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Abstract
De novo peptide sequencing is an efficient approach to identifying peptides from tandem

mass spectrometry (MS/MS). Compared with the database search methods, De novo peptide
sequencing is particularly effective in identifying novo peptide sequences. This thesis presents
a new De novo sequencing model comprising two deep learning models and a dynamic pro-
gramming algorithm, namely DpNovo. The deep learning model learns features of a spectrum
and gives scores to each peak, and the dynamic programming is capable of determining the
optimal amino acid sequence path with the highest accumulated score. Finally, the predicted
sequence with mass values representing uncertain mass intervals will be provided. DpNovo is
capable of reconstructing charge-two peaks in their charge-one positions, which significantly
improves the accuracy of predicting high-charged spectra. Besides, the dynamic program-
ming algorithm ensures that accurate predictions can be made even in cases where some signal
peaks are missing. In terms of performance, DpNovo has been tested on both the NIST and
ProteomeXchange databases. The deep learning model has demonstrated an excellent ability
to identify both signal and noise peaks. Additionally, the accuracy of peptide sequence pre-
diction obtained through the dynamic programming algorithm is comparable to those of other
proposed De novo sequencing models.

Keywords: De novo, machine learning, dynamic programming
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Summary for Lay Audience
Tandem mass spectrometry (MS/MS) is an important tool for identifying peptides. The

peptide identification approaches can analyze the tandem mass spectrometry of fragments to
infer the original peptide sequence. There are mainly two methods for peptide identifica-
tion: database search and De novo sequencing. Database search uses a reference database
to match experimental data with theoretical spectra, while De novo sequencing does not rely
on a database and can identify novo amino acid sequences. Recently, machine learning tech-
nology is utilized in De novo sequencing, and many machine learning-based approaches have
been proposed. In this thesis, we proposed a new model called DpNovo, which combines deep
learning and dynamic programming. The deep learning model assigns scores to each peak and
the dynamic programming algorithm is capable of finding the optimal amino acid sequence
with the highest accumulated score. DpNovo is capable of reconstructing charge-two peaks
in their charge-one positions, which greatly enhances the accuracy of predicting high-charged
spectra. Additionally, the dynamic programming algorithm employed by DpNovo ensures that
it can make precise predictions even in situations where some signal peaks may be absent. The
training dataset is acquired from the NIST database, and testing was conducted on the NIST
and the ProteomeXchange database. The deep learning model has displayed proficiency in
detecting both signal and noise peaks. Moreover, the precision of peptide sequence prediction
is equivalent to that of other proposed De novo sequencing models.
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Chapter 1

Introduction

1.1 Tandem Mass Spectrometry

Mass spectrometry is a powerful technique for the analysis of unknown compounds. In a mass
spectrometer, molecules are ionized into positively charged molecular ions. These ions exhibit
different masses, leading to varying times required to reach the detector. The key value in
this process is the mass-to-charge (m/z) ratio, where m denotes the mass of a specific ion and
z represents the absolute value of the number of electrons charged on that ion. In addition
to the m/z ratio, mass spectrometry provides information about the abundance or intensity of
ions for each m/z. Analyzing the output of a mass spectrometer enables the comprehensive
examination of an ion’s structure and composition. However, single-stage mass spectrometry
has limitations when it comes to analyzing high-mass molecules or complex structures, due to
issues such as overlapping spectra or ionization efficiency. To address these challenges, tandem
mass spectrometry was developed.

Analyzing tandem mass spectrometry (MS/MS) is one of the most effective methods for
protein identification and plays a critical role in proteomics research. This technique has a
range of applications, including the identification of unknown compounds, protein identifi-
cation and characterization, biomolecule quantification, and the analysis of post-translational
modifications [4]. In tandem mass spectrometry, two mass analyzers are typically used. The
first mass analyzer is used to select the ion that needs to be analyzed, and the second mass
analyzer is used to further analyze the selected ions. The process begins with the proteolytic
cleavage of proteins into peptides. Subsequently, a peptide ion is selected by the first mass
analyzer, termed the precursor ion. This precursor ion is then introduced into a collision cell
filled with a neutral, inert gas such as argon or helium. Inside the collision cell, ions undergo
collision-induced dissociation (CID), leading to the fragmentation of the peptide into a set of
smaller fragment ions. There are many other activation processes [5], apart from CID, in-
cluding Post-Source Decay (PSD) [6], Surface-Induced Dissociation (SID), Electron-Capture
Dissociation (ECD) [7], Infrared Multiphoton Dissociation (IRMPD), Blackbody Infrared Ra-
diative Dissociation (BIRD) [8], and Higher-energy Collisional Dissociation (HCD) [9]. These
fragment ions are then separated by their mass using a second mass analyzer. The resulting
pattern of fragment ions, often referred to as a ”ladder,” can be employed to infer the original
peptide sequence, as the mass difference between two related fragment ions corresponds to the

1



2 Chapter 1. Introduction

molecular weight of an amino acid residue [10].

Figure 1.1: Example of tandem mass spectrum for peptide ‘DLRSWTAADTAAQLSQ’.
Source: [1]

The precision of the spectrum varies depending on the activation process utilized. Higher-
energy Collisional Dissociation (HCD) has contributed significantly to the improved accuracy
of peptide sequencing due to its enhancement of mass spectral precision [11]. Higher-energy
Collisional dissociation is a fragmentation technique employed in mass spectrometry, involving
the collision of high-energy ions with the analyte molecule, causing it to dissociate into smaller
fragments. To generate high-energy ions in HCD, the precursor ion is typically accelerated and
collided with a gas such as helium or nitrogen. This collision causes the precursor ion to
fragment into smaller ions, which can then be analyzed by the mass spectrometer to determine
their mass. One of the advantages of HCD is that it can provide high-precision analysis, and
there are several reasons: 1. HCD generates multiple ion fragments: The high-energy collisions
in HCD cause molecules to produce numerous ion fragments, including b and y-ions. 2. HCD
generates high-resolution data [12]. Overall, HCD is a powerful analytical tool that offers
high-precision analysis for complex molecules, making it an essential technique in modern
mass spectrometry [13].

1.2 Peptide Identification

Tandem mass spectrometry-based peptide identification can be classified into two methods:
(1) database search, and (2) De Novo sequencing. As the name implies, database search relies
on a reference database for peptide identification, while De Novo sequencing is capable of
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identifying novel or previously unobserved proteins or peptides that are not present in the
database.

Over the years, several database searching methods have been proposed, such as SEQUEST
[1], Mascot [14], pFind [15], X! Tandem [16], PEAKS DB [17], etc. While the details of the
search strategies are different, the main idea of these approaches is to compare the experimental
spectra with the theoretical spectra reconstructed from a database. Database search can be
efficient when the target peptides are present in the database. However, if the target peptide
sequence is absent from the database, a database search might not be feasible. Moreover, as
the database expands, the time required for searching can become increasingly extensive.

We will use the SEQUEST algorithm as an example to introduce the database searching
method. First, some preprocessing of the spectrum is implemented to enhance the precision.
The mass values of fragmented ions are converted into rounded nominal values. Furthermore,
only the top 200 ions with the highest abundance are kept to eliminate the noise. The other
details of this step will not be presented here. Secondly, the mass of the candidate peptide se-
quences will be compared to the mass of the target ion, and those candidate peptide sequences
whose mass falls within specified mass tolerances will be retained for further comparison. Usu-
ally, the mass tolerance will be set at ± 0.05% or 1u. Thirdly, a scoring method is designed
to give scores to those candidates that are in the mass tolerance. This scoring function will
give scores based on the abundance, continuity, and presence of certain ions. Then the top 500
candidates are selected to do some further comparisons. Fourthly, the theoretical spectra of
these 500 candidates are reconstructed based on some criteria, and figure 1.2 is an example of
a reconstructed spectrum. The final step is comparing the theoretical spectra with the experi-
mental spectra, a cross-correlation method is used to achieve the comparison. Then the final
prediction will be made according to the result of the cross-correlation scoring method.

Figure 1.2: The example of a reconstructed spectrum for the amino acid sequence ‘DLR-
SWTAADTAAQISQ’. Source: [1]
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De Novo peptide sequencing is a method that can sequence peptides without the aid of a
database and is highly effective in identifying novo amino acid sequences. Besides, the result
of the De Novo sequencing can be used to validate the result from the database search. The
main idea of De Novo sequencing is calculating the mass difference between two fragmented
ions, which may be equal to the mass of certain amino acids. Several methods have been pre-
sented for De Novo sequencing, including Pepnovo [18], Peaks [19], pNovo [20], UniNovo
[21], NovoHMM [22], and Msnovo [23]. These methods use different approaches to achieve
peptide sequencing, including graph-based approaches, hidden Markov models, probabilistic
networks, statistical models, and support vector machines. De Novo sequencing can be used
in many situations since there is no restriction on the database. In recent years, deep learn-
ing technology has been integrated into De Novo sequencing, for example, DeepNovo [12].
DeepNovo utilizes convolutional neural networks (CNN) to learn the spectrum features and
long short-term memory (LSTM) networks to learn the sequence features and predict the next
amino acid based on the previous mass and the feature of the next position. De Novo sequenc-
ing considerably improves the flexibility of spectrum identification. However, there are still
some limitations to De Novo sequencing. Firstly, certain algorithms necessitate substantial
computational resources. Secondly, De Novo sequencing has the potential to generate false
positives, resulting in the prediction of incorrect or implausible amino acid sequences. Fur-
thermore, De Novo sequencing can only predict the amino acid sequence without providing
any information about the corresponding protein.

The quality of the experimental spectra is critical for accurate peptide identification. The
spectral resolution, signal-to-noise ratio, and the presence of missing or noisy peaks can all
impact the precision of the prediction, whether using De Novo sequencing or a database search
approach. In peptide identification, the activation process used can significantly influence the
quality of the spectra obtained. Techniques like HCD, which provide high-resolution data with
minimal noise, are highly desirable for achieving reliable and precise identification of peptides.

1.3 Deep Learning

With the help of big data, deep learning technologies have developed rapidly in recent years.
Deep learning can create a unified representation of data by automatically learning features
from multiple heterogeneous sources and mapping them to a commonly hidden space [24].
There are various deep learning models, for example, autoencoder, restricted Boltzmann ma-
chine, convolutional neural networks, recurrent neural networks, deep neural networks, and
generative adversarial networks. The earliest implementation of deep learning is image pro-
cessing. In 2014, Dong et al. [25] proposed a deep convolutional neural network for image clas-
sification. And in the 2016 ImageNet Competition, CNNH [26] reached an accuracy of 97%.
Deep learning models can be applied to various domains, such as image processing, speech
recognition, and natural language processing. With the exponential growth of available data,
the application of deep learning techniques is expected to become increasingly widespread
across diverse industries and domains.
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1.3.1 Convolutional Neural Network

The convolutional neural network is one type of artificial neural network and is extremely ef-
ficient in the pattern recognition area within images. The basic idea in image classification is
using a convolutional neural network (CNN) to extract the relevant features behind the image,
and fully connected layers are used following the convolutional neural network to do the classi-
fication of these features. Traditional deep neural networks may struggle to effectively identify
images due to their high computational complexity, rendering them impractical for real-world
applications. However, the use of CNNs, which employ specialized convolutional kernels to
learn and extract features from images, has significantly reduced computational complexity and
greatly improved performance in image recognition tasks. Additionally, customized convolu-
tional kernels can extract local features from images based on varying requirements. A basic
CNN comprises three distinct layers: convolutional layers, pooling layers, and fully-connected
layers. Figure 1.3 provides an example of a basic convolutional network. In the following
section, we will review the fundamentals of a basic CNN.

Figure 1.3: The structure of a basic convolutional network. This is a sequential neural network
architecture consisting of four layers: two convolutional layers (conv2d) and two max pooling
layers (max pooling2d). The first convolutional layer has 32 filters and a kernel size of 3x3,
while the second convolutional layer has 64 filters and a kernel size of 3x3. The max-pooling
layers are used to downsample the feature maps. The output of the final pooling layer is
flattened and passed through two dense layers (Dense), with the first dense layer having 128
neurons and the second dense layer having 3 neurons, which represents the number of classes
in the output.
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Convolutional layers are a crucial component of convolutional neural networks (CNNs),
which are widely used for image-processing tasks such as object recognition and segmentation.
The learnable kernel, a small matrix with varying sizes and weights, is the key element of the
convolutional layer that extracts features from the input image. The kernel moves from the
top-left corner of the image, scanning the entire image while multiplying each element of the
kernel with the corresponding pixel value in the image and summing the results. The kernel
then moves one stride to the right, and the process repeats, extracting features. The outcome is
a new image that represents the features extracted by the kernel. In CNNs, the input typically
consists of pixel values from a grayscale or RGB image. If the image is an RGB image, a
3-channel convolutional kernel is used to extract features from each color channel. Multiple
convolutional kernels can be combined to extract a broader range of features. In addition to
the learnable kernel that extracts features, several other layers and functions in CNNs work
together to enhance the quality of the results.

Figure 1.4: An example of convolutional operation. The size of the convolutional kernel is
(2,2).

The pooling layers are aiming to decrease the size of the feature maps while preserving the
salient features in the data. Pooling is often performed after convolutional layers in CNN, and
this process is beneficial to decrease the computational complexity of the number of parameters
in the training process and helps to reduce the over-fitting situations. There are many ways to do
pooling, for example, max-pooling or overlapping pooling. Max-pooling is the most commonly
used pooling method in CNNs [27]. It divides the input feature map into non-overlapping
rectangular regions and takes the maximum value from each region, reducing the spatial size
of the feature map while retaining the most important features. Overlapping pooling allows for
overlap between the rectangular regions, which can preserve more spatial information, but can
increase the number of parameters in the network [28].

Additionally, activation functions are frequently employed in convolutional layers. Several
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activation functions exist, with ReLU (Rectified Linear Unit) being the most commonly used.
Activation functions are applied element-wise to the output of each neuron in the convolutional
layer, introducing non-linearity in the network and enabling it to learn complex patterns in the
data [29].

Figure 1.5: The plot of the ReLU function.

Zero-padding is a method used to maintain the spatial dimensions of the input image. This
technique involves adding additional rows and columns of zeros at the borders of the input
image prior to applying the convolutional filter. The main objective of zero-padding in con-
volutional neural networks is to maintain the spatial size of the input image and ensure that
the resulting feature map has the same dimensions as the input [30]. Without zero-padding,
the convolutional kernel would only be able to process a portion of the input image, resulting
in a smaller output feature map. By adding zeros around the image, zero-padding enables the
kernel to apply to all areas of the input, producing an output with the same spatial dimensions
as the original image.

Moreover, batch normalization is a technique used in deep neural networks to improve
their performance. Traditionally, neural networks normalize their inputs using the mean and
standard deviation of the entire training set. However, this can cause problems during training,
as the distribution of the input to each layer can shift significantly with each mini-batch. Batch
normalization addresses this problem by normalizing the inputs to each layer for each mini-
batch, rather than the entire training set [31].

A flatten layer is commonly employed prior to the fully connected layer. The primary func-
tion of the flatten layer is to reshape the output from a convolutional layer, which is generally a
3D tensor representing feature maps, into a 1D vector suitable for input to a classifier or other
layers requiring 1D input.

Fully-connected layers, also known as dense layers, are typically positioned at the end
of a neural network architecture. These layers accept feature maps generated by preceding
convolutional layers as inputs and produce outputs corresponding to the number of classes or
labels in a classification task. Each neuron in a fully-connected layer is connected to all neurons
in the adjacent layers, with each connection possessing an associated weight and bias. Usually,
multiple fully-connected layers are connected together in a deep neural network to enhance the
network’s representational power [32]. This enables the network to learn increasingly complex
features and relationships among features, resulting in improved performance and accuracy for
classification tasks.
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Within the context of classification tasks, fully-connected layers play an essential role in
integrating the features extracted from inputs and making predictions based on the learned
representations [33]. The final layer of such a network typically employs a softmax activation
function, which transforms the outputs from the previous layer into a probability distribution.
Each probability value signifies the likelihood that the input belongs to a specific class. The
model then selects the class with the highest probability as its final prediction.

In summary, while the specific architecture of a CNN may vary depending on the task and
data, the fundamental concept of using convolutional layers to extract features and then using
those features for classification remains the same.

1.3.2 Network Training

The primary objective of neural network training is to optimize the trainable parameters within
the network. Through the learning process, these parameters can be adjusted to improve per-
formance. During the training process, each iteration yields a result, which is then compared
to the ground truth labels using a loss function. There are many choices of loss functions,
which depend on the specific requirements and context of the task at hand. For example, Mean
Squared Error (MSE): Commonly used for regression problems, MSE measures the average
squared difference between the predicted and actual values [34]. Cross-Entropy Loss: Widely
used in classification tasks, cross-entropy loss measures the similarity between the predicted
probability distribution and the true distribution of class labels. This comparison generates
a loss value, which carries with it a gradient [35]. Utilizing the backpropagation algorithm,
the direction of this gradient can be computed, and the parameters can be adjusted accord-
ingly [36]. Through multiple iterations of training, the loss function is optimized to converge
towards a local minimum or global minimum, resulting in a model that is well-trained and
performs optimally on the training data.

Various techniques are employed during the training process to improve model perfor-
mance, such as early stopping, which can help prevent overfitting [37]; Dropout: a regular-
ization technique that randomly deactivates a fraction of neurons during training, reducing the
model’s reliance on individual neurons and promoting generalization [38]; Data Augmentation,
which involves creating new training examples by applying various transformations to existing
data, such as rotation, scaling, or flipping, to increase the diversity of the training dataset and
reduce overfitting [39]; and Learning Rate Scheduling, a technique that adjusts the learning rate
during training, often starting with a larger value and decreasing it over time to allow the model
to converge more efficiently [40]. These techniques, when combined appropriately, can help
improve model generalization and prevent overfitting, leading to better overall performance.

With the advancement of machine learning libraries in Python, there is no longer a need to
manually compute the loss and gradients. By specifying the desired loss function and training
parameters such as epochs, batch size, and so on, these libraries can automatically perform
training and adjust the model’s parameters. Moreover, with the aid of GPUs, convolution
operations can be executed and accelerated, significantly increasing the speed of computation.
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1.4 Research in This Thesis
In this thesis, we develop a method called DpNovo, which combines deep learning and dy-
namic programming to achieve De Novo sequencing. DpNovo represents each spectrum as
a histogram and the deep learning model is used to assign scores to each peak. The deep
learning model comprises two convolutional neural network models: the first model makes an
initial prediction, and the output from the first model substitutes the values in the mass map.
The second CNN model extracts features from the mass map and makes predictions, then as-
signs scores to each peak. Subsequently, a dynamic programming algorithm is employed to
accumulate scores along different paths, and backtracking is executed from the end position to
obtain the path with the highest accumulated score. DpNovo performs well even though there
are various missing peaks or when the charge of the spectrum exceeds two.

The training data source is the NIST (National Institute of Standards and Technology) [41]
database. The NIST Mass Spectrometry Data Center, which operates under the Biomolecular
Measurement Division (BMD), specializes in creating and evaluating mass spectral libraries
while also offering associated software tools. The dataset used here is NIST H.sapiens Orbi-
trap HCD, human hcd tryp best spectra. We selected some spectra at random to serve as the
training set. And there are two testing data sources: the NIST database and the ProteomeX-
change database [42]. The ProteomeXchange database is a public data repository that allows
researchers to globally share and access mass spectrometry-based proteomics data. Due to the
large size of the original dataset, some subsets of spectra were randomly selected to serve as
the testing sets. The detail of the ways of selecting the sets and the size of the sets will be
explained in Section 3.1.

Regarding the performance of the deep learning model, the accuracies for identifying signal
peaks and noise peaks for the testing set in NIST H.sapiens Orbitrap HCD data were 93.58%
and 89.84%, respectively.

Regarding the performance of the whole De Novo sequencing algorithm, we use Amino
Acid Precision, Amino Acid Recall and Peptide Recall to do the evaluation. The detail of these
three evaluation criteria will be explained in Section 3.2. In the NIST dataset, the test had
been done on three species, M.musculus, H.sapiens and C.griseus. The amino acid recall and
amino acid precision reached 81.1% and 81.3% respectively, and the peptide recall reached
49.2% for H.sapiens. The result on other species for example C.griseus reached 88.5% for
amino acid recall, which means that this model has a strong generalization ability on different
species. In the ProteomeXchange database, the amino acid recall and precision reached 59.2%
and 59.5% respectively, and the peptide recall reached 16.7% for H.sapiens Q-Exactive HCD
data. The recall and precision results for amino acid identification are comparable to those
of other De Novo sequencing models, such as PEAKS and DeepNovo. However, the peptide
recall is relatively low due to various reasons, and the reasons will be explained in the following
chapter.

Lastly, when generating the final prediction, undetermined mass intervals caused by miss-
ing peaks are replaced with the corresponding mass values, and all possible amino acid se-
quences that satisfy the mass intervals are provided.



Chapter 2

Methods

2.1 Tandem Mass Spectrum

2.1.1 Peptide Fragmentation and Mass Relationships
In the process of tandem mass spectrometry, proteins are first broken down into numerous
peptides by proteases, with trypsin being the most commonly used protease. Trypsin typ-
ically cleaves peptide bonds on the carboxyl side of lysine (K) or arginine (R) amino acid
residues, breaking down proteins into smaller peptide fragments [43]. Consequently, the C-
terminal of the precursor ion selected by the first mass spectrometer ends with either lysine or
arginine if the protease is trypsin. As mentioned earlier, the precursor ion generates several
fragmented ions under specific conditions, such as CID. A fragmented ion primarily consists
of three complementary types: (a-ion, x-ion), (b-ion, y-ion), and (c-ion, z-ion), determined by
the fragmentation position [44].

Figure 2.1: The example of different positions of fragmentation. Source: [2]

Electron transfer dissociation (ETD) and collision-induced dissociation (CID) are the two
most prevalent methods for peptide fragmentation. Under CID conditions, b and y-ions can
be generated, while ETD produces c and z-ions. A b-ion (or b-series ion) is a fragment ion
formed by the cleavage of a peptide bond N-terminal to the ionized amino acid residue, whereas
the y-ion is formed C-terminal to the ionized amino acid residue. High energy collisional
dissociation (HCD) is a CID technique associated with Thermo Scientific Orbitrap instruments.

10
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In HCD conditions, there are primarily three types of ions produced: a-ions, b-ions, and y-
ions. Besides, various types of additional ions, such as immonium ions, internal fragment
ions, neutral losses, gains, and isotopic ions, are commonly observed in addition to the target
ions. These ions can be generated due to a variety of factors, including ionization reactions,
chemical reactions within the mass spectrometer, the molecular structure of the sample, and
experimental conditions such as ion source temperature and ionization energy. For example,
immonium ions may be formed due to the presence of specific functional groups in the sample,
while internal fragment ions can be produced by fragmentation reactions.

The mass relationship between y-ion, b-ion, residue mass, parent mass, and charge state are
important in De Novo sequencing and need to be clarified. In Figure 2.2, it can be observed
that the b-ion obtains an additional H+, and y-ion obtains an additional H2O and H+.

Figure 2.2: A doubly charged peptide molecule is fragmented into a b-ion and a y-ion. Source:
[3]

We use α to denote an amino acid and | α | to denote the residue mass of α. The monoiso-
topic mass and average mass can be seen in Supplementary 1. In this thesis, we use the
monoisotopic mass to represent the mass of each amino acid. Given an amino acid sequence
S = α1α2α3 . . . αk, define | S | = | α1 | + | α2 | + ... + | αk |. The actual mass of the peptide
S is 18 + | S |, which is because of an additional H2O. bi denotes the b-ion of P with i amino
acids, the mass of bi = | α1α2...αi |b can be computed with | bi | = 1 +

∑
1≤ j≤i | a j |. yi denotes

the y-ion of P with i amino acids, the mass of yi = | αk−i+1...αk−1αk |y can be computed with
| yi | = 19 +

∑
k−i+1≤ j≤k | a j | [3]. Then the following equation can be computed:

| bi | + | yk−i | = 20 + | S |, 1 ≤ i ≤ k (2.1)

And we can call bi and yk−i a pair of complementary ions. If we consider the charge state,
the relationship between parent mass, charge state, and residue mass can be described mathe-
matically as followed:

Parent mass = ( 18 + | P | + charge state ) / charge state (2.2)
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This relationship is useful when we calculate the dynamic programming matrix, as it en-
ables the determination of both the start and end positions of a path. Furthermore, when ex-
tracting features, the complementary position can be computed.

2.1.2 Signal Peak and Noise Peak

To provide a clear illustration, the peaks in the spectrum corresponding to the a-ion, b-ion,
and y-ion are referred to as the ‘signal peak’, while the ‘noise peak’ represents the peaks of
immonium ions, internal fragment ions, neutral losses, gains, and isotopic ions from the pre-
cursor and product ions, as well as the fragment that cannot be identified by the spectrometry.
Fragments that cannot be identified are primarily attributed to the presence of mixed peptides
during the precursor ion selection process, where the noise likely originates from other pep-
tides. The experiments described in this section were conducted using a subset of the NIST
H. sapiens Orbitrap HCD spectra. The subset consisted of 1000 randomly selected spectra,
totalling 98,359 peaks.

It can be observed in Figure 2.3 that the majority of peaks of a spectrum are noise peaks,
accounting for 86.5%. As a result, only a very small fraction of the peaks (signal peaks) is
beneficial for the final prediction.

Figure 2.3: The proportion of signal peak and noise peak in a total of 98,359 peaks.

Figure 2.4 shows the relative proportions of y-ions, b-ions, and a-ions in the same dataset,
and there are a total of 13,278 signal peaks. It can be observed that y-ion is the most predomi-
nant ion, accounting for over half of the ions, reaching 53.8%, while b-ion accounts for 33.0%,
and a-ion only accounts for 13.2%.
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Figure 2.4: The proportion of a-ion, b-ion, and y-ion in a total of 13,278 signal peaks.

2.1.3 Spectrum and Mass Map
In this study, the NIST H. sapiens Orbitrap HCD spectra are selected as the training data
set. The spectrum is in ASCII text (MSP format), and an example of a peptide sequence
“DIYVDLDMK” is shown in Figure 2.5, and the rest part of the spectrum can be seen in Sup-
plementary 2. An annotated spectrum contains the name of the precursor ion, the modification,
charge state, parent ion mass, and the abundance of each peak, as well as their mass-to-charge
value.

Figure 2.5: Example of the NIST Orbitrap HCD spectrum.
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One major factor that affects the accuracy is the quality of the spectra data. Ideally, the
mass spectra should contain all the signal peaks, and the abundance of the signal peaks should
be much higher than that of noise peaks. However, in practical situations, it is common that
some signal peaks are missing, which leads to difficulties in determining the amino acid in that
interval. Moreover, many noise peaks’ intensities are larger than the intensities of signal peaks,
which leads to the misidentification of signal peak and noise peak. Figure 2.6 shows examples
of an ideal spectrum and a realistic spectrum.

Figure 2.6: Tandem mass spectrum in different situations. The ideal situation presents the b-
ions of the peptide ‘ANELLL’. The missing signal peak situation presents an example that the
b3 and b4 peaks are missing. And some noise peaks’ intensities are higher than signal peaks’
intensities.

In general, De Novo sequencing from a spectrum involves identifying a path containing
solely y-ion peaks or b-ion peaks, starting from the beginning and ending at the precursor
ion real mass. To create a path with indexes, the spectrum is treated as a one-dimensional
histogram, referred to as a ”mass map”. The index of the mass map corresponds to the peaks’
masses, while the values represent the intensities of the peaks. The length of a mass map
depends on the peptide’s mass and its resolution. Higher resolution leads to more accurate
results. In this study, we consider a resolution of 0.01 Da. For example, if the maximum
mass of the peptide is 1500 Da and the resolution is 0.01 Da, the length of the mass map
is 1500 ∗ 100 = 150, 000. The value stored in each bin of the mass map corresponds to
the representative value of the m/z value at that specific position. If no peak is present at a
particular position, the value stored in the corresponding bin will be zero.
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2.1.4 Mass Deviation

In tandem mass spectrometry, the accuracy of the spectra would influence the accuracy. A
common issue in this analysis is the deviations between the experimental mass and the theoret-
ical (monoisotopic) mass of fragment ions. And the mass deviations of fragment ions can be
attributed to the deviation of the experimental mass and the theoretical (monoisotopic) amino
acids’ masses. In the feature-extracting process in the deep learning model as well as deter-
mining the positions in the dynamic programming algorithm, the amino acid mass is utilized
to identify the potential positions of the preceding and following signal peaks when provided
with a signal peak. If directly using the monoisotopic mass to determine the position, some
peaks that have some large mass deviation may not be extracted. Therefore, it is necessary to
find the distribution of the mass deviations and set up a mass tolerance interval to ensure that all
possible signal peaks even with some acceptable mass deviations would be correctly extracted
in the process.

Then the experiment of the mass deviation is done on the above-mentioned dataset. We
compute the mass differences of every two consecutive signal peaks in the spectra, which
correspond to certain amino acid masses, and compared them with their monoisotopic masses.
We counted 7438 mass deviations between the experimental and the theoretical mass values.
It can be observed in Figure 2.7 that most of the deviation is less than ±0.01, to be more
precise, 99.34% of the deviations are within ±0.01. Therefore, given a signal peak and an
amino acid mass, the mass value difference between the calculated next signal peak and the
real next signal peak will be within ±0.01. In other words, if peaks are found outside the mass
tolerance interval, it is highly likely that they are not signal peaks of the corresponding ion.

Figure 2.7: The distribution of the mass deviations between theoretical amino acid mass and
experimental amino acid mass.
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2.2 Single Position Probability Model

The intensity of a peak in the spectrum represents the abundance of the fragment. Typically,
the intensities of signal peaks are usually higher than that of noise peaks. However, there are
always some exceptions the signal peaks have lower intensity and noise peaks have higher in-
tensity. Furthermore, the magnitude of the intensities in different spectra can vary significantly,
sometimes differing by a factor of more than one thousand. Therefore, directly using the orig-
inal intensity to train the network is not feasible. Some methods utilize nature logarithms to
normalize the intensity. However, it is deemed necessary to obtain a more significant and stan-
dardized numerical value to provide a more meaningful and reliable representation of the data.
The concept in this model involves utilizing a convolutional neural network (CNN) to capture
spectral features. The spectrum can be approximated as an image, allowing the CNN model to
effectively learn and extract these features. In this model, we are aiming to convert the original
intensity to a more accurate value for better training results.

2.2.1 Feature Extraction

In De Novo sequencing, the primary information for determining an amino acid is the mass
difference between two peaks that matches the mass of an amino acid. There are a total of
20 amino acids, with masses ranging from 57.02146 Da to 186.07931 Da, as well as three
types of modifications. The first modification is ”Acm” occurring on Cysteine, the chemical
formula is C3H5NO, and the monoisotopic mass is 71.03711. The second modification is
”Acetyl” occurring on N-terminus, Serine, and Threonine, the chemical formula is C2H2O,
and the monoisotopic mass is 42.01056. The third modification is ”Oxidation” occurring on
Methionine and Tryptophan, and the monoisotopic mass is 15.99491. As a result, a total of
23 different ions are considered. Consequently, given a peak, referred to as the ’target peak’,
the positions of any amino acid that serves as either a preceding or following amino acid can
be determined. If these two positions contain peaks, the probability of the target peak being a
signal peak would increase. These features are extracted at the sequence level, and the length
of the sequence feature is thus 20 + 3 = 23. Both the preceding position and the following
position need to be considered, resulting in a final sequence-level feature size of 46.

A b or y-ion may experience some neutral losses or isotopic ions during the fragmentation
process. For each candidate fragment ion, we also consider these ions to extract the feature
at the ion level. If a fragment ion is denoted as F, and the complementary ion of F is denoted
as CF, then the ion-level features can be extracted at the following positions: F, CF, F-1 (−1
isotopic ion), F+1 (+1 isotopic ion), Fˆ2 (+2 charges), F-H2O, F-NH3, CF-H2O, CF-NH3. The
length of the ion-level feature is 9. Figure 2.8 is an example of the ion-level features and
sequence-level features of a signal peak.
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Figure 2.8: The feature map of the Single Position Probability Model. Take y4 as an example,
the ion-level feature is represented in red lines, and the sequence-level feature is represented in
blue lines. The blue lines and red lines in the figure only represent some of the features.

As previously mentioned, directly using the intensities to be the values of features is not
appropriate. Therefore, after testing, it was found that using “intensity rank” to be the values
yields good performance. To calculate the intensity rank, the peaks are first sorted in ascending
order, and each peak is assigned a rank. Then, the intensity rank is calculated by dividing
the assigned rank of each peak by the total number of peaks. If two peaks have exactly the
same intensities, their ranks are the same. However, the situation that two peaks have the same
intensities is very rare. Thus, these scores will be evenly distributed from zero to one. The
intensity rank ensures that the value for each peak is between zero and one, regardless of the
magnitude of the spectrum, and the peak with higher intensity would receive a relativity higher
intensity rank. Then the intensity rank is substituted for the original mass value in the mass
map.

During the feature extracting process of one peak, the feature is extracted based on both
the ion-level feature position and the sequence-level feature position. By concatenating the
ion-level feature with the two sequence-level features in the prescribed order, namely the ion-
level feature followed by the two sequence-level features, one can obtain the final feature map
for a single peak. Thus, the feature map should be a vector of length 55(9+23+23). Unlike
DeepNovo, which extracts an intensity window of size 10 around the ion location [12], Dp-
Novo only considers the windows of size 3. It is mentioned in Section 2.1.4 that most of the
deviations of amino acid mass are less than ±0.01 in the HCD spectrum, For example, given a
signal peak and an amino acid, the mass difference between the real next signal peak position
and the calculated next signal peak position is less than ±0.01. Therefore, the real next signal
peak should be either in the previous bin or in the next bin, which means that three bins (0.03
Da) are more than enough to cover all the possible deviations. Larger windows would include
more noise peaks and lead to inaccuracy. If there are peaks outside the three bins, they are less
likely to become the signal peaks of the corresponding ions. Therefore, extracting three bins
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around the mass value is precise enough for almost all the cases, and can reduce the probabil-
ity that extracts noise peaks. It is worth mentioning that there may not be a large difference
between the calculated position and real position for neutral losses or isotopic ions, but a size
three is also extracted for these features to keep the size consistent. Therefore, the size of one
concatenated feature map is (55,3).

2.2.2 Model Structure and Training
The model used here is a convolutional neural network. The first layer is a 1D convolution
layer, and the size of the kernel is 3. The purpose of using the convolution layer here is to
enable the kernel to discern the appropriate penalty to assign to different deviations. We want
the model gives relatively more penalties to the peaks that have larger mass deviations and
fewer penalties to the peaks that have deviations less than 0.01 Da. Then the output of the
convolutional layer is a feature map with shape (55,1). It is worth noting that the distribution
of deviations in the ion-level and sequence-level features may differ, and it may be more appro-
priate to use distinct kernels for each type of feature. However, this model only employs one
kernel for convenience. Then the extracted features will be passed into a fully connected neural
network to do the classification. The deep learning model used in Single Position Probability
Model is a four-layer fully connected network. Each fully connected layer is followed by a
ReLU activation function, and Dropout is also utilized to reduce overfitting. In the last dense
layer, a sigmoid function is used to map the variable between 0 and 1. The number of neurons
in the first fully connected layer is 32, and the number of neurons in the last layer is 1. With
regard to the predicted results, a peak with a probability larger than 0.5 is considered a signal
peak, and a peak with a probability less than or equal to 0.5 is considered a noise peak. Figure
2.9 shows the structure of the Single Position Probability model.

Figure 2.9: The structure of the Single Position Probability model.

The training set, validation set, and testing set are acquired from the NIST H. sapiens Or-
bitrap HCD spectra. The training set is mainly used for training, the validation set is primarily
used for evaluating the model’s performance during the training process, and the testing set is
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used to evaluate the model’s performance after the whole training process has been completed.
We only consider the spectra in charge two and charge three for the training set, validation
set, and testing set. The reason for only choosing charge-two and charge-three spectra will be
explained in Section 2.3. By traversing the spectra in the training set, the feature of the noise
peaks and the signal peaks can be obtained, and the label set can be acquired from the annota-
tion of the peaks. Then the question is essentially a binary classification problem, the training
data is the extracted (55,3) feature map, and the label is the type of the peak.

The TensorFlow Keras library is used to train the neural network model. The ‘Bina-
ryCrossentropy’ function is used as the loss function, and the optimizer is Adam. The batch
size is set to 128. And Early Stopping callback is used to avoid overfitting. The hyperparam-
eters employed in this model have been carefully selected through multiple rounds of testing.
It has been observed that variations in the hyperparameters do not have a substantial impact
on the overall performance. The result of the training process can be seen in Supplementary
3. After training, this model is capable of assigning a probability value to each peak within a
given spectrum, indicating the likelihood of that peak being a signal peak.

It is worth mentioning that we only extract the b-ion features and y-ion features for the
training set of signal peaks, and regard a-ion as a noise peak. Because the number of con-
secutive a-ions is relatively small compared with the number of b-ion and y-ion, and there is
no x-ion in the spectra. Additionally, as the dynamic programming process takes into account
only a single type of ion path, y-ions are selected as the primary ions for consideration. As a
result, the positions corresponding to 19 Da and the sum of the residue masses + 19 Da are
assigned high initial values to ensure the complete features for the ’y1’ peak and the last signal
peak.

2.2.3 Model Performance Evaluation

After training, the testing process is done on the testing set of NIST H. sapiens Orbitrap HCD
mass spectra. The testing set consists of 128 randomly chosen spectra, containing 12943 peaks.
These spectra are all charge-two and charge-three. And Figure 2.10 shows the result of the
predictions for signal peaks and noise peaks.
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Figure 2.10: a) The Single Position Probability Model scores for noise peaks. b) The Single
Position Probability Model scores for signal peaks.

In Figure 2.10 a) and b), the accuracy is defined as the number of correctly identified peaks
divided by the total number of peaks of a certain type. The x-axis represents the score and the
y-axis represents the number of peaks falling into certain intervals. In this task, any peak with
a score larger than 0.5 is regarded as a signal peak, and any peak with a score less than or equal
to 0.5 is regarded as a noise peak. The blue bars represent the correctly predicted peaks. Figure
a) represents the distribution of scores of 12943 noise peaks, with an accuracy of 97.90%, and
81.5% of the noise peak scores are smaller than 0.05. And Figure b) represents the scores of
2068 signal peaks, with an accuracy of 58.26%.

Directly using the result from the Single Position Probability Model may not be good
enough to find the final path. Since 41% of signal peaks are incorrectly identified as noise
peaks. But if we compare the distribution of the original intensities, the ranks, and the proba-
bilities, we can find that the distribution of peak probability improved a lot concerning distin-
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guishing signal peaks and noise peaks.

Figure 2.11: The figures presented in this study illustrate the distribution of scores for both
signal and noise peaks, using four different methods: intensity rank, transformed intensity
(probability), logarithm, and original intensity for one testing spectrum. Each figure includes
two types of lines, red indicating signal peaks and blue indicating noise peaks. The x-axis of
each figure represents the respective scores, while the y-axis represents the number of peaks
within a given interval.

As illustrated in Figure 2.11, the intensity rank can restrict the value from 0 to 1, however,
the values of a large number of noise peaks are higher than that of signal peaks. Although log-
arithmic transformation can mitigate the disparities in intensities, it cannot confine the values
within a fixed interval for different spectra. Compared to other intensity representations such
as Intensity Rank, original intensity, and logarithmically transformed intensity, the probability
distribution has been found to produce more accurate representations for distinguishing the
type of peaks. The probability scores displayed in the top-right figure distinctly separate the
values for noise peaks and signal peaks. In summary, this model preprocesses intensities to
generate more meaningful values, and in the next model, the intensity values of a peak in the
mass map are replaced by the probability of that peak being a signal peak, thereby enhancing
the accuracy of the features.
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2.3 Reconstruction of High-charge Peaks
In MS/MS spectrometry, a spectrum can be in different charge states. When the precursor ion
mass is large or the charge of the precursor ion is large, the fragment ions are more likely
to get additional charges. However, when a fragment ion acquires more than one charge, the
position of the corresponding peak may not be consecutive with the peaks of charge-one ions.
The m/z value of charge-two ions can be calculated using their definition. Furthermore, the
feature extraction process in deep learning models identifies the positions of the features based
on the charge-one mass value, implying that the model may not accurately extract the features
of charge-two ions. As a result, it is essential to reconstruct the charge-one peaks for those
charge-two ions.

To address this issue, high-charge peaks must be repositioned to their charge-one positions,
forming a consecutive ladder. This thesis focuses primarily on charge-two and charge-three
spectra. When the charge of the precursor ion is two or three, more than 95% of the high-
charged( more than one) fragmentation is charge-two. While some algorithms can transform
high-charge spectra into charge-two spectra, this approach can also accommodate this scenario.

Figure 2.12: The charge-two peak in a spectrum.

It is not appropriate to arbitrarily determine which peaks are charge-two peaks; instead,
it is crucial to devise a method for identifying peaks more likely to become charge-two ion
peaks. Observing various peaks reveals that as the length of an amino acid fragment chain
increases, it is more likely to retain additional charges. Furthermore, it has been found that for
long peptides, the charge-one ladder is interrupted at three-quarters of the sequence, with the
remaining portion generating another charge-two ladder. Consequently, the position where the
charge-one ladder terminates is usually the charge-one signal peak with the largest m/z value.
By utilizing the probability calculated by the Single Position Probability Model, the largest
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m/z value with a probability greater than 0.5 on the original spectrum can be computed. As a
result, it can be assumed that when the m/z value of an ion exceeds this threshold, the ion is
more likely to obtain more than one charge and form a charge-two peak.

If a peak is considered to be a charge-two peak, the charge-one m/z value can be calculated
according to the definition of mass-to-charge value. To reconstruct the charge-one peaks for the
possible charge-two peaks in the spectrum, all the peaks are assumed as charge-two peaks first.
Through the definition, the theoretical charge-one m/z can be computed. For all the assumed
charge-two peaks if their computed charge-one m/z is exceeding the largest m/z value of a
predicted signal peak, then the model will reconstruct their corresponding charge-one peaks.
All peaks in the original spectrum will be retained, and the reconstructed peaks will be added
additionally to the original spectrum.

Although it is acknowledged that several noise peaks may be incorrectly reconstructed, it
can be deemed justifiable when taking into account the potential drawbacks of overlooking all
signal peaks of charge-two, in comparison to the cost incurred. And with the help of scores,
the reconstructed interval can be limited to a very narrow range. It is worth mentioning that the
intensities of these reconstructed peaks are equal to their original charge-two peaks’ intensities.
And if there is already a peak in the reconstructed position, the intensity will be accumulated.

Figure 2.13: The reconstructed charge-one peak of charge-two ion. The annotation marked
with “+ chargeˆ2” represents the reconstructed peaks.

Last, by implementing the same feature extracting and predicting process on the newly
reconstructed spectrum, each peak in the reconstructed spectrum will be assigned a probability,
and the final mass map can be calculated. The value in the mass map represents the probability
that a peak is a signal peak, and this mass map will be used in the following model.

2.4 Dual Position Scoring Model
The Single Position Probability Model successfully updates the values in the mas map into
more accurate probabilities. Although the accuracy of the prediction is still not very high, the
updated numbers would be extremely beneficial to further model training. To a certain extent,
using the probability as the value of the mas map is like the step of reducing the noise pixel
in the image processing, which lets the noise peaks have smaller scores and signal peaks have
higher scores.

In this section, we proposed a new concept: the probability of a certain amino acid being
located between two positions. By deducting the mass of a given amino acid from a target
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position, the preceding position can be calculated. Then the probability is the likelihood that
the amino acid is located between the target position and the preceding position, in other words,
the target position and preceding position contain consecutive signal peaks. For example, given
a target peak, the preceding position of each amino acid can be computed. Then the probability
that each amino acid serves as the preceding amino acid can be computed. The preceding
amino acid of a target peak means that the target peak is a signal peak and the amino acid
sequence fragment of the target peak ends with that amino acid.

2.4.1 Feature Extraction

The approach to determining the probability is similar to the previous Single Position Proba-
bility Model. For convenience, we call the position we prepare to predict: the ‘target position’,
and the possible position for each preceding amino acid: the ‘preceding position’. Instead of
just extracting one position’s ion feature and sequence feature, this model considers the target
position and the preceding position at the same time, which greatly improves the accuracy. The
probability is relatively high when both positions contain peaks, and low when there is only
one or no peak in these two positions. Given a position, if we calculate the probabilities for all
23 ions, the largest probability among these 23 probabilities can be considered the probability
of the peak being a signal peak.

Figure 2.14: The feature map of the Dual Position Scoring model. Take y4 as an example,
when we need to calculate the probability that glutamine is located between y3 and y4, the ion
features of y3 and y4 are represented by the red lines. And the preceding sequence feature of
y3 and the following sequence feature of y4 are represented in blue lines.

The ion-level feature contains the ion features for the target position and the ion feature for
the preceding position. And a size three window around the mass value will be extracted. The
ion feature size for each position is (9,3), and after combining them, the total ion feature is a
vector of size (18,3) with the predicted probabilities as values. The sequence feature considers
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the preceding amino acid of the preceding position and the following amino acid of the target
position. Similar to the Single Position Probability model, each sequence feature is a (23,3)
vector, and after concatenation, it becomes a (46,3) vector. After combining the ion-level
feature and sequence-level feature, the final feature map for a given target position and one of
the amino acids is a vector of shape (64,3). If the calculated positions of some features are less
than 0 or larger than the length of the mass map, 0 will be the value. Figure 2.14 shows an
example of the sequence feature and ion feature of a target position y4.

2.4.2 Model Structure and Training
The structure of the Dual Position Scoring model is similar to the previous one and is shown
in Figure 2.15. The only change is adding the neuron number in the first dense layer to 64.
A convolution layer is located at first to learn the penalty given to the feature in the extracted
window. And a deep neural network is used to learn the features, consisting of three fully
connected layers. Still, the Sigmoid function is used in the last dense layer to map the result
from 0 to 1. The training process is similar to the previous model. The ‘BinaryCrossentropy’
function is used as the loss function, and the optimizer is Adam. The batch size is set to 128.

Figure 2.15: The structure of the Dual Position Scoring model.

The next step involves acquiring the training data. Unlike the previous model, the Dual
Position Scoring model requires generating and simulating all possible features that could po-
tentially be present in the actual experiment to be used as training data. For better understand-
ing, the two positions’ situation is described using a pair (A, B), where B represents the target
position, and A is the preceding position. In this context, S refers to signal peaks, N refers to
noise peaks, and ”+” and ”-” denote containing peaks and not containing peaks, respectively.
For example, if there is a signal peak in the preceding position and no peak in the target po-
sition, the situation can be described as (S+,−). We use labels 1 and 0 to represent if there
is an amino acid located between this interval, and it can still be regarded as a binary classi-
fication task. It is noteworthy to mention that the phenomenon of certain signal peaks being
absent is a commonly observed occurrence. However, the likelihood of two consecutive peaks
being absent is exceedingly low. For the possible positive label, the possible situation pairs
are (S+, S+), (−, S+). The possible negative label pairs include: (N+,N+), (−,N+), (−, S+),
(S+,N+), (N+, S+). The training data should include all these types of features. And the train-
ing set, testing set, and validation set are still acquired from NIST H. sapiens Orbitrap HCD
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spectra. The situation that (S+,−) is not considered here for a positive label, reason is that we
only extract features and do the prediction where there is a peak in the target position to reduce
the time for the predicting process. Therefore, there will not be any situation like (S+,−) or
(N+,−).

2.4.3 Model Performance Evaluation
After training, we conducted tests on the same testing set in Figure 2.10, containing 128 spec-
tra. Given a peak, if we calculate the probability that each amino acid serves as the preceding
amino acid, and get the max value among these probabilities, we can say that this max prob-
ability is the probability that this peak is a signal peak. For each peak in the spectrum, we
extracted 23 different features and predicted the result for each feature separately. Therefore,
the same as the previous result, every peak would have a probability of being a signal peak.

Figure 2.16: The result of the Dual Position Scoring model for noise peaks and signal peaks.
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From Figure 2.16, we can find that the accuracy of the prediction of noise peaks is 93.58%
which experienced a small decrease compared with the previous model. However, the accuracy
of the prediction of signal peak significantly increases from 58% to 89.84%. Compared with
the Single Position Probability model, more signal peaks got scores larger than 0.9, to be more
specific, 73.5% signal peaks scores are within the interval from 0.9-1. The mass distribution
of the wrong prediction of the signal peak can be seen in Supplementary 4. With regard to the
result of noise peak, 78.4% noise peaks’ scores are less than 0.1. It must be acknowledged
that more noise peaks get scores larger than 0.5, and it is the cost of improving the precision of
signal peak prediction. Nevertheless, it is important to note that the accuracy of this model does
not necessarily reflect the accuracy of the final prediction. For instance, even if the accuracy
of detecting signal peaks and noise peaks individually reaches 100%, the final prediction may
still be incorrect. This is due to the possibility of missing signal peaks in certain situations. It
can be found that the result of the Dual Position Scoring model is much better than the result
of the Single Position Probability model. It would be more proper to utilize these scores for
the dynamic programming algorithms.

However, one problem that remains is that it cannot distinguish the signal peak of y-ion,
b-ion, which is one of the problems that will lead to wrong predictions in the dynamic pro-
gramming process. As Figure 2.17 shows, both b-ion peak and y-ion peak receive high scores,
it is hard to distinguish the b-ion and y-ion through the score; while a-ions receive extremely
low scores, mainly because there are not too many consecutive a-ions. It is worth mentioning
that the low accuracy for predicting a-ion is beneficial because only y-ions are considered the
main ions to find the path in dynamic programming.
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Figure 2.17: The distribution of scores of y-ion, b-ion and a-ion.



2.5. Dynamic programming 29

2.5 Dynamic programming
In De Novo sequencing, the objective is to predict the peptide sequence from a spectrum.
After the above-mentioned process, for each peak, the probability that each amino acid is
the preceding amino acid is computed, and the probabilities can be regarded as scores. By
considering the scores of each peak, a final prediction is made by selecting the path that has
the highest cumulative score of peaks. The main idea of dynamic programming in DpNovo is
computing and saving the largest accumulated scores up to each mass value until the precursor
ion mass. Finally, backtracking from the precursor ion mass can be performed to determine the
final prediction amino acid path.

In dynamic programming, a table is used to store the intermediate result of subproblems.
By constructing a dynamic programming matrix dp that has the same length as the mass map,
the accumulated scores on the previous path ending at this position can be represented by the
value in each cell in the matrix dp. Once all values in the dynamic programming matrix have
been calculated, backtracking can be performed from the mass of the precursor ion.

In the Orbitrap HCD spectra, most signal peaks are the y-ion peaks and the b-ion peaks,
and there are a very small number of a-ions. As illustrated in Figure 2.4, it is evident that
the y-ion constitutes the predominant ion species present within the spectra. Therefore, in this
thesis, the dynamic programming algorithm is aiming to find the y-ion path.

Based on the aforementioned model, the likelihood of each peak serving as the endpoint
for a particular amino acid can be computed. As a result, for every peak, a (23, 1) vector can
be computed, indicating the probability that a certain preceding amino acid terminates at that
position. Then these probability vectors will be saved in the corresponding position in a new
array called Θ. And the length of Θ is equal to the length of dp. Θ is only for saving the result
from the Dual Position Scoring model.

Given a fragment P, the residue mass of the fragment can be denoted as | P |. For a m/z
value M, and the 0.01 Da as the resolution γ, the corresponding position in the mass map can be
denoted as Mγ. Considering the final path only contains the charge-one peaks, from the above
calculation, the offset of a y-ion is 19. Given a precursor ion P, the starting position of this path
is 19γ, and the ending position of this path is ( 19+ | P | )γ. The 23 amino acids alphabetic Ω is
sorted in alphabetical order {A,R,N,D, B,C,Q, E,Z,G,H, I, L,K,M, F, P, S ,T,W,Y,V, A∗,C∗,M∗}.
With the Dual Position Scoring model and the reconstructed mass map with values, given a
mass i, its position iγ, the probability of each peak serving as the endpoint for a certain amino
acid can be computed, and the result is an array of size (23,1), saved in Θ[iγ]. If there is no
peak of mass i, Θ[iγ] is a zero vector with a size of 23. Given a λ ∈ [0, 22], Θ[iγ][λ] denotes the
probability that the amino acid Ω[λ] is the preceding amino acid. To be more specific, there is
an amino acid Ω[λ], starting at position (i − | Ω[λ] |)γ and ending at position iγ, where | Ω[λ] |
is the corresponding amino acid mass. The maximum index of dp and Θ is both (19 + | P |)γ.

Given a dynamic programming matrix dp and a position, each cell represents the maximum
accumulated scores ending at this position. For every position iγ in dp, dp[iγ] can be calculated
as:

dp[iγ] = max
λ∈[0,22]

( dp[(i − | Ω[λ] |)γ] + Θ[iγ][λ] ) + penalty + 0.01 ∗max(Θ[iCγ]) (2.3)

Each cell in dp also records which preceding amino acid contributes the largest score,
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making it easier for the algorithm to backtrack. A penalty is applied in cases where no peak is
present in iγ, with the assigned penalty set at −1.0. The result of other penalties can be seen
in supplementary 5. iCγ presents the complementary position of iγ, and can be computed by
Equation 2.1. The last term presents the maximum probability score in the complementary
position in Θ, multiplied by a minor factor of 0.01. This is because when certain y-ion peaks
are absent, the situation in the complementary b-ion position can be assessed. However, it is
intended for the dynamic programming to primarily identify paths based on y-ions, with b-ions
only influencing the prediction when y-ion peaks are missing.

What is noteworthy is that the majority of HCD spectra end with arginine or lysine in
the C-terminal, because trypsin cleaves peptide bonds on the carboxyl side of lysine (K) or
arginine (R) amino acid residues. So dp[(19 + | arginine |)γ], dp[(19 + | lysine |)γ] would be
given relatively high initial value. And the starting position dp[19γ] should also be given a
high initial value to make sure the y-ion path ends at 19γ instead of the offset of b-ion 1γ.
Then from the ending position (19 + | P |)γ, the backtracking can be done in dp by finding
which preceding amino acid contribute the largest score, and the preceding amino acid can be
decided. Recursively do the backtracking until the position is 19γ, and the final path can be
found.

In tandem mass spectra, it is a common situation that a signal peak and its complementary-
ion peak are both missing. According to the algorithm given above, if both peaks are missing
and we are calculating the missing peak’s dp value, it is possible that several paths have the
same score. For example, given an amino acid sequence “DIYVDMK”, if the peak y3 is
missing and the complementary-ion peak b5 is missing, then the two sequences “DIYVDMK”
and “DIYDVMK” will have the same score. With the help of dynamic programming, we can
know the mass of the uncertain mass interval, for example, “DIY(214.09)MK”, and find all
possible amino acid sequences that satisfied that mass value. But in further experiments, only
one peptide is sequence chosen to be the final prediction, which is obtained by selecting the
amino acids according to their ranking within the amino acid alphabetic Ω.

However, one drawback of this dynamic programming algorithm is that when γ is set to
0.01 Da and the mass of the precursor ion is, for example, 1500 Da, then a total of 150,000 dp
values need to be computed. This results in a significant amount of computing time.
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Result

3.1 Dataset
The dataset for training is NIST H.sapiens Orbitrap HCD, Library 1 (best): human hcd tryp
best (high-quality spectra), containing 398373 spectra. And the dataset can be found and

downloaded at https://chemdata. nist.gov/ [41]. The training set contains about 250 randomly
chosen spectra. All these training spectra are charge-two and charge-three.

The testing process was carried out using two databases: the NIST database and the Pro-
teomeXchange database. For the NIST database, only charge-two and charge-three spectra
were considered, whereas all spectra were included in the ProteomeXchange database test-
ing. The experiments were conducted on three species (H.sapiens, M.musculus, and C.griseus)
from the NIST database, while the testing was only carried out on H.sapiens in the ProteomeX-
change database.

Due to the relatively low computing speed, testing all the spectra in one dataset would cost
an extremely large time. Therefore in this chapter, the test of one dataset was carried out only
on a subset of the original dataset. It is expected that the results obtained from this subset will
provide an approximation of the entire dataset.

3.2 Evaluation Criteria
To check the performance of the model and compare it with other models, we use the same
evaluation metrics proposed in DeepNovo [12]. There are three evaluation metrics: Amino
Acid Recall (AAR), Amino Acid Precision (AAP), and Peptide Recall (PR). And these metrics
can be calculated as follow:

AAR = (AA recall)/(AA target)
AAP = (AA recall)/(AA predicted)

PR = (peptide recall)/(peptide target)

Where the AA recall presents the number of correctly predicted amino acids, AA target presents
the number of target amino acids and AA predecited presents the number of predicted amino
acids. For a predicted amino acid to be classified as a ”match” with a real amino acid, its mass
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must differ by no more than 0.1 Da, and the masses of the prefix preceding it must differ by
no more than 0.5 Da. Peptide recall represents the number of correctly predicted peptides, and
peptide target presents the number of target peptides. The peptide recall is the fraction of real
peptide sequences that were fully correctly predicted [12].

3.3 Experiment Result

3.3.1 Result of different peptide Lengths

When comparing the effect of peptide lengths, we tested a subset containing 500 randomly cho-
sen H.sapiens Orbitrap HCD spectra from the NIST database. The result of different lengths
results is listed in Table 3.1.

Table 3.1: Experimental results of different lengths of peptides
X = 6 X = 7 X = 8 X = 9 X = 10 X = 11 X = 12 X = 13 X = 14

AAR 0.944 0.896 0.812 0.962 0.888 0.852 0.916 0.783 0.807
AAP 0.918 0.884 0.78 0.971 0.872 0.845 0.925 0.772 0.812
PR 0.865 0.727 0.636 0.65 0.588 0.51 0.557 0.565 0.4

X = 15 X = 16 X = 17 X = 18 X = 19 X = 20 X = 21 X = 22 X = 23
AAR 0.721 0.627 0.638 0.768 0.621 0.579 0.768 0.732 0.689
AAP 0.73 0.627 0.632 0.793 0.643 0.583 0.795 0.718 0.694
PR 0.273 0.106 0.087 0.1 0 0 0 0 0

It can be found that the amino acid recall and precision do not exhibit a significant change
when the length is larger than 15, however, the peptide recalls decrease significantly with the
increasing length. The low peptide recall is mainly because when the length of the peptide
is getting longer, the situation that a certain ion’s peak and its complementary ion’s peak are
both missing appears more frequently. This situation will cause many paths to have the same
scores when calculating the dp matrix. And the algorithm just randomly chooses one path to
be the final prediction. Therefore, if there are many missing peaks, the peptide recall would be
considerably low. It is worth noting that a significant proportion of the incorrect prediction can
be attributed to the selection of a random path on the missing peak interval.

3.3.2 Result on different species

On the NIST website, different species’ spectra can be downloaded. We had tests on subsets
of H.sapiens, C.griseus, and M.musculus respectively, and each subset contains 500 randomly
chosen spectra from that dataset. And use the evaluation criteria to evaluate the performance
of the model. All the spectra in the tests are charge-two or charge-three. The testing result is
shown in Figure 3.1.



3.4. Comparison of the result with other De Novo sequencing models 33

Figure 3.1: The Amino Acid recall, Amino Acid precision, and Peptide Recall of three species:
M.musculus, H.sapiens, and C.griseus. They all use Orbitrap-HCD as the instrument.

Only these three species have the Oribitrap-HCD spectrum on the website, other species
only have the Ion Trap spectrum. The Ion Trap spectrum cannot reach the resolution of 0.01,
so these species are not counted. As the result shows, the model is trained on the H.sapiens
spectrum dataset but gets even higher amino acid recall and accuracy on the C.griseus dataset,
indicating that this model can be applied to different species. The close similarity between the
amino acid recall and amino acid precision values can be attributed to the fact that the predicted
amino acid sequences are of similar length or equal to the target sequence.

3.4 Comparison of the result with other De Novo sequencing
models

In this chapter, the performance of this model will be compared with other De Novo sequencing
models, for example, PEAKS [19], Novor [45], PepNovo [18], and DeepNovo [12]. And the
result of these models is referenced from “De Novo peptide sequencing by deep learning”
[12]. The testing dataset used here is from the ProteomeXchange database [42]. And data
was acquired from the Thermo Scientific Orbitrap Fusion with the higher-energy collisional
dissociation (HCD) technique. We only compare the result of one specie H.sapiens, and the
accession no. is PXD004424.

We randomly selected a subset of 500 spectra to be the testing set for comparison with the
other four models listed in Figure 3.2. It should be noted that [18] did not specify the number
of spectra in the testing set, and we assumed that the results in [18] were obtained using the
entire dataset. Although the test on DpNovo was conducted on only 500 spectra, the results
can still be considered an approximation.
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Figure 3.2: The Amino Acid recall, Amino Acid precision, and Peptide Recall of a subset, and
compared with the other 4 models on H.sapiens HCD Ms/Ms spectra from the ProteomeX-
change database.

From the result, it can be observed that DpNovo performs comparably with PEAKS in
both ’Amino Acid recall’ and ’Amino Acid precision’ metrics, reaching 59.2% and 59.5% re-
spectively, with a difference of approximately 4.3% and 4.4%. Concerning ’Peptide recall’,
DpNovo reached 16.7%. The low peptide recall is mainly because in the spectra in the Pro-
teomeXchange database, the number of missing signal peaks is increasing, compared with the
spectra in the NIST database. Therefore, when a signal peak and its complementary peak are
both missing, simply randomly selecting one possible sequence to be the final prediction will
lead to the low peptide recall. In our model, there is no additional post-processing step when
multiple candidates are present. However, it is worth noting that certain commercial software,
such as PEAKS, often employ post-processing steps that utilize biological approaches to refine
the selection and identify the most optimal candidate from the available options. If our model
combines those post-procession steps, the result must be better. Therefore, in the situation that
we only randomly select one possible sequence to be the final prediction, the result is relatively
satisfactory.

3.5 Replace Unsure Mass Interval with Mass Value

In the MS/MS spectrum, when a signal peak and the complementary-ion peak are both missing,
using the dynamic program algorithm would lead to a situation that multiple paths have the
same scores. However, in the dynamic programming process, all possible amino acid sequence
paths which have the same highest scores can be acquired. To be more rigorous and accurate,
the unsure mass interval can be replaced with the corresponding mass value.
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Figure 3.3: The peptide sequence prediction with a mass value and all the possible sequences.

3.6 Conclusion and Future Research

This thesis proposed a new De Novo sequencing model for tandem MS spectrometry, combin-
ing deep learning and dynamic programming. With regard to the deep learning models, there
are two convolutional neural network models working together. The first model( Single Posi-
tion Probability model) converts the original mass intensities to more meaningful probabilities,
and charge-two peaks can be reconstructed in their charge-one position based on the probabili-
ties. The second model( Dual Position Scoring model) utilizes the converted values to calculate
the probability that each amino acid serves as the preceding amino acid for each peak. With
the results, dynamic programming can be done, and use backtracking to find the final predicted
sequence. Finally, the unsure mass interval can be replaced by the corresponding mass value
and all possible amino acid sequences will be given.

A large number of tests have been conducted on different datasets and different species. The
dataset we used as a training set is NIST H. sapiens Orbitrap HCD mass spectra. We use three
evaluation criteria to measure the performance, amino acid recall, amino acid precision, and
peptide recall. The amino acid recall and precision reached 81.3%, and peptide recall reached
49.5% on the testing set of H.sapiens. Moreover, the amino acid recall and precision reached
88.5% on C.griseus, and peptide recall reached 52.9%, which means that this model can be
applied to different species’ spectra. In the comparison with other models, we used the spectra
data from the ProteomeXchange database. The amino acid recall and precision reached 59.2%
and 59.5%, which are comparable to those of PEAKS and DeepNovo. The peptide recall is
16.7%.

The peptide recall is relatively low, and there are a few reasons that lead to the low peptide
recall. The first is that the dynamic programming algorithm is relatively simple, for example,
the penalty is only given on the missing peak. Second, this model cannot distinguish y-ion
peaks and b-ion peaks. Therefore, the y-ion peak path may contain some b-ion peaks, if some
consecutive b-ion peaks have high scores. Third, there are some ions whose y-ion peak and
b-ion peak are both missing, in the experiment we just randomly choose one possible amino
acid sequence to be the final prediction, and do not apply any post-procession process like other
commercial software. While the peptide recall may not be exceptionally high in this algorithm,
the scores assigned to all the peaks can offer a more precise and detailed understanding of
the spectrum. Consequently, these scores can be leveraged to enhance the spectrum, thereby
improving the overall quality and accuracy of the predicting. And the scores could be used in
other algorithms to be the initial values for the computation.

In the future, we will try to figure out a more sophisticated dynamic programming algo-
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rithm. For example, giving adjustable penalties to peaks with different score values. Besides,
the dynamic programming algorithm can be optimized to improve the computational speed.
Furthermore, we are actively exploring the integration of additional biological technologies
to incorporate post-processing steps. This will enable a more comprehensive prediction and
selection process among all the candidates derived from the dynamic programming methods.
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Supplementary 1. The amino acid masses. Source: [3] .
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Supplementary 2. The full example of a NIST Orbitrap HCD spectrum. .

Supplementary 3. The training result of the Single Position Model .
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Supplementary 4. The mass distribution of the wrong prediction of signal peaks in the Dual
Position model.

Supplementary 5. Evaluation results using different penalties.
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