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Bridge damage identification using deep learning-based

Convolutional Neural Networks (CNNs)

Sandeep Sony, PhD

ABSTRACT

In this paper, a novel method is proposed based on windowed-one dimensional convolu-

tional neural network for multiclass damage detection using acceleration responses. The data

is pre-processed and augmented by extracting samples of windows of the original acceleration

time-series. 1D CNN is developed to classify the signals in multiple classes.

The damage is detected if the predicted classification is one of the indicated damage levels.

The damage is quantified using the predicted class probabilities. Various signals from the

accelerometers are provided as input to 1D CNN model, and the resulting class probabilities

are used to identify the location of the damage. The proposed method is validated using Z24

bridge benchmark data for multiclass classification for two damage scenarios. The results

show that the proposed 1D CNN methods performs with superior accuracy for severe damage

cases and works well with different type of damage types.

KEYWORDS

Structural health monitoring; 1D CNN; Damage localization; Limited dataset, Data

augmentation.

1. INTRODUCTION

In civil infrastructure, continuously increasing heavy traffic, unexpected natural calami-

ties and human-made damages reduce their load-bearing capacity and service life. With

ageing, the structures exhibit various damage signatures in several critical locations. In

the absence of timely repair and maintenance, progressive damage leads to the collapse of

structures. Despite the simplicity, the traditional manual inspection suffers difficulty while
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scanning the inaccessible areas in large structures such as bridges or tall buildings. Over

the past few decades, structural health monitoring (SHM) has been a promising tool to

supplement the knowledge of structural integrity over time. However, efficient diagnosis

and prognosis of large-scale infrastructure require a reliable assessment of its damage un-

der in-service conditions. In general, damage introduces localized discontinuities that can

be captured by acquiring vibration measurements. SHM aims to provide suitable diagnos-

tics and prognosis and assists infrastructure owners and decision-makers in maximizing the

safety, serviceability, and functionality of critical structures. An autonomous SHM will al-

low efficient and cost-effective disaster management and lead to resilient infrastructure with

faster recovery under natural disasters. In this paper, an autonomous multiclass damage

identification method is proposed by utilizing artificial intelligence in the sequential SHM

data, such as vibration measurements.

Data-driven damage diagnosis is a critical component of infrastructure asset management.

Although there is a plethora of research on parametric methods based on time-frequency

(TF) decomposition methods (Staszewski and Robertson 2006, Hu and Shao 2020, Barbosh

et al. 2020, Sony and Sadhu 2020), non-parametric methods (Nakamura et al. 1998, Wang

and Ong 2015, Abdeljaber and Avci 2016) have shown significant promises in data-driven

SHM methods. Parametric methods include extracting dynamic parameters such as modal

parameters and inferring the change in these parameters to detect any possible changes in the

structures. On the other hand, non-parametric methods include extracting parameters that

are estimated based on the computational models and the parameters are mathematically

derived in a statistical sense. For the last couple of decades, the prominent work has been

on parametric methods; however, non-parametric methods are not well-explored.

Structural damage identification can be considered as a pattern recognition-based non-

parametric problem, which is divided into three stages, namely, data acquisition, feature

extraction, and feature classification. With the transformation of SHM data analysis from

the traditional method to a more advanced data-driven method, various machine learning
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(ML) algorithms have been explored. However, the SHM community has prominently used

supervised learning algorithms (Hou and Xia 2020, Avci et al. 2021). In (Gardner et al.

2020), the authors explained the interface between non-destructive evaluation and machine-

learning-based SHM for damage detection. The study highlighted the need for a combination

of compressive sensing based sparse methodology with data-driven machine learning methods

to empower both non-destructive testing and SHM methodologies. Su et al. (2020) presented

a critical review of field monitoring of high-rise structures. The study reviewed techniques

for comfort assessment, seismic effect, wind effect, and temperature effect on monitoring of

supertall structures. Recently, the SHM community has explored both vibration and image

data for structural damage identification and localization. With advancements in artificial

intelligence, image-based structural monitoring has garnered as a straightforward and inex-

pensive way to monitor large scale structures. Convolutional Neural Networks (CNNs) are

the most used deep neural networks using imagery in the SHM community. Another indirect

approach is to transform vibration measurements into TF domain, and the resulting TF

images are used as input to 2D CNN. While image-based techniques remain popular and a

viable method for SHM (Sony et al. 2021), they involve significant complexity in terms of

obtaining a large amount of labelled data, pre-processing and classifying the images. Most

of the structural condition assessment problems related to damage diagnosis are accumu-

lative damages such as ongoing material deterioration or expansion of small cracks. Small

damages are challenging to detect in images, and often environmental noise exacerbates the

structural conditions. These properties make image-based methods unsuitable for real-time

SHM applications that may run on mobile devices with limited computational capacity. As

a solution, researchers have studied algorithms that directly operate on the vibration time

signals.

Similar to images, researchers have also explored deep learning methods for effective dam-

age detection using temporal information from other sequential data, such as acceleration

measurements. Guo et al. (2014) proposed sparse coding as a feature extraction method for
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unlabeled acceleration measurements obtained from wireless sensors. The damage classifica-

tion was carried out using a CNN, and the results were compared with logistic regression and

decision trees. A three-span bridge was considered to evaluate the efficacy of the proposed

method, and it was shown that sparse coding-CNN based method outperforms other meth-

ods with an accuracy of 98%. Gulgec et al. (2017) conducted a simulation study on a steel

gusset plate connection by varying the size and location of the damage. A CNN was used

to classify damaged signals, and the proposed method achieved a testing error of 2% and

showed robustness against environmental noise. Fallahian et al. (2018) explored the appli-

cability of dynamic features such as mode shapes, frequency response functions, and natural

frequencies as damage indicators under varying temperatures. The authors used a couple

sparse coding and deep neural network as an ensemble method for damage detection and

localization. The proposed method was validated on a numerical truss bridge and experi-

mental I-40 benchmark dataset. Furthermore, the temporal acceleration data were converted

into 2D contour maps and processed through CNN as images. Bao et al. (2019) proposed

a CNN-based anomaly detection using acceleration measurements by converting them into

grayscale images. The authors used several anomaly parameters such as missing, minor, out-

lier, square, drift, and trend data points to train the datasets using a stacked autoencoder

architecture. Shang et al. (2020) proposed deep convolutional denoising autoencoders for

structural damage detection. The proposed method extracted damage features from field

measurements of undamaged structures under environmental noise.

Recently, 1D-CNN have shown promising results in capturing the temporal information

and damage detection and localization. Abdeljaber et al. (2017) introduced 1D CNN for real-

time vibration-based damage detection. The 1D CNN configuration used in all experiments

has (64, 32) neurons on the two hidden convolution layers and (10, 10) neurons on the

two hidden fully connected layers. The authors trained the neural network on a vibration

signal database obtained from a truss, named Qatar Grandstand, by damaging each joint

and keeping the other joints undamaged. The proposed model was trained individually on
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each joint, and near-perfect classification accuracy was proposed. However, the proposed

method was not tested in full-scale structures or for a multiclass damage scenario. Zhang

et al. (2019) utilized the computational powers of 1D CNN to detect changes in structural

parameters such as stiffness and mass. Three different structural components were used

for data acquisition and model validation, namely, T-shaped steel beam, short and long

steel girder bridge, and mean classification accuracy of 98% is achieved by the proposed

methodology.

1D CNN was shown to be effective in identifying changes under a compressed dataset. Ni

et al. (2019) showed the applicability of 1D CNN with autoencoders for anomaly detection

under data compression. The study explored the possibility of using a compressed dataset,

which is easy to handle for online real-time monitoring of structures. The proposed algorithm

was validated using a long-span suspension bridge, and an accuracy of 97.53% was achieved

with a highly compressed dataset and a compression ratio of 0.1. A recent study by Azmi

and Pekcan (2019) explored the concept of transfer learning in vibration measurements.

Transfer learning is highly effective when used on similar infrastructure by training one type

of structure and testing it on another kind of structure. The authors used a four-story

IASC-ASCE SHM model for numerical training, and the proposed model was tested on

experimental studies using IASC-ASCE SHM benchmark building and the Qatar University

Grandstand Simulator with an accuracy of 90-100%. Recently, Sharma and Sen (2020)

showed the applicability of 1D CNN for damage detection in structural steel frames. The

study explored the applicability to localize the damage in building structures. Experimental

validation was performed on a 2D-steel frame with different damage location and severity

of the damage. The method was shown to identify different damage scenarios and the

false-positive rate was also evaluated and found to be well within the acceptable limits.

Furthermore, Liu et al. (2020) conducted a study by integrating traditional TF methods

with the capability of neural networks. The authors used transmissibility function-based 1D

CNN to effectively identify damage at the ASCE SHM benchmark structure. The proposed
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method was compared with time series and fast Fourier transform-based frequency-domain

information; the TF signals exhibited more significant damage-sensitive features and stronger

stability under excitation interference. 1D CNN primarily exhibited superior performance

over artificial neural networks (ANNs) in the context of computation efficiency and noise

insensitive for big data (Kiranyaz et al. (2019)). Recently, Bao et al. (2020) evaluated a

combination of finite element method (FE) and 1D CNN for localizing damage for a jacket-

type offshore structure. The proposed study achieved a high accuracy of 98%; however,

the study lacks in two aspects; first, the data was generated synthetically using a finite

element model, which might not resemble the actual real-world data with operational and

environmental noise contamination. Second, the damage was induced artificially using the

FE model, which was highly localized, and the data extracted was highly distinguishable

from an undamaged structure that does not concur with the real-world data.

The proposed research explores the existing challenges of multiclass damage localiza-

tion using 1D CNN. Unlike the simulated data, the real-world data is limited and is noise-

contaminated, where multiclass damage localization becomes a significant challenge. To the

best of the authors’ knowledge, in this paper, 1D CNN is first time introduced for multiclass

damage localization with varying damage severity under different damage scenarios. The is-

sue of the limited dataset is solved by augmenting the data using windowing the acceleration

measurements, and the classification results are improved using a novel voting approach on

the prediction class. The study presents the benefits of using fast, computationally inexpen-

sive 1D CNN with only one hidden layer for limited operational data for damage classification

in a full-scale bridge.

The paper is structured as follows. A brief introduction of the structural damage iden-

tification, its need, and a literature review based on 1D CNN techniques are presented in

section 1. Section 2 explains the theoretical background of the proposed algorithm, along

with the selected architecture of 1D CNN. Furthermore, section 3 presents the capability of

the proposed algorithms to identify and localize multiclass damage, the importance of hyper-
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parameter tuning and various metrics used to show the damage parameters of the structures.

The conclusions are presented in section 4.

2. PROPOSED METHODOLOGY

2.1 Background

Feedforward fully connected neural networks are the primary building blocks of various

neural networks, where ”fully connected” means all the neurons are connected to each neuron

in the following layer. The objective of a feedforward network is to approximate some

function f ∗, for developing a classifier, where the model maps an input x to a category y.

A feedforward network defines a mapping y = f(x; θ) and learns the value of a parameter

θ that result in the best function approximation. The models are called feedforward due to

the flow of information from input to the output through intermediate computations used

to define the function f ∗ (Goodfellow et al. 2017). The input layer takes x as input and

processes the computations through the hidden layer and outputs y. The hidden layers can

be of any number, and if they are high in number, it is called deep fully connected network.

Convolutional Neural Networks (CNNs) are similar to fully connected with a difference

of alternating convolutional, and pooling layers. 1D CNNs (Kiranyaz et al. 2019) are

considered the de facto standard for various machine learning and speech recognition. 1D

CNNs became popular in SHM since last decade due to its computational simplicity in

comparison to its parent family of 2D and 3D CNNs as it requires simple array application.

Due to its low computational cost, it is possible to train it with shallow networks and also

on hand-held devices. 1D CNN configuration is formed by a combination of hidden layer

and fully connected (generally, first and last layer) with a suitable filter size in each hidden

layer, pooling layer, activation function and loss function. The convolutional layer is the

core building block of a CNN. The layer’s parameters consist of a set of learnable kernels,

which have a small receptive field, defined by a width and height. The convolution process

can be expressed as Eq. 1 (Goodfellow et al. 2017):
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y(n) = xi(n)⊗ hi(m) (1)

where, xi(n) is the input vector of length n and hi(m) is kernel of length m. The

convolutional layers reduce the number of parameters needed for the kernels as all kernels

share same spatial location.

Pooling is employed after the convolution layer to reduce the dimension of the convolution

output. Pooling is used to reduce the dimensionality of a given mapping while highlighting

the prominent feature and it also helps to reduce overfitting. Max pooling refers to picking

up maximum value in a window of size f and this window is moved over the input with a

stride of length s after each pooling operation. This layer features translational invariance

with respect to the filter size. Let m be the size of filter, then the output is estimated as per

Eq. 2:

M(xi) = max
{
Xi+k,i+l||k| ≤

m

2
, |l| ≤ m

2
k, l ∈ N

}
(2)

Activation functions can be either linear or non-linear. If the inner product of the input

(xi) to a neuron and it’s weight (wT ) is denoted by n∗ then output of the neuron is a some

function of y. Non-linear activations enable the network to learn complex mappings as shown

in Eq. 3 - 4.

n∗ = wTxi (3)

y = f(n∗) (4)

Rectified Linear Unit (ReLU) is used as hidden layer activation function in this study

which applies the non-saturating activation function. It effectively removes negative values

from an activation map by setting them to zero. It increases the nonlinear properties of
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the decision function and of the overall network without affecting the receptive fields of the

convolution layer.

For the output layer, the choice of activation function depends on the type of output. For

classification problems, SoftMax activations are preferred and for predictive/regression prob-

lems, ReLU is preferred. SoftMax function for n-class problem (representing n probabilities

of input belonging to each of n-classes) as shown in Eq. 5:

P (class(i) = j|n∗) =
en

∗
j∑n

k=1 e
n∗
k

(5)

A typical 1D CNN architecture used in this study is shown in Fig. 1.

...

...
...

x1

x2

x3

xn

h1

hn

y1

yn

Input
layer

Hidden convolutional
layer

Ouput
layer

FIG. 1: A typical 1D CNN architecture.
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2.2 Multiclass damage detection using windowed-voted 1D CNN

A method based on a 1D CNN is proposed to classify the vibration measurement into

various multi-class damage levels. The proposed machine learning model for the multiclass

damage classification is a multi-layer 1D CNN network architecture as shown in Fig. 2. Due

to the scarcity of vibration-based multiclass data for civil infrastructure and the amount of

data required for deep learning application, it is critical to augment the datasets per class.

Assuming the availability of limited dataset used in this study and superior neural network

performance, data is augmented by windowing the raw acceleration measurement. The

various pre-processed sequence of windows are given as input to the model, and the softmax

output of the final 1D CNN time step is considered as the set of classification probabilities

P (y = ci) to each class ci. During training, the weight updates are made to minimize the

cross-entropy loss on a batch of sequences. The predicted set of classification probabilities

Pp(yc) for a full acceleration measurement is obtained by summing the class probabilities of

all the window sequences in a single time-series. The class with the maximum probability is

the predicted damage level classification of the series. Note that this is equivalent to voting

on the classification probabilities of individual window sequences to arrive at the prediction

of the full series. It is observed that the voting process improves the prediction accuracy and

other evaluation metrics in the time-series.

A single acceleration measurement is a record of long vibration data acquired using an

accelerometer. The acquired measurement from various sensors attached to bridge structure

is fit to a normal distribution during pre-processing stage before dividing them into several

windows. The normal distribution is selected to improve the convergence rate of models

trained on the datasets and prevents large value samples from dominating the input (Ioffe

and Szegedy 2015). Next, the segment of the scaled time series is fed into a sequence of

continuous windows of size w), and a sequence of such windows of length L is arranged

to form one input instance to the 1D CNN. Therefore, the input of the network is a w-

dimensional sequence of length L. Multiple such sequences are extracted from acceleration
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time-series, and each sequence is assigned to a label which is the damage level of the original

time-series. The process of extracting sequences of windows from a time series is illustrated

in Fig. 2. This technique of transforming the original series into sequences of windows

effectively reduces the data dimension, and additionally, it increases the training set size

which is, multiple sequences per time series, which also, in turn allows training machine

learning models with less over-fitting.

In the proposed method, the window size w and the sequence length L (no. of windows

in a sequence) is treated as hyperparameters that are tuned to improve the accuracy of 1D

CNN. The hyperparameters include number of layers and number of nodes in each layer,

activation function, and batch size for weight updates. Optimal parameters are obtained

using a random search algorithm on a hyperparameter space (Bergstra and Bengio 2012). A

training session is terminated when, either a specified maximum number of epochs is reached,

or early stopping which is the validation loss does not decrease for a specified number of

epochs. The final network weights are taken from the epoch with the smallest validation

loss. The classification problem is presented as multiclass (undamaged, and damage of more

than two levels). Fig. 3 illustrates the proposed data pipeline, which consists of a series of

pre-processing and post-processing steps with 1D CNN as the classification model.

11



FIG. 2: Extracting data sequences of windows from the vibration data using 1D-CNN ar-
chitecture.

2.3 Performance criteria

In machine learning, a number of performance metrics are used to evaluate the efficacy of

the computational model. These metrics measure different aspects of the obtained results.

A brief description is provided below in the context on SHM of the civil infrastructure. The

confusion matrix is a tabulation of classifications made by a model, typically with the actual

class on rows and predicted class on columns. Table 1 shows the confusion matrix for a

multi-class classification problem with three classes (α, β, and γ). As shown, TPα is the

number of true positive samples in class α, i.e., the number of samples that are correctly

classified from class α, and Eαβ is the samples from class α that are incorrectly classified

as class β, i.e., misclassified samples. Therefore, the false negative in the α class (FNα) is

the sum of Eαβ and Eαγ (FNα = Eαβ + Eαγ) which indicate the sum of all class α samples

that were incorrectly classified as class β or γ. Simply, FN of any class can be calculated by
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adding the errors in that class/column. Whereas the false positive for any predicted class

which is located in a row represents the sum of all errors in that row. For example, the false

positive in class α, (FPα) is calculated as follows, FPα = Eβα + Eγα. Therefore, for k ∗ k

confusion matrix there are k correct classifications and k2 − k possible errors (Srinivasan

1999). There are various metrics that are derived from confusion metrics and are presented

in Table 2.

TABLE 1: Confusion matrix for a multiclass problem.

True class

Predicted Class

TPα Eβα Eγα

Eαβ TPβ Eγβ

Eαγ Eβγ TPγ

In the context of SHM and multiclass damage detection, only, ROC-AUC, Accuracy, FNR

and F1 score are used to evaluate the performance of the proposed method. Accuracy is a

primary performance metric used to evaluate the efficacy of model to correctly classify the

datasets into various class labels. Another important metric that has not been discussed in

the literature is FNR. In SHM context, it is crucial to identify minor damage with minimal to

no false negative alarm to prevent any future structure failure. In machine learning context,

the FNR values should be at its minimum, while the accuracy, ROC-AUC,and F1 score

should be at it maximum.

2.4 Damage localization

Damage localization for multi-class problems is evaluated using Algorithm 1. The whole

structure is modeled as one experiment rather than modeling each sensor separately as in

(Abdeljaber et al. 2017) and prediction probabilities are acquired for each sensor location.

However, as there were multiple sensor locations covering the whole structure and in par-

ticular, three different structural components, namely, undamaged pier (UDP), bridge deck

(BD), and damaged pier (DP). Only 12 sensor location, 4 each on UDP, BD, DP, respectively
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as chosen for damage localization purpose. The damage is confirmed if the true predicted

probability class is equal to allocated class label for all cumulative windowed series for each

sensor location.

FIG. 3: Data pipelines for training the 1D CNN network and obtaining predictions for a
given time-series.

14



Algorithm 1: Damage localization for multiclass damage localization

Input: A signal x(t)

Output: Prediction probabilities Pp(yc) for damage localization.

(a) The acceleration data is pre-processed into multiple windows time-series and

damage class-label is allocated to each windowed data.

(b) The structure is modeled as whole as compared to per joint for computational

efficiency and ease of modeling.

(c) The windowed data is trained using 1DCNN using optimal parameters and

tested on a separate dataset.

(d) The probabilities of classification are obtained for each joint of every windowed

series.

(e) A damage is confirmed at the joint if true predicted probability class is equal to

allocated class label.

TABLE 2: Description of various performance metrics.

Metric Expression Remarks

ROC-AUC R Vs FPR Degree of separability between classes

Accuracy (A) TP+TN
TP+FN+FP+TN

Less useful for heavily imbalanced data

Precision (P) TP
TP+FP

Positive predicted value

Recall (R) TP
TP+FN

True positive rate or sensitivity

False Positive Rate (FPR) FP
TN+FP

False alarm when there is no damage

False Negative Rate (FNR) FN
TP+FN

No alarm for actual damage

F1 Score 2* precision.recall
precision+recall

The harmonic mean of precision and recall

3. FULL-SCALE STUDY
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3.1 Details of Z24 Bridge

Damage detection, where classification is more than two classes, is considered as a multi-

class problem. In this study, two types of damage cases are used, namely, rupture of tendons,

and pier settlement of a full-scale bridge, namely, Z24 Bridge. All the damage classes have

multiple damage levels. Z24 bridge benchmark data (Maeck and Roeck 2003) is used to eval-

uate the performance of the proposed method for multiclass damage detection. The bridge

was located in the canton Bern near Solothurn, Switzerland. It was a classical post-tensioned

concrete two-cell box-girder bridge with a main span of 30 m and two side spans of 14 m, as

shown in Fig. 4. The bridge was demolished at the end of 1998 because a new railway adja-

cent to the highway required a new bridge with a larger side span. During the demolition,

the bridge data was acquired using 15 accelerometers placed at different spans of the bridge

as shown in Fig. 5. The bridge was excited by two shakers, one at the mid-span of the bridge

and another at a side-span. Because of the size of the bridge, response was measured in nine

setups of up to 15 sensors each, with three accelerometers and the two force sensors common

in all setups. The data was sampled at 100 Hz, and a total of 65536 samples were acquired.

This data was made publicly available by researchers at the Katholieke Universiteit Leuven

and is available at: https://bwk.kuleuven.be/bwm/z24.

the data was acquired by performing various progressive damage scenarios. For the

brevity of this study, only three different damage scenarios are considered: failure of anchor

head, rupture of tendons, and pier settlement. Each damage scenario has multiple level of

damage. All these damage scenarios are compared with the baseline undamaged state. It

should be noted that each damage scenario have different classes of damage, and they were

chosen to evaluate the performance of the proposed method to classify various multi-class

damage cases. For example, failure of anchor head have two damage levels, rupture of tendons

have three levels, and lowering of pier have four levels, and together they make a case of three

separate damage classes. For detailed explanation of how the damages were induced in the

bridge, the readers are suggested to refer (Roeck and Teughels 2004). Multiclass problem is
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considered based on the type and level of damage. The reference, undamaged condition is

considered as class-zero for all the cases and the other were damages were assigned classes

starting from 1 to n depending upon the level of damage, as shown in Table 3. For example,

in the case of rupture of tendons, the damage was induced at first, rupture of two tendons,

and second, rupture of four tendons, third, rupture of six tendons, thereby creating three

classes of damages for rupture of tendons . Similarly, there are four classes for lowering of

pier.

FIG. 4: Schematic of the Z24 bridge.
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FIG. 5: Sensor placement for data acquisition.

TABLE 3: Multiclass problem description for two damage scenarios along with the class
label.

Problem Damage scenario Class label

0 Undamaged 0

1

Rupture of 2 tendons 1

Rupture of 4 tendons 2

Rupture of 6 tendons 3

2

Lowering of pier, 20 mm 1

Lowering of pier, 40 mm 2

Lowering of pier, 80 mm 3

Lowering of pier, 95 mm 4

3.2 Hyper-parameters for the 1D CNN model

An introduction to the full scale study based on various damage scenarios of Z24 Bridge is

provided first, followed by hyperparameters used for the computational models are presented,

the evaluation metrics based on the proposed method is described later with comparison

between window-voted and non-voted results. In this study, a range of hyperparameters are

selected first and tuned using random search algorithm to achieve a set of hyperparameter

that provides the optimal accuracy. The range of hyperparameters used for 1DCNN are
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presented in Table. 4. For example, window size is adopted on a range between 64, 128, 160,

256, and 512 samples. Window size is the only external parameter used and is decided by the

user. Thus, a sensitivity analysis is performed to understand the behavior of performance

evaluation metrics (Pm) under different window sizes (w). Two different metrics are used

for sensitivity analysis which are accuracy and FN as they represents overall accuracy of the

model and false-negative alarm critical for civil infrastructure.

TABLE 4: Hyperparameter used in 1D CNN for tuning by random search algorithm.

Parameter Values

Window size 64, 128, 160, 256, 512

No. of hidden convolutional layers 1 - 6

No. of filters 1024, 512, 256, 128, 64, 32

No. of fully connected layers 1 or 2 layers with 16 and 32 nodes

Learning rate 0.0003, 0.001, 0.01

Batch size 64, 256, 512

Kernel size 8, 16, 32, 64

The optimal hyperparamters for the Z24 bridge dataset are obtained after tuning and are

presented for all the models in Table 5. An analysis is performed to understand the effect of

w versus Pm. The results are shown for various damage cases in Fig. 6. For example, Fig.

6 (a-b), shows that the optimal performance is achieved at w=256, with highest ROC and

accuracy, and lowest false-negative. Although, the FNR remains consistent after w=512 and

other metrics are at their peak, however, due to larger w, the data size reduces per damage

class and it leads to over-fitting of the data.
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TABLE 5: Optimal configuration of 1D CNN hyperparameters.

Parameter Values

Window size 256

No. of hidden convolutional layers 1

No. of filters 32

No. of fully connected layers 2 with 32 and 16 nodes, respectively

Learning rate 0.0003

Batch size 256

Kernel size 16

3.3 Random initialization of weights

Deep learning algorithms are iterative and require the user to specify value of initial

weights of neurons to initiate the iteration and its optimization. In practice, all weights

in the model are randomly drawn from a Gaussian or uniform distribution. The choice of

Gaussian or uniform distribution does not seem to matter much but has not been exhaustively

studied (Goodfellow et al. 2016). However, the scale (low or high magnitude) have a large

effect on both the outcome and optimization procedure. In this study, random initialization

with early stopping criteria is used and Adam optimizer (Kingma and Ba, 2014) is used with

dropout in each layer for regularization. After acquiring the optimal tuned parameters, a

parametric study is conducted to understand variance in the metrics of 1D CNN model for

random initialization of weights. The metrics used for evaluating random initialization of

weights are ROC-AUC, accuracy, FNR, and F1 score and are shown in Table. 6. It can be

observed that for pier settlement, the mean (µ) of ROC-AUC is 0.97 with an accuracy of

0.85. The FNR is 0.15 and the standard deviation (σ) for all the trials is at its minimal of

1%. Similarly, for rupture of tendons, the ROC-AUC is 0.92 with an accuracy of 0.67 and

FNR of 0.33 with minimal σ of 2%.
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TABLE 6: Random initialization of weights

Pier settlement

Trials # ROC-AUC Accuracy FNR F1 score

1 0.98 0.85 0.15 0.85

2 0.97 0.85 0.15 0.85

3 0.98 0.86 0.14 0.86

4 0.97 0.83 0.17 0.83

5 0.98 0.86 0.14 0.86

µ 0.97 0.85 0.15 0.85

σ 0.00 0.01 0.01 0.01

Rupture of tendons

1 0.92 0.69 0.31 0.69

2 0.93 0.68 0.32 0.68

3 0.90 0.66 0.34 0.66

4 0.91 0.65 0.35 0.65

5 0.92 0.66 0.34 0.66

µ 0.92 0.67 0.33 0.67

σ 0.01 0.02 0.02 0.02

3.4 Effect of window size

The window size used to augment the data is an external parameter apart from other

model parameters and it is critical to understand the effect on model performance. It can be

observed that the best performance with a combination of maximum ROC-AUC, accuracy

and minimum FNR is achieved at 256 samples per window. It is shown in Fig. 6 (a),

ROC-AUC increases to 1.0 at 512, 800, 1024 samples per window, however, it leads to over

fitting with increased FNR. A similar result can be observed from Fig. 6 (b) with optimal

performance at 256 samples per window.
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FIG. 6: Performance evaluation of 1D CNN based on window size for (a) pier settlement
and (b) rupture of tendons.

3.5 Model performance

The optimal parameters are used to evaluate the performance of proposed model on

full-series versus voted-windowed samples. The reason for comparison of the full-series and

windows voted is to show the improved performance by voting the windowed samples. It is

observed that voting on windowed dataset increases accuracy considerably and it exhibits in

ROC-AUC and precision-recall (PR)-AUC curves, as presented in Fig. 7, and 8, respectively.

It can be observed that voting on windows from non-localized signal increases the probability

considerably by allocating the majority class and ignoring the non-prominent class along with

augmenting the data samples per class.

It should also be noted that the accuracy in case of pier-settlement is 0.83 and it reduced

to 0.66 for rupture of tendons as shown in Table. 7. It can be observed that the FNR

increased from 0.17 to 0.34 in case of pier-settlement and rupture of tendons, respectively.

The label 0, 1, and 2 are used to denote, training, full-series test set, and windowed-series

test set performance metrics, respectively.
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TABLE 7: Training and testing performance of 1D CNN.

Lowering of pier

Dataset ROC PR A P R FPR FNR F1

0 0.96 0.88 0.80 0.80 0.80 0.05 0.20 0.80

1 0.95 0.84 0.77 0.77 0.77 0.06 0.23 0.77

2 0.97 0.91 0.83 0.83 0.83 0.04 0.17 0.83

Rupture of tendons

Dataset ROC PR A P R FPR FNR F1

0 0.89 0.75 0.63 0.63 0.63 0.12 0.37 0.63

1 0.87 0.71 0.59 0.59 0.59 0.14 0.41 0.59

2 0.92 0.82 0.66 0.66 0.66 0.11 0.34 0.66

As shown in Fig. 7, voting on samples have improved the AUC for both ROC and

precision-recall. It can be observed that in case of pier-settlement, there is meager increase

on ROC-AUC, however, there is a considerable improvement in the area under the curve for

PR. This behaviour can be attributed to a more localized damage in case of pier settlement.

Moreover, as observed in Fig. 8, where the damage was considerably distributed in case

of rupture of tendons voting on windows highly increased the PR area under the curve for

rupture of tendons. Whereas, ROC-AUC and PR increased by 5.75% and 15.5%, respectively.

It should be noted that micro-averaged is the average of area under the curve for all the

classes.
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(a) (b)

(c) (d)

FIG. 7: Performance of 1DCNN by windowing for the Z24 bridge pier settlement (a) series-
ROC, (b) windowed-voted ROC, (c) series-PR, (d) windowed-voted PR.
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(a) (b)

(c) (d)

FIG. 8: Performance of 1DCNN by windowing for Z24 bridge rupture of tendons (a) series-
ROC, (b) windowed-voted ROC, (c) series-PR, (d) windowed-voted PR.

3.6 Damage localization

Damage localization is performed using Algorithm 1, for two multiclass damage scenario,

namely, lowering of pier and rupture of tendons. The sensor locations are identified first,

then, three different structural components of the bridge are used to localize damage and

understand the effect of pier settlement and rupture of tendons. An undamaged pier (Utzen-

storf), bridge deck, and damaged pier (koppigen) are used for representation of predicted

probability (Pp) and infer damages in three components. The Koppigen pier is used for

inducing the damage by lowering it in several increments starting with 20 mm , 40 mm, 80
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mm , and moving to 95 mm at the last stage. Twelve different sensors are used to identify

the location of damage, namely, 4 sensors (411, 421, 431, 441) on undamaged pier (UP),

4 sensos (216, 221, 226, 231) on bridge deck (BD), and 4 sensors (511, 521, 531, 541) on

damaged pier (DP) as shown in Fig. 9.

FIG. 9: Schematic showing sensor location and its numbers used in the analysis.

The Pp, is plotted against the sensor number and a dash-dotted average of Pp of struc-

tural component is shown as a representation of combined Pp for corresponding structural

component as shown in Fig. 10 for 20 mm, and 40 mm and Fig. 11 for 80 mm, and 95

mm lowering of pier, respectively. For example, Fig. 10 (a, b, c) represents Pp for undam-

aged pier (UDP), bridge deck (BD), and damaged pier (DP) for 20 mm lowering of piers.

Similarly, Fig. 10 (d, e, f) is for 40 mm lowering of piers, respectively. It can be observed

that proposed algorithm does not provide conclusive evidence for nominal damage of 20 mm,

however shows some evidence of damaged pier. However, Fig. 11 (a, b, c) and (d, e, f) shows
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localization of damage for 80 mm and 95 mm, and it can be observed that the localization

is clearly identified where the Pp is highest for damaged pier followed by bridge deck which

is affected by differential settlement of one of the piers.

Although there is no correlation between Pp and damage severity, however, as the sever-

ity increases, the signals becomes more distinguishable and 1D CNN learns the classification

more effectively. It can be observed from Fig. 12 that UDP shows lowest predicted proba-

bility due to its similarity to the response of the undamaged structure, however, both BD,

and DP shows higher prediction accuracy. The reason for bridge deck’s highest probability

is attributed to the surface area and larger affect of differential pier-settlement in the whole

structural system. The bridge suffers higher changes in structural responses (deflection,

bending moment, shear) than at damaged pier itself, as it acted as a support.
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FIG. 10: Damage localization for lowering of pier for two damage levels, where, (a, b, c) are
for 20 mm lowering of piers, and (d, e, f) are for 40 mm lowering of piers.
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FIG. 11: Damage localization for lowering of pier for three damage levels, where, (a, b, c) are
for 80 mm lowering of piers, and (d, e, f) are for 95 mm lowering of piers.
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FIG. 12: Damage localization for lowering of pier.

Similarly, for rupture of tendons, the most affected area would be the bridge deck and the

damage induced due to rupture of tendons will create a non-localized and distributed damage

throughout the bridge deck in comparison to the bridge piers. The damage localization per

sensors is avoided due to non-conclusive inference and a comparison between structural

components of the bridge is provided directly in Fig. 13. It should be noted that rupture

of tendons affects bridge deck highly and it is shown in Fig. 13, however, the proposed

algorithm could not clearly show the affect of rupture of 2 and 4 tendons while rupture of 6

tendons prove to be worse damage level scenario.
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FIG. 13: Damage localization for rupture of tendons.

5. CONCLUSIONS

In this paper, damage localization using a windowed-1D CNN is employed for multi-

class, and multi-level damage detection. Limited dataset is augmented using windowing of

the time-series measurements and the prediction accuracy is improved by a novel voting

approach on windowed classes. It is observed that due to non-localization of sensors for data

acquisition, damage localization for lower level of damage scenario is challenging to predict.

However, this improves the severity of the damage. The proposed algorithm is analyzed with

sensitivity analysis on window-size as the external parameter to the model. A parametric

study is also presented for random initialization of weights. The accuracy improvement of

the proposed algorithm is illustrated through a comparison between a single series dataset

and windowed-voted for ROC and precision-recall AUC. In this work, it is demonstrated that

a simple 1D CNN architecture with only one hidden layer is capable of classifying the time
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series signals into multi-class with high accuracy. The future work is reserved to improve

the algorithm to identify minor level of damage with superior performance.
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