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Abstract

Data-driven predictive maintenance for heat, ventilation, and air conditioning (HVAC) systems

has gained much popularity over recent years due to the increasing availability of integrated

internet of things (IoT) sensors capable of reporting HVAC internal operational data. Most

existing predictive maintenance methods are designed to analyse these internal operational

data for maintenance decision making. However, these methods are not applicable to HVAC

systems that are not equipped with internal IoT sensors. Consequently, we propose an AutoEn-

coder and Artificial Neural Network based HVAC Health Prognostics framework (AE-ANN-

HP) that classifies the health condition of HVAC systems using only daily power consumption

and outside temperature readings, both of which are easy to obtain for non-IoT enabled HVAC

systems. AE-ANN-HP when evaluated with three types of autoencoders all show an increase

in performance when compared to existing HVAC health prognostics methods in terms of clas-

sification accuracy.

Keywords: data-driven predictive maintenance, health prognostics, condition monitoring,

HVAC, smart building, machine learning.
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Summary for Lay Audience

Heat, ventilation, and air conditioning (HVAC) systems account for a significant portion

of energy consumption globally. Effective maintenance of HVAC systems can not only reduce

the operational costs of the buildings but also improve human comfort of indoor environments.

Data-driven predictive maintenance for HVAC systems has gained much popularity over recent

years due to the increasing availability of integrated internet of things (IoT) sensors capable of

reporting HVAC internal operational data. Most existing predictive maintenance methods are

designed to analyse the internal operational data for maintenance decision making. However,

these methods are not applicable to older or simpler HVAC systems that are not equipped with

internal IoT sensors. Consequently, we propose an AutoEncoder and Artificial Neural Network

based HVAC Health Prognostics framework (AE-ANN-HP) that classifies the health condition

of HVAC system using only daily power consumption and outside temperature readings, both

of which are easy to obtain for non-IoT enabled HVAC systems. The AE-ANN-HP framework

is evaluated with three different types of autoencoders. Their performances are compared to

existing HVAC health prognostics methods that are evaluated on the same dataset. The re-

sults show that all three AE-ANN-HP configurations yield higher classification accuracy than

existing methods.
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Chapter 1

Introduction

1.1 Motivation

In 2021, around 135 Exajoules of energy was used in the operation of residential and commer-

cial buildings worldwide. It accounted for 30% of global energy consumption and 27% of total

greenhouse gas emissions [1]. Furthermore, 38% of buildings energy consumption come from

the operations of heat, ventilation, and air conditioning (HVAC) systems [2]. The maintenance

of these HVAC systems accounts for more than 65% of annual building facilities management

(FM) costs [3]. Effective maintenance of HVAC systems can reduce maintenance costs, boost

the availability of HVAC systems, and in turn improve human comfort of the indoor environ-

ments.

In facilities management, there are three main strategies toward maintenance management:

corrective maintenance, preventive maintenance, and predictive maintenance [4, 5]. Corrective

maintenance is the simplest form of maintenance strategy as it allows a piece of equipment

to run to failure and only intervenes when breakdown happens. While this can be effective

for non-critical equipment, i.e., those that do not cause disruption to the normal operation of

the buildings, corrective maintenance is not ideal for HVAC systems because an unplanned

breakdown can have a large impact on the operation of a building. Preventive maintenance is

1



2 Chapter 1. Introduction

a schedule-based maintenance strategy where an equipment is inspected and maintained reg-

ularly following a schedule derived from average-life statistics [4]. Traditionally, HVAC and

many other systems in buildings are maintained following preventive maintenance strategy

because it minimizes the chance of breakdown. However, the downside to preventive mainte-

nance strategy is that an equipment can still have a lot of remaining useful life (RUL) at the

time of a scheduled maintenance, which can create unnecessary waste. Additionally, frequent

maintenance drives up FM costs and in turn increases the total operational cost of the buildings.

Predictive maintenance (PdM) strategy aims to solve the shortcomings of corrective and

preventive maintenance strategies by actively monitoring and analysing the operational condi-

tion of an equipment for maintenance decision making. The concept of predictive maintenance

has existed for more than 30 years. However, modern data-driven predictive maintenance

is only recently popularized along with the adoption of an increasing number of Internet of

Things (IoT) enabled equipment, which allow operational data to be collected and analysed at

ease [6, 7]. There are two main approaches to data-driven predictive maintenance of HVAC

systems, which are fault detection and diagnostics (FDD) and health prognostics (HP) [3].

Fault detection and diagnostics approaches aim to detect and classify incipient mechanical

faults in the HVAC systems. On the other hand, health prognostics approaches aim to estimate

the health status of the HVAC systems and predict their remaining useful life. Machine learn-

ing is commonly incorporated into both approaches, which involve training a machine learning

algorithm with historical HVAC operational data and to make prediction of the HVAC system’s

status with real time data.

Artificial neural networks (ANN) are a type of supervised machine learning algorithm that

has gained much popularity over recent years due to their ability to learn complex patterns from

the data and make predictions with high accuracy. ANNs have been shown to perform well in

both fault detection and diagnostics [8] and health prognostics [9] for HVAC systems. Au-

toencoders are unsupervised machine learning algorithms that are capable of learning a lower

dimensional and generalized representation of the data. Because of their ability to produce
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higher reconstruction errors for abnormal data samples than for normal ones, autoencoders

have shown good performance in HVAC fault detection [10]. Although, autoencoders are

rarely used in HVAC health prognostics approaches.

Nonetheless, due to the recent popularization of data-driven predictive maintenance, exist-

ing researches in the field of HVAC predictive maintenance has been mostly focused on more

sophisticated HVAC systems capable of reporting a variety of internal operational data [9, 11,

12]. However, these methods are not applicable to simpler HVAC systems that are not IoT

enabled and often lack comprehensive maintenance history, commonly found in residential

and small commercial buildings. These systems account for a significant portion of the HVAC

systems globally. Additionally, retrofitting internal IoT sensors to HVAC systems is often not

feasible or desirable as it would introduce unnecessary wear and tear to the system. Conse-

quently, in this thesis, we propose a data-driven predictive maintenance framework for health

prognostics of HVAC systems that are unable to report internal operational status.

Previous research on HVAC power consumption patterns show that HVAC systems’ power

consumption is largely affected by the outside temperature trends with a correlation coefficient

as high as 0.91 [13]. Furthermore, when working in degraded conditions, HVAC system’s an-

nual power consumption can increase by an average of 28.2% [14]. Hence, we aim to classify

the daily health condition of an HVAC system using only its power consumption and the out-

side temperature trends, both of which are easily obtainable. HVAC power consumption data

can be collected with the installation of a smart electric meter, while the outside temperature

data can be collected with a smart temperature sensor or from a nearby weather station. Our

proposed framework makes use of both an autoencoder and an ANN for daily health condition

classification. The autoencoder model analyses the relative degradation of the HVAC system

given the outside temperature trends and generates additional features to aid with the daily

health condition classification by the ANN model.
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1.2 Contributions

The main contributions of this thesis are summarized as follows:

• AutoEncoder and Artificial Neural Network based HVAC Health Prognostics (AE-ANN-

HP) framework is a novel HVAC health prognostics solution designed for HVAC systems

without internal IoT sensors. AE-ANN-HP incorporates an autoencoder to learn a gen-

eralized representation from daily HVAC power consumption and outside temperature

data. The trained autoencoder then produces an enriched dataset which are used for

daily HVAC health condition classification.

• A multi-objective fitness score is used for optimal autoencoder selection. This score

assesses an autoencoder model’s ability to minimize reconstruction errors for data sam-

ples in normal condition as well as its ability to discriminate between data samples from

normal condition and various degraded conditions.

• Mean Logarithmic Error (MLE) function is proposed to calculate the difference between

reconstruction errors for normal and degraded data samples. MLE function performs a

natural logarithmic transform to the inputs, which suppresses the effects of larger differ-

ences and in turn boosts the effects of smaller differences.

• Show that using EnergyPlus, a building energy simulation software, to simulate HVAC

behaviors under normal and various degraded conditions for synthetic data generation is

a viable alternative to mitigate the lack of good quality data.

• Evaluation of AE-ANN-HP framework with three different autoencoder architectures.

The performances are compared with existing health prognostics methods on four met-

rics which include confusion matrix, macro-averaged f1 score, macro-averaged OVR

ROC curve, and AUROC score.

In all three experiments with different autoencoder architectures, the proposed AE-ANN-HP

framework achieve better performance than existing HVAC Health Prognostics methods. AE-
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ANN-HP with autoencoders more optimized for temporal feature extraction yield higher per-

formance than AE-ANN-HP with a basic autoencoder.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 describes the background. It

covers building energy simulation with EnergyPlus, artificial neural networks, autoencoders,

and its variations.

Chapter 3 describes the related works. The two main approaches to data-driven predictive

maintenance are discussed as well as predictive maintenance with synthetic data. The current

research challenges and gaps are summarized at the end.

Chapter 4 presents the proposed AutoEncoder and Artificial Neural Network based HVAC

Health Prognostics (AE-ANN-HP) framework including its three components.

Chapter 5 describes the synthetic data generation with EnergyPlus and the reason why it is

a viable alternative for the real dataset.

Chapter 6 describes the experiments with AE-ANN-HP framework. It presents three exper-

iments of the AE-ANN-HP framework with three different types of autoencoders and compares

their performances with existing health prognostics methods. The experiment results and find-

ings are discussed at the end.

Chapter 7 concludes this thesis and discusses future work.



Chapter 2

Background

2.1 Introduction

This chapter provides background knowledge for this work. We discuss machine learning al-

gorithms including artificial neural networks and autoencoder and its variants. We also discuss

building energy simulation with EnergyPlus.

2.2 Artificial Neural Networks

AN artificial neural network (ANN) is a machine learning algorithm inspired by the biological

brain. The building block of an ANN is a perceptron [15], depicted in Figure 2.1. A perceptron

consists of an input vector x, a weight vector w, and an activation function Φ. A bias term b is

also often included to adjust the y-intercept of the output [15]. The output h of the perceptron is

the linear combination of the input vector x and weight vector w passed through the activation

function Φ, given by (2.1).

h = Φ(w⊤x) (2.1)

An ANN contains an input layer, some hidden layers, and an output layer. Each layer con-

sists of some neurons, and each layer of neurons interconnected to ones in the previous layer.

6



2.2. Artificial Neural Networks 7

Figure 2.1: The structure of a perceptron.

Figure 2.2 shows an ANN with two hidden layers.

Training an ANN involves updating the weights in each neuron such that the prediction

error, determined by an error function such as mean squared error (MSE) (2.2), where y is a

vector of the ground truth and ŷ is a vector of model predictions, is minimized. The feature

matrix is passed into the input layer of an ANN. The calculations for neuron outputs are then

carried out for each hidden layer to produce the final output of the network for each feature

vector. An error function calculates the error between network outputs and the target values.

The back-propagation algorithm is leveraged to propagate the error back to in each hidden layer

and calculate error gradient with respect to each weight in the network. Finally, the weights

are updated by taking a step along the error gradient that leads toward a lower loss value, an

algorithm called gradient descent. A learning rate parameter is often desired to control the size

Figure 2.2: An artificial neural network with 2 hidden layers.
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of the step for gradient descent.

MS E(y, ŷ) =
1
n

n∑
i=1

(yi − ŷi)2 (2.2)

In this thesis, an ANN is used for multi-class HVAC health condition classification. The

number of neurons in the output layer corresponds to the number of classes for the classifica-

tion task such that the neurons represent the probabilities of the output classes. Additionally,

softmax activation function is used for the output layer, which gives the probability distribution

over mutually exclusive output classes. The weights in the network are adjusted to minimize

the cross-entropy error function [16].

2.3 Autoencoder

In supervised learning, a machine learning model learns from a labeled dataset, i.e., the target

output associated with each input is provided to train the model. In comparison, unsupervised

machine learning models attempts to learn useful representation of the data without the need

of labeled data. Autoencoders are unsupervised machine learning algorithms that attempt to

Figure 2.3: A DAE with one hidden layer.
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copy its input to its output [17] and extract lower dimensional and generalized features through

the process. They are commonly used for fault detection [18, 19, 20] based on the fact that

autoencoders are capable of producing higher error values for faulty data samples than for

normal ones. In this thesis, we use an autoencoder to analyze the degradation of HVAC system

using its power consumption and outside temperature data.

A basic autoencoder is one consisting of densely connected layers, also known as dense

autoencoder (DAE). Figure 2.3 depicts the structure of a DAE. Conceptually, an autoencoder

contains an encoder and an decoder. The encoder part of an autoencoder transforms the input

vector into a latent space z, usually of a smaller dimension [17]. The decoder part, on the other

hand, reconstructs the input by transforming the latent space vector back to its original dimen-

sion. Similar to the prediction error in ANN, the reconstruction error (RE) of an autoencoder

model is calculated by comparing the reconstructed input against the actual input.

Although a basic DAE can learn a compressed representation of the input features, it is

not optimized to extract temporal relations within the data. Fortunately, two other autoen-

coder architectures, convolutional autoencoder [21] and recurrent autoencoder [22], have been

proposed to overcome this problem.

2.3.1 Convolutional Autoencoder

Convolutional neural networks (CNN) apply convolution operations to only small local re-

gions of the features to extract the spatial relationship. CNNs with 1D convolution have

been shown to perform well with time-series inputs [23, 24], while CNNs with 2D convo-

lution have seen great success with computer vision based problems such as image classifi-

cation/segmentation [25, 26] and fault detection [18]. A convolutional autoencoder (CAE),

first introduced by Masci et al. [21], is a combination of a CNN and an autoencoder. In addi-

tion to dense layers in a DAE, a typical CAE also includes series of convolution, maxpooling,

upsampling, and deconvolution layers, as depicted in Figure 2.4.

The encoder of a CAE contains several pairs of convolution and maxpooling layers. Con-
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Figure 2.4: The structure of a typical convolutional autoencoder.

volution layers apply convolution operation to the inputs with some filter to construct feature

maps. Maxpooling layers help to achieve invariance to small translations of the input [17] as

well as reducing the computational complexity. The stacking of convolution and maxpool-

ing layers allows for the extraction of multiple levels of representations [27]. Finally, dense

layers are used to further reduce the dimension. In the decoder part of a CAE, the effects of

convolution layers and maxpooling layers are reversed by the use of upsampling layers and

deconvolution layers. The same number of dense layers and upsampling and deconvolution

layer pairs are applied to transform the latent space back into its original dimensions.

2.3.2 Recurrent Autoencoder with LSTM Cells

Conventional ANNs make the assumption that the data are independent in the time domain.

In contrast, recurrent neural networks (RNN) model the time domain by including feedback

loops in RNN cells to learn from sequences of data. In addition to weights, RNN cells contain

hidden states to memorize time dependent information. Long Short-Term Memory (LSTM)

cells are a special kind of RNN cells designed to mitigate the vanishing and exploding gradient

problems [28] experienced during the training of traditional RNNs. Because of its ability to

discover temporal relationships, LSTM networks have seen great success in problems involv-

ing temporal sensitive data, including natural language processing (NLP) [29] and time series

forecasting [30].
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In an LSTM autoencoder (LSTMAE), LSTM layers, each containing some LSTM cells, are

used to encode and decode the time series features [22]. This thesis uses the LSTM autoencoder

structure proposed by Sagheer et al. [31], as shown in Figure 2.5. It is unfolded along the time

axis, which contains 3 time steps. This LSTMAE model has one LSTM layer in the encoder

and another one in the decoder. In the encoder part of the model, the LSTM layer accepts input

features from each time step and outputs the latent space vector after the last time step. In the

decoder part of the model, the latent space vector is repeated and passed as input to the LSTM

layer during each time step. This layer returns the full output sequence, i.e., one output for

each time step. At the end, a dense layer is applied to the output in each time step to reduce the

output dimension from the number of LSTM cells to the actual input dimension.

Figure 2.5: The structure of a LSTM autoencoder.

2.4 Building Energy Simulation with EnergyPlus

EnergyPlus [32] is an open-source building energy simulation software whose development is

funded by the U.S. Department of Energy. It is capable of simulating the energy consump-



12 Chapter 2. Background

tion for including but not limited to heating, cooling, ventilation, and lighting of the building.

EnergyPlus has been used by researchers in many field of studies including building thermal

management [33], potential energy savings [34], and predictive maintenance [35]. In this the-

sis, we utilize EnergyPlus to generate synthetic HVAC power consumption data in both normal

operation condition and several degraded conditions for evaluating the proposed HVAC health

prognostics framework. To run a simulation, two main components need to be prepared, which

include building modeling component and weather information component.

To model a building in EnergyPlus, an IDF (Input Data File) file needs to be constructed.

The IDF file contains information about the location/exterior environment of the building, its

construction/building envelope, and the HVAC system installed. The modeling of building

construction is achieved by defining the zoning, surface geometry, and construction materials.

Various types of HVAC systems can also be modeled. Because of the complexity of building

modeling, EnergyPlus provides a number of predefined IDF files, which covers different com-

binations of building structures and HVAC systems, for use by researchers. In this thesis, we

adopt and modify a predefined IDF file named “5ZoneAirCooled”.

Weather information is also required for EnergyPlus to simulate building energy. Energy-

Plus uses a proprietary format named EPW (EnergyPlus Weather) for weather data storage.

The EPW file contains annual hourly weather information such as dry bulb/wet bulb tempera-

ture, dew point temperature, wind direction and speed, and solar radiation. While it is possible

to construct custom EPW files, weather features such as solar radiation and horizontal diffuse

radiation are usually harder to acquire than other simpler features commonly available through

weather stations. For this reason, EnergyPlus and some other 3rd parties provide EPW files for

some typical meteorological years (TMY) for many locations around the world for building

energy simulation.

In addition to building energy simulation, EnergyPlus also has native fault models [36]

that allows for energy simulation under some faulty conditions. Some fault types include ther-

mostat/humidistat offset, heating and cooling coil fouling, and dirty air filters. For each fault
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model, an intensity parameter can be modified to vary the intensity of the fault. In this thesis,

the HVAC power consumption under degraded condition is simulated with native fault models.

2.5 Summary

In this chapter, we discuss machine learning algorithms used in this thesis including ANN,

DAE, CAE, and LSTMAE. Our proposed framework consists of an autoencoder for HVAC

degradation analysis and an ANN for final daily HVAC health condition classification. The

proposed framework is designed to work with an autoencoder of any type. In this thesis, we

evaluate the performance of our proposed framework with the use of DAE, CAE, and LST-

MAE. We also introduce building energy simulation with EnergyPlus. In this thesis, Ener-

gyPlus is used to generate synthetic HVAC dataset for use in experiments with the proposed

framework.



Chapter 3

Related Works

3.1 Introduction

This chapter reviews data-driven HVAC predictive maintenance methods and data augmen-

tation and synthetic data generation techniques. Research challenges and opportunities are

identified.

3.2 Data-driven HVAC Predictive Maintenance

The study of data-driven predictive maintenance gained much interest from researchers in the

last decade through the fourth industrial revolution, also known as industry 4.0, where the

mass adoption of sensors on industrial equipment allows for unprecedented amount of data to

be collected and analysed for maintenance decision making [6, 7]. The current state-of-the-art

methods for data-driven predictive maintenance for HVAC systems are reviewed. Two most

popular predictive maintenance approaches, namely fault detection and diagnostics (FDD) and

health prognostics (HP), and various machine learning algorithms being applied are discussed.

14
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3.2.1 HVAC Fault Detection and Diagnostics

Fault detection and diagnostics for HVAC systems refers the early detection of incipient fault

and the isolation of fault type before the total breakdown of an HVAC system happens. Several

machine learning algorithms have been applied to HVAC Fault Detection and Diagnostics,

which include: SVM [8, 37], decision tree [37, 38, 39, 40], ANN [8], and RNN [8, 10, 11].

Satta et al. [38] proposed a dissimilarity-based approach in which fault detection is accom-

plished by investigating the mutual dissimilarities of multiple HVAC systems within a cohort.

In their method, the authors train a gradient boosted tree (GBT) binary classifier with dissim-

ilarity values to detect HVAC faults and found their method to outperform other methods that

only consider individual HVAC systems. However, because the HVAC systems need to be me-

chanically identical and operate in the same conditions, their method has limited application in

cases where different kinds of HVAC systems or only a single HVAC system is available for

study.

Bouabdallaoui et al. [10] developed a building facility predictive maintenance framework

that includes five steps, namely data collection, data processing, model development, model

feedback and improvement, and model deployment. In their framework, the authors propose

to use an LSTM autoencoder architecture with data collected from building automation system

(BAS) and vibration sensors installed onto equipment’s surface for fault detection. Specifically,

a fault is detected when the root mean square error (RMSE) reconstruction error surpass an end-

user defined threshold. Their framework is evaluated on HVAC installations in a sport facility

building. However, the authors admit the small data collection period and the need of more

extensive evaluation.

Taheri et al. [11] investigated 7 different configurations of LSTM networks and their abil-

ities to detect HVAC faults and classify the types of fault, including stuck outside air damper,

stuck heating coil valve, stuck cooling coil valve, and outdoor air temperature bias. They

considered LSTM networks including standard LSTM networks, deep transition input LSTM

networks, deep transition output LSTM networks, stacked LSTM networks, and combinations
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of such. The authors evaluated the models on HVAC internal sensor data and found that stacked

deep transition output deep recurrent neural network configuration yielded a f1-score of 0.91

on their Single-zone Air Handler Unit dataset, outperforming the random forest (RF) model by

6% and the gradient boosted tree (GBT) model by 11%.

Tasfi et al. [41] proposed a semi-supervised machine learning technique to achieve anomaly

detection of building systems including HVAC systems using electrical data reported by IoT

electric meters. The authors used a convolutional autoencoder with the addition of a classifier

that takes input from the latent space of the autoencoder to detect anomaly in the electrical

signal. Our proposed framework is similar to their method in that both methods incorporate an

autoencoder and a classifier. In contrast, our proposed framework classifies the macroscopic

degradation of the HVAC system instead of microscopic anomalies in the electrical signal. In

addition, the autoencoder used in their method is intended to learn an embedding, whereas the

autoencoder in our proposed framework is designed to not only learn the embedding of the

data but also to differentiate between data samples in normal and degraded health conditions

through separations of reconstruction errors.

These studies show that the fault detection and diagnostics is a promising approach to

data-driven predictive maintenance for HVAC systems. However, the FDD approaches do not

provide a macroscopic view of the degradation trends, which is crucial to understanding the

degradation dynamics for the HVAC systems. Additionally, the majority of studies in this

field require IoT sensors embedded into the HVAC systems for operational data collection.

Hence, they are not applicable to the HVAC systems that are not IoT enabled or do not collect

operational data at all. In contrast, our approach focuses on the health prognostics of HVAC

system and aims to provide a solution for the HVAC systems without internal IoT sensors.

3.2.2 HVAC Health Prognostics

Health prognostics for HVAC systems refers to the assessment of the operational condition of

HVAC systems for predictive maintenance planning. Health prognostics include the predic-



3.2. Data-driven HVAC PredictiveMaintenance 17

tion of remaining useful life (RUL) and the estimation of health condition of HVAC systems.

Health prognostics differ from fault detection and diagnostics in that FDD are generally binary

classification in the case of fault detection, or multi-class classification in the case of fault di-

agnostics; whereas in most cases, health prognostics are regression problems. HVAC health

prognostics is also less popular than HVAC fault detection and diagnostics in terms of the

number of studies done on the topics. Nonetheless, several machine learning algorithms have

been applied by researchers for HVAC health prognostics, including ANN [9], SVM [9], and

decision tree [12].

Cheng et al. [9] proposed a predictive maintenance planning framework for mechanical,

electrical, and plumbing (MEP) components. Their framework contains the information layer,

which collects and integrates data from building information modelling (BIM) sensor network,

facilities management (FM), and application layer, which is responsible for fault alarming

and condition prediction. The authors proposed the idea of condition index, a value between

0 and 10, that represents the health status of the component where higher number indicates

better condition. The authors experimented with ANN and SVM models with sensor data and

FM data to predict the condition index and found the SVM model to yield slightly higher

performance when tested against HVAC chillers. However, their method requires manual data

labeling from FM experts. This can be very costly and not be feasible in some cases.

Yang et al. [12] proposed to use the operation data leading up to each HVAC failures for

the remaining useful life (RUL) prediction of HVAC components. Sensor and actuator data up

to two weeks before the occurrence of a failure are used to predict the RUL of the component

in number of days. To evaluate their method, the authors extracted data from 11 failure events

and applied regression tree model for the task. They found their method can reliably predict

the RUL in 5 out of 11 test cases, while in the other 6 test cases, their method yielded slightly

higher regression errors. Their method mitigates the need of data labelling. However, because

the predicted RUL has a small range of 14 days, it does not provide health prognostics from

a macroscopic view which would capture the gradual degradation of the HVAC systems. The
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authors also reported that some failures may not be detectable from data trends leading up to

the failure.

These studies show the promising potential of health prognostics approach for HVAC pre-

dictive maintenance. Both studies frame the HVAC health prognostics as regression problems.

In contrast, our approach attempts to assign HVAC health conditions into classes and rely on

synthetic data generation techniques to generate data samples for each health condition. Our

approach eliminates the need for manual labeling while still focusing on the macroscopic level

HVAC health prognostics. Additionally, similar to the studies on fault detection and diagnos-

tics, both studies still require extensive operational data collection efforts. In contrast, our

proposed method provides a solution to HVAC predictive maintenance for HVAC systems that

are not capable of reporting internal operational status or cannot be easily converted to do so.

3.3 Predictive Maintenance with Synthetic Data

Researchers in the field of data-driven predictive maintenance often face the problem of a lack

of high quality data. For fault detection and diagnostics approaches, the dataset are often highly

imbalanced, e.g., the majority of the samples are negative samples. For health prognostics ap-

proaches, run-to-failure dataset are often unobtainable because HVAC systems are considered

critical components, i.e., most follow preventive maintenance strategy. To mitigate this prob-

lem, several data augmentation and synthetic data generation techniques have been applied to

create synthetic dataset that aid the research.

Ebrahimifakhar et al. [37] employed a physics-based model [42, 43] to generate a syn-

thetic dataset containing various HVAC faults for fault detection and diagnostics. However,

this introduces the problem of imbalanced dataset because while faulty classes can be gener-

ated with different intensities, the no fault class cannot. The synthetic minority oversampling

technique (SMOTE) [44] was then applied to augment the no fault class to produce a more bal-

anced dataset. The authors found that by augmenting the no fault class, their classifier suffers
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a slight decrease in overall accuracy but yields significantly higher performance for no fault

class prediction. Galvez et al. [39] created a physics-based model in MATLAB for an HVAC

system installed in passenger train carriages. Their model contains real sensors located in the

real HVAC system and virtual sensors that simulate outputs based on data from the real sensors.

The synthetic faulty data is generated through introducing a drift to the virtual sensor outputs.

The authors also introduced noise in input parameters for augmenting the dataset.

The synthetic data generation techniques discussed above focus on the simulation of the

physical internal workings of the HVAC system for synthetic sensor data generation. On the

other hand, several studies have also attempted to generate synthetic data by the use of En-

ergyPlus, an building energy simulation software. Yan et al. [45] generated synthetic data

by varying parameters such as chiller tube inside diameter and fan efficiency in the definition

of HVAC system and subsystems in EnergyPlus. Chakraborty et al. [35] created two office

building models in EnergyPlus and utilised the integrated fault models [46] to introduce faulty

behaviors for generating synthetic data. In this thesis, we combine the techniques from these

two studies, i.e., varying the parameters in EnergyPlus fault models, such that faulty behaviors

with multiple intensities are generated.

3.4 Summary

In this chapter, the two data-driven HVAC predictive maintenance approaches, namely fault

detection and diagnostics and health prognostics, as well as synthetic data generation and data

augmentation techniques are reviewed. The current research challenges and gaps are sum-

marised as follows:

• Most studies in the field focus on HVAC systems equipped with internal IoT sensors such

that the internal operational conditions can be monitored for analysis. While they can be

beneficial to more modern and complex HVAC systems, these methods are not suitable

for those systems without IoT internal sensors. Our proposed method aims to fill in this
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gap by estimating the health condition of HVAC systems using power consumption and

weather data, both of which are easier to collect.

• While HVAC fault detection and diagnostics has been well studied, HVAC health prog-

nostics has not seen many advancements. Our proposed method attempts to study the

degradation of HVAC systems from a macroscopic standpoint such that the deterioration

process is captured.



Chapter 4

AE-ANN-HP Framework

4.1 Introduction

This chapter describes the proposed AutoEncoder and Artificial Neural Network based HVAC

Health Prognostics (AE-ANN-HP) framework, a novel data-driven HVAC health prognostics

framework using HVAC power consumption and weather data. An overview of the framework

is given. Then, subsequent sections describe the framework components in detail.

4.2 Overview

The proposed AE-ANN-HP framework is shown in figure 4.1. This framework consists of

three major components: data preprocessing, autoencoder degradation analysis, and health

condition classification. The purpose of data preprocessing component is to sanitize the data as

well as to engineer more features. Because of the limited features available to non-IoT enabled

HVAC systems, it is important to extract more features to build a richer dataset for analysis.

The autoencoder degradation analysis component is designed to differentiate between HVAC

behaviors in normal and degraded conditions. An autoencoder is used for this component be-

cause it is capable of producing higher reconstruction errors for a data sample in degraded

conditions relative to if it is in normal condition. We also propose a novel multi-objective

21
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fitness function for hyperparameter optimization of the autoencoder. The latent space of the

autoencoder and the reconstruction errors are then used to enrich the dataset. Because of the

dynamic nature of HVAC behaviors on a daily basis, an HVAC system in normal operating

condition may consume more power in a hotter day than the same HVAC system in a degraded

condition would in a cooler day. This means that the autoencoder degradation analysis compo-

nent can only analyse the relative degradation of the HVAC system and it alone is not enough

to accurately classify its final health condition. Hence, the health condition classification com-

ponent handles the final classification of HVAC daily health condition with an artificial neural

network (ANN) multi-class classifier. Because this research focus on the health prognostics as-

pect of predictive maintenance and the mechanical degradation of the HVAC system is a slow

process, AE-ANN-HP framework analyses the daily HVAC power consumption and outside

temperature readings to predict the daily health conditions.

The flow of data through the framework is described as follows. Beginning with raw data,

i.e., the HVAC power consumption and outside temperature time series data, the data prepro-

cessing component prepares the data and splits the data into time-series features and non-time

series features. Then, the autoencoder degradation analysis component takes in the time-series

features and produces the latent space representation of the features as well as the reconstruc-

tion errors. Finally, these two outputs are concatenated with the non-time series features and

fed into the health condition classification component to produce a final daily health condition

for the HVAC system.

4.3 Data Preprocessing

The first component in the proposed HVAC health prognostics framework is data preprocess-

ing. This component is necessary to transform raw data that often contain impurities into a

better form that is suitable for machine learning models to train on. This component is further

divided into three sub-components, namely data sanitization, normalization, and feature engi-
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Figure 4.1: Proposed HVAC health prognostics framework.

neering. Data sanitization is needed because raw data often contain impurities which need to

be removed. Normalization scales all data into the same range for machine learning algorithms

to learn more effectively. Feature engineering is also beneficial as it helps build a richer dataset.

4.3.1 Data Sanitization

The data santitization process in this framework is done in three steps. First, because missing

values are commonly found in time series data, the missing data replacement step is used to
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mitigate this problem. Second, in parts of the world which implement daylight saving time

(DST), the artificial 1 hour shift in time during summer can cause the HVAC behavior to devi-

ate, hence daylight saving time adjustment step is needed to correct the shift in HVAC behavior.

Finally, some HVAC systems have regular inactivity periods. Inactivity period removal step is

used to remove these periods. Each step is explained in more detail as follows.

• Missing Data Replacement Time series data such as HVAC power consumption and

outside temperature collected by IoT smart electric meters and temperature sensors often

contain missing values due to temporary loss of communication of the smart meters. To

mitigate this issue, missing observations are replaced with the average of the previous

and the next valid observations.

• Daylight Saving Time Adjustment When daylight saving time is in effect, time series

data readings reported in Greenwich mean time (GMT) would become out of sync with

local time by 1 hour because of the shift. Hence, the timestamps on these observations

are rolled back 1 hour such that they align with local time. Then, the skipped 2 A.M.

during a transition into daylight saving time is filled according to the aforementioned

missing data replacement method. On the other hand, the duplicated 2 A.M. during a

transition back to standard time is removed.

• Inactivity Period Removal The HVAC systems installed in commercial locations are

typically setback (set to a more energy conserving temperature) or shutdown during un-

occupied hours to conserve energy [47]. Because the observations made during these

times do not contain any useful information, removing these readings can reduce the

amount of trainable parameters in the model with no impact to the performance. This

process can be ignored for HVAC systems installed in residential locations where the

corresponding building(s) may be occupied at any given time.
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4.3.2 Normalization

Data normalization is critical in machine learning because features with a larger scale can over-

shadow those with a smaller scale, resulting in inferior performances [48]. In this thesis, we

adopt min-max scaling (4.1) to normalize the time series data because Min-Max scaler pre-

serves the relationships among the input data [49], which is beneficial for an autoencoder in

the autoencoder degradation analysis component to effectively learn the generalized represen-

tation of the data. In (4.1), xi is a value in the dataset, xmin and xmax are the minimum and

maximum values of the dataset, and xi
′

is the normalized value.

xi
′

=
xi − xmin

xmax − xmin
(4.1)

Because data samples containing degraded HVAC behaviors might not always be available, the

minimum and maximum values for the scaler are determined based only on data samples with

no degradation. The normalization transformation is then applied to all samples in the dataset.

4.3.3 Feature Engineering

Feature engineering is important especially in this case where the available features are limited.

To engineer additional features from the time-series data, the data is first grouped into daily

windows such that the data in each window contain timestamps for one calendar day. Then,

statistical features are calculated for each window. In this thesis, we adopt daily minimum,

daily maximum, daily mean, and daily standard deviation for statistical features. Additionally,

in some settings, HVAC operation can be influenced by date and time, e.g., different operational

profiles for different days in a week, or in different seasons. Hence, date related features are

extracted based on the date of each window. This can include month of the year, day of the

year, and day of the week. To preserve the periodical nature of date related features, these

features are encoded with trigonometric encoder, given by:
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Figure 4.2: Illustration of target classes and train, validation, and test set split.

xsin
i = sin(

2 · π · xi

τ
) (4.2a)

xcos
i = cos(

2 · π · xi

τ
), (4.2b)

where τ is the period, e.g., 7 days in a week. Lastly, the target classes are generated. In this

thesis, we use three target classes for determining the daily health condition of HVAC systems.

They are ND for no degradation condition, MD for moderate degradation condition, and SD for

severe degradation condition. These three target classes are based on the finding that HVAC

systems operating in moderately degraded condition and severely degraded condition show

increases in annual power consumption of 14.3% and 28.2% [14]. However, this framework is

not restricted to work with only three health condition classes such that more classes may be

considered. Figure 4.2 demonstrates the three target classes as well as the train, validation, and

test set split of the dataset.

4.4 Autoencoder Degradation Analysis

The second component of the framework is the degradation analysis component. This com-

ponent incorporates an autoencoder to differentiate between HVAC behaviors in normal and

degraded conditions as well as generate additional features to aid the final classification of

daily health conditions. In this component, an autoencoder is applied to the time series data in

each daily window to analyse their relative degradation. The autoencoder model is trained only

on no degradation data samples. Because the model only sees data samples from no degrada-
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Figure 4.3: Autoencoder model training, optimal model selection, and feature generation pro-
cess.

tion class during training, its parameters are optimized such that the reconstruction errors are

minimized for no degradation samples. Hence, the model is expected to produce higher recon-

struction errors for samples belonging to moderate degradation and severe degradation classes

when similar outside conditions are exhibited. Once the autoencoder model is trained, the

encoder part of the model is capable of compressing the input data into a lower dimensional

representation with minimal loss of information, also known as the latent space. Hence, both

the reconstruction error and latent space features are used to generate an enriched dataset to be

used in the health condition classification component.

Because the autoencoder is used to generate an enriched dataset for the final health con-

dition classification, the hyperparameter for the autoencoder model needs to be tuned so that

the best performing model is selected for this purpose. Hence, the selection of the optimal

autoencoder model is incorporated into autoencoder model training. This process adopts the

exhaustive grid search strategy for model training and finds a list of candidate optimal au-

toencoder models based on their fitness scores. Hence, the autoencoder degradation analysis

component is split into three steps: autoencoder model training, optimal model selection, and

autoencoder feature generation, as shown in Figure 4.3. These steps are detailed in the follow-

ing three subsections.
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4.4.1 Autoencoder Model Training

The first step of the process is autoencoder model training. In this step, the autoencoder model

training with all hyperparameter sets are conducted. First, the hyperparameters for the de-

sired autoencoder model are identified. Let’s assume the use of a dense autoencoder (DAE).

Common hyperparameters used for tuning include the number of hidden layers, the number

of neurons in each hidden layer, activation function, and learning rate [50]. Exhaustive grid

search strategy is then used such that an autoencoder model is trained for each possible combi-

nation of the hyperparameter values. The autoencoder models are trained with no degradation

training set, while the no degradation validation set is used for early stopping of the training

process to prevent model over-fitting [51]. Fitness scores are calculated for these models to

determine the list of candidate optimal models in the next part of the process.

4.4.2 Optimal Model Selection

After all the autoencoder models are trained, a list of candidate optimal models are determined

by the calculation of fitness scores. Conventionally for autoencoder hyperparameter optimiza-

tion, the fitness of a model is usually determined using reconstruction errors [52, 53], i.e.,

the model that minimize the reconstruction errors for a validation dataset is the optimal model.

However, in our scenario, minimizing the reconstruction error alone is not enough to determine

the optimal model. To generate the best features for health condition classification, the autoen-

coder needs to not only minimize the reconstruction error for no degradation data samples, but

also distinguish between no degradation, moderate degradation, and severe degradation sam-

ples in terms of the separation of reconstruction errors for each class. Hence, we propose a

multi-objective optimization function to find the optimal model.

The first objective is to minimize the reconstruction errors for the no degradation validation

set. Specifically, the mean of reconstruction errors (4.3) is minimized. RE is a vector of
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reconstruction errors and RE is the mean of reconstruction errors.

RE =
1
n

n∑
i=1

REi (4.3)

The second objective is to maximize the separation between the reconstruction errors for

each of the classes. Conventional error functions such as mean squared error (MSE) and mean

absolute error (MAE) are not ideal in this scenario because these functions are designed such

that the signs of the errors are ignored. Because of the inclusion of square operation or abso-

lute value operation, the errors are always positive. This can result in an autoencoder model

that fails to separate the three classes, e.g., its reconstruction errors of no degradation class

are higher than those of degraded classes, yielding a larger separation score than another au-

toencoder model which is capable of separating the three classes but only by a small amount.

Additionally, because the HVAC power consumption trends vary from day to day, depending

largely on the daily outside temperature trends [13], the differences between reconstruction

errors for each data sample within the same class can also vary by a large amount. In this

case, an ideal function to calculate the separation of reconstruction errors between each class

is one that keeps the sign of the separation values and prevents larger separations from over-

shadowing smaller separations. Based on these desired characteristics, we propose the mean

logarithmic error (MLE) function as the objective function for calculating the separations. The

MLE function is defined by

MLE(RE1,RE2) =
1
n

n∑
i=1

(loge(RE1i + 1) − loge(RE2i + 1)), (4.4)

where RE1 and RE2 are two vectors of reconstruction errors. Note that the translation by 1

allows the natural log function to pass through the origin (0, 0). MLE applies natural log

transformation to the two input vectors, then calculates the mean of the differences between

the two transformed vectors. The MLE function is based on the existing Mean Squared Log-

arithmic Error (MSLE) function, which is designed to penalize under-estimated predictions
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more harshly than over-estimated predictions. We remove the square operation from MSLE

function to retain the signs of the outputs. We also assign the reconstruction errors vector

of a more degraded condition to RE1 and that of a less degraded condition to RE2 such that

positive separations (under-estimated predictions) yield higher positive scores than negative

scores yielded by negative separations (over-estimated predictions). Overall, the MLE func-

tion not only maintains the sign of the separations but also drastically reduces the effects of

larger differences by the log transform, which in turn enhances the effects of smaller differ-

ences. It prevents large differences from dominating all else. Hence, it is the ideal metric for

determining the autoencoder models’ ability to separate the reconstruction errors for the three

classes.

Concretely, the two objective functions applied to the optimal autoencoder model selection

process are shown by (4.5a) and (4.5b).

ob j1(REND val) = −REND val (4.5a)

ob j2(REND val,REMD val,RES D val) =

MLE(RES D val,REMD val) + MLE(REMD val,REND val)
(4.5b)

For ob j1, the mean of the reconstruction errors for the no degradation validation set, denoted

as REND val, is calculated. Because this objective function is to be minimized, a negative sign

is added in the front. For ob j2, the MLE between reconstruction errors for severe degradation

validation set and reconstruction errors for moderate degradation validation set and the MLE

between reconstruction errors for moderate degradation validation set and reconstruction errors

for no degradation validation set are added together. The reconstruction errors of severe degra-

dation validation set, moderate degradation validation set, and no degradation validation set are

denoted as RES D val, REMD val, and REND val, respectively. This function is to be maximized.

After obtaining the results for both objective functions, a multi-objective fitness score is used
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for assessing the fitness of each trained autoencoder model. It is defined as

f itness = w1 · |ob j1(REND val)| + w2 · |ob j2(REND val,REMD val,RES D val)|

subject to w1 + w2 = 1,with w1,w2 ∈ [0, 1],
(4.6)

where w1,w2 are the weights for the objective functions, ob j1(·), ob j2(·) are objective 1 and ob-

jective 2 functions, and |·| is to scale each objective function with min-max normalization (4.1).

In this fitness score function, first, min-max normalization function is applied to transform the

objective functions such that they have the same order of magnitude [54]. Then, a weighted

sum between the two objectives is calculated to be the fitness score. This function is to be

maximized.

By using a weighted sum for fitness score calculation, we introduce two weight parameters

w1 and w2, which correspond with ob j1 and ob j2 respectively. Varying the weights values

effectively varies the importance of the two objective functions. For each pair of weights

considered, the autoencoder model that yields the highest fitness score is selected as a candidate

optimal model.

4.4.3 Autoencoder Feature Generation

The final step in the autoencoder degradation analysis component is autoencoder feature gener-

ation. As discussed, the latent space features and the reconstruction errors are generated using

the autoencoder model. These two features are concatenated with non time series features,

produced by the data preprocessing component, to form a new enriched dataset. This dataset is

used for the final HVAC health condition classification. Because there are multiple candidate

optimal autoencoder models, each candidate model is used to generate a new enriched dataset.

Ultimately, all enriched datasets are passed to the health condition classification component for

final HVAC health condition classification.
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4.5 Health Condition Classification

The health condition classification component is the last component of the AE-ANN-HP frame-

work. It is responsible for producing the final daily HVAC health conditions. In this compo-

nent, an artificial neural network multi-class classification model is used to classify the final

daily health condition of an HVAC system. Specifically, the classifier used for this component

is a feed-forward neural network with an input layer, two hidden layers [55], and an output

layer with three neurons for multi-class classification. The latent space features and the recon-

struction errors produced by the autoencoder degradation analysis component and the non-time

series features produced by the data preprocessing component are concatenated to form an en-

riched dataset for the classification task. This enriched dataset is used as the inputs to train the

classifier.

As described in the previous section, for each pair of fitness score weights considered, the

optimal autoencoder model, also referred to as the candidate model, is used to generate the

latent space features and the reconstruction errors. This means that each pair of fitness score

weights is associated with a distinctive dataset. Hence, a classification model is trained for

each dataset. Additionally, hyperparameter optimization for each classification model is also

conducted to ensure the best performance. The number of neurons in each hidden layer, the

activation functions, and the learning rates are examples of hyperparameters that can be tuned

for this classifier model. The objective function for the hyperparameter optimization of this

multi-class classifier is the cross-entropy loss function. The classifier that yields the lowest

cross-entropy loss value on the validation set across all tuned classifiers is selected as the final

optimal classifier model.

4.6 Summary

In this chapter, we describe the proposed AutoEncoder and Artificial Neural Network based

HVAC Health Prognostics (AE-ANN-HP) framework. This framework is a novel data-driven
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predictive maintenance framework for HVAC systems without internal IoT sensors. The data

preprocessing component transforms raw data into a better form that is suitable for use in ma-

chine learning. The autoencoder degradation analysis component analyses the relative degra-

dation of each data sample. It produces a list candidate optimal autoencoder models and in

turn generates a list of new enriched datasets. Lastly, the health condition classification com-

ponent leverages a multi-class ANN classification model to classify the daily health conditions.

Because multiple enriched datasets are generated for use in this component, an ANN classi-

fication model is trained with each enriched dataset. The model with the highest validation

performance is deemed the optimal classifier model.



Chapter 5

Synthetic HVAC Data Generation with

EnergyPlus

5.1 Introduction

In this chapter, we first describe a real dataset provided to us for this research and discuss

the reasons this dataset is not used for this research. Then, we describe the synthetic data

generation with EnergyPlus and show that the synthetic dataset resembles the features in the

real counterpart such that the synthetic dataset is a valid alternative for the validation of AE-

ANN-HP framework when the real dataset cannot be used.

5.2 Description of the Real Dataset

The dataset provided to us for this research, courtesy of our industry partner, contains HVAC

power consumption and outside temperature data, both collected by a smart electric meter,

from a medium-sized single-storey commercial building located in Toronto, Ontario, Canada.

The meter readings are aggregated into 15-minute averages such that each hour contains 4

readings. Figure 5.1 shows the HVAC power consumption and outside temperature trends

from the beginning of May to the end of October in 2022, spanning 6 months, and a zoomed in

34



5.2. Description of the Real Dataset 35

(a)

(b)

Figure 5.1: HVAC power consumption and outside temperature trends from the real dataset:
(a) From May to October, (b) In the first week of September.

view of the trends for the first week of September. The outside temperature values remains at

a constant 25◦C from mid-July to mid-August because of a sensor malfunction. Several other

instances of missing power consumption and outside temperature data are also present in the

dataset. Nonetheless, the main reasons that the real dataset is not used for the training and

testing of the AE-ANN-HP framework are as follows:

1. The maintenance records of the HVAC system are not easily accessible. Hence, it is not

possible for us to label the dataset, i.e., determine the degradation status of the HVAC

system for each sample in the dataset.

2. To generate data samples for the HVAC system operating in various degraded states and

weather conditions for training the machine learning models, it would require extensive

mechanical modifications to the HVAC system, which not only can interrupt the regular
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service of the building, but also incur unnecessary labour and operational costs for the

industry partner.

Despite this dataset being unsuitable for this research, it provided us with valuable information

on the behaviors of the HVAC systems and enables a synthetic dataset to be generated for use

in this research.

5.3 Synthetic Data Generation for HVAC system

For the simulation of the HVAC system’s power consumption, we adopt and modify the “5ZoneAir-

Cooled” building template provided by EnergyPlus because of its popularity among researchers [56,

57]. The location of this building is set to Toronto, Ontario, Canada for consistency with the

(a)

(b)

Figure 5.2: HVAC power consumption and outside temperature trends from a synthetically
generated dataset using EnergyPlus: (a) From May to October, (b) In the first week of Septem-
ber.
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real building location. To further the consistency, the weather information used for the sim-

ulations are the typical meteorological year (TMY) hourly weather datasets of the Pearson

International Airport, located in close proximity to the building of interest. The TMY weather

datasets are available on the website OneBuilding.Org [58]. Additionally, the outputs of En-

ergyPlus are also set to quarter-hourly averages. Lastly, the said building template and TMY

weather dataset are fed into EnergyPlus to simulate HVAC behaviors. Figure 5.2 shows the

synthetic HVAC power consumption and outside temperature trends generated with one of the

TMY weather dataset and a zoomed in view of the trends in the first week of September.

To show that the synthetic dataset is similar to the real dataset, we compare the dataset using

two metrics: daily mean of real and synthetic HVAC power consumption and the Pearson

correlation coefficient of daily real and synthetic HVAC power consumption. The Pearson

(a)

(b)

Figure 5.3: Comparison between the real dataset and the synthetic dataset: (a) Daily mean
HVAC power consumption, (b) Pearson correlation coefficient of daily HVAC power consump-
tion
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correlation coefficient r is given by

r(x, y) =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2 · (yi − ȳ)2

, (5.1)

where x and y are two vectors of the same length. A positive r means that the two vectors show

similar trends, while a negative r means that the two vectors show opposite trends. As shown

in Figure 5.3(a), although the daily mean power consumption vary because of the different

weather conditions for the two datasets, both real and synthetic datasets show similar general

upward then downward trend with peaks during the summer season. Additionally, figure 5.3(b)

shows that the daily HVAC power consumption readings of the real and synthetic data have high

Pearson correlation coefficients for all dates. Note that the dip in the graph corresponds to the

abnormal daily HVAC power consumption trends resulted from sensor malfunctions. These

two metrics show that the synthetic dataset exhibits similar features that are present in the real

dataset. Hence, the synthetic dataset can be a valid alternative to the real counterpart.

5.4 Synthetic Data Generation for HVAC System with Degra-

dation

To generate data for the moderate degradation (MD) and severe degradation (SD) conditions,

we employ the EnergyPlus fault model for simulating HVAC systems in deteriorated health

conditions. In this thesis, we simulate the power consumption of HVAC systems with var-

ious amount of dirtiness of the air filter for the variable volume supply fan, a subsystem of

the HVAC system. Nassif [14] found that a moderately dirty air filter can increase the annual

HVAC power consumption by an average of 14.3% while a very dirty air filter can increase

the power consumption by 28.2%. Based on their findings, a fault intensity parameter in the

fault model is adjusted such that the simulated annual HVAC power consumption exhibits an

increase of 14.3% for moderate degradation condition from normal and an increase of 28.2%
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Figure 5.4: Comparison of the HVAC power consumption in no degradation, moderate degra-
dation, and severe degradation conditions.

for severe degradation condition from normal. Figure 5.4 illustrates the effects of the degrada-

tion simulations. In moderate degradation and severe degradation conditions, the HVAC power

consumption show slight increase over no degradation condition. However, because of the de-

terministic nature of the EnergyPlus simulation, i.e., the same input produces the same output

every time the simulation is ran, the general shapes of the daily trend for all three conditions

remain the same.

5.5 Summary

This chapter covers the synthetic data generation process with EnergyPlus. The reason that a

synthetic dataset is needed is that while the real data provided by our industry partner provides

valuable information, the dataset do not contain enough data to support the training and testing

of the framework. Next, we show that the simulated HVAC data is a valid alternative because it

shares features that are present in the real dataset. Finally, we describe the simulation of HVAC

system with varying levels of degradation using EnergyPlus fault model.
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AE-ANN-HP Framework Evaluation

6.1 Introduction

In this chapter, we describe the evaluation of the AE-ANN-HP framework. First, we describe

the dataset and the evaluation metrics used for the evaluation. Next, we conduct four experi-

ments and discuss the results. The first experiment establishes the baseline performance using

existing health prognostics methods. The next three experiments apply three different autoen-

coders to the AE-ANN-HP framework. Finally, we compare the performances and discuss the

findings.

6.2 Dataset Split

As discussed in Chapter 5, the evaluation of the AE-ANN-HP framework is done on a syn-

thetic dataset using the EnergyPlus simulation software. Specifically, 6 typical meteorological

year (TMY) hourly weather datasets are used to simulate the HVAC power consumption (6

rows in Figure 6.1). For each weather dataset, the HVAC power consumption for no degra-

dation, moderate degradation, and severe degradation conditions are simulated (3 columns in

Figure 6.1). As previously mentioned, the data resolution is set to quarter-hour, thus each day

contains 96 readings of the two features. The HVAC simulations are ran for the period from

40
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Figure 6.1: Training, validation, and testing split of the dataset.

May 1 to October 31, which contains 184 days. Overall, the final combined dataset contains

HVAC data for 3,312 days or 317,952 individual readings. Data generated by all 6 simulations

in no degradation condition are assigned with the no degradation label. The same is true for

data generated in the two degraded conditions. Hence, this dataset is a balanced dataset as each

health condition contains the same number of simulated days.

The dataset is then split into training, validation, and testing set. Figure 6.1 illustrates this

split. First, the synthetic data generated by one of the TMY hourly weather datasets (Simulation

6 in Figure 6.1) is set aside and reserved for testing the models’ generalization performance.

Then, for the remaining 5 simulations, for each health condition, 20% of the data is split into

validation set and the remaining 80% of the data is used for training. Dedicating an entire

simulation for testing is a better strategy than simply splitting another 20% of all data, because

an entire simulation contains HVAC data for each day from May to October for each health

condition, which covers a wider range of weather conditions and HVAC power consumption

trends. In result, there are 2,208 days of data in the training set, 552 days in the validation set,

and another 552 in the testing set.
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6.3 Evaluation Metrics

To evaluate the model performance, we use confusion matrix, multi-class F1 score with macro

averaging, and the one-vs-rest (OVR) area under receiving operating characteristics curve (AU-

ROC) with macro averaging.

Confusion matrix is commonly used for the evaluation of multi-class classification tasks

because it shows the model’s ability to predict each class as well as the classes it misclassifies

as when it fails to predict the actual class. Figure 6.2 represents a multi-class confusion matrix

with true positive (TP), true negative (TN), false positive (FP), and false negative (FN) labeled

with respect to the class C1. TP represents the number of correctly classified positive samples.

TN represents the number of correctly classified negative samples. FP represents the number of

actual negative samples that are misclassified as positive samples. FN represents the number of

actual positive samples that are misclassified as negative samples. Additionally, from the con-

fusion matrix, precision and recall can be calculated by (6.1) and (6.2) respectively. Precision

represents the proportion of predicted positive samples which are correctly classified. Recall

represents the proportion of actual positive samples which are correctly classified as positive.

Precision =
T P

T P + FP
(6.1)

Recall =
T P

T P + FN
(6.2)

Figure 6.2: A multi-class confusion matrix. TP, TN, FP, FN are labeled in class C1’s perspec-
tive.
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F1 score is a popular accuracy measure for machine learning models. For binary classifi-

cation, it is defined as the harmonic mean of precision and recall. The equation to calculate

F1 score is given by (6.3). A higher F1 score indicates a higher model performance. A F1

score of 1 represents a model that can correctly classify all instances. In this thesis, we use

the macro-averaging method to calculate the F1 score in multi-class setting because the testing

dataset is a balanced dataset, i.e., it contains the same number of samples for each class. The

macro averaged F1 score is the unweighted average of the F1 score for each individual class.

It is given by (6.4).

F1 = 2
Precision · Recall
Precision + Recall

(6.3)

Fmacro
1 =

1
n

n∑
i=1

FCi
1 (6.4)

FPR =
FP

FP + T N
(6.5)

Receiver operating characteristic curve (ROC) provides a visual representation of a bi-

nary classifier’s performance with varying decision thresholds. In an ROC curve, the true

positive rates (TPR) evaluated at varying thresholds is plotted against the false positive rates

(FPR). TPR is the same as recall, which is given by (6.2). FPR is the proportion of actual

Figure 6.3: ROC curves for a perfect classifier and a chance level classifier.
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negative samples which are misclassified as positive, calculated by (6.5). The ROC curve has

both a domain and a range of [0, 1]. For a model that classifies no better than random chance,

the ROC curve resembles a diagonal line from (0, 0) to (1, 1). On the other hand, for a perfect

classifier, the ROC curve follows the y-axis from (0, 0) to (0, 1) then a horizontal line from (0,

1) to (1, 1).

Area under ROC curve (AUROC) measures the enclosed space between the receiver oper-

ating characteristic (ROC) curve and the x-axis from 0 to 1. This metric measures the probabil-

ity for a model to classify a random positive instance as more positive than a random negative

instance. While the AUROC score can be arbitrarily lower than 0.5, a chance level classifier

would score an AUROC of 0.5 and a perfect classifier would score 1.0, as shown in Figure 6.3.

AUROC is useful for evaluating the performance of the AE-ANN-HP framework because the

three health conditions have implied ranking, i.e., severe degradation is more positive than

moderate degradation, which in turn is more positive than no degradation.

6.4 Experiments & Results

In this section, we present four experiments to assess the performance of the AE-ANN-HP

framework. In the first experiment, we evaluate existing methods for HVAC health prognostics

on the same dataset to establish a performance baseline for the AE-ANN-HP framework to

compare with. We consider three methods: artificial neural networks (ANN) [9], support vec-

tor machine (SVM) [9], and decision tree (DT) [12]. In the subsequent three experiments, we

evaluate AE-ANN-HP with the use of three different autoencoders, namely dense autoencoder

(DAE), convolutional autoencoder (CAE), and long short-term memory autoencoder (LST-

MAE). In experiment II with DAE, the objective is to study the effect of the inclusion of a

simple autoencoder over directly using a classifier for HVAC health condition classification. In

experiment III and IV with CAE and LSTMAE, the objective is to study the performance gain

when using autoencoders with more complex architectures.
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All machine learning algorithms are trained with three different seeds and the performances

are averaged to reduce the chance of luck. For experiment I with three baseline algorithms, the

results are averaged over three trials. On the other hand, for experiment II, III, and IV with

AE-ANN-HP framework, because two machine learning algorithms are involved, the results

are generated as follows: all autoencoders are first trained with three different seeds, the optimal

hyperparameters for the autoencoder models are selected based on the average fitness score of

three trials. Then, all three trained autoencoders with the optimal hyperparameters are used

for the generation of enriched datasets. Lastly, for each enriched dataset, a classifier is trained

with three different seeds. Hence, the final results of the experiments with the AE-ANN-HP

framework are averaged over nine trials.

6.4.1 Experimental Setup

All four experiments are performed on a desktop PC with an Intel Core i7-9700k CPU, an

NVIDIA GeForce RTX 2080 GPU, and 32 GB DDR4 memory. In experiment I, the baseline

ANN model is implemented in Python programming language using Tensorflow library with

Keras API. The baseline SVM and baseline DT models are implemented in Python using Sci-

kit Learn library. In experiment II - IV, the DAE, CAE, LSTMAE, and ANN classification

models are implemented in Python using Tensorflow library with Keras API. The training of

LSTMAE models are accelerated with GPU using cuDNN library. Pandas and Numpy libraries

are used for dataset manipulation. The results figures are generated using Matplotlib library.

The three seeds used for training the machine learning algorithms are 1, 2, 3.

6.4.2 Experiment I: Performance Baseline

In the first experiment, we evaluate existing HVAC health prognostics methods on the afore-

mentioned synthetic HVAC dataset. The results from the existing methods are used for compar-

ison with the AE-ANN-HP framework. We consider three machine learning models: ANN [9],

SVM [9], and DT [12].
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Experiment Process

To ensure fairness across all experiments, the same data are used for training all three baseline

models as well as three AE-ANN-HP models. The dataset is prepared using the data prepro-

cessing component in the AE-ANN-HP framework. Recall that the electric meter readings

have a 15-minute resolution, thus each day contains a total of 96 readings. The daily HVAC

power consumption and outside temperature readings from midnight to 6 A.M. (24 readings)

are removed because of inactivity, which reduces the number of readings from 96 to 72 per

day. Statistical features including daily minimum, daily maximum, daily average, and daily

standard deviation are calculated for both time series features. Time derived features including

month of year, day of year, and day of week are extracted and encoded with trigonometric en-

coding (4.2). After data preprocessing, the dataset contains a total of 158 features, including 2

time-series features each with 72 time steps, 8 statistical features, and 6 date derived features.

For each baseline model, hyperparameter tuning is also conducted to achieve the best model

performance.

The baseline ANN model is the same as AE-ANN-HP’s final classification model. The

difference is that for the experiment with baseline ANN model, after preprocessing, the features

are passed directly to the ANN model for classification, skipping the autoencoder degradation

analysis step. The network is set to contain two hidden layers [55]. Adam is used as the

optimizer. To control model overfitting, the validation set is used to monitor the validation

Table 6.1: List of hyperparameters and their search space for tuning the baseline ANN model.

Hyperparameter Description Search space
hidden units Number of neurons in each hidden

layer.
Input size × {2, 3, 4}1

activation The activation function for each layer
except for last layer (SoftMax).

{relu, sigmoid, tanh}

lr Learning rate for Gradient Descent. {0.01, 0.001, 0.0001}

1Here the number of neurons in each hidden layer of the ANN depends on the size of the input layer. For
example, the baseline ANN model has an input size of 158. The search space is therefore {316, 474, 632}. For a
classifier in AE-ANN-HP framework with 42 inputs, the search space is then {84, 126, 168}.
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cross-entropy loss for early stopping of the training process. The minimum delta for validation

loss is set to 0.0001 and the early stopping patience is set to 100 epochs. The hyperparameters

used for tuning the ANN model are listed in Table 6.1. The model with the lowest validation

cross-entropy loss is used for reporting testing performance.

Similar to the baseline ANN model, the baseline SVM and DT models are also trained

on the preprocessed dataset containing 158 features. Unlike the baseline ANN model, the

baseline SVM and DT models are trained until convergence. Hence, the validation set is only

used for hyperparameter tuning. The hyperparameters used for tuning the two models are

listed in Table 6.2 and Table 6.3. For the baseline SVM model, the solver is restricted to 1

million iterations to mitigate non-convergence cases. Because the SVM and DT models do not

require the validation set for early stopping of the training process, after the tuning process,

these models are re-trained with their best hyperparameters with the combined training and

validation set. The re-trained models are used to report testing performance.

Table 6.2: List of hyperparameters and their search space for tuning the baseline SVM model.

Hyperparameter Description Search space
C l2 regularization parameter. 50 exponentially spaced val-

ues with range [1, 1000]
kernel The kernel function. {linear, poly, rbf, sigmoid}

Table 6.3: List of hyperparameters and their search space for tuning the baseline DT model.

Hyperparameter Description Search space
criterion Function that measures the quality of

splits.
{gini, entropy}

max depth The maximum depth of the tree. {10, 20, 30, 40, 50, inf}
min samples split The minimum number of samples

needed to split an internal node.
10 linearly spaced values
with range [2, 11]

min samples leaf The minimum number of samples
needed to be at a leaf node.

10 linearly spaced values
with range [1, 10]

max features The number of features to consider
for finding the best split.

{sqrt, log2}
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Results Analysis

Recall that we attempt to determine the health condition of HVAC systems using only daily

HVAC power consumption and outside temperature data. The objective of this experiment is

to investigate the performance of existing methods in a scenario where the number of features

are limited. Figure 6.4 shows the confusion matrices against the testing set for all three base-

line models. Note that the values in the confusion matrices are averaged over three trials. It

is evident from the confusion matrices that the ANN and SVM models are somewhat capable

of accurately classifying the daily HVAC health conditions. However, upon further inspection,

a common trend can be noticed that the models misclassify many moderate degradation (MD)

instances as severe degradation (SD) and many no degradation (ND) instances as moderate

degradation (MD), but rarely misclassify moderate degradation (MD) instances as no degrada-

tion (ND) and severe degradation (SD) instances as moderate degradation (MD). This suggests

that they tend to misclassify some data samples to be in a more degraded condition than their

actual conditions. On the other hand, the DT model shows inferior performance than the other

(a) (b) (c)

Figure 6.4: Comparison of confusion matrices of baseline models against the testing set: (a)
ANN, (b) SVM, (c) DT. All values are averaged over three trials.

ANN SVM DT
F1 0.8091 0.8005 0.7654

AUROC 0.9534 0.9422 0.9111

Table 6.4: Comparison of F1 and AUROC scores of baseline models against the testing set.
All scores are averaged over three trials.
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two baseline models and struggles with classifying data samples in moderate degradation class.

The simultaneous high AUROC scores and low F1 scores exhibited by the three baseline mod-

els show that Despite that the models’ likelihood of ranking a random data sample in a more

degraded class as more degraded than a random data sample in a less degraded class, they are

not as good at achieving a balance between precision and recall. Consequently, the best per-

forming model, the baseline ANN model, yields an macro-averaged AUROC of 0.9534 but a

macro-averaged F1 score of 0.8091.

The AE-ANN-HP framework aims to improve the health condition classification perfor-

mance by introducing the autoencoder degradation analysis component to the process. We

experiment with DAE, CAE, and LSTMAE in the subsequent experiments.

6.4.3 Experiment II: AE-ANN-HP with Dense Autoencoder

The AE-ANN-HP framework adds an additional autoencoder component to extract features

from the daily HVAC data before classifying the health condition of the system. In this exper-

iment, we evaluate AE-ANN-HP with a dense autoencoder (DAE) for the autoencoder degra-

dation analysis component. We refer to this variant of the framework as DAE-ANN-HP for

the rest of the chapter. The goal of this experiment is to study the effect of using a simple

autoencoder for feature generation.

Experiment Process

The data preprocessing is the same as described in experiment I. The preprocessed data con-

tains 158 features including 144 time series features, 8 statistical features, and 6 date derived

features. The 144 time series features are used to train the DAE model. This model is trained

on no degradation training set. MSE (2.2) is used as the loss function. The no degradation

validation set is used to monitor the validation loss for early stopping of the training process.

Table 6.5 lists the hyperparameters considered for tuning the DAE model. As discussed in

Chapter 4, the candidate optimal models are selected by calculating their fitness scores (4.6).
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Table 6.5: List of hyperparameters and their search space for tuning the DAE model.

Hyperparameter Description Search space
encoder topology The number of neurons in each hid-

den layer of the encoder.
1 hidden layer: {72, 54, 36,
27}
2 hidden layers: {(72, 54),
(72, 36), (72, 27), (54, 36),
(54, 27), (36, 27)}

activation The activation function for each layer. {relu, sigmoid, tanh}
min loss delta The minimum decrease in validation

loss for early stop of training process.
{0.01, 0.001, 0.0001}

lr Learning rate for gradient descent. {0.01, 0.001, 0.0001}
dropout The dropout rate of each layer during

training.
{0, 0.1, 0.2}

We consider 5 pairs of values for weight parameters w1 and w2 for fitness score calculation: {(0,

1), (0.25, 0.75), (0.5, 0.5), (0.75, 0.25), (1, 0)}. Recall that conceptually, w1 corresponds to the

importance of ob j1, which assesses the autoencoder’s ability to minimize the reconstruction

errors for no degradation samples. w2 corresponds to ob j2, which assesses the autoencoder’s

ability to differentiate the reconstruction errors for all three health conditions. Varying the

weights varies the relative importance of the two objective functions. For example, the weights

pair w1 = 0 and w2 = 1 means that only ob j2 is concerned, while w1 = 0.5 and w2 = 0.5 means

that the two objectives contribute equally to the fitness score calculation. After all DAE models

are trained, a fitness score is calculated using the whole validation set for each model for each

pair of weights w1 and w2. Because we consider 5 weights pairs, 5 candidate DAE models are

selected to generate 5 new enriched datasets for final HVAC health condition classification.

To generate a new enriched dataset, the latent space features and the reconstruction errors

are generated for all data samples in the training, validation, and testing set. The generated

features are then concatenated with the statistical features and date derived features to form the

new training, validation, and testing set for final classification. The health condition classifier in

AE-ANN-HP has the same structure and hyperparameters considered for tuning as the baseline

ANN model in Experiment I. One classifier is trained and hyperparameter tuned for each new

enriched dataset. As explained previously, each classifier is also trained with three different
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seeds and the results are averaged. The classifier with the best validation cross-entropy loss is

used to report testing performance.

Results Analysis

The best DAE models, i.e., the ones with the highest fitness score, for each pair of fitness score

weights parameter w1 and w2 are listed in Table 6.6. Note that as explained earlier, because

three different seeds are used during training, each candidate represents a collection of three

trained autoencoders. Also note that candidate 1 and 2 have the same hyperparameters, thus

candidate 2 is ignored. A total of 4 candidates are then used to generate enriched datasets for the

training and tuning of the health condition classifiers. Table 6.7 shows the average validation

cross-entropy loss of the classifiers trained on the datasets associated with the candidate DAE

models. The best performing classifier is the one that is trained with the dataset produced by

DAE candidate 1, with an average validation cross-entropy loss of 0.3013 across nine trials. It

is also evident that as w1 increases and w2 decreases, the average cross-entropy loss increases.

This suggests that objective 2 in the fitness function, which measures the autoencoder’s ability

to differentiate between data samples in each class, plays a more important role than objective

1 in the framework’s final health condition classification performance. This classifier is used to

Table 6.6: Hyperparameters of the five candidate DAE models.

candidate w1 w2 topology activation min loss delta lr dropout
1 0 1 (54, 27) relu 0.01 0.0001 0.0
2 0.25 0.75 (54, 27) relu 0.01 0.0001 0.0
3 0.5 0.5 (36, 27) sigmoid 0.01 0.01 0.1
4 0.75 0.25 (36, 27) sigmoid 0.001 0.0001 0.0
5 1 0 (72, 54) tanh 0.0001 0.001 0.0

Table 6.7: Final health condition classification validation losses of DAE-ANN-HP.

Candidate Validation cross-entropy loss
1 0.3013
3 0.3260
4 0.3479
5 0.3854
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(a) (b)

Figure 6.5: Comparison of confusion matrices against the testing set: (a) baseline ANN, (b)
DAE-ANN-HP. Confusion matrix for baseline ANN is averaged over three trials. Confusion
matrix for DAE-ANN-HP is averaged over nine trials.

Table 6.8: Comparison of F1 and AUROC scores between DAE-ANN-HP and baseline ANN
against the testing set. Scores for baseline ANN are averaged over three trials. Scores for
DAE-ANN-HP are averaged over nine trials.

Baseline ANN DAE-ANN-HP
F1 0.8091 0.8463 (+4.60%)

AUROC 0.9534 0.9664 (+1.36%)

report testing performance of DAE-ANN-HP. The confusion matrix of DAE-ANN-HP against

the testing set is compared to that of baseline ANN in Figure 6.5.

The confusion matrix suggests DAE-ANN-HP exhibits similar problem to the baseline

models in which the classifier has the tendency to classify health conditions as more deteri-

orated than actual. Nonetheless, it correctly classifies significantly more no degradation (ND)

and moderate degradation (MD) instances. DAE-ANN-HP also shows a noticeable improve-

ment in F1 score and AUROC score over the baseline ANN model, as suggested by Table 6.8.

6.4.4 Experiment III: AE-ANN-HP with Convolutional Autoencoder

In this experiment, we evaluate AE-ANN-HP with a convolutional autoencoder (CAE) for the

autoencoder degradation analysis component. The goal of this experiment is to study how
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much the classification performance can be improved by using a more complex autoencoder

over a simple DAE. A convolutional autoencoder is also specialized in extracting temporal

relationships within time series features. We refer to this variant of the framework as CAE-

ANN-HP for the rest of this chapter.

Experiment Process

Similar to the previous experiment, the daily HVAC power consumption and outside tempera-

ture readings are used to train the CAE model. Because CAE utilises convolution operations,

the input data are reshaped to (number of time steps, number of features), i.e. (72, 2), to be fed

into the CAE model. The CAE model used for this experiment is structured to have three pairs

of 1D convolution and maxpooling layers for the encoder. Each convolution layer contains

16 filters for feature extraction. The size of the filters is a hyperparameter to be tuned. The

stride is set to 1. Zeros are padded to the output of convolution operations to retain its original

dimension. The maxpooling layers are set to reduce the input dimension by a factor of 2. The

output of the last maxpooling layer is flattened and transformed into the latent space with an

additional dense layer. The number of neurons in the dense layer is another hyperparameter

to be tuned. In the decoder part, three pairs of upsampling and 1D deconvolution layers are

used. The hyperparameters are the same as those in the convolution and maxpooling layers.

An additional 1D convolution layer with 2 filters transforms the final output back to (72, 2).

Table 6.9 details the hyperparameters tuned for the CAE model. Dropout is not tuned for this

Table 6.9: List of hyperparameters and their search space for tuning the CAE model.

Hyperparameter Description Search space
latent size The size of the latent space of CAE. {72, 54, 36, 27}
kernel size The size of the kernels applied in each

convolution and deconvolution layer.
{3, 5, 7, 9}

activation The activation function for each layer. {relu, sigmoid, tanh}
min loss delta The minimum decrease in validation

loss for early stop of training process.
{0.01, 0.001, 0.0001}

lr Learning rate for gradient descent. {0.01, 0.001, 0.0001}
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model because convolutional neural networks are unlikely to suffer from overfitting for models

with a relatively low number of trainable parameters [59]. The rest of the experiment process

including the selection of candidate CAE models and the training of health condition classifier

is the same as in the previous experiment.

Table 6.10: Hyperparameters of the five candidate CAE models.

candidate w1 w2 latent kernel activation min loss delta lr
1 0 1 54 9 relu 0.001 0.01
2 0.25 0.75 54 9 relu 0.001 0.01
3 0.5 0.5 72 5 tanh 0.01 0.01
4 0.75 0.25 54 7 tanh 0.0001 0.01
5 1 0 36 3 tanh 0.0001 0.01

Table 6.11: Final health condition classification validation losses of CAE-ANN-HP.

candidate validation cross-entropy loss
1 0.3044
3 0.3684
4 0.4022
5 0.3904

(a) (b)

Figure 6.6: Comparison of confusion matrices against the testing set: (a) baseline ANN, (b)
CAE-ANN-HP. Confusion matrix for baseline ANN is averaged over three trials. Confusion
matrix for CAE-ANN-HP is averaged over nine trials.
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Table 6.12: Comparison of F1 and AUROC scores between CAE-ANN-HP and baseline ANN
against the testing set. Scores for baseline ANN are averaged over three trials. Scores for
CAE-ANN-HP are averaged over nine trials.

Baseline ANN CAE-ANN-HP
F1 0.8091 0.8555 (+5.73%)

AUROC 0.9534 0.9746 (+2.22%)

Results Analysis

The best CAE model for each pair of fitness score weights parameter w1 and w2 is listed in

Table 6.10. Similar to the DAE-ANN-HP experiment, candidate 1 and 2 have the same hyper-

parameters, thus candidate 2 is ignored. Hence, 4 candidates are used to generate the enriched

datasets for training and tuning the health condition classifier. Table 6.11 shows the average

validation cross-entropy loss over nine trained classifiers against enriched datasets generated by

each candidate autoencoder model. Candidate 1 produces the lowest validation cross-entropy

loss of 0.3044. Figure 6.6 shows the comparison of confusion matrices between CAE-ANN-HP

and the baseline ANN against the testing set. As shown in Table 6.12, CAE-ANN-HP scores

a F1 score of 0.8555 and an AUROC score of 0.9746, which represent 5.73% and 2.22% im-

provement over the baseline ANN model. The performances of CAE-ANN-HP is also slightly

better than DAE-ANN-HP in terms of average F1 and AUROC scores. The higher performance

of CAE-ANN-HP suggests that an autoencoder with a more complex structure is better suited

for the autoencoder degradation analysis component of the AE-ANN-HP framework.

6.4.5 Experiment IV: AE-ANN-HP with Long Short-Term Memory Au-

toencoder

In the last experiment, we evaluate AE-ANN-HP with a long short-term memory autoencoder

(LSTMAE) for the autoencoder degradation analysis component. This experiment is to study

how well the framework works with an autoencoder that is specialized to work with time series

data. We refer to this variant as LSTMAE-ANN-HP for the rest of this chapter.
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Table 6.13: List of hyperparameters and their search space for tuning the LSTMAE model.

Hyperparameter Description Search space
encoder topology The number of LSTM cells in each

LSTM layer of the encoder.
1 LSTM layer: {72, 54, 36,
27}
2 LSTM layers: {(72, 54),
(72, 36), (72, 27), (54, 36),
(54, 27), (36, 27)}

min loss delta The minimum decrease in validation
loss for early stop of training process.

{0.01, 0.001, 0.0001}

lr Learning rate for gradient descent. {0.01, 0.001, 0.0001}
dropout The dropout rate of each layer during

training.
{0, 0.1, 0.2}

Experiment Process

Similar to CAE in the previous experiment, LSTMAE also requires an input shape of (number

of time steps, number of features). Hence, the inputs are again reshaped to (72, 2) to be fed into

the LSTMAE model. To tune the number of LSTM layers in the encoder and the decoder of

the LSTMAE model, modifications to the LSTM layer mappings need to be made. For models

with one LSTM layer in the encoder and the decoder, the model structure discussed in Section

2.3.2 is used. On the other hand, for models with two LSTM layers, all layers in the encoder

except for the last layer are configured to have many-to-many mapping, i.e., they return the

full output sequences from all 72 time steps, which are fed into the subsequent LSTM layer,

whereas the last layer has a many-to-one mapping, i.e., only the output from the last time step is

returned. All layers in the decoder return the full output sequences. In order to use the cuDNN

library to accelerate LSTMAE model training with GPU, tanh activation has to be used for

all LSTM layers in the model. Table 6.13 shows the search spaces for the hyperparameters

considered for tuning the LSTMAE model. The rest of the experiment process including the

selection of candidate LSTMAE models and the training of health condition classifiers is the

same as in the previous experiment.
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Table 6.14: Hyperparameters of the five candidate LSTMAE models.

candidate w1 w2 encoder topology min loss delta lr dropout
1 0 1 (72, 54) 0.01 0.01 0.2
2 0.25 0.75 (72, 54) 0.01 0.01 0.2
3 0.5 0.5 (72, 54) 0.01 0.01 0.2
4 0.75 0.25 (72, 54) 0.001 0.01 0.0
5 1 0 72 0.0001 0.01 0.0

Table 6.15: Final health condition classification validation losses of LSTMAE-ANN-HP.

candidate validation cross-entropy loss
1 0.3036
4 0.3663
5 0.4049

(a) (b)

Figure 6.7: Comparison of confusion matrices against the testing set: (a) baseline ANN, (b)
LSTMAE-ANN-HP. Confusion matrix for baseline ANN is averaged over three trials. Confu-
sion matrix for LSTMAE-ANN-HP is averaged over nine trials.

Table 6.16: Comparison of F1 and AUROC scores between LSTMAE-ANN-HP and baseline
ANN against the testing set. Scores for baseline ANN are averaged over three trials. Scores
for DAE-ANN-HP are averaged over nine trials.

Baseline ANN LSTMAE-ANN-HP
F1 0.8091 0.8533 (+5.46%)

AUROC 0.9534 0.9725 (+2.00%)
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Results Analysis

The LSTMAE model with the highest fitness score for each pair of fitness score weights param-

eter w1 and w2 is listed in Table 6.14. Note that for LSTMAE-ANN-HP, candidates 1, 2, and 3

all share the same hyperparameters. Consequently, only 3 candidates are used to generate the

enriched datasets for training and tuning the health condition classifier. Table 6.15 shows the

average validation cross-entropy loss over nine trials for each candidate autoencoder model.

The classifier trained on the enriched datasets generated by LSTMAE candidate 1 produced

the lowest average validation cross-entropy loss of 0.3036. Figure 6.7 shows the comparison

of confusion matrices between LSTMAE-ANN-HP and the baseline ANN model against the

testing set. Similar to the previous two experiments with AE-ANN-HP framework, LSTMAE-

ANN-HP is significantly better at classifying no degradation (ND) and moderate degradation

(MD) instances than the baseline ANN model. As shown in Table 6.16, LSTMAE-ANN-HP

yields an average F1 score of 0.8533 and a an average AUROC score of 0.9725. This perfor-

mance is slightly better than that of DAE-ANN-HP and very close to that of CAE-ANN-HP.

6.5 Discussion

To evaluate the performance of AE-ANN-HP framework, we test the framework with three

types of autoencoders, which are DAE, CAE, and LSTMAE. We also evaluate three existing

methods, which include ANN, SVM, and DT, on the same dataset for performance comparison.

The F1 scores and AUROC scores for all 6 experimented methods are compared in Figure 6.8.

For each method, the scores for all trials are plotted with box plot. The colored boxes in the two

figures represent the inter quantile range (IQR) and the small white square in each box represent

the average value. It is evident that all three experiments with the proposed framework yielded

better performances comparing to the baseline models. When comparing the performances

within the three variations of the framework, although the use of a dense autoencoder could

theoretically produce the best performance, the results for 9 trials show high inconsistency,
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(a) (b)

Figure 6.8: Comparison of generalization performances between all 6 experimented methods:
(a) F1 score, (b) AUROC score.

as demonstrated by the largest IQR for both F1 score and AUROC score for DAE-ANN-HP.

On the other hand, the use of a convolutional autoencoder yielded the highest average F1 and

AUROC scores across all experiments. More importantly, the results across nine trials show

the smallest variance in all three AE-ANN-HP experiments. Hence, it can be concluded that a

convolutional autoencoder is the most suitable option for the AE-ANN-HP framework out of

the three tested alternatives.

The performance gain of AE-ANN-HP framework is mainly attributed to the addition of the

autoencoder degradation analysis component. The multi-objective fitness score metric allows

for finding the most fitted autoencoder models, i.e., one that not only minimizes reconstruc-

tion error for no degradation samples but also maximizes the difference between reconstruction

errors for the three health conditions, for generating latent space features and reconstruction

errors. Consequently, for example, in experiment II with DAE-ANN-HP, the new enriched
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dataset for health condition classification only contains 42 features (27 for latent space fea-

tures, 1 for reconstruction error, 8 for statistical features, and 6 for time-derived features) in

total, as opposed to 158 for the baseline ANN model in Experiment I. Yet the DAE-ANN-HP

demonstrates better performance with less features.

The overall performance of AE-ANN-HP framework demonstrates that it is a promising

approach for HVAC health prognostics with HVAC power consumption and outside tempera-

ture data. Nonetheless, the AE-ANN-HP framework is not without limitations. Some potential

limitations of the framework are as follows:

• The AE-ANN-HP framework frames HVAC health prognostics into a multi-class clas-

sification task and its performance is evaluated on a synthetic dataset with 3 predeter-

mined levels of health conditions. However, in a real world scenario, the degradation of

an HVAC system would likely be more gradual. Hence, the framework may struggle to

correctly classify the HVAC health condition when the input features fall near a decision

boundary.

• As mentioned, the degradation of an HVAC system would likely be a gradual process.

However, EnergyPlus does not provide the functionality to vary the fault intensity pa-

rameter gradually over time to simulate the power consumption of an HVAC system that

degrades gradually. Hence, we make the decision to fix the degradation at three levels to

simulate the corresponding HVAC behaviors.

• This framework does not consider other factors that may affect HVAC power consump-

tion in addition to outside temperature, e.g., the building occupancy information, because

the collection of these data are not as easy. This means that the framework may not per-

form as well in situations where the building occupancy level can fluctuate by a large

amount.
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Conclusion & Future Work

7.1 Conclusion

HVAC systems accounts for a significant portion of global energy consumption every year. Ef-

fective maintenance of HVAC systems can not only reduce the operational cost of the buildings

but also improve human comfort of the indoor environments. Data-driven predictive mainte-

nance has been applied by researchers to help with HVAC diagnostics and prognostics. Most

existing researches focus on large HVAC systems with internal IoT sensors capable of report-

ing operational data. However, these methods are not applicable to HVAC systems without

internal IoT sensors, despite their significant presence in buildings around the globe.

Consequently, this thesis proposes AutoEncoder and Artificial Neural Network based HVAC

Health Prognostics (AE-ANN-HP) framework, a novel data-driven HVAC predictive mainte-

nance framework that classifies the HVAC health condition into no degradation (ND), mod-

erate degradation (MD), and severe degradation (SD), based on its daily power consumption

and outside temperature trends. AE-ANN-HP incorporates the use of an autoencoder to learn

a generalized representation from the time series data such that the reconstruction errors pro-

duced by the autoencoder represent the relative degradation of the data samples. To achieve

this desired behavior for the autoencoder, an exhaustive grid search is conducted to train the

61
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autoencoder models with different combinations of hyperparameters. Then, a multi-objective

fitness score is used to select the optimal autoencoder model that is able to minimize the re-

construction errors for the no degradation condition and separate the reconstruction errors for

all three health conditions. Once the optimal autoencoder is selected, a new enriched dataset

is formed using the outputs from the autoencoder for the final daily HVAC health condition

classification.

The AE-ANN-HP framework is evaluated with the use of three different types of autoen-

coders, namely dense autoencoder (DAE), convolutional autoencoder (CAE), and long short-

term memory autoencoder (LSTMAE). DAE is the simplest form of autoencoder, whereas

CAE and LSTMAE have more complex structures that allow both to extract temporal features

from the input data. The performances of these models are also compared to existing HVAC

health prognostics methods including ANN, SVM, and DT models, evaluated on the same

dataset. The best performing existing method is ANN, which yields a testing macro-averaged

F1 score of 0.8094 and a testing macro-averaged AUROC score of 0.9456. The AE-ANN-HP

models outperform the ANN model by an increase in macro-averaged F1 score of as high as

6.89% and an increase in macro-averaged AUROC score of as high as 3.51%. Within three

AE-ANN-HP models, CAE-ANN-HP and LSTMAE-ANN-HP outperform the simpler DAE-

ANN-HP model thanks to their better generalization abilities.

Overall, the AE-ANN-HP framework is capable of correctly classifying daily HVAC health

conditions in the majority of the cases when paired with a LSTMAE. It proves that AE-ANN-

HP is a promising approach for HVAC health prognostics using only daily HVAC power con-

sumption and outside temperature trends. Because of the relative ease for collecting these two

time series data, AE-ANN-HP has the potential to aid predictive maintenance decision making

for HVAC systems without IoT internal sensors.
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7.2 Future Work

Future work will mainly revolve around keeping on improving the framework’s performance

and the further validation of the framework. The future work include:

• All three AE-ANN-HP experiments still show tendency to consistently misclassify some

health conditions to be more deteriorated than they actually are. Further studies are

needed to investigate this behavior and attempt to further improve model performance.

One potential direction may be to consider other classification models.

• As discussed, one of the limitation of the framework is that the framework may struggle

to correctly classify a data sample that falls near the decision boundary. This problem

may be mitigated by increasing the number of health condition classes or changing to a

regression task with continuous space. Hence, these two approaches need further explo-

ration.

• Experiment with other types of autoencoders. In this thesis, we evaluate AE-ANN-HP

with DAE, CAE, and LSTMAE. However, there are other types of autoencoder structures

that can also be applied to the framework. An example is the variational autoencoder

structure, which has also seen success in the field of fault detection.

• The autoencoder’s ability to distinguish between different data samples in different degra-

dation classes may be further enhanced with contrastive representation learning, which

is an emerging technique that allows an autoencoder to learn a latent space in which

similar samples are close together and dissimilar samples are distanced. Hence, further

exploration is needed to apply contrastive learning technique to autoencoder training of

the framework.

• Investigate if and how to vary the fault intensity parameter in EnergyPlus fault models

over time to simulate a more realistic degradation behavior of the HVAC system. This

will mitigate the problem of only having fixed degradation condition for each simulation.
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• Use a real HVAC dataset for further validation of the framework. Recall that the reason

EnergyPlus is used in this thesis is because the real HVAC dataset are not labeled nor

contain HVAC behaviors under significant degradation conditions. As data are still being

collected, the real dataset will eventually contain enough data to be used for framework

validation.

The proposed AutoEncoder and Artificial Neural Network based HVAC Health Prognostics

(AE-ANN-HP) framework performs well to classify HVAC health condition from only daily

power consumption and outside temperature trends. However, there is still room for improve-

ments as have been discussed in this section.
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