Western University Scholarship@Western

Epidemiology and Biostatistics Publications

Epidemiology and Biostatistics Department

1-1-2020

Evaluating the effectiveness of aquatic therapy on mobility, balance, and level of functional independence in stroke rehabilitation: a systematic review and meta-analysis.

Alice Mary Iliescu

Amanda McIntyre

Joshua C. Wiener Western University, jwiener2@uwo.ca

Jerome Iruthayarajah

Andrea Lee

See next page for additional authors

Follow this and additional works at: https://ir.lib.uwo.ca/epidempub

Part of the Biostatistics Commons, and the Epidemiology Commons

Citation of this paper:

Iliescu, Alice Mary; McIntyre, Amanda; Wiener, Joshua C.; Iruthayarajah, Jerome; Lee, Andrea; Caughlin, Sarah; and Teasell, Robert, "Evaluating the effectiveness of aquatic therapy on mobility, balance, and level of functional independence in stroke rehabilitation: a systematic review and meta-analysis." (2020). *Epidemiology and Biostatistics Publications.* 202. https://ir.lib.uwo.ca/epidempub/202

Authors

Alice Mary Iliescu, Amanda McIntyre, Joshua C. Wiener, Jerome Iruthayarajah, Andrea Lee, Sarah Caughlin, and Robert Teasell

This article is available at Scholarship@Western: https://ir.lib.uwo.ca/epidempub/202

1	Evaluating the effectiveness of aquatic therapy on mobility, balance, and level of functional
2	independence in stroke rehabilitation: A systematic review and meta-analysis
3	
4	Abstract
5	
6	Objective: To investigate the effectiveness of aquatic therapy in improving mobility, balance,
7	and level of functional independence after stroke through a meta-analysis and systematic review.
8	Data Sources: A literature search using databases Medline, Embase, CINAHL, PsycINFO, and
9	Scopus for journal articles published up to June 21, 2018.
10	Study Selection: Included studies met the following inclusion criteria: 1) in English, 2) adult
11	stroke population 3) randomized or non-randomized prospectively controlled trial (RCT or PCT)
12	study design 4) the experimental group received an aquatic therapy program that was longer than
13	a single session, and 4) the study reported at least one clinical outcome measure of mobility,
14	balance, or functional independence.
15	Data Extraction: Participant characteristics, treatment protocols, between-group outcomes,
16	point measures and measures of variability were extracted. Methodological quality was assessed
17	and pooled mean differences (MD) \pm standard error and 95% confidence intervals (CI) were
18	calculated for the Berg Balance Scale (BBS), Functional Reach Test (FRT); Timed Up and Go
19	Test (TUG); and gait speed.
20	Data Synthesis: A total of 16 studies, consisting of 14 RCTs and 2 PCTs, were included (total
21	sample size of 559 participants). Nine were of fair quality and 7 were of good quality. The meta-
22	analysis demonstrated statistically significant improvements for aquatic therapy over land
23	therapy on the BBS (MD=2.282±0.556; 95% CI: 1.192 to 3.372; p<0.001), FRT

(MD=3.511±1.597; 95% CI: 0.381 to 6.642; p=0.028), TUG (MD=2.229±0.513; 95% CI: 1.224 24 to 3.234; p<0.001), but not gait speed (MD=0.028±0.018; 95% CI: -0.007 to 0.062; p=0.117). 25 26 Non-quantitative synthesis demonstrated that results on other outcome measures consisted of a mix of positive and negative results. 27 Conclusions: The evidence suggests a significant benefit of aquatic therapy on certain aspects of 28 29 mobility, balance, gait, and functional independence after a stroke as compared to land-based 30 therapy. 31 Keywords: stroke, hydrotherapy, rehabilitation, review **List of Abbreviations** 32 33 10MWT, 10 Meter Walk Test; BBS, Berg Balance Scale; BI, Barthel Index; CB&M, Community Balance and Mobility Test; CI, Confidence Interval; FAC, Functional Ambulation 34 35 Category Score; FGA, Functional Gait Assessment; FIM, Functional Independence Measure; 36 FRT, Functional Reach Test; FTSTS, Five-Time Sit to Stand Test; MCID, Minimally Clinically Important Difference; MD, Mean Difference; M-MAS, Modified Motor Assessment Scale; 37 NDT, Neurodevelopmental Treatment; OLST, One Leg Stand Test; PCT, Prospectively 38 Controlled Trial; PEDro, Physiotherapy Evidence Database Rating Scale; PNF, Proprioceptive 39 Neuromuscular Facilitation; POMA, Performance Oriented Mobility Assessment; PRISMA, 40 Preferred Reporting Items for Systematic Review and Meta-Analyses; RCT, Randomized 41 Controlled Trial; RMI, Rivermead Mobility Index; SPPB, Short Physical Performance Battery; 42 TUG, Timed Up and Go Test. 43

Following stroke, individuals often experience residual physical impairment.¹ Approximately 44 half of individuals have mobility issues at three months post stroke, while a quarter of 45 individuals never regain full mobility.² Stroke can also have a profound impact on balance and 46 gait, as paresis and spasticity of the muscles reduce the strength, movement, and control of the 47 limbs.³ Common balance disorders post stroke, such as postural instability, excessive sway, and 48 delayed equilibrium reaction, often attenuate functional movement and increase the risk of falls.⁴⁻ 49 ⁶ Asymmetric gait pattern, reduced stride length, and increased double-limb support duration are 50 common post-stroke disorders of gait, which can result in decreased speed and endurance during 51 ambulation,^{2,7,8} These disorders of mobility and balance often delay the recovery of functional 52 independence – the ability to perform and participate in activities of daily living – following 53 stroke.⁹ As such, the restoration and maintenance of mobility is a central component of stroke 54 55 rehabilitation.

56

Aquatic therapy, also known as hydrotherapy or hydrokinesiotherapy, refers to water-based 57 exercises that are specifically designed to utilize the physical properties of water.¹⁰ It has been 58 suggested that water provides an ideal medium for motor rehabilitation as: 1) the buoyancy of 59 60 water provides increased body weight support, decreased impact on joints, and reduced risk of falls; 2) the hydrostatic pressure of water enhances sensory input and promotes equal resistance 61 in the muscles; 3) the density and viscosity of water can encourage increased energy expenditure 62 63 as compared to land-based activity; and 4) the thermodynamic properties of water can provide therapeutic relief for muscles and joints.¹¹ Thus, an aquatic setting provides a safe and 64 65 comfortable environment, while accommodating varying levels of function and capacity which may enhance performance for individuals undergoing motor rehabilitation.¹¹ 66

68	From a thermodynamic point of view, water is thermally conductive and possesses a high
69	specific heat capacity which allows for water to retain and transfer heat energy to the body. ¹¹ It
70	has been suggested that administering aquatic therapy at varying temperatures can produce
71	differing effects during rehabilitation. ¹¹ For example, a cool temperature range (26 to 29.5°C) is
72	where most pool temperature are set at for the purpose of vigorous exercise. A neutral
73	temperature range (33.5 to 35.5°C) is most commonly used for aquatic therapy protocols through
74	providing a comfortable ambient temperature during longer therapy programs. ¹¹ Lastly, warm
75	temperature ranges (36 to 38.5°C) are close to water temperatures provided in hot tubs and are
76	appropriate for relaxation. ¹¹

77

Aquatic therapy can encompass an array of approaches to rehabilitation, including traditional 78 functional therapies, neurodevelopmental treatment (NDT), proprioceptive neuromuscular 79 facilitation (PNF), and task-specific training. Trunk training is an example of a traditional 80 functional therapy that can be applied in an aquatic environment as an intervention. The 81 Halliwick Method is a motor relearning program rooted in NDT in which movements are 82 83 directed by a therapist while the individual is fully immersed in water, and it incorporates hydrodynamic elements to improve core stability.12 The Bad Ragaz Ring Method utilizes PNF to 84 increase passive and active range of motion.¹³ The individual lays supine on the water surface, 85 supported by flotation devices, while the therapist guides their limbs through stretches.¹³ Dual-86 task training is an example of a task-specific training intervention that can be applied 87 88 underwater. Techniques from complementary and alternative medicine focus on relaxation and 89 have also been integrated into some aquatic therapy protocols. Ai chi, which is rooted in the

principles of tai chi, involves deep, mindful breathing while performing slow, broad, continuous
movements.¹⁴ Another technique, Watsu, is derived from shiatsu and consists of massage,
assisted stretching, and joint manipulation.¹⁵ Although conventional rehabilitation is primarily
land-based, many aquatic therapies have become increasingly popular in recent years due to their
potential versatility.¹⁶

95

The effectiveness of aquatic therapy has been evaluated in a variety of chronic conditions to 96 assess its impact on rehabilitation outcomes. Among individuals with musculoskeletal disorders 97 98 such as arthritis and fibromyalgia, aquatic therapy has shown moderate beneficial effects on pain, quality of life, and general physical function when compared to no therapy, but showed no 99 advantage over land-based therapy.¹⁷ Individuals with neurological disorders, including brain 100 101 injury, spinal cord injury, and neurodegenerative diseases, have demonstrated considerable improvements in mobility, strength, coordination, and fitness following aquatic therapy.^{18,19} 102 103 While some studies reported greater treatment effects following aquatic therapy in comparison to land therapy, the findings were not consistent among neurological disorders or specific aquatic 104 therapies. Overall, aquatic therapy appears to be a safe and feasible form of rehabilitation.¹¹ 105 106

In stroke, aquatic therapy has demonstrated mixed findings, with considerable variation between
studies in therapeutic technique and time post stroke. A 2011 Cochrane Review found that
aquatic therapy was superior to land-based therapy in improving muscle strength and functional
independence in individuals with stroke, but no significant differences were found in balance,
gait, or cardiorespiratory fitness.²⁰ The authors recommended further investigation given the
limitations of the review, with only four low-quality trials included. More recently, a meta-

analysis of 11 aquatic therapy trials demonstrated statistically significant improvements in 113 balance when compared to land-based therapy.²¹ However, the authors did not further examine 114 the impact of the intervention on additional outcomes beyond balance, nor did they evaluate the 115 clinical significance of their findings.²² Despite the existing evidence, a systematic review on the 116 effectiveness of aquatic therapy post stoke that provides a comprehensive, conclusive, and 117 118 clinically relevant overview has yet to be published. Therefore, the objective of the current systematic review and meta-analysis is to evaluate the efficacy of aquatic therapy in improving 119 mobility, balance, and functional independence following stroke in comparison to land-based 120 121 therapy.

122

123 Methods

This systematic review and meta-analysis followed the guidelines set out by the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement.

126

127 Search Strategy

A systematic literature search was conducted using the databases MEDLINE, Embase, CINAHL, 128 129 PsychINFO, and Scopus to identify all articles published up until June 21, 2018. The main keywords used included: "stroke", "cerebrovascular accident", "aqua*", "hydro*", "water*", 130 "exercise", and "therapy". Variations of the keywords and suggested medical subject headings 131 were chosen based on the database. Filters were applied in all databases to limit studies to only 132 133 those published in English and that involved human participants. In Scopus, additional filters were applied to further limit results to journal articles and to exclude studies with unrelated 134 keywords because of the very large cull. Appendix 1 details the full search strategies for each 135

136	database. Additionally, the references of all included studies were reviewed to ensure that					
137	relevant studies were not missed.					
138						
139	Study Selection					
140	Studies were included in this review based on the following a priori criteria:					
141	1. the study was published in English;					
142	2. the study population consisted of human adults post-stroke who were over 18 years of					
143	age (whenever reported);					
144	3. the study design was a randomized or non-randomized prospectively controlled trial					
145	(RCT or PCT);					
146	4. the participants in the experimental group received a water-based exercise therapy					
147	program that was longer than a single session;					
148	5. the study reported at least one clinical outcome measure that assessed mobility, balance,					
149	or level of functional independence (i.e., activities of daily living).					
150						
151	Studies were screened by title, abstract, and full text. The remaining studies were screened upon					
152	reading the full-text article. Studies were screened for eligibility by two independent reviewers					
153	(AI, AL), while discrepancies were resolved by a third independent reviewer (AMc).					
154						
155	Data Extraction and Synthesis					
156	Information relating to study and participant characteristics were extracted, including author(s),					
157	publication year, country of origin, study design, sample size, gender, age, time since stroke					

158 onset, as well stroke type and location. Details of the therapy program, water conditions, and

clinical outcome measures related to mobility and level of functional independence were also extracted for each study. Only clinical outcome measures were extracted, with the exception of gait speed which was presented as a kinematic outcome in some studies. Outcomes that were unrelated to mobility, balance, or level of functional independence were not extracted.

164 Methodological Quality Assessment

The Physiotherapy Evidence Database (PEDro) rating scale²³ was used to assess the 165 methodological quality of all studies included in this review. The scale assesses the internal 166 167 validity of the trial and whether it has presented sufficient statistical information to support the reported results. The PEDro score is obtained by evaluating whether 11 criteria are fulfilled 168 (score of 1), or not (score of 0). The first item does not contribute to the total score and thus the 169 170 final score is out of 10. Scores are used to describe the methodological quality with scores ≤ 4 considered as poor quality, scores of 4-5 considered fair, scores of 6-8 considered good, and 171 scores of 9-10 considered excellent.²⁴ The PEDro scores were assessed independently by one of 172 the authors (AI) and were compared to the online Physiotherapy Evidence Database 173 (www.pedro.org.au) scores; discrepancies were resolved by a second reviewer (JW). 174

175

176 Data Analysis

177 Results of clinical outcome measures were quantitatively pooled if reported in at least three

178 studies. Statistical analysis was performed using Comprehensive Meta-Analysis software

179 (Version 2; Biostat, Inc.; Englewood, NJ, USA) using a random effects model with treatment

effects reported as a mean difference (MD) ± standard error and 95% confidence interval (CI),

181 with statistical significance set at p<0.05. Both the I^2 statistic and the Cochrane's Q test were

used to evaluate statistical heterogeneity.²⁵ The I² statistic was used to interpret heterogeneity as being low at 25%, moderate at 50%, and high at 75%.²⁶ Cochrane's Q test was used to determine statistically significant heterogeneity at p<0.01.²⁶

185

186 *Clinical Outcome Measures*

187 *The following mobility and balance outcome measures were evaluated using meta-analysis:*

Berg Balance Scale (BBS) is a measure of functional mobility and balance that consists of 14 items, scored from 0 to 4, with a higher score indicating superior balance.^{27,28} It is one of the most commonly used assessment tools within the stroke population and has been found to have excellent internal consistency, as well as test-retest and inter-/intra-rater reliability.²⁸ It has also shown validity in comparison to other outcome measures and has shown moderate to excellent sensitivity.²⁸

194

Functional Reach Test (FRT) is a measure of functional mobility and balance in which the participant's maximal forward reach is measured while maintaining a standing position.²⁹ It has demonstrated reliability and precision in detecting balance impairment and change in postural control over time.³⁰ Moreover, the modified version of the FRT has been shown to reliably measure the responsiveness of the paretic side in sub-acute stroke patients, along with moderate responsiveness for the non-paretic side.³¹

201

202 Timed Up and Go Test (TUG) is a measure of functional mobility and balance in which the203 amount of time it takes to stand, walk 3 meters, turn, walk back, and sit back down is

measured.^{32,33} It has demonstrated reliability and validity in a stroke population as a measure of
 functional mobility.³⁴

206

Gait Speed was measured primarily using the 10-Meter Walk Test (10MWT) along with other general kinematic assessments of gait speed. It measures aspects of functional mobility through assessing the time it takes participants to walk a certain distance.³⁵

210

211	Additional outcome measures relating to mobility that were not consistently reported across
212	studies were analyzed qualitatively. These measures included: Community Balance and Mobility
213	Test (CB&M), One Leg Stand Test (OLST), Functional Gait Assessment (FGA), Five-Time Sit
214	to Stand Test (FTSTS), Performance Oriented Mobility Assessment (POMA), Short Physical
215	Performance Battery (SPPB), Functional Ambulation Category Score (FAC), and the Rivermead
216	Mobility Index (RMI). Level of functional independence was assessed using the Barthel Index
217	(BI), Functional Independence Measure (FIM), and the Modified Motor Assessment Scale (M-
218	MAS).

219

221 Study and Participant Characteristics

A total of 16 studies met inclusion criteria for this review (Figure 1). Details relating to study

and participant characteristics are presented in **Table 1**. There were 2 PCTs and 14 RCTs, of

- which 9 were of fair quality and 7 were of good quality. The pooled sample size at
- randomization was 559 (543 at follow-up), with a mean sample size of 35 participants (range 12
- to 120). Of the total pooled sample, 328 were males and 224 were females. In 2 studies, ^{36,37}

227	participant characteristics were only provided for those included in the final analysis. The mean
228	age of participants was 60.7 years (range 43.8 to 68.6 years) and the mean time since stroke
229	onset was 15.1 months (range 1.5 to 43.2 months). Park et al. ³⁸ did not report a specific time
230	since stroke onset, only that all participants were recruited more than 7 months post-stroke. Four
231	RCTs ^{37,39-41} were conducted during the subacute phase of stroke (1 to 6 months), and the
232	remaining 12 studies ^{36,38,42-51} were conducted during the chronic stage (>6 months). Among the
233	10 studies ^{38-42,47-51} reporting the type of stroke, ischemic stroke was experienced by 237
234	participants, and hemorrhagic stroke was experienced by 133 participants. Based on 14 studies ³⁶⁻
235	^{42,44-50} reporting the side of lesion, 243 participants were affected on the left side of the brain, and
236	247 participants were affected on the right side.

Figure 1. PRISMA flow diagram outlining study selection process.

				Sampla		Bas	eline Data		
Study	Country	Design	PEDro	(Start / End)	Gender (M : F)	Mean Age ±SD (y)	Mean Onset ±SD	Type (Isc : Hem)	Side (L : R)
Cha et al. ⁵¹	Korea	RCT	8	N: 22 / 22	13:9	I: 64.0 ± 12.1	I: 16.6 ± 4.0 mo	7:4	NR
				I: 11 / 11		C: 63.3 ± 12.1	C: 18.9 ± 5.1 mo	9:2	
				C: 11 / 11					
Chan et al. ³⁷	Canada	RCT	5	N: 32 / 25	13: 12*	I: 66 ± 10*	I: 96 ± 27 d*	NR	8:5
				I: 17 / 13		C: 64 ± 12	C: 97 ± 34 d		7:5
				C: 15 / 12					
Chu et al.42	Canada	RCT	6	N: 12 / 11	11:1	I: 61.9 ± 9.4	I: 3.0 ± 2.0 y	3:4	4:3
				I:6 / 5		C: 63.4 ± 8.4	C: 4.2 ± 2.1 y	5:0	3:2
				C:6 / 6					
Furnari et al.43	Italy	RCT	5	N: 40 / NR	20:20	I: 68 ± 3	I: $7 \pm 1.6 \text{ mo}$	NR	NR
				I: 20 / NR		C: 72 ± 5	C: 6 ± 1.4 mo		
				C: 20 / NR					
Han et al. ³⁶	Korea	PCT	4	N: NR / 62	28:34*	I: 56.1 ± 7.3*	I: $15.2 \pm 5.1 \text{ mo*}$	NR	17:14
				I: NR / 31		C: 56.6 ± 10.0	C: 16.1 ± 5.4 mo		16:15
				C: NR / 31					
Kim et al. ⁴⁴	Korea	RCT	4	N: 20 / NR	10:10	I: 69.1 ± 3.2	I: $9.8 \pm 1.3 \text{ mo}$	NR	5:5
				I: 10 / NR		C: 68.0 ±3.1	C: 10.3 ± 1.4 mo		5:5
				C: 10 / NR					
Kim et al.45	Korea	RCT	4	N: 20 / NR	10:10	I: 65.9 ± 6.2	I: 11.3 ± 1.1 mo	NR	5:5
				I: 10 / NR		C: 64.1 ± 3.6	C: 21.3 ± 1.3 mo		5:5
				C: 10 / NR					
Kim et al.46	Korea	RCT	4	N: 20 / NR	10: 10	I: 69.1 ± 3.2	I: 10.5 ± 1.1 mo	NR	5:5
				I: 10 / NR		C: 68.0 ± 3.1	C: 11.3 ± 1.1 mo		5:5
				C: 10 / NR					
Matsumoto et al. ³⁹	Japan	PCT	6	N: 120 / 120	88:32	I: 62.4 ± 10.7	I: 22.8 ± 14.4 wk	41:19	32:28
	1			I: 60 / 60		C: 63.2 ± 11.5	C: 24.8 ± 12.7 wk	39:21	36:24
				C: 60 / 60					
Noh et al.47	Korea	RCT	5	N: 25 / 20	11:14	I: 61.9 ± 10.1	I: 2.8 ± 3.8 y	6:7	6:7
				I: 13 / 10		C: 66 ± 11.4	C: 1.6 ± 1.7 y	7:5	7:5
				C: 12 / 10			•		
Park et al.38	Korea	RCT	4	N: 44 / NR	27:17	I: 51.55 ± 8.27	>7mo	8:14	9:13
				I: 22 / NR		C: 56.09 ± 7.22		8:14	13:9
				C: 22 / NR					

Table 1. Study and Participant Characteristics

Park et al. 48 48 48 48	Korea	RCT	4	N: 20 / NR	9:11	I: 51.8 ± 14.4	I: 13.1 ± 8.4 mo	6:4	7:3
48 48 51 48 48 48 48 48 48 48				I: 10 / NR		C: 58.7 ± 8.3	C: 12.5 ± 8.4 mo	6:4	5:5
				C: 10 / NR					
Park et al.49	Korea	RCT	6	N: 28 / NR	20:8	I: 50.5 ± 2.9	I: 24.1 ± 3.8 mo	10:3	3:10
				I:13 / NR		C: 37.9 ± 4.4	C: 17.2 ± 2.2 mo	9:6	6:9
				C:15 / NR					
Tripp et al. ⁴⁰	Germany	RCT	7	N: 30 / 27	19:11	I: 64.8 ± 15.0	I: 51.9 ± 37.7 d	12:2	4:10
				I: 14 / 12		C: 65.0 ± 15.1	C: 39.0 ± 27.9 d	15:1	6:10
				C: 16 / 15					
Zhang et al.41	China	RCT	7	N: 36 / 36	17:19	I: 56.3 ± 8.18	I: 0.34 ± 0.07 y	13:5	8:10
				I: 18 / 18		C: 54.7 ± 7.59	$C: 0.37 \pm 0.08 \text{ y}$	12:6	7:11
				C: 18 / 18					
Zhu et al. ⁵⁰	China	RCT	8	N: 28 / 28	22:6	I: 56.6 ± 6.9	I: 247.4 ± 56.6 d	10:4	6:8
				I: 14 / 14		C: 57.1 ± 8.6	C: 262.1 ± 55.4 d	11:3	3:11
				C: 14 / 14					

Abbreviations: I=Intervention Group; C=Control Group; N=Total Sample; M=Male; F=Female; L=Left; R=Right; NR=Not Reported; PEDro=Physiotherapy Evidence Database tool; RCT=Randomized Controlled Trial; PCT=Prospective Controlled Trial; d=day; wk=week; mo=month; y=year.

*Only participant characteristics in final analysis were included; data of participants at randomization not provided

238	Study H	Protocol
-----	---------	----------

239 Intervention and control group protocols are described in **Table 2**. Aquatic therapy was

administered for 30 to 40 minutes per day, excluding the length of warm-ups, cool-downs, and

stretching if the breakdown was provided. The frequency of therapy ranged from 2 to 6 days a

242 week, and the total duration of the programs ranged from 2 to 12 weeks.

243

The water temperature ranged from cool $(26^{\circ}C)$ to warm $(38^{\circ}C)$, with water temperature

reported as cool (26-29.5°C) in two studies,^{42,48} between cool and neutral in three studies,^{39,44,49}

neutral $(33.5-35.5^{\circ}C)$ in eight studies, ^{36-38,43,45-47,51} between neutral and warm in one study, ⁵⁰ and

warm in one study (36-38.5°C).⁴¹ One study did not report water temperature.⁴⁰

248

The type of aquatic therapy program varied between studies. Of the 16 studies examined, 5 studies ^{36-39,42} administered general aquatic therapy with exercises aimed at improving strength, endurance, mobility, and/or flexibility; 5 studies provided Halliwick aquatic therapy in combination with Ai Chi,^{43,47} Watsu,⁴⁹ or walking;^{40,41} 3 studies ^{44,45,51} implemented programs based on proprioceptive neuromuscular facilitation; 2 studies^{48,50} implemented underwater treadmill training; and 1 study⁴⁶ implemented dual-task training.

255

The control programs also differed between studies. Eleven studies^{36-41,43,46,47,49,50} administered general land-based therapy with exercises aimed at improving strength, endurance, mobility, and/or flexibility; 3 studies ^{44,45,51} implemented proprioceptive neuromuscular facilitation, 1 study⁴² administered upper extremity exercises, and 1 study⁴⁸ administered treadmill training. Half of the 16 included studies were dose-matched when comparing the protocols of aquatic
therapy and land therapy.^{36-38,41,44,48,50,51} Four studies^{42,43,47,49} were dose-matched in the total
intervention length per day when including warm-ups, cool-downs and stretches, but the primary
exercises were not administered for the same length of time. The remaining 4 studies^{10, 12, 21, 24}
were not dose-matched.

266

It is important to note that 3 studies⁴⁴⁻⁴⁶ shared significant similarities in: corresponding author, treatment protocol, participant demographics, outcomes measures, and results. Authors were contacted for further clarification but no response was received. Due to the potential overlap between these studies, only the most recent publication was included in meta-analyses when outcome measures overlapped. As such, BBS, FRT, TUG, and gait speed were only analyzed in the most recent study, Kim et al.⁴⁶ OLST and FIM were included from an earlier study, Kim et al.,⁴⁴ that reported them.

 Table 2. Study Protocols

Study and Water Conditions	Intervention	Control
Cha et al. ⁵¹ Water depth: 1.3m	Aquatic Therapy (PNF) Bad Ragaz Ring method body pattern exercises based on PNF and focused on the trunk and limbs of the affected side.	Land Therapy (NDT) Therapy based on NDT techniques.
°C	Aquatic Therapy was administered in conjunction with Land Therapy: I: 30min/d, 3 d/wk, 6wk C: 30min/d, 3 d/wk, 6wk Total: 60min/d, 3 d/wk, 6 wk	Total: 60min/d, 3 d/wk, 6 wk
Chan et al. ³⁷	Aquatic Therapy	Land Therapy
Water depth: NR Water temperature: 34.5 ° C	Exercises focused on balance, stretching, strengthening, and endurance training exercises.	Exercises focused on transfer training, balance, stretching, strengthening, endurance training, gait, and stair exercises.
	Aquatic Therapy was administered in conjunction with Land Therapy: I: 30min/d, 2d/wk, 6wk C: 30min/d, 2d/wk, 6wk Total: 60min/d, 2d/wk, 6wk	Total: 60min/d, 2d/wk, 6wk
Chu et al. ⁴²	Aquatic Therapy (Lower Extremity)	Land Therapy (Upper Extremity)
We can be also also at the	Moderate to high intensity aerobic exercise focused on the lower	Exercises focused on improving upper extremity
Water temperature: 26,28°C	extremity and including stretching, marching, and nopping.	runction including gross and fine motor exercises along with reaching and strengthening exercises
water temperature. 20-28 C	5 min warm-up	5 min warm-un
	30 min. aerobic exercise	50 min. 6 stations each for 7 min.
	5 min. cool down 10 min. stretch	5 min. cool-down
	Total: 60min/d, 3d/wk, 8wk	Total: 60min/d, 3d/wk, 8wk
Furnari et al. ⁴³	Aquatic Therapy (Halliwick and Ai Chi)	Land Therapy
	Exercises based on Halliwick and Ai Chi methods including	Lower and upper extremity range of motion and
Water depth: 1.15m	balance exercises, walking, and lower extremity strengthening	strengthening exercises, postural control, and gait
water temperature. 55-54 C	10 min warm-un	10 min warm-un
	15 min. Halliwick method	20 min. strengthening
	15 min. Ai Chi method	20 min. postural control
	10 min. lower limb exercises	10 min gait training
	10 min cool-down	

	Aquatic Therapy was administered in conjunction with Land Therapy:	Total: 60min/d, 6d/wk, 8wk
	I: 60min/d, 3d/wk, 8wk	
	C: 60min/d, 3d/wk, 8wk	
	Total: 60 min/d, 6d/wk, 8wk	
Han et al. ³⁶	Aquatic Therapy	Land Therapy
	Exercises consisting of one-leg knee flexion, toe stand, one-leg	Exercises consisting of one-leg knee flexion, toe stand,
Water depth: 1.1m	stance, and weight shifting in water.	one-leg stance, and weight shifting.
Water temperature: 33.5°C	5 min. warm-up	5 min. warm-up
	30 min. main exercises	30 min. main exercises
	5 min. cool-down	5 min. cool-down
	Total: 40 min/d, 3d/wk, 6wk	Total: 40 min/d, 3d/wk, 6wk
Kim et al. ⁴⁴	Aquatic Therapy (PNF)	Land Therapy (PNF)
	PNF exercise patterns in the lower extremity using the rhythmic	PNF exercise patterns in the lower extremity using the
Water depth: 1.1m	initiation (RI) method in water.	rhythmic initiation (RI) method.
water temperature: 51-55 C	Total: 30min/d, 5d/wk, 6wk	Total: 30min/d, 5d/wk, 6wk
	Aquatic Therapy (PNF)	Land Therapy (NDT)
Kim et al. ⁴⁵	PNF exercise patterns under water with a focus on improving	NDT included resistance, postural control, functional
	coordination.	activity, and mat exercises.
Water depth: 1m	A quotic Thorapy was administered in conjunction with L and	Total: 20min/d 5d/wk 6wk
Water temperature: 32-34°C	Therapy was administered in conjunction with Land	Total. Somm/u, Su/wk, Owk
	Inerapy.	
	1. INA C: 20min/d 5d/wk 6wk	
	C. Johnin/d, Jd/wk, Owk	
Kim at al ⁴⁶	A quotic Thoropy (Dual Task Training)	L and Thorany (NDT)
Kini et al.	Dual task training exercises in water consisting of stability	Therapy based on NDT techniques
Water depth: 1m	evercises while performing an upper extremity motor task	Therapy based on NDT teeninques.
Water temperature: 32 34°C	exercises while performing an upper-extremity motor task.	
water temperature. 32-34 C	Aquatic Therapy was administered in conjunction with Land	Total: 30min/d, 5d/wk, 6 wk
	Therapy:	
	I: 30min/d, 5d/wk, 6 wk	
	C: 30min/d, 5d/wk, 6 wk	
	Total: 60min/d, 5d/wk, 6wk	
Matsumoto et al. ³⁹	Aquatic Therapy	Land Therapy

	Exercises focused on improving endurance, strength, postural	Exercises focused on improving range of motion,
Water depth:1.5m, xiphoid	control, flexibility, mobility and walking under water. Additional	muscle strength, gait, activities of daily living, and
process	exercises added on each week.	speech.
Water temperature: 30-31°C	5 min. warm-up and stretches	
	20 min. aquatic exercises	
	5 min. cool down	
	Aquatic Therapy was administered in conjunction with Land	Total: 30 min/d, 6d/wk, 12 wk
	Therapy:	
	I = 30 min/d 2 d/wk = 12 wk	
	$C: 30 \min/d 6 d/wk 12 wk$	
	Total: $30-60 \min/d$ 6d/wk 12 wk	
Noh et al ⁴⁷	Aquatic therapy (Halliwick and Ai Chi Mathods)	I and Tharany
Non et al.	Program based on Helliwick and Ai Chi methods to improve	Constal conditioning avaraises including stratches
Watan danthy 1 15m	halance and nestural control	teneral conditioning exercises including stretches,
water depuit 1.15in		range of motion exercise, strength and gait training.
water temperature: 34°C	10 min. warm-up	10 min. warm-up
	20 min. Halliwick method	50 min. main exercises
	20 min. Ai Chi method	
	10 min. cool-down	
	Total: 60min/d, 3d/wk, 8wk	Total: 60min/d, 3d/wk, 8wk
Park et al. ³⁸	Aquatic Therapy	Land Therapy
	Aquatic exercises focused on balance, joint mobility, walking	Exercises focused on strength and stability and included
Water depth: 1.3m	underwater, and jumping. Also received conventional nervous	walking, standing, joint mobility, leg exercises, and
Water temperature: 33-35 °C	system exercise therapy.	stretching. Also received conventional nervous system
······································	-j	exercise therapy.
	Total: 35 min/d 6 d/wk 6 wk	Total: 35 min/d 6 d/wk 6 wk
Park at al ⁴⁸	A quotic Troodmill Wolking	I and Treadmill Walking
I alk ct al.	Aquate Treathin Walking	Land Treathin Warking
Water depth: T-11	Total: 30min/d /d/wk 6wk	Total: 30min/d Ad/wk 6wk
Water temperature: 28-30°C	rotar. Sommid, 4d/ wk, owk	10tal. Solilli d, 4d/ wk, 0wk
Park at al 49	Aquatic Therapy (Halliwick, Watsu, and Trunk Training)	I and Thorany (Trunk Training)
T alk Ct al.	Halliwick trunk control program trunk avarcises Watsu muscular	Exercises included bridge out ups abdominal and
Water depth: vinheid process	relevation and stratching	audruped exercises
Water temperatures 20°C	5 min. worm up	quadruped exercises.
water temperature: 50°C	5 min. warm-up	30 min. main exercises
	20 min. trunk exercises	
	5 min. cool-down based on Hallwick and Watsu exercises	
	Total: 30min/d, 3 d/wk, 4 wk	Total: 30min/d, 3 d/wk, 4 wk
Tripp et al. ⁴⁰	Aquatic Therapy (Halliwick)	Land Therapy
	Exercises were based on the Halliwick method and included	_ ·
Water depth: NR	walking.	

Water temperature: NR	5 min. warm-up	Conventional physiotherapy with exercises varied
	15 min. Halliwick-based exercise	based on the individual, and included mobility exercises
	15 min. underwater walking	and treadmill walking.
	Aquatic Therapy was administered in conjunction with Land	Total: 45min, 5d/wk, 2wk
	Therapy:	
	I: 35min/d, 3d/wk, 2wk	
	C: 45min/d, 2d/wk, 2wk	
	Total: 35-45 min/d, 5d/wk, 2wk	
Zhang et al. ⁴¹	Aquatic Therapy (Halliwick)	Land Therapy
-	Exercises based on the Halliwick method with lower limb exercise	Conventional physiotherapy, daily life activity training,
Water depth: xiphoid process	and underwater treadmill walking.	and treadmill walking.
Water temperature: 37-38°C	5 min. warm-up	5 min. warm-up
	25 min. aquatic exercises	25 min. land exercises
	10 min. underwater treadmill walking	10 min treadmill walking
	Total: 40 min/d, 5d/wk, 8wk	Total: 40 min/d, 5d/wk, 8wk
Zhu et al. ⁵⁰	Aquatic Therapy	Land Therapy
	Stretching, strengthening, balance/coordination, and aquatic	Stretching, strengthening, trunk mobility, and treadmill
Water depth: 1.4m	treadmill walking.	walking.
Water temperature: 34-36°C	5 min. warm-up	5 min. warm-up
	30 min. main exercises	30 min. main exercises
	10 min. cool-down	10 min. cool-down
	Total: 45 min/d, 5d/wk, 4wk	Total: 45 min/d, 5d/wk, 4wk

Abbreviations: I=Intervention; C=Control; PNF=Proprioceptive Neuromuscular Facilitation; NDT=Neurodevelopmental Treatment; NR = not reported; min=minute; d=day; wk=week.

276	BBS was reported in seven studies, ^{36,37,40,42,46,47,50} of which three studies ^{36,46,47} reported a
277	significant improvement among those undergoing aquatic therapy compared to land therapy. The
278	other four studies ^{37,40,42,50} did not find a significant between-group difference. All seven
279	studies, ^{36,37,40,42,46,47,50} (N=193 participants) were included in the meta-analysis. Aquatic therapy
280	demonstrated a statistically significant treatment effect when compared to land therapy
281	(MD=2.282±0.556; 95% CI: 1.192-3.372; p<0.001) without significant heterogeneity (I ² <0.001;
282	Q=2.287, df=6, p=0.891; Figure 2a).
283	
284	FRT was reported in three studies, ^{40,46,50} of which two studies, ^{46,50} found a significant
285	improvement among participants undergoing aquatic therapy compared to land therapy. One
286	study ⁴⁰ did not detect a significant difference between groups. All three studies, 40,46,50 (N=75
287	participants) were included in the meta-analysis. Aquatic therapy demonstrated a statistically
288	significant treatment effect when compared to land therapy (MD=3.511±1.597; 95% CI: 0.381-
289	6.642; p=0.028) with moderate heterogeneity (I ² =74.280; Q=7.776, df=2, p=0.020; Figure 2b).

Figure 2. Forest plot comparing the effectiveness of aquatic therapy to land therapy based on (**A**) Berg Balance Scale mean difference scores and (**B**) Functional Reach Test mean difference scores.

TUG was reported in four studies,^{37,46,50,51} of which one study⁴⁶ found a significant improvement
among participants undergoing aquatic therapy compared to land therapy. Three studies^{37,50,51} did
not detect a significant between-group difference. All four studies,^{37,46,50,51} (N=95 participants)
were included in the meta-analysis. Aquatic therapy demonstrated a statistically significant
treatment effect when compared to land therapy (MD=2.229±0.513; 95% CI: 1.224-3.234;

296 p<0.001) without significant heterogeneity (I^2 <0.001; Q=0.752, df=3, p=0.020; Figure 3a).

298	Gait Speed was reported in seven studies. ^{37,39,42,43,46,49,50} Five studies ^{39,42,43,46,50} found a
299	significant between-group difference favoring aquatic therapy over land therapy, while two
300	studies ^{37,49} did not find a significant between-group difference. Four studies, ^{39,42,43,49} (N=199
301	participants) were included in the meta-analysis. The remaining three studies were not included
302	due to the inability to extract pertinent raw data required for meta-analysis. Aquatic therapy
303	demonstrated a non-significant treatment effect when compared to land therapy
304	(MD=0.028±0.018; 95% CI: -0.007-0.062; p=0.117) without significant heterogeneity
305	(I ² =22.545; Q=3.873, df=3, p=0.275; Figure 3b).

Figure 3. Forest plot comparing the effectiveness of aquatic therapy to land therapy based on (**A**) Timed Up and Go Test mean difference scores and (**B**) gait speed mean difference scores.

307	FAC was reported in two studies, ^{40,41} which both reported that aquatic therapy significantly
308	improved scores in comparison to the control group. However, one of the studies ⁴⁰ did not report
309	the specific p-value, and instead reported that the outcome was significant based on their criteria
310	of p<0.1, which does not meet the standard of statistical significance defined in this review (i.e.,
311	p<0.05; Table 3).
312	

313 OLST,⁴⁴ FTSTS,⁴⁶ FGA,⁴⁶ and the POMA³⁸ were reported in one study each and demonstrated a

314 significant between-group difference in favor of aquatic therapy over land therapy.

The CB&M,³⁷ PPB,⁴⁸ and the RMI,⁴⁰ were each reported in one study each and demonstrated no

316 significant difference between aquatic therapy and land therapy.

317

Table 3. Between-group comparisons of aquatic therapy and land therapy on clinical outcome measures of functional mobility and balance.

Study	Intervention	Control	Outcome Measure	Results
Cha et al. ⁵¹	Aquatic Therapy (PNF)	Land Therapy (NDT)	Timed Up and Go Test	-
Chan et al.37	Aquatic Therapy	Land Therapy	Berg Balance Scale	-
			Community Balance and	-
			Mobility Test	
			Timed Up and Go Test	-
			2-Minute Walk Test	-
Chu et al.42	Aquatic Therapy	Land Therapy (Upper	Berg Balance Scale	-
	(Lower Extremity)	Extremity)	Gait Speed	+
Furnari et al.43	Aquatic Therapy	Land Therapy	Gait Speed	+
	(Halliwick and Ai			
	Chi)			
Han et al. ³⁶	Aquatic Therapy	Land Therapy	Berg Balance Scale	+
Kim et al. ⁴⁴	Aquatic Therapy	Land Therapy (PNF)	One Leg Stand Test	+
	(PNF)			
Kim et al. ⁴⁶	Aquatic Therapy	Land Therapy (NDT)	Berg Balance Scale	+
	(Dual-Task		Five-Time Sit to Stand Test	+
	Training)		Functional Reach Test	+
			10-Meter Walk Test	+
			Timed Up and Go Test	+
			Functional Gait Assessment	+
Matsumoto et al. ³⁹	Aquatic Therapy	Land Therapy	10-Meter Walk Test	+

Noh et al. ⁴⁷	Aquatic Therapy (Halliwick and Ai Chi)	Land Therapy	Berg Balance Scale	+
Park et al. ³⁸	Aquatic Therapy	Land Therapy	Performance-Oriented Mobility Assessment	+
Park et al. ⁴⁸	Aquatic Treadmill Walking	Land Treadmill Walking	Short Physical Performance Battery	-
Park et al. ⁴⁹	Aquatic Therapy (Halliwick, Watsu, and Trunk Training)	Land Therapy (Trunk Training)	Gait Speed	-
Tripp et al. ⁴⁰	Aquatic Therapy (Halliwick)	Land Therapy	Berg Balance Scale Functional Reach Test Functional Ambulation Category Score Rivermead Mobility Index	+ *
Zhang et al. ⁴¹	Aquatic Therapy (Halliwick)	Land Therapy	Functional Ambulation Category Score	+
Zhu et al. ⁵⁰	Aquatic Therapy	Land Therapy	Berg Balance Scale Functional Reach Test Timed Up and Go Test 2-Minute Walk Test	- + -

Abbreviations: PNF=Proprioceptive Neuromuscular Facilitation; NDT=Neurodevelopmental Treatment Note: + = significant difference; - = no significant difference; * = study reported significant at p<0.1 which does not reach significance level of p<0.05 used in this analysis (specific p-value not reported)

318

319 *Functional Independence*

- BI was reported in two studies,^{41,51} which both found a significant between-group difference
- 321 favoring aquatic therapy over land therapy (**Table 4**). FIM was reported in one study,⁴⁴ which
- 322 found a significant between-group difference favoring aquatic therapy over land therapy. M-
- 323 MAS was reported in one study,⁴⁷ which found no significant difference between aquatic therapy
- and land therapy.
- 325

Table 4. Between-group comparisons of aquatic therapy and land therapy on clinical outcome measures of functional independence

Study	Intervention	Control	Outcome Measure	Results
Cha et al. ⁵¹	Aquatic Therapy (PNF)	Land Therapy (NDT)	Barthel Index	+
Kim et al. ⁴⁴	Aquatic Therapy	Land Therapy (PNF)	Functional Independence	+
	(PNF)		Measure	

Noh et al.47	Aquatic Therapy	Land Therapy	Modified Motor Assessment	-
	(Halliwick and Ai Chi)		Scale	
Zhang et al. ⁴¹	Aquatic Therapy	Land Therapy	Barthel Index Score	+
	(Halliwick and			
	Treadmill Walking)			

Abbreviations: PNF=Proprioceptive Neuromuscular Facilitation; NDT= Neurodevelopmental Treatment **Note:** + = significant difference; - = no significant difference

326

327 Discussion

Sixteen studies provided evidence for the effectiveness of aquatic therapy in improving either 328 329 mobility, balance, or level of functional independence post stroke, of which 11 were included in the meta-analysis. This review builds on a previously published review²¹ which only examined 330 the effects of aquatic therapy on balance post-stroke. In this study, we evaluated various clinical 331 332 outcome measures related to functional mobility and activities of daily living in addition to balance, thus providing the most comprehensive evaluation of aquatic therapy for stroke 333 rehabilitation to date. The meta-analysis revealed significant treatment effects in favor of aquatic 334 335 therapy over land therapy on BBS, FRT, and TUG, but not gait speed. Overall, outcome measures that were reported in 2 or fewer studies reported a mixture in significant and non-336 337 significant between-group differences. Positive treatment effects were found in favor of aquatic 338 therapy when compared to land-based therapy on measures of mobility including the FAC, 339 OLST, FTSTS, FGA, POMA, and on measures of functional independence including the BI, and 340 FIM. No significant treatment effects were found on other measures of mobility including CB&M, SPPB, RMI and on the M-MAS, which also measures level of functional independence. 341 342 Overall, despite the heterogeneity of the various aquatic therapy programs examined, a 343 statistically significant treatment effect was demonstrated on a number of clinical outcome measures, suggesting that aquatic therapy may be more useful in the rehabilitation of certain 344 345 aspects of mobility than traditional land-based therapies for stroke patients.

Of the 7 studies^{36,37,40,42,46,47,50} analyzed in the BBS meta-analysis, all 3 studies^{36,46,47} that found a 347 significant benefit of aquatic therapy over land therapy on the BBS were conducted in the 348 chronic phase post-stroke. Alternatively, of the 4 studies^{37,40-42} that found no significant between-349 group difference when comparing aquatic therapy to land-based therapy, 2 studies^{37,40} were 350 351 conducted during the subacute phase post-stroke. As such, it is possible that differences in the timing of trials post-stroke may contribute to the differences in results observed on the BBS 352 among studies comparing the effectiveness of aquatic therapy to that of land therapy. While the 353 354 divide in between-group results based on timing after stroke was not as obvious for the other outcome measures assessed in the review, timing after stroke may play an important role in the 355 observed effectiveness of aquatic therapy. Additional studies are required to investigate whether 356 357 aquatic therapy is more effective during the chronic phase than during acute or subacute phases post stroke. 358

359

360 Clinical Importance of Findings

In response to the most recent review²¹ evaluating the effectiveness of aquatic therapy on 361 outcome measures of balance, a recent letter to the editor²² raised the concern that only statistical 362 significance was analyzed without also considering clinical significance of the findings. To 363 364 address this, the literature was consulted to assess whether the significant treatment effects were 365 clinically relevant based on suggested Minimally Clinically Important Difference (MCID) values, where possible. The study by Chan et al.³⁷ that the letter to the editor²² references as an 366 367 MCID study for BBS did not actually conduct an MCID analysis, and the value presented should 368 therefore not be referenced as such. While there is no established MCID for change in BBS

scores in a stroke population, a study by Gervasoni et al.⁵² concluded that a 3 point difference in 369 BBS was clinically significance overall. Clinical importance was interpreted using the systematic 370 method outlined by Man-Son-Hing et al.,⁵³ in which various thresholds of clinical importance are 371 described based on where the MCID value falls with respect to the point estimate and the 95% 372 confidence interval. The categories include "definite", "probable", "possible" and "definitely no" 373 374 clinical importance. Based on our syntheses, the calculated point estimate for BBS (MD=2.282±0.556) was lower than the proposed MCID value (MD=3), but within the 375 confidence interval of the treatment effect (CI: 1.192 to 3.372). Based on the criteria within the 376 review by Man-Son-Hing et al.,⁵³ it is appropriate to interpret these results as reaching the 377 threshold for possible clinical importance. 378

379

To our knowledge, there is no established MCID value for TUG scores in a stroke population, 380 however one study⁵⁴ calculated the MCID in a population of patients who had undergone surgery 381 for lumbar degenerative disc disease. Using the Oswestry Disability Index and the Roland-382 Morris Disability Index as a reference, the MCID scores for TUG were calculated to be 3.2 and 383 3.6, respectively.⁵⁴ When comparing to the proposed MCID value, our analysis indicates that the 384 385 calculated point estimate for TUG (MD= 2.229 ± 0.513) was lower than the proposed MCID value (MD= 3.2 to 3.6), but could fall within the confidence interval of the treatment effect (CI: 386 387 1.224 to 3.234) depending on which MCID value is used. To be conservative in the interpretation, it is likely that the findings are not clinically important.⁵³ There is insufficient 388 information on MCID values for FRT to determine whether the results were clinically important. 389 390

Based on the current evidence, aquatic therapy was shown to be statistically superior to land 391 therapy on some measures of mobility, with the difference being of possible clinical importance 392 on the BBS. Unfortunately, there is a scarcity of studies reporting MCID values, and especially 393 those reporting values specifically based on outcome measures that are relevant to stroke 394 patients. Additionally, due to differences in how MCID is calculated and interpreted, there is 395 396 room for ambiguity at every step when determining clinical importance. Clearly, additional 397 studies are necessary in order to establish MCID values for outcome measures that are relevant in rehabilitation after a stroke. 398

399

400 *Study Limitations*

The evidence provided by this systematic review and meta-analysis is not without limitations. 401 While there are a fair number of trials available in the literature to consult, the protocols applied 402 to study participants were quite heterogeneous, with no standardized protocol for the application 403 404 of aquatic therapy. Both experimental and control group protocols varied between studies in terms of the exercise applied, as well as the timing, dose, and duration. Differences in water 405 depth and temperature between trials also existed but were not examined in relation to findings 406 407 within this review although a previous clinical review outlined how therapeutic effects may differ based on temperature.¹¹ Most studies were of fair methodological quality most commonly 408 409 due to lack of concealed allocation and blinding, inadequate follow-up, and lack of an intention-410 to-treat analysis. In addition, to these factors, low sample sizes may have contributed to bias within the results. Furthermore, as mentioned previously, 3 studies⁴⁴⁻⁴⁶ demonstrated such 411 substantial overlap that some of the reported data in Kim et al.⁴⁴ and Kim et al.⁴⁵ was omitted 412 from the meta-analysis if those outcome measures had been reported in Kim et al.⁴⁶ to avoid 413

potential bias. Despite these limitations, the evidence for the effectiveness of aquatic therapy is
mounting, with our analysis corroborating Iatridou et al.²¹ findings, and also extending beyond
balance to outcome measures related to mobility and level of functional independence.

417

418 *Conclusion*

Aquatic therapy is a viable option post stroke, potentially offering additional benefits in aspects 419 of mobility, balance, and level of functional independence when compared to land therapy alone. 420 Given the potential for recovery that aquatic therapy can offer individuals after stroke, there is a 421 422 need to further evaluate standardized aquatic therapy protocols (i.e., type, duration, dose) and timing of recruitment post-stroke to further establish whether statistically clinically-meaningful 423 improvements can be made. Additionally, larger multi-center trials are needed to investigate how 424 425 aquatic therapy can be incorporated into current rehabilitation programs and whether it is feasible for recommendation as a supplemental form of exercise therapy. 426

427 **References**

428 1. Jette AM, Pinsky JL, Branch LG, Wolf PA, Feinleib M. The Framingham Disability Study: physical 429 disability among community-dwelling survivors of stroke. Journal of clinical epidemiology. 430 1988;41(8):719-726. 431 2. Wade DT, Wood VA, Heller A, Maggs J, Langton Hewer R. Walking after stroke. Measurement 432 and recovery over the first 3 months. Scandinavian journal of rehabilitation medicine. 433 1987;19(1):25-30. 434 3. Mayer NH. Clinicophysiologic concepts of spasticity and motor dysfunction in adults with an 435 upper motoneuron lesion. Muscle & nerve Supplement. 1997;6:S1-13. 436 4. Tyson SF, Hanley M, Chillala J, Selley A, Tallis RC. Balance disability after stroke. Phys Ther. 437 2006;86(1):30-38. 438 Dickstein R, Abulaffio N. Postural sway of the affected and nonaffected pelvis and leg in stance 5. 439 of hemiparetic patients. Archives of physical medicine and rehabilitation. 2000;81(3):364-367. 440 6. Belgen B, Beninato M, Sullivan PE, Narielwalla K. The association of balance capacity and falls 441 self-efficacy with history of falling in community-dwelling people with chronic stroke. Archives of 442 physical medicine and rehabilitation. 2006;87(4):554-561. 443 7. Roth EJ, Merbitz C, Mroczek K, Dugan SA, Suh WW. Hemiplegic gait. Relationships between 444 walking speed and other temporal parameters. Am J Phys Med Rehabil. 1997;76(2):128-133. 445 Kollen B, van de Port I, Lindeman E, Twisk J, Kwakkel G. Predicting improvement in gait after 8. 446 stroke: a longitudinal prospective study. Stroke. 2005;36(12):2676-2680. 447 9. Lindmark B. Evaluation of functional capacity after stroke with special emphasis on motor 448 function and activities of daily living. Scandinavian journal of rehabilitation medicine 449 Supplement. 1988;21:1-40. 450 10. Golland A. Basic hydrotherapy. *Physiotherapy*. 1981;67(9):258-262. 451 11. Becker BE. Aquatic therapy: scientific foundations and clinical rehabilitation applications. PM & 452 *R* : the journal of injury, function, and rehabilitation. 2009;1(9):859-872. 453 12. Martin J. The Halliwick Method. Physiotherapy. 1981;67(10):288-291. 454 13. Boyle AM. The Bad Ragaz ring method. *Physiotherapy*. 1981;67(9):265-268. 455 14. Ross MC, Presswalla JL. The therapeutic effects of Tai Chi for the elderly. Journal of 456 gerontological nursing. 1998;24(2):45-47. 457 Lutz ER. Watsu-aquatic bodywork. Beginnings (American Holistic Nurses' Association). 15. 458 1999;19(2):9, 11. 459 16. Mooventhan A, Nivethitha L. Scientific evidence-based effects of hydrotherapy on various 460 systems of the body. North American journal of medical sciences. 2014;6(5):199-209. 461 17. Barker AL, Talevski J, Morello RT, Brand CA, Rahmann AE, Urguhart DM. Effectiveness of aquatic 462 exercise for musculoskeletal conditions: a meta-analysis. Archives of physical medicine and 463 rehabilitation. 2014;95(9):1776-1786. 464 18. Marinho-Buzelli AR, Bonnyman AM, Verrier MC. The effects of aquatic therapy on mobility of 465 individuals with neurological diseases: a systematic review. Clinical rehabilitation. 466 2015;29(8):741-751. 467 Plecash AR, Leavitt BR. Aquatherapy for neurodegenerative disorders. Journal of Huntington's 19. 468 *disease.* 2014;3(1):5-11. 469 20. Mehrholz J, Kugler J, Pohl M. Water-based exercises for improving activities of daily living after 470 stroke. The Cochrane database of systematic reviews. 2011(1):Cd008186.

471 21. latridou G, Pelidou HS, Varvarousis D, et al. The effectiveness of hydrokinesiotherapy on 472 postural balance of hemiplegic patients after stroke: a systematic review and meta-analysis. 473 Clinical rehabilitation. 2018;32(5):583-593. Saltychev M, Eskola M. Distinguishing statistical and clinical significance in meta-analysis 474 22. 475 (Comment on "The effectiveness of hydrokinesiotherapy on postural balance of hemiplegic 476 patients after stroke: a systematic review and meta-analysis" by latridou G. et al.). Clinical 477 rehabilitation. 2018;32(5):707-709. 478 Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for 23. 479 rating quality of randomized controlled trials. Phys Ther. 2003;83(8):713-721. 480 24. Cotoi AT, R. Chapter 1: Introduction and methods. Evidence-based review of stroke 481 rehabilitation 2018. In. 18th ed. ed2018. 482 25. Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine. 483 2002;21(11):1539-1558. 484 26. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 485 : British Medical Journal. 2003;327(7414):557-560. 486 27. Downs S. The Berg Balance Scale. Journal of Physiotherapy. 2015;61(1):46. 487 28. Blum L, Korner-Bitensky N. Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A 488 Systematic Review. Physical Therapy. 2008;88(5):559-566. 489 29. Portnoy S, Reif S, Mendelboim T, Rand D. Postural control of individuals with chronic stroke 490 compared to healthy participants: Timed-Up-and-Go, Functional Reach Test and center of 491 pressure movement. European journal of physical and rehabilitation medicine. 2017;53(5):685-492 693. 493 30. Duncan PW, Weiner DK, Chandler J, Studenski S. Functional Reach: A New Clinical Measure of 494 Balance. Journal of Gerontology. 1990;45(6):M192-M197. 495 31. Katz-Leurer M, Fisher I, Neeb M, Schwartz I. Reliability and validity of the modified functional 496 reach test at the sub-acute stage post-stroke. Disability and rehabilitation. 2009;31(3):243-248. 497 32. Herman T, Giladi N, Hausdorff JM. Properties of the 'Timed Up and Go' Test: More than Meets 498 the Eye. Gerontology. 2011;57(3):203-210. 499 33. Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail 500 elderly persons. Journal of the American Geriatrics Society. 1991;39(2):142-148. 501 Chan PP, Si Tou JI, Tse MM, Ng SS. Reliability and Validity of the Timed Up and Go Test With a 34. 502 Motor Task in People With Chronic Stroke. Archives of physical medicine and rehabilitation. 503 2017;98(11):2213-2220. 504 35. Peters DM, Fritz SL, Krotish DE. Assessing the reliability and validity of a shorter walk test 505 compared with the 10-Meter Walk Test for measurements of gait speed in healthy, older adults. 506 *Journal of geriatric physical therapy (2001).* 2013;36(1):24-30. 507 36. Han SK, Kim MC, An CS. Comparison of Effects of a Proprioceptive Exercise Program in Water 508 and on Land the Balance of Chronic Stroke Patients. Journal of Physical Therapy Science. 509 2013;25(10):1219-1222. 510 37. Chan K, Phadke CP, Stremler D, et al. The effect of water-based exercises on balance in persons 511 post-stroke: a randomized controlled trial. Topics in stroke rehabilitation. 2017;24(4):228-235. 512 38. Park J, Lee D, Lee S, et al. Comparison of the Effects of Exercise by Chronic Stroke Patients in 513 Aquatic and Land Environments. Journal of Physical Therapy Science. 2011;23(5):821-824. 514 39. Matsumoto S, Uema T, Ikeda K, et al. Effect of Underwater Exercise on Lower-Extremity 515 Function and Quality of Life in Post-Stroke Patients: A Pilot Controlled Clinical Trial. Journal of 516 alternative and complementary medicine (New York, NY). 2016;22(8):635-641.

517	40.	Tripp F, Krakow K. Effects of an aquatic therapy approach (Halliwick-Therapy) on functional
518		mobility in subacute stroke patients: a randomized controlled trial. Clinical rehabilitation.
519		2014;28(5):432-439.
520	41.	Zhang Y, Wang Y, Huang L, et al. Aquatic Therapy Improves Outcomes for Subacute Stroke
521		Patients by Enhancing Muscular Strength of Paretic Lower Limbs Without Increasing
522		SpasticityA Randomized Controlled Trial. American Journal of Physical Medicine &
523		Rehabilitation. 2016;95(11):840-849.
524	42.	Chu KS, Eng JJ, Dawson AS, Harris JE, Ozkaplan A, Gylfadottir S. Water-based exercise for
525		cardiovascular fitness in people with chronic stroke: a randomized controlled trial. Archives of
526		Physical Medicine & Rehabilitation. 2004;85(6):870-874.
527	43.	Furnari A, Calabrò RS, Gervasi G, et al. Is hydrokinesitherapy effective on gait and balance in
528		patients with stroke? A clinical and baropodometric investigation. Brain Injury. 2014;28(8):1109-
529		1114.
530	44.	Kim EK, Lee DK, Kim YM. Effects of aquatic PNF lower extremity patterns on balance and ADL of
531		stroke patients. Journal of Physical Therapy Science. 2015;27(1):213-215.
532	45.	Kim K, Lee DK, Jung SI. Effect of coordination movement using the PNF patern underwater on
533		the balance and gait of stroke patients. <i>Journal of Physical Therapy Science</i> . 2015;27(12):3699-
534		3701.
535	46.	Kim K, Lee DK, Kim EK. Effect of aquatic dual-task training on balance and gait in stroke patients.
536		Journal of Physical Therapy Science. 2016;28(7):2044-2047.
537	47.	Noh DK, Lim J, Shin H, Paik N. The effect of aquatic therapy on postural balance and muscle
538		strength in stroke survivors a randomized controlled pilot trial. Clinical Rehabilitation.
539		2008;22(10-11):966-976.
540	48.	Park S-E, Kim S-H, Lee S-B, et al. Comparison of Underwater and Overground Treadmill Walking
541		to Improve Gait Pattern and Muscle Strength after Stroke. Journal of Physical Therapy Science.
542		2012;24(11):1087-1090.
543	49.	Park BS, Noh JW, Kim MY, et al. A comparative study of the effects of trunk exercise program in
544		aquatic and land-based therapy on gait in hemiplegic stroke patients. Journal of Physical
545		Therapy Science. 2016;28(6):1904-1908.
546	50.	Zhu Z, Cui L, Yin M, et al. Hydrotherapy vs. conventional land-based exercise for improving
547		walking and balance after stroke: A randomized controlled trial. Clinical Rehabilitation.
548		2015;30(6):587-593.
549	51.	Cha H, Shin Y, Kim M. Effects of the Bad Ragaz Ring Method on muscle activation of the lower
550		limbs and balance ability in chronic stroke: A randomised controlled trial. Hong Kong
551		Physiotherapy Journal. 2017;37:39-45.
552	52.	Gervasoni E, Jonsdottir J, Montesano A, Cattaneo D. Minimal Clinically Important Difference of
553		Berg Balance Scale in People With Multiple Sclerosis. Archives of physical medicine and
554		rehabilitation. 2017;98(2):337-340.e332.
555	53.	Man-Son-Hing M, Laupacis A, O'Rourke K, et al. Determination of the clinical importance of
556		study results. Journal of general internal medicine. 2002;17(6):469-476.
557	54.	Gautschi OP, Stienen MN, Corniola MV, et al. Assessment of the Minimum Clinically Important
558		Difference in the Timed Up and Go Test After Surgery for Lumbar Degenerative Disc Disease.
559		Neurosurgery. 2017;80(3):380-385.

560	Figure	Legends

561 Figure 1. PRISMA flow diagram outlining	study selection process.	PCT: Prospectively
--	--------------------------	--------------------

562	Controlled Trai	l, RCT:	Randomized	Controlled	Trial.
-----	-----------------	---------	------------	------------	--------

- **Figure 2.** Forest plot comparing the effectiveness of aquatic therapy to land therapy based on (A)
- Berg Balance Scale mean difference scores and (B) Functional Reach Test mean difference

scores.

- **Figure 3.** Forest plot comparing the effectiveness of aquatic therapy to land therapy based on (A)
- 567 Timed Up and Go Test mean difference scores and (B) gait speed mean difference scores.

568

- 569 Table Legend
- 570 **Table 1.** Study and participant characteristics
- 571 Table 2. Study Protocols
- 572 **Table 3.** Between-group comparisons of aquatic therapy and land therapy on clinical outcome
- 573 measures of functional mobility and balance.
- 574 **Table 4.** Between-group comparisons of aquatic therapy and land therapy on clinical outcome
- 575 measures of functional independence.

577 Appendix

578 Search Strategy

579 **MEDLINE**

- 580 (stroke OR cerebrovascular accident) AND (aqua* OR hydro* OR water*) AND (exercise OR
- therapy).af.
- 582 Limits: Language: English, Population: Human

583 EMBASE

- 584 ((cerebrovascular accident). kw.) AND ((aqua* OR hydro* OR water*). ab, dj,fi, fx, hw, kw, ot,
- 585 ti, tw.)
- 586 Limits: Language: English, Population: Human

587 **PsycINFO**

- 588 (stroke OR cerebrovascular accident) AND (aqua* OR hydro* OR water*)
- 589 Limits: Language: English, Population: Human

590 CINAHL

- 591 (Stroke [MeSH]) AND (Aquatic Exercises [MeSH]) OR (Hydrotherapy [MeSH]) OR (Body-
- 592 Weight-Supported Treadmill Training [MeSH])

593 SCOPUS

- 594 (stroke OR cerebrovascular accident) AND (aqua* OR hydro* OR water*) AND (exercise OR
- therapy). kw, ab, ti.

596 Limits: Language: English, articles, journal articles, excluded studies with unrelated keywords.