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Abstract 

Being an all-in-one gadget, smartphones play a vital role in our everyday lives. However, 

millions of people suffer every year by losing their phones. A lost phone creates a huge 

security threat and data loss possibility to the users. Some preventive measures are 

available to protect from unauthorized access. Moreover, there are some post-loss solutions 

to track down, retrieve data from a lost locked phone, and protect the privacy and security 

of lost phone data, but those have some drawbacks as well. Considering the situation, our 

proposed system offers a preventive solution which will protect the smartphones from 

getting lost. Our system involves a smartwatch which will be connected to smartphone via 

Bluetooth Low Energy (BLE) and keep track of the distance between the smartphone and 

the smartwatch worn by user in real-time. The system will be able to identify if the distance 

goes beyond 20 feet or a customizable distance given by the user and immediately raise an 

alert in the smartwatch, creating vibration and sound in public places. The system allows 

users to mark their safe location (e.g., house, office) and radius where their smartphone 

will be safe, and they don’t need alerts. We have developed 3 different models to implement 

this system with different approaches using Ranging, Haversine formula and Geofencing. 

For our work, we aim to perceive how accurate our models are in terms of  calculating 

distance and safe location tracking as well as alert response time and models impact on 

battery life of both smartphone and smartwatch. We have developed an Android 

application and a smartwatch application that run on both smartwatch and smartphone for 

each model and compared their performances based on our evaluation parameters. We 

conducted experiments under various real-world conditions and the system incorporated 

with Model 1 can generate alert  with 96% accuracy when user is away from the 

smartphone beyond the threshold distance in an unsafe location. This affordable solution 

will ensure prevention from smartphones getting lost in public places in an effective way 

securing confidentiality and data protection to users. 

Keywords 

Smartwatch, Bluetooth Low Energy, RSSI, GPS, Geofencing, Smartphone, Android 

application. 
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Summary for Lay Audience 

With the advancement of technology, nowadays, people are highly dependent on their 

smartphone. From personal information to confidential information, people store most of 

the important and essential information on their smartphones. However, people tend to lose 

their smartphones being inattentive and leaving their smartphones behind in a public place. 

Losing their smartphone creates a big financial loss as well as data loss. If there existed a 

device that could provide alert to the user in case they unintentionally left their phone in a 

public location, it would prevent the user from losing their smartphones. In this study, we 

began by analyzing various existing solutions developed by other researchers for 

smartphone loss prevention systems which provides alert to the users in case they leave 

their phone. By examining existing solutions, we identify potential research gaps in 

existing smartphone loss prevention systems and addressing those research gaps 

implemented a wearable solution for smartphone loss prevention system. We present a 

system that provides alert to the user when the user goes beyond a pre-set distance threshold 

(set by the user) from the user’s smartphone. In addition, the system doesn’t provide the 

alert when the user is in a safe location saved by the user, rather provide alert in unsafe 

locations. We implemented the system on smartwatch and an Android User Interface using 

three different models applying different technologies and techniques to provide solution 

to the users. We have tested all three of the solutions under various real-world conditions 

to determine which solution provide more accurate and efficient results. In our testing, we 

demonstrated that the system could successfully provide alert to the users in case they leave 

their phone behind in an unsafe location. 
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Chapter 1  

1 Introduction 

If we take a close look at our daily lives, we’ll see how much we are dependent on our 

smartphones. Smartphones have become an essential part of daily life, changing the way 

people communicate, work, and entertain themselves. From connecting people from all 

over the world to accessing a wealth of knowledge, smartphones have revolutionized our 

society. With the emerging development and advancement of technology, new features are 

always being added to smartphones which are making our lives easier and more dependent 

on smartphones. With the help of the internet, smartphones can access a huge area of 

information ranging from news, weather, traffic reports, and much more. People can also 

use their smartphones to access online courses, tutorials, and other educational resources. 

Additionally, smartphones have a range of apps that contain information on diverse topics 

such as healthcare, finance, travel, and much more. Furthermore, smartphones also have 

the capability of storing information such as personal contacts, notes, and photos, which 

people can access at any time.  

A smartphone not only has our personal information but also contains confidential 

information, documents, and personal history. Confidential information can include 

sensitive data such as bank account details, credit card information, login credentials, 

personal data, social security numbers, dates of birth, and other sensitive information. If 

unauthorized parties access this information, it can lead to various consequences. One of 

the potential impacts is financial loss. Hackers who gain access to confidential financial 

information can steal money or commit fraudulent transactions, leading to significant 

financial losses for the victim. Additionally, if personal information such as social security 

numbers or dates of birth are compromised, it can lead to identity theft, which can result in 

unauthorized access to financial accounts, loans, and other financial activities, leading to 

significant financial and legal issues. Another potential impact of confidential information 

being compromised on a smartphone is reputation damage. If personal emails, text 

messages, or photos are leaked or accessed, it can damage an individual's reputation and 

personal relationships. In some cases, unauthorized access to confidential information can 
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lead to business disruption. If confidential information is compromised in a business 

setting, it can lead to significant disruption to operations, damage to the company's 

reputation, and potential legal consequences. 

As a result, when a smartphone is lost, it creates a severe security risk as well as financial 

and data loss. Although smartphones have their own security system to be protected from 

unauthorized access, confidential information on smartphones can still be retrieved in 

several ways bypassing the security. Some of the known ways are “Jailbreaking”, 

“Establishing”, “Setting up”. SIM swapping is also a technique used by hackers to gain 

control of a lost smartphone by tricking the mobile service provider into transferring the 

SIM card to a different device [1]. According to a study released from Kensington, 70 

million smartphones are lost each year, with only 7 percent recovered [2]. This raises an 

alarming fact that in most cases, the device can’t be recovered which creates a big security 

issue and a chance of data loss. 

In general, people tend to lose their cellphones in public places like supermarkets, 

restaurants, public transport, mall etc. In 2020, Prey Inc. announced the result of the second 

edition of the Mobile Theft & Loss Report where they stated 67% of mobile losses occur 

in interior locations and 33% when users are in transit or movement [3]. This allows 

strangers to steal the device and creates privacy and security threats. 

There are several solutions to recover data from lost phones. Syncing with Google drive, 

iCloud, CM Cloud etc. helps the users to store their phone data in real time in cloud. 

However, the device must be connected with internet to upload their data in cloud. This 

allows the users to recover their data in case their phone gets lost. Also, some solutions can 

remotely lock and wipe out data from a lost phone. This solution helps users to protect their 

data privacy. Moreover, “Find my device” option can also help to remotely track the 

current location of the lost device and recover the device. However, these solutions have 

some drawbacks too. These solutions require the lost device to be connected with internet 

or a network or the device has to be switched on. In most cases, lost phones are often found 

by strangers, and they switched off the phone. By the time the user realizes that he/she has 

lost the phone, users don’t have the option to secure their data or recover their device. 

https://www.globenewswire.com/Tracker?data=Z26W7bMhZGaIrnJyrKc40VzOxzrHv4syDax8YSebkI4DU9iszGkzQc4ygUeotjUhX3CMKHd1GCRhVFHpGbYLnrNb1kuk9arqhUifeCzobBRpNzNgLCf1t71en1RULmsBRIZO690t24tICwSFPfj-jTSDaAiB59KtffWTSTgyhoI=
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However, all these solutions are for post-loss situations. Once a phone is lost, the chance 

of recovery decreases with time. What if we can have a solution which will prevent the 

device from getting lost in the first place? 

In a study [3], it has been published that 69.12% of phones are lost because of misplacement 

and other 30.88% are because of all kinds of theft. This gives us a view that most of the 

time, we lose our phone being inattentive and leaving the phone behind in public places. If 

there was a way to give users an alert in case they leave their phone behind in a public 

place, it would prevent them from losing their phone.  

In our work, we have implemented a system which provides alert when user is away from 

the smartphone beyond a preferred distance. We have implemented 3 different models to 

incorporate this system. For our work, our core research goals are as follows: 

• How accurate are our models in determining the distance between the smartphone 

and the smartwatch and providing alert accordingly. 

• The impact of our models on smartwatch and smartphone’s battery life. 

• How fast is our models to response and provide alert to the user. 

• The performance of the same algorithmic method in different modules (smartphone 

and smartwatch) in terms of accuracy, reliability, and efficiency. 

1.1 Thesis Contribution 

To incorporate with these issues, this thesis aims to contribute to the following aspects- 

• Our system is incorporated in wearable device which is physically connected to 

our body. Now a days, fitness bands and smart watches are very trendy and useful 

among users. According to the Consumer Watch Report recently released by the 

NPD Group and CivicScience [4], 7 percent of consumers now own a smartwatch, 

and 17 percent own fitness trackers. Fitness trackers and smartwatches have gained 

popularity because they not only allow users to check texts, emails and social 

media but also help us with fitness, health workout tracking, music control and 

many more features. One of the major reasons for choosing fitness band/ 

https://www.npd.com/wps/portal/npd/us/news/infographics/2017/the-watch-consumer-a-deep-dive/


4 

 

 

 

smartwatch for our solution is that these wearable devices always stay in touch 

with our skin and use vibration for notifications and alerts as well as sound. Also, 

as this system will be incorporating in fitness wearable device, users don’t have to 

carry an additional device. Moreover, fitness bands can be purchased at an 

exceptionally low cost (starting from $15). Therefore, for our solution, a fitness 

band or smartwatch will be able to provide prompt caution to the user that the user 

will not miss. 

• Our solution can detect the distance between the smartphone and the smart watch 

which will be worn by the user in real time. Whenever the distance goes over 20 

feet or a customizable preferred distance given by the user, the smartwatch 

generates an alert creating vibration and sound. For the connectivity between the 

smartphone and fitness band, we have used Bluetooth module as fitness bands and 

smartphones have built in Bluetooth module.  

• Although our system aims to provide real-time alert in case our smartphone gets 

absent from our 20 feet radius distance or user’s customized distance, nonetheless, 

this will only be suitable for public places. If it starts to give alert when we move 

away from our smartphone in our safe places like home, office etc. it will be rather 

annoying to users. Moreover, as our main goal of this system is to prevent our 

phone from getting lost, there is no risk of losing our smartphones in our safe 

places. And so, our system provides an option to users to set up their safe places 

and their radius. Our system will stop providing alerts on those selected radius 

areas for the users if they move away from their smartphones. For implementing 

location tracking, we have used the GPS module. When user will set their safe 

location and provide the radius, GPS module will spot the location and mark the 

area within the given radius amount to mark it as user’s safe location. 

• Our system has an Android mobile application through which the user will be able 

to set their preferred parameters such as- 

1. Distance: The maximum distance between the phone and smartwatch after 

which the system will generate an alert. 

2. Location of Safe places: User will be able to set their safe places location 

and radius of the safe places. 
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• For the real-time distance measurement, we have implemented three separate 

models - 

(1) Our Model 1 uses GPS of the smartphone to keep track of user’s presence 

in safe locations and the ranging method formula to calculate the distance 

between two smartphone and smartwatch. This formula uses the Received 

Signal Strength Indicator (RSSI) of the receiving device to measure the 

distance [5].  

(2) To keep track of user’s presence in safe locations and to calculate the 

distance between the smartphone and the smartwatch, our Model 2 uses the 

Haversine method. The Haversine method has a formula which calculates 

the distance between two geographical coordinates. For our system, we 

have used current GPS coordinates of the smartwatch as one coordinate 

point and current GPS coordinates of the smartphone as the other coordinate 

point and applied the Haversine formula to calculate the distance between 

the smartwatch and the smartphone in real time. 

(3) Model 3 uses Haversine formula to keep track of user’s presence in safe 

locations and the ranging method formula to calculate the distance between 

smartphone and smartwatch.  

• We conducted experiments to demonstrate the ability of our models to operate 

under different conditions (including device orientations and positions), and 

covered various locations, and diverse layouts (closed and open spaces) to compare 

their accuracy, efficiency, and impact on battery life of smartwatch and 

smartphone. 

• We have achieved an accuracy of 96% accuracy in generating alert when the 

distance exceeds a predefined threshold using the Model 1 within 0.47 seconds 

response time. And it also can successfully detect user’s presence in safe locations 

with 90.66 % accuracy. 
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Figure 1: Proposed System 

Our proposed system, “Smartphone Loss Prevention System” is a smart solution to prevent 

the users from losing their smartphone. This solution aims to protect users from 

unauthorized access to their private data in case of phone loss, data loss, financial loss and 

mental disturbance. Furthermore, it offers a very cost-effective, affordable solution which 

can be accessible to all people. In this digitalized era, technology is improving everyday 

which is making us more dependent on electronic gadgets, especially on our smartphones. 

People carry their private documents, personal information as well as corporate 

information. Therefore, it has become very important to protect this important piece of 

gadget from being lost in our day-to-day life. Our system offers to provide this protection 

in a very effective way. 

1.2 Thesis Outline 

The rest of this thesis is organized as follows. Chapter 2 provides background information 

regarding smartwatch, smartwatch’s features and implemented methods that we have used, 

and the applications of android app. Chapter 3 provides a literature review of the  

approaches for smartphone loss prevention systems and the application of such approaches. 

In the fourth chapter, we proposed a smartphone loss prevention system which provides an 

alert system when user is away from the smartphone beyond a predefined threshold in 

unsafe location. We also talked about our 3 developed Models which will be used for the 

paper. In Chapter 5, we use various real-world evaluation tests to demonstrate the 
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functionality of our design. In Chapter 6, we conclude our work and make 

recommendations for future work to improve and expand the system. 
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Chapter 2  

2 Background 

This chapter will provide background information about the smartwatch that we have used 

in our work as well as the features of the smartwatch (Bluetooth low energy, RSSI, GPS) 

that has been used along with the implemented methods (Ranging method, Geofencing). 

Then, the applications of android app is discussed. 

2.1 Smartwatch 

With the improving development technology, it has given us a wide range of smart gadgets 

and wearables to make our life easier and smoother. Smartwatch is one of them. Nowadays, 

these smartwatches can perform a lot more functions than just providing time and date. 

Therefore, the demand for smartwatches is increasing day by day. About 18% of men wear 

smartwatches and 25% of women wear smartwatches which is increasing the global 

revenue generated by the smartwatch industry [6]. Over the years, usage of smartwatches 

has increased significantly [Table 1]. The penetration rate in the year 2026 is expected to 

be 2.93% [6]. 

Table 1 : The number of smartwatch users over the years [6] 

Year Number of Smartwatch User 

2017 93.36 million 

2018 122.12 million 

2019 148.74 million 

2020 186.89 million 

2021 202.58 million 

2022 216.43 million 

Smartwatches typically connect to a smartphone or other mobile device via Bluetooth or 

another wireless protocol. They may also include their own cellular connectivity for 

independent use without a paired device. Smartwatches can run a variety of apps and may 

be compatible with various operating systems such as Android, iOS, or proprietary 

software. The most important usage of smartwatch is that it works as a fitness tracker. It 

helps people to track every health detail of their daily life such as the number of steps taken, 
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as well as number of calories burnt throughout the day. It also provides vital information 

about the heart rate, blood pressure and oxygen levels. Moreover, it monitors our sleep 

cycle. These fitness features help people to keep a tab on their health and notice any 

abnormality promptly and take necessary steps accordingly. 

Moreover, we can also receive and manage our calls and messages in smartwatch without 

carrying phone in our hands. Smartwatches can control music playback on a paired 

smartphone or other device. An important feature is that smartwatches can display 

notifications and alerts which we have used in our work.  

The smartwatch market has vastly grown in recent years. There are many vendors available 

in the market providing different qualities of smartwatch. Most popular vendors are Apple, 

Samsung, Huawei, Imoo etc. These vendors sell ready to go products on the market. 

However, for our implementation purpose, we required an open-source smartwatch. There 

are some open-source smartwatches available on market such as PineTime Smartwatch by 

Pine64, Watchy by Squarofumi, OpenHAK, Bangle.js, Bangle.js 2. Although all of the 

mentioned open-source smartwatches provide BLE service, only Bangle.js 2 contains its 

own GPS module which is an important element for our implementation. Therefore, we 

have used Bangle.js 2 smartwatch in our work. 

2.1.1 Bangle.js 2 

Bangle.js 2 is an open-source, hackable smartwatch which has been developed by 

Espruino. The first model build by Espruino was Bangle.js. This new model Bangle.js 2 is 

an upgraded version of the previous one with improved features. The programming 

language of this smartwatch is JavaScript. Bangle.js is water resistant, AI enabled, and 

comes with Bluetooth Low Energy, GPS, a heart rate monitor, accelerometer and more [7]. 

Some of the key features of Bangle.js 2 are [7] – 

• 1.3-inch 176x176 always-on 3-bit color LCD full touchscreen display. 

• 8MB of flash storage and 256kB of RAM. 
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• Nordic 64MHz nRF52840 ARM Cortex-M4 processor with Bluetooth LE. 

• 200mAh battery, 4 weeks standby time. 

• IP67 Water Resistant 

• A range of sensors, including an accelerometer, gyroscope, air pressure sensor, 

temperature sensor, magnetometer, heart rate monitor, GPS, and vibration motor. 

• Bluetooth connectivity, enabling it to pair with a smartphone or other devices. 

• A range of apps that can be downloaded and installed, including fitness trackers, 

weather apps, and more. 

• Option for developing own app as well modify the firmware and build custom 

hardware add-ons according to user’s need. 

 

Figure 2: Bangle.js 2 [8] 

Overall, Bangle.js 2 is a powerful and flexible smartwatch that offers a lot of potential for 

customization and personalization, making it a popular choice among tech enthusiasts and 

developers. 
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2.2 Bluetooth Low Energy (BLE) 

Wireless communication technology has transformed the way we interact with our devices 

and has enabled a new generation of smart and connected devices. One of the most widely 

used wireless communication technologies is Bluetooth, which enables devices to 

communicate with each other over short distances. However, Bluetooth consumes a good 

amount of battery power which is a big drawback. Therefore, traditional Bluetooth is not 

suitable for limited power devices such as wearables, sensors, and other IoT devices. To 

address this issue, Bluetooth Low Energy (BLE) was developed. BLE provides prominent 

features of Bluetooth but with low power consumption. BLE operates in the same 2.4 GHz 

frequency band as traditional Bluetooth [9]. Radio wave bands are used to make 

communications between devices by both Bluetooth and BLE [10]. However, during 

transmission, BLE devices remain asleep which helps it with low power consumption as 

little as 0.01 to 0.5 watt [10][11]. Following this power conservation technique, BLE 

devices only communicate and transfer data when it is necessary rather than having a long 

uninterrupted connection. 

BLE follows an asymmetry architecture where one device will work as central role, and 

another will work as peripheral role [12]. The complex and advanced device such as 

computer, smartphone works in central role and limited power device such as sensors, IoT 

device works in peripheral role [12]. BLE protocol stack consists of 3 layers - the 

application layer provides the interface between the Bluetooth stack and the application, 

the host layer serves the stack of Bluetooth and physical layer handles the data transferring 

and receiving part. Although BLE devices have limited power and resources, they have 

some security mechanisms that they follow to have protection against attack. To ensure the 

confidentiality of the transmitting over network, encryption mechanism is used in BLE 

devices. Moreover, to have protection against unauthorized access, authentication and 

authorization mechanism is also used.  

BLE has two main types of mode- Connected mode and Advertising-discovery mode. 

When both sending and receiving data is necessary, it works in connected mode which 
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allows bi-directional data transfer [13]. In advertising-discovery mode, the device is not 

able to receive any data, it can only transmit data [13]. 

2.2.1 Nordic nRF52840 

There are diverse types of system-on-chip (SoC) available for providing Bluetooth low 

energy connectivity to devices. Nordic nRF52840 processor has been used in the 

smartwatch that we are using for our work, Bangle.js 2. The Nordic nRF52840 is a 

powerful SoC from nRF52 series of chips. This is widely popular for its usage in BLE 

application in low powered wireless products such as sensor, wearables and IoT devices. 

It supports the latest Bluetooth 5 specification covering features such as higher data 

throughput, longer range, increased broadcasting capacity etc. [14].  

 

Figure 3: Nordic nRF52840 [15] 

One of the good features of this SoC is that it has been designed for low power consumption 

which makes it perfect for low-powered devices. Through this BLE application of Nordic 

nRF52840, we have used RSSI from its BLE stack regarding measuring distance between 

smartwatch and smartphone. 

2.2.2 Received Signal Strength Indicator (RSSI) 

RSSI is the measurement of the signal strength of wireless connection such as Bluetooth 

or Wi-Fi. It is measured in decibel-milliwatts (dBm). In the dBm scale, this reference point 
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is represented as 0 dBm [16]. Signals stronger than 1 mW are represented as positive dBm 

values and signals weaker than 1 mW are represented as negative dBm values. For real-

world scenarios, we don't have 0 dBm signal strength. 0 dBm represents a 100% reference 

point, but it doesn't imply that the signal is always at this level. Instead, signals are usually 

weaker (negative dBm values) [17]. A signal strength depends on distance and 

broadcasting power value [18]. The broadcasting power value stays around 2-4 dBm which 

keeps the RSSI strength around -26 dBm (a few inches) to -100 dBm (40m - 50m) [18]. 

Stronger signal is represented by higher RSSI value and weaker signal is represented by 

lower RSSI value. This value can be used in several ways such as in a wireless connection, 

with the help of the RSSI value, it is possible to determine the distance between the 

connected devices. Furthermore, it can be used to get the location of a device in some cases. 

However, due to absorption, diffraction, interference, and other external factors, RSSI 

value’s accuracy sometimes fluctuates. 

There are several methods available to measure the distance between smartphone and 

smartwatch in a Bluetooth connection using RSSI such as Signal strength fingerprinting, 

Triangulation and Ranging. However, signal strength fingerprinting requires pre-

determined database locations and also, can only provide the estimated distance with an 

accuracy of 3m [19]. For using Bluetooth triangulation method, it requires 3 Bluetooth 

devices which makes it not feasible for our work. For this work, we have implemented the 

Ranging method to get the distance between smartphone and smartwatch using the RSSI 

value. 

2.2.3 Ranging Method 

Among all the methods, the ranging method is more efficient in terms of implementation. 

It needs two Bluetooth devices to calculate the distance. One device works as a locator, 

and another works as a target that needs to be found. There are two methods which can be 

followed to measure the distance.  

The first method calculates the time it takes to reach the Bluetooth signal from one device 

to another device [20]. It is called a time of flight. From that time value, it calculates the 

distance between the devices. 
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The second method uses RSSI to measure distance where the RSSI value will be of the 

receiving device. It follows the following formula to compute the distance – 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  10( 
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑜𝑤𝑒𝑟−𝑅𝑆𝑆𝐼

10 ×𝑁
 )[18] 

Here, 

Measured power is a factory-calibrated, read-only constant value which indicates the 

expected RSSI at a distance of 1 meter [18]. It is also known as 1-meter RSSI [18]. 

RSSI is obtained from the SoC’s Bluetooth stack. 

N is constant which stands for the environmental factor [18]. It describes the rate at which 

the signal strength decreases with distance. It ranges between 2-4 where low value 

represents low strength and high value represents high strength. For an indoor environment, 

it is always recommended to keep at a value of 2 as indoor environment has more noise 

and interference than open space which affects the signal strength. 

2.2.4 Haversine Method 

There are several formulas to calculate the distance between two points. Those can be 

applied while calculating distance between two geographical coordinates. However, those 

formulas work considering earth flat for shorter distances. But these formulas begin to 

provide wrong result if the distance is more than 20 kilometers as a result of considering 

the earth flat [21]. This issue can be overcome by considering earth as sphere using 

spherical geometry. Therefore, the Haversine formula is used to calculate the distance 

between two points using the latitude and longitude of the two points with the help of 

spherical geometry. The Haversine formula assumes that the Earth is a perfect sphere, with 

a radius of approximately 6,371 kilometers or 3,959 miles[22] .   

The formula for calculating distance between two point (Latitude 1, Longitude 2) and 

(Latitude 2, Longitude 2) can be expressed as: 

𝑎 = sin2 (
∆𝜑

2
) + cos 𝜑1  . cos 𝜑2  . sin2 (

∆λ

2
)  
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𝑐 = 2 . atan2 (√𝑎 , √(1 − 𝑎)) 

𝑑 = 𝑅 . 𝑐 

Where, 

d is the distance between the two points in the same unit as the radius, 

R is the radius of the sphere, 

φ is latitude in radians where φ1 is Latitude 1 and φ2 is Latitude 2, 

 λ is longitude in radians where λ1 is Longitude 1 and λ2 is Longitude 2, 

∆𝜑 is the subtraction of Latitude 2 and Latitude 1, 

And ∆λ is the subtraction of Longitude 2 and Longitude 1. 

This formula is commonly used in applications regarding navigation and geolocation 

assuming that the Earth is a perfect sphere. Though in reality, the Earth is an oblate 

spheroid, which means that it is slightly flattened at the poles and bulges at the equator. 

Despite this, the Haversine formula still provides a good estimate of the distance between 

two points on the Earth's surface. 

2.3 Global Positioning System (GPS) 

Global Positioning System is a satellite-based navigation system which has been developed 

and launched by the United States Department of Defense in the 1978 [23]. GPS system 

provides users with services like navigation, timing, and positioning.  

This system consists of three segments- the space segment, the control segment, and the 

user segment [24]. The space segment consists of a constellation of 24 satellites, which 

orbit around the earth twice a day in a specific pattern transmitting signals to users on 

geographical position and time of day [24]. The control segment is responsible for tracking, 

monitoring, managing, and maintaining the satellite constellation with its 3 components - 
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Earth-based monitor stations, master control stations and ground antenna [25]. The user 

segment consists of GPS receivers that receive signals from the satellites and use the 

transmitted information to determine the user's 3-D location and time. GPS positioning 

works on basic mathematical concept named Trilateration [26]. GPS receiver device 

receives information from at least three satellites and uses that to calculate the location. As 

one satellite receives only the distance information from the GPS receiver, it is not able to 

provide accurate information about the GPS receiver’s location. Therefore, three satellites 

information is needed to calculate the location of the user. When a satellite sends a signal, 

it creates a circle with a radius measured from the GPS device to the satellite [27]. 

Following that, adding a second satellite will create a second circle which will create an 

intersection area which will narrow down the possible location area of GPS receiver. 

Finally, the circle created by the third satellite will indicate the possible location of the GPS 

receiver in the two points produces the by the intersection of three circles [Figure 4]. This 

will give the 2-dimensional location of the GPS receiver. Fourth satellite is used for a 3- 

dimensional fix (horizontal and vertical) [28].  

 

Figure 4: Satellite Ranging 

GPS is being used in many gadgets in our everyday life such as smartphones, cars, 

smartwatches, fitness trackers etc. People around the world are using GPS regularly in their 

life for different usage of GPS. The main uses of GPS are- determining a position, 
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navigation, timing, tracking, mapping. GPS has revolutionized the way we navigate and is 

now used in a wide range of applications, including aviation, maritime navigation, land 

surveying, and emergency services. GPS also has its usage in other industries like 

autonomous vehicles, drones, sales and services, the military, mobile communications, 

security, agriculture, fishing etc. Although GPS is a reliable and accurate system, 

sometimes its accuracy can be hindered by some outside factors like atmospheric 

conditions, signal obstructions, and receiver errors. 

GPS has made a significant impact on our society. It has changed the way people 

communicate and live and made our environment a safer and easier place to live. 

2.4 Geofencing 

Geofencing is a location-based technology that enables to create virtual boundaries around 

a geographic area. This service is usually used in applications or software using GPS, Radio 

Frequency Identification (RFID), Wi-Fi or cellular data. Depending on how a pre-

programmed action is configured, when a mobile device or an RFID tag enters in the virtual 

boundary, it triggers the action which can be an alert, message, notification, or other action 

[29].  

Geofencing technology is mostly used within the code of mobile application or other 

software. In this case, GPS module is used to select a specific location according to the 

user’s decision. Then, around the specific latitude and longitude of that location, a distance-

based radius defines a circle around the location on map. The circle works as a virtual 

boundary. Using the GPS module of the mobile device or other device, geofencing 

technology allows to trigger action when that device enters or exits the virtual boundary. 

Geofence can be implemented using APIs provided by third party service providers. Some 

popular APIs are Google API, Fencer, Geolocation Simulation, Boundaries.io, 

CA.boundaries.io, IP Geolocation etc. The most popular one is Google Geofencing API 

which provides support from a cloud server called Google Cloud Platform [30]. When 

geofencing monitoring is started, a request is sent to the web address of that API to generate 

a response if any geofencing event occurs. A required action is pre-set by the developer 
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which will be prompted according to the response of API. These APIs are supported in 

several programming languages and SDKs such as Java, C#, Python, Node.js, PHP, Ruby 

etc.  

With the rising use of smartphones and smart devices, popularity of geofencing is growing 

especially for plenty of businesses. Companies use geofencing for their marketing strategy 

to deliver in-store promotions, generating alert as users’ step into the range of the store. 

Also, companies use this to monitor their employees who spend time off-site doing field 

work. This also helps to keep tabs on check-in and check-out of employees in the office. 

Geofencing also helps to escalate target ads to a specific audience based on their location. 

One of the major uses of geofence is seen in social networking application – Snapchat, 

Facebook, Instagram etc. They provide location specific contents, news, ad, filters, and 

stickers based on user’s location. Usage of geofence can also be seen in the field of smart 

appliances, security, and audience engagement too. 

Geofencing is creating a potential mark to revolutionize how businesses operate and 

engage with customers fully utilizing the benefits of this technology. In our work, we have 

implemented geofence in our mobile application to define the safe places for user where 

no alert will be generated if their phone is not in the pre-selected range. 

2.5 Android Application 

Android applications are software applications which run on android platforms. These 

platforms can be mobile, tablet or smartwatch that runs on Android OS. Android is an 

open-source operating system developed by Google. Therefore, many smartphone 

manufacturers use Android OS as operating system for their smartphones. Android verified 

applications are available on the Google play store. However, unverified applications or 

applications which are on development phase can also be installed using the apk file of the 

application. 

Android applications can be developed using several programming languages like Java, 

Dart, Kotlin. The preferred integrated development environment software for android app 

development among developers are Android studio, IntelliJ IDEA, Visual studio etc. Also, 
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there’s a famous open-source software development kit named Flutter which is used to 

develop both android and iOS applications. Android applications are developed for varied 

purposes and the available applications cover a wide range of categories like gaming, social 

networking, productivity, health and fitness, entertainment, and more. 

With the availability of a wide range of free development tools and resources, it is easy to 

develop an application as well as cost-effective. With the help of Android studio, the OS 

has scaled up on flexibility and adaptability. It can integrate with not only smartphone but 

also tablet, wearables and android TV too making android apps compatible with IoT 

devices, AR, VR. Along with that, android platform has enhanced security with new in-

build features to have protection against malware and viruses. Furthermore, as an open-

source platform, it provides the freedom to customize and develop applications according 

to requirements with improved scalability and faster deployment. 

With over 2.5 billion active users of Android OS spread across the world [31], android 

applications have become popular and an integral part of our daily lives, providing us with 

a vast range of services and entertainment options. With continued improvements in 

technology, Android apps will continue to evolve and offer new and innovative ways to 

make our life easier and comfortable. 
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Chapter 3  

3 Literature Review 

This chapter will review the related literature of previous works in smartphone loss 

prevention systems approach as well as pinpoint the shortcomings of existing studies. This 

section discusses different approaches of building the model: hardware based and software 

based approaches as well as the research gaps. 

3.1 Hardware Based Approach 

Hussain et al. [32] focused on a RFID based anti-loss and anti-theft solution. They have 

implemented their system in an RFID reader and equipped that device with a smartphone. 

For the system, the user is tagged with an RFID token which they attached in name tag, 

bracelet, watch, key chain etc. The reader emits radio frequency and receives signal back 

from their user worn tag and by this they keep track of the distance between user and the 

smartphone. The smart phone creates an audio and visual (Screen blinking) alert if the 

distance span goes beyond 2-10 feet. Their work has been based on Android operating 

system and they implemented an android user interface where user can control their 

profiles, transmission power, and various functions related to passive tag like managing, 

activating, and disabling the tag IDs. They have contributed to economizing battery 

overhead, mitigating false alarms, and scanning the tag for multiple times by leveraging 

the interrogation time and power to make their system more efficient. However, this is a 

costly solution ($60) as well as design is costly in power budget. Also, it requires equipping 

an extra device not only with phone but also a tag with the user which makes it less feasible 

solution. 

Another work has been done on smartphone proximity absence detection using RFID 

technology. Aradhana et al. [33] worked on a IoT based system which will generate audio 

alert if user moves away more than 10 feet from his/her smartphone. The idea is to equip 

the cell phone with a low-power RFID Reader and tag the owner with a passive RFID token 

to keep track of the proximity presence. They presented a software compatible with 
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Windows XP/7/8/10, Android (up to 5.0.1) operating system. Before using the device, 

users need to login to their software interface and be authenticated using password. Along 

with that, the user needs to register his/ her phone number on the system. Whenever the 

RFID reader detects that the user is not in the appointed range it will generate an audio 

alert to grab the attention of the user. If the smartphone is not collected in a limited amount 

of time, the latitude and longitude location of the phone is sent to the specified number via 

SMS. Their solution offers to provide preventive measures from anti-loss and anti-theft, 

although the excessive cost of RFID reader and equipping additional device makes the 

solution less user-friendly. 

Bzowski implemented a framework for a smartphone loss prevention system [34]. In this 

work, a number of Raspberry Pi have been used in user’s frequently visited places like 

home, office, car etc. Those devices monitor the user’s smartphone as they move between 

those frequently visited places and exchange their data with each other using a cloud 

infrastructure as central datastore. With this communication, the devices check that when 

the user enters into one entity, they use facial recognition to identify the user and check if 

the smartphone is with the user or not via searching for Bluetooth signature of the 

smartphone. If not found the devices will retrieve the last logged event from the shared 

datastore to determine if the smartphone is currently located in a trusted location where 

another device is present. If not found the system will attempt to communicate with the 

smartphone over the Internet and cellular networks to initiate “Find My Phone” services 

and to gather information on its current location and broadcast an auditory message using 

text to speech technology to deliver information to user such as where the is currently 

located and for approximately how long it has not been with the user.  

A work has been developed by Yang et al. [35] named Surround-see which is an omni 

directional camera equipped with the smartphone. This enables peripheral vision around 

the device to observe the surroundings. Based on that it can trigger reminders based on an 

environment it recognizes, perceives, and points at specific objects in the mobile device’s 

periphery and most importantly detects when the user walks away from it. As per the 

detection of user walking away, it can be used to generate an alert too. However, the 

additional camera itself is a big piece of equipment to be attached with the smartphone 
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which is not feasible to carry with the smartphone. Moreover, it can only cover the front 

view of the camera, and with a larger area of blind sites, it is not effective for smartphone 

loss prevention system. 

Despite of achieving good result, there are some disadvantages of carrying such additional 

devices like- 

• One potential problem with relying on an additional device to receive alerts if the 

phone is not nearby is that it requires the user to always carry an extra device. 

• An additional device is not practical or feasible for everyone, especially if you are 

traveling light or do not want to carry multiple devices.  

• Another problem is that the additional device may also be lost or stolen, which 

would render the alert system useless. 

• There is also the issue of battery life. If the additional device is constantly 

monitoring your phone's location and sending alerts, it may drain the battery 

quickly and require frequent battery replacing which could be inconvenient. 

• Moreover, the devices use sound for alert, however, user might not hear the alert 

sound in a loud noisy public place.  

3.2 Software Based Approach 

Chaperone, a study by Chen et al. [36], provided a different solution which offered real-

time locking and loss prevention for smartphones. This solution is a completely open-

source, standalone android application and it does not require any additional device. The 

solution detects a phone’s unattended status by tracking the owner’s departure by active 

acoustic sensing via the built-in speaker and microphone of the smartphone. To help 

reproduce their findings, and improve acoustic sensing, they have collected dataset from 

both lab and real-world experiments. Once the system detects that the user is not near the 

phone, the phone triggers an alert method using, e.g., a ringtone, vibration, notification 

sound, or screen flashing. The system only performs the active acoustic sensing when the 

device is not in use, not on the user’s body, and in a potentially untrusted or public 

environment. They have conducted 1345 experiments in distinct locations and different 

conditions to determine the ability of Chaperone. And the system was able to detect these 
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events in under 0.5 seconds for 95% of the successful detection cases. It also provides an 

overall precision rate of 93% and an overall recall rate of 96% for smartphone loss events. 

Samsung has enabled a notification option for Galaxy watches. When the Bluetooth 

connection between smartphone and galaxy watch gets disconnected, it provides a 

notification. However, this is only a notification not an alert as well as user also can’t set 

their preferred distance parameter for when they want to get an alert. Moreover, this feature 

is always enabled in all locations, even at home. Users raised concern about this as getting 

notification about Bluetooth disconnection at home is not necessary for them and 

sometimes can be annoying [37]. 

Li et al. presents a system called iLock that is designed to prevent data theft on mobile 

devices [38]. The iLock system is capable of quickly and accurately identifying when a 

user has become physically separated from their mobile device by analyzing changes in 

wireless signals. As soon as significant separation is detected, the device is automatically 

locked to prevent data theft. iLock relies on acoustic signals and can be used with most 

commercially available mobile devices that have at least one speaker and one microphone. 

The Samsung Galaxy S5 was used in numerous experiments to validate the effectiveness 

of iLock. These experiments demonstrated that iLock had a remarkably high success rate 

with very few false positives and negatives.  

There are many mobile applications available such as Cerberus, Anti-theft Alarm, McAfee 

Mobile security, CrookCatcher, Prey, Find my device etc. which can help regarding finding 

the phones location, remotely locking the phone, securing data of the phone by remotely 

wiping data, transferring, and backing up data remotely [39]. But these applications are 

useful after a phone is already lost. They can’t provide support to protect the phone from 

being lost. 

3.3 Addressing the Existing Research Void 

Although the above-mentioned research efforts have made a significant improvement in 

this area of research. However, there are some research gaps in the existing works which 

are mentioned below- 
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• The works of Hussain et al. [32] and Aradhana et al. [33] are based on RFID 

technology and both of their systems require equipping an extra device not only 

with phone but also a tag with the user which is less user friendly. Moreover, the 

solutions are costly as well as the distance threshold is fixed, and user can’t change 

it. Furthermore, the system also works when the user is in a safe location (home, 

office etc.), which is unnecessary and annoying for users. 

• In [34], we can see that the system requires multiple additional devices in several 

locations which are costly and less efficient. And this system doesn’t provide 

instant alert which can prevent the smartphone from getting lost.  

Table 2 : Existing System's Research Void 

Reference  Equipping 

extra 

device 

Costly 

Solution 

Fixed 

threshold 

Provides 

alert in 

both safe 

& unsafe 

Location 

Doesn’t 

provide 

Prompt 

Alert 

False 

Negative 

Alerts 

post-

incident 

solution 

 [32] ✓ ✓ ✓ ✓    

 [33] ✓ ✓ ✓ ✓    

[34] ✓ ✓  ✓   ✓ 

[35] ✓ ✓  ✓  ✓  

[36]    ✓  ✓  

[40]   ✓ ✓    

[38]    ✓ ✓ ✓ ✓ 

[39]    ✓ ✓  ✓ 

• In [35], it requires an additional camera which is a big piece of equipment as well 

as expensive to be attached with the smartphone which is not feasible to carry with 

the smartphone. Moreover, it can only cover the front view of the camera, and with 

a larger area of blind sites, it is not effective for smartphone loss prevention system. 

Although the camera provides view of the peripheral space but presents pixel loss 

which makes the image distorted making the object detection harder. Furthermore, 

the object seen from the omni-directional lens is smaller than what can be seen with 

a normal lens. This makes object recognition harder for the system and produce 
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wrong alerts. Additionally, the system also provides alert when the user is in a safe 

location, which is not necessary for users. 

• Although the work of Chen et al. [36] provides a good accuracy, it generates some 

false negative results in terms of detecting the real owner and wrongly deciding the 

owner leaving by some movements of user where user is not actually leaving. 

Moreover, it provides alert even when user is at home or office which makes it 

bothersome for user. 

• The notification of Samsung Galaxy watches regarding Bluetooth disconnection 

with the smartphone only generates notification when Bluetooth gets disconnected 

which is not a fixed distance threshold. Moreover, the notification system also 

works when the user is in a safe location (home, office etc.), which is unnecessary 

and annoying for users. 

• The work of Li et al. [38] and the mobile applications such as Cerberus, Anti-theft 

Alarm, McAfee Mobile security, CrookCatcher, Prey, Find my device etc. [39] are 

effective for post-incident scenarios and will not provide instant alert to prevent the 

phone from getting lost. Moreover, the system also runs its service even when the 

user is in a safe location. 

Unlike the above-mentioned research efforts, we have implemented our system 

contributing and minimizing the research gaps of the existing system.  

✓ Our system can be implemented in any smartwatch or fitness band which can be 

purchased at an exceptionally low cost (starting from $15) which makes it a cheaper 

solution.  

✓ Our system doesn’t have a fixed distance threshold, so users can change it 

according to their need. 

✓ Our system doesn’t provide alert when the user is in a safe location and only works 

when user is in unsafe locations. 

✓ Our system provides prompt alert with an average response time of 0.47 seconds. 
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✓ Although our system involves using an additional device, smartwatch, it is a 

wearable device which user doesn’t need to carry as well as it is a popular accessory 

that people mostly use in their everyday life. 

✓  We have implemented 3 different models to implement different algorithms to 

evaluate their performance in terms of accuracy, battery optimization and reliability 

and find the best model which can provide good results in all of the parameters 

minimizing the false negative result ratio. 

Apart from minimizing the research gaps of the existing system in our system, from 

business perspective, there are several reasons why users will be attracted to buy a 

smartwatch as a smartphone loss prevention system over other devices: 

• For other smartphone loss prevention devices such as RFID devices and omni 

directional camera, prices start from $50 for RFID readers and $100 for omni 

directional camera. Whereas fitness bands or smartwatches can start at prices as 

low as $15 which makes it a cheaper solution compared to other solutions. 

• For other loss prevention devices, they use sound and screen flashing as alert. 

However, in public places due to noises, users can fail to hear the sound alert or 

notice the screen flashes. Smartwatches always stays in touch with user’s skin. 

Therefore, when alert is generated, even if users miss the alert sound or screen light, 

users will be able to notice the vibration alert faster than any other solutions. Also, 

this is particularly helpful for individuals with hearing impairments as they can feel 

the vibrations on their wrist. 

• Smartwatches are worn on the wrist and are easily accessible. Users are more likely 

to wear them consistently compared to other standalone loss prevention devices, 

which can be left at home or forgotten. 

• Users don't need to dig through their bags or pockets to find a separate device when 

they want to use the loss prevention system. 

Moreover, promoting smartwatches as loss prevention systems provides sellers and 

manufacturers of smartwatches with a unique selling proposition that can differentiate their 

products in a competitive market. 
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Chapter 4 

4 Proposed Smartphone Loss Prevention System 

In this chapter, we described our development platform and our proposed architecture that 

was developed using the platform for development. We have implemented 3 separate 

models to develop the system- 

1. Model 1 (Integrated with RSSI of smartwatch and Android application) 

2. Model 2 (Integrated with GPS of smartwatch and Android application) 

3. Model 3 (Integrated with GPS and RSSI of smartwatch and Android application) 

We have discussed all 3 models in this chapter. 

4.1 Development Platform 

Our development platform consists of a smartwatch from Espurino (Bangle.js 2), Espurino 

IDE, Android Studio and an android smartphone from Samsung (Galaxy S22) and details 

are discussed below: 

We have used the latest version of Espurino watch, Bangle.js 2. We have implemented a 

part of Model 1 and Model 2 in Bangle.js 2 and Model 3 is fully implemented in Bangle.js 

2. To maintain the connectivity with the smartphone that we are preventing from getting 

lost, we have used Bluetooth Low Energy (BLE). Bangle.js 2 uses Nordic nRF52840 chip 

to implement the BLE feature as well as power management. Nordic nRF52840 chip allows 

concurrent Bluetooth 5.2 which is the latest version of Bluetooth technology which 

provides some key benefits [41]- 

• Increased Data Transfer Speeds: Bluetooth 5.2 provides a data transfer facility 

which is faster than the previous version, Bluetooth 5.0. 

• Improved Range: Bluetooth 5.2 has increased the range of Bluetooth which 

broadens the radius of connectivity area.  
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• Reduced Interference: Bluetooth 5.2 features have reduced interference with other 

wireless technologies such as Wi-Fi and LTE.  

• Improved Security: Bluetooth 5.2 features enhanced security measures which 

provide improved encryption and protection against eavesdropping and hacking. 

This BLE feature has been used to implement all the 3 models of ours. In addition, we have 

also used the AT6558 navigation chip of the Bangle.js 2 to use the GPS feature. This chip 

is able to obtain accurate global location information, quick and accurate positioning for 

any location [42]. It is also designed to be highly power-efficient, which makes it ideal for 

use in battery-powered devices like wearables and smartphones. GPS of Bangle.js 2 has 

been used in our Model 2 and Model 3 in different manners.  

Espurino which is an open-source firmware has its own IDE to implement programs in 

Bangle.js 2. We have programmed it from our Chrome browser (Version 111.0.5563.65). 

This is a wireless process where the connectivity relies on web Bluetooth. The 

programming on Bangle.js 2 is solely dependent on JavaScript which was the programming 

language that we used to implement our algorithms for our models. 

We have also developed an android application for Model 1, Model 2 and Model 3 using 

Android studio. Android Studio is the official IDE for Android app development which 

provides a powerful and user-friendly interface for developing Android applications, 

including tools for designing user interfaces, coding, debugging, and testing. We have used 

the programming language Kotlin to develop our algorithm in android studio. The 

developed application later has been deployed in our smartphone, the Samsung Galaxy 

S22.  

Galaxy S22 is one of the most recent smartphones released by Samsung. It is equipped 

with the most updated Processor, Bluetooth module and positioning system [Table 3]. We 

will be using the Bluetooth module to keep connectivity with the smartwatch in all the 

models. Same as Bangle.js 2, it also allows Bluetooth 5.2 which let them establish a 

communication link using Bluetooth Low Energy (BLE) and can exchange data wirelessly 

at high speeds while maintaining a stable and reliable connection. Furthermore, 

Snapdragon8450 uses the latest technology for positioning features which provides 
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excellent GPS accuracy. We have used this GPS module of Galaxy S22 in our Model 1 and 

Model 2 to provide safe-zoning feature to our work.  

Table 3: Smartphone Specification[43] 

Name Galaxy S22 

Processor Snapdragon8450 

OS Android 12, upgradable to Android 13 

Memory 128GB 8GB RAM, 256GB 8GB RAM 

Bluetooth 5.2, A2DP, LE 

Positioning GPS, GLONASS, BDS, GALILEO 

Battery Li-Ion 3700 mAh 

 

We utilized a Windows 10 PC Processor Intel(R) Core (TM) i5-7300HQ CPU @ 2.50GHz   

2.50 GHz and 8.00 GB of RAM for developing both applications for the smartphone and 

smartwatch. 

4.2 Proposed System 

Our proposed system offers users an alert system installed in a smartwatch which will 

notify the users when they are 20 feet or their preferred distance away from their phone. 

And this alert will generate every place except for users saved safe locations. Therefore, 

for our proposed system, calculating the distance between smartphone and user and 

tracking whether user is in a safe zone area are the main key areas. We have implemented 

3 separate models to achieve the results of these two areas which are discussed in the 

following sections. Our research goal is to see how accurately each model performs to 

generate alerts. Also, we focused on the battery optimization and response time 

performance of each model as well. Moreover, we have implemented similar algorithms in 

different modules (smartphone and smartwatch) in each model to compare their 

performance in different modules and find the most efficient, reliable, and best fitted 

model. Our core workflow of our proposed system is executed by running a series of steps 

[Figure 5] repeatedly.  

Initially, users can provide two types of information- 
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• Preferred Distance: This value represents the maximum threshold limit of the 

distance between smartphone and smartwatch. When the distance between 

smartphone and smartwatch goes beyond the preferred distance, an alert will be 

generated on the smartphone. If the user doesn’t set this, 20 feet will be considered 

as default value. 

• Safe Location set: User can set their safe locations such as home, office etc. where 

alerts will not be triggered if the distance between smartphone and smartwatch goes 

beyond the preferred distance.  

 

Figure 5: Workflow of Proposed System 
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The system starts its repeated process running the following steps in every process. The 

system first takes users current locations input and run geofencing algorithm. By the 

geofencing algorithm, the system gets the result whether user is inside a safe location or 

not. Based on the 2 possible events – a) User is not in safe location and b) User is in safe 

location, the system executes the following steps- 

a) User is not in safe location: In this case, system runs the algorithm for calculating 

the distance between user and smartphone. As our system is installed in the 

smartwatch worn by the user, ideally, we will calculate the distance between the 

smartwatch and smartphone. For this distance calculation we have implemented 

different algorithms in our 3 models to compare their accuracy and efficiency which 

will be discussed in the following sections. After receiving the distance value, the 

system will check whether it is greater than the users preferred distance or not.  

i) If it is greater than the preferred distance, the smartwatch will generate an alert 

to notify the user that their smartphone is not nearby.  

ii) However, if the distance value is not greater than the preferred distance then it 

will not generate any alert.  

After that the user will check if the user wants to close this application. If yes, then 

the system will end its process otherwise it will go to the first step and repeat the 

entire process. 

b) User is in safe location: In this scenario, the system doesn’t execute the distance 

calculation algorithm as user doesn’t need any alert in safe locations. Therefore, to 

reduce computational cost, we skipped the distance calculation algorithm. When 

the user is in a safe location, the system only checks whether the user wants to close 

the application or not. If the user wants to close the application, the system ends the 

process. Otherwise, it will go to the first step and repeat the entire process. 

For implementing the two key areas- distance calculation and safe location tracking, we 

have implemented different algorithms and techniques to compare their accuracy and 
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efficiency. Following these different approaches, we have built 3 different smartphone loss 

prevention system models which are described in the following sections. 

4.3 Model 1 (Integrated with RSSI of smartwatch and 

Android application) 

Our Model 1 consists of an android app installed in the smartphone that we want to prevent 

from getting lost and the smartwatch that user wears. In this model, the user directly 

interacts with the android application, and doesn’t need to interact with the smartwatch. 

Through the android application, the user can set their preferred distance and safe locations. 

Based upon adding a new safe location or existence of previously safe location/s, the 

system starts the geofencing algorithm. The broadcast receiver captures the event if user 

enters or exits from any safe location. If any event occurs or the user changes the preferred 

distance value, the application sends an intent to bangle.js 2 smartwatch which contains 

the event information. Even if the user doesn’t set any preferred value, the system works 

perfectly considering default values. The default value of preferred distance is 20 feet and 

if user doesn’t have any previously saved safe location, the system will consider that user 

is in unsafe location always. 

 

Figure 6: Model 1 Architecture 
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In the smartwatch end, the system listens for any event information sent by the android 

applications and updates accordingly in smartwatch’s end. Based on user’s current location 

whether user is inside a safe location or not, it runs the distance calculation algorithm and 

generates alert when necessary. The whole process runs in every second repeatedly.  

4.3.1  Android Application Module for Model 1 

As one of the main functions of our android application is to work with geofencing, we 

need some permissions from the device to execute this. Our application mostly depends on 

the location feature of the phone via GPS module. Usually, for any new application of 

smartphone most of the permissions stay denied by default. For requesting geofence  

 

Figure 7: Workflow of Android application Module for Model 1 
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monitoring, it needs to request the necessary permissions. To use geofencing, your app 

must request the following: 

• ACCESS_FINE_LOCATION : To access GPS data such as device’s precise location, 

the system needs this permission to be allowed. 

• ACCESS_BACKGROUND_LOCATION: Background location access is needed if  

the app constantly shares location with other users or uses the Geofencing API [44]. 

As our application will use the Geofencing API, we need background location 

permission. 

These permissions can be granted by the user by selecting “Allow all the time” option for 

the application’s location setting. For our application, the system first checks if these 

permissions are allowed for our app or not. If it’s not allowed, then our application 

forcefully takes the user to smartphone’s setting to grant “Allow all the time” access for 

our app following the Algorithm 1.  

Algorithm 1: Setting Location Permission  

1: Check if the permission for the location index is denied or the permission for  

 the background location index is denied. 

2: IF any of the above conditions are true, THEN  

3:  Show a Snackbar message that explains the reason for the permission  

  and provides a button to take the user to the app settings screen. 

4:  The Snackbar message should be displayed using the make() method. 

 
5:  The setAction() method is used to set the text and behavior of the button. 

 
6:  The startActivity() method is used to open the app settings screen. 

 
7: END IF 

  

After granting the permission, the user can change the preferred distance as well as add 

safe locations. For this model, the user can save a maximum of 5 safe locations. The system 

has listeners to check whether they perform these changes by implementing button 

listeners. If the user changes the preferred distance, a new intent is created, and the system 

https://developer.android.com/reference/android/Manifest.permission#ACCESS_FINE_LOCATION
https://developer.android.com/reference/android/Manifest.permission#ACCESS_BACKGROUND_LOCATION
https://developer.android.com/training/location/geofencing


35 

 

 

 

sends the intent to bangle.js 2 by implementing Algorithm 2. The systems add the preferred 

distance value given by user as “event” in JSON object which is sent to the Bangle.js 2. 

 

Algorithm 2: Sending Intent to Bangle.js 2 

1: Create a new JSONObject and assign it to jsonData 

2: Set the value of event in jsonData naming it as ‘t” 

3: Create a new Intent with the action "com.banglejs.uart.tx" and assign it to 

 sendIntent. 

4: Set the "line" extra of sendIntent to "\u0010GB($jsonData)\n". 

5: Broadcast sendIntent using sendBroadcast method 

  

On the other side, for adding a safe location, the user needs to be present in that location. 

User needs to provide 2 information- 

• Name: Name of the safe location. 

• Radius: Geofencing algorithm marks every safe location as a circle. User needs to 

provide the radius value of the circle based on users need about how much area user 

wants to include in the safe location zone. The unit of the radius in our work is feet. 

Upon getting the information from the user, the system calls Algorithm 3 and fetches the 

user’s current location. The system integrates with Google API to get the current location 

of the user. From that, the system extracts latitude and longitude information and saves the 

data to be persistent across application restarts. For storing the data, we have used Shared 

Preferences which is a persistent way to store and retrieve data in android applications.  

Algorithm 3: Get Current Location 

1: Build a GoogleApiClient object using the GoogleApiClient.Builder() method and 

 assign it to the variable mGoogleApiClient. 

2: Add the LocationServices.API to the GoogleApiClient using the addApi() 

method. 3: Connect to the GoogleApiClient using the connect() method on the  
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 mGoogleApiClient object. 

4: Create a LocationRequest object using the create() method and assign it to the 

 variable mLocationRequest. 

scss 

 

5:  Set the priority of the location request to PRIORITY_HIGH_ACCURACY 

  using the setPriority() method. 

6:  Set the interval between location updates to UPDATE_INTERVAL using 

  the setInterval() method. 

 
7:  Set the fastest interval for location updates to FASTEST_INTERVAL using 

  the setFastestInterval() method. 

 
8: Check if the app has the required location permissions calling Algorithm 1. 

9: IF the app doesn't have the required location permissions, THEN 

 
  return from the method. 

10: ELSE 

 
11:  Request location updates using the LocationServices.FusedLocationApi. 

  requestLocationUpdates() method, passing in the mGoogleApiClient, 

  mLocationRequest, and 'this' as arguments. 

12: END IF 

13: Retrieve the latitude value from mLocation and store it in the "latitude" variable. 

14: Retrieve the longitude value from mLocation and store it in the "longitude"  

 variable. 

  

After receiving the latitude and longitude value, the system stores the value in a shared 

preference. Shared preferences don’t provide correct value if it is modified after saving 

one. Therefore, the system has enabled to create maximum 5 shared preferences which will 

store the value of 5 safe locations.  

Before starting geofencing, the system checks how many shared preferences has been 

created. If no shared preferences has been created, that means the user didn’t add any safe 

location and the system will not start geofencing process. If one or more than one Shared 

Preferences is found, then the system starts the geofencing process. To implement the 

geofencing process, our system uses Google Geofencing API. To use the Geofence API, 



37 

 

 

 

the Google Maps API key has been integrated in the manifest through Google cloud 

Platform. First, the system creates a geofencing object with all the saved safe location’s 

latitude, longitude, name, and radius value running Algorithm 4. While building every 

geofences, the Id will be the name of the safe location. And for the circular region, the 

latitude and longitude value of the safe location is considered as center of the circle and 

radius of the safe location is the radius of the circle. As transition type, system only 

monitors 2 transitions for each geofence- 

• GEOFENCE_TRANSITION_ENTER: When user enters in a safe location, this 

event occurs. 

• GEOFENCE_TRANSITION_EXIT: when user exits a safe location, this event 

occurs. 

Defining these in transition type allows the broadcast receiver to take necessary steps in 

case these events occur. For every saved safe location, a geofence is created and added to 

a list named “geofencelist". Then, we create new geofencing requesting adding the 

“geofencelist” which needs to be monitored and build it in step 14 of Algorithm 4. 

Algorithm 4: Create Geofencing Object 

1: FOR each created safe location, DO 

2:  Create a new geofence using the Geofence.Builder() method 

3:  Set the request ID for the geofence to the name of the safe location 

4:  Set the circular region for the geofence to the latitude, longitude, and 

  radius of the safe location. 

5:  Set the expiration duration for the geofence. 

6:  Set the transition types “GEOFENCE_TRANSITION_ENTER” and  

  “GEOFENCE_TRANSITION_EXIT” of interest for the geofence. 

7:  Build the geofence object and add it to the "geofencelist". 

8: END FOR 

9: Build a new geofencing request using GeofencingRequest.Builder(). method. 

10:  Set the initial trigger “GEOFENCE_TRANSITION_ENTER” and 

geofencing request. 

https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.html#GEOFENCE_TRANSITION_ENTER
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.html#GEOFENCE_TRANSITION_EXIT
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.html#GEOFENCE_TRANSITION_ENTER
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.html#GEOFENCE_TRANSITION_EXIT
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.html#GEOFENCE_TRANSITION_ENTER
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  “GEOFENCE_TRANSITION_EXIT” for the geofencing request. 

11:  Add the "geofencelist" to be monitored to the geofencing request. 

12:  Build the geofencing request. 

13: Remove any existing geofences that use the pending intent for geofence updates. 

14: Add the new geofence request with using geofencingClient.addGeofences() 

method.  method with new geofencing Request and PendingIntent as parameters. 

 
  

Geofencing function should be running in the background after closing the application and 

handle the geofences transitions. To implement that, we have used Broadcast Receiver. A 

BroadcastReceiver gets updates when an event occurs, such as a transition into or out of a 

geofence and can start long-running background work [45]. We have defined a 

PendingIntent to start and define the Broadcast Receiver in Algorithm 5. Every time a new 

geofencing request is built, geofence is added and it uses PendingIntent to start broadcast 

receiver anew. When user adds a new safe location, it needs to be added to the geofence 

object. Therefore, system calls the Algorithm 4 from step 1 to add the new safe location to 

the geofence object. However, previously created geofence still uses the Pending Intent. 

Thus, it is important to remove any existing geofence object that uses pending intent. And 

so, before adding the new geofence in step 14, system removes any existing geofence that 

uses system’s Pending Intent. 

Algorithm 5: Define Broadcast Receiver  

1: Initialize a lazy value geofencePendingIntent with the following code block: 

2:  Create a new Intent object with context this and   

  GeofenceBroadcastReceiver::class.java as parameters, and assign it to  

  variable intent. 

3:  Set the action of intent to ACTION_GEOFENCE_EVENT. 

4:  Create a new PendingIntent object using PendingIntent.getBroadcast  

5:  with the following parameters: 

6:   this: current context 

7:   Request code for the PendingIntent 

8:   intent: the Intent object created in step 2 

https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.html#GEOFENCE_TRANSITION_EXIT
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9:   PendingIntent.FLAG_UPDATE_CURRENT: flag to update the 

   existing PendingIntent if it already exists. 

10:  RETURN the PendingIntent object created in step 4. 

  

The location services of the system listen for the events when user enters or exits any safe 

location. When this event occurs, it sends the Intent contained in the PendingIntent which 

was included in the geofence request to add geofences. The system’s broadcast receiver 

can notice when any Intent invokes and extracts the geofencing event from the intent. Later, 

it sees the type of transition. Based upon type of transition, it sends intent to Bangle.js 2 

following Algorithm 2. If the transition is “GEOFENCE_TRANSITION_ENTER”, it 

sends “enter” in the “event” attribute of Algorithm 2. Otherwise, if the transition is 

“GEOFENCE_TRANSITION_EXIT”, it sends “exit” in the “event” attribute of Algorithm 

2. 

This geofencing monitoring runs in the background even after closing the application and 

notifies the smartwatch promptly when any triggering event occurs.  

4.3.2 Smartwatch Module for Model 1 

The key functionality of this module is to calculate the distance between the smartphone 

that we want to prevent from getting lost and the smartwatch that will be worn by the user. 

For calculating distance, we will be using the RSSI value of the Bluetooth connection 

between smartphone and smartwatch. To incorporate the RSSI value in distance 

calculation, our system uses Ranging method’s formula which uses measured signal 

strength for RSSI value- 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  10( 
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑃𝑜𝑤𝑒𝑟−𝑅𝑆𝑆𝐼

10 ×𝑁
 ) Meter[18] 

For Bangle.js 2 the measured power is considered as -56 and we have set the value of N=2 

considering our system may have to work in an indoor environment which may affects the 

signal strength. Moreover, the unit of ranging formula is Meter. To convert it to feet, we 

have multiplied the distance by 3.28084. Therefore, our final formula will be-  

https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.html#GEOFENCE_TRANSITION_ENTER
https://developers.google.com/android/reference/com/google/android/gms/location/Geofence.html#GEOFENCE_TRANSITION_EXIT
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𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  10( 
−56−𝑅𝑆𝑆𝐼

10 ×2
 ) × 3.28084  𝑓𝑒𝑒𝑡 

=  10( 
−56−𝑅𝑆𝑆𝐼

20
 ) × 3.28084 𝑓𝑒𝑒𝑡 

 

Figure 8: Workflow of Smartwatch Module for model 1 

Initially, the preferred distance is set as 20 feet. The variable that keeps track of whether 

user is in safe location or unsafe location is called “tag” for our system. The default value 

of “tag” is “unsafe” so that it can start the safety measure steps for preventing the 

smartphone from getting lost immediately. Later, the system can act upon receiving the 

event sent from the android application. System uses Event Listener, Algorithm 6, to 

update the preferred distance and safe/unsafe location information sent by the android 

application. The system updates the value in its own environment variable 

“preferredDistance” and “tag”. 

Algorithm 6: Event Listener  

1: Define a global function called "GB" that takes an event as input. 

2: Check the type of the event by evaluating the "t" property of the event object. 

3: IF the type of the event is "enter", THEN  

4:  Set the value of the "tag" variable to "safe". 
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5: END IF 

6: IF the type of the event is "exit", THEN 

7:  Set the value of the "tag" variable to "safe". 

8: END IF 

9: IF the type of the event is not "enter" or "exit", THEN 

10:  Parse the "t" property of the event as an integer  

11:  Store it in the "preferredDistance" variable. 

12: END IF 

  

When the user is in a safe location, running the distance calculator, Algorithm 7, is not 

necessary as well as it will save computational cost and energy. Therefore, we only run the 

distance calculation algorithm when the user is in an unsafe location. To get the RSSI value, 

we use NRF.setRSSIHandler(data) function. This is a method of the Nordic 

Semiconductor's SoftDevice API that sets a callback function to handle changes in the 

Received Signal Strength Indication (RSSI) value of the Bluetooth Low Energy (BLE) 

connection. The “data” parameter in the callback function is an object that contains 

information about the current RSSI value. When we set the handler, it starts providing the 

RSSI values. Sometimes, for noise and interference, some RSSI values can be affected. 

However, if we consider taking 10 values of RSSI and use the average value, that one 

affected RSSI value will not be able to make any tremendous changes as it will be scaled 

after calculating average. Therefore, for more accurate value, the system takes 10 values 

of RSSI and calculates distance for those 10 RSSI values separately. After getting 10 

values, the system stops the handler so that it can stop fetching RSSI data for a while. As 

the handler keeps fetching RSSI value in a few milliseconds’ duration, stopping the handler 

saves some computational cost and prevents from having a long thread queue and making 

RAM memory full. If the system finds that the average distance is greater than the preferred 

distance that means that user went beyond the preferred distance value leaving his/her 

phone behind. In this scenario, our system generates an alert on the smartwatch. It will 

prompt a message on the smartwatches screen “Your Phone is not nearby.” Which will turn 

on the screen light. Moreover, the system will call the Bangle.beep function 5 times for 

generating vibration and call Bangle.buzz functions 5 times to generate sound to alert the 
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user. Thus, our system generates the alert targeting users 3 senses – audio, visual, touch. 

User can dismiss the message clicking the okay button on the smartwatch’s screen. 

 

Algorithm 7: Distance calculation using RSSI  

1: Declare and initialize “rssicount” and set variable to 0. 

2: Declare and initialize “sum” and set variable to 0. 

3: IF tag equals "unsafe", THEN 

4:  Set RSSI handler to function(data) 

5:   Calculate distance = 10 raised to the power of  

   ((-56 - (data)) / (20)) multiplied by 3.28084. 

 6:   Add distance to sum. 

7:   IF increment of rssicount is greater than 9 THEN 

8:   Remove RSSI handler. 

9:   Calculate average distance by dividing sum by 10. 

10.   IF average distance is greater than preferredDistance THEN 

11.    Display prompt "Your Phone is not nearby." with title  

    "Alert!". 

12.    Call the beep function of the Bangle object 5 times. 

13.    Call the buzz function of the Bangle object 5 times. 

14:   END IF 

15:   END IF 

16:  END FUNCTION 

17: END IF 

18.  WAIT for 1000 milliseconds to rerun this algorithm. 

 
  

This algorithm keeps running every 1000 milliseconds to provide a constant monitoring to 

prevent the smartphone from getting lost.  
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4.4 Model 2 (Integrated with GPS of smartwatch and Android 

Application) 

Our model 2 uses an android application interface for user interaction similar as the Model 

1. Users can provide their preferred distance and safe location information via application 

interface. In this model, the user can save a maximum of 5 safe locations like Model 1 

using Shared Preferences. However, for this model, we have implemented GPS based 

distance calculator algorithm using haversine formula. Haversine formula calculates the 

distance between two points using the latitude and longitude of both points. In order to 

calculate the distance between smartphone and smartwatch, we need the current GPS 

 

Figure 9: Model 2 Architecture 

 

information of both smartphone and smartwatch. And the location of both smartphone and 

smartwatch may change from time to time. So, the system calls the current location 

fetching algorithm for both smartwatch and smartphone in every 2 seconds and updates the 

variables accordingly. However, when user is in safe location, system doesn’t call the 

current location fetching algorithm for both modules to save energy and reduce 

computational cost. When a user is in an unsafe location both modules run the location 
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fetching algorithm and smartwatch module runs the distance calculation algorithm and 

generates alert when it is needed.  

4.4.1 Android Application Module for Model 2 

Similar as Model 1, for Model 2, it is mandatory that the location setting for this application 

must be “Allowed all the time”. We have used Algorithm 1 to check the location setting 

for the application and take the user to settings of phone if the location permission is not in 

allow mode for this application. For saving the safe locations, the system uses Shared 

Preferences and Algorithm 3 to get the current location same as model 1. 

 

Figure 10: Workflow of Android Application Module for Model 2 

For model 2, we didn’t implement the geofencing algorithms using Google API in android 

application. We have used a distance calculation technique using haversine formula to keep 
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track whether user is in safe location or not. For the distance calculation using haversine 

formula for both android application module and smartwatch module, system needs its 

current location which needs to be updated in every 2 seconds. Moreover, as we are not 

using any broadcast receiver, we need to keep the app running if the background after 

closing the application to send smartwatch current location of the smartphone constantly 

and to track whether the smartphone has entered or exited any safe location. To execute 

that, we have created a location service that continues to work even after the Android 

application is closed.  

The service uses the Fused Location Provider API to get the user's current location. Using 

onCreate method of the service, a new instance of the Fused Location Provider API is 

created. In the onStartCommand method of the service, the system fetches smartphone’s 

current location using the Fused Location Provider API following Algorithm 8. As our 

system starts the location fetching service onCreate method, the application continues to 

run even after the application is closed. This algorithm extracts the user’s current location 

and updates the latitude and longitude variable. For this model, we need to get the current 

location in every 2 seconds as well as send the updated latitude and longitude information 

to smartwatch in every 2 seconds. Therefore, we run the Algorithm 8 with time intervals 

of 2 seconds. Along with getting the current information, it also sends the latitude and 

longitude information to smartwatch calling the Algorithm 2 in every 2 seconds. While 

sending intent to bangle.js 2, the system puts latitude and longitude value in the “event” 

variable of the Algorithm 2. 

Algorithm 8: Location Service  

1: Set the locationClient to DefaultLocationClient with the applicationContext and 

 location provider client. 

2: Call getLocationUpdates on locationClient with a time interval of 2000L 

3: On each update: 

4:  Extract the latitude from the location object and store it in latitude variable. 

5:  Extract the longitude from the location object and store it in longitude  

  variable. 

6:  Call Algorithm 2 passing Latitude and Longitude information in “event” 
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  variable. 

7: Launch the coroutine on the serviceScope. 

  

Another key step is to check if the user is in a safe location or not. The system uses the 

following haversine formula to implement that- 

𝑎 = sin2 (
∆𝜑

2
) + cos 𝜑1  . cos 𝜑2  . sin2 (

∆λ

2
)  

𝑐 = 2 . atan2 (√𝑎 , √(1 − 𝑎)) 

𝑑 = 𝑅 . 𝑐  𝑘𝑚 

For the value of R, the system uses 6372.8 as a value of radius of earth. Also, as the unit 

of the Haversine formula is kilometer, the system converts it to feet by multiplying with 

3280.84. So, the final formula is – 

𝑑 = 6372.8 . 𝑐. 3280.84  𝑘𝑚 

To calculate the distance between smartphone’s current location and each saved location, 

the system calls Algorithm 9 which uses haversine formula. 

Algorithm 9: Haversine  

1: Define a function named haversine that takes four Double parameters - lat1, lon1, 

 lat2, and lon2. 

2: Set the value of R to 6372.8. 

3: Convert latitudes and longitudes to radians by using the toRadians method 

 and save them in variable a1 and a2. 

4: Calculate the differences between latitudes and longitudes using (lat2 - lat1) and 

 (lon2 - lon1) formulas saved as b1 and b2 and convert them to radians. 

5: Use the haversine formula: 

6:  Calculate the value of sin^2(b1/2) + sin^2(b2/2) * cos(a1) * cos(a2) and 

  store it in variable c. 

7:  Calculate the square root value of c and (1-c) and save them in variable c1  
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  and c2.  

8:  Calculate the value of 2 * R * atan(c1, c2). 

9: Convert the calculated distance from kilometers to feet by multiplying the result 

 by 3280.84. 

 10: RETURN the result. 

  

Before running the distance calculation algorithm, the system checks if the user has any 

saved safe location or not. If the user has one of more than 1 saved safe locations, then it 

starts the process for distance calculation. For each saved safe location, the system 

calculates the distance between current location and safe location using Algorithm 10. For 

this, the system uses the latitude and longitude value of both locations. When user is in a 

safe location, the distance value will always be less than the radius of the safe location. 

And, when user is not in a safe location, the distance value will always be more than the 

radius of the safe location. Implementing this concept, the system keeps track whether the 

user is in a safe location or not. Therefore, after calculating the distance, it checks if the 

distance value is more than the radius of the safe location. For any of the safe locations, if 

this event happens the system updates the value of the variable “tag” to “unsafe”. 

Otherwise, it sets the value of “tag” to “safe”. 

Algorithm 10: GPS distance calculator  

1: IF user has 1 or more than 1 safe location THEN 
 

2:  Create an ArrayList named List1 with all the saved safe locations info. 

   Initialize the variable i to 0. 

 3:  FOR each item in List1 DO: 

 4:   Call Algorithm 9 to calculate distance passing parameters- current 

   location’s latitude, longitude, current item’s latitude, longitude. 

5:   IF calculated distance <radius of the current item, THEN 

 6:    set the value of i to 1. 

 7:   END IF 

8:  END FOR 

9:  IF the value of i is 1 THEN 
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10:   Set “tag” to "safe" and call Algorithm 2 to send tag information to  

    smartwatch. 

11:  ELSE 

12:   Set “tag” to "unsafe" and call Algorithm 2 to send tag information to 

    smartwatch. 

13:  END IF 

14: END IF 

  

The system needs to run Algorithm 10 in every 2 seconds to get updated about if the user 

has entered or exited any safe location. To incorporate that, we have user handler class 

which calls the two algorithms in every 2 seconds following the Algorithm 11. 

Algorithm 11: Schedule Service  

1: Initialize handler variable as a new instance of Handler class. 

2: Initialize runnable variable as null. 

3: Initialize delay variable with the value 2000 

4: Define the onResume() function 

5:  Call the postDelayed() method of the handler object with a new instance 

  of the Runnable interface as the first argument. 

 6:  Inside the Runnable instance: 

7:   Call postDelayed() method of handler object with runnable and  

   delay converted to Long as arguments. 

8:   Call Algorithm 10. 

9:   Assign the Runnable instance to runnable variable. 

10:   Call super.onResume(). 

  

 

 

 

As our application can run in the background for the LocationService implementation, 

scheduler service also runs in the background after closing the application and keeps the 

distance calculation running in order to notify smartwatch if user’s presence in safe 

location. 
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4.4.2 Smartphone Module for Model 2 

In model 2, the system keeps track of the distance between smartphone and the smartwatch 

by implementing haversine formula which has also been used in android application 

module. The system uses Algorithm 12 to listen for any event coming the android 

application. In case of, the information regarding if user is in safe location or not, it updates 

the variable “tag” accordingly. For events related to smartphones GPS information that is 

send by the android application in every 2 seconds, system updates “phnLat” variable for 

 

Figure 11 : Workflow of Smartwatch Module of Model 2 

storing smartphone’s latitude value and “phnLon” variable for storing smartphone’s 

longitude value accordingly. And the event related to preferred distance is updated for 

variable “preferredDistance”. For the default value of preferred distance, it is set as 20 feet. 

And the default value of the “tag” variable is set as “unsafe”.  

Algorithm 12: Event Listener for model 2 

1: Define a global function called "GB" that takes an event as input. 

2: Check the type of the event by evaluating the "t" property of the event object. 
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3: IF the type of the event is "enter", THEN  

4:  Set the value of the "tag" variable to "safe". 

6: IF the type of the event is "exit", THEN 

7:  Set the value of the "tag" variable to "safe". 

8: IF the type of the event is starts with "latitude", THEN 

9:  Extract the numeric value from the event starting from the 10th character. 

10:  Convert it to a floating-point number. 

11:  Set the value of the "phnLat" variable to this value. 

12: IF the type of the event is starts with "longitude", THEN 

13:  Extract the numeric value from the event starting from the 10th character. 

14:  Convert it to a floating-point number. 

15:  Set the value of the "phnLon" variable to this value. 

16: IF the type of the event is starts with "radius", THEN 

17:  Extract the numeric value from the event starting from the 7th character. 

18:  Set the value of the "rad" variable to this value. 

19: ELSE 

20:  Parse the "t" property of the event as an integer  

21:  Store it in the "preferredDistance" variable. 

22: END IF 

  

The system doesn’t start working on the GPS data fetching algorithm or distance 

calculation algorithm unless the system receives the latitude and longitude value of the 

smartphone. The reason behind this is that without the latitude and longitude value of the 

smartphone, the system can’t calculate the distance using haversine formula. If the system 

starts working without these values, it will generate wrong result. Moreover, the energy 

and computational cost of fetching the GPS data for the smartwatch will also be saved for 

this error scenario.  

Once the system receives the latitude and longitude value of the smartphone, it starts 

fetching smartphone’s GPS information. For Bangle.js 2, there is a build-in event listener 

which fetches current GPS data. The system calls the event listener by Bangle.on('GPS', 
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onGPS) command. By the “GPS” parameter, it calls for getting the GPS data. When GPS 

data is available it calls the callback function “onGPS” sending the GPS value to the 

function’s parameter. System also calls Bangle.setGPSPower(1, 'app') function to set the 

power level of the GPS receiver. The first argument, 1, sets the power level to the highest 

available value. This is used when the GPS receiver needs to obtain a strong GPS signal, 

for example when the device is being used outdoors or in a location with weak GPS signal. 

The second argument, "app", specifies that the power level setting is only applied to the 

current application running on the device. This is useful when the GPS receiver is only 

needed for a specific task within the application and can be powered down when the task 

is complete, to conserve battery life.  

We have implemented the distance calculation algorithm using haversine formula in the 

call back function “onGPS”. When GPS data is available, the data is sent to “onGPS” 

function as parameter. The system runs Algorithm 13 to calculate distance using Algorithm 

9. In this algorithm, the system checks if the fix object contains valid GPS information or 

not. If the latitude value is not a number, it will mean that Bangle.js 2 couldn’t connect to 

any satellite to get its GPS information. In this scenario, the system doesn’t proceed to 

calculate the distance. The listener keeps fetching the GPS information. When Bangle.js 2 

connects with satellite and sends valid GPS data, the fix object has a fix property that is 

truthy (i.e., not null, undefined, false, 0, NaN, or an empty string). When the GPS data is 

valid and the user is in an unsafe location, the system extracts latitude and longitude 

information from the fix and saves them in watchLat and watchLon variables. After that, 

the system calls Algorithm 9 to apply haversine formula in order to calculate distance and 

generates alert if condition is fulfilled.  

Algorithm 13: onGPS 

1: Define a function called onGPS that takes a parameter called fix. 

 
2: IF fix.lat is not a number, THEN 

3:  Display "No GPS Satellite available" on screen. 

4: IF fix.fix is true and tag is “unsafe”, THEN 

5:  Set a variable called “watchLat” to the value of fix.lat rounded to 6 using 

decimal places 6:  the toFixed method. 
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7:  Set a variable called “watchLon” to the value of fix.lon rounded to 6 using 

  the toFixed method. 

8:  Call Algorithm 9 passing watchLat, watchLon, phnLat and phnLon to 

  calculate distance. 

9:  IF distance is greater than preferredDistance THEN 

10:   Display prompt "Your Phone is not nearby." with title "Alert!". 

11:   Call the beep function of the Bangle object 5 times. 

12:   Call the buzz function of the Bangle object 5 times. 

13:  END IF 

14: END IF 

  

This algorithm doesn’t require any additional service to call it repeatedly to get constant 

monitoring. The event listener does this work on its own and keeps generating GPS data 

and calls the callback function (Algorithm 13) repeatedly. Therefore, this system provides 

a constant monitoring service to provide protection to the smartphone device from getting 

lost. 

4.5 Model 3 (Integrated with GPS and RSSI of smartwatch 

and Android application) 

 

Figure 12 : Model 3 Architecture 
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The two key functionalities of our proposed system is to calculate distance between the 

smartphone and the smartwatch and tracking if user is in a safe location or not. In the 

previous two models, we have used the android application module to keep track whether 

user is in a safe location and the smartwatch module to calculate distance between the 

smartphone and the smartwatch. In our model 3, we have implemented both key 

functionalities in the smartwatch module. The tracking of user’s location to determine 

whether user is in a safe location is implemented by using the GPS module of smartwatch 

and have used Bluetooth module of the smartwatch to calculate between the smartphone 

and the smartwatch. For this model, we have used the android application only to take user 

input such as the preferred distance value and the safe location information. For this model, 

the system can save 1 safe location using shared preferences. 

4.5.1 Android Application Module for Model 3 

 

Figure 13 : Workflow of Android Application Module for Model 3 

For our preferred distance value and safe location’s name and radius value, user needs to 

provide user’s preferred input. In bangle.js 2 there is no keyboard module through which 

the user can provide their input in the smartwatch’s screen. Therefore, we have used the 

android application interface to take user input regarding preferred distance and safe 

location. 
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While adding safe location, the system needs to get the current location’s latitude and 

longitude to set as safe location’s latitude and longitude. Therefore, the system first uses 

Algorithm 1 to ensure the location access of the application to be allowed. After that, it 

uses Algorithm 3 to get the current location’s information. After receiving the location 

information, it sends the latitude, longitude, and radius value to bangle.js 2 as intent using 

the Algorithm 2. For this model, the system can save 1 safe location using shared 

preferences. If the user try to input more than one safe location, a Snackbar message will 

be displayed in the Android application mentioning that maximum capacity exceeded. 

4.5.2 Smartwatch Module for Model 3 

 

Figure 14 : Workflow of Smartwatch module for Model 3 
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In this module, the system uses haversine formula to keep track if user is in safe location 

and RSSI formula to calculate distance between the smartphone and the smartwatch. At 

the beginning, the system starts the distance calculation algorithm before receiving the 

information about the user’s presence in an unsafe location. By default, the system keeps 

the variable “tag” to “unsafe” and starts the distance monitoring process immediately. 

Simultaneously, it also starts the process of checking if the user is in a safe location. 

The system performs the distance calculation using RSSI which is performed by running 

Algorithm 7. When user is in an unsafe location, Algorithm 7 calculates the distance 

between smartphone and smartwatch using RSSI formula and generates alert if distance is 

found greater than the preferred distance. By default, the preferred distance value is set 20 

feet. However, when user changes the value through android application, the value will be 

updated through the event listener algorithm. 

Along with the distance calculation algorithm, for the checking process about user’s 

presence in safe location, system runs a listener using Algorithm 12 to receive intent from 

the android application regarding user input. Unless the user adds a safe location and event 

listener receives information about latitude, longitude, and radius of the safe location, it 

doesn’t start the tracking process. After receiving the information, the system starts its work 

to track if the user is in a safe location or in an unsafe location using the haversine formula. 

Similar to Model 2, the system needs to get current GPS information to implement the 

haversine formula. Therefore, the system uses the event listener Bangle.on('GPS', onGPS) 

to gather current GPS information. When GPS data is available, the callback function 

“onGPS” is called using the GPS data as parameter. The system runs Algorithm 14 to 

calculate distance using Algorithm 9. In this algorithm, system check that if the parameter 

GPS object carries valid GPS information. Upon finding of valid GPS information, the 

system extracts latitude and longitude information from the fix parameter and saves them 

in watchLat and watchLon variables. Then, the system calls Algorithm 9 to apply haversine 

formula to calculate distance and update the “tag” variable accordingly.  

Algorithm 14: onGPS for Model 3 

1: Define a function called onGPS that takes a parameter called fix. 
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2: IF fix.lat is not a number, THEN 

3:  Display "No GPS Satellite available" on screen. 

4: IF fix.fix is true, THEN 

5:  Set a variable called “watchLat” to the value of fix.lat rounded to 6 using 

decimal places 6:  the toFixed method. 

7:  Set a variable called “watchLon” to the value of fix.lon rounded to 6 using 

  the toFixed method. 

8:  Call Algorithm 9 passing watchLat, watchLon, safeLocLat and  

  safeLocLon to calculate distance. 

9:  IF distance is greater than radius THEN 

10:   Set value of tag to “unsafe”. 

  ELSE 

   Set value of tag to “unsafe”. 

13:  END IF 

14: END IF 

This callback function gets called repeatedly and updates the global variable tag 

accordingly. Based upon the current value of tag, the system runs the Algorithm 7 side by 

side to provide a constant monitoring process to prevent the phone from getting lost by 

giving alert to user when necessary. 
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Chapter 5 

5 Evaluation, Experimental Results and Discussion 

The proposed system from chapter 4 is tested on the development platform from section 

4.1. This chapter will provide our findings and analysis from the tests carried out to develop 

the smartphone loss prevention system. Section 5.1 will give an overview of how our 

evaluation will work. Section 5.2 will present the user interface testing of implemented 

system on development platform. Section 5.3 will provide the findings and tests performed 

on 3 different proposed models of our work and Section 5.4 will present a comparative 

result analysis of all the approaches we used in our research.  

5.1 Evaluation Setup 

To evaluate the detection performance of our models, we conducted experiments that 

simulated different smartphone loss scenarios in 5.3. We have conducted these experiments 

in various locations and different infrastructures to check our model’s performance under 

different circumstances. We have also considered using different preferred distances. In 

these experiments, we performed series of departure events where a departure event 

indicates that the user is leaving the smartphone and user has exceeded the preferred 

distance from the smartphone.  

5.1.1 Evaluation Platform 

We have used Bangle.js 2 smartwatch and Samsung Galaxy S22 smartphone as our 

evaluation platform. We have installed the appropriate android application from each 

model before conducting a test. And the settings for the smartphone have been set as Table 

4. 

Table 4 : Settings of Smartphone 

Bluetooth On (paired and connected with Bangle.js 2) 

Location of our Android 

Application 

Allowed (While using the app) 
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We have installed the appropriate watch face incorporated with our system for smartwatch 

from each model in Bangle.js 2 before conducting a test. After that, we set that watch face 

as default. And the settings for the smartphone have been set as Table 5. 

Table 5 : Setting of Bangle.js 2 

BLE On  

Bluetooth Make connectable Yes 

 

5.1.2 Experiment Scenario 

For each manual evaluation test, our aim is to see if our model generates alert when we go 

beyond the preferred distance threshold value and for this, the following steps are followed-  

1. The user sets the preferred distance and set a safe location before initiating the test.  

2. In an appropriate test location based on the test, the user places the smartphone in 

a specific place and starts to move away from the smartphone. 

3. The user keeps walking further away from the smartphone with an aim to go beyond 

the preferred distance value using a measuring tape to keep track of the distance 

between smartphone and smartwatch. 

4. While moving further away from the smartphone, observes the smartphone’s screen 

to see if any alert generates. 

5. When an alert is generated, we collect the distance value where the model generated 

the alert and where it should have generated the alert in actual scenario. 

5.1.3 Evaluation Metrics 

We have collected and stored data for each test. We used the Jupiter Notebook platform to 

process and generate performance evaluation metrics our models in Python 3.7 language. 

We used the NumPy, Matplotlib, and Seaborn libraries are used to create graphs for the 
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experimental findings. To evaluate our model’s performance, we have used the following 

metric- 

5.1.3.1 Accuracy  

The model evaluation criterion called classification accuracy is widely used and important. 

Accuracy is an essential evaluation metric, particularly in binary classification models, 

where the goal is to classify instances into one of two classes. The model provides passed/ 

failed result for each case in a test dataset, and the results are then compared to the known 

labels for the test set examples. Accuracy measures the proportion of correctly classified 

instances by a model, and it is calculated by dividing the total number of correctly classified 

instances by the total number of instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑑 𝑡𝑒𝑠𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑠
× 100        [46] 

5.2 User Interface Test 

Our proposed models have been implemented in the smartwatch as a watch face and in 

the smartphone as an android application.  

5.2.1 Smartwatch Interface Test 

The name of the watch face is seen to be set as “Anti-loss Smartphone”. When it is set and 

opened, it opens successfully within an average time delay of 1 second. It shows the battery 

percentage on top. Along with that, it also shows real- time date and time on the screen. It 

also shows if the user is in an unsafe or safe location. For unsafe locations, it displays 

“unsafe” and for safe locations, it displays “safe” [Figure 15]. A test was performed to see 

if the watch receives and updated value correctly. While being in an unsafe location, if a 

safe zone is added for that current location, it is updating the value in watch app’s display 

to “safe” within time delay of average 6.23 seconds. 
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Figure 15 : Interface of Model 1 with safe and unsafe location mode 

. 

 

Figure 16: Interface of Model 2 and Model 3 when GPS satellite is not connected. 

When the watch is taken out beyond the set preferred distance value, the watch performs 

following things- 

1. Turn on the screen light. 

2. Show an alert with a message “Your phone is not nearby”. 

3. Create a buzzing sound. 

4. Create vibration. 

After clicking the “Ok” button, it goes to the default screen with battery percentage, date 

and time information showing screen. 
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Figure 17: Alert notification on Smartwatch 

5.2.2 Android Application Interface Test 

The apk file for android application is installed in the Samsung Galaxy S22 successfully. 

Upon successful installation, the application is seen in the home screen as “Watch App”. 

 

Figure 18 : Android Application on Home Screen 

When the application is opened, it asks for user’s permission regarding allowing the 

application to use the device’s location. After allowing the location, the location access is 

changed to “Deny” going to settings of the “Watch App” to test if the application again 
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asks for the location access again. The application does again ask for allowing the location 

for the application. 

 

Figure 19 : Watch App Interface 

The application has several sections where it takes inputs and display saved inputs- 

1. Set Watch Data: In this field, the user is able to input preferred distance value 

successfully. 

2. Add Safe Zone: In this field, the user can add a new safe zone. The application 

takes safe location’s name and radius successfully. And shows a message when the 

location is added successfully. 

3. List of Safe zones: It displays the list of all the saved safe zones. To test the data 

persistency, the application was closed after saving a safe zone and again re-opened 

the application and found that all the previously saved safe zones are seen in the 

list of safe zones. 

4. Start/Stop Monitoring: User can start the tracking of user’s position in safe 

location by clicking the “Start Monitoring” button and stop the tracking by clicking 
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the “Stop Monitoring” button successfully. These buttons are not visible for the 

application for model 3 as the monitoring doesn’t take place in android application. 

5.3 Smartphone Loss Prevention System Test 

We have evaluated 3 of our models in different environments and observed their 

performances. 

5.3.1 Distance Calculation and Generating Alert Test 

Our aim is to see if our model generates alert when we go beyond the preferred distance 

threshold value. When we go beyond the preferred distance threshold value, it is expected 

that the system will generate an alert. In this test, our objective is to confirm whether the 

system indeed triggers the alert as intended (a true positive) when the user go beyond the 

preferred distance threshold. Conversely, if the system generates an alert when the user has 

not exceeded the threshold, it would be considered a false positive. Therefore, our primary 

objective in this test is to observe the accuracy of our models and monitor the occurrence 

of true positives and false positives.  

5.3.1.1 Open Spaces 

 

Figure 20: Open spaces evaluation setup 



64 

 

 

 

We have tested our models in 4 open space locations and for each location we have 

performed tests to check how accurately our models calculate the distance between 

smartphone and smartwatch and generate alert. We have tested this performance of our 

system with different preferred distances. For each preferred distances we have performed 

20 tests in each location and evaluated their performance by their accuracy [Table 7]. This 

test has been performed for unsafe locations as this function doesn’t perform in safe 

locations. In total, we have collected 560 test data in open space locations. 

Table 6 : Actual Distance vs Calculated Distance of Model 2 in Open space 

Actual 

Distance (feet) 

Calculated Distance using 

Smartwatch’s GPS(feet) 

Calculated Distance using 

iPhone 14 pro’s GPS value (feet) 

5 119.6 29.6 

10 136.4 57.18 

15 157.8 82.56 

20 194.7 104.23 

The reason for excluding Model 2 is that its distance calculation has not performed well 

enough to provide satisfactory accuracy due to the weak performance of the GPS module 

of smartwatch. Therefore, We can see in Table 6 that the actual distance value and 

calculated distance value has big difference which leads to make all the results true 

negative. As a resource-constrained device, our smartwatch’s GPS module is weak and so 

we have used another device’s GPS module which is the latest and more powerful than our 

smartwatch’s GPS module to evaluate the performance of our model 2. We have used  

Table 7 : Accuracy of Model 1, and Model 3 for different Preferred Distances for 

open spaces 

Preferred 

Distance (feet) 

Accuracy of 

Model 1 

Accuracy of 

Model 3 

5 100% 100% 

8 98% 95% 

10 95% 97% 

12 95% 96% 

15 91% 93% 

18 94% 90% 

20 90% 91% 
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iPhone 14 pro’s GPS module’s value instead of our smartwatch’s GPS module’s value in 

our model 2 and conducted 40 tests to evaluate the distance calculation performance of 

model 2. The evaluation result of using a powerful GPS result has performed better than 

the smartphone’s GPS. Nonetheless, the result is not promising enough to provide a reliable 

result for our system. The model 2 which uses haversine formula to calculate the distance 

between the smartphone and smartwatch has not performed reliably enough to provide 

convincing accuracy for our system. 

Table 8: Number of True Positives and False Positives for Model 1, Model 2, and 

Model 3 in Open Spaces 

Model Name True Positive False Positive 

Model 1 530 30 

Model 2 0 560 

Model 3 529 31 

From Table 9, we can see that best performing model in terms of distance calculation and 

generating alert among all the models is Model 1 which has been integrated with RSSI of 

smartwatch and Android application. 

Table 9 : Average Accuracy of Model 1 and Model 3 for open spaces 

Model Average Accuracy 

Model 1 94.64% 

 Model 3 94.46% 

 
 

5.3.1.2 Close Spaces without Environmental Interference 

We have evaluated our models in 4 close space locations and for each location, we have 

performed tests to check if the watch generates alert when the watch is beyond preferred 

distance value away from the smartphone. For these tests, no environmental Interferences 

(wall, big furniture’s, tree) has been placed between the smartphone and smartwatch. We 

have evaluated the performance of our system with different preferred distances. For each 

preferred distance we have performed 20 tests in each location and evaluated their 

performance by their accuracy. We have collected 560 test data for close space locations 

with no environmental interferences. 
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Figure 21: Closed spaces without environmental interference evaluation setup 

For model 2, it is essential for the smartwatch to have GPS satellite connection to achieve 

GPS information. However, in closed spaces the smartwatch fails to connect to GPS 

satellite. The reason behind this is that IoT resource-limited devices like smartwatches rely 

on signals received from GPS satellites to determine their location and they require a clear 

line of sight to the sky to be received properly. These signals can be weakened or 

completely blocked by physical barriers such as buildings, walls, and ceilings. Therefore, 

areas with limited access to the sky will have a harder time receiving GPS signals and 

Table 10 :Actual Distance vs Calculated Distance of Model 2 in Closed space 

without environmental interference 

Actual 

Distance (feet) 

Calculated Distance using 

Smartwatch’s GPS(feet) 

Calculated Distance using 

iPhone 14 pro’s GPS value (feet) 

5 148.4 34.64 

10 175.9 59.4 

15 197.2 91.47 

20 220.1 109.43 

determining their location accurately. So, for model 2 we tested it by keeping the 

smartwatch near windows or balconies where the watch could connect to GPS satellite and 
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get GPS value. In the Table 11, the performance of the models can be seen for different 

preferred distances. 

Table 11 : Accuracy of Model 1, and Model 3 for different Preferred Distances for 

Closed Spaces without Environmental Interferences 

Preferred 

Distance (feet) 

Accuracy of 

Model 1 

Accuracy of 

Model 3 

5 100% 100% 

8 100% 99% 

10 99% 100% 

12 100% 97% 

15 95% 91% 

18 92% 93% 

20 94% 92% 

Similar as Open space evaluation, we have used iPhone 14 pro’s GPS module’s value 

instead of our smartwatch’s GPS module’s value in our model 2 and conducted 40 tests to 

evaluate the distance calculation performance of model 2 for closed space without 

environmental interference [Table 10]. The model 2 also has not performed reliable enough 

to provide convincing accuracy for our system in closed space without environmental 

interference. 

Table 12: Number of True Positives and False Positives for Model 1, Model 2, and 

Model 3 in Closed Spaces without Environmental Interferences 

Model Name True Positive False Positive 

Model 1 544 16 

Model 2 0 560 

Model 3 538 22 

From Table 13, we can see that best performing model in terms of distance calculation and 

generating alerts among all the models is Model 1. 

Table 13 : Average accuracy of Model 1 and Model 3 for Closed Spaces without 

Environmental Interferences 

Model Average Accuracy 

Model 1 97.14% 

Model 3 96.07% 
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5.3.1.3 Close Spaces with Environmental Interference 

      

Figure 22: Closed spaces with wall/door as environmental interference evaluation 

setup in 2 locations 

Our models have been tested in 4 close space locations and for each location, we have 

performed tests to check if the watch generates alert when the watch is taken beyond 

preferred distance value away from the smartphone. For these tests, we have placed the 

smartphone and smartwatch in such positions where there will be one or multiple walls  

Table 14: Actual Distance vs Calculated Distance of Model 2 in Closed space with 

environmental interference 

Actual 

Distance (feet) 

Calculated Distance using 

Smartwatch’s GPS(feet) 

Calculated Distance using 

iPhone 14 pro’s GPS value (feet) 

5 139.8 37.53 

10 180.45 64.24 

15 201.33 85.19 

20 217.09 103.65 

between them. We have tested the performance of our system with different preferred 

distances. For each preferred distance we have performed 20 tests in each location and 

evaluated their performance by their accuracy. We have collected 560 test data for close 

space locations with walls as environmental interferences. For model 2 we tested it by 
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keeping the smartwatch near windows or balconies where the watch could connect to GPS 

satellite and get GPS value. 

Table 15 : Accuracy of Model 1, Model 2, and Model 3 for different Preferred 

Distances for Closed Spaces with Environmental Interferences 

Preferred 

Distance (feet) 

Accuracy of 

Model 1 

Accuracy of 

Model 3 

5 100% 100% 

8 98% 97% 

10 99% 100% 

12 96% 98% 

15 97% 94% 

18 93% 90% 

20 90% 95% 

Same as previous evaluation, we have used iPhone 14 pro’s GPS module’s value instead 

of our smartwatch’s GPS module’s value in our model 2 and conducted 40 tests to evaluate 

the distance calculation performance of model 2 for closed space with environmental 

interference [Table 14]. The model 2 also has not been reliable enough to provide 

convincing accuracy for our system in closed space with environmental interference. 

Table 16: Number of True Positives and False Positives for Model 1, Model 2, and 

Model 3 in Closed Spaces with Environmental Interferences 

Model Name True Positive False Positive 

Model 1 538 22 

Model 2 0 560 

Model 3 539 21 

From Table 17, we can see that best performing model in terms of distance calculation and 

generating alerts among all the models is Model 3. 

Table 17 : Average accuracy of Model 1 and Model 3 for Closed Spaces with 

Environmental Interferences 

Model Average Accuracy 

Model 1 96.07% 

Model 3 96.25% 
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5.3.2 Safe Location Test 

As safe locations are mostly closed spaces such as home, office etc., we have tested our 

models in 4 closed space locations and for each location we have performed tests to check 

if the watch tracks whether the user is situated in the safe locations or not. To generate the 

test, we set the safe locations standing in the center of the safe location and providing radius 

value. After that, we started to move away from the center point wearing the smartwatch. 

Then we go beyond the radius value measuring the distance by measuring tape. When the 

distance between the center point and current position is more than radius value, we 

monitored the tracking of safe locations variable in the smartphone screen to change from 

Table 18 : Accuracy of Model 1 and Model 2 for different Radius for Closed Spaces  

Preferred 

Distance (feet) 

Accuracy of 

Model 1 

Accuracy of 

Model 2 

5 86% 84% 

10 90% 89% 

15 87% 81% 

20 94% 90% 

25 92% 92% 

30 95% 89% 

 “safe” to “unsafe”. We have tested the performance of tracking safe locations with 

different radius values. For each radius values, we have performed 10 tests in each location 

and evaluated their performance by their accuracy [Table 18]. In total, we have collected 

280 test data in closed space locations. Due to the poor performance of the GPS of 

smartwatch, our model 3 has not performed well enough to provide closer to accurate 

results regarding safe location tracking. Even in safe location, model 3 detected that user 

is in ‘Unsafe’ location for all the cases. The reason behind this discrepancy is that the 

calculated radius distance using haversine formula is not close to the actual radius at all 

which leads our model 3 to make the wrong decision regarding safe distance tracking. 

Therefore, the model 3  has not been reliable enough to provide convincing accuracy for 

our system regarding safe location tracking. 
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Table 19: Number of True Positives and False Positives for Model 1 and Model 2 for 

Safe Location Tracking 

Model Name True Positive False Positive 

Model 1 254 26 

Model 2 245 35 

From Table 20, we can see that best performing model is Model 1 in terms of tracking safe 

locations. 

Table 20 : Average accuracy of Model 1 and Model 2 for tracking Safe Locations 

Model Average Accuracy 

Model 1 90.71 % 

Model 2 87.50 % 

 

5.3.3 Battery Life Test 

5.3.3.1 Smartphone’s Battery Consumption Test 

The battery life of the smartphone has been evaluated for Model 1 and Model 2 where the 

Watch App runs continuously in the background with Bluetooth connection enabled. As 

for model 3, the application doesn’t run in the background as it is only used for providing 

user input. Therefore, Model 3 hasn’t been evaluated for smartphone’s battery consumption 

test. 

In order to assess the battery consumption of our application, we conducted two types of 

comprehensive tests. The first test involved monitoring the smartphone's battery life with 

no applications running for a continuous 18-hour period, simulating idle usage. The second 

test focused on the battery consumption of the smartphone while running only our Android 

application for a continuous 18-hour period. 

Baseline Battery Discharge: 

We have conducted 2 similar tests to measure the smartphone's battery discharge rate with 

no application running. At the start of each test, the smartphone has been fully charged to 
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100%. Each test was conducted over an 18-hour period. During this time frame, we 

monitored and recorded the remaining battery percentage at the end of each hour. This 

served as our baseline reference for understanding the natural rate of battery consumption 

under normal operating conditions. 

Application-Specific Battery Consumption: 

The second test focused on assessing the battery life impact of our application running 

exclusively on the smartphone. At the start of each test, the smartphone has been fully 

charged to 100%. After that, we opened the application and started the monitoring of safe 

location tracking. After starting the monitoring process, we closed the application and the 

application kept running in the background. All other running applications on the 

smartphone has been closed to minimize interference. During the whole testing time, no 

other application has been used and the smartphone hasn’t been used for any other activity. 

To assess the battery performance of our Model 1 and Model 2 over an 18-hour period by 

monitoring the battery discharge percentage at hourly intervals, we have conducted 3 

battery consumption tests for Model 1 and 3 battery consumption tests for Model 2. At the 

end of each hour, the remaining battery percentage on the smartphone has been recorded. 

We conducted each test for 18 hours. 

Figure 23 illustrates Time vs Smartphone's Battery Discharge Rate graph for a variety of 

tests for smartphone. These two types of tests allowed us to compare the battery 

performance of the smartphone in its idle state (no application running) vs its performance 

while only our application was in use. The result of Model 1 reflects an efficient 

performance, as it demonstrates minimal battery consumption compared to the baseline, 

indicating that our application has a minimal battery overhead on the smartphone's battery 

life. For Model 2, which involves continuous location fetching and periodic intent 

transmissions to the smartwatch, we noted a slightly higher but still commendable battery 

consumption rate compared to the baseline. During a few tests, the smartphone was 

occasionally in motion for certain periods, simulating real-world usage scenarios. 

However, it did not have any significant impact on the observed battery consumption. 
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Figure 23: Baseline Battery Discharge vs Application-Specific Battery Consumption 

for Smartphone 

5.3.3.2 Smartwatch’s Battery Consumption Test. 

In order to assess the battery consumption of our application on smartwatch’s end, we 

conducted two types of comprehensive tests similarly as 5.3.3.1. The first test monitors the 

smartwatch's battery life with no applications running for a continuous 12-hour period, 

simulating idle usage. The second test focused on the battery consumption of the 

smartwatch while running only our application for a continuous 12-hour period. 

Baseline Battery Discharge: 

We have conducted 2 similar tests to measure the smartwatch's battery discharge rate with 

no application running. We aim to establish a baseline reference for battery consumption 

by monitoring a smartwatch devoid of any active applications. At the beginning of each 

test, the smartwatch has been fully charged to 100%. Over a 12-hour period, we diligently 

tracked and recorded the remaining battery percentage at the end of each hour. 
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Application-Specific Battery Consumption: 

The second test focused on assessing the battery life impact of our application running on 

the smartwatch. The battery life of the smartphone has been evaluated for Model 1, Model 

2, and Model 3 where the watch face with our proposed system installed and Bluetooth 

connection enabled. We conducted two types of power consumption tests for each model- 

1. Monitoring battery consumption when user is in safe location. 

2. Monitoring battery consumption when user is not present in safe location. 

In total, we have conducted 18 tests for all 3 models.  

1. Model 1 

I. When user is in safe location – 3 tests. 

II. When the user is not in a safe location – 3 tests. 

2. Model 2 

I. When user is in safe location – 3 tests. 

II. When the user is not in a safe location – 3 tests. 

3. Model 3 

I. When user is in safe location – 3 tests. 

II. When the user is not in a safe location – 3 tests. 

At the beginning of each test, the smartwatch has been fully charged to 100%. We 

conducted each test for 12 hours and monitored the battery percentage every hour. During 

the whole testing time, no other application has been used and the smartwatch hasn’t been 

used for any other activity.  
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Figure 24: Baseline Battery Discharge vs Application-Specific Battery Consumption 

for Smartwatch 

Figure 24 illustrates Time vs Smartwatch's Battery Discharge Rate graph for a variety of 

tests for smartwatch. For Model 1 in safe location, we can see that the power consumption 

rate is low compared to the baseline which indicates minimal battery consumption. For 

Model 1 in unsafe location, we can observe slightly higher consumption rate as the system 

continuously uses the Bluetooth module which consumes 0.75mA power [7]. The battery 

consumption of Model 1 in unsafe location, while slightly higher, remains within 

satisfactory limit. 

For Model 2 in safe location, we have observed a slightly elevated consumption rate 

compared to the baseline as the system receives and process intent from the smartphone in 

every 2 seconds. However, for Model 2 in unsafe location and Model 3, the power 
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consumption rate is much higher than the consumption rate of baseline, Model 1, and 

Model 2 in safe location. The reason behind this is that Model 2 (unsafe location) and 

Model 3 use GPS modules which consume a high amount of power. Model 1 only uses the 

Bluetooth module which consumes 0.75mA, whereas the GPS module that Model 2 in 

unsafe location and Model 3 use consumes 26mA power [7]. It is visible that the GPS 

module’s power consumption rate is about 34.67 times more than the BLE module. 

Furthermore, the Model 3 in unsafe location has the highest consumption rate among all as 

it uses both BLE and GPS module. From Figure 24, we can observe that Model 1 is the 

most efficient model in terms of battery consumption for smartwatches. 

5.3.4 Alert and Safe Location Update Response Time 

We have conducted 20 tests for each model to check the response time of the smartwatch 

generating an alert when the distance between the smartphone and smartwatch is more than 

the preferred distance. Along with that, we have also conducted 20 tests to see how much 

time the smartwatch takes to update the safe location tracking information on the 

smartwatch’s screen when user goes outside a safe location and enters in a safe location. 

Table 21 illustrates the average response time of the smartwatch generating alert and 

updating the safe location tracking information. 

In terms of response time for alert generation, we can observe that Model 1 and Model 3 

demonstrated exceptional performance. For both models, we set the wait time for each 

invocation to 1 second. However, if some callback function takes some time to execute, it 

might still be running when the next invocation is scheduled. This can lead to overlapping 

executions, and this cause the appearance of a shorter interval between executions. 

Model 1 and Model 2 both use Android application of smartphone’s module to perform 

safe location tracking. The slightly higher response time of updating safe location 

information may happen due to the processing time required for a series of consecutive 

tasks: monitoring safe location tracking on the smartphone, sending an intent to the 

smartwatch, processing the received intent in smartwatch’s end, and displaying it correctly. 
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Moreover, we can observe that the response time for alert generation in Model 2 and the 

response time for updating safe location information in Model 3 took the highest amount 

of time among all. This may happen due to delay of establishing a connection with GPS 

satellites and collecting accurate GPS data. 

Table 21 : Average Response time of Generating Alert and Safe Location Tracking 

update. 

 Model 1 Model 2 Model 3 

Average Response time for Alert Generation 0.47 

Seconds 

7.34 

Seconds 
0.59 

Seconds 

Average Response time for updating safe 

location information 

6.23 

Seconds 

7.06 

Seconds 

7.23 

Seconds 

 

5.4 Overall Results and Findings 

As per our research goals, we have evaluated our models to observe the performance of 

our models in terms of providing accurate response. Moreover, we have also conducted 

experiments to see the power consumption of our models and conducted the battery 

discharge percentage vs time test to evaluate our models. Also, evaluation regarding the 

response time of providing alert and updating safe location information has also been 

performed. Furthermore, we have observed how similar components provided different 

results in different modules. As shown in Table 22, the best performing model among these 

three methods is Model 1. Considering all the research goals, we can observe from the 

previous sections that – 

• In terms of successfully calculating distance and generating alert accordingly 

Model 1 has provided highest accuracy, 96% in most of the test cases. We can 

observe that our Model 1 and Model 3 performed slightly better in closed spaces 

rather than open spaces. Outdoor environments are often more susceptible to 

interference compared to closed spaces due to interference from other wireless 

devices, natural obstacles, and atmospheric conditions. This interference can 
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introduce noise into RSSI measurements, reducing accuracy for open space 

locations. 

• For tracking safe location, our Model 1 has also achieved the highest accuracy, 

90.66%. 

• Along with that, Model 1 has been identified as the most efficient in terms of power 

consumption as its performance in power consumption has been found best among 

three models.  

• Moreover, in terms of response time of the smartwatch generating alert and 

updating the safe location tracking information, Model 1 produced the best result.  

• We have also observed at the performance of similar algorithms in different module 

such as the haversine algorithm was both implemented in smartwatch (Model 2 for 

distance calculation and Model 3 for safe location tracking) and smartphone (Model 

2 safe location tracking) in separate models. Due to poor GPS accuracy of the 

Smartwatch, Model 2 couldn’t perform well in calculating distance and generating 

alert and Model 3 couldn’t perform well in tracking of user’s presence in safe 

locations using haversine algorithm. Whereas this similar algorithm performed well 

in terms of safe location tracking in Model 2. 

Overall, considering all of the evaluation parameters, Model 1 has outperformed Model 2 

and Model 3 in all the test scenarios. 

Table 22 : Summary of the performance of all Models 

  Accuracy 

of Model 1 

Accuracy 

of Model 2 

Accuracy 

of Model 3 

Distance 

calculation 

and Alert 

generating 

test 

Open Spaces 94.64% 

 

 94.46% 

Closed spaces with no 

environmental interference 
97.14%  96.07% 

Closed spaces with 

environmental interference 
96.07%  96.25% 

Safe Location Test 90.71% 87.50 %  
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Chapter 6 

6 Conclusion 

In this thesis, we presented a smartphone loss prevention system using 3 different 

approaches with different methods. Our core system is designed to help prevent the loss of 

smartphones and provide a reliable and accurate way to make user aware in smartphone 

loss scenarios. We began by discussing the importance of smartphones, smartphone’s data, 

and the potential consequences of losing them. We then reviewed related literature and 

identified the shortcomings of existing systems. Our proposed solution addresses these 

shortcomings by using the RSSI of Bluetooth and the Haversine formula in separate models 

to calculate the distance between a smartphone and a smartwatch. 

We developed an Android application that runs on the smartphone and a smartwatch 

application acting as a watch face that runs on the smartwatch. The two applications 

communicate using Bluetooth, and the applications combinedly works to keep track of 

users’ presence in safe location and calculates the distance between the smartphone and the 

smartwatch in unsafe location and generates alert accordingly. To evaluate the performance 

of the system, we conducted experiments using different predefined thresholds and in 

various locations and different infrastructures. The results showed that the system can 

detect when the distance between the two devices exceeds a predefined threshold in an 

unsafe location and generate alert accordingly, and it has a low false positive rate. Of all 3 

models of ours, Model 1 which has been implemented with RSSI method and Geofencing 

has acquired high accuracy rates in most of the evaluations and outperformed Model 2 and 

Model 3. Due to the poor quality of GPS performance of smartwatch, Model 2, and model 

3 couldn’t perform well combinedly in all of the features of our system. 

In conclusion, our proposed smartphone loss prevention system is a reliable and accurate 

solution for preventing the loss of smartphones. It can help users avoid the potential 

consequences of losing their smartphones and to reduce the risk of losing a phone and 

protect personal data. Moreover, the system saves users from the stress and inconvenience 
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of losing their phone. Overall, we believe that our research can contribute to the 

development of more advanced smartphone loss prevention systems in the future. 

6.1 Limitations and Future Work 

As the performance of our models depends on the GPS accuracy of both smartphone and 

smartwatch, performance of the GPS module is considered as a limitation of our models. 

Especially, the performance of the GPS module of smartwatch has been found weak 

according to our system requirement. Our model 2 and model 3 would have performed well 

in terms of calculating distance and safe location tracking using the haversine method if 

the GPS module of the smartwatch provided much more accurate results. Standalone GPSs 

are typically accurate to within a 4.9 m (16 ft.) radius under open sky which worsens near 

buildings, bridges, and trees [47]. Moreover, the GPS module of resource constrained 

smartwatches performs a lot less than conventional GPS. This amount of error is not ideal 

for our system. Therefore, to address this issue, implementation of Real-Time Kinematic 

(RTK) GPS will be a perfect solution for our system. This technique is mostly used for 

applications that require higher accuracies, such as centimeter-level positioning [48]. Using 

RTK can improve positional accuracy to within 3 centimeters [49]. This will efficiently be 

able to support our system by user presence in the safe places given by the user as well as 

in the distance calculation by haversine method. 

Moreover, in cases where the model does not generate an alert, and this aligns with the 

actual scenario where an alert should not be generated, we consider this outcome as a true 

negative. However, due to time constraints, we were unable to conduct a comprehensive 

true negative test during this phase of testing. Evaluating true negatives is an important 

aspect of model validation, as it helps confirm that the system correctly identifies situations 

where alerts are not warranted. Therefore, investigating true negatives will be designated 

as part of future work to ensure the model's overall accuracy and effectiveness in different 

operational contexts. 

Our primary objective is to determine whether our model generates an alert when we 

surpass the preferred distance threshold value. Currently, we have conducted tests in both 
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indoor and outdoor settings to evaluate this functionality. However, it's important to 

observe how the models work in highly crowded public places. due to time constraints, we 

were unable to execute tests in crowded settings during this phase. As part of future work, 

we are committed to conducting tests in highly congested areas. This approach will help 

us comprehensively validate the model's alert generation capability under more demanding 

and realistic conditions. 

Furthermore, we have used the android application mostly to implement the safe location 

tracking feature of our system. However, the computation cost and power consumption of 

the android application can be substantially lowered if we offload the work to server. For 

time constraint, we could not implement the geofencing (Model 1) and haversine algorithm 

(Model 2) for safe location tracking in server. Nonetheless, this can be very efficient for 

the user in terms of significantly diminished energy consumption. 

Smartwatches typically have smaller batteries than smartphones, which could limit their 

usefulness in long-term location tracking for the distance calculation by haversine method. 

Future work could focus on optimizing power consumption and developing new 

technologies to extend battery life. 
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