical applica-
tions due to its often satisfactory performance and because, under certain conditions, it can
converge to the global minimum. One general condition for ensuring convergence is called the
cyclic rule that says i-th block should be optimized in iterations i, i + m, i + 2m, ... to ensure
each block is optimized at least once in each consecutive m iterations. [51] (regardless of the
order of optimizing them) We will show the satisfaction of this rule in our solution.

3.6 Non-negative Matrix Factorization
Non-negative Matrix Factorization (NMF) refers to the factorization of a non-negative matrix
V into two matrices, W and H, such that all three matrices consist of non-negative elements.
The non-negativity condition facilitates a more intuitive interpretation of the resulting matrices.
In mathematical terms, the NMF of a non-negative matrix V is represented as V ≈ WH, where
W and H are non-negative matrices.

NMF has found successful application in various fields, including image analysis, text min-
ing, and bioinformatics, attributed to its dimensionality reduction capabilities and its potential
to generate parts-based representations of data [36, 55, 8, 23]. For instance, NMF is employed
in image analysis for face recognition by learning a parts-based representation of human faces.
In text mining, NMF assists in extracting topics from large text corpora by interpreting the
factor matrices W and H as document-to-topic and word-to-topic mappings, respectively. In
the field of bioinformatics, NMF helps identify patterns or clusters in gene expression data,
thereby extracting biologically significant information from these patterns.

The task of data repairing concerning conditional independence involves rectifying data to
ensure it satisfies a set of Conditional Independence (CI) constraints. These constraints are
often derived from domain expertise or a learned statistical model. The common approach to
data repairing involves the use of probabilistic models, but this often encounters computational
complexity issues, particularly in high dimensions.
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In this context, NMF, as a low-rank approximation method, can be instrumental in reducing
data dimensionality and making the problem more tractable. More specifically, NMF can be
utilized to generate a reduced-dimensionality representation of the original data matrix while
preserving its non-negative characteristics. This representation can then be used as an input to
CI testing methods, effectively minimizing the computational complexity associated with the
repairing process. Additionally, the parts-based representation of NMF allows for the intuitive
interpretation of the factorized matrices, thereby facilitating the diagnosis and repair of CI con-
straint violations. For example, if the CI constraints correspond to missing links in a graphical
model representing the data, the matrices W and H derived from the NMF can provide insights
into the parts of the data most significantly contributing to these missing links. Despite NMF
not directly enforcing CI constraints during the factorization process, its capability for dimen-
sionality reduction, interpretability of its results, and computational efficiency establish it as a
valuable tool in data repairing tasks concerning conditional independence.

In this work, we employ NMF as a baseline for our repair algorithms. Specifically, our
repair algorithm commences with a repair generated through NMF and refines it to derive an
optimal repair.



Chapter 4

Methodology

This chapter provides a formal definition of our repair problem in Section 4.1, followed by
the proposition of two distinct solutions for the problem in Section 4.2. Both solutions are
designed for saturated cases where all attributes appear in the constraint but we will show in
Section 4.2.3 that our solution can also be used for unsaturated cases. Through the discussion
in this chapter, we provide an efficient and robust solution to the data repair problem at hand.

4.1 Problem Definition
Data repair primarily involves modifying a dataset to align with a pre-established set of con-
straints. As explored in Chapter 1, some applications that involve a data distribution necessitate
that this distribution adheres to specific CI constraints. Therefore, it is essential to “repair” the
distribution itself, regardless of its representation, to satisfy these CI requirements. In this
section, we clarify and formalize our understanding of the repair concept utilized in this study.

Definition 4.1.1. Consider a probability distribution P with a set of random variables V =
{X,Y,Z}. We denote the set of all possible probability distributions with the same random
variables over the same sample space as ∆(V). Let σ : X⊥⊥Y | Z, be a saturated CI constraint
that is not satisfied by P, i.e., P ̸|= σ. An optimal repair of P with respect to σ is a probability
distribution Q ∈ ∆(V) that satisfies the following conditions:

1. Q is a repair, i.e., it is consistent with σ : X⊥⊥Y | Z (Q |= σ)

2. Q is optimal, i.e., for every repair Q′ ∈ ∆(V), Dist(P,Q) ≤ Dist(P,Q′), where Dist is a
distance between probability distributions.

We denote the set of all optimal repairs of P with respect to σ by repairs(P, σ). For every repair
Q ∈ repairs(P, σ), we use couplings(P,Q) to denote the couplings that convert P to Q. ■

Regarding the repair problem as outlined in Definition 4.1.1, a few points warrant further
discussion. Initially, we utilize the Wasserstein distance for Dist, as justified in Chapter 1.
In Chapter 3, we discussed that the sample space for V is formed by the Cartesian product
of the supports of the random variables X,Y,Z. This implies that certain values in P that
originally had zero probability could assume positive probabilities in Q. This observation

20
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underscores that our methods do more than merely re-weighting existing data points; they can
also introduce new ones. Concerning the number of potential optimal repairs, the set of feasible
repairs repairs(P, σ) is never empty. This is because at least one probability function always
complies with σ, which can invariably be derived from P through a particular coupling. This
is justified by considering that there is no restriction on the repaired measure, so for example, a
constant probability function (representing a uniform distribution) is always a repair. Moreover,
the set of possible repairs may encompass more than a single repair. This scenario arises when
the identical mass from P can be transported to various positions in Q to fulfill σ, thereby
leading to different distributions Q. In the context of an optimal repair Q, there could be
multiple possible couplings M in couplings(P,Q), as masses from diverse positions of P can
be transported to generate the same optimal repair Q.

The application of OTMonge and a transport map to define the distance W in Definition 4.1.1
alters the repair problem, as the set repairs(P, σ) could potentially be empty. However, when a
repair Q exists, one or more couplings may still be derived from the possible Monge’s maps.

Another point of note pertains to the distribution P. In practical scenarios, P is typically
unknown, and only a dataset D sampled from this distribution is accessible. Consequently, we
operate under the assumption that P can be effectively estimated from D using a variety of
existing estimation techniques, such as Maximum Likelihood Estimation (MLE), Kernel Den-
sity Estimation (KDE), and Generative Adversarial Networks (GANs). In our experiments, we
determine the empirical distribution of a dataset and defer the exploration of other techniques
to future work.

The final discussion point relates to the resulting distribution (optimal repair) Q. Starting
with dataset D and subsequently estimating P, a repaired dataset can be produced by sampling
from Q, as illustrated in our experimental section. When utilizing OTMonge, it is possible to
apply the Monge mapping to transform each data point in the input dataset into a point in the
repaired dataset. This implies that repair can be implemented at the record level. Depending
on the specific application, the distribution Q may be employed in various other ways.

4.2 Computing Optimal Repairs

Obtaining an optimal repair as defined in Definition 4.1.1 can be computationally expensive.
This is because there are numerous possible candidate repairs, and computing the Wasserstein
distance for each candidate requires solving the optimization problem in Equation 3.3. To
address this issue, we propose two solutions that, given a probability distribution P and a CI
constraint σ, compute an optimal repair Q.

The first solution involves minimizing the Wasserstein distance between the initial and
reconstructed distribution while ensuring that the CI constraint is satisfied through a QCLP
detailed in Section 4.2.1. This is an exact solution as it finds an optimal repair. The second
approach uses a relaxed version of the OT and satisfies the CI constraint through the structure
of the reconstructed distribution. This approach is referred to as the approximate solution.
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4.2.1 QCLP Formulation

We propose a QCLP to find an optimal repair that minimizes the optimal transport distance
between the initial and reconstructed distribution while satisfying the given CI constraint σ :
X⊥⊥Y | Z. The inputs for this program are the probability distribution P, the CI constraint
σ, and the cost function c. We assume that the given CI constraint σ is saturated (i.e., V =
{X,Y,Z}) and X,Y,Z are individual random variables rather than sets of random variables for
ease of explanation. The discussions can be trivially extended to sets of random variables. In
Chapter 6, we explain an extension to unsaturated CI constraints.

The QCLP consists of two types of decision variables that are organized in a vector q̃i and
a matrix M̃i, j:

• The repair variables q̃i with i ∈ [1, dV] that represent the probabilities in the optimal
repair Q and form a stochastic vector with values summing to 1.

• The coupling variables M̃i, j with i, j ∈ [1, dV] that represent the coupling which gives
the optimal repair Q. This is a doubly stochastic matrix, a square matrix of probability
values with each row and column summing to 1.

The variables in the QCLP formulation carry probabilities; hence, they are restricted to the
range [0, 1]. We assume that the sets of values Dom(X), Dom(Y), and Dom(Z) are ordered, and
we define an order for the elements in Dom(V). This order on Dom(V) determines the order of
the repair variables in q̃, as P is represented with three random variables V̄ = {X,Y,Z}. The
coupling variables M̃ represent a joint probability distribution between the input and the repair
distributions for V̄ . Hence, the order on Dom(V) also determines the order of the variables in
the matrix M̃. This particular order of the variables in q̃ and M̃ is useful in expressing the
constraints in the QCLP formulation.

To facilitate writing the constraints in the QCLP, we introduce an index function that allows
us to access elements in q̃:

idx(i, j, k) = (k − 1) × (dX × dY) + ( j − 1) × dX + i,

where dX, dY , dZ are the domain sizes of X,Y,Z, respectively. The index function maps a triple
of indices (i, j, k) to a unique index in the vector q̃. Using this index function, we can easily
access variables in q̃ corresponding to the random variables X, Y , and Z. For instance, the
variable q̃idx(i, j,k) corresponds to the probability for the i-th value of X, the j-th value of Y , and
the k-th value of Z.

We can now formulate the QCLP with the following objective function:

min
M̃,q̃

dV∑
i=1

dV∑
j=1

c(ēi, ē j) × M̃i, j (4.1)

where we assume Dom(V) = {ē1, ē2, ..., ēdV }. The program includes three linear constraints that
the first two ones ensure the coupling specified by M̃ is consistent with its marginal proba-
bilities specified by P and Q, and the last one guarantees the non-negativity of the coupling
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variables M̃i, js:

dV∑
i=1

M̃i, j = q̃ j

dV∑
j=1

M̃i, j = P(ēi) M̃i, j ≥ 0 (4.2)

where P(ēi) represents constant probabilities for ēi ∈ Dom(V). Furthermore, the following
quadratic constraints ensure that the CI constraint σ is satisfied by the distribution specified by
Q̃:

dY∑
t=1

q̃idx(i,t,k) ×

dX∑
t=1

q̃idx(t, j,k) = q̃idx(i, j,k) ×

dX∑
t=1

dY∑
t′=1

q̃idx(t,t′,k). (4.3)

There is one constraint for every i ∈ [1, dX], j ∈ [1, dY], k ∈ [1, dZ]. Equation 4.3 represents
QX,Z(x, z) × QY,Z(y, z) = Q(x, y, z) × QZ(z), which is equivalent to QX|Z(x, z) × QY |Z(y, z) =
QX,Y |Z(x, y | z) and expresses CI, as we explained in Chapter 3. In addition to these constraints,
the program includes constraints that ensure the variables are probability values (in the range
[0, 1]).

The program specified by the objective function in Equation 4.1 and the constraints in Equa-
tions 4.2 and 4.3 is a QCLP [52]. The objective function is a linear function of the coupling
variables, and the constraints in Equation4.2 are also linear concerning the repair variables.
However, the constraints in Equation 4.3 are non-linear and quadratic, as the left side of each
constraint is a product of the sum of some repair variables. The QCLP falls in the category
of problems known as QCQPs or Second-Order Cone Programs (SOCPs) with diverse appli-
cations in finance, control systems, signal processing, and other fields. QCLP is NP-hard and
is considered a non-convex optimization problem [52, 7]. Various efficient methods such as
sequential quadratic programming, augmented Lagrangian, interior-point, and active set have
been used to find sub-optimal solutions for these programs [7]. To obtain an optimal repair
by solving the QCLP program, we implemented an alternating algorithm that linearizes the
quadratic constraints iteratively.

Analysis of the QCLP solution: The existing efficient algorithms for solving QCLP guar-
antee convergence. However, they have two issues when applied to our application. They
generally return only a sub-optimal solution and do not scale in our QCLP solution. The lat-
ter is because the number of variables in our solution grows exponentially with the number
of attributes. The program in our QCLP solution comprises d2

V coupling variables, dV repair
variables, and d2

V + 2dV constraints specified in Equation 4.2 and dV constraints specified in
Equation 4.3. The domain size dV includes exponential values in the number of attributes in V.
Therefore, solving the QCLP is computationally infeasible for such scenarios. We propose a
second solution based on relaxed OT to address this issue.

4.2.2 BCD with Relaxed OT
The limitations of the initial approach lead us to explore alternative solutions. While these
alternatives might trade off some degree of accuracy, they offer significantly increased compu-
tational efficiency. One such solution is built upon an approximate algorithm for computing
the relaxed OT, using the Sinkhorn algorithm as a foundational component.
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BCD is a common approach to solving non-convex optimization problems, where the vari-
ables are partitioned into blocks. The objective function is iteratively optimized with respect to
the variables in one block while treating the variables in the remaining blocks as constants [51].
In our method, we employ the relaxed OT to efficiently find an optimal repair through BCD,
thereby achieving end-to-end optimal repair and coupling learning. This is accomplished by
integrating the search for an optimal repair Q with the Sinkhorn algorithm, used for finding the
regularized OT between P and Q. This process is described as follows:

argmin
Q∈∆(Ω,F )

M:V×V→R≥0

∑
ā∈V

∑
b̄∈V

c(ā, b̄)M(ā, b̄) −
1
ρ

H(M) +

λ(KL(MY ,Q) + KL(MX, P)) + µ δσ(Q), (4.4)

In this formulation, MQ and MP are the marginals of the coupling M with respect to the vari-
ables of Q and P, respectively. Furthermore, δσ(Q) represents the measure of dissatisfaction
with the conditional independence constraint σ for Q, as explained in Chapter 3 (see Equa-
tion 3.1).

There are two crucial observations to be made about Equation 4.4. First, µ is a coefficient
that modulates the influence of σ and its associated dissatisfaction; for µ ≥ 0, σ acts as a
soft constraint, becoming a hard constraint as µ tends towards infinity. Second, Equation 4.4
deviates from the relaxed OT formulation by minimizing the sum over the coupling M and the
repair probability distribution Q rather than only over M.

Given the restriction to distributions Q in ∆(Ω,F ) that satisfy σ, the Sinkhorn algorithm
(using the update rules in Equation 3.6) cannot directly solve the optimization problem posed
in Equation 4.4. To overcome this, we employ BCD rather than standard gradient descent. The
variables in the optimization problem are partitioned into dZ + 1 blocks: one block represents
the variables for the coupling M, while the remaining dZ blocks depict slices of variables from
the distribution Q with fixed values of the random variable Z. Algorithm 2 delineates our
algorithm, implementing BCD alongside the relaxed OT.

The algorithm begins with the Initialize procedure, which sets Q to a probability function
in compliance with σ (Line 1). Multiple initial choices can satisfy the CI constraint, such as
the marginal probabilities with respect to random variables in σ. We use NMF as our starting
point, which experimentally proved to make faster convergence of the algorithm. A while loop
follows, executing the Sinkhorn algorithm within each iteration. Within this loop, the algorithm
initializes vector v̄ and matrix K before executing the Sinkhorn algorithm (Line 3). It then
computes the distance between P and the current repair candidate Q by iteratively updating
ū and V̄ until convergence (Line 5). The coupling M is then computed as a joint probability
distribution in Line 3.

The for loop from Lines 4 to 5 updates the repair Q via BCD. A naive BCD implementation
for Q uses the gradient of WRx as computed in [21]. However, this approach tends to be slow.
We accelerate the gradient computation for each block by implementing matrix factorization
in the Update procedure (Line 5). Here, we first extract a matrix representing the conditional
probability QX,Y |Z when Z = ck (a slice of the conditional distribution where Z is fixed to value
ck). This matrix is then factorized into two matrices, representing QX|Z and QY |Z, which are
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used to update the values in Q corresponding to Z = ck. The matrix factorization applies the
multiplicative update rule within a rapid iterative algorithm [35].

Algorithm 1: RelaxedRepair
Input: A probability function P, a cost function c, and CI constraint σ : X⊥⊥Y | Z
Output: An optimal repair Q of P w.r.t. σ and coupling M that generates Q

1 Q← Initialize(P); ▷ Initial guess using NMF
2 while Q is not converged do
3 v̄← 1dY ; K ← e−ρC−1; ▷ Sinkhorn Initialization
4 while ū and v̄ are not converged do ▷ Sinkhorn iterations
5 ū← ( p̄ ⊘ (K · v̄))

ρλ
ρλ+1 , v̄← (Q ⊘ (K · ū))

ρλ
ρλ+1 ;

6 M = diag(ū) · K · diag(v̄);
7 for ck ∈ Dom(Z) do ▷ BCD for updating Q
8 Q← Update(Q,MQ, ck); ▷ Updating Q using NMF

9 return Q,M;

Analysis of the RelaxedRepair Algorithm: Let us first address the correctness of Algo-
rithm 2 in creating a distribution repair. Our central claim is that the algorithm generates a
distribution in compliance with the ICs while minimizing the relaxed OT outlined in Equa-
tion 4.4. This implies a sub-optimal solution for the repair problem, given that the relaxed OT
offers an estimation of OT and the Wasserstein distance in the repair problem. The proof for
this assertion is two-pronged. Firstly, M, as defined by the equation in Line 6 of the algorithm,
minimizes the relaxed OT in Equation 4.4. The substantiation for this segment echoes the
proof of Proposition 4.1 in [21]. Secondly, the BCD iterations (Lines 2-8) are always conver-
gent since Q invariably gravitates towards a stationary point. This phenomenon occurs because
the algorithm iteratively solves NMF to update the marginal Q for ck ∈ Dom(Z) while the re-
mainder of Q is held constant. Note that since all blocks of variables are optimized in each
iteration of the while loop, our solution meets the cyclic rule, which is important for ensuring
convergence. The subsequent theorem encapsulates these claims.

Theorem 4.2.1. Given a probability distribution P ∈ ∆(V) with random variables V and a CI
constraint σ : X⊥⊥Y | Z with X,Y,Z ⊆ V, RelaxedRepair (Algorithm 2) converges and returns
a probability distribution Q ∈ ∆(V) that minimizes the relaxed OT as per Equation 4.4. ■

The runtime of Algorithm 2 is subject to several determinants, including the initial ap-
proximation for the distribution Q and the initialization of vectors ū and v̄ during Sinkhorn
iterations. These elements dictate the iteration count necessary for algorithm convergence and
final Q acquisition. The major computational cost within each iteration arises from two pivotal
operations: the Sinkhorn iterations (Line 5) and the NMF computation (Line 8), each of which
is executed dZ times. Owing to optimized matrix multiplication techniques, these operations
maintain efficiency, with a computational complexity approximating O(dV × dV). To further
enhance the performance of the algorithm, we have integrated several optimization strategies.
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These involve refined initialization tactics for Q, ū, and v̄, alongside strategies to lessen the
computational toll of large domain size (dV) on the overall runtime. Together, these optimiza-
tions significantly bolster the overall efficiency of the algorithm.

4.2.3 Unsaturated Constraints
In the solutions offered in the previous section, we operated under the assumption that σ is a
saturated CI constraint, meaning the set of all random variables V is the union of X, Y, and Z.
However, in real-world applications, especially those involving high-dimensional datasets, CI
constraints can be unsaturated. For example, in our fairness application setting, the attribute Y
does not form part of the CI constraint S⊥⊥N | A, yet it’s needed for the training of a classifier
using the repaired distribution. This observation prompted us to devise a method to address
this situation.

Two strategies can be adopted to repair with respect to unsaturated ICs. The first, and
simpler, approach is to consider the additional variables W = V \ (X ∪ Y ∪ Z) in the random
variables in P and Q and find the coupling M that includes W. However, this method is
expensive, as an increase in the number of variables in W and their domains directly impacts
the size of M and the computation cost of finding an optimal repair.

The second and more practical approach, which we utilize in our experiments, involves
converting P to a marginal distribution P′ containing only X ∪ Y ∪ Z and finding a much
smaller coupling M′ that leads to a marginal distribution Q′ of Q with X ∪ Y ∪ Z. Any Q that
satisfies Q = Q′ × QW |X,Y,Z will be an acceptable repair. We apply the following technique to
generate Q from Q′. For every ḡ ∈ Dom(W) and ā ∈ Dom(V), we compute Q as follows:

QW|X,Y,Z(ḡ | ā) =
∑

ā′∈Dom(V)

M(ā′, ā) × PW|X,Y,Z(ḡ | ā′) (4.5)

Here, we set Q to be a linear combination of PW|X,Y,Z(ḡ | ā′)s. We employ this approach in
Chapter 5 for the fairness application.

Algorithm 2: BCD
Input: A probability function P, a cost function c, and CI constraint σ : X⊥⊥Y | Z
Output: An optimal repair Q of P w.r.t. σ and coupling M that generates Q

1 Q← Initialize(P);
2 while Q is not converged do
3 M ← Sinkhorn(P,Q, c);
4 for z ∈ Dom(Z) do
5 QX,Z(X, z),QY |Z(Y |z)← NMF(MQ(X,Y, z));

6 return Q,M;
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Experimental Evaluations

In the experimental chapter of this thesis, we utilize both real-world and synthetic datasets with
the aim of accomplishing the following objectives:

1. To fine-tune the BCD algorithm by identifying the optimal hyperparameters (ρ and λ)
for each dataset.

2. To demonstrate the efficacy of the BCD algorithm in minimizing the relaxed OT and to
confirm its convergence to a repair solution.

3. To assess the quality of estimation in the relaxed OT by comparing it with the actual
Wasserstein distance.

4. To establish the superiority of our repair solution over baseline algorithms in the context
of debiasing in our fairness application.

5. To illustrate the application of our repairs in data error detection.

The chapter is structured as follows: We first present our experimental setup in Section 5.1,
which includes an overview of the datasets used for both applications in Subsection 5.1.1, and
a discussion on the baseline models in Subsection 5.1.2. Following this, we outline our exper-
imental results in Section 5.2 and conclude with a comprehensive discussion and summary of
key findings in Section 5.3.

5.1 Experimental Setup
Our methodologies were implemented using Python version 3.10.10, which is highly respected
for its robust support and extensive library ecosystem for scientific computation and data anal-
ysis. Our experiments were performed on a high-performance server with 64GB of CPU and
24GB of GPU, balancing substantial computational power and efficient memory utilization.

For computations involving variations of the Wasserstein distance, we utilized the PyTorch
library1, a widely utilized open-source machine learning library for Python. PyTorch provides

1https://pytorch.org
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an extensive set of tools and libraries designed explicitly for tasks in computer vision and
natural language processing. It also offers robust support for various operations, such as matrix
factorization and multiplication, which are vital for our implementation.

Alongside PyTorch, we made use of the Python Optimal Transport (POT) library2, a com-
prehensive toolbox facilitating OT computations. Despite the POT library providing efficient
OT implementations and being compatible with PyTorch, we encountered challenges with im-
plementing the relaxed OT regarding memory efficiency. One such issue arose during an ex-
periment wherein the cost matrix was expected to fit in GPU memory but did not. The multi-
plication of the cost matrix by −ρ was not an in-place operation, leading to consuming twice
the necessary memory. We refined the original implementation to overcome these issues, inte-
grating it into our code for improved memory efficiency. This custom-optimized version of the
relaxed OT played a pivotal role in successfully executing our experiments, emphasizing the
importance of memory-efficient implementations for high-dimensional computational tasks.

In addition to DP and EO, widely accepted group fairness measures, we also employed a
measure known as Ratio of Observation Discrimination (ROD), introduced in [48]. ROD is part
of the interventional fairness family and is defined for scenarios where covariates are divided
into sensitive, inadmissible, and admissible attributes akin to our setting. By intervening on
admissible attributes, all incoming edges to them are removed in the causal graph. Thus, there
will be no path from sensitive to label passing from admissible attributes. Then, it will check
whether any path is from the sensitive attribute to the label attribute. It is formally defined as

ROD(S , Ŷ | A) =
1
|A|

∑
a∈A

P(Ŷ = 1 | S = 0, a)P(Ŷ = 0 | S = 1, a)
P(Ŷ = 0 | S = 0, a)P(Ŷ = 1 | S = 1, a)

.

In this equation, Ŷ is the value predicted by the classifier for the label. ROD effectively captures
the discriminatory impact of the sensitive attribute on the label, gauging how closely P(Ŷ = 1 |
S = 0, a) and P(Ŷ = 1 | S = 1, a) align. These probabilities are expected to be identical in
conditions that satisfy full fairness. Conditioned on admissible attributes, it only encapsulates
the direct and indirect discriminatory impacts via inadmissible attributes. Consequently, when
considering samples with identical admissible attribute values, the probability of a successful
outcome should be equal for both privileged and unprivileged groups. When ROD is equal
to one, the CI constraint Ŷ⊥⊥S | A is satisfied [48]. This observation establishes a direct link
between CI constraints and fairness measures. It suggests that fairness can be achieved by
debiasing in accordance with a CI constraint. The specific constraint to enforce is contingent
upon the fairness measure we intend to satisfy. For instance, the constraints corresponding to
DP and EO are Ŷ⊥⊥S and Ŷ⊥⊥S | Y , respectively.

5.1.1 Datasets

Understanding the statistics and characteristics of the datasets employed in an experiment is
crucial. It clarifies the rationale behind their selection for the specific experiment in question.
In this context, the following datasets, which have been used in this study, are introduced in
detail:

2https://pythonot.github.io

https://pythonot.github.io
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UCI Adult Dataset The Adult dataset enjoys popularity in fairness literature. 3 This dataset
comprises 32,561 records with 15 attributes. We have utilized seven for our experiments:
gender, income, marital status, age, education-num, hours-per-week, and occupation. The
dataset has been preprocessed similarly to the approach in Calmon et al. [10] to make the
domain discrete and also reducing domain size; age is quantized into decades, and ages above
70 are capped at 70. Education-num values below five and above 13 are excluded, and the
value of hours-per-week is replaced with the nearest lower multiple of 10, reducing domain
size from 23,497 to 9,281. The level of discretization of attributes in addition to specifying the
semantic of constraint, controls the information loss as well.

Each record in this dataset delineates various attributes of an individual, with the binary
income attribute indicating if their income exceeds 50k per year. This has been chosen as the
label attribute. Extensive research indicates a dependency between gender (the protected at-
tribute) and income, which introduces a bias in machine learning models trained on this dataset.
The remaining attributes are divided into two groups: Admissibles and Inadmissibles. Admis-
sible attributes are those through which the protected attribute can indirectly influence the
label. Conversely, any indirect impact of the protected attribute through inadmissible attributes
is deemed discriminatory and must be removed. In this context, marital status is classified as
inadmissible, while age, education-num, hours per week, and occupation are treated as admis-
sible attributes. The selection of admissible and inadmissible attributes mirrors the work of
Salimi et al. [48], who first proposed this fairness application setting. Our focus is solely on
demonstrating the performance of our methods under a similar setting, so we did not delve into
the rationale behind their choice.

Despite the wide usage of this dataset in the literature, it has some limitations. The number
of records is not enough for presenting its large domain size, and as a result, discretization is
needed to reduce it, which causes information loss. There is an imbalance in sensitive and label
attributes; around 75.9% and 66.9 % of records refer to individuals with less than 50K income
and males, respectively. In addition, the choice of 50K as a threshold for classifying incomes
is debatable and might not be generalized to current incomes.

Synthetic Datasets: The synthetic dataset crafted for the fairness application emulates a sim-
ilar graphical model as depicted in Figure 1.1. However, it omits the direct impact of S on Y
and construes N as a function of A. Additionally, a hidden attribute Z is considered, which im-
pacts both N and Y . It is not considered post-data generation. This endows N with prediction
power independent of S , thereby rendering it non-discriminatory. All attributes are binary, and
the dataset contains 5,000 samples.

The synthetic dataset curated for error detection applications comprises just two main at-
tributes, with domain sizes of 25 and 32. The first attribute (X) is sampled from a uniform
distribution (ranging from 1 to 20), with the addition of a normally distributed noise (standard
deviation of 1). The second attribute (Y) is formed by the summation of a Poisson distribution
(parameter λ=10) and a normally distributed noise (standard deviation of 3). The CMI of the
generated dataset, which consists of 10,000 samples, is zero, making it entirely suitable for
error detection applications.

3https://archive.ics.uci.edu/dataset/2/adult

https://archive.ics.uci.edu/dataset/2/adult
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5.1.2 Baselines
For the evaluation of our proposed approach, comparisons with established baseline methods
are necessary. While our fairness application setting is inspired by Salimi et al., [48], a direct
comparison with their method is not viable. This is due to the label attribute not being included
in the CI constraint and thus not being present in the dataset returned by their approach. Instead,
we compare our method with two other baseline approaches, detailed below.

NMF: The output of this method forms the initial input for our proposed method. Given the
CI constraint σ : X⊥⊥Y | Z, this method factorizes the joint probability distribution of X and Y
for all possible values of Z. For each value of c ∈ Dom(Z), NMF factorizes PX,Y |Z(X,Y,Z = c)
by minimizing the KL divergence between the original and repaired distribution using mul-
tiplicative update solver [20, 35]. Despite its advantage in terms of runtime efficiency, this
method has a key limitation: it cannot perform the repair by altering the value of Z, as the
probability distribution of Z is fixed.

Dropped: As discussed earlier, a protected attribute can exert indirect discriminatory influ-
ence on the label through inadmissible attributes in addition to its direct impact. The direct
impact can be mitigated by removing the protected attribute from the training features given
to the classifier. The ’Dropped’ approach is a simple method that removes the inadmissible at-
tributes, leaving only the admissible ones for classifier training. While this can deliver optimal
results regarding fairness measures, since all sources of discriminatory impact are eliminated,
it compromises accuracy as the predictive power of the inadmissible attributes is disregarded.

5.2 Experiments
Our experimental setup is segmented into four parts. The first two parts are aimed at evaluating
the efficacy of our proposed approach in a general context, while the latter two specifically
assess our method’s performance in two distinct applications.

5.2.1 Tuning Hyper-parameters
The effectiveness of our solution in minimizing the Wasserstein distance largely depends on
two hyper-parameters, namely λ and ρ. The former dictates the proximity of the source and
target of the mapping to the original and repaired distributions, while the latter restricts the
entropy of the mapping. We employed a grid search strategy to determine the optimal values
for these hyper-parameters. For each value attempted during the grid search, we reported the
W(P,Q), and plotted the results in a heatmap, which is illustrated in Figure 5.1. The enforced
constraint is analogous to that of the fairness application (protected attributes are independent
of inadmissible attributes given the admissible ones), and the convergence threshold for both
datasets is set at 10−7. The cost function permits alterations only to the values of the inadmis-
sible attribute, a choice which will be justified in Section 5.2.3. (Note: For this section, we
only used education-num from the admissible attributes in the adult dataset to accelerate the
runtime.)



5.2. Experiments 31

10 50 100 150 200

25
30

35
40

45 0.062

0.063

0.064

0.065

0.066

0.067

a) UCI Adult dataset

10 50 100 150 200

25
30

35
40

45 0.0440

0.0445

0.0450

0.0455

0.0460

0.0465

0.0470

b) The synthetic dataset

Figure 5.1: The minimum normalized distance for the hyper-parameters ρ and λ

As can be observed from the results, for each ρ value, the performance improves with an
increase in λ. This improvement is due to the fact that assigning a higher weight to the two KL
divergence terms in the objective function brings the relaxed Wasserstein distance (WRx(P,Q))
closer to the entropic Wasserstein distance (Wρ(P,Q)), leading to a more accurate estimation.
However, this enhanced outcome comes with the trade-off of increased iterations required for
convergence. For instance, in the case of the adult dataset, with ρ = 45, an increase in the λ
value from 10 to 200 results in a monotonic rise in the iteration count, from approximately 400
to around 4,500. Given this trade-off between the number of iterations and the answer quality
achieved, we set λ = 200 for both datasets.

As a general rule, an increase in the ρ value causes WRx(P,Q) to draw closer to W(P,Q), as
the weight of the entropy term decreases. However, a maximum ρ value exists, beyond which
the Sinkhorn algorithm fails due to the expanded search space. For the experiments conducted
here, this maximum value is 50. The optimal values of ρ that yield the best performance are 45
and 35 for the Adult and synthetic datasets, respectively.

To further clarify, let’s consider λ. As this parameter controls the weight of the KL diver-
gence terms in the objective function, a higher λ results in a solution that aligns more closely
with the entropic Wasserstein distance. However, it also leads to an increased number of it-
erations, resulting in higher computational costs. On the other hand, the ρ parameter, which
controls the weight of the entropy term in the entropic Wasserstein distance, affects the accu-
racy of the approximation. As ρ increases, the entropy term’s weight decreases, bringing the
relaxed and true Wasserstein distances closer together. Nevertheless, the algorithm struggles
beyond a certain threshold (50 in this case) due to the enlarged search space. Therefore, the
best performance is achieved by finding the optimal balance between accuracy and computa-
tional complexity, which, in these experiments, resulted in ρ values of 45 for the Adult dataset
and 35 for the synthetic dataset.

5.2.2 Minimizing OT and the Wasserstein Distance
After determining suitable hyper-parameter values in the previous section, we can now eval-
uate the effectiveness of our solution from two perspectives. Firstly, the solution should be
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Figure 5.2: Effectiveness of our solution in minimizing Wasserstein distance

capable of reducing the value of the objective function with each iteration, i.e., the objective
function should be a monotonically decreasing function of the iteration number. Secondly,
since the primary aim of our method was to minimize the Wasserstein distance, we need to
demonstrate that by minimizing the objective function, we are indeed reducing the Wasserstein
distance of the repair in every iteration. To this end, we plotted the values of the objective
function (WRx(P,Q)) and the actual Wasserstein distance between the initial (P) and repaired
(Q) distributions for all iterations in Figure 5.2.

As illustrated in both Figures 5.2a and 5.2b, WRx is a strictly decreasing function of the
iteration number, indicating that our solution can successfully solve our optimization problem.
Another key observation from these figures is the distinct relationship between minimizing WRx

and W. This suggests that the objective function we selected aligns well with the purpose of our
method. By comparing Figures 5.2a and 5.2b, we notice that the reduction in the Wasserstein
distance in the synthetic dataset is not as significant as in the Adult dataset. This discrepancy is
due to the difference in the domain size of the inadmissible attribute in the two datasets, which
is 7 and 2 for the Adult and synthetic datasets, respectively. With the larger dimension in the
Adult dataset, our method has a more extensive search space and greater freedom to diverge
from the starting point. If we permit the alteration of other attributes, we would observe a
drastic reduction in the Wasserstein distance with our method.

5.2.3 Fairness Application
The following presents the experimental results of our proposed method in a fairness appli-
cation setting. In this scenario, we start with a given dataset. It is divided into training and
test sets using 5-fold cross-validation. For each pairing of training and test sets, we apply our
repair process to the training data, after which a logistic regression model is trained using the
repaired distribution. We report a variety of metrics based on the testing of the trained model
with the test data: accuracy, AUC, F1 score, precision, recall, DP, EO, and ROD. These results
are compared with those of a model trained on the original, unrepaired training data. Addition-
ally, we contrast our results with two baseline approaches: NMF and Dropped. It’s important
to note that our LP method can only be applied to the synthetic dataset due to its size. The
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Figure 5.3: Performance of logistic regression classifier when trained on training data repaired
by each method (Synthetic dataset)
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Figure 5.4: Performance of logistic regression classifier when trained on training data repaired
by each method (UCI Adult dataset)

Adult dataset’s larger domain size makes the LP method inapplicable.
As outlined in the introduction, the CI constraint enforced here is S⊥⊥N | A to remove the

unwanted influence of S on Y through N. The direct impact of S on Y is eliminated by not
including the protected attribute in the classifier. The hyper-parameter values utilized in this
section are the same as those in Section 5.2.2. In our methods (LP and BCD), we preprocess
test data before feeding it to the classifier. (The original value of the test data will be used to
report fairness measures.) We adjust each sample according to the coupling returned by our
methods. For instance, if in the returned coupling, the value of (s, n, a) is changed to (s, n′, a)
with a probability of 25%, this modification will be applied to the test sample in the same way.
The results for the Adult and synthetic datasets are provided in Figures 5.3 and 5.4.

Both figures demonstrate that our methods can achieve a level of fairness similar to the
Dropped approach but with higher accuracy measures. This outcome underscores the value
of applying a repair rather than simply dropping sources of discrimination. By retaining the
inadmissible attribute, we utilize its predictive power, which is non-discriminatory. For the
synthetic data, where the LP method is applicable, we observe that the accuracy measures of
LP and BCD are comparable, making it challenging to determine which one outperforms the
other. This comparison suggests that BCD can achieve results almost equivalent to LP and can
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Figure 5.5: Effectiveness of our method for detecting sorting error

also be applied when repairing datasets with large domain sizes.
On the other hand, NMF fails to significantly alter the fairness measures, mostly due to its

inability to preprocess test data. When we repair the training data, we apply a covariate shift
to the data distribution, and the classifier learns this shifted distribution. Hence, when making
predictions on test data, we must consider the difference between the training and test data
distributions. However, since NMF doesn’t generate a coupling, we can’t apply the same pre-
processing approach as we did for our methods. As NMF relies on discriminatory information
for making predictions, it can maintain higher accuracy measures than our methods.

Upon examining the fairness measures more closely, we find that BCD, LP, and Dropped
can nearly reduce the ROD value to its optimal value, which is one. However, their DP and
EO values are not very close to zero. To understand this, we must remember the distinction
between the definition of ROD and that of DP and EO. In the case of ROD, the influence
of the protected attribute on the label through admissible is not considered discriminatory;
thus, accurately capturing the unwanted impact that we aim to eliminate. However, DP and
EO capture any impact of the protected attribute on the label. Thus, it’s clear that we cannot
bring these measures to zero as we don’t intend to remove the indirect impact of the protected
attribute through admissible attributes.

5.2.4 Application in Error Detection and Data Cleaning

Data cleaning, a broad area of research, primarily involves two steps: the detection of data
errors and the subsequent rectification of these errors within the dataset. The first step identifies
records that violate a constraint, while the second replaces the current values of “dirty” records
with values that closely resemble the original, clean data. The selection of a constraint can
range from any database integrity constraints, such as Functional Dependencies (FDs) and
Multi-Valued Dependencies (MVDs), to uniquely designed constraints for outlier detection. In
this section, we discuss the application of our method in the context of error detection.

The use of CI constraints for error detection is a novel area, first discussed in [57]. Intrigu-
ingly, it has been shown that there exists a relationship between independence and integrity
constraints, indicating that repairing based on one type of constraint is akin to applying repair
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Figure 5.6: Effectiveness of our method for detecting imputation error

for both constraints. Our algorithms return a coupling and a repaired distribution, but we need
a systematic approach to assign a score to records, indicating their likelihood of being dirty.
This score, defined over the domain values Dom(V), is calculated as the mass transported from
one point to the other points. The higher the score, the more likely a value requires repair.

Our experiments use a synthetic dataset, carefully constructed to satisfy almost all con-
straints. Then, we randomly select α% of records and add noise to one of their columns. Our
algorithm is subsequently applied, and the generated coupling is used to detect records requir-
ing more repair. We test the detection of two simulated error types: sorting error and imputation
error. Sorting error is introduced by organizing the values in one column relative to values in
another, making them more dependent. This kind of error is inspired by the KDD-Cup 2008,
where a team exploited the dependency between patient ID and target label in their prediction
model, eventually winning the competition [43]. Imputation error, on the other hand, is added
when enforcing the constraint σ : X⊥⊥Y by replacing the values of column X with the mean of
that column in the selected records [57].

To enhance results, domain knowledge is leveraged to specify the cost matrix. Assuming
that the error has been added to only one column and knowing that dirty column, we set the
cost of altering the value of another column exceedingly high. This strategy ensures that mass
only moves between points differing in the value of the dirty column in the returned coupling.
Performance evaluation is done by reporting AUC. By calculating a score for “dirtiness” and
trialing different thresholds, the number of returned records (k) can be adjusted. As we vary k,
the False Positive Rate (FPR) and True Positive Rate (TPR) also change, enabling us to plot
the ROC curve and calculate the AUC by computing the area under this curve. The change in
f1 score, precision, and recall for different k values is also examined.

Sorting and imputation errors were added to 10% of records in the first two experiments
of this section, and the results are depicted in Figures 5.5 and 5.6. The AUC when detect-
ing sorting and imputation errors was 0.884 and 0.542, respectively, indicating a significant
difference. This is due to the increase in CMI from zero to 0.035 when adding the sorting
error, whereas the change in CMI when introducing imputation error is negligible. As a result,
the contribution of imputed records in violating the independence constraint is akin to other
records, causing our method to fail in detecting them.
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Figure 5.7: trend of changing AUC when increasing error rate

In the final part of this section, we plot the AUC change when increasing the error rate,
as seen in Figure 5.7. A comparison of Figures 5.7a and 5.7b reveals that with sorting error,
AUC increases with the error rate, while with imputation error, there is no clear relationship.
The difference lies in the relationship between CMI and error rate in these cases. In the case
of sorting error, CMI increases from 0.01 to 0.32 as the error rate rises from 5 to 30 percent.
But for imputation error, CMI remains close to zero. Hence, we can conclude that when CMI
is high post-error addition, our coupling is better at distinguishing between clean and dirty
records.

5.3 Discussion and Takeaways

Our research involves extensive experimentation in both the domains of data fairness and data
cleaning, offering interesting insights into the efficacy of our proposed method in both areas.

The experiments related to data fairness have demonstrated our methods’ ability to achieve
fairness levels comparable to the baseline model, which simply drops the discriminatory sources
while maintaining better accuracy. This outcome highlights the benefit of repairing the dataset
over completely eliminating potential sources of discrimination. By retaining the predictive
power of inadmissible attributes that aren’t intrinsically discriminatory, our methods provide
an effective means of achieving fair data handling. It was further observed that both our meth-
ods, LP and BCD, performed similarly when applied to synthetic datasets. This result indicates
that BCD is capable of delivering comparable results to LP, with the added advantage of being
applicable in scenarios involving datasets with large domain sizes. However, the NMF method
did not significantly alter the fairness measures, which was mainly due to its inability to pre-
process test data. Analyzing the fairness measures, it was evident that while BCD, LP, and
Dropped methods reduced the value of ROD effectively, their DP and EO values were not as
close to zero. This discrepancy reminds us of the difference in definitions of ROD, DP, and
EO, and reinforces the challenge of achieving absolute fairness in data handling.

In terms of data cleaning, our method successfully demonstrated its utility in detecting and
rectifying both sorting and imputation errors in datasets. The versatility of our method to rectify
data based on one type of constraint and extend its capability to other types of constraints
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adds to its robustness. Nevertheless, the effectiveness of our approach is highly contingent
on the type of errors present in the dataset, as observed in the experiment involving sorting
and imputation errors. The necessity of domain knowledge and the strategic selection of cost
matrices was underscored during our experimentation. The ability to understand the error
structure in the dataset before applying our method is critical for its successful implementation.
Finally, our experiments indicate that our method excels in scenarios with a high CMI post-
error addition. However, its efficiency drops in cases where the CMI remains low, such as in
the case of imputation errors.

In conclusion, our methods provide a promising approach to address fairness and data
cleaning challenges. Yet, they require careful application and further refinement to enhance
their universal effectiveness in different data scenarios.



Chapter 6

Conclusion and Future Work

This chapter aims to review the challenges solved in the thesis and summarize all of the discus-
sions we have had so far, and also highlight potential areas for future research in the domain of
repairing with respect to CI constraints. A significant amount of work has been conducted on
testing these constraints, but their utility in repairs has been less explored. We emphasized the
choice of an appropriate distance function and proposed the use of the Wasserstein distance,
which we believe offers improved results.

At first, we came up with a linear program solution that could achieve the objective but
had bad memory efficiency. This moved us to our second approach, which utilized relaxed
Wasserstein distance and BCD for solving the problem. The efficacy of our proposed methods
has been examined in two applications in the preceding chapter. We showed we can outperform
both baselines in the fairness application. We also showed promising performance in the error
detection task but couldn’t compare our results with the existing method as we didn’t have
access to their code. Now, we wish to outline some potential future research directions:

• Cost matrix design for Wasserstein distance: The selection of the cost matrix is a chal-
lenging but vital aspect of our method, as it incorporates domain knowledge about our
data. Although we manually chose suitable cost functions for our data cleaning and
fairness applications, there’s no guarantee of optimality. Future work could focus on
developing systematic approaches for cost matrix design.

• Handling labels in CI constraints: In the context of fairness applications, our current
approach does not allow for the preprocessing of test data if labels are included within
the CI constraint attributes. A naive solution involves the marginalization of the coupling,
however, this is not accurate. Future research could focus on modifying our method to
learn a coupling that only comprises a subset of all involved attributes.

• Multiple CI constraints: Our current method is limited to supporting a single CI con-
straint. Extending the method to enforce multiple constraints simultaneously, as opposed
to sequentially, presents an exciting avenue for future research.

• Approximate CI enforcement: We currently enforce full CI satisfaction, potentially lead-
ing to considerable information loss. An interesting extension of this work could involve
exploring the trade-off between the level of constraint violation and information loss by
enforcing approximate CI instead of exact constraints.
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• Continuous random variables: The current approach is designed to repair discrete distri-
butions, premised on the assumption that each column in the dataset represents a discrete
random variable. Future work could look at the repair of continuous distributions, ne-
cessitating a wholly different approach.

• Application in other fields: The evaluation of our method has been limited to applications
in fairness and data error detection. However, CI constraints have a broad range of uses
in areas like bioinformatics, statistics, and genetics. Future research could extend the
evaluation of our method’s effectiveness to these domains.
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