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Abstract
Mark-recapture (MR) models typically assume that individuals under study have

independent survival and recapture outcomes. One such model of interest is known as the
Cormack-Jolly-Seber (CJS) model. In this dissertation, we conduct three major research
projects focused on studying the impact of violating the independence assumption in MR
models along with presenting extensions which relax the independence assumption.

In the first project, we conduct a simulation study to address the impact of failing
to account for pair-bonded animals having correlated recapture and survival fates on
the CJS model. We examined the impact of correlation on the likelihood ratio test
(LRT), the ̂𝑐 correction, and the achieved coverage of 95% confidence intervals around
the recapture and survival probabilities estimated from the CJS model. We find that
correlated fates between mated animals may result in underestimated standard errors for
parsimonious models, deflated LRT statistics, and underestimated values of ̂𝑐 for models
taking sex-specific effects into account.

In the second project, we present a novel conditional data approach to estimating
recapture and survival correlations between mates. We provide a simulation study which
demonstrates that for sufficiently large sample sizes the estimators of recapture and
survival correlations between mated pairs are unbiased and achieve at least nominal
coverage for 95% confidence intervals. The study shows that the variance correction
using an alternative ̂𝑐 estimator addresses the issue of undercoverage and demonstrate
the application of my model extension to a mark-recapture dataset of Harlequin ducks
(Histrionicus histrionicus), a large monogamous waterfowl species.

The final project in this work is focused on presenting extensions to both the CJS and
Jolly-Seber (JS) model which allow mortality of members within a group to influence the
future survival outcomes of remaining members with Bayesian methods. We conduct a
simulation study which demonstrated that the models produce unbiased estimates and
credible intervals which achieve nominal coverage. Finally, we apply the CJS model
extension to a dataset of Wild Turkeys (Meleagris gallopavo silvestris) and find that
there is evidence to suggest that mortality results in reduced survival rates for remaining
group members.

Keywords: Bayesian methods, conditional data methods, Cormack-Jolly-Seber models,
correlated fates, goodness-of-fit testing, Jolly-Seber models
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Lay Summary
In the field of statistical ecology, mark-recapture studies are a standard method of

estimating the survival outcomes and size of wildlife populations. These studies involve
sending researchers to the home range of some species of interest, capturing a subset of
the population, placing a non-invasive marking on them, and releasing them back into
the wild. The process is repeated over several occasions with researchers making note of
which animals they have previously marked, and which marks are new. Once the data
has been gathered, demographic parameters are estimated with an ecological model.

Two such models are the Cormack-Jolly-Seber and the Jolly-Seber models. These are
considered to be standard reliable approaches to estimating survival rates over a period
of time. These models have been adapted to account for several different species-specific
traits and environmental stressors that may impact survival rates and population sizes
such as age, harsh climate, and potential human interference. One long-standing assump-
tion of these modelling techniques is that animals are assumed to have independent fates.
Namely, if an animal is killed or leaves their home, this event will not impact the chance
of the same thing happening to other members of the population. In many cases, the
assumption of independence is likely violated by the complex behaviour of the animal
population under study.

In this dissertation, we conducted three major research projects to address situations
in which the independence assumptions are violated. In the first project, we study the
impact that unmodelled correlation between mated pairs, animals that form long-term
partnerships with the intention of reproduction, can have on estimates of survival and
recapture outcomes in the CJS model. In the second, we follow up on the first study
by providing an extension to the CJS model that allows for estimation of recapture
and survival correlations between mated pairs. Finally, in the last project, we present
extensions to both the JS and CJS models for group-living species, animals which travel
in flocks or packs, that allows for within group mortality to impact the survival outcomes
of surviving members in future occasions.
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Chapter 1

Introduction

1.1 Motivation and Context

Overestimating or underestimating demographic parameters in ecological models can
have long-standing impacts on conservation efforts and the understanding of our inter-
actions with the environment. For instance, overestimation of survival rates in wildlife
populations could lead researchers to incorrectly believe that a population under study is
stable in the face of environmental stressors such as climate change, pollution, and habi-
tat destruction (for instance deforestation, urbanization, and mining) (Dungan, Wang,
Araújo, Yang, & White, 2016; Hagemann et al., 2019; Araújo-Wang, Wang, Draghici,
Ross, & Bonner, 2022). Population size is commonly used to determine growth and de-
cline of a given species over time (Schwarz, 2001; Hagemann et al., 2019; Araújo-Wang
et al., 2022). While declining population sizes are an obvious concern, seemingly stable
populations could be hiding features that may lead to dangerous long-term implications
(Schwarz, 2001). For instance, dynamic shifts in behavior within a population of stable
size can lead to crashes/variation in habitat quality and, as such, population demograph-
ics and dynamic behavior should be included in statistical models of at-risk species.

Mark-recapture experiments are a well-known and effective method of studying the
demographics of wildlife populations (Burnham, Anderson, White, Brownie, & Pollock,
1987; S. King, Morgan, Gimenez, & Brooks, 2009; King, 2014; McCrea, 2014; Seber &
Schofield, 2019). Mark-recapture data are collected by capturing individuals from the
population at several repeated sampling occasions, marking them with a unique iden-
tifier, recording their encounter history, and then releasing them back into the study
region (McCrea, 2014; Seber & Schofield, 2019). This sampling methodology is neces-
sary since capturing and monitoring an entire population over a reasonably long study
period is rarely feasible. The data collected from these studies is typically analyzed by
fitting capture-recapture models to generate estimates of the demographic rates pertain-
ing to the open population under study (Burnham et al., 1987; S. King et al., 2009; King,
2014; McCrea, 2014; Seber & Schofield, 2019). The Cormack-Jolly-Seber (CJS) model
(Cormack, 1964; Jolly, 1965; Seber, 1965) forms the basis for estimating survival from
mark-recapture data and the Jolly-Seber (JS) model (Jolly, 1965; Seber, 1965), extends
this to include recruitment which allows for estimation of abundance. While the CJS and

1
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JS models have proven to be extremely useful tools in ecological research, they are built
around strong assumptions that may not, in all cases, be representative of reality. The
key assumptions of the CJS and JS model are that survival and recapture probabilities
at any point in the study are consistent between animals (no individual heterogeneity),
all marked animals are correctly recorded, capture-release events are instantaneous (or
approximately so), emigration from the sampling region is permanent, and fates of an-
imals are independent of one another (Pledger, Pollock, & Norris, 2003; McCrea, 2014;
Seber & Schofield, 2019). Furthermore, the JS model assumes that recapture and sur-
vival probabilities are the same across marked and unmarked individuals, and that the
initial sample is representative of the population (Seber, 1965). Data collected from pop-
ulations of animals that exhibit complex behaviours often violate the assumptions of the
CJS and JS models.

A considerable amount of research effort has been invested into relaxing these assump-
tions in order to incorporate methods of estimating individual heterogeneity in both the
JS and CJS models. Extensions intended to relax the assumption of homogeneous sur-
vival and recapture probabilities among animals include, but are not limited to, account-
ing for heterogeneity with individual-specific covariates (Lebreton, Burnham, Clobert, &
Anderson, 1992; Schwarz & Arnason, 1996; Royle, 2008, 2009), random effects (Burnham
& White, 2002; Pledger et al., 2003; Cam, 2012; Royle & Converse, 2014), multi-state
models (Arnason, 1973; Brownie, Hines, Nichols, Pollock, & Hestbeck, 1993; Dupuis &
Schwarz, 2007; Hodel, Behr, Cozzi, & Ozgul, 2023), and time varying and missing covari-
ates (Bonner & Schwarz, 2006; Gimenez, Lebreton, Gaillard, Choquet, & Pradel, 2012;
Worthington, King, & Buckland, 2015; Gimenez & Barbraud, 2017). However, nearly
all capture-recapture models assume that fates of animals are independent during the
sampling period (Lebreton et al., 1992; Anderson, Burnham, & White, 1994; King, 2014;
McCrea, 2014; Seber & Schofield, 2019; Bischof, Dupont, Milleret, Chipperfield, & Royle,
2020).

That said, accounting for the relationships between social animals in mark-recapture
studies has been previously explored in the literature. In the case of pair-bonds, Culina,
Lachish, Pradel, Choquet, & Sheldon (2013) proposed a multi-event process model to
study both pair-fidelity and heterogeneity in survival outcomes between mated individu-
als who remained with their previous partners and those who had found new ones. Be-
tween sampling occasions, individuals can transfer to a new partner, and their survival
and recapture outcomes are conditional on whether they are mated with their previous
partner or a new one. However, the model presented by Culina et al. (2013) does not
explicitly model widowed or divorced individuals and assumes that individuals in the
sample population are always mated (states are mated with current partner, mated with
previous partner, and departed). Rebke, Becker, & Colchero (2017) studied pair-fidelity
and breeding output as a function of age by presenting a multinomial process model that
allowed individuals to switch partners between sampling occasions; they are able to tran-
sition between being mated and single, and vice-versa. That said, they did not attempt
to study the impact of being mated on survival or recapture outcomes. Riecke, Sedinger,
Williams, Leach, & Sedinger (2019) extended the CJS model by incorporating a bivariate
normal distribution to estimate the correlation between demographic parameters. While
Riecke et al. (2019)’s work is distinct from the goal of our work which is to explicitly
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model the correlation between survival or recapture outcomes, it does provide a method
to account for potential overestimation or underestimation of model covariates which may
be associated with one another. Gimenez & Barbraud (2017) suggested an alternative
approach to dealing with correlated covariates, which involved using principal component
analysis to shrink down datasets with a large number of covariates into smaller compo-
nents. This, however, can make the model covariates more difficult to interpret given that
the new model covariates are combinations of existing inputs. On the matter of group
association Bischof et al. (2020) proposed a spatial capture-recapture model which in-
cludes a group cohesion parameter in the observation process. This cohesion term induces
a correlation among group members. Groups with higher cohesion rates are more likely
to be captured together while those with lower ones are less so. They found that failing
to account for dependence for populations in which animals form long-term, cohesive
social groupings can often result in overestimation of the true precision for parameter
estimates and produce biased estimates of overdispersion within mark-recapture models
(Bischof et al., 2020). Royle & Converse (2014) utilized a hierarchical spatial capture-
recapture model to estimate population density among group-living individuals. Torney
et al. (2023) recently developed a hierarchical Gaussian process model to estimate the
spatial effect on recapture probabilities on different socially cohesive groups. Gimenez
et al. (2019), utilized social network analyses in conjunction with a binomial process
to model detection probabilities while controlling for the effect of association between
individuals in the sample population. In his doctoral thesis, Challenger (2010) extended
the CJS model to treat the observation process between paired individuals as a correlated
Bernoulli distribution. The model did not account for survival correlation between paired
individuals nor does it allow for mated individuals to switch partners or find new ones
in the event of a departure.

In this thesis, I present three research projects which study the impact of violating
the assumption of independence in the CJS model and provide extensions that account
for dependence in both the CJS and JS models. In the following subsections, I provide
background on the CJS model, which is the main subject of study in this thesis, and a
summary of the three projects.

1.2 Overview of the Cormack-Jolly-Seber Model
The CJS model follows a hidden Markov structure designed to estimate the survival
probabilities of individuals within an open wildlife population using capture-recapture
data. An animal’s current survival status (alive or dead) is the underlying state of
interest, while recapture (caught by a researcher or not at some point in the study) is the
corresponding observed event. To estimate survival probabilities, we need to also estimate
recapture rates, which are typically considered nuisance parameters. We are required to
consider recapture rates because survival histories are masked by recapture histories. For
instance, if we never see a given individual after some point 𝑡0 ∈ {1, … , 𝑇 } we do not know
whether it has died/emigrated or if it has successfully avoided recapture. Finally, the CJS
model deals with open populations without having to account for abundance estimates
by conditioning on the first capture of every study participant and their previous survival
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states thereafter (Lebreton et al., 1992).

1.2.1 Parameters and Variables
Variables

• 𝑇 : Total number of discrete sampling occasions (indexed by 𝑡)
• 𝑛: Total number of animals under study (indexed by 𝑖)

Parameters

• 𝜙𝑡: Probability of survival from time 𝑡 to 𝑡 + 1 for all animals in the population
• 𝑝𝑡: Probability recapture at time 𝑡 for all animals in the population

Events

• 𝑌𝑖,𝑡: Indicator of the state of animal 𝑖 at time 𝑡 (alive and in the population or
not). 𝑌𝑖,𝑡 = 1 meaning that the animal is alive at occasion 𝑡 and 𝑌𝑖,𝑡 = 0 that they
have departed the study region or perished.

• 𝑋𝑖,𝑡: Indicator of the event that animal 𝑖 is recaptured at time 𝑡. 𝑋𝑖,𝑡 = 1 meaning
that the animal has been observed at occasion 𝑡 and 𝑋𝑖,𝑡 = 0 that they were not
seen at occasion 𝑡.

1.2.2 Data
Each individual captured at least once during the study has a capture history vector of
length 𝑇 composed of 1s and 0s. An entry in the 𝑡𝑡ℎ position of the vector indicates
a recapture event at occasion 𝑡. For a given recapture history vector, an entry of a 1
indicates that an individual was recaptured (or first captured if it is the first 1) and 0
indicates that it was not observed/captured. For example, a history of 10100 indicates
that there were five discrete capture occasions, and that the individual who has this
history was observed at time one (𝑡 = 1) and at time three (𝑡 = 3) but not at times two
(𝑡 = 2), four (𝑡 = 4) and five (𝑡 = 5).

1.2.3 Latent Variables
For each capture history there is a corresponding survival history vector of length 𝑇 ,
which is a latent variable that is produced as part of the CJS or JS models. The position
of each entry in the vector corresponds to the survival status of an individual at the
corresponding occasion. For a given survival history, an entry of 1 indicates that an
individual was alive and in the population, and 0 indicates that they have either not
yet entered the study group (before first capture) or they had entered the population at
some earlier time 𝑡0 < 𝑡 and permanently emigrated or died at some time 𝑡 ∈ {𝑡0, … , 𝑇 }.
The survival history vector is partially inferred from the recapture history vector. For
instance, consider a recapture history of 10100 - we know that the animal had to be alive
at times one, two, and three but we do not know what happened at times four and five.
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We know that the animal was alive at time two even though we did not see it because
they were observed at time three. The partially inferred survival history vector would
then be observed as (1, 1, 1,NA,NA) in which NA represents an unknown fate.

It is worth noting that, in general, death and emigration are not separable. Namely,
if an individual’s status is that they did not survive (estimated from the model), it is
not possible to tell whether an animal has left the study region or if they have perished.
As such, when we mention survival, we are actually referring to apparent survival, which
indicates that an animal is alive and inhabits the study region. While we do not touch on
this topic in our work, true survival can be estimated using spatial models given survival
and recapture probabilities are high enough to provide information about dispersal over
a species’ home range (Schaub & Royle, 2014).

1.2.4 The Model
Survival

We assume that survival follows a Bernoulli process for each individual 𝑖 ∈ {1, … , 𝑛}
under study. The random variable for survival outcomes is an indicator of whether the
individual was alive (by not dying or emigrating) at time 𝑡 ∈ {1, … , 𝑇 }. We have that
𝜙𝑡 is the probability of any individual 𝑖 surviving from time 𝑡 to 𝑡 + 1. Let 𝑓0,𝑖 be the
point in time in which individual 𝑖 ∈ {1, … , 𝑛} was first captured. Given first capture
we model survival for subsequent points 𝑡 ∈ {𝑓0,𝑖 + 1, … , 𝑇 } using

𝑌𝑖,𝑡+1|𝑌𝑖,𝑡 ∼ Bernoulli(𝜙𝑡𝑌𝑖,𝑡), (1.1)

and assign 𝑌𝑖,𝑓0,𝑖
= 1. By multiplying 𝜙𝑡 by 𝑌𝑖,𝑡 we ensure that if an animal perishes or

emigrates between (𝑡 − 1, 𝑡], an event we will refer to as a departure going forward, they
are removed from the population as 𝑌𝑖,𝑡∗ = 0; ∀𝑡∗ > 𝑡−1. This construction ensures that
subsequent survival states for individual 𝑖 are also 0.

Recapture

We assume that recapture of individual 𝑖 at time 𝑡 follows a Bernoulli process that
depends on survival at time 𝑡. Specifically, given first capture, we model recapture for
all subsequent occasions 𝑡 ∈ {𝑓0,𝑖 + 1, … , 𝑇 } using

𝑋𝑖,𝑡|𝑌𝑖,𝑡 ∼ Bernoulli(𝑝𝑡𝑌𝑖,𝑡) (1.2)

in which 𝑋𝑖,𝑡 is the random variable indicating the recapture observation for animal 𝑖 at
time 𝑡 and 𝑋𝑓0,𝑖,𝑡 = 1 by assumption.

The hidden Markov model structure of the CJS model can be visualized with a
directed acyclic graph, for a given individual 𝑖, in which the survival outcome at 𝑡 connects
to recapture event at 𝑡 and the survival outcome at 𝑡 + 1. See Figure 1.1 for an example
for an individual captured at 𝑡 = 1 over 4 sampling occasions.
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Figure 1.1: Directed acyclic graph representing the survival outcomes and recapture event over
four occasions for some individual 𝑖 in which first capture is at time 1. The nodes along the top
represent the survival status of individual 𝑖 at the occasion in the subscript. The nodes along
the bottom represent the recapture event of individual 𝑖 at the occasion in the subscript. The
probabilities on the arrows represent the probability of either going from one state to the next,
or the chance of being observed at a given time 𝑡.

1.2.5 Accounting for Sex-Specific Heterogeneity within the CJS
Model

The CJS model can allow for group-specific heterogeneity through the use of a link func-
tion (Lebreton et al., 1992). In our case, we are interested in the possibility of modelling
recapture and survival estimates separately for both males and females. Consider a mark-
recapture study in which we have tracked the sexes for all the individuals in the sample
of interest. The sex parameter of individual 𝑖, denoted 𝐺𝑖, is either 𝑀 for male or 𝐹 for
female. Let 𝛽0,𝑡 ∈ ℝ and 𝛽1,𝑡 ∈ ℝ be regression coefficients that represent the intercept
term for survival and the difference in survival probabilities between males and females
on the logit scale, respectively from 𝑡 to 𝑡 + 1. Then we link the survival probability of
individual 𝑖 as:

logit(𝜙𝑡) = 𝛽0,𝑡 + 𝛽1,𝑡1(𝐺𝑖=𝐹) (1.3)

in which 1𝐴 ∶ 𝐴 → {0, 1} is the indicator function, such that 1𝐴 = 1 if the event 𝐴 is
true and zero otherwise. When the sex of individual 𝑖 is female denote 𝜙𝑡 as 𝜙𝐹

𝑡 and
denote it as 𝜙𝑀

𝑡 otherwise. Similarly, we can apply the same approach for the recapture
probabilities using 𝛼0,𝑡 ∈ ℝ and 𝛼1,𝑡 ∈ ℝ to denote our regression coefficients. Specifically,
𝛼0,𝑡 is the baseline recapture rate for any male at time 𝑡, given that they survived from
𝑡 − 1 to 𝑡, and 𝛼1,𝑡 is the difference in recapture probabilities between males and females
on the logit scale at time 𝑡:

logit(𝑝𝑡) = 𝛼0,𝑡 + 𝛼1,𝑡1(𝐺𝑖=𝐹). (1.4)

When the sex of individual 𝑖 is female denote 𝑝𝑡 as 𝑝𝐹
𝑡 and denote it as 𝑝𝑀

𝑡 otherwise.
We compute estimates from the CJS model by the effect of sex into account for both

survival and recapture, for one or the other, or neither. Further, we express these four
possible models as
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{(𝜙𝐺, 𝑝𝐺), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙, 𝑝)} , (1.5)

in which, using the notation discussed in Burnham et al. (1987), 𝜙𝐺 denotes a sex-specific
effect for survival and 𝑝𝐺 denotes a sex-specific effect for recapture. For instance, (𝜙𝐺, 𝑝)
represents a model with three parameters, two separate survival probabilities for males
and for females, and one pooled recapture probability across both males and females. In
the above representation, survival and recapture probabilities are assumed to be the same
across time. To account for time-specific effects (but not sex) in survival, for instance, we
can let 𝜙𝑡 represent this case and use 𝜙{𝐺,𝑡} to account for both sex and time differences.
The definition is analogous for recaptures.

1.3 A Note on the Jolly-Seber Model
Rather than condition on first capture, the JS model explicitly models recruitment of
individuals into the population before estimating survival and recapture rates. The
survival outcomes at time 𝑡 are then conditional on both recruitment and survival at
the previous occasion 𝑡 − 1. A thorough overview on classical modelling approaches is
provided in Schwarz (2001). In Chapter 4, the project in which we build upon the JS
model for cohesive socially grouped animals, we present an in-depth overview of a modern
approach to modelling recruitment for the reader.

1.4 Simulation Studies
A broadly applicable and standard approach to evaluating statistical methods is to use a
simulation study. These studies are appealing because they allow researchers to test the
asymptotic behavior of their proposed methods across a wide range of scenarios without
requiring the development of, in often cases, difficult or intractable analytical results
(Morris, White, & Crowther, 2019). Specifically, simulation studies allow researchers to
study unknown properties that cannot be observed in a study of real data, such as bias
and achieved confidence interval coverage percentages (Morris et al., 2019).

To study the performance of a statistical model through a simulation study, the
following steps are generally taken:

• A set of known values are chosen for the parameters of interest which the model
under study is designed to estimate.

• The known parameters are used to generate datasets, often called replicates, using
pseudo-random number generation.

• The model is fit to each replicate, the parameters of interest are stored, and Monte
Carlo estimates for statistics of interest are computed using the known parameters.

To demonstrate, I present an example of a simulation study aimed at reviewing the bias
and achieved 95% confidence interval coverage of the intercept and slope parameter esti-
mates from a simple linear regression model (Devore & Berk, 2012). Let 𝑌 = {𝑌1, … , 𝑌𝑛}
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and 𝑋 = {𝑋1, … , 𝑋𝑛} denote 𝑛 observations from a dependent and independent variable,
respectively. Assume that we want to study the performance of the following model:

𝑦𝑖 ∼ Normal(𝛽0 + 𝛽1𝑥𝑖, 𝜎2); ∀𝑖 ∈ {1, … , 𝑛} (1.6)
such that 𝛽0 ∈ ℝ and 𝛽1 ∈ ℝ are unknown quantities and, for simplicity, we assume that
𝜎2 ≥ 0 is known. Assuming, without loss of generality, that each replicate of 𝑋 follows
a standard normal distribution, we can generate replicates from this model by executing
the following:

1. Repeat steps 2-5 over 𝐵 replicates.
2. Select some known values for 𝛽0 and 𝛽1 and call them 𝛽Truth

0 and 𝛽Truth
1 , respectively.

3. For replicate 𝑏 ∈ {1, … 𝐵}, generate 𝑛 values from the standard normal distribution
and assign them to the independent variable 𝑋(𝑏).

4. For replicate 𝑏 ∈ {1, … 𝐵}, generate 𝑛 values from the model (using the true
parameters as inputs) and assign them to the dependent variable 𝑌 (𝑏).

5. Store the 𝑏th dataset (𝑌 (𝑏), 𝑋(𝑏)).

Now, for each replicate dataset (𝑌 (𝑏), 𝑋(𝑏)), fit the linear regression model and denote
the estimates of the intercept term and slope as 𝛽𝑏

0 and 𝛽𝑏
1, respectively. Furthermore,

respectively denote the 95% confidence intervals of 𝛽𝑏
0 and 𝛽𝑏

1 as [𝛽𝑏
0,LB, 𝛽𝑏

0,UB] and
[𝛽𝑏

1,LB, 𝛽𝑏
1,UB]. Finally, we compute the Monte Carlo bias and achieved 100(1 − 𝛼)%,

such that 𝛼 ∈ [0, 1], coverage of the intercept and slope terms using

Bias(𝜃Truth) = ∑𝐵
𝑏=1(𝜃Truth − 𝜃𝑏)

𝐵

Coverage(𝜃Truth, 𝛼) =
∑𝐵

𝑏=1 1(𝜃Truth∈[𝜃𝑏
LB,𝜃𝑏

UB])
𝐵 ,

(1.7)

in which 𝜃 can be used to denote either 𝛽0 or 𝛽1.
For this example, assume that 𝛽Truth

0 = 1, 𝛽Truth
1 = 5, 𝑛 = 500, 𝜎 = 1 and 𝐵 = 100.

Figure 1.2 shows that the estimates of both 𝛽0 and 𝛽1 are centered around their true
values. The respective biases of 𝛽0 and 𝛽1 were −0.00332 and 0.00574, and the achieved
coverage of the 95% confidence intervals surrounding 𝛽0 and 𝛽1 were 96% and 93%,
respectively. In this example, I used statistical programming software R to generate
replicates and compute parameter estimates for the simple linear regression model (R
Core Team, 2022). Across all three projects in this thesis, I utilize simulation studies to
either examine existing methodologies or ones which I propose. The statistics of interest,
along with the approach used to generate data will be described in detail for each study.
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Figure 1.2: Linear regression estimates of the slope and intercept on simulated datasets. The
red line indicates the underlying true value used to generate the data, each point is the estimate
of the parameter, and the thin lines represent 95% confidence intervals around the parameter
estimates. Finally, the top panel contains estimates of the intercept parameter and the bottom
panel contains estimates of the slope parameter.
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1.5 Research Summary
In the first research project (Chapter 2), we examine a model extension which allows ani-
mals who have formed a pair-bond to have correlated survival and recapture fates. Using
the proposed extension to generate data, we conduct a simulation study exploring the im-
pact that correlated fate data has on inference from the CJS model. We compute Monte
Carlo estimates for the bias, range, and standard errors of the parameters of the CJS
model for data with varying degrees of survival correlation between mates. Furthermore,
we study the likelihood ratio test of gender effects within the CJS model by simulat-
ing densities of the deviance. Finally, we estimate the variance inflation factor ̂𝑐 for CJS
models that incorporate sex-specific heterogeneity. Our study shows that correlated fates
between mated animals may result in underestimated standard errors for parsimonious
models, deflated likelihood ratio test statistics, and underestimated values of ̂𝑐 for mod-
els taking sex-specific effects into account. Underestimated standard errors can result in
lowered coverage of confidence intervals. Moreover, deflated test statistics will provide
overly conservative test results. Finally, underestimated variance inflation factors can
lead researchers to make incorrect conclusions about the level of extra-binomial variation
present in their data.

The second project (Chapter 3), builds directly upon the first and is focused on
presenting estimators of survival and recapture correlation between individuals within
pair-bonds. We conduct a simulation study to investigate the bias, coverage of 95%
confidence intervals, and power of our proposed estimators. Furthermore, we demon-
strate the application of our proposed model to 28 year-long study on Harlequin ducks
(Histrionicus histrionicus) (𝑛 = 314), a long-lived seabird known to form monogamous
pair-bonds. The simulation study demonstrates that reliable estimates of recapture and
survival correlations between monogamous pairs who persist over long periods of time
can be computed using our conditional data approaches. When sample sizes and re-
capture rates are high enough, the estimates are unbiased, achieve 95% coverage of
confidence intervals, and have a hypothesis testing power of 80% with moderate to large
effect sizes. Mated Harlequin ducks were not shown to have statistically significant re-
capture or survival correlations. Our proposed approach offers a fast, easy-to-implement
method of detecting statistically significant correlation between long-term pair-bonds in
mark-recapture study data. This allows researchers to investigate relationships between
paired individuals without needing to construct complex models and for them to address
potential issues of underestimated standard errors and overdispersion as well.

The final project (Chapter 4) is motivated by a study on Eastern wild turkeys (Me-
leagris gallopavo silvestris) in the southeastern United States. In this work, we propose
extensions for the JS and CJS models. In both extensions, we propose an approach to
estimating the impact of group-member mortality on the apparent survival outcomes of
remaining members using a mixed-effects model. We control for time with a random-
intercept and use a fixed effect to measure the impact of group-member mortality on
surviving individuals. Using Bayesian methods to estimate our parameters of interest,
we conduct a simulation study which investigates the bias and 95% credible interval
coverage on data which was generated from our proposed models. Finally, we apply our
model to a study on eastern wild turkeys which includes 𝑛 = 120 individuals, across 41
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groups. The data we received is Very High Frequency (VHF) telemetry data, and as such
we are able to run a known-fates variation of our model alongside our CJS and JS exten-
sions. Our simulation study reveals that our models are able to recover the parameters
of interest without bias or under coverage issues. The mark-recapture and known-fates
modelling reveals that survival outcomes of male wild turkeys are quite high from month
to month, even in the face of hunting pressure. The analysis also reveals that there is a
moderate negative effect of group mortality on surviving members. As members perish,
remaining members tend to have reduced survival outcomes. Our mark-recapture analy-
sis on male wild turkeys demonstrates that death of group members results in worsened
survival outcomes in remaining members. This may be indicative of either a change in
their behavioral patterns or reduced fitness due being part of a smaller group.



Chapter 2

Understanding the impact of
correlation within pair-bonds on
Cormack–Jolly–Seber models

2.1 Introduction
Long-term pair-bonds are common among avian species in which a portion of the life-
history pattern is shared between mates (Maness & Anderson, 2008; Culina et al., 2013;
Rebke et al., 2017). It is likely that there is correlation between survival or recapture
fates of the individuals within a pair (Lebreton et al., 1992; Anderson et al., 1994). Con-
sider, for instance, Harlequin ducks (Histrionicus histrionicus) which are waterfowl that
typically mate for life (Smith, Cooke, Robertson, Goudie, & Boyd, 2000). These ducks
migrate from their wintering ground to their breeding grounds with their partners and
mostly stay together during the breeding season (Smith et al., 2000). Males within a pair-
bond have been shown to be extra-vigilant in monitoring their nesting partner, which
has been theorized to improve survival likelihoods of the female (Bond et al., 2009). Fur-
thermore, a study designed to monitor a population that forms pair-bonds would likely
be performed at the breeding ground due to ease of access. As a consequence, the prob-
ability of capturing both individuals within a pair will likely be elevated due to being in
close proximity of one another (Lebreton et al., 1992). The shared life-history and ele-
vated probability of paired individuals constitutes a violation of the standard assumption
of independence within mark-recapture models that do not separate their demographic
parameters by sex. As such, failing to account for dependence within populations that
contain long-term social groupings may result in overestimation of the true precision for
parameter estimates of common mark-recapture models (Lebreton et al., 1992; Anderson
et al., 1994; Bischof et al., 2020).

In this work, we conduct a simulation study to examine the effects that dependence
between mated pairs has on inference from the CJS model. Motivated by a long-term
mark-recapture study of Harlequin ducks at the McLeod River region in Alberta, Canada,
Challenger (2010) proposed an extension to the CJS framework by introducing a corre-
lation parameter, 𝜌, to account for the dependence in the recapture events within pairs.

12
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Using the work done in Challenger (2010) as the basis for our proposed extension to the
CJS model, we introduce another correlation parameter, 𝛾, that accounts for dependence
in survival events of pair-bonded animals. Furthermore, we also allow all pairs to un-
dergo periods of temporary separation when they choose not to breed due to, for instance,
external stressors such as lack of food or increased predation (Ludwig & Becker, 2008).
During a period of temporary separation, our model treats individuals within a pair as
having independent survival and recapture events.

In our simulation study, we assess the standard CJS model’s ability to compute
accurate demographic estimates for varying levels of survival correlation between mates.
Using our proposed extension to generate correlated mark-recapture data, we compute
estimates from the standard CJS model and consider the bias, precision, and width of
the confidence intervals as survival correlation between pairs increases. Furthermore, our
study considered whether asymptotic assumptions of the likelihood ratio test hold when
comparing group-specific CJS models against reduced CJS models in the presence of
mated correlation. Finally, we assess the ability of the variance correction ̂𝑐 (Lebreton et
al., 1992) to detect and address the issue of overdispersion due to dependent fates among
mated pairs.

2.2 Materials and Methods
2.2.1 Definition of Model Extension
Instead of monitoring all 𝑛 individuals within a mark-recapture dataset, we consider a
collection of 𝑛/2 ≤ 𝑚 ≤ 𝑛 entities. An entity 𝑗 ∈ {1, … , 𝑚} is either a set of two animals,
male and female, that have formed a pair-bond or a single animal that has not formed
a pair-bond (originally discussed in Challenger, 2010). We assume that the recapture
and survival fates are independent between entities and that individuals within a pair-
bond are strictly monogamous (Challenger, 2010). Furthermore, if an individual within
a pairing perishes, at some discrete sampling occasion 𝑡 ∈ {1, … , 𝑇 }, in which 𝑇 is the
total number of occasions, then the widowed partner will not seek out a mate during
the remainder of the study period (Challenger, 2010). Finally, we condition on the first
capture of either individual in an entity in a manner similar to the standard CJS model.
When conditioning on the first capture for a pair-bond, the individuals within the pairing
are assumed to have become mates before entering the study (Challenger, 2010).

For the following subsections, consider some fixed entity 𝑗 ∈ {1, … , 𝑚} at some
sampling occasion 𝑡 ∈ {1, … , 𝑇 }.

2.2.1.1 Temporary Separation Process

Let the indicator variable 𝑑𝑗,𝑡−1 ∼ Bernoulli(𝛿𝑡−1) denote the event that pair 𝑗 remain
together from time 𝑡−1 to 𝑡 and 𝛿𝑡−1 = ℙ(𝑑𝑗,𝑡−1 = 1); ∀𝑗 ∈ {1, … , 𝑚}. If a paired entity
is temporarily separated then it is assumed that its member’s fates are independent from
one another between the sampling periods 𝑡 − 1 to 𝑡. This process occurs before the
survival and recapture step at every sampling occasion. Finally, note that if entity 𝑗
consists of a single individual (unmated) then 𝑑𝑗,𝑡−1 = 0.
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2.2.1.2 Survival Process

In the standard CJS model, it is assumed that the time dependent survival process is
governed by a Bernoulli distribution, conditioned on the previous survival state (Lebreton
et al., 1992). Let 𝑌𝑖,𝑡|𝑌𝑖,𝑡−1 ∼ Bernoulli(𝜙𝑡−1𝑌𝑖,𝑡−1) be the event that individual 𝑖 ∈
{1, … , 𝑛} both survived and remained in the study area from time 𝑡 − 1 to 𝑡. The
probability of surviving from 𝑡 − 1 to 𝑡, given that the individual has not departed at
𝑡 − 1, is 𝜙𝑡−1. If the individual has departed at time 𝑡 − 1, they remain so at subsequent
time points.

For this extension, we assume that males and females may have distinct probabilities
of survival from time 𝑡 to 𝑡 − 1. Let 𝜙𝐺

𝑡−1 be the probability that the individual of sex
𝐺 ∈ {𝑀, 𝐹} of entity 𝑗 ∈ {1, … , 𝑚} survives from time 𝑡 − 1 to 𝑡. For pair-bonded
entities there are four different survival states in the model: both members survive, only
the female survives, only the male survives, or neither survive (Challenger, 2010). This
is represented in the state vector

𝑌 𝑗,𝑡 = [𝑌 𝑀
𝑗,𝑡 𝑌 𝐹

𝑗,𝑡, 𝑌 𝐹
𝑗,𝑡(1 − 𝑌 𝑀

𝑗,𝑡 ), 𝑌 𝑀
𝑗,𝑡 (1 − 𝑌 𝐹

𝑗,𝑡), (1 − 𝑌 𝑀
𝑗,𝑡 )(1 − 𝑌 𝐹

𝑗,𝑡)] ,
indicating the possible survival outcomes for entity 𝑗 at time 𝑡, in which 𝑆𝑀

𝑗,𝑡 is the
indicator that the male of entity 𝑗 has not departed at time 𝑡 and 𝑆𝐹

𝑗,𝑡 is similarly defined
for the female of pair 𝑗. If both partners have not departed at 𝑡, then the distribution of
𝑌 𝑗,𝑡 is governed by a joint Bernoulli distribution with dependent variables (see Appendix
A.1.1 for the derivation). The parameters of this distribution are:

• 𝜙𝑚𝑓
𝑡−1 = 𝑑𝑗,𝑡−1𝛾𝑡−1𝜎𝐹

𝜙,𝑡−1𝜎𝑀
𝜙,𝑡−1 + 𝜙𝐹

𝑡−1𝜙𝑀
𝑡−1 is the probability that both members of

entity 𝑗 survive from 𝑡 − 1 to 𝑡

• 𝜙𝐺0
𝑡−1 = 𝜙𝐺

𝑡−1 − 𝜙𝑚𝑓
𝑡−1 is the probability that only the individual of sex 𝐺 ∈ {𝑀, 𝐹}

survives from 𝑡 − 1 to 𝑡 given that both members did not yet depart at time 𝑡 − 1

• 𝜙00
𝑡−1 = 1 − 𝜙𝑚𝑓

𝑡−1 − 𝜙𝑚0
𝑡−1 − 𝜙𝑓0

𝑡−1 is the probability that both members of entity 𝑗
perish between times 𝑡 − 1 to 𝑡

where,

• 𝜎𝐺
𝜙,𝑡−1 = √𝜙𝐺

𝑡−1(1 − 𝜙𝐺
𝑡−1) is the standard deviation of survival event for individual

of sex 𝐺 ∈ {𝑀, 𝐹} in entity 𝑗 at time 𝑡 − 1

• 𝛾𝑡−1 ∈ [𝑔𝑙,𝑡−1, 𝑔𝑢,𝑡−1] is the correlation coefficient for survival of some pair 𝑗 from
𝑡 − 1 to 𝑡 where

• 𝑔𝑙,𝑡−1 = −min ( 1
√OP(𝜙𝐹

𝑡−1,𝜙𝑀
𝑡−1)

, √OP(𝜙𝐹
𝑡−1, 𝜙𝑀

𝑡−1)) is the lower bound of 𝛾𝑡−1

• 𝑔𝑢,𝑡−1 = min ( 1
√OR(𝜙𝐹

𝑡−1,𝜙𝑀
𝑡−1)

, √OR(𝜙𝐹
𝑡−1, 𝜙𝑀

𝑡−1)) is the upper bound of 𝛾𝑡−1
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See Section A.1.2 in the Appendix for the derivation of the bounds and definitions of the
odds ratio (OR) and the odds product (OP).

Finally, we condition on 𝑑𝑗,𝑡−1 such that if there is temporary separation then the
correlation coefficient becomes zero and 𝑌 𝑗,𝑡 becomes the product of two independent
Bernoulli variables. Now the partially observed survival process for entity 𝑗 at time 𝑡 can
be described with the following multinomial distribution:

𝑌 𝑗,𝑡|𝑌 𝑗,𝑡−1, 𝑑𝑗,𝑡−1 ∼ Multi
⎛⎜⎜⎜⎜
⎝

1, 𝑌 𝑗,𝑡−1
⎡
⎢⎢
⎣

𝜙𝑚𝑓
𝑡−1 𝜙𝑓0

𝑡−1 𝜙𝑚0
𝑡−1 𝜙00

𝑡−1
0 𝜙𝐹

𝑡−1 0 1 − 𝜙𝐹
𝑡−1

0 0 𝜙𝑀
𝑡−1 1 − 𝜙𝑀

𝑡−1
0 0 0 1

⎤
⎥⎥
⎦

⎞⎟⎟⎟⎟
⎠

. (2.1)

2.2.1.3 Recapture Process

Consider the standard CJS model, we assume that the observation process is governed
by a Bernoulli distribution conditioned on the current survival state (Lebreton et al.,
1992). Let 𝑋𝑖,𝑡|𝑌𝑖,𝑡 ∼ Bernoulli(𝑝𝑡𝑌𝑖,𝑡) be the event that individual 𝑖 ∈ {1, … , 𝑛} was
recaptured at time 𝑡. The probability of being recaptured at time 𝑡, given that the
individual is alive and present at 𝑡, is 𝑝𝑡.

For this extension, we assume that males and females may have distinct recapture
probabilities at time 𝑡. Let 𝑝𝐺

𝑡 be the probability that the individual of sex 𝐺 ∈ {𝑀, 𝐹}
of entity 𝑗 ∈ {1, … , 𝑚} is recaptured at time 𝑡. There are four different recapture
outcomes for paired entities in the model: both members are observed, only the female
is observed, only the male is observed, or neither are observed (Challenger, 2010). The
possible recapture outcomes for entity 𝑗 at time 𝑡 can be represented by the vector

𝑋𝑗,𝑡 = [𝑋𝑀
𝑗,𝑡𝑋𝐹

𝑗,𝑡, 𝑋𝐹
𝑗,𝑡(1 − 𝑋𝑀

𝑗,𝑡), 𝑋𝑀
𝑗,𝑡(1 − 𝑋𝐹

𝑗,𝑡), (1 − 𝑋𝑀
𝑗,𝑡)(1 − 𝑋𝐹

𝑗,𝑡)] ,
in which 𝑋𝑀

𝑗,𝑡 is the indicator that the male of entity 𝑗 is recaptured at time 𝑡 and
𝑋𝐹

𝑗,𝑡 is analogously for the female. If both partners are have not departed, then the
distribution of 𝑋𝑗,𝑡 is governed by a joint Bernoulli distribution with dependent variables
(see Appendix A.1.1 for the derivation). The parameters of this distribution are:

• 𝑝𝑚𝑓
𝑡 = 𝑑𝑗,𝑡−1𝜌𝑡𝜎𝐹

𝑝,𝑡𝜎𝑀
𝑝,𝑡 + 𝑝𝐹

𝑡 𝑝𝑀
𝑡 is the probability that both members in pair 𝑗 are

captured at time 𝑡

• 𝑝𝐺0
𝑡 = 𝑝𝐺

𝑡 − 𝑝𝑚𝑓
𝑡 is the probability that only the individual of sex 𝐺 ∈ {𝑀, 𝐹} is

captured at time 𝑡, given that both members did not depart at time 𝑡

• 𝑝00
𝑡 = 1 − 𝑝𝑚𝑓

𝑡 − 𝑝𝑚0
𝑡 − 𝑝𝑓0

𝑡 is the probability that both members of pair 𝑗 are
unobserved at time 𝑡

where,

• 𝜎𝐺
𝑝,𝑡 = √𝑝𝐺

𝑡 (1 − 𝑝𝐺
𝑡 ) is the standard deviation of recapture for individual of sex

𝐺 ∈ {𝑀, 𝐹} in entity 𝑗 at time 𝑡
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• 𝜌𝑡 ∈ [𝑟𝑙,𝑡, 𝑟𝑢,𝑡] is the correlation coefficient for recapture between members of pair
𝑗 at time 𝑡 where

• 𝑟𝑙,𝑡 = −min ( 1
√OP(𝑝𝐹

𝑡 ,𝑝𝑀
𝑡 ) , √OP(𝑝𝐹

𝑡 , 𝑝𝑀
𝑡 )) is the lower bound of 𝜌𝑡 and

• 𝑟𝑢,𝑡 = min ( 1
√OR(𝑝𝐹

𝑡 ,𝑝𝑀
𝑡 ) , √OR(𝑝𝐹

𝑡 , 𝑝𝑀
𝑡 )) is the upper bound of 𝜌𝑡.

Finally, we condition on 𝑑𝑗,𝑡−1 such that if there is temporary separation then the
correlation coefficient becomes zero and 𝑋𝑗,𝑡 becomes the product of two independent
Bernoulli variables. Now the recapture process for entity 𝑗 at time 𝑡 can be described
with the following multinomial distribution:

𝑋𝑗,𝑡|𝑌 𝑗,𝑡, 𝑑𝑗,𝑡−1 ∼ Multi
⎛⎜⎜⎜⎜
⎝

1, 𝑌 𝑗,𝑡
⎡
⎢⎢
⎣

𝑝𝑚𝑓
𝑡 𝑝𝑓0

𝑡 𝑝𝑚0
𝑡 𝑝00

𝑡
0 𝑝𝐹

𝑡 0 1 − 𝑝𝐹
𝑡

0 0 𝑝𝑀
𝑡 1 − 𝑝𝑀

𝑡
0 0 0 1

⎤
⎥⎥
⎦

⎞⎟⎟⎟⎟
⎠

(2.2)

2.2.2 Simulation Study
2.2.2.1 Data Generating Process

To study the impact of dependence between mated individuals on the standard CJS
model, we used the the statistical programming software R (R Core Team, 2022) to
generate 1000 samples from the extended model for each of the following parameter
settings:

• 𝑛 = 200 (Fixed sample size)

• 𝑇 = 4 (Fixed number of sampling occasions)

• 𝛿𝑡 = 1.0 (Fixed probability of remaining together for mated pairs)

• 𝜙𝐹
𝑡 = 𝜙𝑀

𝑡 = 0.7 (Fixed survival probabilities)

• 𝑝𝐹
𝑡 = 𝑝𝑀

𝑡 = 0.8 (Fixed recapture probabilities)

• 𝛾𝑡 ∈ {−0.4, −0.3, … , 0.9, 1.0} (Grid of survival correlations)

• 𝜌𝑡 ∈ {−0.25, 0.0, 0.25, 0.5, 1.0} (Grid of recapture correlations)

in which these settings hold ∀𝑗 ∈ {1, … , 𝑚} and 𝑡 ∈ {1, … , 𝑇 }. Moreover, we simulated
the sex of each animal with an probability of 50% for either sex. We assumed that all
200 individuals were marked on the first occasion (a single cohort) and that there are as
many pairings as possible. Specifically, if there were 105 simulated males and 95 females
there would be 95 mated pairs, 10 unmated males, and a total of 𝑚 = 105 entities in our
sample. Finally, we assumed that there was no temporal variation across all parameters.
Given this, we omit the subscript 𝑡 going forward. Note that the case in which 𝛾 = 0
and 𝜌 = 0 is equivalent to the standard CJS model.
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We chose a sample population of 200 individuals with high survival and recapture
probabilities to ensure that each replicate had a sufficient number of observations to
produce reliable estimates from the CJS model. We used 𝑇 = 4 sampling occasions
to ensure that the estimates of overdispersion were reliable, given that the standard
estimates of extra-binomial variation will often fail to produce reasonable estimates when
𝑇 >> 𝑛 (Cooch & White, 2020). Finally, We looked at a grid of survival and recapture
correlations to study the impact of the magnitude of correlation on inferences drawn from
the standard CJS model.

2.2.2.2 Data Modelling Process

We used the standard CJS model to compute estimates of survival and recapture rates,
goodness-of-fit statistics, and overdispersion corrections of the data we simulated from
the extended model (Section 2.1) using program MARK (White & Burnham, 1999), a
popular mark-recapture modelling software among ecological researchers, with the R li-
brary RMark (Laake, 2013). We consider the following parameter settings of the standard
CJS model:

{(𝜙, 𝑝), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙𝐺, 𝑝𝐺)} . (2.3)

2.2.2.3 Standard Metrics to Assess Model Performance

To study the impact that varying levels of survival correlation within mark-recapture
data have on estimates of survival rates, we computed the range and coverage percentage
of the corresponding 95% confidence intervals, along with the relative bias of the survival
estimates. The results were computed across a grid of survival correlations ranging
from −0.4 to 1.0 increasing by increments of 0.1 for model (𝜙, 𝑝). Furthermore, we
present the percent coverage of the 95% confidence intervals for each of the models
in {(𝜙, 𝑝), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙𝐺, 𝑝𝐺)}. Finally, in order to better isolate the impact of
correlation within entities on the hidden state process, we set the recapture correlation
between mated pairs to zero.

Let 𝐾 = 1000 denote the number of replicate data sets for each scenario and ̂𝜙 =
∑𝐾

𝑘=1
̂𝜙𝑘/𝐾 where ̂𝜙𝑘 represents the estimate of 𝜙 from the 𝑘𝑡ℎ replicate. Let UB𝑘 and

LB𝑘 denote the 𝑘th values of the upper and lower bounds of the 95% confidence intervals
of ̂𝜙𝑘, respectively. Our computed simulation study metrics are then:

• Mean Relative Bias: 𝐵(𝜙) = ∑𝑘( ̂𝜙𝑘 − 𝜙)/𝐾𝜙 = ( ̂𝜙 − 𝜙)/𝜙,
• Mean Relative 95% CI Width: 𝑅(𝜙) = ∑𝑘(UB𝑘 − LB𝑘)/𝐾𝜙,
• Percent Coverage of 95% CI: 𝐶(𝜙) = ∑𝑘 1( ̂𝜙∈[LB𝑘,UB𝑘])/𝐾,

2.2.2.4 The Likelihood Ratio Test in Mark-Recapture Modelling

The likelihood ratio test (LRT) is a statistical test used to compare a general model
against a nested model that exists on a reduced parameter space (Lebreton et al., 1992).
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The test determines whether the reduced model captures a sufficient amount of variability
relative to the general model and is performed by computing a transformation of the
maximum likelihood statistic of the data under both the null (reduced) and alternative
(general) hypothesis called the deviance (Lebreton et al., 1992). Consider a case of the
CJS model in which we are testing whether survival varies by sex and we assume that
recapture does not. Then our hypothesis test can be expressed as:

𝐻0 ∶ 𝜙𝐹 = 𝜙𝑀 & 𝑝𝐹 = 𝑝𝑀

𝐻𝛼 ∶ 𝜙𝐹 ≠ 𝜙𝑀 & 𝑝𝐹 = 𝑝𝑀

The likelihood ratio statistic is defined as the ratio between the likelihood maximized
over the null hypothesis and the likelihood maximized over alternative (Lebreton et al.,
1992; Anderson et al., 1994):

Δ =
Sup(𝜙,𝑝)𝕃(𝜙, 𝑝|𝑦)

Sup(𝜙𝐹 ,𝜙𝑀,𝑝)𝕃(𝜙𝐹 , 𝜙𝑀 , 𝑝|𝑦). (2.4)

The test statistic, called the deviance, is then G2 = −2 log(Δ). Under the null hypoth-
esis, the deviance follows the chi-squared distribution with degrees of freedom equal to
the difference between the degrees of freedom between the general and reduced model
(Lebreton et al., 1992; Anderson et al., 1994). In our example, we have G2 H0∼ 𝜒2

1 and
our 𝑝-value is then computed with 𝑝 = ℙ(X2

1 ≥ G2) in which X2
1 ∼ 𝜒2

1. Moreover, by the
probability integral transformation theorem, we know that 𝑝 d∼ U(0, 1).

In our study, we compared the probability densities of both the deviance statistic and
the corresponding 𝑝-value for the both the LRT comparing (𝜙𝐺, 𝑝) against (𝜙, 𝑝) and
(𝜙, 𝑝𝐺) against (𝜙, 𝑝) across 𝛾 ∈ {0.0, 0.3, 0.6, 0.9, 1.0} with a fixed value of 𝜌 = 0.0. We
investigated whether dependence between mated pairs in mark-recapture data impacted
the ability of the LRT to perform reliable model selection.

2.2.2.5 The ̂𝑐 Correction in Mark-Recapture Models

When mark-recapture data is thought to violate the model assumption of regular binomial
variation, an estimate of the variance inflation factor, called ̂𝑐, can be computed to assess
the level of overdispersion in the model. Under appropriate binomial variation, data that
emerged from the CJS model would give a result of ̂c ≈ 1 (Anderson et al., 1994). On the
other hand, ̂c >> 1 suggests that the data has excess variation implying that either the
model structure is inadequate ( ̂𝑐 >> 5) or the underlying model assumptions have been
violated (Anderson et al., 1994). One well-known consequence of overdispersion due to
the dependent fates of individuals is that standard error estimates will by understated
by the CJS model (Anderson et al., 1994; Bischof et al., 2020). The recommended
approach to dealing with this in practice is to scale up the standard error by a factor of√

̂𝑐 (Lebreton et al., 1992; Anderson et al., 1994; Pradel, Gimenez, & Lebreton, 2005).
Furthermore, Anderson et al. (1994) have shown that the presence of overdispersion due
to data replication can impact goodness-of-fit testing by inflating the deviance statistic
which increases the type I error rate of the LRT.
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There are three popular estimators of overdispersion in mark-recapture modeling
(Cooch & White, 2020). They can be referred to as the deviance ̂𝑐 estimator (Anderson
et al., 1994), Pearson’s (or the chi-square) ̂𝑐 estimator (Lebreton et al., 1992; Pradel
et al., 2005), and Fletcher’s ̂𝑐 estimator (Fletcher, 2012). In our study, we consider the
deviance approach. Specifically, when performing model selection the most general model
should fit the data reasonably well compared to the saturated model, otherwise the data
is likely to have extra-binomial variation (Lebreton et al., 1992; Anderson et al., 1994).
The deviance between the saturated model (the model in which every data point has a
parameter associated to it) and the general model (a standard mark-recapture model like
the CJS model for instance) over the difference in their degrees of freedom can be used to
compute an approximation to the distribution of the variance inflation factor (Anderson
et al., 1994),

̂c ∼
𝜒2

dfdeviance

dfdeviance
. (2.5)

In our simulation study, we drew samples from the density of ̂𝑐 and generated a
point estimate of the overdispersion by taking the median. We call it the median ̂𝑐
estimator (similar to the median ̂𝑐 estimator discussed in Cooch & White (2020)) and
it is denoted as ̂𝑐med = median( ̂𝑐). We repeated this process for different values of
𝛾 ∈ {0.0, 0.3, 0.6, 0.9, 1.0} and a fixed 𝜌 = 1.0. We assessed whether variation induced
by mated pairs having correlated fates is detectable by considering whether the density
of ̂𝑐 and the corresponding point estimates, ̂𝑐med, indicated overdispersion. In order
to assess whether the behavior of the estimator is in line with current literature, we
computed ̂𝑐med for each of {(𝜙, 𝑝), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙𝐺, 𝑝𝐺)}.

2.3 Results

2.3.1 Standard Errors for CJS Models under Pair-Specific Lin-
ear Correlation

Monte Carlo estimates for the survival probability, relative confidence interval width,
and relative bias in model (𝜙, 𝑝) are not impacted by changes in the amount of survival
correlation present between mated pairs in the data (see Figure 2.1). That said, as
survival correlation increases between mated pairs, the percent coverage of the confidence
intervals decreases below the expected 95% value down to an extreme of about 87%
(Figure 2.1). This implies that the standard errors of the survival probability estimates
are being understated by the (𝜙, 𝑝) model, since they are the only term in the confidence
bounds that can vary due to the data. Moreover, percentage coverage is only understated
at high levels of survival correlation in models that do not account for the effect of sex
on survival (see Figure 2.2). On the other hand, the models that account for sex-specific
differences in their survival probabilities have coverage percentages that tend to stay
around 95%, with acceptable statistical variation, and thus continue to produce reliable
standard error estimates (Figure 2.2).
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2.3.2 Behavior of the LRT under Pair-Specific Linear Correla-
tion

As the level of survival correlation within the data increases, the tails of the density for
the likelihood ratio test statistic, comparing models (𝜙𝐺, 𝑝) and (𝜙, 𝑝), become lighter
than those of the assumed 𝜒2

1 distribution (Figure 2.3). The density of the 𝑝-values, in
turn, shift from a uniform distribution towards a left-skewed one (Figure 2.3). The case
in which there is no survival or recapture correlation serves as a basis of comparison. This
result implies that the likelihood ratio test will not reject the underlying null hypothesis
with a probability equal to its significance level (in this case 𝛼 = 0.05), but will instead
fail-to-reject with a higher probability. The violation of the independence assumption
across observations deflates the deviance statistic leading to the goodness-of-fit test favor-
ing the more parsimonious hypothesis. A technical example illustrating why the density
of the deviance begins to shrink towards zero as the survival and recapture correlations
increase is available in Appendix A.3. Interestingly, if we consider the likelihood ratio
test between models (𝜙, 𝑝𝐺) and (𝜙, 𝑝) (Figure 2.4), in which the recapture correlation
is fixed at 𝜌 = 0, we find that added survival correlation has minimal impact on the
test’s efficacy. These results suggest that increasing mated survival correlation between
paired individuals does not have a large impact on goodness-of-fit testing for sex effects in
recapture rates. Overall, the goodness-of-fit test comparing the effect of sex on survival
is impacted by survival correlation between mated-pairs, while the test comparing the
effect of sex on recapture outcomes is not.
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Figure 2.1: Survival metrics against survival correlation (𝛾) for (𝜙, 𝑝). Top Left: Monte Carlo
estimates of survival ̂𝜙 across varying levels of 𝛾. The error bars represent the 95% Monte
Carlo confidence intervals, which are approximately equal to ̂𝜙 ± 𝜎√

𝐾 . The red line represents
the truth 𝜙 = 0.7; Top Right: Interval width of 95% confidence intervals on ̂𝜙 across varying
levels of 𝛾; Bottom Left: Coverage percentage of the confidence intervals for ̂𝜙 across varying
levels of 𝛾. The red line represents the 95% confidence level; Bottom Right: Relative bias of ̂𝜙
across varying levels of 𝛾. The red line indicates a relative bias of zero.
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Figure 2.2: Coverage percentage of the confidence intervals for ̂𝜙 across varying levels of 𝛾 for
all models {(𝜙𝐺, 𝑝𝐺), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙, 𝑝)}. The red line is 95% confidence level.
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Figure 2.4: Likelihood ratio test of (𝜙, 𝑝𝐺) vs (𝜙, 𝑝) in which 𝜌 = 0 across a grid of survival
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1 > G2) = 0.05.
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2.3.3 Behavior of the ̂𝑐 Correction under Pair-Specific Linear
Correlation

For models that account for sex in either of their parameter estimates (all but (𝜙, 𝑝)),
the sampling densities of ̂𝑐 (see Figure 2.5) are within a close neighborhood of 1.0, re-
gardless of survival or recapture correlation between mates. In fact, with the exception
of (𝜙, 𝑝) the median estimate of ̂𝑐 decreases as the survival correlation increases (see
Table 2.1). For these model settings, ̂𝑐 has proven incapable of detecting the violated
assumption of independence within the data. However, model (𝜙, 𝑝) does not account
for sex-specific differences in its parameter estimation and so when 𝛾 = 1 and 𝜌 = 1
the mark-recapture data appear to be nearly replicates. Anderson et al. (1994) showed
that under this construction (replicated data without assigning treatment groups to each
replicate) ̂𝑐med ≈ 2. (𝜙, 𝑝) can be thought of as a control with respect to the other models
in the study. Given that estimates of 𝑐 are typically computed from the most general
model under examination (Cooch & White, 2020), the variance correction would not be
applied to the standard errors or be used to rescale goodness-of-fit testing metrics. As
such, when data replication occurs due to correlation among treatment groups (sex in
our example), the ̂𝑐 estimator will be understated for studies that include these groups
in their construction

Table 2.1: Median( ̂𝑐) for varying levels of (𝛾) across all models

Survival Correlation
Model 𝛾 = 0.0 𝛾 = 0.3 𝛾 = 0.6 𝛾 = 0.9 𝛾 = 1.0
(𝜙, 𝑝) 1.17 1.34 1.59 1.86 2.00

(𝜙, 𝑝𝐺) 1.09 1.06 1.03 0.94 0.93
(𝜙𝐺, 𝑝) 1.05 1.04 1.01 0.93 0.93

(𝜙𝐺, 𝑝𝐺) 1.10 1.09 1.08 1.02 1.03
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ĉ

D
en

si
ty

Model (φ,p)

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5

ĉ

D
en

si
ty

Model (φ,pG)

0.00

0.25

0.50

0.75

1.00

2.5 5.0 7.5

ĉ
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Figure 2.5: Density of ̂𝑐 for all models {(𝜙𝐺, 𝑝𝐺), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙, 𝑝)} in which 𝜌 = 1 across
𝛾 ∈ {0, 0.3, 0.6, 0.9, 1.0}. The dashed line indicates the value of ̂𝑐 = 1.
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2.4 Discussion
The results of our study show that the presence of correlation between paired individuals
introduces extra-binomial variation to the data, resulting in underestimated standard
errors and lowered coverage of confidence intervals for models that fail to account for
sex-specific effects. Our example in Appendix A.4 shows that the most extreme case of
paired correlation in the data corresponds to ̂𝑐 ≈ 2.

Furthermore, we have identified an issue with the inferences provided by the likelihood
ratio test. Sex-specific correlation in the data caused the asymptotic distribution of
the simulated deviance statistic to differ from its theoretical distribution for the test
of whether there was an effect of sex present in survival and/or recapture rates. As
such, increased levels of correlation for survival and/or recapture outcomes resulted in
overly conservative test results (failure to reject 𝐻0 more frequently than theoretically
expected). Issues with asymptotic assumptions surrounding the likelihood ratio test in
mark-recapture models are not unique to this study. Sparse contingency tables have been
shown to skew the density of the deviance statistic (both up and down) stemming from
the likelihoods of multinomial models (Koehler, 1986; Afroz, Parry, & Fletcher, 2019).
By introducing correlation into the CJS model structure we are, in a sense, reducing the
effective sample size of each generated dataset. Consider an example in which recapture
and survival correlations are set to one in a population of 200 animals consisting of
exactly 100 males and females with each animal in a long-term pair-bond. Under this
setup each pair effectively acts as a single individual (Lebreton et al., 1992). If one animal
from the pair dies (or is recaptured), then its partner will die (or be caught) as well. In
this case, we need only model the outcomes of one individual from each pair-bond using
the standard CJS model to compute reliable estimates of the survival and recapture
probabilities. This is, in effect, reducing our sample size down from 𝑛 = 200 down to
𝑛 = 100 and halving the expected cell frequencies of our contingency table as well. We
contend, however, that sparse data is not the key issue at play here as we designed our
simulation study to mitigate these known effects.

Recall that the survival and recapture probabilities used to generate our data were
0.7 and 0.8 across all time points for all individuals, respectively. Furthermore, our
simulation included one cohort in which all first captures occurred at time 𝑡 = 1. Table
2.2 shows the expected cell frequencies in our simulation study for the cases in which
𝑛 = 100 and 𝑛 = 200. Koehler & Larntz (1980) showed that the distribution of the
deviance is not well approximated by the chi-squared distribution when the ratio of the
sample size against the number of possible cells is less than five. In our case, this ratio
is equal to 𝑛/8 = 25 and so we expect that the deviance should be asymptotically chi-
squared. Moreover, if the majority of expected cell frequencies lie below 0.5, then the
test is said to be overly conservative (Larntz, 1978). On the other hand, if most of the
cell frequencies lie within the interval [0.5, 4], then the test becomes too liberal (rejects
𝐻0 too often) (Koehler, 1986).
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Table 2.2: Recapture cell probabilities for simulation study

Histories Probability Expected(n=100) Expected(n=200)
1000 0.351 35.06 70.12
1011 0.044 4.39 8.78
1101 0.044 4.39 8.78
1110 0.138 13.80 27.60
1100 0.202 20.25 40.50
1010 0.034 3.45 6.90
1001 0.011 1.10 2.19
1111 0.176 17.56 35.12

The expected cell frequencies shown in Table 2.2 all lie above 0.5 for both 𝑛 = 100
and 𝑛 = 200. While sparsity will have an impact on the distribution of the deviance,
the extreme shift from the chi-squared distribution that we observe goes well beyond the
expected difference introduced by sparsity found in our simulated data. The large spike in
𝑝-values as correlation increases is largely due to the nature of the duplicated data along
with the models under consideration in our simulation study. Consider Appendix A.3
for a mathematical example illustrating why correlation within groups in mark-recapture
data deflates the the deviance of the likelihood ratio test along with a small simulation
study showing the effect of increased sparsity on the density of the deviance statistic
without any correlation present between sexes. Furthermore, we acknowledge that in
many field studies the recapture rate in are lower than 80%. In these cases, it becomes
increasingly difficult to isolate the cause of deviations from the chi-squared distribution.

Anderson et al. (1994) showed that mark-recapture data with overdispersion due
to data replication inflates the size of the deviance when comparing across CJS models
that fail to account for the cause of the data replication. Our results show that the
source of overdispersion and the models under consideration are vital components to
determining the behaviour of the deviance. When replicated mark-recapture data is split
by treatment groups (males and females) and the mark-recapture model used to study
the data accounts for these groups in its parameter estimates, we have shown that the
computed values of ̂𝑐 are understated. This case occurs when comparing group-specific
heterogeneity for data in which there is a high amount of correlation between the two
groups being tested. Therefore, we need to both identify whether there is replication in
our sampling data and if there is an underlying group structure separating the replicates
(in our example the sex of the animals).

For models that took group-specific heterogeneity into account, estimates of the
overdispersion parameter ̂𝑐 were too small to indicate any statistically significant de-
parture from binomial variation, regardless of the degree of survival and recapture corre-
lation. As such, overdispersion due to paired correlation in populations that are highly
segmented into pairs may not be easily detectable. Consider, Appendix B.3 for a techni-
cal example demonstrating why this is the case. The small study presented in Appendix
A.4 shows that these results also apply to the Pearson (Pradel et al., 2005) and Fletcher’s
(Fletcher, 2012) ̂𝑐 estimators. The overdispersion introduced by our model does not re-
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sult in a large violation of the inherent structure of the CJS model. The new parameters
𝛿, 𝛾, 𝜌 are, in essence, controlling how similar the male and female sample data will be to
one another. The estimates of 𝜙 and 𝑝 will remain largely unbiased because the maximum
likelihood estimation procedure is unaffected by departures in binomial variation (Pradel
et al., 2005). Lack of biased estimates is not surprising when dealing with unmodelled
dependence structures in mark recapture data. For instance, Challenger (2010) found
that the CJS model produced reasonably unbiased estimates when modelling data with
group-specific correlations using Bayesian methods. Bischof et al. (2020) also showed
that spatial mark-recapture models with induced correlation between groups (of sizes
≥ 2) did not lead to heavily biased estimates of model parameters. As such, if the
estimates of 𝑐 were able to reliably detect overdispersion introduced by high binomial
correlations, quasi-likelihood approaches should provide a reasonable adjustment to stan-
dard error estimates (Anderson et al., 1994). The issue is that the estimator ̂𝑐 is incapable
of reliably detecting overdispersion in replicated data when the replicates are accounted
for in the modelling process as groups. Unfortunately, we have shown here that failing
to account for correlation between mated-pairs has the consequence of severely violating
the asymptotic assumptions of the likelihood ratio test and understating standard errors
in reduced models. Lebreton et al. (1992) suggested that when dealing with highly cor-
related data between sexes it may be reasonable to consider the sample population of
only one sex. Indeed, this approach will mitigate issues of understated standard errors
and failings of the variance inflation factor. However, one would need a priori knowl-
edge of the dependence between mated pairs in order to make this judgment, as we have
shown that the likelihood ratio test for group-specific differences, sometimes referred to
as TEST1 (Burnham et al., 1987), will overly favor the null hypothesis 𝐻0 for data with
high levels of pair-specific correlation. In an applied setting, researchers will not be able
to determine whether the LRT favors the more parsimonious model because of excessive
correlation between mated-pairs or if it is due to the parameters of interest being the
same between both sexes without any large violations to independence. As such, it is
important to be conscious of these issues when studying animal populations that are
suspected to form correlated known social groupings. If a researcher suspects this to be
the case, we suggest analyzing the data for each sex separately in order to isolate the
source of overdispersion. For instance, one can simulate estimates of 𝑐 using the full
data with the model (𝜙, 𝑝) (see Chapter 5 in Cooch & White, 2020), separate the data
by sex, and then repeat the process for each subset of the data. If the majority of the
overdispersion stems from group-specific correlations, the ̂𝑐 estimates generated from the
data for each specific sex should be close to one. If, however, the ̂𝑐 estimates remain high
for each group then it is likely that there may be other major sources of extra-binomial
variation present within the data. When a large majority of the overdispersion comes
from association between known pairs the researcher should either scale the standard
errors and information criteria with the ̂𝑐 estimate from (𝜙, 𝑝) or study the data for only
one of the two sexes.

A cleaner approach would be to estimate group-specific correlation explicitly using
extended models. Directly estimating group-specific correlation with mark-recapture
models will allow researchers to glean further insights into the social dynamics at play
between individuals within the population of interest. For instance, we could study how
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the effect sizes of meaningful covariates pertaining to survival rates change in the presence
of group-specific correlations. Does having a mate improve or hamper the chance of an
animal surviving when facing external selective pressures? There are, however, a whole
new set of issues that come with explicitly modelling group-specific correlations as well.
The assumption of mated pairs forming permanent (even in highly socially monogamous
populations) pairings is unrealistic and can lead to issues with parameter estimation
(Gimenez et al., 2012). Furthermore, by conditioning on long-term pair-bonds already
existing we limit the applicability of our proposed model to mature animals, as juveniles
cannot be in a long-term pair before maturity. Divorce is quite common among animals
that form long-term mate pairings (Smith et al., 2000; Ludwig & Becker, 2008; Maness
& Anderson, 2008; Gimenez et al., 2012; Culina et al., 2013). Researchers will need
to explicitly model the mate status of each individual animal, their current partner,
and their partner transitions, otherwise risk issues of pseudo-replication (Culina et al.,
2013). The issue of missing data is inflated here as well - what if one of the study
participants is mated with an individual who has not yet been tagged? In most mark-
recapture studies social detection is imperfect, even among animals with highly correlated
fates (Hoppitt & Farine, 2018; Gimenez et al., 2019). One might suggest omitting the
data points for animals that are seen with multiple partners in populations that mostly
practice social monogamy (low divorce rates). Unless the population has very few cases
of partner swapping, omitting these individuals will likely result in inflated standard
errors and biased estimates. The question then becomes: should we risk understated or
overstated standard errors when modelling our data? Finally, estimating the correlations
of demographic parameters between different groups of animals (adult vs juvenile for
instance) often requires populations with a large number of marked individuals to achieve
a reasonable degree of estimate precision (Riecke et al., 2019). These issues will need to
be addressed in future work if social dependence is to be accounted for with an extended
and estimable model structure.



Chapter 3

Estimating correlations between
long-term pair-bonds in
mark-recapture studies using
conditional data methods

3.1 Introduction
In the previous chapter, we presented an investigation on the impact of unaddressed
survival and recapture correlation between pair-bonded individuals within the context
of a CJS model. We pointed out that overdispersion due to correlation between mated
pairs, in either recapture or survival events, is not easily detectable with the deviation
(Anderson et al., 1994), Pearson (Lebreton et al., 1992; Pradel et al., 2005), or Fletcher
(Fletcher, 2012) approaches. Moreover, we showed that for CJS models which pool
survival or recapture probabilities together across sex, the standard deviation of these
probability estimates are underestimated by the CJS model. As such, the confidence
intervals around recapture and/or survival probabilities of interest fail to achieve 100(1−
𝛼)% coverage.

Furthermore, in the previous chapter, we used an extended model to generate datasets
which we conducted our experiment on. In practice, to estimate the amount of recapture
and survival correlation from a MR study with long-term monogamous pair-bonds we
would fit said model to the data. The model in Chapter 2, however, has the strong
underlying assumption that animals in a pair-bond will not switch partners between
sampling occasions, nor will they find new partners in the event of a departure. Even
for animals which exhibit long-term social monogamy, divorce still occurs frequently
enough that the assumption of 100% monogamy is too strong in practice (Maness &
Anderson, 2008; Gimenez et al., 2012; Culina et al., 2013; Richard, Perriman, Lalas, &
Abraham, 2015; Rebke et al., 2017). To relax this assumption, we would need to either
impute unknown mated pairs apriori or treat missing data as unknown parameters and
use Bayesian methods to estimate them (Bonner, Morgan, & King, 2010). The first
approach is not feasible since we both need some kind of model to tell us how partners
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organize themselves (and thus allowing us to estimate pair combinations), but we would
also need to know whether individuals are alive or not (as they might be in a pair as well).
Given that mark-recapture data is right-censored this is not something that is feasible
apriori. A complete data model, however, is also likely intractable, as we would need
to construct a sampling mechanism that assigns individuals to one another without any
repeated matches (a female cannot have two partners in a monogamous construction).
A mechanism that allows the sampler to explore the entire state-space and move freely
between transitions would need to be conceived. One key issue, is that the number of
possible combinations of partnerships, at any given occasion, grows extremely quickly. An
MCMC sampler (Chib & Greenberg, 1995; Geyer, 2011; Ravenzwaaij, Cassey, & Brown,
2018), for instance, would be unlikely to explore the entire state-space in a plausible
number of iterations. In essence we have a curse of dimensionality problem (Chen, 2009).
Ideally, if there was sufficient data on how partners organize themselves, we might be
able to come up with a model that can remove several potential combinations, but the
information we have from ecological research at this point in time is insufficient. We
provide more details on these issues in the discussion. Rather than fit a complete data
model, we present a conditional data alternative that is both fast and easy to implement.

The objective of this chapter is to present a novel conditional data approach to estimat-
ing survival and recapture correlations, denoted 𝛾 and 𝜌 respectively, between long-term
mated pairs within a CJS model framework (Catchpole, Morgan, & Tavecchia, 2008).
We frame our data in the context of long term pair-bonds, but the methods presented in
this work can be applied to any long-term dyads (grouping between two individuals). We
conducted a simulation study which investigates the bias and achieved coverage for 95%
confidence intervals of both 𝛾 and 𝜌. Moreover, we provide an approach to conducting a
two-sided hypothesis test of equality for both 𝜌 and 𝛾 through a parametric bootstrap-
ping algorithm. In our simulation study, we present power curves (Cohen, 1988) of the
two sided test of equality to zero, for both 𝛾 and 𝜌. Furthermore, we propose a variance
correction approach which can be used to account for overdispersion due to correlation in
recapture or survival events. With our simulation study, we demonstrate that confidence
intervals built from corrected standard deviations achieve 100(1−𝛼)% coverage. Finally,
we perform inference on a longitudinal dataset of Harlequin ducks (Histrionicus histrion-
icus), a species known to form monogamous long-term pair-bonds, gathered over a span
of 28 years (1992-2020) by Bighorn Wildlife Technologies using our proposed modelling
framework (Smith et al., 2000).

3.2 Materials and Methods

3.2.1 Estimating Recapture Correlation between Mated Pairs
In this section we propose a way to estimate the recapture correlation between pair-
bonded individuals using data gathered from a mark-recapture study on a single species,
over 𝑇 evenly spaced capture occasions with 𝑛 observed individuals. Our approach to
computing an estimate of the recapture correlation is a two-step process. In the first step,
we compute the marginal recapture and survival probabilities from our sample data using
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the (𝜙𝐺, 𝑝𝐺) model. Then we use the estimates of 𝑝𝐹 and 𝑝𝑀 and a subset of our sample
data to compute ̂𝜌. We always use the (𝜙𝐺, 𝑝𝐺) model to produce our marginal survival
and recapture probability estimates because, as we showed in the previous chapter, if
there is recapture correlation present among pairs, the models (𝜙𝐺, 𝑝) and (𝜙, 𝑝) will
produce estimates of 𝑝 that produce confidence intervals with less than nominal coverage.
We avoid the model (𝜙, 𝑝𝐺) because we will need estimates of survival probabilities,
recapture probabilities, and recapture correlation to estimate the survival correlation
between pairs in the following section.

Suppose that there are 𝑛𝑓 females and 𝑛𝑚 males which were captured in the study,
such that 𝑛 = 𝑛𝑓 + 𝑛𝑚. Furthermore, we assume that the species of interest is known
to form long-term pair-bonds, typically attempts to find a mate at every occasion, and,
if a pair is observed, they will stay together until one of the members departs from the
population. Specifically, if two individuals are identified as being mated, then we assume
that they will remain partnered until the last capture occasion of either individual. In
the event of a separation due to departure of one of the pair members, we assume that the
surviving partner will seek out a new mate from the population. Finally, we assume that
pairs are independent from one another, specifically, the survival and recapture outcomes
within pairs might be correlated, but the survival and recapture outcomes between pairs
are assumed to have zero statistical correlation.

Let 𝑋𝐹 be an 𝑛𝑓 by 𝑇 matrix of binary recapture outcomes for the females in the pop-
ulation, in which the entry 𝑋𝐹

𝑖,𝑡 represents the recapture status of female 𝑖 ∈ {1, … , 𝑛𝑓} at
sampling occasion 𝑡 ∈ {1, … , 𝑇 }. Define 𝑋𝑀 analogously for the 𝑛𝑀 sampled males. Fur-
thermore, let 𝑌 𝐹 be an 𝑛𝑓 by 𝑇 matrix of binary survival outcomes for the females in the
population, in which the entry 𝑌 𝐹

𝑖,𝑡 represents the survival status of female 𝑖 ∈ {1, … , 𝑛𝑓}
at sampling occasion 𝑡 ∈ {1, … , 𝑇 }. Define 𝑌 𝑀 analogously for the 𝑛𝑀 sampled males.
Finally, let 𝐻 be an 𝑛𝑓 by 𝑇 matrix of partnership histories, in which the entry 𝐻𝑖,𝑡 = 𝑗
represents the male partner 𝑗 ∈ {1, … , 𝑛𝑚} of female 𝑖 ∈ {1, … , 𝑛𝑓} at sampling occasion
𝑡. If 𝑖 is unobserved at some occasion 𝑡, and her mating status is unknown, then we assign
a dummy value of NA but if she is captured at occasion 𝑡 and identified as being single
then we assign a dummy value 𝑛𝑚 + 1. If the mark-recapture study conducted is one
in which singles cannot be identified upon recapture, then these 𝑛𝑚 + 1 values would be
coded as NA as well. For instance, let the following vector

(𝐻𝑖,1, … , 𝐻𝑖,𝑇 ) = (𝑛𝑚 + 1, 5, NA, 5, 5, 5, NA, NA, 2, NA)
denote the partner history of some female 𝑖 ∈ {1, … , 𝑛𝑓} for all capture occasions in our
mark-recapture study. Each entry represents a sampling occasion and the values denote
either the index of the female’s partner, or the placeholder values of NA (unknown status)
or 𝑛𝑚 + 1 (known to be single). In this example there are 𝑇 = 10 capture occasions, the
female is caught alone and known to be single at 𝑡 = 1, is observed to be partnered with
male 5 on occasions 𝑡 ∈ {2, 4, 5, 6}, and is paired with male 2 on occasion 𝑡 = 8. Finally,
she is not captured at times 𝑡 ∈ {3, 7, 8, 10} therefore a partner could not be identified
directly from the observation process. Earlier, we mentioned that we assume pairs will
persist until one of the members of the pair departs. Since we know that female 𝑖 is
partnered with male 5 at times 𝑡 ∈ {2, 4, 5, 6}, our assumption asserts that 𝐻𝑖,3 = 5. We
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cannot, however, assume that 𝐻𝑖,7 or 𝐻𝑖,8 are equal to 5 unless we know that male 5 has
not departed at these times as well.

In the previous example, from times 𝑡 = 2 to 𝑡 = 6, we know that female 𝑖 and male
5 are alive and assumed to be together. The recapture histories of these two individuals
from times 𝑡 = 3 to 𝑡 = 5 can be assumed to be independent and identically distributed
(iid) realizations of a correlated joint Bernoulli distribution. We do not include the
endpoints 𝑡 = 2 and 𝑡 = 6 because they cannot be considered iid draws from a joint
Bernoulli distribution. Specifically, when observing a series of histories in which two
individuals are paired, the first occasion that they are known to be paired together will
always start with a recapture of both individuals, and the last time they are known to be
paired cannot be an event in which neither individual was observed (otherwise we would
not be able to confirm that they were paired).

Now we define the joint recapture outcome of mated pairs, which we model with
correlated joint Bernoulli distribution. Let 𝑋𝐹𝑀

𝑖,𝑡 denote the joint recapture outcome of
female 𝑖 and her partner, 𝑗 = 𝐻𝑖,𝑡 at time 𝑡. Then, we write,

• 𝑋𝐹𝑀
𝑖,𝑡 = 4 if female 𝑖 and her partner are caught together at time 𝑡,

• 𝑋𝐹𝑀
𝑖,𝑡 = 3 if female 𝑖 is caught at time 𝑡 but her partner was not observed,

• 𝑋𝐹𝑀
𝑖,𝑡 = 2 if female 𝑖’s partner is caught at time 𝑡 but she was not observed,

• 𝑋𝐹𝑀
𝑖,𝑡 = 1 if neither female 𝑖 or her partner were observed at time 𝑡.

Compactly, we can express 𝑋𝐹𝑀
𝑖,𝑡

𝑋𝐹𝑀
𝑖,𝑡 = 1 + 2𝑋𝐹

𝑖,𝑡 + 𝑋𝑀
𝐻𝑖,𝑡,𝑡, (3.1)

in which 𝑋𝑀
𝐻𝑖,𝑡,𝑡 is zero if 𝐻𝑖,𝑡 = 𝑛𝑚 + 1 or NA.

Using the notation of the previous chapter, we can express the probability of each joint
outcome in terms of the recapture correlation, denoted 𝜌, and their marginal probabilities
𝑝𝐹 , and 𝑝𝑀 as

ℙ(𝑋𝐹𝑀
𝑖,𝑡 = 4|𝑌 𝐹

𝑖,𝑡 = 1, 𝑌 𝑀
𝑗,𝑡 = 1) = 𝑝𝑀𝐹 = 𝑝𝐹 𝑝𝑀 + 𝜌𝜎𝑝𝐹 𝜎𝑝𝑀 ,

ℙ(𝑋𝐹𝑀
𝑖,𝑡 = 3|𝑌 𝐹

𝑖,𝑡 = 1, 𝑌 𝑀
𝑗,𝑡 = 1) = 𝑝𝐹0 = 𝑝𝐹 (1 − 𝑝𝑀) − 𝜌𝜎𝑝𝐹 𝜎𝑝𝑀 ,

ℙ(𝑋𝐹𝑀
𝑖,𝑡 = 2|𝑌 𝐹

𝑖,𝑡 = 1, 𝑌 𝑀
𝑗,𝑡 = 1) = 𝑝𝑀0 = (1 − 𝑝𝐹 )𝑝𝑀 − 𝜌𝜎𝑝𝐹 𝜎𝑝𝑀 ,

ℙ(𝑋𝐹𝑀
𝑖,𝑡 = 1|𝑌 𝐹

𝑖,𝑡 = 1, 𝑌 𝑀
𝑗,𝑡 = 1) = 𝑝00 = (1 − 𝑝𝐹 )(1 − 𝑝𝑀) + 𝜌𝜎𝑝𝐹 𝜎𝑝𝑀 ,

(3.2)

in which 𝜎𝑎 = √𝑎(1 − 𝑎) represents the Bernoulli standard deviation for some probability
𝑎 ∈ [0, 1].

In order to compute a likelihood for the recapture correlation 𝜌, we construct a subset
of joint recapture histories between known partners from our sample data. Let 𝕏𝜌 be the
set of observations (𝑖, 𝑡) such that female 𝑖 and her partner 𝐻𝑖,𝑡 = 𝑗 are both known to
be alive and paired. Formally, the set 𝕏𝜌 is defined as



Chapter 3. Correlated Pairs with Conditional Data Methods 35

𝕏𝜌 = {(𝑖, 𝑡) ∶ 𝐶1, 𝐶2, 𝐶3} where

𝐶1 = (
𝑡−1
∑
𝑠=1

1(𝑋𝐹𝑀
𝑖,𝑡 =4,𝐻𝑖,𝑠=𝐻𝑖,𝑡)>0) ,

𝐶2 = ((
𝑇

∑
𝑠=𝑡+1

𝑋𝐹
𝑖,𝑡) > 0) , and

𝐶3 = ((
𝑇

∑
𝑠=𝑡+1

𝑋𝑀
𝐻𝑖,𝑡,𝑡) > 0) .

(3.3)

The event 𝐶1 indicates that female 𝑖 was observed together with her partner 𝐻𝑖,𝑡 at
least once before occasion 𝑡, while the events 𝐶2 and 𝐶3 assert that both individuals
are caught again at some point in the future. Thus, we know that they were together
at some point prior to 𝑡 and are currently alive, and by our assumption of no divorce
until departure, must therefore be mated.We propose a method of estimating 𝜌 through
maximum likelihood estimation using the data in the subset 𝕏𝜌.

3.2.1.1 Maximum Likelihood Estimator (MLE)

In this section, we define a maximum likelihood estimator for 𝜌 conditional on marginal
recapture estimates from the CJS model. We begin by using the (𝜙𝐺, 𝑝𝐺) model to
generate estimates of the marginal female and male recapture probabilities, denoted ̂𝑝𝐹

and ̂𝑝𝑀 respectively.
The likelihood contribution of one paired female, 𝑖 and her partner, 𝑗, at some sam-

pling occasion 𝑡, can be expressed as

𝑙(𝜌, 𝑝𝐹 , 𝑝𝑀 |𝑥𝐹𝑀
𝑖,𝑡 , 𝑌 𝐹𝑀

𝑖,𝑡 = 4, 𝐻𝑖,𝑡 = 𝑗) = ℙ(𝑋𝐹𝑀
𝑖,𝑡 |𝑌 𝐹𝑀

𝑖,𝑡 = 4, 𝐻𝑖,𝑡 = 𝑗) (3.4)

Now, if we condition on the recapture estimates we computed from the CJS model, 𝑝𝐹

and 𝑝𝑀 , we can express our conditional likelihood as

𝑙(𝜌|𝑥𝐹𝑀
𝑖,𝑡 , 𝑝𝐹 , 𝑝𝑀 , 𝑌 𝐹𝑀

𝑖,𝑡 = 4, 𝐻𝑖,𝑡 = 𝑗) = ℙ(𝑥𝐹𝑀
𝑖,𝑡 |𝑝𝐹 , 𝑝𝑀 , 𝑌 𝐹𝑀

𝑖,𝑡 = 4, 𝐻𝑖,𝑡 = 𝑗) (3.5)

in which ℙ(𝑥𝐹𝑀
𝑖,𝑡 |𝑝𝐹 , 𝑝𝑀 , 𝑌 𝐹𝑀

𝑖,𝑡 = 4, 𝐻𝑖,𝑡 = 𝑗) is computed by replacing all the marginal
recapture probabilities for females and males with 𝑝𝐹 and 𝑝𝑀 . Noting that 𝑋𝐹𝑀

𝑖,𝑡 ⟂
⟂ 𝑋𝐹𝑀

𝑗,𝑡 ∀𝑖 ≠ 𝑗 and 𝑋𝐹𝑀
𝑖,𝑡 ⟂⟂ 𝑋𝐹𝑀

𝑖,𝑘 ∀𝑡 ≠ 𝑘 we can express the complete conditional
likelihood as

𝐿(𝜌|𝑋𝐹𝑀 , 𝑝𝐹 , 𝑝𝑀) = ∏
(𝑖,𝑡)∈𝕏𝜌

𝑙(𝜌|𝑥𝐹𝑀
𝑖,𝑡 , 𝑝𝐹 , 𝑝𝑀)

= ∏
(𝑖,𝑡)∈𝕏𝜌

ℙ(𝑥𝐹𝑀
𝑖,𝑡 |𝑝𝐹 , 𝑝𝑀),

(3.6)
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in which we suppress the notation conditioning on 𝑌 𝐹𝑀
𝑖,𝑡 = 4 and 𝐻𝑖,𝑡 = 𝑗 for readability

going forward.
Now define the number of times the joint recapture recapture outcome 𝑐 ∈ {1, … , 4}
occurs in our sample dataset (after conditioning) as

𝑀𝑐 = ∑
(𝑖,𝑡)∈𝕏𝜌

1(𝑋𝐹𝑀
𝑖,𝑡 =𝑐) (3.7)

Then, the conditional log-likelihood of our joint recapture outcomes can be expressed as

log (𝐿(𝜌|𝑋𝐹𝑀 , 𝑝𝐹 , 𝑝𝑀)) = log ⎛⎜
⎝

∏
(𝑖,𝑡)∈𝕏𝜌

𝑙(𝜌|𝑋𝐹𝑀
𝑖,𝑡 , 𝑝𝐹 , ̂𝑝𝑀)⎞⎟

⎠
= ∑

(𝑖,𝑡)∈𝕏𝜌

log (𝑙(𝜌|𝑥𝐹𝑀
𝑖,𝑡 , 𝑝𝐹 , ̂𝑝𝑀))

= ∑
(𝑖,𝑡)∈𝕏𝜌

4
∑
𝑐=1

log (ℙ(𝑥𝐹𝑀
𝑖,𝑡 = 𝑐|𝑝𝐹 , 𝑝𝑀)) 1(𝑥𝐹𝑀

𝑖,𝑡 =𝑐)

=
4

∑
𝑐=1

𝑀𝑐 log(ℙ(𝑋𝐹𝑀 = 𝑐|𝑝𝐹 , 𝑝𝑀)).

(3.8)

The estimator for 𝜌 can be obtained by solving the following optimization problem:

̂𝜌 = argmax
𝜌∈[𝑟𝑙,𝑟𝑢]

log (𝐿 (𝜌|𝑋𝐹𝑀 , 𝑝𝐹 , 𝑝𝑀)) (3.9)

in which 𝑟𝑙 and 𝑟𝑢 are the bounds of the correlation on the joint Bernoulli distribution,
see the previous chapter for their definition.

Given a set of recapture histories 𝑋𝐹 and 𝑋𝑀 and matrix of partnership histories 𝐻,
we can compute 𝑀1, 𝑀2, 𝑀3, 𝑀4 from our observations, 𝑝𝐹 and 𝑝𝑀 from the CJS model,
and then solve the previous equation using a constrained maximization algorithm. In
this work, we use a variation of the Newton-Raphson method by calling the nlminb (non-
linear in-box minimization) function included in the stats package in the base version
of program R (R Core Team, 2022).

3.2.2 Estimating Survival Correlation in Mated Pairs
Now assume we wish to estimate the survival correlation between individuals within a
pair-bond, denoted as 𝛾. The computation of this estimator requires a three step process.
We first begin by fitting the (𝜙𝐺, 𝑝𝐺) model to our data to produce 𝑝𝐹 , 𝑝𝑀 , 𝜙𝐹 , and 𝜙𝑀 .
In the second step, using ̂𝑝𝐹 and ̂𝑝𝑀 , we utilize the process we outlined in the previous
section to compute ̂𝜌. In the following paragraphs, we present the details of the third
step.

Begin by letting 𝑌 𝐹𝑀
𝑖,𝑡 denote the joint survival outcome of female 𝑖 ∈ {1, … , 𝑛𝑓} and

her partner, at time 𝑡 ∈ {1, … , 𝑇 } such that
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• 𝑌 𝐹𝑀
𝑖,𝑡 = 4 if female 𝑖 and her partner survived from time 𝑡 − 1 to 𝑡,

• 𝑌 𝐹𝑀
𝑖,𝑡 = 3 if female 𝑖 survived from time 𝑡 − 1 to 𝑡 but her partner did not,

• 𝑌 𝐹𝑀
𝑖,𝑡 = 2 if female 𝑖’s partner survived from time 𝑡 − 1 to 𝑡 but she partner did

not,
• 𝑌 𝐹𝑀

𝑖,𝑡 = 1 if neither female 𝑖 or her partner survived from time 𝑡 − 1 to 𝑡.

As shown in Chapter 2, we can express the probability of each joint outcome in terms of
the survival correlation, 𝛾, and their marginal probabilities 𝜙𝐹 , and 𝜙𝑀 as such

ℙ(𝑌 𝐹𝑀
𝑖,𝑡 = 4|𝑌 𝐹𝑀

𝑖,𝑡−1 = 4) = 𝜙𝐹 𝜙𝑀 + 𝛾𝜎𝜙𝐹 𝜎𝜙𝑀 ,
ℙ(𝑌 𝐹𝑀

𝑖,𝑡 = 3|𝑌 𝐹𝑀
𝑖,𝑡−1 = 4) = 𝜙𝐹 (1 − 𝜙𝑀) − 𝛾𝜎𝜙𝐹 𝜎𝜙𝑀 ,

ℙ(𝑌 𝐹𝑀
𝑖,𝑡 = 2|𝑌 𝐹𝑀

𝑖,𝑡−1 = 4) = (1 − 𝜙𝐹 )𝜙𝑀 − 𝛾𝜎𝜙𝐹 𝜎𝜙𝑀 ,
ℙ(𝑌 𝐹𝑀

𝑖,𝑡 = 1|𝑌 𝐹𝑀
𝑖,𝑡−1 = 4) = (1 − 𝜙𝐹 )(1 − 𝜙𝑀) + 𝛾𝜎𝜙𝐹 𝜎𝜙𝑀 .

(3.10)

The difficultly with estimating 𝛾 is that we can only partially observe the
survival outcomes of individuals within a pair. For instance, let’s revisit the
partnership history of female 𝑖 ∈ {1, … , 𝑛𝑓} discussed in the previous section,
(𝑛𝑚 + 1, 5, NA, 5, 5, 5, NA, NA, 2, NA). At times 𝑡 = 2 through 𝑡 = 6 we know that she is
partnered with male 5 (under our assumption of monogamy until departure) but we do
not know her partnership state at times 𝑡 = 7 and 𝑡 = 8. She may have been paired with
male 2 at 𝑡 = 7, in which case male 5 will have perished between sampling occasions
𝑡 = 6 to 𝑡 = 7. On the other hand, she may have been with male 5 at 𝑡 = 7 and with
male 2 at 𝑡 = 8. There are many outcomes which could have occurred and we cannot
separate them into independent, identically distributed events. This problem becomes
worse we consider capture histories that are right-censored (after last capture). We do
know, however, that when a pair is spotted together at some time 𝑡 and then spotted
together again at time 𝑡 + 1 the probability of this outcome was equal to the 𝜙𝑀𝐹 𝑝𝑀𝐹 ,
in which we denote ℙ(𝑌 𝐹𝑀

𝑖,𝑡 = 4|𝑌 𝐹𝑀
𝑖,𝑡−1 = 4) as 𝜙𝑀𝐹 and ℙ(𝑋𝐹𝑀

𝑖,𝑡 = 4) as 𝑝𝑀𝐹 for
convenience. The probability that any other event occurred is equal to the compliment
(1 − 𝜙𝑀𝐹 𝑝𝑀𝐹 ). We can model these outcomes using a Bernoulli distribution.

3.2.2.1 Bernoulli Estimator

For any occasion 𝑡 in which both members within a pair were captured together, we
count the transition from 𝑡 to 𝑡 + 1 as a trial. If in the next occasion, both individuals of
the pair are observed then we consider this to be a success. Any other outcome at time
𝑡 + 1 (an individual is seen alone or with a different partner, or an unknown state), is
considered a failure.

Let 𝕏𝛾 define the subset of outcomes, of size 𝑛𝛾 ∈ ℕ, that represent all the occasions
in which some female 𝑖 ∈ {1, … , 𝑛𝑓} was captured with a male partner 𝐻𝑖,𝑡 = 𝑗 ∈
{1, … , 𝑛𝑚} at time 𝑡 ∈ {1, … , 𝑇 }. Formally, we define the set

𝕏𝛾 = {(𝑖, 𝑡) ∶ 𝑌 𝑀𝐹
𝑖,𝑡 = 4, 𝑋𝑀𝐹

𝑖,𝑡 = 4, 𝐻𝑖,𝑡 ∈ {1, … , 𝑛𝑚}} . (3.11)

For example, if female 3 was seen with male 6 at time 5 then (3, 5) ∈ 𝕏𝛾.
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We define the random variable that female 𝑖 and her partner are alive and were
captured together at time 𝑡 as 𝑋𝑌 𝑀𝐹 such that

𝑋𝑌 𝑀𝐹
𝑖,𝑡 = 1(𝑌 𝐹𝑀

𝑖,𝑡 =4,𝑋𝑀𝐹
𝑖,𝑡 =4). (3.12)

We can model 𝑋𝑌 𝑀𝐹
𝑖,𝑡 |𝑋𝑌 𝑀𝐹

𝑖,𝑡−1 using

𝑋𝑌 𝑀𝐹
𝑖,𝑡 |𝑋𝑌 𝑀𝐹

𝑖,𝑡−1 ∼ Bernoulli(𝜙𝑀𝐹 𝑝𝑀𝐹 𝑋𝑌 𝑀𝐹
𝑖,𝑡−1). (3.13)

The MLE for the probability of a Bernoulli density is the observed number of successes
over number of trials (Devore & Berk, 2012) so

𝜙𝑀𝐹 𝑝𝑀𝐹 ≈ ̂𝜙𝑀𝐹 𝑝𝑀𝐹 = ∑
(𝑖,𝑡)∈𝕏𝛾

XY𝑀𝐹
𝑖,𝑡

𝑛𝛾
. (3.14)

Now,

̂𝜙𝑀𝐹 𝑝𝑀𝐹 ≈ 𝜙𝑀𝐹 𝑝𝑀𝐹

= (𝜙𝐹 𝜙𝑀 + 𝛾𝜎𝜙𝐹 𝜎𝜙𝑀)𝑝𝑀𝐹 ⟺
̂𝜙𝑀𝐹 𝑝𝑀𝐹

𝑝𝑀𝐹 ≈ (𝜙𝐹 𝜙𝑀 + 𝛾𝜎𝜙𝐹 𝜎𝜙𝑀) ⟺

𝛾 ≈
̂𝜙𝑀𝐹 𝑝𝑀𝐹
𝑝𝑀𝐹 − 𝜙𝐹 𝜙𝑀

𝜎𝜙𝐹 𝜎𝜙𝑀

≈
̂𝜙𝑀𝐹 𝑝𝑀𝐹
�̂�𝑀𝐹 − ̂𝜙𝐹 ̂𝜙𝑀

�̂�𝜙𝐹 �̂�𝜙𝑀
.

(3.15)

Then the estimator of the survival correlation, ̂𝛾, is

̂𝛾 =
̂𝜙𝑀𝐹 𝑝𝑀𝐹
�̂�𝑀𝐹 − ̂𝜙𝐹 ̂𝜙𝑀

�̂�𝜙𝐹 �̂�𝜙𝑀
∈ [𝑔𝑙, 𝑔𝑢], (3.16)

in which 𝑔𝑙 and 𝑔𝑢 are the upper and lower bounds of the correlation coefficient of the
joint Bernoulli distribution, presented in the previous chapter.

3.2.3 Constructing 100(1 − 𝛼)% confidence intervals for ̂𝜌 and ̂𝛾
with a parametric bootstrap

In the previous two subsections, we have established a set of approaches which can be
used to compute both ̂𝜌 and ̂𝛾. In this section, we present a method of calculating the
variation in our estimators by constructing 100(1 − 𝛼)% confidence intervals via a para-
metric percentile bootstrapping algorithm (Efron & Tibshirani, 1993). The algorithm we
present is based on the approach proposed by Visser, Raijmakers, & Molenaar (2000), for
bootstrapping confidence intervals of parameters estimated from hidden markov models.
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We begin by fitting the (𝜙𝐺, 𝑝𝐺) model to our study data to get ̂𝑝𝐹 , ̂𝑝𝑀 , ̂𝜙𝐹 , ̂𝜙𝑀 .
Then using the methods discussed in the previous section, we compute ̂𝜌 and ̂𝛾. Now, for
𝑏 = 1 to 𝐵, in which 𝐵 is the number of desired bootstrap replicates, we execute three
steps:

1. Generate a pseudo-mark-recapture dataset using the parameters we estimated from
the sample data, ̂𝑝𝐹 , ̂𝑝𝑀 , ̂𝜙𝐹 , ̂𝜙𝑀 , ̂𝜌 and ̂𝛾, to produce a set of survival and
recapture outcomes along with a pairs matrix 𝐻. This approach is described in
detail in Appendix B.1.

2. On the new dataset, compute the parameters of interest ̂𝑝𝐹
𝑏 , ̂𝑝𝑀

𝑏 , ̂𝜙𝐹
𝑏 , ̂𝜙𝑀

𝑏 , ̂𝜌𝑏 and
̂𝛾𝑏 using the (𝜙𝐺, 𝑝𝐺) CJS model and our proposed estimators of 𝜌 and 𝛾. Store

the results.
3. After 𝐵 iterations, we will have a set of bootstrap estimates for 𝜌, { ̂𝜌∗

𝑏}𝐵
𝑏=1, and a

set of bootstrapped estimates for 𝛾, { ̂𝛾∗
𝑏}𝐵

𝑏=1.

To construct a 100(1 − 𝛼)% confidence interval of ̂𝜌, compute the 𝛼
2 and 1 − 𝛼

2 per-
centile on the bootstrapped values { ̂𝜌∗

𝑏}𝐵
𝑏=1 denoted, ̂𝜌∗𝛼

2
and ̂𝜌∗

1− 𝛼
2
. The 100(1 − 𝛼)%

confidence interval on ̂𝜌 is then [𝜌∗𝛼
2
, ̂𝜌∗

1− 𝛼
2
]. The procedure to compute the 100(1 − 𝛼)%

percentile-based confidence interval of ̂𝛾, denoted [𝛾∗𝛼
2
, ̂𝛾∗

1− 𝛼
2
], is analogous to the process

of calculating the interval for ̂𝜌.
The process of generating a set of new mark-recapture data in the first step requires

additional consideration, as it may not be obvious on how to properly do so (we cannot
actually do this given the fitted model because we do not have estimates of the entry
parameters nor do we model the mating process).

Since our model does not estimate the size of the population or the underlying pairing
process, we cannot explicitly draw from a super-population that has some underlying
size 𝑁 . Instead, our data-generating process produces pseudo-mark-recapture datasets
that have the same sample size of individuals, approximately the same ratio of males to
females, and approximately the same proportion of first captures as our sample dataset.
Then we sample new survival, recapture and observed pairing events, which allows us to
approximate the variation in the estimates of the parameters modelling these outcomes.
The algorithm we designed to generate pseudo-mark-recapture datasets is detailed in
Appendix 𝐵.1.

3.2.4 Two-Sided Hypothesis Testing of 𝜌 and 𝛾
Let 𝜃 denote either the recapture correlation 𝜌 or the survival correlation 𝛾. We can use
the bootstrap algorithm discussed in the previous sections to test the following hypothe-
sis:

𝐻𝑜 ∶ 𝜃 = 𝜃0 vs
𝐻𝛼 ∶ 𝜃 ≠ 𝜃0. (3.17)

Givens & Hoeting (2012), suggests that, in order to adequately test a null hypothesis
with bootstrapping, one should generate test statistics under the null hypothesis, and
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compare to the estimated parameter. We will use the difference between the value under
investigation in the null hypothesis and our estimate of the correlation. Formally, let
𝑡( ̂𝜃, 𝜃0) = | ̂𝜃 − 𝜃0| be the test-statistic for an estimate of either the recapture or survival
correlation ̂𝜃 and the correlation under the null hypothesis 𝜃0.

Assume that we have estimates of marginal recapture and survival probabilities for
both males and females by fitting the (𝜙𝐺, 𝑝𝐺) CJS model. Further assume that we have
estimates of 𝜌 (MLE) and 𝛾 (Bernoulli estimator) using the approaches described in the
previous sections.

3.2.4.1 Recapture Correlation: 𝐻𝑜 ∶ 𝜌 = 𝜌0

To compute a p-value (how far ̂𝜌 is in the tail in the distribution of estimates of 𝜌 given
that 𝐻0 is true), we execute a four-step algorithm:

1. For steps 2 and 3, iterate from 𝑏 = 1 to 𝑏 = 𝐵.
2. Generate a new mark-recapture dataset, with the algorithm described in the pre-

vious section, from the parameters we estimated from the sample data, ̂𝑝𝐹 , ̂𝑝𝑀 ,
̂𝜙𝐹 , ̂𝜙𝑀 , 𝜌0 (use the null hypothesis rather than the estimated value ̂𝜌) and ̂𝛾, to

produce a set of survival and recapture outcomes along with a pairs matrix 𝐻.
3. On the new dataset, compute the parameters of interest ̂𝑝𝐹

𝑏 , ̂𝑝𝑀
𝑏 , ̂𝜙𝐹

𝑏 , ̂𝜙𝑀
𝑏 , ̂𝜌𝑏 and

̂𝛾𝑏 using the (𝜙𝐺, 𝑝𝐺) CJS model and our proposed estimators of 𝜌 and 𝛾. Store
the results for ̂𝜌𝑏.

4. After 𝐵 iterations, we will have a set of bootstrap estimates for 𝜌0, { ̂𝜌𝑏}𝐵
𝑏=1.

Then we approximate a p-value with

Pvalue( ̂𝜌) ≈
𝐵

∑
𝑏=1

1(𝑡( ̂𝜌𝑏,𝜌0)>𝑡( ̂𝜌,𝜌0))
𝐵 . (3.18)

3.2.4.2 Survival Correlation: 𝐻𝑜 ∶ 𝛾 = 𝛾0

Similarly to the approach for 𝜌, we compute a p-value for 𝛾 under the null hypothesis
using the following four-step algorithm:

1. For steps 2 and 3, iterate from 𝑏 = 1 to 𝑏 = 𝐵.
2. Generate a new mark-recapture dataset, with the algorithm described in the pre-

vious section, from the parameters we estimated from the sample data, ̂𝑝𝐹 , ̂𝑝𝑀 ,
̂𝜙𝐹 , ̂𝜙𝑀 , ̂𝜌 and 𝛾0 (use the null hypothesis rather than the estimated value ̂𝛾), to

produce a set of survival and recapture outcomes along with a pairs matrix 𝐻.
3. On the new dataset, compute the parameters of interest ̂𝑝𝐹

𝑏 , ̂𝑝𝑀
𝑏 , ̂𝜙𝐹

𝑏 , ̂𝜙𝑀
𝑏 , ̂𝜌𝑏 and

̂𝛾𝑏 using the (𝜙𝐺, 𝑝𝐺) CJS model and our proposed estimators of 𝜌 and 𝛾. Store
the results for ̂𝛾𝑏.

4. After 𝐵 iterations, we will have a set of bootstrap estimates for 𝛾0, { ̂𝛾𝑏}𝐵
𝑏=1.

Then we approximate a p-value with

Pvalue( ̂𝛾) ≈
𝐾

∑
𝑘=1

1(𝑡(�̂�𝑏,𝛾0)>𝑡(�̂�,𝛾0))
𝐵 . (3.19)
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3.2.5 Overdispersion due to Survival and/or Recapture Corre-
lation

Assume we have generated estimates of 𝑝𝐹 , 𝑝𝑀 , 𝜙𝐹 , 𝜙𝑀 , 𝜌 and 𝛾 from a set of mark-
recapture study data gathered from a population of animals that will seek out partners
on all sample occasions and suppose that pair-bonds can be reasonably assumed to stay
together until the event of departure. We present an ad-hoc estimator which models the
amount of overdispersion introduced to a CJS model due to positive survival or recapture
correlations, when pooling their respective probability estimates by sex.

Define the estimate of extra-binomial variation due to overdispersion for the recapture
probability as

𝑐𝜌
𝑐 = 2 ̂𝜌1(𝑝𝐹 =𝑝𝑀); ∀𝜌 > 0. (3.20)

Furthermore, define the estimate of extra-binomial variation due to overdispersion for
survival probability as

𝑐𝛾
𝑐 = 2�̂�1(𝜙𝐹 =𝜙𝑀); ∀𝛾 > 0. (3.21)

We choose an exponential function of base 2 because it has several properties that make
it a good estimator of overdispersion. For simplicity, consider a situation in which ̂𝛾 = 0
and we are looking at a model that pools recapture by sex ((𝜙𝐺, 𝑝) or (𝜙, 𝑝)). Then
the additional variation around ̂𝑝 contributed by 𝜌 is ̂𝑐𝜌

𝑐 . When ̂𝜌 = 1 we have that
𝑐𝜌

𝑐 = 2. This is the ideal outcome since in this case we effectively have a sample size of
≈ 𝑛

2 (assuming that the majority of the population is mated), since for all pairs, both
members will have identical recapture outcomes at all occasions (Lebreton et al., 1992;
Anderson et al., 1994). 𝜌 = 0 will yield 𝑐𝜌

𝑐 = 1 which implies there is no extra-binomial
variation in the data. Finally, the function is continuous and smooth over the domain of

̂𝜌 > 0.
In Chapter 2 we showed, through a simulation study, that the coverage of 95% con-

fidence intervals for the recapture probability, 𝑝, or survival probability 𝜙, when pooled
together by sex, have inadequate coverage as corresponding recapture and survival cor-
relations increase, respectively. As such, we suggest adjusting the variance of ̂𝑝 and ̂𝜙
using a ̂𝑐 type correction with Var𝑐( ̂𝑝) = Var( ̂𝑝)𝑐𝜌

𝑐 and Var𝑐( ̂𝜙) = Var( ̂𝑝)𝑐𝛾
𝑐 , respectively.

Note that one key difference between a standard ̂𝑐 correction and our approach is that
instead of having one global estimate of the overdispersion of the variance of ̂𝑝 and ̂𝜙,
this approach decomposes the overdispersion into an adjustment for the recapture and
survival probability estimates separately. Corrected confidence intervals can be built by
plugging in the corrected variance estimate into the delta-method approach, either on the
probability scale or logit-scale with back-transformation (Lebreton et al., 1992; Cooch &
White, 2020).

3.2.6 Software
For both the simulation study and the practical application, we use the statistical soft-
ware R (R Core Team, 2022) to pre-process, analyze, and summarize the results of our
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investigations. We use the library Rcpp (Eddelbuettel & François, 2011; Eddelbuettel,
2013) in order to write our data generating process in C++ and then connect back to R.
This is done for speed-up purposes given that c++ has less overhead relative to a higher-
level language such as R. When fitting the CJS model, we used the software package
marked (Laake, Johnson, & Conn, 2013) to estimate marginal recapture and survival
probabilities of the CJS model in R. The simulation study was conducted on the Graham
computing cluster hosted on SHARCNET (www.sharcnet.ca).

3.3 Simulation Study
To verify the efficacy of our proposed estimators of 𝜌 and 𝛾, we conduct a simulation study
with the intention of demonstrating that their estimates are unbiased and have sufficient
coverage for 95% confidence intervals. Furthermore, we investigate the power of the
hypothesis test of whether estimated survival or recapture correlations are equal to zero
for different effect sizes. Finally, we consider the coverage of the 95% confidence intervals
of pooled marginal survival and recapture estimates once the 𝑐𝜌

𝑐 and 𝑐𝛾
𝑐 corrections have

been applied.

3.3.1 Data Generation and Scenarios
To study the performance of our estimators for 𝜌 and 𝛾 (and the corresponding 𝑐𝜌

𝑐 and
𝑐𝛾

𝑐 corrections), we generate 𝐾 = 1000 datasets for all combinations of the following
parameter settings:

• 𝑛 ∈ {150, 250}
• 𝑇 = 25
• (𝜙𝐹 , 𝜙𝑀) = (0.8, 0.8)
• (𝑝𝐹 , 𝑝𝑀) = {(0.45, 0.45), (0.75, 0.75)}
• 𝜌 ∈ {0.00, 0.05, 0.20, 0.35, 0.50, 0.65, 0.80}
• 𝛾 ∈ {0.00, 0.05, 0.20, 0.35, 0.50, 0.65, 0.80}.

We chose sample populations of 150 and 250 individuals to study what the impact
of variation of the sample size has on our estimates of correlation. We chose survival
probabilities of 80% to ensure our effective sample sizes were large enough to compute
reliable estimates of survival and recapture probabilities from the standard CJS model.
We looked at different levels of recapture probabilities to study the impact that they
would have on our proposed estimators and we used 𝑇 = 25 sampling occasions to
reflect the structure of the Harlequin duck data we analyze in the following section. We
also generate a positive grid of survival and recapture correlations to study whether
the magnitude of the correlation has an impact on achieved bias, coverage percentage,
and power of the test of equality to zero. We chose positive correlations because this
is more likely to occur among ecological species in practice and the interpretation of
negative survival or recapture correlation is not clear from an ecological context. Finally,
this study was meant to provide a comprehensive but not exhaustive overview of the
performance of these estimators.
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Confidence intervals and hypothesis tests are computed from 𝐵 = 1000 Monte Carlo
replications. The probability that the sex of a given animal is female is 50% (thus
E(𝑛𝑓) = 𝑛

2 and E(𝑛𝑚) = 𝑛
2 ), all animals will attempt to find a partner at each sampling

occasion, and pairs will only separate when an individual from the pair-bond departs.
Moreover, we break the data up into 𝑇 − 1 cohorts with the probability of an individual
belonging to any cohort being 1

𝑇 −1 . Assume no temporal variation across probabilities
or correlations of survival and recapture outcomes.

For each scenario, we will begin by computing estimates from the following CJS
models

{(𝜙𝐺, 𝑝𝐺), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙, 𝑝)} . (3.22)
Using (𝜙𝐺, 𝑝𝐺), we compute an estimate of 𝜌 with the MLE approach and then compute
estimates of 𝛾 with the Bernoulli estimator. Then, we build 95% confidence intervals for

̂𝜌 and ̂𝛾 using the bootstrap algorithm we presented in the methods section. To assess
the power of the test whether the correlations are statistically different from zero we use
a significance level of 𝛼 = 0.05. Formally, we are testing 𝐻0 ∶ 𝜌 = 0 vs 𝐻0 ∶ 𝜌 ≠ 0
and 𝐻0 ∶ 𝛾 = 0 vs 𝐻0 ∶ 𝛾 ≠ 0 by comparing ̂𝜌 and ̂𝛾 using bootstrapped distributions
generated under the null hypothesis to get p-values. Finally, we compute ̂𝑐𝜌

𝑐 and ̂𝑐𝛾
𝑐 and

use them to adjust the confidence intervals of (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), and (𝜙, 𝑝).

3.3.2 Study Metrics
Let 𝐾 denote the number of replicated datasets for each scenario discussed in the data
generation process. Furthermore, let 𝜃 be the true value of some parameter of interest,
in which ̂𝜃𝑘 is the estimate of 𝜃 from replicate dataset 𝑘 ∈ {1, … , 𝐾}. Then, for all
scenarios of interest we compute the bias. Let 𝑏𝑘 = ̂𝜃𝑘 − 𝜃 denote the error of the 𝑘𝑡ℎ
replicate. Then, the bias is defined as

Bias( ̂𝜃) =
𝐾

∑
𝑘=1

𝑏𝑘
𝐾 . (3.23)

Moreover, we we compute the average coverage percentage of the 100(1−𝛼)% confidence
intervals across all replicates within a given scenario as

Coverage( ̂𝜃, 𝛼) =
𝐾

∑
𝑘=1

1(𝜃∈{ ̂𝜃𝐿,𝛼,𝑘, ̂𝜃𝑈,𝛼,𝑘})
𝐾 (3.24)

in which ̂𝜃𝐿,𝛼,𝑘 and ̂𝜃𝑈,𝛼,𝑘 are the lower and upper bounds of the 100(1−𝛼)% confidence
interval around ̂𝜃𝑘. We use a significance level of 𝛼 = 0.05.

Finally, we study the power of the hypothesis test of equality to zero (𝐻0 ∶ 𝜃 = 0) for
both the recapture and survival correlation estimates, at significance level 𝛼 = 0.05, by
computing the Monte Carlo rejection rate (when the alternative hypothesis is true) with

Power( ̂𝜃, 𝛼) =
𝐾

∑
𝑘=1

1(Pvalue( ̂𝜃𝑘)≤𝛼)
𝐾 . (3.25)
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3.3.3 Results
3.3.3.1 Inference on ̂𝜌

̂𝜌 is unbiased across most true values of 𝜌 and 𝛾 when the sample population is at 𝑛 = 250
(Figure 3.1). For the scenarios in which 𝑛 = 150, a lower recapture probability resulted
in higher biases (Figure 3.1). These biases also tended to increase as the magnitude of 𝜌
increased. It is worth noting that the biases generally were less than or equal 0.01, which,
on the correlation scale, is not a high value, and are likely due to noise. On a percentile
scale, a bias of 0.01 reflects about a 3% difference for a moderate correlation of 𝜌 = 0.35,
for example.

For the cases in which 𝑛 = 250 and 𝑝𝐹 = 𝑝𝑀 = 0.75 the confidence intervals achieved
nominal coverage of 𝜌 across varying true values of 𝜌 and 𝛾 (Figure 3.2). When consider-
ing marginal recapture probabilities of 0.45, the variance around the achieved coverage
(for different values of 𝜌 and 𝛾) tended to increase (Figure 3.2). Most cases still achieved
nominal coverage, but there was at least one case in which the coverage dropped down to
89%. When the sample size was reduced to 𝑛 = 150, and the recapture probability was
high, 0.75, the achieved coverages were typically nominal, with the exception of a handful
of cases when 𝜌 = 0 (Figure 3.2). For the case when 𝑛 = 150, and 𝑝𝐹 = 𝑝𝑀 = 0.45 the
coverages seemed to systematically decrease but still remained within a neighborhood of
95% coverage.

When 𝑛 = 250 and 𝑝𝐹 = 𝑝𝑀 = 0.75, the plot of the average rejection rate, often
referred to as a power curve, of the null hypothesis 𝐻0 ∶ 𝜌 = 0 under different true values
of 𝜌 and 𝛾, suggests that the power of our bootstrap test reaches the standard threshold
of 80% (Cohen, 1988) when the true value of 𝜌 is between 0.2 and 0.35, depending on the
magnitude of 𝛾 (Figure 3.3). For values of 𝜌 less than 0.2, the effect size is too small to
reach a power of 20%. Namely, when 𝜌 = 0.2, we see that the test has a power ranging
from 30% to 65%, increasing in magnitude for higher values of 𝛾. When 𝜌 = 0.05, the
power is very close to zero for all values of 𝛾 due to the small effect size. Furthermore, the
test rejection rate under the null hypothesis (when 𝜌 = 0) is about 5%, which corresponds
with our expectation (the coverage of the 95% confidence interval at 𝜌 = 0 confirms this
result as well) (Figure 3.3). Decreasing the sample size or the recapture probability tends
to reduce the power of the test by a similar amount (power of 80% is reached between
𝜌 = 0.4 and 𝜌 = 0.5). Finally, when considering the case with the lowest recapture
probability (0.45) and sample size (150), power of 80% is not reached until 𝜌 has a effect
size greater than 0.6 (Figure 3.3).

3.3.3.2 Inference on ̂𝛾
When recapture probability is low, for both 𝑛 = 150 and 𝑛 = 250, the bias around the
estimate of 𝛾 is not negligible ranging from a magnitude of 0 − 0.2 (Figure 3.4). There
appears to be a linear trend in which the magnitude of the bias increases from −0.2 to 0.2
as the true value of 𝛾 increases from 0 to 0.8. However, when the recapture probability
is high, the bias shrinks significantly. The estimator appears to only have a slight bias
when 𝑛 = 150 and 𝛾 is around 0 or 0.8 and the bias tends to disappear when 𝑛 = 250
(Figure 3.4). The true value of 𝜌 does not seem to have a significant bearing on the bias
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of ̂𝛾.
The coverage percentage for the 95% bootstrapped percentile intervals for ̂𝛾 is approx-

imately 99%−100% when the recapture probabilities are low (Figure 3.5). This suggests
that our method of estimating the standard deviation of 𝛾 is biased high for these cases.
The underlying variation around 𝛾 comes from a correlated joint Bernoulli distribution,
and we are reducing, out of necessity, our state-space down to a set of Bernoulli trails.
The Bernoulli distribution has a higher variance component and thus the bootstrapped
interval will be too wide and the standard error too high. That said, when we increase
the recapture probability to 0.75, the number of observations for the estimator of 𝛾 also
increase (since more of the cases in which both a male and female partner are seen will
increase accordingly) (Figure 3.5). The coverages are still higher than nominal, but they
are much closer to 95% for the cases in which 𝑛 = 150 and 𝑛 = 250.

When 𝑛 = 250 and 𝑝𝐹 = 𝑝𝑀 = 0.75, the power curve of 𝐻0 ∶ 𝛾 = 0 shows that
the power of our bootstrap test approaches the standard threshold of 80% (Cohen, 1988)
when the true value of 𝛾 is between 0.5 and 0.65, with power increasing for larger values
of 𝜌 (Figure 3.6). When 𝑝𝐹 = 𝑝𝑀 = 0.45, and n is either 150 or 250, the hypothesis test
has an unacceptably low amount of power for all values of 𝜌 and 𝛾 (Figure 3.6). The
power is below 80% for nearly all values of 𝜌 and 𝛾 when 𝑛 = 150 and 𝑝𝐹 = 𝑝𝑀 = 0.75,
but it is much higher than the cases when 𝑝𝐹 = 𝑝𝑀 = 0.45.

3.3.3.3 Adjusted Coverage Percentage of 95% Confidence Intervals for CJS
Models Pooled by Sex

As we showed in Chapter 2, the Monte Carlo coverage percentage of the 95% confidence
intervals around ̂𝑝, for models which pool the recapture probability by sex, begin to drop
below acceptable levels once 𝜌 > 0.1. For models (𝜙, 𝑝) and (𝜙, 𝑝𝐺), the 𝑐𝜌

𝑐 adjusted
achieved confidence interval coverage is centered around acceptable levels of 95%, with
minor variation, for all values of 𝜌 and 𝛾 (Figure 3.7). When recapture probabilities are
modeled separately for each sex, the estimates of the standard error of ̂𝑝𝐹 and ̂𝑝𝑀 are
produced separately from one another, so no extra-variation from 𝜌 will impact coverage
(see Chapter 2) and so these figures are unreported here. We only consider the scenarios
when 𝑛 = 250 and 𝑝𝐹 = 𝑝𝑀 = 0.75 for these plots.

Similar to 𝑝, the true survival probability of the pooled estimate of 𝜙 is not adequately
covered by the 95% confidence intervals for 𝛾 > 0.1. For models (𝜙, 𝑝) and (𝜙𝐺, 𝑝), the
𝑐𝛾

𝑐 adjusted average confidence interval coverage of 𝜙 is centered around an acceptable
level of 95%, with minor variation, across different true values of 𝛾 and 𝜌 (Figure 3.8).
When survival is modeled separately for sexes, the estimates of the standard error of
𝜙𝐹 and 𝜙𝑀 are produced separately from one another, so no extra-variation from 𝛾 will
impact coverage (see Chapter 2). We only consider the scenarios when 𝑛 = 250 and
𝑝𝐹 = 𝑝𝑀 = 0.75 for these plots.
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Figure 3.1: Bias of ̂𝜌 against the true value of 𝜌. The panels on the left-hand side represent
the cases in which 𝑝𝐹 = 𝑝𝑀 = 0.45 and those on right indicate that 𝑝𝐹 = 𝑝𝑀 = 0.75. Further-
more, the panels along the top represent the cases in which the number of observed animals is
n=150 and the bottom panels represent the case when n=250. Each color represents a different
underlying true survival correlation 𝛾. Finally, the horizontal black line indicates a bias of 0.



Chapter 3. Correlated Pairs with Conditional Data Methods 47

pF=pM=0.45 pF=pM=0.75
n=

 150
n =

 250

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0.88

0.92

0.96

1.00

0.88

0.92

0.96

1.00

ρ

C
ov

er
ag

e(
ρ,

 0
.9

5)

γ 0

0.05

0.2

0.35

0.5

0.65

0.8

Figure 3.2: Monte Carlo achieved coverage percentage of 95% confidence intervals of 𝜌 using the
parameteric bootstrap percentile CI approach. The true values of 𝜌 are represented on the x-axis
of each panel. The panels on the left-hand side represent the cases in which 𝑝𝐹 = 𝑝𝑀 = 0.45 and
those on the right indicate 𝑝𝐹 = 𝑝𝑀 = 0.75. Furthermore, the panels along the top represent
the cases in which the number of observed animals is n=150 and the bottom panels represent
the case when n=250. Each color represents a different underlying true survival correlation 𝛾.
The horizontal black lines indicate a coverage of 95% and the dashed red lines represent the
2.5% and 97.5% percentiles of the Bernoulli distribution with an underlying probability of 95%.
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Figure 3.3: Monte Carlo achieved power for hypothesis testing 𝐻0 ∶ 𝜌 = 0 vs 𝐻𝛼 ∶ 𝜌 ≠ 0 using
the bootstrap hypothesis testing approach. The true values of 𝜌 are represented on the x-axis
of each panel. The panels on the left-hand side represent the cases in which 𝑝𝐹 = 𝑝𝑀 = 0.45
and those on the right indicate that 𝑝𝐹 = 𝑝𝑀 = 0.75. Furthermore, the panels along the top
represent the cases in which the number of observed animals is n=150 and the bottom panels
represent the case when n=250. Each color represents a different underlying true survival
correlation 𝛾. Finally, the horizontal black lines indicate a power of 80%.



Chapter 3. Correlated Pairs with Conditional Data Methods 49

pF=pM=0.45 pF=pM=0.75
n=

 150
n =

 250

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

−0.2

0.0

0.2

−0.2

0.0

0.2

γ

B
ia

s(
γ)

ρ 0

0.05

0.2

0.35

0.5

0.65

0.8

Figure 3.4: Bias of ̂𝛾 against the true value of 𝛾. The panels on the left-hand side represent
the cases in which 𝑝𝐹 = 𝑝𝑀 = 0.45 and those on the right indicate that 𝑝𝐹 = 𝑝𝑀 = 0.75.
Furthermore, the panels along the top represent the cases in which the number of observed
animals is n=150 and the bottom panels represent the case when n=250. Each color represents
a different underlying true recapture correlation 𝜌. Horizontal black lines indicate a bias of 0.
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Figure 3.5: Monte Carlo achieved coverage percentage of 95% confidence intervals of 𝛾 using the
parameteric bootstrap percentile CI approach. The true values of 𝛾 are represented on the x-axis
of each panel. The panels on the left-hand side represent the cases in which 𝑝𝐹 = 𝑝𝑀 = 0.45 and
those on the right indicate 𝑝𝐹 = 𝑝𝑀 = 0.75. Furthermore, the panels along the top represent
the cases in which the number of observed animals is n=150 and the bottom panels represent
the case when n=250. Each color represents a different underlying true recapture correlation
𝜌. The horizontal black lines indicate a coverage of 95% and the dashed red lines represent the
2.5% and 97.5% percentiles of the Bernoulli distribution with an underlying probability of 95%.
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Figure 3.6: Monte Carlo achieved power for hypothesis testing 𝐻0 ∶ 𝛾 = 0 vs 𝐻𝛼 ∶ 𝛾 ≠ 0 using
the bootstrap hypothesis testing approach. The true values of 𝛾 are represented on the x-axis of
each panel. The panels on the left-hand side represent the cases in which 𝑝𝐹 = 𝑝𝑀 = 0.45 and
those on right indicate that 𝑝𝐹 = 𝑝𝑀 = 0.75. Furthermore, the panels along the top represent
the cases in which the number of observed animals is n=150 and the bottom panels represent
the case when n=250. Each color represents a different underlying true recapture correlation 𝜌.
The horizontal black lines indicates a power of 80%.
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Figure 3.7: Monte Carlo coverage percentages of 95% confidence intervals for recapture prob-
ability, 𝑝, for models in which the recapture probabilities are pooled by sex, ((𝜙, 𝑝), (𝜙𝐺, 𝑝))
and scenario in which we adjusted with 𝑐𝜌

𝑐 or not. The true value of the recapture correlation,
𝜌, is on the x-axis and the true value of the survival correlation, 𝛾, is denoted by color. The
top panels indicate the coverage percentage after the variance correction Var( ̂𝑝)2𝜌 was applied
and the bottom panels are the case in which coverages are based on Var( ̂𝑝). The solid black
lines indicate the point of 95% coverage. The sample population is n=250 and recapture prob-
abilities are 75%. Finally, the dashed red lines represent the 2.5% and 97.5% percentiles of the
Bernoulli distribution with an underlying probability of 95%.
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Figure 3.8: Monte Carlo coverage percentages of 95% confidence intervals for survival proba-
bility, 𝜙, for models in which the survival probabilities are pooled by sex, ((𝜙, 𝑝), (𝜙, 𝑝𝐺)) and
scenario in which we adjusted with 𝑐𝛾

𝑐 or not. The true value of the survival correlation, 𝛾,
are on the x-axis and the true values of the recapture correlations, 𝜌, are denoted by color.
The top panels indicate the coverage percentage after the variance correction Var( ̂𝜙)2𝛾 was
applied and the bottom panels are the case in which coverages are based on Var( ̂𝜙). The solid
black lines indicate the point of 95% coverage. The sample population is n=250 and recapture
probabilities are 75%. The dashed red lines represent the 2.5% and 97.5% percentiles of the
Bernoulli distribution with an underlying probability of 95%.
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3.4 Application: Harlequin Ducks of the Mcleod
River Region

3.4.1 Context on Harlequin Ducks
The Harlequin duck (Histrionicus histrionicus) is a long-lived migratory sea duck which
tends to practice permanent social monogamy (Smith et al., 2000; Bond et al., 2009).
Although monogamous, Harlequin ducks have been shown to form new partnerships
when their partner has perished (Smith et al., 2000). Furthermore, Harlequin ducks
exhibit a high degree of fidelity to both their mating and wintering grounds (Savoy et
al., 2017; MacCallum et al., 2022). As such, they have been the subject of numerous
mark-recapture studies designed to investigate their demography (Smith et al., 2000;
Regehr, Smith, Arquilla, & Cooke, 2001; Bond et al., 2009; Maccallum, Feder, Godsalve,
Paibomesai, & Patterson, 2016; Smith, Ashley, Goudie, & Smith, 2017; MacCallum et
al., 2022).

3.4.2 Data Description and Assumptions
Harlequin ducks from the study population of interest typically nest in the McLeod River
region in Alberta, Canada during the summer months (May through August) and spend
the remainder of the year at their wintering ground on the west coast of British Colombia,
Canada (Bond et al., 2009). Harlequins form pair-bonds at their wintering ground, travel
with their mate to their nesting grounds, and remain together until the males leave to
migrate to the wintering ground. The females follow the males several weeks later after
their young are mature enough to accompany them to the wintering ground (Regehr
et al., 2001). The ducks were physically captured with nets, typically twice a breeding
season for females and once for males (as males tend to migrate back to the wintering
ground before females have reared their offspring). The birds were tagged with unique
metal bands and unique plastic bands. These bands occasionally had to be replaced and
so a single duck may have had multiple unique plastic or metal bands throughout the
duration of the study. That said, each duck’s banding history was recorded so there are
no known issues regarding identifiability across years. The ducks’ age status (hatchling
or adult), sex, and current partner were recorded upon each capture and release occasion.

We define a sample period as one year in which each individual is marked as either
seen or not-seen. If a duck was observed at any point during the recapture period they
are marked as observed for that year. If a female was observed rearing offspring, but
not seen with a male, she is listed as having an unknown male partner for that sample
occasion. The entirety of the recapture effort occurs at the breeding ground during
the spring and summer season. The longest lived Harlequin duck observed on record is
20 years and nine months (Smith et al., 2017) which serves as a lower bound on their
maximum age. Theoretically, Harlequin ducks could live much longer as we are limited
by the fact that longitudinal studies on these birds became more common in the 1990s
(Smith et al., 2017) and so we may simply have not yet observed a longer-lived harlequin
duck. As such, we make no assumptions about whether a bird has perished if their last
observation is at some time 𝑡 < 𝑇 . Moreover, we define a duck as having been recruited



Chapter 3. Correlated Pairs with Conditional Data Methods 55

into our population if it has been alive for at least one full year and observed following
that year. Infant mortality is commonly much higher in wildlife populations relative to
adults and as infants are not the demographic of interest in our study, we have excluded
juveniles from our investigation (as it takes about a year for Harlequin ducks to grow
past their juvenile state). Finally, our sample has 𝑛 = 314 adult ducks, 𝑛𝑓 = 148 of
which are female and 𝑛𝑚 = 166 are male.

3.4.3 Modelling Harlequin Duck Data
We will investigate whether Harlequin ducks have recapture and/or survival correlations
between mated pairs. Our approach will be as follows:

• compute estimates from the following CJS models ((𝜙𝐺, 𝑝𝐺),(𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺),(𝜙, 𝑝));
• use the AIC and AIC𝑐 criterion (the contextual definitions of AIC and AIC𝑐 is

provided in Cooch & White (2020) for mark-recapture models) to determine which
CJS model provides the best fit to the Harlequin duck data;

• using (𝜙𝐺, 𝑝𝐺), compute an estimate of 𝜌 with the MLE approach, and then com-
pute estimates of 𝛾;

• generate 95% confidence intervals and test whether the correlations are statistically
different from zero 𝐻0 ∶ 𝜌 = 0 vs 𝐻0 ∶ 𝜌 ≠ 0 and 𝐻0 ∶ 𝛾 = 0 vs 𝐻0 ∶ 𝛾 ≠ 0 using
the bootstrap algorithm;

• compute ̂𝑐𝜌
𝑐 and ̂𝑐𝛾

𝑐 , if there is evidence to suggest that 𝜌 and/or 𝛾 are non-zero,
and use them to adjust the confidence intervals of (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), and (𝜙, 𝑝).

3.4.4 Results
Table 3.1 shows that both AIC and AIC𝑐 measures are minimized for the least parsi-
monious model, (𝜙𝐺, 𝑝𝐺), with values of 1315.35 and 1315.43 respectively. As such,
we favor the model (𝜙𝐺, 𝑝𝐺), which separates both survival and recapture across sexes.
Let AIC∇(𝐴, 𝐵) = AIC(A) − AIC(B) denote the difference in AIC between a gen-
eral model 𝐴 and some parsimonious model 𝐵 (parsimony implying that the param-
eter space of 𝐵 is a subset of 𝐴’s). A negative value favors the general model and
positive the parsimonious model. Notice that AIC∇((𝜙𝐺, 𝑝𝐺), (𝜙, 𝑝𝐺)) = −2.425 and
AIC∇((𝜙𝐺, 𝑝), (𝜙, 𝑝)) = −1.887, respectively. These two AIC differences are, in effect,
comparing 𝜙𝐺 against 𝜙. While the comparisons of 𝑝𝐺 and 𝑝, AIC∇((𝜙𝐺, 𝑝𝐺), (𝜙𝐺, 𝑝)) =
−31.546 and AIC∇((𝜙, 𝑝𝐺), (𝜙, 𝑝)) = −27.234 , have much larger differences. This sug-
gests that the evidence supporting different recapture probabilities across sexes is much
stronger than the evidence supporting different survival probabilities across sexes. The
estimates of the four CJS models of interest, ((𝜙𝐺, 𝑝𝐺), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙, 𝑝)), can be
found in Table 3.2. The recapture probabilities of our preferred model, (𝜙𝐺, 𝑝𝐺), are
̂𝑝𝐹 = 0.485 (95% CI: [0.408, 0.561]) and ̂𝑝𝑀 = 0.208 (95% CI: [0.162, 0.264]) for females

and males, respectively. Moreover, the survival probabilities are ̂𝜙𝐹 = 0.671 (95% CI:
[0.618, 0.720]) and ̂𝜙𝑀 = 0.748 (95% CI: [0.695, 0.795]).

The estimate of 𝜌 in Table 3.3 has a value of ̂𝜌 = 0.227 (95% CI: [−0.439, 0.584]).
For the hypothesis test of 𝐻0 ∶ 𝜌 = 0 vs. 𝐻𝛼 ∶ 𝜌 ≠ 0, there is no evidence in favor of
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𝐻𝛼 (p-value = 0.552). The sample size for the subset of data available to compute ̂𝜌 is
𝑛𝜌 = 35.

Furthermore, Table 3.3 shows that the survival correlation between paired males and
females was estimated to be ̂𝛾 = 0.829 (95% CI: [−0.460, 0.928]). Despite the large
estimated effect size, the hypothesis test 𝐻0 ∶ 𝛾 = 0 vs. 𝐻𝛼 ∶ 𝛾 ≠ 0 produced no evidence
in favor of the alternative (p-value = 0.156). The sample size for the subset of the data
used to estimate 𝛾 was 𝑛𝛾 = 151.

Table 3.1: Harlequin Ducks: AIC and AIC𝑐 from the ((𝜙𝐺, 𝑝𝐺), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙, 𝑝)) models.

Model AIC AICc

(𝜙𝐺, 𝑝𝐺) 1315.352 1315.425
(𝜙, 𝑝) 1345.011 1345.033

(𝜙, 𝑝𝐺) 1317.777 1317.821
(𝜙𝐺, 𝑝) 1346.898 1346.940

Table 3.2: Harlequin Ducks: Estimates from the ((𝜙𝐺, 𝑝𝐺), (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺), (𝜙, 𝑝)) models. SE,
LB, and UB are abbreviations for Standard Error, Lower Bound, and Upper Bound. LB and
UB are bounds of the 95% confidence intervals.

Model Parameter Estimate SE LB UB
(𝜙𝐺, 𝑝𝐺) 𝜙𝐹 0.671 0.026 0.618 0.720
(𝜙𝐺, 𝑝𝐺) 𝜙𝑀 0.748 0.025 0.695 0.795
(𝜙𝐺, 𝑝𝐺) 𝑝𝐹 0.485 0.039 0.408 0.561
(𝜙𝐺, 𝑝𝐺) 𝑝𝑀 0.208 0.026 0.162 0.264
(𝜙𝐺, 𝑝) 𝜙𝐹 0.712 0.025 0.660 0.758
(𝜙𝐺, 𝑝) 𝜙𝑀 0.700 0.024 0.650 0.746
(𝜙𝐺, 𝑝) 𝑝 0.331 0.024 0.286 0.379
(𝜙, 𝑝𝐺) 𝜙 0.708 0.018 0.671 0.743
(𝜙, 𝑝𝐺) 𝑝𝐹 0.465 0.039 0.391 0.541
(𝜙, 𝑝𝐺) 𝑝𝑀 0.228 0.026 0.182 0.282
(𝜙, 𝑝) 𝜙 0.706 0.018 0.669 0.740
(𝜙, 𝑝) 𝑝 0.331 0.024 0.286 0.379

Table 3.3: Harlequin Ducks: Estimates of Recapture and Survival Correlations. SE, LB, and
UB are abbreviations for Standard Error, Lower Bound, and Upper Bound. LB and UB are
bounds of the 95% confidence intervals.

Parameter Estimate SE LB UB p-value Observations
𝜌 0.227 0.260 -0.439 0.584 0.552 35
𝛾 0.829 0.534 -0.460 0.928 0.157 151
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3.5 Discussion

In the cases in which 𝑛 = 250 and 𝑝𝐹 = 𝑝𝑀 = 0.75, our proposed estimator of 𝜌 appeared
to be unbiased, achieved nominal coverage of 95% confidence intervals, and achieved
reasonable power levels, for the hypothesis test of equality to zero, for reasonably small
effect sizes (Cohen, 1988). When the sample size or marginal recapture probabilities were
reduced, the performance of the estimator suffered. This was the case because lowering
recapture probabilities or the number of observed animals results in fewer pairs being
observed over the course of the study period, and thus the sample size of ̂𝜌, 𝑛𝜌, was
reduced as a result. That said, even when the sample size was reduced, the estimator
of 𝜌 was unbiased, the coverages were still nearly nominal, and the power of the test of
equality still achieved 80% for, admittedly, larger effect sizes.

The performance of ̂𝛾 was generally worse than that of ̂𝜌 and in some cases was
unacceptable. However, given that survival is partially observed, our estimator of 𝛾
makes use of far less information than is available to our estimator of 𝜌. Namely, we
are only able to reliably observe that both members of a partnership survived and were
recaptured or not. When an individual departs, we cannot directly observe this event and
so the outcomes, for some female 𝑖 who is mated some male 𝑗, in which 𝑌𝑖,𝑡 ∈ {1, 2, 3} are
not individually used to inform our estimate of 𝛾 (these outcomes are grouped together
in the compliment of both individuals being seen alive). We instead can only attempt
to estimate the joint survival outcome of both individuals using the term ̂𝜙𝑀𝐹 𝑝𝑀𝐹

𝑝𝑀𝐹 in

which ̂𝜙𝑀𝐹 𝑝𝑀𝐹 is the Bernoulli estimate of the probability of the event that both the
male and female in a pair survive and caught together on the next occasion. ̂𝜙𝑀𝐹 𝑝𝑀𝐹

𝑝𝑀𝐹

is then plugged into the definition of Pearson’s correlation (using the marginal survival
probabilities to estimate the remaining terms) to build our estimator. The binary between
𝑌𝑖,𝑡 = 4 and its compliment do not fully specify the distribution of 𝑌𝑖,𝑡. Treating these two
outcomes as Bernoulli trials results in much higher variation in the estimate of 𝛾 compared
to using the full likelihood, with sample sizes kept equal. This additional variation can
often lead to our estimator of 𝛾 producing values that are outside of the range of [𝛾𝑙, 𝛾𝑢].
If our estimator proposes a value that is outside (or near the boundaries [𝛾𝑙, 𝛾𝑢]), the
bootstrap interval will fail to provide useful information as it will cover the entire range.
This appeared to be the case in our simulation study when recapture probabilities were
small. That said, it is worth stating the the properties of the estimator do become better
as recapture rates and sample sizes increase. It is also worth noting, that without the
ability to estimate unknown mate pairings (either through an expectation-maximization
approach or a data imputation approach), we cannot infer additional information about
the survival process between partners using the data we have available to us.

The 𝑐𝜌
𝑐 and 𝑐𝛾

𝑐 corrections were able to fully account for the extra-binomial variation
introduced to 𝜙 and 𝑝 for models that pool recapture and survival probabilities, respec-
tively. The deviance (Anderson et al., 1994), Pearson (Lebreton et al., 1992; Pradel
et al., 2005) or Fletcher (Fletcher, 2012) methods of estimating overdisperson, typically
denoted ̂𝑐, are the standard recommendations for correcting underestimated standard
deviation in mark-recapture models (Cooch & White, 2020). In the previous chapter, we
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demonstrated, through a series of simulation studies, that these three estimators fail to
detect overdispersion due to correlation in the (𝜙, 𝑝𝐺) and (𝜙𝐺, 𝑝) models. That said, we
did show that the standard ̂𝑐 estimators will identify overdispersion in the (𝜙, 𝑝) model.
Cooch & White (2020) points out that the standard estimates of extra-binomial varia-
tion, tend to fail when 𝑇 ≫ 𝑛. Cooch & White (2020) further state that the deviance
estimator will be biased high, while the Pearson ̂𝑐 estimate will be biased low. Fletcher
(2012)’s method is stated to reduce the variation in the estimate of ̂𝑐 in sparse count
and binomial data. We found that Fetcher’s estimate is centered around 1 with minimal
variation when 𝑇 ≫ 𝑛. Finally, the deviance, Pearson, and Fletcher estimators of ̂𝑐 do
not provide any information as to the source of extra-binomial variation (Cooch & White,
2020). However, in our model, 𝑐𝜌

𝑐 explains the variation due to the recapture correlation
and 𝑐𝛾

𝑐 explains the extra-variation due to the survival correlation.
The low recapture rates of Harlequin ducks for a given sampling occasion (𝑝𝐹 =

0.21 and 𝑝𝑀 = 0.485) make it improbable for pairs to be spotted together multiple
times across all sampling occasions. Our simulation study showed that for cases in
which recapture probabilities are low, the estimators of ̂𝜌 and ̂𝛾 have relatively low
achieved power in the test of equality to zero. The test of whether ̂𝜌 is zero requires a
significant effect size to achieve a reasonable power and the test corresponding test for ̂𝛾
never achieves reasonable power (Cohen, 1988). In this study, we were unable to detect
sufficient evidence to dismiss the null hypotheses 𝐻0 ∶ 𝜌 = 0 and 𝐻0 ∶ 𝛾 = 0 in favor of
their alternatives 𝐻𝑎 ∶ 𝜌 ≠ 0 and 𝐻𝑎 ∶ 𝛾 ≠ 0, respectively.

The result of 𝜌 having a small and positive effect does line up with our expectations
as the sampling of the Harlequin duck data occurs when the ducks are at their nesting
site in Alberta. When a female and male are nesting during the breeding season, the male
is highly vigilant in providing protection to the nest (Bond et al., 2009). This behavior
likely increases the chance that both the male and the female are spotted together. There
are of course, occasions in which a mated female will be more likely to be spotted on
her own, for instance when a male is out foraging, or later on in the season, when the
female’s eggs have hatched, the males will fly to the wintering grounds while the female
rears her brood (Regehr et al., 2001). However, given the lack of evidence against the
null and the low power, we cannot conclusively say whether there is a positive correlation
or not.

Cooke, Robertson, Smith, Goudie, & Boyd (2000) pointed out that female and paired
male Harlequin ducks have high local survival rates suggesting high affinity for wintering
and mating grounds, while single male Harlequins had lower local survival rates. As such,
if a female Harlequin duck were to leave or perish, her male partner might be more likely
to emigrate to a new wintering grounds (Cooke et al., 2000). These findings also align
themselves well with the estimated survival correlation of ̂𝛾 = 0.829. Unfortunately, as
with 𝜌, our test of equality to zero provide no evidence to substantiate that 𝛾 > 0.

Finally, the information metrics AIC and AIC𝑐 suggest that the CJS model which sep-
arates survival and recapture by sex, (𝜙𝐺, 𝑝𝐺), provides the strongest fit to the Harlequin
duck data. Since we are not pooling survival or recapture outcomes by sex, we do not
need to utilize 𝑐𝜌

𝑐 or 𝑐𝛾
𝑐 to correct our standard error estimates.

One clear disadvantage of computing estimates for 𝜌 and 𝛾 with a conditional data
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approach, rather than utilizing some form of imputation for unknown pairs, is that our
estimates will have a relatively reduced sample size. However, when covariate imputa-
tion methods differ largely from the true underlying processes, estimation is likely to be
biased and result in below nominal confidence interval coverage (Catchpole et al., 2008;
Bonner et al., 2010). We argue that constructing a reasonable imputation method for
long-term monogamous pairs, that may find new partners upon departure of a mate, is,
in most cases, intractable. Consider the following partnership history for some female
𝑖 ∶ (𝐻𝑖,1, … 𝐻𝑖,9) = (5, 𝑁𝐴, 5, 5, 5, 𝑁𝐴, 𝑁𝐴, 2, 𝑁𝐴). Through our assumption of partner-
ship changing only as a consequence of departure within a pair, we can infer that female
𝑖 is paired with male 5 at time 2. At times 6 and 7 female 𝑖 might be paired with any
male within the population that is not observed with a partner at those times. If we
observe male 5 at times 6 and 7, we can assume that they have not separated. However,
if male 5 is never seen again after time 5, then we know he must have died in the interval
following sampling occasion 𝑡 = 6, 𝑡 = 7, or 𝑡 = 8 (𝑖 would not have a new partner at
𝑡 = 8 otherwise). If he departed at time 5 and female 𝑖 partners with male 2 at time
6, then we have one event of 𝑌 𝑀𝐹

𝑖,5 = 3, followed by at least 3 events of the response
𝑌 𝑀𝐹

𝑖,6 = 𝑌 𝑀𝐹
𝑖,7 = 𝑌 𝑀𝐹

𝑖,8 = 4. If female 𝑖 ended up pairing with male 2 at time 8 for
the first time, she could have been partnered with up to two males between 𝑡 = 5 and
𝑡 = 8. If she had two partners then both must have died between each sampling occasion,
producing events, 𝑌 𝑀𝐹

𝑖,6 = 3 and 𝑌 𝑀𝐹
𝑖,7 = 3. The later scenario favors a much lower, if

not negative, estimate of survival correlation between pair-bonds compared to the former
scenarios. Therefore, assuming that female 𝑖 is mated with males 5 or 2 at times 6 and 7
could introduce a strong positive bias to the estimated survival correlation. As such, we
would require additional information about the way in which pairs arrange themselves
in order to construct an imputation method that can be applied to the data a priori
without risk of introducing bias to the correlation estimates. Bonner & Schwarz (2006)
propose utilizing a Bayesian approach to compute numerical estimates of the parameters
of interest, through MCMC, while incorporating a model to impute missing covariates.
To utilize these methods, we normally would require a sample population that has some
covariates which relate to pair assignment. This would then allow us to explicitly model
unknown pairings. For the Harlequin duck data, this was not the case and we suspect
this ends up being true for several mark-recapture studies that have occurred in practice.
The formulation of mates is a more complex process to model than our available data
will allow for. Therefore, we might consider a random pair assignment scenario. Namely,
we let the MCMC sampler randomly choose partners from the sets 𝕏𝐹 and 𝕏𝑀 , in a
similar manner to how we generated mark-recapture datasets for the bootstrapped con-
fidence intervals and hypothesis tests. In theory, this should allow the MCMC sampler
to traverse several posterior distribution for varying partnership combinations. In such
a case, assuming there are 𝑛𝑡,𝑚 single males available at time 𝑡 and 𝑛𝑡,𝑓 , the number of
possible partnerships is the permutation 𝑃𝑛𝑓,𝑛𝑚,𝑡 = max(𝑛𝑡,𝑓,𝑛𝑡,𝑚)!

|𝑛𝑡,𝑓−𝑛𝑡,𝑚|! . Unfortunately, the
curse of dimensionality is a problem in almost all non-trivial cases (Chen, 2009). For
instance, consider a population with 𝑛𝑡,𝑓 = 4 single females and 𝑛𝑡,𝑚 = 2 single males,
in which all 6 singles attempt to find a mate. There are a maximum of two potential
pairs being formed (with two single females remaining). The first male has 4 possible
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females to select from, and after a pair has been formed, the second male will have 3
possible females to select from. The number of possible combinations is 4×3 = 12. Now,
assume that we had 𝑛𝑡,𝑚 = 20 single males and 𝑛𝑡,𝑓 = 8 single females at time 𝑡, a
reasonable scenario for species that tend to practice long-term social monogamy, there
are 𝑃20,8,𝑡 = 20!

12! = 5079110400 possible partnerships to choose from. In our case, the
sample space of potential partnerships, when using random sampling, is vast enough that
an MCMC algorithm will need far too many replicates to adequately explore it. In fact,
when we attempted to fit a model of this nature, the sampler would often move around
partners for a few iterations, and then stop re-arranging pairs. The estimates of 𝜌, 𝛾,
𝑝𝐹 , 𝑝𝑀 , 𝜙𝐹 and 𝜙𝑀 were highly dependent on the initial conditions we set and chains
would never mix. In essence, the sampler found a set of correlations, marginal survival
probabilities, and recapture probabilities which achieved a local minimum, given the cur-
rent state of partnerships. When the sampler proposed a new set of partnerships, the
proposed changes were consistently rejected, as the survival and recapture parameters
would no longer be minimized for the proposed partner configuration. As such, a model
of this nature is intractable for, likely most, non-trivial ecological study datasets. In this
work, we presented a novel approach to estimating the survival and recapture correlations
between individuals which form long-term pair-bonds in mark-recapture studies. We also
provide a tractable and easy-to-implement solution to the coverage issues outlined in the
previous chapter. This work can be extended by introducing a time component to the
recapture and survival correlations between pairs. Care should be taken as the data re-
quirement to estimate a statistical correlation between two latent variables can be quite
high. Survival and recapture probabilities could be allowed to vary while keeping 𝜌 and
𝛾 constant.



Chapter 4

Estimating association of fates
between socially grouped animals
within mark-recapture models using
Bayesian methods

4.1 Introduction
The previous chapters dealt with correlation between fates of pair-bonded animals in
MR studies. However, there are several animals which form cohesive social structures
that differ from mated-pair bond. Lowland gorillas, for instance, form harems with
one silver-back male and several females (Hagemann et al., 2019). The sperm whale, a
highly social vertebrate, is a mammal that can form multi-level social structures based on
smaller long-term groups called social units (Konrad, Gero, Frasier, & Whitehead, 2018).
Social units are comprised of either a female and younger whales (typically offspring), or
a group of mature males (Konrad et al., 2018). As a final example, Dungan et al. (2016)
showed that the social alignment of Indo-Pacific humpback dolphins, a small and isolated
population, are centralized around mother-calf rearing groups and that they form both
long-term (years) and short-term (hours-days) social associations. Species that form
long-term social groups spend extended periods of time with their group members and
are likely to have associated survival and/or recapture outcomes. Failing to account for
dependence within populations that contain long-term social groupings may result in
overestimation of the true precision for parameter estimates of common mark-recapture
models (Lebreton et al., 1992; Anderson et al., 1994; Bischof et al., 2020). In recent
years there has been increased interest in the study of and inclusion of group-specific
heterogeneity in mark-recapture models (Royle & Converse, 2014; Sollmann, Gardner,
Williams, Gilbert, & Veit, 2016; Szorkovszky et al., 2017; Schmidt & Rattenbury, 2018;
Shizuka, Barve, Johnson, & Walters, 2022; Hodel et al., 2023; Torney et al., 2023).

The motivation for our research came from a long-term study on eastern wild turkeys
(Meleagris gallopavo silvestris), which we will refer to as wild turkeys or turkeys going for-
ward. Wild turkeys are a ground bird and vital game species native to the United States
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(Gerrits et al., 2020). They are known to form socially cohesive flocks with members of the
same age and sex (Krakauer, 2005; Collier, Wightman, Chamberlain, Cantrell, & Ruth,
2017; Ferrante et al., 2019; Chamberlain, Cohen, Bakner, & Collier, 2020). While flocks
do not interact with each other frequently, there is a significant amount of interaction
between members of a given flock (Krakauer, 2005; Ferrante et al., 2019; Chamberlain et
al., 2020). Namely, flocks tend to move across their home range together, will forage and
hunt together, and male turkey flocks will even perform courtship of females as a flock
(Krakauer, 2005; Chamberlain et al., 2020). Collier & Chamberlain (2018) points out
that while there is a comprehensive amount of research regarding individual survival of
eastern wild turkeys, there is a lack of scientific inquiry on the relationship between flock
structure (or size) and individual survival rates. In recent years, across the southeastern
United states, female turkeys’ reproductive success is shown to be declining (Michael E,
Micheal J, & Collier, 2015). Chamberlain et al. (2020) provides evidence to suggest that
brood survival is heavily dependent on flock movement during brooding periods. Hunting
activity management generally mandates that only male turkeys can be hunted during
the spring (Chamberlain et al., 2012), which coincides with their breeding period (Wake-
field et al., 2020). While Collier et al. (2017) has demonstrated that hunting activity is
unlikely to impact male wild turkey movement, Wakefield et al. (2020) has shown that
male turkey courtship behavior was negatively impacted by the removal of males through
hunting activity. There may be a relationship between the amount of hunting pressure
imposed on a flock and its members willingness to engage in risky behavior, such as
courtship. An improved understanding of the relationship between flock dynamics and
mortality of wild turkeys will afford hunting management organisations the opportunity
to provide targeted guidelines which may lower the risk of population decline over time.

In the following sections of this work, we present extensions to the CJS and JS mod-
elling frameworks which allow for estimation of group-specific features that change over
time, and the sharing of information across recapture occasions using partial-pooling
(Cam, 2012). To compute estimates of our parameters of interest, we utilize a Bayesian
modelling framework (Dupuis & Schwarz, 2007; S. King et al., 2009; Gelman et al., 2013)
in which Markov chain Monte Carlo (MCMC) methods (Chib & Greenberg, 1995; Geyer,
2011; Ravenzwaaij et al., 2018) are employed to produce samples from the marginal poste-
rior distributions of our parameters. To demonstrate the validity of our model extensions,
we conduct a simulation study in which we generate datasets using our proposed mod-
els, fit the models to them, and investigate the coverage percentage of the 95% credible
intervals along with the statistical bias of the resulting estimates. Moreover, using our
proposed models, we investigate the impact of individual mortality on the survival out-
comes of remaining flock members for male turkeys across the southeastern United States.
We control for survival rates across the months within a year by including mixed effect
on survival. Finally, our investigation also includes a known-fates model made possible
by the fact that the wild turkeys under study were equipped with Very High Frequency
(VHF) radiotelemetry tags.
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4.2 Materials and Methods
Assume that we have gathered a collection of MR datasets from a population of animals
which are known to form cohesive social groupings. There are 𝐾 years, indexed by 𝑘 ∈
{1, … , 𝐾}, within the collection and 𝑇 equally-spaced instantaneous sampling occasions,
indexed by 𝑡 ∈ {1, … , 𝑇 }, across year 𝑘. Individuals are tracked throughout the 𝑘th year
and every year all tags are lost at time 𝑇 , after which, a new MR sample of different
animals is gathered for year 𝑘 + 1. In this work, we assume that there is no yearly effect
on survival or recapture and so our events and parameters are not indexed by 𝑘. Assume
that there are a total of 𝐺 social groups, indexed by 𝑔 ∈ {1, … , 𝐺}, observed over the
course of the entire study and each group persists for the duration of one year. Namely,
since tags are lost at time 𝑇 , for any given year 𝑘, groups are only tracked from occasions
𝑡 = 1 to 𝑇 .

For each sampling occasion 𝑡, newly captured individuals are identified as belonging
to group 𝑔, in which we assume that we are able to correctly determine membership
without any error at the time of capture. Additionally, let 𝑛𝑔 ∈ ℕ denote the number
of individuals, indexed by 𝑖 ∈ {1, … , 𝑛𝑔}, observed that belong to group 𝑔 and the total
number of observed individuals in our collection be denoted by 𝑛 = ∑𝐺

𝑔=1 𝑛𝑔. Now, let
𝑌𝑖,𝑔,𝑡 denote the binary apparent survival outcome, apparent implying that emigration or
death are counted as the same event, of individual 𝑖 on occasion 𝑡. Specifically, 𝑌𝑖,𝑔,𝑡 = 1
if the 𝑖th individual is alive (has not yet died) and 𝑌𝑖,𝑔,𝑡 = 0 if they have departed (born
and then left the population through death or emigration). Furthermore, denote the
binary recapture outcome of individual 𝑖 on occasion 𝑡 as 𝑋𝑖,𝑔,𝑡.

We want to study whether apparent survival within a given group, 𝑔, at occasion 𝑡 has
an effect on the apparent survival outcomes individuals within said group for occasions
{𝑡+1, … , 𝑇 }. To do so, We present extensions to both the CJS and JS models for analyz-
ing data of this nature. The JS approach allows researchers to estimate population and
group size across different years along with testing whether populations sizes are stable
for a given species of interest. However, the JS approach requires that the first capture
of individuals in a given cohort is done in a way that is consistent across sampling oc-
casions (Lebreton et al., 1992). The CJS model framework, makes no such requirement
due to conditioning on the first capture event of each individual (Lebreton et al., 1992).
That said, by conditioning on first capture, we remove the capability of estimating pop-
ulation/group size from the model framework as well (Lebreton et al., 1992; Catchpole
et al., 2008). The extensions we present are also subject to these same constraints. We
adopt a parametric Bayesian approach to generating estimates of our parameters interest
(Seber & Schwarz, 2002) using MCMC numerical sampling techniques (Chib & Green-
berg, 1995; Geyer, 2011; Ravenzwaaij et al., 2018). For both model extensions, the priors,
hyper-priors and likelihoods are provided in the following two sub-sections.

4.2.1 Jolly-Seber Approach
In this section, we present a mixed-effects model extension to the JS model. We include
a random-effect that controls for variation in survival outcomes across months within a
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year and a fixed effect on the impact of mortality rates within on a group for surviving
members.

4.2.1.1 Data Augmentation

In order to model the likelihood of recapture given recruitment, and therefore estimate
the size of each group per year, we need to be able to calculate the probability that
an individual who exists within the population was not caught at any point during
the survey period (Schwarz & Arnason, 1996). By estimating our parameters within a
Bayesian framework, we can utilize a modified version of the standard data augmentation
technique for MR models (Royle, 2009).

Royle (2009)’s technique incorporates undetected individuals into the likelihood by
augmenting the data to include a set of latent unobserved individuals, in process Royle
(2009) referred to as padding. Whether or not they enter the study region/population
is modeled with a Bernoulli trial. All individuals that were detected at least once will
automatically be coded as existing in the population. To do so, we choose some arbitrarily
large value 𝑀𝑔 >> 𝑛𝑔, for each group 𝑔, and re-index the population of group 𝑔 as
𝑖 ∈ {1, … , 𝑀𝑔}. Partially-pooling the existence probability across groups, we estimate
whether individual 𝑖 ever existed as part of the population as

𝑍𝑖 ∼ Bernoulli(𝜉𝑔) (4.1)

with the probability of existence in group 𝑔 denoted as

𝜉𝑔 = ℙ(𝑍𝑖 = 1); ∀𝑖 ∈ {1, … , 𝑀𝑔}. (4.2)

We use a logit-normal (Aitchison & Shen, 1980) prior on 𝜉𝑔 ∀𝑔 ∈ {1, … , 𝐺}. Namely, we
account for group-level heterogeneity for group 𝑔 with the mixed effect

𝜉𝑔 ∼ logit-Normal(𝜇𝜉, 𝜎2
𝜉) (4.3)

such that the hyper-priors on 𝜉𝑔 are

𝜇𝜉 ∼ Normal(0, 2.25)
𝜎𝜉 ∼ half-t(4, 0.25). (4.4)

𝜇𝜉 can be interpreted as the average rate of existence in the population across all groups,
on the logit scale, and 𝜎𝜉 as the variation between groups. Our choice of prior for
𝜉𝑔 is similar to uniform prior with less mass towards the boundaries of 0 and 1 and
more towards the center. Given this, the prior on 𝑍𝑖 is nearly uniform on the range of
{1, … , 𝑀𝑔}. If a researcher is aware of differences between upper bounds on the size of
a given group in their data a priori, they can choose different values of 𝑀𝑔. However,
if there is no prior knowledge about group sizes/bounds we recommend choosing 𝑀𝑔
that are larger than the biggest group observed (around double at least), and keeping
𝑀𝑔 identical across all groups. See Appendix 𝐶.1 for brief simulation comparing the
different priors discussed in this section.
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Finally, we can predict sample size of any given group 𝑔 using 𝑁𝑔 = ∑𝑀𝑔
𝑖=1 𝑍𝑖 and

the number of surviving recruited individuals in 𝑔 at time 𝑡 with 𝑁𝑔,𝑡 = ∑𝑀𝑔
𝑖=1 𝑍𝑖𝑌𝑖,𝑔,𝑡.

𝑁𝑔 and 𝑁𝑔,𝑡 both follow the Binomial distribution as they are sums of Bernoulli random
variables.

4.2.1.2 Recruitment

The recruitment modelling process of the JS model is provided in the original works of
Jolly (1965) and Seber (1965), and a comprehensive literature review and description
of the model is available in the work presented by Schwarz (2001). We discuss our
formulation of this process, which accounts for group membership, in the paragraphs
which follow.

At the start of every sampling occasion, 𝑡 ∈ {1, … , 𝑇 }, we allow new individuals to be
recruited into some group 𝑔 ∈ {1, … , 𝐺}. The binary event that individual 𝑖 ∈ {1, … , 𝑛𝑔}
has joined group 𝑔 up to and including time 𝑡 is denoted 𝑒𝑖,𝑔,𝑡. We define the conditional
probability that individual 𝑖 has entered the population at the start of occasion 𝑡, given
that they have not yet entered the population on occasion 𝑡 − 1, as:

𝜖𝑡 = ℙ(𝑒𝑖,𝑔,𝑡 = 1|𝑒𝑖,𝑔,𝑡−1 = 0, … , 𝑒𝑖,𝑔,1 = 0)
= ℙ(𝑒𝑖,𝑔,𝑡 = 1|𝑒𝑖,𝑔,𝑡−1 = 0); ∀𝑖 ∈ {1, … 𝑛𝑔} (4.5)

in which we drop conditioning on the past using the first-order Markov property (Ross,
2019). The event of individual 𝑖 having been recruited into the population by occasion 𝑡
can then be modeled with

𝑒𝑖,𝑔,𝑡|𝑒𝑖,𝑔,𝑡−1 ∼ Bernoulli(𝑒𝑖,𝑔,𝑡−1 + (1 − 𝑒𝑖,𝑔,𝑡−1) 𝜖𝑡). (4.6)

If 𝑒𝑖,𝑔,𝑡−1 = 0 then the probability that individual 𝑖 is first recruited into the population
by occasion 𝑡 is 𝜖𝑡 and when 𝑒𝑖,𝑔,𝑡−1 = 1 then the probability becomes 1 (since it has
already been recruited at some time less than or equal to 𝑡 − 1). 𝑒𝑖,𝑔,𝑇 = 1; ∀𝑖 ∈
{1, … , 𝑛𝑔} by construction, otherwise individual 𝑖 could not possibly have been a part
of our sample through either observation or data augmentation. Further, note that with
this construction, we assume that the probability of recruitment at some time 𝑡 is the
same across all groups.

Finally, ∀𝑡 ∈ {1, … , 𝑇 }, we use the non-informative prior

𝜖𝑡 ∼ Beta(1, 1). (4.7)

𝜖𝑡 yields the probability of recruitment of some individual 𝑖 at time 𝑡 conditional on
the event that they were not yet recruited on occasions 1 to 𝑡 − 1. Generally, when
investigating birth and death rates, we are interested in the unconditional recruitment
probability at some given occasion 𝑡, which we denote as

𝜏𝑡 = ℙ(𝑒𝑖,𝑔,𝑡 = 1). (4.8)

By definition, 𝜏𝑡 = 𝜖𝑡, and we compute 𝜏𝑡 ∀𝑡 ∈ {2, … , 𝑇 } using first principles:
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𝜖𝑡 = ℙ(𝑒𝑖,𝑔,𝑡 = 1|𝑒𝑖,𝑔,𝑡−1 = 0, … , 𝑒𝑖,𝑔,1 = 0)

= ℙ(𝑒𝑖,𝑔,𝑡−1 = 0, … , 𝑒𝑖,𝑔,1 = 0|𝑒𝑖,𝑔,𝑡 = 1)ℙ(𝑒𝑖,𝑔,𝑡 = 1)
ℙ(𝑒𝑖,𝑔,𝑡−1 = 0, … , 𝑒𝑖,𝑔,1 = 0) (Bayes Theorem)

= ℙ(𝑒𝑖,𝑔,𝑡 = 1)
∏𝑡−1

𝑟=1 ℙ(𝑒𝑖,𝑔,𝑟 = 0|𝑒𝑖,𝑟−1 = 0 … , 𝑒𝑖,1 = 0)
(Chain rule of probability)

= 𝜏𝑡
∏𝑡−1

𝑟=1(1 − 𝜖𝑟)
,

(4.9)

then we rearrange the equation to get our unconditional probability

𝜏𝑡 = 𝜖𝑡
𝑡−1
∏
𝑟=1

(1 − 𝜖𝑟). (4.10)

4.2.1.3 Survival

We model the underlying state process of survival using a mixed effects logistic regression
framework. Define the conditional probability that some individual 𝑖 in group 𝑔 survives
from occasion 𝑡 to 𝑡 + 1 as

𝜙𝑔,𝑡 = ℙ(𝑌𝑖,𝑔,𝑡+1 = 1|𝑌𝑖,𝑔,𝑡 = 1) (4.11)

in which we compute 𝜙𝑔,𝑡 using the logit link function

𝜙𝑔,𝑡 = logit−1(𝛽0 + 𝛽1𝑑𝑔,𝑡 + 𝛽2,𝑡), (4.12)

such that 𝛽0 ∈ ℝ is a fixed effect intercept term, 𝛽1 ∈ ℝ is the fixed effect on the rate of
within-group mortality impacting future survival of members within some group 𝑔, and
𝛽2,𝑡 ∈ ℝ is a random effect across monthly survival outcomes, 𝑡 ∈ {1, … , 𝑇 }, in which we
apply a hierarchical prior. Further, let 𝑑𝑔,𝑡 denote the proportion of decreased individuals
from the start of a year, 𝑡 = 1, up to some time 𝑡 within group 𝑔. We do not directly
observe this feature, but, within the JS framework, we are able to compute the hidden
variable using

𝑑𝑔,𝑡 = ∑𝑀𝑔
𝑖=1 𝑒𝑖,𝑔,𝑡𝑍𝑖(1 − 𝑌𝑖,𝑔,𝑡)

∑𝑀𝑔
𝑖=1 𝑒𝑖,𝑔,𝑡𝑍𝑖

, (4.13)

in which the denominator is equal to the total number of individuals who exist and have
been recruited into group 𝑔 by occasion 𝑡, and the numerator is equal to the number of
individuals who exist, were recruited into group 𝑔 by occasion 𝑡, and then perished by
time 𝑡.

We choose the following prior for our intercept term,

𝛽0 ∼ Normal(0, 2.25). (4.14)
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This choice of prior is weakly informative (Gelman et al., 2013) on the logit scale, as it
is centered around zero, and has a high amount of standard deviation (

√
2.25 = 1.5). To

illustrate, assume that the other coefficients (𝛽1 and 𝛽2,𝑡) are all equal to 0, consider the
inverse logit transformation on the value of zero (conversion from real line to probability
scale). Specifically, this represents a probability of 0.5 = logit−1(0). If we were to apply
the logit function to −1.5 and 1.5, we would get ≈ 0.18 and ≈ 0.82, respectively. This
amount of variation will allow the sampler to explore the entire probability range, but
will propose extreme probabilities (close to zero or one) less frequently than those which
lie between 0.18 and 0.82. In particular, the standard deviation is 1.5 so the properties of
the normal distribution implies that logitistc−1(𝛽0) is in (0.18, 0.82) 68% of the time and
in (0.05, 0.95) 95% of the time. This is close to uniform, with slightly lower probability
near 0 and 1.

Our main effect of interest is 𝛽1 and we assume its prior is

𝛽1 ∼ Normal(0, 2.25). (4.15)

Given that 𝑑𝑔,𝑡 ∈ {0, 1}, this prior allows for a large amount of variation in the proposed
values of 𝛽1 while placing less emphasis on extremely large (in magnitude) effect sizes.

We model the effect of occasion 𝑡 on the rate of survival from any occasion 𝑡 to 𝑡 + 1
using

𝛽2,𝑡 ∼ Normal(0, 𝜎2
𝑡 ) (4.16)

in which we assign the weakly-informative hyper-prior on the variation of the effect
between occasions as

𝜎𝑡 ∼ half-t(4, 0.25). (4.17)

The half-t prior is a right-skewed strictly positive density, and with our chosen settings
(degrees of freedom of 4, and standard deviation parameter of 0.25) the majority of the
prior mass (about 98%) lies between 0 and 1, and about 1.5% of its mass between 1 and
3. This allows for posterior outcomes with high variances while exploring a reasonable
range of standard deviations on the logit scale. Finally, we model the conditional event
of survival from 𝑡 to 𝑡 + 1 for individual 𝑖 with

𝑌𝑖,𝑔,𝑡+1|𝑌𝑖,𝑔,𝑡, 𝑒𝑖,𝑔,𝑡, 𝑍𝑖, 𝑑𝑔,𝑡 ∼ Bernoulli(𝜙𝑔,𝑡𝑌𝑖,𝑔,𝑡𝑒𝑖,𝑔,𝑡𝑍𝑖). (4.18)

4.2.1.4 Recapture

Using the standard approach in the JS and CJS model, the event that individual 𝑖 was
recaptured at time 𝑡 is

𝑋𝑖,𝑔,𝑡|𝑌𝑖,𝑔,𝑡 ∼ Bernoulli(𝑝𝑌𝑖,𝑔,𝑡), (4.19)

such that the probability of recapture at time 𝑡, given survival is defined as

𝑝 = ℙ(𝑋𝑖,𝑔,𝑡 = 1|𝑌𝑖,𝑔,𝑡 = 1). (4.20)
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In order to model our prior on the logit scale, we compute 𝑝 using the logit link function

𝑝 = logit−1(𝛼) (4.21)

in which the prior distribution assigned to 𝛼 is

𝛼 ∼ Normal(0, 2.25). (4.22)

4.2.2 Cormack-Jolly-Seber Approach
In this section, we present the CJS analog of our extended model. Rather than model
existence and recruitment, we instead condition on first capture. Let 𝑓𝑖,𝑔 ∈ {1, … , 𝑇 }
denote the first capture event of individual 𝑖.

4.2.2.1 Survival

Assume that 𝜙𝑔,𝑡, 𝛽1, 𝛽1, 𝛽2 , 𝜎𝑡 share the same definitions and have the same prior
distributions as they did in the survival component of JS model extension. We modify
the calculation of 𝑑𝑔,𝑡 to accommodate the CJS framework by defining

𝑑∗
𝑔,𝑡 =

∑𝑛𝑔
𝑖=1 1(𝑡≥𝑓𝑖,𝑔)(1 − 𝑌𝑖,𝑔,𝑡)

∑𝑛𝑔
𝑖=1 1(𝑡≥𝑓𝑖,𝑔)

. (4.23)

Unlike 𝑑𝑔,𝑡, the CJS analog 𝑑∗
𝑔,𝑡 is estimated using individuals from group 𝑔 that were

observed prior to occasion 𝑡? . Recall that in the JS framework, 𝑑∗
𝑔,𝑡 is estimated using

augmented individuals and accounts for group size at time of recruitment. In essence, we
are using first capture as a proxy for recruitment in this construction.

Now, we model the conditional event of survival for individual 𝑖 from 𝑡 to 𝑡 + 1, such
that 𝑡 ≥ 𝑓𝑖,𝑔, with

𝑌𝑖,𝑔,𝑡+1|𝑌𝑖,𝑔,𝑡, 𝑑𝑔,𝑡 ∼ Bernoulli(𝜙𝑔,𝑡𝑌𝑖,𝑔,𝑡), (4.24)

in which we calculate 𝜙𝑔,𝑡 using the logit link

𝜙𝑔,𝑡 = logit−1(𝛽1 + 𝛽1𝑑∗
𝑔,𝑡 + 𝛽2,𝑡). (4.25)

4.2.2.2 Recapture

Assume that 𝑝 and 𝛼 share the same definitions as the recapture component of the JS
model, and that 𝛼 has the same prior. The event that individual 𝑖 was recaptured at
time 𝑡, given that 𝑡 > 𝑓𝑖,𝑔, is

𝑋𝑖,𝑔,𝑡|𝑌𝑖,𝑔,𝑡 ∼ Bernoulli(𝑝𝑌𝑖,𝑔,𝑡), (4.26)

and, as before, we model 𝑝 using the logit link function

𝑝 = logit−1(𝛼). (4.27)
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4.2.3 Known-Fates Variation of the CJS Approach
The final model we present in this work is a modification of the CJS approach, for
situations in which we can fully observe the apparent survival process. In this case, there
is no recapture process to model the survival outcomes and the model is essentially a
simplified version of the CJS model. Here, when an individual 𝑖, in group 𝑔, perishes
at time 𝑡, we observe that they are departed (𝑌𝑖,𝑔,𝑡 = 0). This approach is identical to
the CJS approach with the exception that 𝑌 is fully observed (no missing data) and the
recapture process is removed (or equivalently, we can say 𝑝 is known to be one). The
main purpose of this model is for comparison purposes in our simulation study and the
application. In practice, researchers often do not have access to fully known-fate data.

4.3 Simulation Study
We conduct a simulation study to demonstrate that our model extension produces es-
timates of the parameters of interest that are both unbiased and achieve appropriate
coverage of 100(1 − 𝛼)% credible intervals, such that 𝛼 ∈ [0, 1].

4.3.1 Study Metrics
4.3.1.1 Posterior Mean and Median

For some parameter of interest, denoted 𝜃, and some collection of sample data 𝐷 used
to compute the Bayesian estimate of 𝜃, the posterior mean is defined as

𝐸(𝜃|𝐷) = ∫ 𝜃𝜙(𝜃|𝐷)𝑑𝜃 (4.28)

in which 𝜙(𝜃|𝐷) is the marginal posterior density of 𝜃 (Gelman et al., 2013). Using
MCMC, we estimate 𝐸(𝜃|𝐷) by producing 𝐵 samples of 𝜃, denote each sample as 𝜃(𝑏),
which are approximately 𝜙(𝜃|𝐷) distributed, and then computing the sample mean with

̂𝜃 =
𝐵

∑
𝑏=1

𝜃(𝑏)

𝐵 . (4.29)

Alternatively, we can estimate 𝜃 by computing the sample median

̃𝜃 = Median ({𝜃(𝑏)}𝐵
𝑏=1) . (4.30)

4.3.1.2 100(1 − 𝛼)% Credible Intervals

We compute 100(1 − 𝛼)% credible intervals, where 𝛼 ∈ [0, 1], by computing the (1 − 𝛼
2 )

and 𝛼
2 sample quantiles from the set {𝜃(𝑏)}𝐵

𝑏=1, denoted ̂𝜃𝛼
2

and ̂𝜃1− 𝛼
2
, respectively. Then

the 100(1 − 𝛼)% credible interval is [ ̂𝜃𝛼
2
, ̂𝜃1− 𝛼

2
].
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4.3.1.3 Simulation Bias and Coverage

Assume that for some known true value of 𝜃, we generate 𝐽 replicate datasets in which the
𝑗𝑡ℎ dataset is denoted 𝐷𝑗. For each replicate 𝑗, we build approximate posterior distribu-
tions of 𝜃 by drawing 𝐵 MCMC samples. The 𝑏𝑡ℎ MCMC replicate drawn from 𝜙(𝜃|𝐷𝑗)
is 𝜃(𝑏)

𝑗 and the 𝑗th estimate of 𝜃 is equal to ̂𝜃𝑗 = ∑𝐵
𝑏=1

𝜃(𝑏)
𝑗
𝐵 or ̃𝜃𝑗 = Median ({𝜃(𝑏)

𝑗 }
𝐵

𝑏=1
).

We compute a Monte Carlo estimate of the bias for the given scenario using

Bias(𝜃) =
𝐽

∑
𝑗=1

𝜃𝑗 − 𝜃
𝐽 (4.31)

such that ̂𝜃𝑗 is either ̂𝜃𝑗 or ̃𝜃𝑗. The corresponding 𝑗th replicate 100(1 − 𝛼)% credible
interval is denoted by [ ̂𝜃𝑗, 𝛼

2
, ̂𝜃𝑗,1− 𝛼

2
] and the Monte Carlo estimate of the 100(1 − 𝛼)%

credible interval coverage percentage is

Coverage(𝜃, 1 − 𝛼) =
𝐽

∑
𝑗=1

1(𝜃∈[ ̂𝜃𝑗, 𝛼
2

, ̂𝜃𝑗,1− 𝛼
2

])

𝐽 . (4.32)

In this study, we verify that the bias is approximately zero and that the 95% credible
intervals achieve approximately 95% coverage.

4.3.2 Data Generating Process and Parameter Settings
We generated sample datasets using an augmented population size of 𝑀 = 330, such that
the hyper-parameter for the average existence rate being 𝜇𝜉 = −0.182 (or the average
existence rate being logit−1(𝜇𝜉) = 0.455 = 150/330) and standard deviation of 𝜎𝜉 = 0.2.
For each sample dataset, we produce values of 𝜉𝑔 using the logit-normal distribution
(given parameters 𝜇𝜉 and 𝜎𝜉). Then we sample existence state 𝑍 for all 𝑀 individuals in
the population. Those that do not exist or are not captured in the recapture simulation
will be assigned an unknown status, and those that end up being seen are assigned
a known-to-exist status. Furthermore, there are 𝑇 = 10 sampling occasions, indexed
by 𝑡, and six groups (𝐺 = 6) that split up the population equally. In effect, we set
𝑀𝑔 = 55; ∀𝑔 ∈ {1, … 𝐺} and generally expect 𝑁𝑔 ≈ 25.

Moreover, we use the following parameters to generate the intercept and time effects
from our population, 𝛽0 = 1 and 𝜎𝑡 = 0.25. For each occasion, 𝑡 ∈ {1, … , 10}, in each
dataset replicate, we sample 𝛽2,𝑡 ∼ Normal(0, 𝜎2

𝑡 = 0.252). For conditional recruitment
rates we assigned 𝜖𝑡 = 0.8; ∀𝑡 ∈ {1, … , 𝑇 }. Using this approach, we generate 𝐽 = 1000
datasets from the JS model, then convert those datasets into CJS datasets by conditioning
on first capture across all possible combinations of the following parameter settings:

• 𝛽1 ∈ {1, −1} and
• 𝑝 ∈ {0.4, 0.8} or analogously, up to three decimal places, 𝛼 ∈ {0.599, 0.681}

resulting in 4 different scenarios. Note that in this construction, the true death rate
coefficient used to generate the underlying data comes from the JS model (𝑑𝑔,𝑡 for group
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𝑔 at time 𝑡). In this way, we can study the performance of 𝑑∗
𝑔,𝑡 as a proxy estimator.

For comparison to an ideal scenario (when we have fully observed survival outcomes), we
also conduct our investigation on the known-fates model, in which we set 𝑝 = 1 for all
scenarios.

In order to examine the performance of the extended JS, CJS, and known-fates models,
we compute the Monte Carlo bias and 95% credible interval coverage percentages for all
model parameters. We vary 𝛽1 to determine whether the models are able to detect a
moderate negative and positive effect on the rate of group mortality for survival. We vary
𝑝 in order to determine the impact of the observation process on the estimation of the
parameters of interest. The remaining parameters were selected to be similar to those
estimated from the wild turkey data we analyze in the following sections or to ensure that
we had enough information to have effective sample sizes which we can draw meaningful
inference from each replicate.

For the parameters which have multiple estimates across different groups or occasions,
𝛽2,𝑡, 𝜉 and 𝜏𝑡, we pool the estimates of coverage and bias together for each replicate. For
instance, there are 𝑇 = 10 occasions, which results in a set 10 estimates of the random
effect term 𝛽2,𝑡. Rather than present the bias and coverage of 10 estimates of 𝛽2,𝑡, we
average the bias and coverage across all 10 estimates in a given replicate when displaying
our results.

4.3.3 Software and MCMC settings

We used the statistical software R (R Core Team, 2022) to pre-process, analyze, and sum-
marize the results of our simulation study. We use the R package NIMBLE (Valpine et al.,
2022) to perform MCMC sampling (Chib & Greenberg, 1995; Geyer, 2011; Ravenzwaaij
et al., 2018) from the marginal posteriors of the demographic parameters of interest from
our proposed models. NIMBLE is graphical modelling software that can be considered
an extension of the BUGS language. It provides users with far greater flexibility than its
predecessor by allowing the use of custom functions, distributions, and MCMC samplers
(Valpine et al., 2022). In this simulation study, we compute posterior medians and 95%
credible intervals for all parameters of interest across each replicate (1000 dataset repli-
cates across a total of 4 scenarios). For each replicate, MCMC sampling was run for
100, 000 iterations, after a burn-in period of 75, 000 steps, using 1 chain, in which we
only saved every 5𝑡ℎ posterior sample for memory efficiency purposes. We initialize our
chains by sampling from the prior distributions discussed in the Materials and Methods.
Finally, the MCMC sampling was performed using the Graham computing cluster hosted
on SHARCNET (www.sharcnet.ca). The JS model took around 12 to 24 hours to run on a
2 × Intel E5-2683 v4 Broadwell @ 2.1GHz CPU (node available on SHARCNET) requiring
around 5G of RAM per chain. On the same processing unit, the CJS model only took
around 15 to 40 minutes to run and required around 2GB of RAM per chain. Finally,
the known-fates model ran in under 15 minutes requiring less than a 1GB of RAM. The
functions used to model, compile, and run our models using the NIMBLE package are
available in 𝐶.2 and 𝐶.3 for the JS and CJS extensions, respectively.
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4.3.4 Results
In this scenario in which 𝛽1 = 1.0, the bias is effectively zero for all models across all
true underlying recapture probabilities (Figures 4.1, 4.2, and 4.3). When 𝛽1 = −1.0 and
𝑝 = 0.4, ̂𝛽1 is biased high and ̂𝛽0 is biased a little low. Increasing the recapture probability
to 𝑝 = 0.8 (or using the known fates model) reduces the amount of bias present among
the parameter estimates. Given that when 𝑝 = 0.8 the bias shrinks considerably, the
bias in the situation when 𝑝 = 0.4 is likely due to a lower effective sample sizes given
the low recapture probabilities. This is consistent across the JS and CJS models as well
(Figures 4.1 and 4.2).

The 95% credible intervals for most the of the parameter estimates of the JS and
CJS model extensions achieve reasonable coverage values (Figures 4.4, 4.5, and 4.6). For
nearly every scenario, across all models, the intervals reach nominal or above nominal
coverage. 𝛼 has a coverage of 92.5% when 𝛽1 = 1.0 for both the JS and CJS model
extensions, but this is within an acceptable range for a replicate size of 1000. Note that
the intervals for 𝛽2 and 𝜏 are shorter because we average over all outcomes of 𝛽2,𝑡 and
𝜏𝑡 such that 𝑡 ∈ {1, … , 𝑇 }.
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Figure 4.1: Monte Carlo average bias for parameters of interest in the JS model extension with
a sample size of a 1000 replicates. The top panels indicate the scenarios in which the true value
of 𝛽1 = −1.0 and the bottom panels represent the case in which 𝛽1 = 1.0. The panels on the
left-hand side represent the cases in which the true recapture probabilities are 40% and those
on the right-hand side indicate the case in which recapture probabilities are 80%. Each point
represents a Monte Carlo average of the posterior means across each scenario. The thin error
bars on each point range from +/- two standard errors away from the bias and thick error bars
range from +/- one standard error. Finally, the red dashed lines represent a bias of zero.
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Figure 4.2: Monte Carlo average bias for parameters of interest in the CJS model extension
extension with a sample size of a 1000 replicates. The top panels indicate the scenarios in
which the true value of 𝛽1 = −1.0 and the bottom panels represent the case in which 𝛽1 = 1.0.
The panels on the left-hand side represent the cases in which the true recapture probabilities
are 40% and those on the right-hand side indicate the case in which recapture probabilities are
80%. Each point represents a Monte Carlo average of the posterior means across each scenario.
The thin error bars on each point range from +/- two standard errors away from the bias and
thick error bars range from +/- one standard error. Finally, the red dashed lines represent a
bias of zero.
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Figure 4.3: Monte Carlo average bias for parameters of interest in the known-fates model
extension. The top panels indicate the scenarios in which the true value of 𝛽1 = −1.0 and the
bottom panels represent the case in which 𝛽1 = 1.0. The panels on the left-hand side represent
the cases in which the true recapture probabilities are 40% and those on the right-hand side
indicate the case in which recapture probabilities are 80%. Each point represents a Monte
Carlo average of the posterior means across each scenario. The thin error bars on each point
range from +/- two standard errors away from the bias and thick error bars range from +/-
one standard error. Finally, the red dashed lines represent a bias of zero.
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Figure 4.4: Monte Carlo achieved coverage of 95% credible intervals for the JS model extension
with a sample size of 1000 replicates and a significance level of 𝛼 = 0.05. The top panels
indicate the scenarios in which the true value of 𝛽1 = −1.0 and the bottom panels represent
the case in which 𝛽1 = 1.0. The panels on the left-hand side represent the cases in which the
true recapture probabilities are 40% and those on the right-hand side indicate the case in which
recapture probabilities are 80%. Each point represents the average acheived credible interval
coverage in each scenario. Finally, the red solid lines represnt the case in which 95% coverage
was achieved.



Chapter 4. Association within groups using Bayesian Methods 77

40% 80%
−

1.0
1.0

α  β0
  β1

  β2
  σs α  β0

  β1
  β2

  σs

0.94

0.96

0.98

1.00

0.94

0.96

0.98

1.00

Parameters

C
ov

er
ag

e(
θ,

 0
.9

5)

Figure 4.5: Monte Carlo achieved coverage of 95% credible intervals for the CJS model extension
with a sample size of 1000 replicates and a significance level of 𝛼 = 0.05. The top panels indicate
the scenarios in which the true value of 𝛽1 = −1.0 and the bottom panels represent the case
in which 𝛽1 = 1.0. The panels on the left-hand side represent the cases in which the true
recapture probabilities are 40% and those on the right-hand side indicate the case in which
recapture probabilities are 80%. Each point represents the average acheived credible interval
coverage in each scenario. Finally, the red solid lines represnt the case in which 95% coverage
was achieved.
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Figure 4.6: Monte Carlo achieved coverage of 95% credible intervals for the known-fates model
extension with a sample size of 1000 replicates and a significance level of 𝛼 = 0.05. The top
panels indicate the scenarios in which the true value of 𝛽1 = −1.0 and the bottom panels
represent the case in which 𝛽1 = 1.0. The panels on the left-hand side represent the cases
in which the true recapture probabilities are 40% and those on the right-hand side indicate
the case in which recapture probabilities are 80%. Each point represents the average acheived
credible interval coverage in each scenario. Finally, the red solid lines represnt the case in which
95% coverage was achieved.
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4.4 Application: Male Adult Wild Turkeys in the
United States

4.4.1 Data Description and Assumptions
Using VHF radiotelemetry tags, Eastern wild turkey data was gathered from 2014 - 2021
across various regions in the southeastern United states. Specifically, wild turkey data was
gathered from South Carolina, Georgia, and Western Louisiana. A research team from
Lousiana State University led by Professor Bret Collier, applied VHF tags to groups of
turkeys captured with net traps at the beginning of each year. Turkeys captured together
are assumed to be part of a socially cohesive group that will last at least through the
remainder of the year. Tags generally last up to a maximum of 12 months, and as such a
given group can only be followed throughout an entire year. Tags may be lost before the
end of a year due to device failure, the tag being removed from the individual by accident,
and mortality from predation or hunting. In this work, we consider only adult males so
we exclude any juvenile or female groups from our investigation. Note that, in general
males and females form separate groups. Any individuals lost due to trap myopathy are
excluded from the dataset as well.

The number of adult males which were observed, and had not died due to trap
myopathy, were 𝑛 = 120 across all 𝐾 = 7 years with a total of 41 groups. Table 3.1
shows the number of groups and individuals observed for each year of the study, along
with the associated index of 𝑘. Note that we do not have any samples gathered in 2019.

Table 4.1: Wild Turkeys: Number of Observed Groups by Year

YearCaptured 2014 2015 2016 2017 2018 2020 2021
Groups 4 8 3 2 3 10 11
Individuals 18 29 11 3 8 21 30
k 1 2 3 4 5 6 7

Given that we have the times of net capture and the times of VHF failure, the survival
outcome for each individual in the study can be measured in days with the possibility of
right-censorship. In many cases, dead males were recovered with their tags.

Since we have telemetry data on individuals through a given year, our dataset does
not technically consist of mark-recapture data. However, the model extension to the CJS
and JS model we present in this work can be used in situations in which VHF or GPS
technologies are not available to researchers. To demonstrate our models’ effectiveness,
we simulate the recapture outcomes of the wild turkeys in our dataset, using 2 different
scenarios. For each scenario, we will fit the CJS extension presented in Section 2. In the
first scenario, we generate recapture outcomes for each individual, after conditioning on
first capture, assuming that the underlying true recapture probability is 𝑝 = 0.4. We
broke each year into 13 (monthly) equally spaced sampling occasions (in which 𝑡 = 1
represents January and 𝑡 = 13 is the end of the December), we include a 13𝑡ℎ month
because some individuals will perish in the middle of December while others will make
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it to the end without perishing. However, following the end of December the majority of
tags are likely to have fallen off.

Consider an individual captured and tagged on January 1st of some given year in
the study, whose tag failed on March 15th. For the mark-recapture investigation, the
second and third observation occasions for this individual are sampled from a Bernoulli
distribution with probability 𝑝 = 0.4 (and we keep the first capture occasion in the
dataset). In the second scenario, we repeat the same steps as the first, with the exception
of setting 𝑝 = 0.8. Finally, we also fit a known-fates CJS model on the dataset, in which
we apply no recapture simulation on the data and use the full VHF observation data.
The purpose of simulating recapture outcomes for the turkey data, in scenarios 1 and 2,
is to show that the known-fates model, which in our case is the best model we can fit
given that we have 100% recapture probability, and the CJS model will produce similar
survival estimates.

We avoid applying the JS model because, for this dataset, the recapture process
(through our partial simulation approach) is not the same at first capture as it is in
future occasions. We could simulate the first capture with some known probability as
well (such as 𝑝 = 0.4 or 𝑝 = 0.8), but in that case, we would effectively be treating our
sample data as a super population. The group size estimates from the JS model would
effectively be equal to our observed sample sizes, and this exercise would merely serve as
a model validation check. However, this was done in the simulation study and would be
redundant to repeat here.

4.4.2 Software and MCMC settings
As in the simulation study, we use R (R Core Team, 2022) to pre-process, model, and
summarize our results. Furthermore, the NIMBLE package (Valpine et al., 2022) in R
was used to perform MCMC sampling, and computations are conducted on SHARCNET
(www.sharcnet.ca). For mark-recapture modelling of wild turkeys, we generated posterior
medians and 95% credible intervals from the posterior distribution using 100, 000 MCMC
iterations, with a burn-in period of 50, 000 steps, across 10 chains. We initialize our chains
by sampling from the prior distributions discussed in the Materials and Methods. The
CJS model took around 30 to 60 minutes to run on a 2 × Intel E5-2683 v4 Broadwell
@ 2.1GHz CPU (node available on SHARCNET) requiring around 1G of RAM per chain.
Finally, the known-fates model ran in under 15 minutes requiring less than a 1GB of
RAM.

4.4.3 CJS and Known-Fates Model Results
The median posterior estimates and credible intervals for all parameters of interest in the
CJS and known-fates models are available in Figures 4.7 and 4.8.

For both scenario 1 and 2, the estimates of 𝛼 both cover and are close to the true
values of 𝛼 we used to generate the recapture outcomes. Specifically, for scenario 1, in
which 𝛼 = −0.406 the median posterior estimate from the MCMC sampler was ̂𝛼 =
-0.51 (95% CI: [-0.705, -0.318]; 50% CI: [-0.577, -0.444]) and for scenario 2, in which
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𝛼 = 1.386294, the estimate was ̂𝛼 = 1.442 (95% CI: [1.227, 1.665]; 50% CI: [1.367,
1.517]).

Across all scenarios, high group mortality rates have a consistently negative impact
on survival outcomes of remaining members for future transitions. In scenario 1 and 2
we have that ̂𝛽1 = -1.359 (95% CI: [-2.541, -0.21]; 50% CI: [-1.754, -0.972]) and ̂𝛽1 = -0.8
(95% CI: [-1.777, 0.206]; 50% CI: [-1.14, -0.46]), respectively. Moreover, the known-fates
model estimated 𝛽1 to be ̂𝛽1 = -0.642 (95% CI: [-1.555, 0.279]; 50% CI: [-0.953, -0.323]).
It appears that, while group mortality does have a negative effect on survival, the effect
is estimated to be smaller as the recapture rate increases. However, the credible intervals
overlap considerably, so it is difficult to say if the capture probability has an effect or
if the difference is due to chance. The range of the credible intervals and the standard
deviations also decrease as recapture probabilities improve. This is unsurprising as the
amount of information the estimator receives increases with the recapture probabilities.
Finally, the 𝑅 diagnostic was less than 1.1 for all parameters, for all scenarios and the
known-fates model, indicating adequate MCMC convergence (Gelman et al., 2013).
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Figure 4.7: Caterpillar plots of posterior means for the fixed effect terms estimated from mod-
elling the wild turkey data. The three recapture scenarios are represented by color, and the red
line indicates an effect size of zero. The thin error bars at the 95% credible intervals and the
thick error bars are the 50% credible intervals.
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Figure 4.8: Caterpillar plots of posterior means for the random effect on time, 𝛽3,𝑡, estimated
from modelling the wild turkey data. The three recapture scenarios are represented by color,
and the red line indicates an effect size of zero. The thin error bars are the 95% credible intervals
and the thick error bars are the 50% credible intervals.
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4.5 Discussion
In this work, we presented extensions to both the JS and CJS models, through the in-
troduction of the regression terms 𝑑𝑔,𝑡 and 𝑑∗

𝑔,𝑡, that allowed for the researchers to study
whether apparent survival up to occasion 𝑡 has an effect of survival of individuals from
occasion 𝑡 onward within a cohesive social group through the 𝛽1 coefficient. Our simu-
lation study revealed that when recapture rates (𝑝 = 0.4) are low and there is a strong
negative effect on survival (𝛽1 = −1.0), that, for both the JS and CJS model, the inter-
cept term (𝛽0) and the effect of group member mortality (𝛽1) for the survival term were
biased low and high, respectively. However, as either recapture probabilities improved,
or the effect of mortality on the future survival probabilities for remaining members was
positive (departures result in a reduced probability of departure for surviving members)
biases improved. Both of these changes are, in effect, ways of increasing the effective
sample size of a mark-recapture dataset. When recapture probabilities are higher, the
number of observed individuals increases, and the number of recaptures across the study
increases, resulting in a higher effective sample size. In the case when survival probabil-
ities improve due to group mortality, the model was effectively predicting that survival
rates increase over time. A few members will perish at the start of the study (with prob-
ability 1 − 𝜙𝑔,𝑡 for some interval [𝑡, 𝑡 + 1) such that 𝑡 ∈ {1, … , 𝑇 } for group 𝑔) and then
the surviving members will have, on the logit scale, their survival probability increase
by 𝑑𝑔,𝑡𝛽1 or 𝑑∗

𝑔,𝑡𝛽1. This will inevitably result in more individuals surviving for longer
periods of time, which will result in more recaptures, and thus a dataset with higher ob-
servations. As a result of this, the case in which 𝛽1 = 1 and 𝑝 = 0.8 (or fates are known),
the regression parameters of the model are effectively unbiased. Furthermore, we found
that when 𝑝 = 0.8, 95% credible intervals achieved nominal coverage probabilities, and
when 𝑝 = 0.4, coverage rates were either nominal or above nominal, likely as a result
of increased uncertainty due to a reduced effective samples size. We demonstrate the
application of our methods on a study of wild turkeys and found that 𝛽1 had a moderate
negative effect size.

Given that the wild turkey data we utilized in this work was gathered with VHF
spatial data on individuals which were captured on one occasion, we were able to use
simulation to produce recapture data and explore several different scenarios. This also
allowed us to fit a known-fates model and compare to the data in which the recapture
outcomes were simulated. The mark-recapture analysis revealed a moderate negative
effect of within-group mortality on the future survival outcomes of remaining members,
across both recapture simulated scenarios and the known-fates variation of our model.
As the underlying true recapture probabilities changed from 40% to 80% and 80% to
100% (known-fates model), the estimate of the negative effect of mortality on apparent
survival did appear to decrease in magnitude; the decrease was much larger from the
recapture scenario 40% to 80% compared to 80% to 100%. That said, the effect remained
moderately large in the known-fates model and was similar in magnitude to the CJS
model in scenario 2 (𝑝 = 0.8). While the estimated effect size of mortality on surviving
members did decrease across scenarios (as recapture probabilities increased), the credible
intervals overlapped, and due to the high amount of variance present in the estimates,
we can cannot conclude that the differences in the effect sizes are not simply due to
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statistical variation. This is unsurprising as the size of the sample population was only
𝑛 = 120 across 𝑇 = 13 occasions.

An overall negative effect of mortality on the future survival probabilities of remaining
members does seem to align with the findings of Wakefield et al. (2020), which showed
that hunting activities caused a reduction in gobbling among male wild turkeys during the
spring mating season. The reduced gobbling behavior signals a change due to a selective
pressure on survival. Potentially other avoidance behaviors as a result of losing members,
may lead to a reduced probability of survival overall. It also may be difficult for smaller
groups of turkeys to detect hunters in their range, compared to larger groups, which could
also partially explain the reduced survival probabilities after a group has decreased in
size due to mortality. Moreover, smaller groups of turkeys may have difficulty gathering
food and avoiding predation relative to larger cohesive groups, which may also contribute
to decreased survival outcomes.

It is possible that the impact of group mortality could be group-specific and even
conditional on the cause of death. If several members from a flock of wild turkeys is
hunted over a short-period of time, that group may become risk-averse and in doing so
reduce behaviors which may cause them to be spotted by a hunter. At the same time, a
group that suffers losses for a different reason, such as predation or food scarcity, may
not alter its behavior in a way to effectively reduce hunting risk. If this is the case, then
it would make sense to treat 𝛽1 as a random slope effect on 𝑑𝑔,𝑡 or 𝑑∗

𝑔,𝑡 and possibly
include a random intercept term for each group in 𝑔 ∈ {1, … , 𝐺} (Burnham & White,
2002). Unfortunately, the observed size of the groups were typically quite small and only
observed for the span of a year in our study. Group-specific adaptation or changes may
occur gradually over a span of several years, and again, might only be specific to certain
groups. Our sample size of 𝑛 = 120 observed individuals, spread out across 41 groups
(with an average observed group size of 3 members) may not be large enough to detect
smaller effects when the survival outcomes are obfuscated by a mark-recapture process.
Larger groups and longer observation times are likely to improve detection of smaller
effect sizes.

A clear limitation of our proposed JS model extension is that we do not provide a way
to estimate how many groups potentially remained unobserved across an entire study pe-
riod. Royle & Converse (2014) proposed an approach to dealing with group membership
in JS framework which involves generating 𝑀 possible members of the population, rather
than by group like we did, and assigning membership of unobserved individuals, which
could potentially exist, to different groups using a categorical distribution. A natural
extension to Royle & Converse (2014)’s categorical approach would be to make use of a
Chinese Restaurant Process model to assign flock membership (Blei, Griffiths, & Jordan,
2010; Turek, Wehrhahn, & Gimenez, 2021). The Chinese Restaurant Process can be used
to assign membership to flocks we have observed, but also to groups which may exist
but have not been spotted. In contemporary works, the process is defined with a hyper-
parameter which controls the rate of assignment to new groups and existing ones (Turek
et al., 2021). We do caution, however, that in order to do this, one would need make
the, possibly strong, assumption that any unobserved groups follow the same recapture
process/behaviors as groups that are observed in the sample population.

While the JS model is able to estimate group size for each sampling occasion, 𝑡, and
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therefore provide a better estimate of flock survival rates compared to the CJS model, it
does have the requirement that the first capture and subsequent captures follow the same
underlying process (Lebreton et al., 1992). As such, for studies in which recaptures are
conducted using a different approach to the first capture (e.g. mark-resight), we cannot
rely upon the JS model. In these cases, the CJS model extension, with the modified 𝑑∗

𝑔,𝑡
term, provides a reasonable alternative, which, as our simulation study showed, was able
to detect the effect of group mortality on remaining members without significant bias
and appropriate credible interval coverage. This was the approach we employed for our
application as well, given that there was no subsequent recapture process employed in
this study after the first capture.

For the cases in which researchers are able to track individual members over the entire
study period, groups could be studied across longer periods of time, allowing investigation
into the impact which external factors may have on group size and survival rates over
long periods of time. In a recent study on animal social networks, Gimenez et al. (2019)
showed that state-space models can be effectively combined with social network analysis
to detect associations across individuals in a population. While Gimenez et al. (2019)
used their framework to study associations between different individuals, we could extend
our models to species which not only have within-group associations, but also between
group associations, and use social network analysis to detect associations between said
groups.

Moreover, if group membership and/or mortality is assumed to change at certain
points in a year or occasion, a multistate robust design (MSRD) mark-recapture model
(Nichols & Coffman, 1999) could be used to incorporate a primary periods in which mem-
bership between groups changes and mortality can occur, and then secondary occasions
in which recapture process take place. If we have a population of animals which change
group membership frequently, like wild Western lowland gorillas (Gorilla gorilla), for
instance, (Hagemann et al., 2019), a multistate robust design model in which group mem-
bership can change between occasions might be considered. Araújo-Wang et al. (2022)
presented an multistate robust design model extension which allowed the locations (an
underlying state process) of Taiwanese white dolphins (Sousa chinensis taiwanensis) to
change between secondary occasions using a Dirichlet process model between capture
occasions. The work of Araújo-Wang et al. (2022) can be adapted to allow for group
membership to change between secondary occasions as well.

Finally, our simulation study showed that our models are able to successfully recover
all the parameters of interest when the underlying stochastic process which generates
the training data matches said models. Our model extensions provide an approachable
way to test hypotheses related to within-group association while controlling for external
factors like time. These methods are highly extensible and can be adapted to a number of
mark-recapture modelling problems and study designs, a few of which, we have outlined
in this discussion.



Chapter 5

Conclusion

The three projects presented in this dissertation each provide a novel contribution to the
body of research surrounding dependent fates within MR models. In each project, we pro-
vide researchers with a set of methodological tools they can use to enhance the statistical
inferences on wildlife sample populations with potentially dependent members. Further-
more, we verify our claims through in-depth simulation studies which either demonstrate
failings with the current methods, or show that our models, with sufficient data, are
generally unbiased and achieve reasonable coverage of confidence or credible intervals.

In the first project, Chapter 2, we performed an in-depth investigation into the conse-
quences of violating the assumption of independence in the Cormack-Jolly-Seber model.
We showed that, in the presence of mate-specific survival correlation, for models which
pool survival probability by sex ((𝜙, 𝑝𝐺) and (𝜙, 𝑝)) standard errors of survival rates
are underestimated and therefore confidence intervals undercover the truth. We further
found an analogous relationship for recapture correlations and recapture rates in the
(𝜙𝐺, 𝑝) and (𝜙, 𝑝) models as well. Moreover, we demonstrated that the distributional
assumptions of the LRT between models pooled by sex fail in the presence of either re-
capture or survival correlation. We further discovered that the ̂𝑐 estimator only detects
overdispersion in the most parsimonious model, when considering sex-specific differences,
(𝜙, 𝑝). However, conventional use of the ̂𝑐 (deviance, Pearson, or Fletcher methods) esti-
mator suggests that researchers should consider the ̂𝑐 value of the most complex model
in their hierarchy (which would be (𝜙𝐺, 𝑝𝐺)). Therefore, in practice, we have shown that
the type two error (find no evidence) of the overdispersion estimator increases drastically,
the LRT would push them to use the simplest model (𝜙, 𝑝), and this model would then
provide standard errors that undercover the truth without any indication of a problem.
Our work has shown that testing whether fates are correlated is an essential part of the
research process in MR studies.

The second project, Chapter 3, builds directly upon the first by introducing a set
of estimators that will allow researchers to estimate survival and recapture correlations
between mated pairs in mark-recapture studies. We believe that the assumptions we
introduced are reasonable for pairs that tend to stay together over long periods of time
(like Harlequin ducks). Our novel approach does not require the direct modelling of pair-
formation, which is an incredibly complex problem, but instead provides an alternative
solution that is easy-to-implement and runs quickly in practice. Furthermore, we provide
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a bootstrapping algorithm which researchers can use to test the hypothesis of whether
survival or recapture correlations are equal to zero or not, and allow them to construct
100(1 − 𝛼)% confidence intervals around estimates of survival and recapture correlation.
Our work provides a method of estimating the overdispersion introduced into the CJS
model through survival and recapture correlation. Our simulation study shows that for
sufficiently large datasets, the survival and recapture estimators are unbiased, and 95%
confidence intervals achieve at least nominal coverage. Our study further showed that the
𝑐𝜌

𝑐 and 𝑐𝛾
𝑐 correction can be used to adjust the undercovered standard errors in the CJS

models which pool survival and recapture probabilities by sex, respectively. Regarding
the application of our methods to harlequin duck data, our methods did produce positive
estimates of the recapture and survival correlation of mated pairs. However, the statistical
test of equality did not produce any meaningful evidence to suggest that these estimates
were significantly different from zero.

The work done in the third project, Chapter 4, provides a methodological contri-
bution to the CJS and JS models, when dealing with groups whose survival outcomes
may be associated over time. Namely, we proposed model extensions that allow the fu-
ture survival of group members to change as a result of previous members dying. This
type of extension will allow researchers to study whether group survival rates change in
the future as a result of previous mortality due to external pressures such as hunting
or predation. Moreover, we propose an extension to the data augmentation technique
presented in Royle (2009) using hierarchical methods. The extension allows us to esti-
mate the size of each group in our population along with the total population size as
well. Furthermore, the model extensions we proposed were both shown to produce low
to no bias in estimates of the parameters of interest, and associated credible intervals
achieved nominal or greater coverage through our simulation study. We applied the CJS
extension to a dataset of wild turkeys which are known to form cohesive social groups.
Given that the data we utilized for this study was VHF radiotelemetry data, we were
able to simulate the recapture process at different recapture probabilities and compare
the results to a known-fates version of our model extension. In the known-fates model,
and across all recapture scenarios, we found that mortality of group members between
sampling occasions results in decreased survival probabilities on surviving members. In
this simulation study and application, we controlled for time by including a random effect
for each sampling occasion. In theory, any number of covariates can be accounted for
in our construction, since we are informing the parameter of survival between occasions
through a logistic-link in a generalized linear model framework.

Finally, the work in Chapters 2 and 3 can be extended by introducing a time compo-
nent to the recapture and survival correlations between pairs. Care should be taken as
the data requirement to estimate a statistical correlation between two latent variables is
quite high (see Chapter 3). To achieve sample sizes necessary to estimate survival and
recapture correlations at each sample occasion (rather than across all sample occasions),
the sample data would very likely need to have hundreds of individuals that are observed
with high recapture probabilities. Alternatively, survival and recapture probabilities
could be allowed to vary (using 𝜙{𝑡} and 𝜙{𝐺,𝑡} rather than 𝜙 and 𝜙𝐺 for survival and 𝑝𝑡

and 𝑝{𝐺,𝑡} rather than 𝑝 and 𝑝𝐺 for recapture) while keeping 𝜌 and 𝛾 constant. Doing this
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would impose the restriction that correlations between mates do not change over time
but rather that only their marginal probabilities do. Moreover, given the bounds of 𝜌
and 𝛾, each survival and recapture correlation term will need to lie within [𝑔𝑙,𝑡, 𝑔𝑢,𝑡] and
[𝑟𝑙,𝑡, 𝑟𝑢,𝑡], respectively (recall that the bounds for Bernoulli correlations are functions of
the probabilities of the correlated outcomes, see Appendix 𝐴.2), which does impose a
constraint on how much the marginal survival and recapture probabilities can vary from
one occasion to the next. A seemingly obvious solution would be to explore construct-
ing a complete data model, in which partnership statuses are treated as latent variables
and the parameters of interest are estimated using either an Expectation-Maximization
algorithm or a MCMC approach. However, the curse-of-dimensionality makes building a
model of this nature appear to be intractable. The number of latent variables which need
to be estimated, in order to simulate different pair-bond combinations, grows into the
thousands for a relatively small sample of data and, as a result, conventional methods will
fail to produce meaningful estimates within a reasonable number of iterations. It is worth
noting that one situation in which a model of this nature would be tractable is when fates
are known. If the survival status and the identity of every pair-bond is known across
the entire study, then estimating survival correlations between pairs becomes trivial with
graphical modelling software such as JAGS or NIMBLE.

The models discussed in Chapter 4 can be extended in numerous ways. One key
limitation for the JS extension is that it For the JS extension, a Chinese Restaurant
Process can be used to model latent unobserved groups (although we will need to assume
that observed groups are representative of the population), a multi-state process model
can be used to allow individuals to change group membership between sampling occasions,
and Social Network Analysis can be used to estimate association between groups as well as
within them. Both the CJS and JS model can be extended to incorporate a hierarchical
group effect of member mortality on survival outcomes of remaining members. These
models can also be integrated into spatial mark-recapture models, which might introduce
an effect of location on survival probability, or an effect of mortality on group movement.
Our models assume the observation process is homogeneous across groups and individuals,
a hierarchical effect can be incorporated into the observation process which estimates a
different recapture probability across groups.
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Appendix A

Chapter 2 Additional Materials

A.1 Derivations
Consider a fixed pair 𝑗 ∈ {1, … , 𝑚} at fixed time 𝑡 ∈ {1, … , 𝑇 }. We provide derivations
for the joint survival distribution and we note that the results apply in general to the
joint Bernoulli distribution under the presence of linear correlation. We use the notation
and variables defined in Chapter 2.

A.2 Joint Distribution for Survival and Recapture
Processes

By definition the correlation coefficient of survival from time 𝑡 − 1 to 𝑡 between the
individuals of pair 𝑗, after conditioning on 𝑑𝑗,𝑡−1 (event that pair 𝑗 is together from time
𝑡 − 1 to 𝑡), can be expressed as:

𝛾𝑗,𝑡−1𝑑𝑗,𝑡−1 = 𝐸(𝑌 𝑀
𝑗,𝑡 𝑌 𝐹

𝑗,𝑡|𝑌 𝑀
𝑗,𝑡−1 = 1, 𝑌 𝐹

𝑗,𝑡−1 = 1, 𝑑𝑗,𝑡−1) − 𝜙𝑀
𝑗,𝑡−1𝜙𝐹

𝑗,𝑡−1
𝜎𝐹

𝑆,𝑗,𝑡−1𝜎𝑀
𝑆,𝑗,𝑡−1

(A.1)

which implies,

𝐸(𝑌 𝑀
𝑗,𝑡 𝑌 𝐹

𝑗,𝑡|𝑌 𝑀
𝑗,𝑡−1 = 1, 𝑌 𝐹

𝑗,𝑡−1 = 1, 𝑑𝑗,𝑡−1) = 𝑑𝑗,𝑡−1𝛾𝑗,𝑡−1𝜎𝐹
𝑆,𝑗,𝑡−1𝜎𝑀

𝑆,𝑗,𝑡−1 + 𝜙𝑀
𝑗,𝑡−1𝜙𝐹

𝑗,𝑡−1
(A.2)

as 𝐸(𝑌 𝐺
𝑗,𝑡) = 𝜙𝐺

𝑗,𝑡−1 since 𝑌 𝐺
𝑗,𝑡|(𝑌𝑗,𝑡−1 = 1) ∼ Bernoulli(𝜙𝐺

𝑗,𝑡−1) for the individual of sex
𝐺 ∈ {𝑀, 𝐹}. Moreover, 𝐸(𝑌 𝑀

𝑗,𝑡 = 1, 𝑌 𝐹
𝑗,𝑡 = 1|𝑌 𝑀

𝑗,𝑡−1 = 1, 𝑌 𝐹
𝑗,𝑡−1 = 1) = ℙ(𝑌 𝑀

𝑗,𝑡 = 1, 𝑌 𝐹
𝑗,𝑡 =

1|𝑌 𝑀
𝑗,𝑡−1 = 1, 𝑌 𝐹

𝑗,𝑡−1 = 1) = 𝜙𝑚𝑓
𝑗,𝑡−1. Therefore, dropping the indices for readability, the

probability that both individuals from pair 𝑗 survive from 𝑡 − 1 to 𝑡, given that they
are alive, is 𝜙𝑚𝑓 = 𝑑𝛾𝜎𝐹 𝜎𝑀 + 𝜙𝑀𝜙𝐹 . The remaining terms in the distribution follow
from 𝜙𝑚𝑓 . The probability of one partner (of sex 𝐺) surviving but not the other is
equal to the probability that the partner of sex 𝐺 survives less the probability that
both individuals survive. Therefore 𝜙𝐺0 = 𝜙𝐺 − 𝜙𝑚𝑓 ; ∀𝐺 ∈ {𝑀, 𝐹}. Moreover, the
probability that both partners die is the compliment of all the other probabilities 𝜙00 =
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1−𝜙𝑚𝑓 −𝜙𝑚0−𝜙𝑓0. Finally, to account for the possibility of temporary independence we
conditioned 𝐸(𝑌 𝑀

𝑗,𝑡 𝑌 𝐹
𝑗,𝑡|𝑌 𝑀

𝑗,𝑡−1 = 1, 𝑌 𝐹
𝑗,𝑡−1 = 1) on the variable 𝑑𝑗,𝑡, which equals to zero

when a couple is temporarily separated and gives rise to the joint Bernoulli distribution
with no correlation ■.

A.3 Bounds for Correlation Coefficients 𝛾 and 𝜌
Note that in this section we omit the indices 𝑗 and 𝑡−1. The first restriction on the joint
distribution of survival for two living individuals is that the sum of the distinct event
probabilities equals to one. Since the event of death for both individuals is equal to one
less the other probabilities, this restriction can be expressed as 𝜙𝑚𝑓 + 𝜙𝑚0 + 𝜙𝑓0 ≤ 1.
It is also necessary that each probability term lies between zero and one. Equivalently,
𝜙𝐺 ≥ 𝜙𝑚𝑓 ≥ 0 for 𝐺 ∈ {𝑀, 𝐹}. Finally, by definition the correlation coefficient is
bounded above by one and below by negative one (𝛾 ∈ [−1, 1]). These restrictions can
be expressed in terms of 𝛾 to determine its bounds. Assume that the pairs are mated at
time 𝑡 so that 𝑑 = 1. First note that 𝜙𝐺 ≥ 𝜙𝑚𝑓 implies that

𝜙𝐺 ≥ 𝜙𝑚𝑓 = 𝛾𝜎𝐹 𝜎𝑀 + 𝜙𝑀𝜙𝐹 ⟺ 𝛾 ≤ 𝜙𝐺 − 𝜙𝑀𝜙𝐹

𝜎𝐹 𝜎𝑀 ; ∀𝐺 ∈ {𝑀, 𝐹}. (A.3)

Now given that 𝜎𝐺 = √𝜙𝐺(1 − 𝜙𝐺)

𝛾 ≤ 𝜙𝐺 − 𝜙𝑀𝜙𝐹

√𝜙𝐹 (1 − 𝜙𝐹 )√𝜙𝑀(1 − 𝜙𝑀)
; ∀𝐺 ∈ {𝑀, 𝐹}. (A.4)

Then, WLOG, let 𝐺 = 𝐹 to get:

𝛾 ≤ 𝜙𝐹 − 𝜙𝑀𝜙𝐹

√𝜙𝐹 (1 − 𝜙𝐹 )√𝜙𝑀(1 − 𝜙𝑀)

= √𝜙𝐹 (1 − 𝜙𝑀)
(1 − 𝜙𝐹 )𝜙𝑀

= √ odds(𝜙𝐹 )
odds(𝜙𝑀)

= √OR(𝜙𝐹 , 𝜙𝑀)

(A.5)

in which OR(𝜙𝐹 , 𝜙𝑀) denotes the odds ratio. Similarly, if 𝐺 = 𝑀 then

𝛾 ≤ √OR(𝜙𝑀 , 𝜙𝐹 )

= 1
√OR(𝜙𝐹 , 𝜙𝑀)

(A.6)

Further, since 𝜙𝑚𝑓 = 𝛾𝜎𝐹 𝜎𝑀 + 𝜙𝑀𝜙𝐹 ≥ 0,
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𝛾 ≥ −𝜙𝑀𝜙𝐹

𝜎𝐹 𝜎𝑀

= − (√𝜙𝑀)2(√𝜙𝐹 )2

√𝜙𝐹 (1 − 𝜙𝐹 )√𝜙𝑀(1 − 𝜙𝑀)

= −√ 𝜙𝑀𝜙𝐹

(1 − 𝜙𝐹 )(1 − 𝜙𝑀)

= −√( 𝜙𝑀

1 − 𝜙𝑀 ) ( 𝜙𝐹

1 − 𝜙𝐹 )

= −√odds(𝜙𝑀)odds(𝜙𝐹 )

= −√OP(𝜙𝐹 , 𝜙𝑀).

(A.7)

in which the odds product is defined as OP(X,Y) ∶= odds(X)odds(Y); ∀𝑋 ∈ [0, 1]&𝑌 ∈
[0, 1]
Finally, noting that 𝜙𝐺0 = 𝜙𝐺 − 𝜙𝑚𝑓 , the restriction 𝜙𝑚𝑓 + 𝜙𝑚0 + 𝜙𝑓0 ≤ 1 can be
expressed as

𝜙𝑀 + 𝜙𝐹 − 𝛾𝜎𝐹 𝜎𝑀 − 𝜙𝑀𝜙𝐹 ≤ 1. (A.8)
Hence,

𝛾 ≥ 𝜙𝑀 + 𝜙𝐹 − 𝜙𝑀𝜙𝐹 − 1
𝜎𝑀𝜎𝐹

= 𝜙𝑀(1 − 𝜙𝐹 ) + 𝜙𝐹 − 1
√𝜙𝐹 (1 − 𝜙𝐹 )√𝜙𝑀(1 − 𝜙𝑀)

= − −𝜙𝑀(1 − 𝜙𝐹 ) + (1 − 𝜙𝐹 )
√𝜙𝐹 (1 − 𝜙𝐹 )√𝜙𝑀(1 − 𝜙𝑀)

= − (1 − 𝜙𝑀)(1 − 𝜙𝐹 )
√𝜙𝐹 (1 − 𝜙𝐹 )√𝜙𝑀(1 − 𝜙𝑀)

= −√(1 − 𝜙𝑀)(1 − 𝜙𝐹 )
𝜙𝐹 𝜙𝑀

= − 1
√OP(𝜙𝐹 , 𝜙𝑀)

.

(A.9)

Putting these together yields the correlation bounds for the joint Bernoulli distribution:

𝛾 ∈ [−min ( 1
√OP(𝜙𝐹 , 𝜙𝑀)

, √OP(𝜙𝐹 , 𝜙𝑀)) , min ( 1
√OR(𝜙𝐹 , 𝜙𝑀)

, √OR(𝜙𝐹 , 𝜙𝑀))]■

(A.10)
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A.4 Examples
A.4.1 Standard Error Estimates under Pair-Specific Linear

Correlation
In this section, we provide an example illustrating why failing to differentiate between
survival probabilities for sex-specific groupings in the CJS model will result in underesti-
mated standard errors when the data contains correlation between mated pairs. Consider
modelling a set of known-fate data, a special case of CJS data in which there is known
perfect detection. Specifically, if individuals are not spotted by the researchers at any
given sampling occasion they must have emigrated or perished at some earlier time in the
study period. Furthermore, define 𝑀𝑡 and 𝐹𝑡 as the number of males and females that
are captured and released at time 𝑡. Under this simplified parameter space, the MLE of
the survival from time 𝑡 to 𝑡 + 1 is ̂𝜙𝑡 = 𝑀𝑡+𝐹𝑡

𝑀𝑡−1+𝐹𝑡−1
. If we further assume that we have

a population of animals that consists only of mated pairs with perfect linear survival
dependence (𝛾 = 1), then we have that 𝑀𝑡 = 𝐹𝑡.

Part 1: Assessing the Reduced Model (𝜙, 𝑝)*
Fitting the standard CJS model we find that ̂𝜙𝑡 = 𝑀𝑡+𝑀𝑡

𝑀𝑡−1+𝑀𝑡−1
= 2𝑀𝑡

2𝑀𝑡−1
= 𝑀𝑡

𝑀𝑡−1
. The esti-

mate of standard deviation becomes ̂𝑆𝐸( ̂𝜙𝑡) = √ ̂𝜙𝑡(1− ̂𝜙𝑡)
𝑀𝑡−1

since the number of males
that survive from time 𝑡 to 𝑡 + 1 can be now modelled by a binomial distribution
∑𝑀𝑡−1

𝑖=1 𝑌𝑖,𝑡|𝑌𝑖,𝑡−1 ∼ Binomial(𝑀𝑡−1, 𝜙𝑡𝑌𝑖,𝑡−1). Note that exactly the same calculation
can be made with data from females since 𝑀𝑡 = 𝐹𝑡. However, the standard error
calculated under the assumption of independence would be 𝑆𝐸𝐼( ̂𝜙𝑡) = √ ̂𝜙𝑡(1− ̂𝜙𝑡)

𝑀𝑡−1+𝐹𝑡−1
=

√ ̂𝜙𝑡(1− ̂𝜙𝑡)
2𝑀𝑡−1

≈ 𝑆𝐸( ̂𝜙𝑡)√
2 . Therefore, in this example, we have that the standard errors of

our survival probability estimates are being understated by a factor of
√

2. Wald based
confidence intervals will then be too narrow by a factor of

√
2. The coverage of a 95%

confidence interval will be about 83%. This example corresponds to the case in which
̂𝑐 = 2. It is worth noting that the normal approximation typically is not suitable for mark-

recapture estimates due to the highly non-normal variance structure along with the fact
that the estimates typically need to lie between [0, 1] (Lebreton et al., 1992). The typical
approach is instead to construct a normally approximated interval around the logit trans-
formation of the parameter estimate with the delta method and back-transform using the
expit transformation. This may dampen the effect if the standard error is large or the
estimate is close to either 0 or 1 since this approach squeezes the interval around the end
points (Lebreton et al., 1992).

Part Two: Assessing the Sex-Specific Model (𝜙𝐺, 𝑝)
Now consider the model in which survival is estimated separately for both males and
females, denoted (𝜙𝐺, 𝑝). Survival is then estimated as ̂𝜙𝑀

𝑡 = 𝑀𝑡
𝑀𝑡−1

and ̂𝜙𝐹
𝑡 = 𝐹𝑡

𝐹𝑡−1

for males and females, respectively. Furthermore, standard errors become 𝑆𝐸( ̂𝜙𝐹
𝑡 ) =
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√ ̂𝜙𝐹
𝑡 (1− ̂𝜙𝐹

𝑡 )
𝐹𝑡−1

for females and 𝑆𝐸( ̂𝜙𝑀
𝑡 ) = √ ̂𝜙𝑀

𝑡 (1− ̂𝜙𝑀
𝑡 )

𝑀𝑡−1
for males. Since our assumption of

perfect linear survival correlation gives us that 𝑀𝑡 = 𝐹𝑡; ∀𝑡 ∈ {1, … , 𝑇 } we get that
𝑆𝐸( ̂𝜙𝐹

𝑡 ) ≈ 𝑆𝐸( ̂𝜙𝑀
𝑡 ), which are both equal to the correct standard error given in Part

One. As such, our coverage percentages are unaffected. The results shown here are
similar when considering correlated recapture probabilities as well.

A.5 The Likelihood Ratio Test under Pair-Specific
Linear Correlation

In this section, we compare the behavior of the deviance statistic for testing for an effect
of gender on survival when the data either contains exact replicate capture histories
or when there is sex-specific correlation between survival and recapture outcomes of
mated pairs. In Part One we provide a mathematical example comparing the behavior
of the deviance statistic (for the LRT of (𝜙𝐺, 𝑝) against (𝜙, 𝑝)) for the case in which
the mark-recapture data under study contains sex-specific correlation between survival
and recapture outcomes. In Part Two we repeat the calculation in Part One but instead
consider the case in which the data has replicates but no group-specific correlation in
either survival or recapture. Finally, in Part Three we simulate the distribution of both
the deviance and its corresponding 𝑝-values using mark-recapture data of size 𝑛 = 100
and 𝑛 = 200 to show the impact of halving the sample size of each dataset.

Part One: Asymptotic Behavior under Perfect Linear Correlation

Consider the likelihood ratio test between the (𝜙𝐺, 𝑝) and (𝜙, 𝑝) CJS models. Assume
that both recapture and survival of males and females is perfectly correlated (which
can only occur when 𝜙𝐹 = 𝜙𝑀 and 𝑝𝐹 = 𝑝𝑀 , respectively) in a population of animals
that are 50% male and female, with 100% of the members being mated. Furthermore,
assume that there is no temporal variation in the survival and recapture probabilities. For
convenience, we calculate the deviance for the case in which there is only one model cohort
with first capture at 𝑡 = 1 (denote this as 𝐴𝑗 = 1; ∀𝑗). Let 𝑛 be the number of marked
individuals within our population. Define 𝑦𝑗 to be the cell frequency of capture history 𝑗
(there are 2𝑇 −1 possible outcomes for this cohort). Let 𝜇𝑗 ∶= 𝔼(𝑦𝑗) = 𝑛ℙ(𝑍 = 𝑗|𝐴𝑗 = 1)
be the expected cell frequency of capture history 𝑗 in which 𝑍 = 𝑗 denotes that capture
history 𝑗 occurred. Then the multinomial log-likelihood under the null hypothesis would
be:

LL0 =
2𝑇−1

∑
𝑗=1

𝑦𝑗Log(𝜇𝑗/𝑛). (A.11)

Under the alternative hypothesis the log-likelihood becomes

LL𝛼 = ∑
𝐺∈{𝑀,𝐹}

2𝑇−1

∑
𝑗=1

𝑦𝐺
𝑗 Log(𝜇𝐺

𝑗 /𝑛𝐺) (A.12)
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in which 𝑦𝐺
𝑗 and 𝜇𝐺

𝑗 are the observed and expected cell frequencies for capture history
𝑗 for genders 𝐺 ∈ {𝑀, 𝐹} and 𝑛𝐺 is the amount of marked individuals in genders
𝐺 ∈ {𝑀, 𝐹}. Under this setup 𝑦𝐺

𝑗 = 𝑦𝑗/2 given that each pair will have identical observed
histories (perfectly correlated recapture and survival fates). Furthermore, the expected
cell frequency of history 𝑗 becomes 𝜇𝐺

𝑗 = 𝐸(𝑦𝐺
𝑗 ) = 𝑛𝐺ℙ(𝑌 𝐺

𝑗 = 𝑦𝐺
𝑗 |𝐴𝑗 = 1) = 𝜇𝑗/2 since

𝑛𝐺 = 𝑛/2. Now we compute the deviance to get:

−2Log(Δ) = −2LL0 − (−2LL𝛼)

= −2 (
2𝑇−1

∑
𝑗=1

𝑦𝑗Log(𝜇𝑗/𝑛) −
2𝑇−1

∑
𝑗=1

𝑦𝐹
𝑗 Log(𝜇𝐹

𝑗 /𝑛𝐹 ) −
2𝑇−1

∑
𝑗=1

𝑦𝑀
𝑗 Log(𝜇𝑀

𝑗 /𝑛𝑀))

= −2
2𝑇−1

∑
𝑗=1

(𝑦𝑗Log(𝜇𝑗/𝑛) − 𝑦𝑗
2 Log (𝜇𝑗/2

𝑛/2 ) − 𝑦𝑗
2 Log (𝜇𝑗/2

𝑛/2 ))

= −2
2𝑇−1

∑
𝑗=1

(𝑦𝑗Log(𝜇𝑗/𝑛) − 𝑦𝑗Log (𝜇𝑗/𝑛))

= 0
(A.13)

Therefore, for a population consisting entirely of mated individuals with an equal number
of males and females, we get that 𝛾 = 1 and 𝜌 = 1 implies that −2Log(Δ) = 0. As
such, we can see that the extra-binomial variation stemming from sex-specific correlation
deflates the likelihood ratio test statistic.

Part Two: Asymptotic Behavior for Replicated Data without Accounting for
Groups

Consider the set up from the previous example and now assume that there is no pair-
specific correlation present (𝛾 = 𝜌 = 0). Further assume that we took our mark-recapture
data and replicated all of the observed entries 𝑐 times. Then our new observed and
expected cell frequencies are 𝑦New

𝑗 = 𝑐𝑦𝑗 and 𝜇New
𝑗 = 𝑛Newℙ(𝑍 = 𝑗|𝐴𝑗 = 1) = 𝑐𝑛ℙ(𝑍 =

𝑗|𝐴𝑗 = 1) = 𝑐𝜇𝑗. The same relationships hold for gender-specific cell frequencies as
well. Then the deviance statistic for the LRT between the models (𝜙, 𝑝) and (𝜙𝐺, 𝑝) is
computed as:

−2Log(Δ)New = −2LLNew
0 − (−2LL𝛼)New

= −2 ⎛⎜
⎝

2𝑇−1

∑
𝑗=1

𝑐𝑦𝑗Log(𝑐𝜇𝑗/𝑐𝑛) − ∑
𝐺∈{𝑀,𝐹}

2𝑇−1

∑
𝑗=1

𝑐𝑦𝐺
𝑗 Log(𝑐𝜇𝐺

𝑗 /𝑐𝑛𝐺)⎞⎟
⎠

= −2
2𝑇−1

∑
𝑗=1

(𝑐𝑦𝑗Log(𝜇𝑗/𝑛) − 𝑐𝑦𝑀
𝑗 Log (𝜇𝑀

𝑗 /𝑛𝑀) − 𝑐𝑦𝐹
𝑗 Log (𝜇𝐹

𝑗 /𝑛𝐹 ))

= 𝑐(−2Log(Δ))■
(A.14)
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Therefore, when dealing with replicated data, the deviance is equal to the deviance of
one replicate multiplied by the number of replications.

Part Three: Effect of Halving Data without any Linear Correlation

In this example we conduct a small simulation study on the likelihood ratio test between
the models (𝜙𝐺, 𝑝) and (𝜙, 𝑝) in order to determine whether the violations in Chapter 2
of the main document might be due to spare count data. We assume that there is no
correlation between males or females for recapture or survival outcomes. We generated
1000 iterations for both models and compute the density of the deviance statistic and the
𝑝-value for the cases in which 𝑛 = 100 and 𝑛 = 200. Otherwise, the model settings are the
same as the simulation outlined in Chapter 2 of the main document. Consider the results
in Figure 𝐴.1 - halving the sample size of the data does not result in the large violation
of asymptotic behavior that we are observing when there are correlations introduced
between mated pairs. As such, we can conclude that the violation of assumptions that
we are seeing in Chapter 2 are not due to sparse cell observations.
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Figure A.1: Density of the deviance and the 𝑝-values of the likelihood ratio test for (𝜙𝐺, 𝑝) vs
(𝜙, 𝑝) in which 𝜌 = 0 and 𝛾 = 0 for both n=100 and n=200. The dashed line at the value of
ℙ(𝜒2

1 > G2) = 0.05.
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A.6 Estimating ̂𝑐 under Pair-Specific Linear Corre-
lation

In this section, we study the behavior of the deviance ̂𝑐 estimator when mark-recapture
data contains replicates against the case in which there is sex-specific correlation. In
Part One we calculate the deviance ̂𝑐 estimator for data in which there is perfect linear
correlation in recapture and survival for mated pairs. In Part Two we add to the math-
ematical result in Part One by computing the deviance ̂𝑐 estimator for data in which
there are perfect replicates. Finally, in Part Three we simulate the distribution of ̂𝑐 for
the three common estimators to illustrate that their computation is consistent with the
results shown in our study.

Part One: Computing ̂𝑐 under Perfect Linear Correlation

Using the same notation as described in appendix A.2, the deviance statistic between
the saturated model and the (𝜙, 𝑝) CJS model, for one model cohort at first capture
(𝐴𝑗 = 1; ∀𝑗), can be computed as:

Dev0 = −2
2𝑇−1

∑
𝑗=1

𝑦𝑗Log(𝜇𝑗/𝑦𝑗), (A.15)

with degrees of freedom df0 = 2𝑇 −1 −1−𝑛par = 2𝑇 −1 −3, since the number of parameters
for model (𝜙, 𝑝) is 𝑛par = 2.

Furthermore, the deviance between the saturated model and any of the following CJS
models: (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺) and (𝜙𝐺, 𝑝𝐺), for one cohort at first capture, can be computed
as:

Dev𝐺 = −2 ∑
𝐺∈{𝑀,𝐹}

2𝑇−1

∑
𝑗=1

𝑦𝐺
𝑗 Log(𝜇𝐺

𝑗 /𝑦𝐺
𝑗 ), (A.16)

with degrees of freedom df𝐺 = 2𝑇 − 2 − 𝑛par. Note that 𝑛par is equal to three for models
(𝜙𝐺, 𝑝) and (𝜙, 𝑝𝐺) and four for model (𝜙𝐺, 𝑝𝐺).

Now, assume that both recapture and survival of males and females is perfectly cor-
related in a population of animals that are exactly 50% male and female with 100% of
the members being mated. Furthermore, assume that there is no temporal variation in
the survival and recapture probabilities. As before we have that 𝑦𝐺

𝑗 = 𝑦𝑗/2, 𝜇𝐺
𝑗 = 𝜇𝑗/2

and 𝑛𝐺 = 𝑛/2. Now we can plug these into Dev𝐺 to get:

Dev𝐺 = −2
2𝑇−1

∑
𝑗=1

(𝑦𝑗
2 Log (𝜇𝑗/2

𝑦𝑗/2 ) + 𝑦𝑗
2 Log (𝜇𝑗/2

𝑦𝑗/2 ))

= −2
2𝑇−1

∑
𝑗=1

𝑦𝑗Log (𝜇𝑗/𝑦𝑗)

= Dev0.

(A.17)
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However, we have that 𝑑𝑓𝐺 −𝑑𝑓0 = 2𝑇 −2−𝑛par −2𝑇 −1 +3 = 2𝑇 −1 +1−𝑛par and when
𝑛par = 4 we get 𝑑𝑓𝐺 − 𝑑𝑓0 = 2𝑇 −1 − 3 = 𝑑𝑓0. Thus 𝑑𝑓𝐺 = 2𝑑𝑓0 for model (𝜙𝐺, 𝑝𝐺) and
𝑑𝑓𝐺 = 2𝑑𝑓0 + 1 for models (𝜙𝐺, 𝑝) and (𝜙, 𝑝𝐺).
Now the estimate of 𝑐, for model (𝜙𝐺, 𝑝𝐺) is computed as:

̂𝑐𝐺 = Dev𝐺/df𝐺
= Dev0/2df0
= ̂𝑐0/2

(A.18)

in which ̂𝑐0 is the variance inflation correction for model (𝜙, 𝑝). Similarly, ̂𝑐𝐺 = ̂𝑐0/(2df0+
1) if we are looking at models (𝜙, 𝑝𝐺) or (𝜙𝐺, 𝑝). This explains why the more general
models that account for the correlated sex-groups have lowered ̂𝑐 values compared to the
simple model that treats survival and recapture the same for both males and females ■

Part Two: Computing ̂𝑐 for Replicated Data without Accounting for Groups

Consider the setup from the previous example and now assume that there is no pair-
specific correlation present (𝛾 = 𝜌 = 0). Further assume that we took our mark-recapture
data and replicated all of the observed entries 𝑐 times. Then our new observed and
expected cell frequencies are 𝑦New

𝑗 = 𝑐𝑦𝑗 and 𝜇New
𝑗 = 𝑐𝜇𝑗. The same relationships hold for

gender-specific cell frequencies as well. Now the deviance statistic between the saturated
model and the (𝜙, 𝑝) CJS model, for one model cohort at first capture (𝐴𝑗 = 1; ∀𝑗) with
the replicated data, can be computed as:

DevNew
0 = −2

2𝑇−1

∑
𝑗=1

𝑦New
𝑗 Log(𝜇New

𝑗 /𝑦New
𝑗 )

= −2
2𝑇−1

∑
𝑗=1

𝑐𝑦𝑗Log(𝑐𝜇𝑗/𝑐𝑦𝑗)

= 𝑐Dev0.

(A.19)

with degrees of freedom df0 = 2𝑇 −1 −1−𝑛par = 2𝑇 −1 −3, since the number of parameters
for model (𝜙, 𝑝) is 𝑛par = 2. Furthermore, the deviance between the saturated model
and any of the following CJS models: (𝜙𝐺, 𝑝), (𝜙, 𝑝𝐺) and (𝜙𝐺, 𝑝𝐺), for one cohort at
first capture with the replicated data, can be computed as:

DevNew
𝐺 = −2 ∑

𝐺∈{𝑀,𝐹}

2𝑇−1

∑
𝑗=1

𝑦𝐺,New
𝑗 Log(𝜇𝐺,New

𝑗 /𝑦𝐺,New
𝑗 )

= −2 ∑
𝐺∈{𝑀,𝐹}

2𝑇−1

∑
𝑗=1

𝑐𝑦𝐺
𝑗 Log(𝑐𝜇𝐺

𝑗 /𝑐𝑦𝐺
𝑗 )

= 𝑐Dev𝐺,

(A.20)

with degrees of freedom df𝐺 = 2𝑇 − 2 − 𝑛par. Note that 𝑛par is equal to three for models
(𝜙𝐺, 𝑝) and (𝜙, 𝑝𝐺) and four for model (𝜙𝐺, 𝑝𝐺). Therefore, the deviance terms are
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equal to the deviance for a single replicate multiplied by the number of replicates. The
degrees of freedom are not impacted by replicated data so they remain unchanged. As
such, the estimates ̂𝑐 will be equal to the estimate of the overdispersion for one replicate
(theoretically this is equal to one) multiplied by the number of replicates ■

Part Three: Comparing Estimators of ̂𝑐
In this section, we conduct a small simulation study to compare the different estimators
of 𝑐. Assume we have identical parameters to the settings (defined in Section 2.2 in the
main document) in which we set 𝛾 = 𝜌 = 1. We compute the densities of the deviance

̂𝑐 (Anderson et al., 1994), Pearson’s ̂𝑐 (Lebreton et al., 1992; Pradel et al., 2005), and
Fletcher’s ̂𝑐 (Fletcher, 2012; Afroz et al., 2019) across all four models cases. Consider the
results in Figure 𝐴.2 - we can see that the variance inflation factor based on Pearson’s
statistic and the one proposed by Fletcher both have nearly identical distributions when
the pairs in the model are highly correlated. As expected, the deviance ̂𝑐 statistic is
biased high relative to the newer estimators as it has heavier tails (see Anderson et al.,
1994 for instance). The increase in bias, however, does not impact the conclusions drawn
from our study. As such, our findings hold regardless of which estimator of ̂𝑐 is employed.

Table A.1: Median( ̂𝑐) for common estimators across all models

Estimator
Model Deviance Pearson Fletcher
(𝜙, 𝑝) 2.01 1.69 1.73

(𝜙, 𝑝𝐺) 0.95 0.80 0.81
(𝜙𝐺, 𝑝) 0.94 0.80 0.81

(𝜙𝐺, 𝑝𝐺) 1.04 0.88 0.88
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Figure A.2: Density of commonly used ̂𝑐 estimators for all CJS models ((𝜙𝐺, 𝑝𝐺),(𝜙𝐺, 𝑝),
(𝜙, 𝑝𝐺),(𝜙, 𝑝)) in which 𝛾 = 𝜌 = 1. The dashed line at the value of ̂𝑐 = 1.
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B.1 Algorithm for Generating Psuedo-MR Data
Assume we have a set of CJS data with 𝑛 sampled individuals, in which 𝑛𝑓 are female and
𝑛𝑚 are male, across 𝑇 equally-spaced sampling occasions. We have a set of first capture
occasions for each individual {𝑓𝑖,0}𝑛

𝑖=1, an 𝑛𝑓 by 𝑇 matrix of recaptures for females, 𝑋𝐹 ,
and an 𝑛𝑚 by 𝑇 matrix of recaptures for males 𝑋𝑀 . Finally, we also have an 𝑛𝑓 by
𝑇 partially-observed matrix of mated pairs, 𝐻. As in Chapter 3, for all 𝑖 ∈ {1, … , 𝑛𝑓},
the entry 𝐻𝑖,𝑡 = 𝑗 represents female 𝑖’s partner 𝑗 ∈ {1, … , 𝑛𝑚}. To generate a new
mark-recapture dataset execute the following steps:

1. Select a set of underlying parameters 𝑝𝐹 ∗ , 𝑝𝑀∗ , 𝜙𝐹 ∗ , 𝜙𝑀∗ , 𝜌∗ and 𝛾∗ that will govern
the underlying recapture and survival distributions of the generated dataset.

2. Randomly assign sexes for 𝑛 individuals with probability 𝑛𝑓
𝑛𝑓+𝑛𝑚

of the sex being fe-
male. Call the randomly sampled number of females 𝑛∗

𝑓 and the randomly sampled
number of males 𝑛∗

𝑚.

3. For each individual, randomly assign a first capture value using ∑𝑛
𝑖=1

1(𝑓𝑖,0=𝑡)
𝑛 as

the probability of first capture being on occasion 𝑡. Denote the simulated first
capture for ∀𝑖 ∈ {1, … , 𝑛∗

𝑓} as 𝑓∗
𝑖,0 and as 𝑓∗

𝑗,0 ∀𝑗 ∈ {1, … , 𝑛∗
𝑚}. Define two 𝑛∗

𝑓 by
𝑇 matrices representing survival outcomes, 𝑌 𝐹∗, and recapture outcomes, 𝑋𝐹∗ for
females. The matrices 𝑌 𝑀∗ and 𝑋𝑀∗ are analogous for males (with dimensions
𝑛∗

𝑚 by 𝑇 ). ∀𝑖 set 𝑋𝐹∗
𝑖,𝑓∗

𝑖,0
= 1 and 𝑌 𝐹∗

𝑖,𝑓∗
𝑖,0

= 1. Similarly ∀𝑗 set 𝑋𝑀∗
𝑗,𝑓∗

𝑗,0
= 1 and

𝑌 𝑀∗
𝑗,𝑓∗

𝑗,0
= 1. Finally, define a 𝑛∗

𝑓 by 𝑇 matrix 𝐻∗ which contains partner ids for
female 𝑖 on occasion 𝑇 .

4. On occasion 𝑡 randomly assign mates with the following process: Begin by defining
the two sets containing the indices of the females and males who are available to
mate at time 𝑡 > 1, 𝕄𝑓,𝑡 and 𝕄𝑚,𝑡 respectively, as

𝕄𝑓,𝑡 ∶= {𝑖 ∶ (𝑓∗
𝑖,0 ≤ 𝑡) , (𝐻∗

𝑖,𝑡−1 ∈ {𝑗 + 1, 𝑁𝐴}) , (𝐻∗
𝑖,𝑡−1 = 𝑗, 𝑌 𝑀∗

𝑗,𝑡−1 = 0)} (B.1)

109
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𝕄𝑚,𝑡 ∶= {𝑗 ∶ (𝑓∗
𝑗,0 ≤ 𝑡) , (𝐻∗

𝑖,𝑡−1 ≠ 𝑗) , (∃𝑖 ∋ 𝐻∗
𝑖,𝑡−1 = 𝑗, 𝑌 𝐹∗

𝑖,𝑡−1 = 0)} (B.2)
and if 𝑡 = 1 then we say

𝕄𝑓,1 ∶= {𝑖 ∶ 𝑓∗
𝑖,0 = 1}

𝕄𝑚,1 ∶= {𝑗 ∶ 𝑓∗
𝑗,0 = 1} . (B.3)

Now, if the number of females available to mate, |𝕄𝑓,𝑡| is less than or equal to
the number of males available to mate, |𝕄𝑚,𝑡|, start at 𝑖 = 1, randomly sample a
partner id, 𝑗, from 𝕄𝑚,𝑡, assign 𝐻∗

𝑖,𝑡 = 𝑗 then redefine 𝕄𝑚,𝑡 as 𝕄𝑚,𝑡 ∶= 𝕄𝑚,𝑡 � {𝑗}.
Repeat until 𝑖 = 𝑛∗

𝑓 . In the case in which the number of available females is greater
than the number of available males, update 𝕄𝑚,𝑡 to be 𝕄𝑚,𝑡 ∶= 𝕄𝑚,𝑡 ∪ 𝕄𝑠,𝑡 such
that every element of 𝕄𝑠,𝑡 is equal to 𝑛∗

𝑚 + 1 and is of size |𝕄𝑓,𝑡| − |𝕄𝑚,𝑡|. Padding
the set of possible partners with |𝕄𝑓,𝑡| − |𝕄𝑚,𝑡| single partner ids, 𝑛∗

𝑚 + 1, ensures
that the last |𝕄𝑓,𝑡| − |𝕄𝑚,𝑡| females in the set 𝕄𝑓,𝑡 are not always the ones who are
listed as single. Store the results for 𝐻∗.

5. For two mated individuals, 𝑖 and 𝐻∗
𝑖,𝑡 = 𝑗, who are both alive at some occasion 𝑡

such that 𝑡 ≥ 𝑓𝑖,𝑡 and 𝑡 ≥ 𝑓𝐻∗
𝑖,𝑡,𝑡, simulate the survival outcome of the pair from

occasion 𝑡 to 𝑡 + 1 using the correlated joint Bernoulli distribution. We provide an
approach which uses the marginal distribution for males and the conditional distri-
bution for their female partners, note the ordering of conditioning is exchangeable.
We begin by defining the point estimate of the conditional probability that female
𝑖 survives from time 𝑡 to 𝑡 + 1 given her partner is alive at time 𝑡 + 1, denoting it
𝜙𝐹|𝑀=1∗ , or that he has perished from 𝑡 to 𝑡 + 1, denoting it 𝜙𝐹|𝑀=0∗. Using the
definition of conditional probability we have

𝜙𝐹|𝑀=1∗ ∶= ℙ(𝑌 𝐹∗
𝑖,𝑡+1 = 1, 𝑌 𝑀∗

𝑗,𝑡 = 1)
ℙ(𝑌 𝑀∗

𝑗,𝑡 = 1)

= 𝜙𝑀∗𝜙𝐹∗ + 𝛾∗𝜎𝜙𝐹 ∗𝜎𝜙𝑀∗
𝜙𝑀∗

𝜙𝐹|𝑀=0∗ ∶= ℙ(𝑌 𝐹∗
𝑖,𝑡+1 = 1, 𝑌 𝑀∗

𝑗,𝑡 = 0)
ℙ(𝑌 𝑀∗

𝑗,𝑡 = 0)

= (1 − 𝜙𝑀∗)𝜙𝐹∗ − 𝛾∗𝜎𝜙𝐹 ∗𝜎𝜙𝑀∗
1 − 𝜙𝑀∗ .

(B.4)

Now, for male 𝑗, sample his survival outcome from time 𝑡 to 𝑡 + 1 using

𝑌 𝑀∗
𝑗,𝑡+1|𝑌 𝑀∗

𝑗,𝑡 ∼ Bernoulli(𝜙𝑀∗𝑌 𝑀∗
𝑗,𝑡 ). (B.5)

Then, for his partner, 𝑖, sample her survival outcome using

𝑌 𝐹∗
𝑖,𝑡+1|𝑌 𝐹∗

𝑖,𝑡 , 𝑌 𝑀∗
𝑖,𝑡 ∼ Bernoulli(𝑌 𝐹∗

𝑖,𝑡 (𝜙𝐹|𝑀=1∗𝑌 𝑀∗
𝑗,𝑡+1 + 𝜙𝐹|𝑀=0∗(1 − 𝑌 𝑀∗

𝑗,𝑡+1))). (B.6)

For those individuals who were not able to find a mate, if any, simulate the outcome
of survival from 𝑡 to 𝑡+1 using the marginal Bernoulli distribution, with probability
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of survival being 𝜙𝐹 ∗ for females and 𝜙𝑀∗ for males. Specifically, for some single
male 𝑗, sample his survival outcome from time 𝑡 to 𝑡 + 1 using

𝑌 𝑀∗
𝑗,𝑡+1|𝑌 𝑀∗

𝑗,𝑡 ∼ Bernoulli(𝜙𝑀∗𝑌 𝑀∗
𝑗,𝑡 ). (B.7)

and for some non-mated female 𝑖 sample her survival outcome from time 𝑡 to 𝑡 + 1
using

𝑌 𝐹∗
𝑖,𝑡+1|𝑌 𝐹∗

𝑖,𝑡 ∼ Bernoulli(𝜙𝐹∗𝑌 𝐹∗
𝑖,𝑡 ). (B.8)

Store the results for 𝑌 𝐹∗ and 𝑌 𝑀∗.

6. For mated individuals, 𝑖 and 𝐻∗
𝑖,𝑡 = 𝑗, who are both alive at some occasion 𝑡 such

that 𝑡 > 𝑓𝑖,𝑡 and 𝑡 > 𝑓𝐻𝑖,𝑡,𝑡, simulate the recapture outcome of the pair at occasion
𝑡 using the correlated joint Bernoulli distribution. We provide an approach which
uses the marginal distribution for males and the conditional distribution for their
female partners, note the ordering of conditioning is exchangeable. We begin by
defining the point estimate of the conditional probability that female 𝑖 is caught at
time 𝑡 given her partner is caught at time 𝑡, denoting it 𝑝𝐹|𝑀=1∗, or that he was not
observed at 𝑡, denoting it 𝑝𝐹|𝑀=0∗. Using the definition of conditional probability
we have

𝑝𝐹|𝑀=1∗ ∶= ℙ(𝑋𝐹∗
𝑖,𝑡+1 = 1, 𝑋𝑀∗

𝑗,𝑡 = 1)
ℙ(𝑋𝑀∗

𝑗,𝑡 = 1

= 𝑝𝑀∗𝑝𝐹∗ + 𝜌∗𝜎𝑝𝐹 ∗𝜎𝑝𝑀∗
𝑝𝑀∗

𝑝𝐹|𝑀=0∗ ∶= ℙ(𝑋𝐹∗
𝑖,𝑡+1 = 1, 𝑋𝑀∗

𝑗,𝑡 = 0)
ℙ(𝑋𝑀∗

𝑗,𝑡 = 0)

= (1 − 𝑝𝑀∗)𝑝𝐹∗ − 𝜌∗𝜎𝑝𝐹 ∗𝜎𝑝𝑀∗
1 − 𝑝𝑀∗

(B.9)

Now, for male 𝑗, sample his recapture outcome at time 𝑡 using
𝑋𝑀∗

𝑗,𝑡 |𝑌 𝑀∗
𝑗,𝑡 ∼ Bernoulli(𝑝𝑀∗𝑌 𝑀∗

𝑗,𝑡 ). (B.10)

Then, for his partner, 𝑖, sample her recapture outcome using

𝑋𝐹∗
𝑖,𝑡+1|𝑌 𝐹∗

𝑖,𝑡 , 𝑋𝑀∗
𝑖,𝑡 ∼ Bernoulli(𝑌 𝐹∗

𝑖,𝑡 (𝑝𝐹|𝑀=1∗𝑋𝑀∗
𝑗,𝑡 + 𝑝𝐹|𝑀=0∗(1 − 𝑋𝑀∗

𝑗,𝑡 ))). (B.11)

For those individuals who were not able to find a mate, if any, simulate the outcome
of recapture at 𝑡 using the marginal Bernoulli distribution, with probability of
recapture being 𝑝𝐹 ∗ for females and 𝑝𝑀∗ for males. Specifically, for some single
male 𝑗, sample his recapture outcome from time 𝑡 using

𝑋𝑀∗
𝑗,𝑡 |𝑌 𝑀∗

𝑗,𝑡 ∼ Bernoulli(𝑝𝑀∗𝑌 𝑀∗
𝑗,𝑡 ). (B.12)

and for some non-mated female 𝑖 sample her survival outcome at time 𝑡 using

𝑋𝐹∗
𝑖,𝑡+1|𝑌 𝐹∗

𝑖,𝑡 ∼ Bernoulli(𝑝𝐹∗𝑌 𝐹∗
𝑖,𝑡 ). (B.13)

Store the results for 𝑋𝐹∗ and 𝑋𝑀∗.
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7. Repeat steps 4. through 7. for 𝑡 ∈ {1, … , 𝑇 − 1}.

8. Since we cannot fully observe 𝐻∗ we need to redefine it so that it is partially
observed before using the generated dataset. Redefine 𝐻∗ by setting all entries
to 𝑁𝐴. Repeat the following ∀𝑡. For two mated individuals, 𝑖 and 𝑗 captured
together, set 𝐻∗

𝑖,𝑡 = 𝑗, and for females recaptured and single set 𝐻∗
𝑖,𝑡 = 𝑛𝑚 + 1.

For a pair of individuals, 𝑖 and 𝑗, who are both observed together at some time 𝑡,
impute all occasions from time 𝑡 + 1 to 𝑡∗, in which 𝑡∗ = min(𝑡𝑖,last, 𝑡𝑗,last), 𝑡𝑖,last
is the last capture occasion of female 𝑖, and 𝑡𝑗,last is the last capture occasion of
male 𝑗 as 𝐻∗

𝑖,𝑡+1 = 𝑗, … , 𝐻∗
𝑖,𝑡∗ = 𝑗 and store the newly generated mark-recapture

dataset.
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C.1 A Brief Look at the logit-Normal Prior
In this section, we provide a high-level comparison of the prior we used for 𝜉𝑔; ∀𝑔 ∈
{1, … , 𝐺}, in Section 4.2.1.1, to a uniform prior as an alternative. To produce random
samples, with 𝐽 replicates, from the prior distribution on 𝜉𝑔 and on 𝑁𝑔 we execute the
following:

• Generate 𝐽 random samples from the distribution of hyperpriors defined in equation
(4.4). Denote the 𝑗th replicate of 𝜇𝜉 to be 𝜇(𝐽)

𝜉 and 𝑗th replicate the of 𝜎𝜉 to be
𝜎(𝐽)

𝜉 .

• Generate 𝐽 samples from the normal distribution using the density 𝑥(𝑗) ∼
Normal (𝜇(𝐽)

𝜉 , (𝜎(𝐽)
𝜉 )

2
) in which 𝑥(𝑗) is the 𝑗th replicate.

• Compute the 𝑗th replicate of 𝜉𝑔 using 𝜉(𝑗)
𝑔 = logit−1(𝑥(𝑗)). 𝜉(𝑗)

𝑔 is a random draw
for the logit-normal given the hyper-priors we defined in Section 4.2.1.1. In the
last step we used the property that the logistic transform of a logit-normal random
variable is normally distributed (Aitchison & Shen, 1980) .

• Simulate the prior density of 𝑁𝑔 by generating 𝐽 random samples from 𝑁 (𝑗)
𝑔 ∼

Binomial (𝑀𝑔, 𝜉(𝑗)
𝑔 ), in which 𝑁 (𝑗)

𝑔 is the 𝑗th replicate, for some chosen value of 𝑀𝑔.

We set 𝐽 = 2, 000, 000 and 𝑀𝑔 = 50 and found that the logit-normal prior on 𝜉𝑔
has less mass towards the boundaries of 0.0 and 1.0 relative to the uniform prior (Figure
𝐶.1). We believe that it is reasonable to assume that these extreme spots are less likely to
occur in practice (given a sensible choice of 𝑀𝑔). Furthermore, introducing hyper-priors
𝜇𝑔 and 𝜎𝑔 adds additional flexibility in potential posterior distributions after MCMC
sampling (Gelman et al., 2013). The R code to reproduce the comparison we discuss here
is available in the following section.

113
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Figure C.1: Top Panel: Simulated prior density of 𝜉𝑔 proposed in Chapter 4 compared to a
uniform prior. Bottom Panel: Simulated prior density of the number of individuals which exist
in a given group with 𝑀𝑔 = 50 for the case in which the prior on 𝜉𝑔 is generated from our
proposed density compared agaisnt the case when 𝜉𝑔 has a uniform prior. The simulation was
conducted with 2,000,000 replicates.
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C.1.1 R code used in Simulation of Priors

# Number of iterations
niter <- 2e6

# Half-T Hyper-Prior for Standard Deviation
sig <- abs(nimble::rt_nonstandard(n = niter,

df = 4,
mu = 0,
sigma = 0.25))

# Mg = 50
Mg <- 50

# Normal Hyper-Prior for Mean on Logit Scale
mu <- rnorm(n = niter,

mean = 0,
sd = 1.5)

# Simulate Prior using the theorem if X ~ Normal(mu, sd)
# Then logit(Y) = X implies that Y ~ Logit-Normal(mu, sd)
eps_g_prior <- inv.logit(rnorm(n = niter,

mean = mu,
sd = sig))

# Simulate a uniform Prior
eps_g_unif <- rbeta(n = niter,

shape1 = 1,
shape2 = 1)

# Simulate Z_{i,g} using the three different priors
zi_g_prior <- rbinom(n = niter, size = Mg, prob = eps_g_prior)
zi_g_prior_unif <- rbinom(n = niter, size = Mg, prob = eps_g_unif)

# Combine Results
df_sim <- data.frame(eps_g_prior = eps_g_prior,

eps_g_unif = eps_g_unif,
zi_g_prior = zi_g_prior,
zi_g_prior_unif = zi_g_prior_unif)

# Plot Results
p1 <- df_sim %>%
ggplot() +
geom_density(aes(x = eps_g_prior, col = "logit-Normal")) +
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geom_density(aes(x = eps_g_unif, col = "Uniform")) +
scale_color_manual(values = c("Uniform" = "red",

"logit-Normal" = "blue")) +
labs(col = "",

y = "Prior Density",
x = expression(epsilon[g]),
title = "Prior on Existence Probability") +

theme(legend.position = "bottom",
plot.title = element_text(hjust=0.5))

p2 <- df_sim %>%
ggplot() +
geom_density(aes(x = zi_g_prior, col = "logit-Normal")) +
geom_density(aes(x = zi_g_prior_unif, col = "Uniform")) +
scale_color_manual(values = c("Uniform" = "red",

"logit-Normal" = "blue")) +
labs(col = "",

y = "Prior Density",
x = expression(N[g]*"="*Sigma*z[i,g]),
title = "Prior on Number of Individuals which exist") +

theme(legend.position = "bottom",
plot.title = element_text(hjust=0.5))

gridExtra::grid.arrange(p1,p2,nrow = 2)
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C.2 JS Nimble Code
The R functions used to conduct our simulation of the Jolly-Seber model proposed in
Chapter 4 are available in this section.

# Nimble Functions for Running JS Survival Model

compute_perish_rate_js <- nimbleFunction(

run = function(surv_t = double(1),
recruit_t = double(1),
existence = double(1),
groups = double(1),
N = integer(0),
g = integer(0)){

returnType(double(0))

mask <- (groups[1:N] == g)
denomiantor <- max(1, sum(recruit_t[mask] * existence[mask]))
numerator <- sum((1-surv_t[mask]) * existence[mask])
rate <- min(1,numerator/denomiantor)
return(rate)

}
)

# Produce vector of 1s and 0s to check for matching value
vectorMatch <- nimbleFunction(
run = function(x= double(1),

y = double(0)){

returnType(double(1))
output <- 1*(y == x)
return(output)

}
)

# NIMBLE Code
# Mark-Recapture Hidden Data Model
nimble_grp_model_js <- nimbleCode({

# Likelihood

# Existence
for(i in 1:N){
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existence[i] ~ dbern(xi[groups[i]])
}

# Total Population Estimate
N_est <- sum(existence[1:N])

# Group Pop Estimates
for(g in 1:G){

N_group[g] <- sum(existence[1:N] *
vectorMatch(groups[1:N], g))

}

# Recruitment into population
for(i in 1:N){

recruit[i,1] ~ dbern(eps[1])

for(t in 2:(Tk-1)){
recruit[i, t] ~ dbern(eps[t] * (1 - recruit[i,t-1]) +

recruit[i,t-1])
}

}

# Initialize perished
for(g in 1:G){

perished[g, 1] <- 0
}

# Survival from time t-1 to t
for(t in 2:Tk){

# Compute prob at time t
for(g in 1:G){
logit(phi[g, t-1]) <- beta1 +

beta2 * perished[g, t-1] +
beta3[t-1]

}

# Survival likelihood
for(i in 1:N){
surv[i, t] ~ dbern(phi[groups[i],t-1] *

surv[i, t-1] *
recruit[i, t-1] +
(1-recruit[i,t-1]))

}
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# Update perish rate for time t
for(g in 1:G){
perished[g, t] <- compute_perish_rate_js(surv[1:N,t],

recruit[1:N,t],
existence[1:N],
groups[1:N],
N,
g)

}
}

# Recap at t
for(i in 1:N){

for(t in 1:Tk){
recap[i, t] ~ dbern(ilogit(alpha0) *

surv[i,t] *
recruit[i,t] *
existence[i])

}
}

# Priors
# Existence (Partially-Pooled Across Groups)
mean_xi ~ dnorm(0,sd = 1.5)
sd_xi ~ T(dt(0,0.25,4),0,Inf)

for(g in 1:G){
logit(xi[g]) ~ dnorm(mean_xi, sd = sd_xi)

}

# Recruitment
for(t in 1:(Tk-1)){

eps[t] ~ dbeta(1,1)
}

# Recapture
# Baseline recapture parameter
alpha0 ~ dnorm(0,sd = 1.5)

# Survival
beta1 ~ dnorm(0,sd = 1.5)
sd_time ~ T(dt(0,0.25,4),0,Inf)

# Effect of t on survival
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for(s in 1:(Tk-1)){
beta3[s] ~ dnorm(0, sd = sd_time)

}

# Correlation/Effect of cumulative deaths in year k
beta2 ~ dnorm(0,sd = 1.5)

})

# Generate Initial Values
generate_grp_init_js <- function(grp_data){

#Unpack Variables
recruit = grp_data$recruit
surv = grp_data$surv
recap = grp_data$recap
groups = grp_data$groups
existence = grp_data$existence
N = grp_data$N
G = grp_data$G
Gs = grp_data$Gs
Tk = grp_data$Tk

# Internal Variables
phi <- matrix(NA,nrow = G, ncol = Tk)
perished <- matrix(0, nrow = G, ncol = Tk)

# Parameter Estimates
alpha0 <- rnorm(1,0,1)

# Hyper-parameters
mean_xi <- rnorm(1,0,1)
sd_xi <- min(abs(nimble::rt_nonstandard(1,

df = 4,
0, 0.25)),

3)
xi <- c()

# Group Random Effect on Existence
for(g in 1:G){

xi[g] <- inv.logit(rnorm(n = 1,
mean = mean_xi,
sd = sd_xi))

}
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# Survival
beta1 <- rnorm(1,0,1)
sd_time <- min(abs(nimble::rt_nonstandard(1,

df = 4,
0,
0.25)),

3)
beta2 <- rnorm(1,0,1)
beta3 <- c()

# Effect of month on survival
for(t in 1:(Tk-1)){

beta3[t] <- rnorm(1, 0, sd_time)
}

eps <- rbeta((Tk-1),1,1)

# Estimate States from params

# Existence
for(i in 1:N){

if(is.na(existence[i])){
existence[i] <- rbinom(n = 1,

size = 1,
prob = xi[groups[i]])

}
}

# Recruitment
recruit[1:N,1] <- ifelse(is.na(recruit[1:N,1]),

rbinom(n = N,
size = 1,
prob = eps[1]),

recruit[1:N,1])

for(i in 1:N){
for(t in 2:(Tk-1)){
recruit[i,t] <- ifelse(is.na(recruit[i,t]),

rbinom(n = 1,
size = 1,
prob = (recruit[i,t-1] +

(1-recruit[i,t-1]) *
eps[t])),

recruit[i,t])
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}
}

# Survival
for(t in 2:Tk){

# Compute phi at time t for all categories
for(g in 1:G){
phi[g,t-1] <- inv.logit(beta1 +

beta2 * perished[g, t-1] +
beta3[t-1])

}

# Compute surv
for(i in 1:N){
surv[i,t] <- ifelse(is.na(surv[i,t]),

rbinom(1,1,
phi[groups[i],t-1] * surv[i,t-1] *
recruit[i, t-1] +
(1-recruit[i,t-1])),

surv[i,t])
}

# Update perished
for(g in 1:G){
perished[g,t] <- sum(existence[groups == g] *

(1-surv[groups == g, t]))/
max(1, sum(existence[groups == g] * recruit[groups == g, t]))

}
}

# Add unknown status
build_NA_mat <- function(mat, grp_mat){
mat_final <- matrix(NA,nrow = dim(mat)[1], ncol = dim(mat)[2])
mat_final[is.na(grp_mat)] <- mat[is.na(grp_mat)]
return(mat_final)

}

build_NA_vec <- function(vec, grp_vec){
vec_final <- rep(NA, length(grp_vec))
vec_final[is.na(grp_vec)] <- vec[is.na(grp_vec)]
return(vec_final)

}
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existence <- build_NA_vec(existence, grp_data$existence)
recruit <- build_NA_mat(recruit, grp_data$recruit)
surv <- build_NA_mat(surv, grp_data$surv)

# Return Results

# Store in object
grp_inits <- list(alpha0 = alpha0,

sd_time = sd_time,
beta1 = beta1,
beta2 = beta2,
beta3 = beta3,
mean_xi = mean_xi,
sd_xi = sd_xi,
xi = xi,
logit_xi = logit(xi),
eps = eps,
surv = surv,
recruit = recruit,
existence = existence)

# Return Initial Values for a single chain
return(grp_inits)

}

# Compile Model
compile_grp_nimble_js <- function(grp_data,

params = NULL){

# Generating Initial Values
cat("Generating Initial Values...", "\n")
nimble_inits <- generate_grp_init_js(grp_data)

# Construct Nimble Objects
cat("Organizing Data for Nimble...", "\n")

nimble_constants <- list(N = grp_data$N,
G = grp_data$G,
Tk = grp_data$Tk,
groups = grp_data$groups)

nimble_dat <- list(existence = grp_data$existence,
recruit = grp_data$recruit,
surv = grp_data$surv,
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recap = grp_data$recap)

if(!is.null(params)){
cat("User-specified Params Detected...","\n")
cat("Using params := ", "\n")
cat(params, "\n")

nimble_params <- params
} else {

cat("Params argument is NULL...","\n")
nimble_params <- c("N_est","N_group","alpha0",

"sd_time","beta1","beta2","beta3",
"eps","xi", "mean_xi", "sd_xi")

cat("Using params := ", "\n")
cat(nimble_params, "\n")

}

nimble_dims <- list(perished = c(grp_data$G, grp_data$Tk),
phi = c(grp_data$G, grp_data$Tk))

cat("Building Model Nodes in Nimble (SLOW)...", "\n")

grpModel <- nimbleModel(code = nimble_grp_model_js,
constants = nimble_constants,
inits = nimble_inits,
data = nimble_dat,
dimensions = nimble_dims)

# jsModel$simulate()
lp_init <- grpModel$calculate()
print(paste0("LP from initial values is ", round(lp_init,3)))

cat("Compiling Graphical Model in C++ (SLOW)...", "\n")
compile_grp <- compileNimble(grpModel, showCompilerOutput = F)

# [Note] SafeDepare.... warnings are annoying so suppress messages
cat("Configuring Markov Chain Monte Carlo Process (SLOW)...", "\n")
grpConf <- suppressMessages(
configureMCMC(grpModel,

print = F,
multivariateNodesAsScalars = T,
onlySlice = F,
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useConjugacy = F))

print(grpConf)
cat("Adding Monitors and Constructing MCMC...", "\n")
grpConf$addMonitors(nimble_params)
grpMCMC <- buildMCMC(grpConf)

cat("Compiling MCMC Samplers (SLOW)...", "\n")
grpMCMC <- compileNimble(grpMCMC, project = grpModel)

cat("Project Defined, MCMC and Model are compiled...", "\n")

cat("Returning Model Object...", "\n")

return(list(grpMCMC = grpMCMC,
nimble_inits = nimble_inits))

}

# Get Samples from Model
run_nimble_js <- function(CmdlMCMC,

niter,
nburnin,
thin,
inits = NULL,
nchains = 3,
seed = FALSE){

cat("MCMC Sampling from Model...","\n")
samples <- runMCMC(mcmc = CmdlMCMC,

niter = niter,
nburnin = nburnin,
thin = thin,
inits = inits,
nchains = nchains,
setSeed = seed,
samplesAsCodaMCMC = TRUE)

cat("Returning Output...","\n")
return(samples)

}
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C.3 CJS Nimble Code
The R functions used to conduct our simulation of the Cormack-Jolly-Seber model, along
with our study on Wild turkeys in Chapter 4 are available in this section.

# Nimble Functions for Running Group Survival Model
compute_perish_rate_cjs <- nimbleFunction(
run = function(surv_t = double(1),

groups = double(1),
first = double(1),
N = integer(0),
g = integer(0),
t = integer(0)){

returnType(double(0))
mask1 <- (groups[1:N] == g)
mask2 <- (first[1:N] <= t)
mask <- mask1 & mask2
denomiantor <- max(1, sum(1 * mask))
numerator <- sum((1-surv_t[mask]))
rate <- min(1,numerator/denomiantor)
return(rate)

}
)

# Produce vector of 1s and 0s to check for matching value
vectorMatch <- nimbleFunction(

run = function(x= double(1),
y = double(0)){

returnType(double(1))
output <- 1*(y == x)
return(output)}

)

# Nimble Code

# Mark-Recapture Hidden Data Model
nimble_grp_model_cjs <- nimbleCode({

# Likelihood

# Initialize perished
for(g in 1:G){
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perished[g, 1] <- 0
}

# Survival from time t-1 to t
for(t in 2:Tk){

# Compute probs at time t
for(g in 1:G){
logit(phi[g, t-1]) <- beta1 + beta2 * perished[g, t-1] + beta3[t-1]

}

# Survival likelihood
for(i in 1:N){
surv[i, t] ~ dbern(phi[groups[i],t-1] * surv[i, t-1] *

(1 * (first[i] < t)) + 1 * (first[i] >= t))
}

# Update perish rate for time t
for(g in 1:G){
perished[g, t] <- compute_perish_rate_cjs(surv[1:N,t],

groups[1:N],
first[1:N],
N,
g,
t)

}
}

# Recap at t
for(i in 1:N){

for(t in (first[i] + 1):Tk){
recap[i, t] ~ dbern(ilogit(alpha0) * surv[i,t])

}
}

# Priors

# Recapture
# Baseline recapture parameter
alpha0 ~ dnorm(0,sd = 1.5)

beta1 ~ dnorm(0,sd = 1.5)
sd_time ~ T(dt(0,0.25,4),0,Inf)

# Effect of season on survival
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for(s in 1:(Tk-1)){
beta3[s] ~ dnorm(0, sd = sd_time)

}

# Correlation/Effect of cumulative deaths in year k
beta2 ~ dnorm(0,sd = 1.5)

})

# Known-Fates Model
nimble_grp_model_cjs_known <- nimbleCode({

# Likelihood

# Initialize perished
for(g in 1:G){

perished[g, 1] <- 0
}

# Survival from time t-1 to t
for(t in 2:Tk){

# Compute probs at time t
for(g in 1:G){
logit(phi[g, t-1]) <- beta1 + beta2 * perished[g, t-1] + beta3[t-1]

}

# Survival likelihood
for(i in 1:N){
surv[i, t] ~ dbern(phi[groups[i],t-1] * surv[i, t-1] *

(1 * (first[i] < t)) + 1 * (first[i] >= t))
}

# Update perish rate for time t
for(g in 1:G){
perished[g, t] <- compute_perish_rate_cjs(surv[1:N,t],

groups[1:N],
first[1:N],
N,
g,
t)

}
}

# Priors
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# Survival
beta1 ~ dnorm(0,sd = 1.5)
sd_time ~ T(dt(0,0.25,4),0,Inf)

# Correlation/Effect of cumulative deaths in year k
beta2 ~ dnorm(0,sd = 1.5)

# Effect of t on survival
for(s in 1:(Tk-1)){

beta3[s] ~ dnorm(0, sd = sd_time)
}

})

generate_grp_init_cjs <- function(grp_data,
known_fates){

#Unpack Variables

first <- grp_data$first
surv <- grp_data$surv
recap <- grp_data$recap
groups <- grp_data$groups
N <- grp_data$N
K <- grp_data$K
G <- grp_data$G
Gs <- grp_data$Gs
Tk <- grp_data$Tk

# Internal Variables
phi <- matrix(NA, nrow = G, ncol = Tk)
perished <- matrix(0, nrow = G, ncol = Tk)

# Parameter Estimates

alpha0 <- rnorm(1,0,1.5)

# Survival
# Hyper-parameters
beta1 <- rnorm(1,0,1)
sd_time <- min(abs(nimble::rt_nonstandard(1,df = 4, 0, 0.25)),3)
beta2 <- rnorm(1,0,1)
beta3 <- c()
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# Effect of month on survival
for(t in 1:(Tk-1)){

beta3[t] <- rnorm(1, 0, sd_time)
}

# Estimate States from params

# Survival
for(t in 2:Tk){

# Compute phi at time t for all categories
for(g in 1:G){
phi[g,t-1] <- inv.logit(beta1 +

beta2 * perished[g, t-1] +
beta3[t-1])

}

# Compute surv
for(i in 1:N){
surv[i,t] <- ifelse(is.na(surv[i,t]),

rbinom(1,1,phi[groups[i],t-1] * surv[i,t-1] *
(1 * (first[i] < t)) +
(first[i] >= t)),

surv[i,t])
}

# Update perished
for(g in 1:G){
perished[g,t] <- min(1,

sum((1-surv[groups == g & first <= t , t]))/
max(1, sum(1 * (groups == g & first <= t))))

}
}

# Add unknown status
build_NA_mat <- function(mat, grp_mat){
mat_final <- matrix(NA,nrow = dim(mat)[1], ncol = dim(mat)[2])
mat_final[is.na(grp_mat)] <- mat[is.na(grp_mat)]
return(mat_final)

}

build_NA_vec <- function(vec, grp_vec){
vec_final <- rep(NA, length(grp_vec))
vec_final[is.na(grp_vec)] <- vec[is.na(grp_vec)]
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return(vec_final)
}

surv <- build_NA_mat(surv, grp_data$surv)

# Return Results

# Store in object
grp_inits <- list(alpha0 = alpha0,

sd_time = sd_time,
beta1 = beta1,
beta2 = beta2,
beta3 = beta3,
surv = surv)

# Give only parameters (not recapture) if known fates model
if(known_fates){

grp_inits <- list(sd_time = sd_time,
beta1 = beta1,
beta2 = beta2,
beta3 = beta3)

}

# Return Initial Values for a single chain
return(grp_inits)

}

# Compile Model
compile_grp_nimble_cjs <- function(grp_data,

params = NULL,
known_fates = FALSE){

# Generating Initial Values
cat("Generating Initial Values...", "\n")
nimble_inits <- generate_grp_init_cjs(grp_data = grp_data,

known_fates = known_fates)

# Construct Nimble Objects
cat("Organizing Data for Nimble...", "\n")

# Constants
nimble_constants <- list(N = grp_data$N,

G = grp_data$G,
Tk = grp_data$Tk,
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groups = grp_data$groups,
first = grp_data$first)

# Set params if arg not specified
if(!is.null(params)){

cat("User-specified Params Detected...","\n")
cat("Using params := ", "\n")
cat(params, "\n")
nimble_params <- params

} else {
cat("Params argument is NULL...","\n")
nimble_params <- c("alpha0",

"sd_time",
"beta1",
"beta2",
"beta3")

}

# Known fates vs Partial Observation Settings
if(known_fates){

cat("Using known fates model...","\n")
nimble_dat <- list(surv = grp_data$surv)
# Not observed = dead in this scenario
if(any(is.na(nimble_dat$surv))){
warning("NA detected in survival object, assuming all NA = 0,

set known_fates = FALSE if not desired...","\n")
}
nimble_dat$surv[is.na(nimble_dat$surv)] <- 0
nimble_params <- nimble_params[nimble_params != "alpha0"]
nim_model <- nimble_grp_model_cjs_known

} else {
cat("Using mark-recapture model...","\n")
nimble_dat <- list(surv = grp_data$surv,

recap = grp_data$recap)
nim_model <- nimble_grp_model_cjs

}

# State params to user
cat("Using params := ", "\n")
cat(nimble_params, "\n")

# Dimensions of derived objects
nimble_dims <- list(perished = c(grp_data$G, grp_data$Tk),

phi = c(grp_data$G, grp_data$Tk))



Appendix C. Chapter 4 Additional Materials 133

cat("Building Model Nodes in Nimble (SLOW)...", "\n")
grpModel <- nimbleModel(code = nim_model,

constants = nimble_constants,
inits = nimble_inits,
data = nimble_dat,
dimensions = nimble_dims)

lp_init <- grpModel$calculate()
print(paste0("LP from initial values is ", round(lp_init,3)))

cat("Compiling Graphical Model in C++ (SLOW)...", "\n")
compile_grp <- compileNimble(grpModel, showCompilerOutput = F)

# [Note] SafeDepare.... warnings are annoying so suppress messages
cat("Configuring Markov Chain Monte Carlo Process (SLOW)...", "\n")
grpConf <- suppressMessages(
configureMCMC(grpModel,

print = F,
multivariateNodesAsScalars = T,
onlySlice = F,
useConjugacy = F)

)

print(grpConf)
cat("Adding Monitors and Constructing MCMC...", "\n")
grpConf$addMonitors(nimble_params)
grpMCMC <- buildMCMC(grpConf)

cat("Compiling MCMC Samplers (SLOW)...", "\n")
grpMCMC <- compileNimble(grpMCMC, project = grpModel)

cat("Project Defined, MCMC and Model are compiled...", "\n")

cat("Returning Model Object...", "\n")
return(list(grpMCMC = grpMCMC,

nimble_inits = nimble_inits))
}

# Get Samples from Model
run_nimble_cjs <- function(CmdlMCMC,

niter,
nburnin,
thin,
inits = NULL,
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nchains=3,
seed = F){

cat("MCMC Sampling from Model...","\n")
samples <- runMCMC(mcmc = CmdlMCMC,

niter = niter,
nburnin = nburnin,
thin = thin,
inits = inits,
nchains = nchains,
setSeed = seed,
samplesAsCodaMCMC = TRUE)

cat("Returning Output...","\n")
return(samples)

}
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