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Abstract 

The Canadarm3 is going to operate autonomously aboard the Lunar Gateway space station 

for the purpose of inspections and repairs. To make the repairs, damage to the spacecraft 

needs to be detected accurately and automatically. This research investigates methods for 

training Machine Learning (ML) models on 3D point clouds to identify anomalous structural 

damage. The PointNet algorithm was used to train models on point clouds without affecting 

their structure. The optimal training data style was found by comparing how well the 

different styles of data performed at classifying the point cloud testing data. Two different 

methods of anomaly detection were tested and compared; statistical anomaly detection based 

on classification scores and anomaly detection using an autoencoder. The autoencoder 

method proved superior and achieved a recall score of 90.42% with a specificity of 79.31% 

and a classification score of 97.93%. This showed the potential to use an autoencoder on 3D 

point clouds for anomalous damage detection on the exterior of spacecrafts.  

 

Keywords 

Machine Learning, Point Clouds, Anomaly Detection, Object Classification, PointNet. 

 

 

 

 

 

 



 

iii 

 

Summary for Lay Audience 

The robotic arm Canadarm3 is being built by Canadian company MDA to perform repairs 

while operating on the Lunar Gateway space station. Since the arm is being built for both 

remote and autonomous operation, there needs to be a way to automatically identify damaged 

parts of the spacecraft exterior so that it will know what parts need to be repaired. Scans of 

the exterior of the Gateway will be taken using a sensor on the end of the Canadarm3 that 

produces point clouds, which are 3D representations of an object. This research investigates 

potential Machine Learning models and methods for training them on 3D point clouds for the 

purpose of automatically identifying anomalous structural damage.  

Various methods for applying deep learning models on point cloud data were researched, and 

the most promising model architectures were identified and selected for further investigation. 

To perform the investigation, a procedure for generating training and testing data, both 

‘normal’ and ‘damaged’, was developed. The data were generated for simple geometric 

objects as representations of components which make up the Gateway, with the conjecture 

that if the models and training would not work on simple objects, they would not work on the 

more complex spacecraft structures. Multiple styles of training data were tested and 

compared to each other to determine which style of data provided the best model results.  

With the optimal training data style determined, two models were then tested and compared: 

a classification only model and a multi-output model. The classification only model 

classified and labeled each point cloud of a simple object, representing a spacecraft 

component. To evaluate its performance, a statistical method was used to predict if the point 

cloud contained damage based upon how confident the model was in the label it assigned to 

the object. The multi-output model had one output which classified the object and another 

output that reconstructed the point cloud. The reconstructed point cloud was compared 

against the original point cloud and the difference between them was the reconstruction error. 

Point clouds with larger reconstruction errors contained damage. The results from each 

model were compared and the model that achieved the best results was then tuned using 

hyperparameter tuning to create the best model possible. The results from this optimal model 

were then analyzed to assess it as a potential solution for automatically detecting real 

spacecraft damage. 
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1 Introduction 

1.1 Lunar Gateway and the Canadarm 

The Lunar Gateway (Figure 1-1) is a space station with a planned lunar orbit that is being 

developed as the successor to the International Space Station (ISS). The United-States, 

Canada, and other ISS partners are creating the Gateway as a part of the National 

Aeronautics and Space Administration’s (NASA) Artemis campaign which is focused on 

scientific exploration and discovery on and around the Moon. The station will include a 

scientific laboratory and crew quarters for astronauts who will make crewed trips to the 

lunar surface. Unlike the ISS, the Gateway will not be crewed continuously and will have 

periods where it is being operated remotely [1]. As part of that remote operation, the 

robotic arm Canadarm3 (Figure 1-2) is being developed by Canadian company MDA to 

facilitate any repairs needed on the station. 

 

Figure 1-1: Artist rendering of the Lunar Gateway Space Station [1] 

Canadarm3 is the third robotic arm in the Canadarm series. The original Canadarm was 

built for the NASA Space Shuttle program while Canadarm2 has been in operation 

aboard the ISS since 2001. Canadarm2 is primarily used for repairing the ISS and for 

guiding vehicles into the station [2]. Like Canadarm2, Canadarm3 will have seven 

degrees of freedom and will move end-over-end to access all areas of the Gateway space 

station [3]. One of the main developments of Canadarm3 over its predecessors is the 

incorporation of Artificial Intelligence (AI)-based robotic systems to allow for the arm to 
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operate autonomously. This will allow for the arm to continue to operate while there are 

no astronauts on the Gateway, and when the station has orbited to the far side of the 

Moon and is out of contact with the Earth.  

 

Figure 1-2: Artist rendering of the Canadarm3 [2] 

One of the objectives of the operations of the Canadarm3 is for it to be able to 

autonomously identify structural damage on the exterior of the station for repairs. A 

LiDAR (Light Detecting and Ranging) sensor will be one of the tools that can be 

mounted to the end of the arm and used to periodically take scans of the Gateway. The 

scans, which produce 3D point clouds, will need to be processed in such a way as to 

detect damage automatically, and with a high degree of confidence. 

1.2 Problem Definition and Assumptions 

This research takes the premise outlined in the previous section and investigates the 

possibility of using Machine Learning (ML) as a method of automatically detecting 

damage using the point clouds. To be successful, the model must be able to identify what 

part or piece of the space station it is looking at and if that section or part is damaged. 

Key assumptions for this research are that there will never be an unknown object on the 

space station, and each part of the space station can be dissected into simpler individual 

components (such as antennas, solar arrays, panels, hatches, and other such objects). This 

means that anything anomalous can immediately be considered to be a result of damage 

instead of it being something that is intact but unknown.  
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Another assumption for this project is that the 3D scans will only contain partial views of 

the spacecraft components. The reasons for this are that the scanner on the Gateway will 

not be scanning a component from all angles, a scan may only contain a fraction of a 

component in its field of view (FOV), and parts of the scan may be occluded (shadowed) 

by other objects. Hence, any solution needs to be able to identify the component of the 

spacecraft and detect damage from only partial, potentially occluded scans. Additionally, 

it is assumed that the scans contain only one object at a time, and hence, the challenge of 

scene segmentation is out of the scope of this project. This is a fair assumption given the 

size of the space station its major components, and the fact that the FOV of the LiDAR 

scans will be quite narrow due to the limited distance the arm can get from the surface 

(max 8.5 m [3]) coupled with the need to keep the point density high enough. 

1.3 Contributions  

This work makes the following contributions:  

 

1. A method to develop training datasets for partial 3D point clouds of damaged 

objects  

2. A method to develop damaged object models for the purpose of creating damaged 

3D point clouds for anomaly detection  

3. An object classifier for partial point clouds of damaged objects  

4. An evaluation of multiple methods of anomaly detection for partial point clouds  

5. A proposed technique for anomaly threshold detection  

 

1.4 Thesis Outline 

This thesis contains the following content. The necessary background content and 

literature review on ML is covered in Chapter 2. In Chapter 3, the methodology for the 

research and the procedure for data generation is explained. An optimal training data 

experiment is presented in Chapter 4, where the best style of training data for the rest of 

the ML experiments is determined. Chapter 5 compares ML experiments to see which 
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approach is best for performing anomaly detection on point cloud data. The best method 

then undergoes hyperparameter tuning in Chapter 6 and the results are analyzed. Chapter 

7 contains the summary and conclusion, and Chapter 8 explores future considerations.  
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2 Background and Literature Review 

2.1 Point Clouds 

2.1.1 Introduction to Point Clouds 

A point cloud is a form of data representation consisting of a discrete set of points, where 

each point consists of an unstructured vector [4]. At its most basic, a point cloud consists 

only of Cartesian XYZ coordinates. However, additional information like surface 

normals, intensity, and RGB values can be included in point clouds depending on the 

point sampling method [5]. Point clouds have three main characteristics: the points are 

unordered, there is interaction amongst the points, and the point clouds are invariant 

under transformations [6]. Point clouds can be used to represent a 3D shape by sampling 

points along the surface of the object. This lends itself to many applications, such as 3D 

robotic perception, computer-aided design (CAD) modeling, geographic surveying/ 

mapping, and other areas where having depth information is desired. Compared to other 

3D data representation methods, point clouds preserve the original geometry of the scan 

without discretization, thus preventing discretization error and data loss [7].  

2.1.2 Generating and Simulating Point Clouds 

The focus of this research is on anomaly detection and shape classification. For shape 

classification using point clouds, either synthetic or real-world data can be used [7]. 

Synthetic data consists of data generated without using a real sensor, either by simulating 

a sensor detecting a simulated object or by sampling points on the simulated object itself 

to generate the point cloud (Figure 2-1).  
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a) Simulated model of cube 

 
b) Synthetic point cloud from simulated 

cube 

Figure 2-1: Example of a synthetic point cloud from a simulated cube 

The regulated environment of the synthetic data allows for more control over the 

resulting point clouds. For example, point clouds can be generated for the whole object 

without the occlusions and gaps that may occur in real-world data. This makes the data 

easier to work with and makes it easier to see and compare the results of various models 

and algorithms used to process the data. One method of synthesizing point cloud data is 

to use 3D mesh models. Mesh models consist of a 3D space of interconnected points 

which make up a shape volume [8]. Point clouds can be generated by using the geometric 

shapes that make up the mesh and sampling points from the surface. This can be done 

randomly, or by following a specific sampling algorithm, such as Poisson-disk sampling. 

Poisson-disk sampling involves randomly sampling points on a mesh with a uniform 

distribution such that the points are a user-defined minimum distance apart from one 

another [9]. This guarantees that two points will not be sampled in the same place. 

Real-world point clouds are made by using various types of active or passive imaging 

sensors. These could be either LiDAR scanners, RGB-depth cameras, stereo cameras, or 

other 3D scanners [7]. LiDAR scanners are sensors that are commonly used in the Space 

sector [10]. A LiDAR creates a point cloud by sending out laser light pulses from a 

transmitter. The light pulses reflect upon hitting an object, and the returning light is 

detected by the LiDAR’s receiver. The time elapsed between pulse emission and 

detection times the speed of light determines the range from the LiDAR to the object. 
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This plus information such as scan angle, intensity, and other features enable a point 

cloud of the LiDAR’s surroundings to be constructed [11].  

Real-world data (Figure 2-2) can have occlusions from objects not being fully detected, 

as well as background noise and other irregularities that make working with the data 

difficult. However, these complications reflect the conditions that are to be expected 

when designing something to be used in the real-world beyond theoretical research. 

 

Figure 2-2: Example of a point cloud of a highway from a LiDAR scanner [12] 

2.2 Deep Learning Background 

2.2.1 Introduction to Machine Learning 

Artificial intelligence (AI) is a thriving field in which techniques are used to try and 

emulate on machines the learning mechanisms that occur in the human brain and other 

biological organisms. There are many different problems that can be approached by 

artificial intelligence, the most difficult being those which are hard to formally define and 

which humans process intuitively [13, p. 1].  This can include things such as processing 

language and transcribing speech into text, identifying relevant search results, and 

identifying objects in images. Machine learning (ML) is the subset of AI that is used to 

tackle these challenges [14]. 

In ML, problems can be split into supervised, unsupervised, and reinforcement learning 

problems. Supervised learning is when the ML model is trained on input data that has a 
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corresponding output target. This means that the target groups for the predicted outputs 

are known, and the model can directly assign its predictions to them. Supervised learning 

problems can be further split up by whether they are a regression or classification 

problem. Regression problems involve predicting an output that is continuous or 

quantitative. Predicting chemical yields or the outside temperature would be regression 

problems. When the output is not continuous, and instead is comprised of predicting the 

input as belonging to a discrete category, it is a classification problem [15, p. 3].  

Recognizing handwritten digits or detecting objects in an image would be classification 

problems. 

For unsupervised learning problems, the output targets for the model are not provided 

during training. The model predicts and creates output targets based upon the features it 

extracts from the inputs. Depending on the task of the model, the model could either 

identify patterns within the input data and create output clusters, or it could learn and 

predict the distribution of the data as a density estimation. Similarly to unsupervised 

learning, there are no provided output targets for reinforcement learning. Instead, 

reinforcement learning involves identifying the optimal targets through trial and error 

[15, p. 3]. The model is trying to perform the best actions which maximize a reward 

target, and the reinforcement comes from learning what the reward was based upon its 

previous actions.   

Deep learning is a further subset of ML that can be supervised or unsupervised, where the 

model is often made up of artificial neural networks. These artificial neural networks 

comprise layers of “neurons” with the goal of making a model that recreates the synapses 

that occur between neurons in the brain. The inputs are scaled with weights which affect 

the computations at each neuron [16, pp. 1–2]. The depth of the deep learning model 

refers to how many hidden layers there are between the input and predicted output. Deep 

learning models are increasingly being used to tackle the ML problems discussed earlier 

where the goal is to have the model learn a concept that is more intuitive to a human. The 

recent advances in deep learning have made it the premier method for applications such 

as speech recognition, image recognition, predicting drug molecule activity, and 
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predicting the effects of mutation on DNA gene expressions [14]. Deep learning is the 

focus of this research and will be discussed further in the following sections. 

2.2.2 Training, Validation, and Testing Sets 

When developing a ML algorithm, it is important to split the data appropriately. Datasets 

are often split into training, validation, and testing sets. The training set is what the model 

learns from and what it develops its patterns from. The validation and testing sets are 

both used to evaluate the model’s performance. The validation set is a subset of the 

training set, and it is used to estimate the generalization error while training the model for 

the purpose of optimizing hyperparameters [13, p. 119]. Hyperparameters are parameters 

of the model that cannot be estimated and must be set by the user. Hyperparameter 

optimization is further discussed in Section 2.2.8. The testing set is used to evaluate the 

performance of the model after the training is done. Each of the datasets are independent 

from each other to reduce bias.  

When training on the training set, the goal of the model is to reduce the prediction error 

of the training set called the training error. A main theory of machine learning is that the 

training and testing sets are drawn from the same probability distribution. There exist 

fixed weights, w, which result in a minimization of the training error. Since the testing 

and training sets come from the same distribution, w would also result in a minimization 

of the testing error [13, pp. 107–109]. In an idyllic scenario, a machine learning model 

samples from the training set, learns the weights that minimize the training set error, and 

uses those weights when sampling from the testing set to make accurate predictions. If 

there are variances in the type of data from the training to the testing set, which is 

common in real-world applications, the model may not perform as expected and the 

testing error would be high.  

An important part of the machine learning process is making sure to split the datasets 

appropriately. Often, data is split at random from a large, collected pool. However, this 

can lead to datasets that don’t represent the real-life problem that the model is trying to 

solve. Without creating the datasets intentionally, the data collected may be different than 
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the data used in the real-life application [17]. Depending on the objective of the model, 

the method of creating the train and test split will vary.  

2.2.3 Single-layer and Multilayer Perceptron 

The basis for deep learning is the feed-forward neural network, which refers to the 

structure of the network. In a feed-forward network, information only flows in the 

forward direction and no feedback is provided [13, p. 164]. At a minimum, a neural 

network consists of an input layer and an output node, which is called a single-layer 

perceptron (Figure 2-3).  

 

Figure 2-3: Single-layer perceptron 

The input vector of form 𝑋 =  [𝑥1, ⋯ , 𝑥𝑑] transmits d features with weights 𝑊 =

 [𝑤1, ⋯ , 𝑤𝑑] to the output node. At the output node, the weights from all the features are 

aggregated and an activation function is applied to predict the output Y (1) [16, pp. 5–6]. 

An activation function is the chosen function to model the behavior of the network 

depending on the desired output. For a simple single-layer perceptron, that function is 

often the sign function#(𝑠𝑖𝑔𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)(2) which maps the aggregated features to 

either +1 or −1. 
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�̂� = 𝜙 ( ∑ 𝑤𝑗𝑥𝑗  +  𝑤𝑗0 

𝑑

𝑗 = 1

) (1) 

𝜙(𝑣) = {
−1 𝑓𝑜𝑟 𝑣 <  0
1 𝑓𝑜𝑟 𝑣 >  0

(𝑠𝑖𝑔𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)(2) 

In the function, 𝑤𝑗0 is an invariant bias that the input data may have. This model can be 

used for binary classification as the outputs are predicted as belonging to one of two 

classes. 

There are many activation functions that are used in machine learning to model the output 

of a layer. In addition to the sign function, three of the most common ones are the 

identity, sigmoid, and tanh functions. The identity function is a linear activation function 

that is used on output nodes to map the result to a real target value. The sigmoid function 

is a logistic function that outputs values between 0 and 1, making it useful for 

probabilistic outputs. The tanh function is like the sigmoid function, except the values are 

outputted between -1 and +1. Depending on the use of the desired output, either the tanh 

or sigmoid function may be preferred [16, pp. 12–13].  

𝜙(𝑣) = 𝑣 (𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)(3) 

𝜙(𝑣) =
1

1 +  𝑒−𝑣
(𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)(4) 

𝜙(𝑣) =
 𝑒2𝑣 −  1

 𝑒2𝑣 +  1
(𝑡𝑎𝑛ℎ 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛)(5) 

As mentioned, the sigmoid function is useful for determining probabilistic outputs. It is 

mostly used for binary classification problems where given an input, it would return the 

probability of it belonging to one of the two classes. However, when the problem is 

multiclass and there are multiple output nodes, a variation of the sigmoid function is 

used. This is called the softmax function. For each of the i inputs, a probability is 

calculated for it belonging to each of the k classes. The class with the highest probability 

is then assigned to the output [18, p. 410]. 
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𝜙(�̅�)𝑖 =
𝑒𝑣𝑖

∑ 𝑒𝑣𝑗𝑘
𝑗=1

(𝑆𝑜𝑓𝑡𝑀𝑎𝑥)(6) 

While the sigmoid and tanh functions are the traditional functions used for nonlinear 

outputs, additional piecewise functions have been developed. An exceedingly popular 

one is the Rectified Linear Unite (ReLU) function. 

𝜙(𝑣) = { 
0 𝑓𝑜𝑟 𝑣 <  0
𝑣 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(𝑅𝑒𝐿𝑈)(7) 

One of the reasons for its popularity is for how it makes training multilayer neural 

networks easier and can create more powerful nonlinear models [16, p. 13]. 

A multilayer neural network (Figure 2-4), otherwise known as a multilayer perceptron 

(MLP), is when additional computational layers are used in the network between the 

input and output. The computations performed in the intermediate layers are not visible 

from the outside, which is why these layers are referred to as hidden layers. For each 

hidden layer, every node from the previous layer is connected to each node in the current 

layer. The connections between each layer are therefore matrices of weights calculated by 

the activation function chosen for that layer. MLPs are more computationally powerful 

compared to the perceptron, since the computations performed in each hidden layer are 

continuous sigmoidal nonlinearities [15, p. 229]. This allows for more complex 

algorithms and for more intricate applications. A common notation for MLPs and other 

networks is to specify the number of nodes in each layer in brackets beside the network 

type. For example, MLP(16, 32, 64) would refer to an MLP of 3 layers consisting of 16, 

32, and 64 nodes respectively. 
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Figure 2-4: Multilayer perceptron 

2.2.4 Convolutional Neural Networks 

A convolutional neural network (CNN) is a popular type of neural network that is often 

used for object detection and image classification. One of the reasons for CNNs 

popularity is that invariance properties can be built into the network structure [15, p. 

268]. CNNs operate on structured datapoints with feature channels. In traditional 2D 

images, the pixels are ordered in a 2 × 2 array, with the RGB values for each pixel 

becoming feature channels giving the 3D input array a depth of three. CNNs work by 

identifying patterns in the data at a local and global level that assign the subject of the 

data to a particular class. They first start at a local level, identifying low-level features 

that make up distinguishing relationships between neighbouring datapoints. These local 

features are then combined to form global features to gather an understanding of how all 

the local features interact with each other [18, p. 412]. Because of this, variances in data 

input such as translation and rotation of objects can be dealt with since the identifying 

features from object to object will still be the same. CNNs do this by using convolution 

layers to identify patterns and subsampling layers to down sample and aggregate them. 

2.2.4.1 Convolution Layers 

Convolution layers are where convolution operations are performed to extract features 

from the data. A convolution is an operation that involves multiplying matrix elements 
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and summating them [18, p. 412]. The specific convolution operation can be defined on a 

network-to-network basis. Each layer has many convolution filters with different 

parameter values that apply this operation to the input data of the layer. The number of 

distinct filters determines the depth of the next layer. 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎 =  [
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] 

𝐶𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝐹𝑖𝑙𝑡𝑒𝑟 =  [
𝛼 𝛽
𝛾 𝛿

] 

 Each filter is applied recurrently to a submatrix of the input data, until the entire input 

data is sampled. This detects the same pattern across the input [15, p. 268].  

𝐶𝑜𝑣𝑜𝑙𝑣𝑒𝑑 𝑂𝑢𝑡𝑝𝑢𝑡 =  [
𝑎𝛼 + 𝑏𝛽 + 𝑑𝛾 + 𝑒𝛿 𝑏𝛼 + 𝑐𝛽 + 𝑒𝛾 + 𝑓𝛿
𝑑𝛼 + 𝑒𝛽 + 𝑔𝛾 + ℎ𝛿 𝑒𝛼 + 𝑓𝛽 + ℎ𝛾 + 𝑖𝛿

] 

By choosing different values for the filter, different patterns and their locations are 

extracted from the input. The output of the convolution layer is then fed into a 

subsampling layer.  

2.2.4.2 Subsampling Layers 

Subsampling layers, otherwise known as pooling layers, combine the features across the 

data extracted by each convolutional filter used in the previous layer. The most common 

type of pooling layer is called max-pooling. Like convolutional operators, pooling 

operators are applied to one small submatrix of data at a time. The max-pooling operator 

finds and returns the largest value of all the datapoints in the submatrix. Doing this 

reduces the dimensionality of the data and also introduces invariance [18, p. 415]. The 

largest feature value will be transferred to the next layer, no matter where within the 

submatrix it occurs. Other types of pooling such as average-pooling are sometimes used, 

but max-pooling remains the most popular [16, p. 327]. 
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2.2.4.3 Data Augmentation 

When training a neural network for classification or object detection, it is a good idea to 

augment the data to create new training examples. Providing more varied training 

examples can help avoid overfitting, which is discussed more in Section 2.2.5. By taking 

existing training data, modifying it slightly, and then using it to additionally train the 

network the model can get better at recognizing different versions of the object [16, p. 

337]. With 2D images, some common data augments include flipping the image, 

translating, and rotating the object, and changing the colour intensities of the image. For 

3D point clouds, some common methods of augmentation include rotating the object 

around the up-axis and jittering the points with Gaussian noise [6].  

2.2.5 Loss Functions and Regularization 

As discussed in Section 2.2.2, a machine learning model samples from the training set, 

learns the weights that minimize the training set error, and uses those weights when 

sampling from the testing set to make accurate predictions. Therefore, the goal of the 

model is to both minimize the training error and minimize the gap between the training 

and testing errors [13, p. 109]. To do this, the model’s error needs to be known. The error 

of how well a model’s predictions match the ground-truth data is calculated using a loss 

function [18, p. 29]. Loss functions differ from model to model depending on the nature 

of the machine learning problem. For regression models, the most common function is 

the mean squared error (MSE) algorithm. In this equation 𝑓(𝑥𝑖) is the prediction for the 

ith observation and n is the total number of observations. 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =
1

𝑛
∑ (𝑦𝑖 − 𝑓(𝑥𝑖))

2
𝑛

𝑖=1

(8) 

For a classification deep learning neural network with categorical targets, the function to 

calculate loss is taken as the negative multinomial log-likelihood, otherwise known as 

cross-entropy loss (9) [18, p. 410].  
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𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 = − ∑ ∑ 𝑦𝑖𝑘𝑙𝑜𝑔[𝑓𝑘(𝑥𝑖)]

𝐾

𝑘=0

𝑛

𝑖=1

(9) 

Cross-entropy loss is the sum of the loss calculated at each ith instance, where 𝑓𝑘(𝑥𝑖) is 

the probability of the class 𝑘 as calculated using the SoftMax function (6).  

When assessing the accuracy of the model, if the gap between the training and testing 

errors is too large the model may be overfitting to the training data. The model may be 

able to predict the classes on the training data perfectly, but if it is overfitted it will have 

low performance on the test data [16, p. 25]. Overfitting can occur when models are 

complex, and the number of weight parameters is greater than the number of training data 

instances. This leads to a potentially infinite number of solutions, such that the function 

will result in zero training error but when presented with new data there will be large 

testing errors. A model needs to be complex enough to capture the relationship of the 

training data, but not so overly complex that it cannot generalize on test data. One of the 

ways to address overfitting is to augment the existing training data to create new data, as 

discussed in the above Section. Another way to address overfitting is to introduce 

regularization into the loss function. Regularization introduces a penalty term to the loss 

function which prevents the parameters of the loss function from growing exceedingly 

large [15, p. 10]. The forms of regularization common with cross-entropy loss include 

ridge regression and dropout regularization.  

Ridge regression, otherwise known as L2 regularization or Tikhonov regularization, adds 

a penalty to the loss function that is defined by the sum of the squares of the function 

weights [16, p. 182].  

𝑅𝑖𝑑𝑔𝑒 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 𝐿𝑜𝑠𝑠 + 𝜆 ∑ 𝑤𝑖
2

𝑑

𝑖=0

(10) 

The regularization parameter 𝜆 determines how aggressive the penalty is and d is the total 

number of parameters in the function. By testing different 𝜆 terms, the optimal penalty 

term for the function can be found. The tuning of 𝜆 is performed on the validation set 
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along with other hyperparameters, and the method of which can be found in Section 

2.2.8. 

Dropout regularization is when nodes are ‘dropped’ from a layer of a designed model to 

prevent nodes from becoming too specific [18, p. 438]. To preserve the model 

architecture the nodes are not actually dropped, instead their activation functions are set 

to zero to prevent their influence on the model. The nodes are chosen at random for each 

training datapoint so that the same nodes are not dropped constantly. The number of 

dropped nodes in a run is a specified fraction 𝜃 of the total number of nodes. The weights 

of the remaining nodes increase by 1 (1 − 𝜃)⁄ , the effect of which acts as regularization 

within the model.  

2.2.6 Optimization Functions 

Having chosen a loss function to calculate the model’s error, the next step is to choose 

the method of finding the parameters that minimize the loss. Assuming regularization has 

occurred, these would be the optimal parameters. The method of doing this is the 

optimization function, which is often a gradient-descent method. By taking the gradient 

of the loss function, the parameters of the model can be updated to move towards a global 

minimum [16, p. 134]. The function works iteratively until the function no longer 

decreases, implying convergence.  

A popular optimization function is that of stochastic gradient descent (SGD). The 

parameters of the function are updated after each run, where w is the vector of 

parameters, 𝜏 is the iteration number, and 𝛻𝐿 is the gradient of the loss function [15, p. 

144]. 

𝑤(𝜏+1) ← 𝑤𝜏 − 𝜖𝛻𝐿 (𝑆𝐺𝐷)(11) 

Here, 𝜖 is the learning rate of the gradient descent. The learning rate determines the size 

of the step that the gradient descent takes while updating the next iterations parameters. It 

is another hyperparameter which can be optimized. If a learning rate is too low at the 

beginning of the optimization, the steps taken will be small and the algorithm will take a 

very long time to come to convergence. If the learning rate is large the optimal solution 
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may be approximated early, but it may never be reached as the algorithm oscillates 

around it [16, p. 135]. The solution to this is to have the learning rate start large and then 

decay over time. The two most popular decay functions are exponential and inverse 

decay, where k controls the rate of decay. 

𝜖𝜏 = 𝜖0𝑒𝑥𝑝(−𝑘 ∙ 𝜏) (𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝐷𝑒𝑐𝑎𝑦)(12)  

𝜖𝜏 =
𝜖0

1 + 𝑘 ∙ 𝜏
(𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐷𝑒𝑐𝑎𝑦)(13) 

Even with a decaying learning rate, it can be desirable to minimize the oscillation of the 

gradient descent steps. This is done by adding the momentum parameter 𝛼 and the 

variable 𝜐 which represents velocity. The velocity is calculated from the average of the 

decaying gradient [13, p. 293]. 

𝜐 ← 𝛼𝜐 − 𝜖𝛻𝐿 (14) 

𝑤(𝜏+1) ← 𝑤𝜏 + 𝜐 (15) 

The hyperparameter 𝛼 determines the rate of decay of the previous gradients. The 

equation remembers the previous direction the gradient descent was going and uses this 

to cut out unnecessary movements. This allows for an optimization that generally knows 

the direction of the optimum, making the gradient descent function perform better over 

flat sections and local minima [16, p. 136]. The affect momentum has on optimization is 

a smoothing of the zig-zag oscillations, allowing for the optimum to be reached quicker.  

An example of another optimization function that uses momentum is the adaptive 

moment (Adam) algorithm. Adam exponentially smooths the first-order gradient as a 

variant of the above momentum method to include the momentum in the parameter 

update [16, pp. 140–141]. Adam also corrects the bias of the estimates of the first- and 

second-order moments [13, p. 305]. Given a decay parameter 𝛼 ∈ (0,1),  𝐴𝑖 is the 

exponentially averaged value of the ith parameter wi. 

𝐴𝑖 ← 𝛼𝐴𝑖 + (1 − 𝛼)(𝛻𝐿)2  ∀𝑖 (16) 
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The exponentially smoothed value is then calculated using the decay parameter 𝛼𝑓: 

𝐹𝑖 ← 𝛼𝑓𝐹𝑖 + (1 − 𝛼𝑓)𝛻𝐿  ∀𝑖 (17) 

This then makes the updating of the parameters look like the following function: 

𝑤(𝜏+1) ← 𝑤𝜏 −
𝜖𝜏

√𝐴𝑖

𝐹𝑖  ∀𝑖 (18) 

𝜖𝜏 = 𝜖 (
√1 − 𝛼𝜏

1 − 𝛼𝑓
𝜏 ) (19) 

𝜖𝜏 now makes the learning rate a bias correction factor to counteract the bias introduced 

in the initialization of the algorithm.  

2.2.7 Anomaly Detection 

Anomaly detection, otherwise known as outlier detection, is a category of machine 

learning where the goal is to identify datapoints that deviate from the expected behavior 

of the data. This can be applied to anything from credit card fraud detection to tumor 

identification in MRI imaging [19, pp. 2–3]. If the defined pattern deviates from the norm 

it is considered ‘of interest’ and becomes desirable for analysis. There are many methods 

for approaching the task of anomaly detection and the most suitable one varies depending 

on the task at hand and the available data.  

There are several categories of anomaly detection problem types, and one that is relevant 

to this thesis is Industrial Damage Detection. This refers to the physical damage that 

occurs to industrial units, either mechanical components or physical structures. The data 

is collected by sensors and analyzed for anomaly detection to allow for the repair and 

replacement of the physical components before issues arise [19, pp. 17–18]. Two of the 

common methods for detecting anomalies for this type of damage detection include 

Parametric Statistical Modeling and using NN autoencoders. 

Parametric Statistical Modeling involves using statistical techniques to analyze data that 

follows a normal distribution, assumed to be Gaussian. With a Gaussian distribution of 
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the data, the mean, 𝜇, and standard deviation, 𝜎, for the dataset can be calculated. In the 

simplest of calculations, the anomaly score for a datapoint is said to be the distance of the 

datapoint from the estimated mean. The threshold for determining how far away from the 

mean is considered anomalous can be set using the standard deviation. Datapoints with 

anomaly scores outside of 𝜇 ± 𝑥𝜎 will be considered anomalous where x is a chosen 

multiplier between 1 to 3.  A value of 3 would result in a range consisting of 99.7% of the 

dataset [19, p. 34].  

A variation of the anomaly score is the Z-Score, which takes the anomaly scores from  

above and normalizes them by taking the absolute values and dividing by the standard 

deviation [20, p. 1014].  

𝑍 − 𝑆𝑐𝑜𝑟𝑒 =
|𝑥 − �̅�|

𝑠
(20) 

The value x is a sample point, �̅� is the mean across all samples, and s is the standard 

deviation. The Z-Score provides the number of standard deviations from the mean for all 

datapoints, which can once again be compared to a set threshold to determine if the data 

is anomalous. 

A different methodology for structural damage anomaly detection is to use NN 

autoencoders. Autoencoders take an approach that utilizes unsupervised deep learning 

architecture to perform anomaly detection. The goal is to have a model that learns the 

low-level features of the data using MLPs for the purpose of reconstructing the data as 

accurately as possible. By learning the features which make up the data, the data is 

encoded. The architecture of an autoencoder has a constricted middle, such that the 

interior layers have fewer units than the input and output layers (Figure 2-5). This makes 

the model learn a reduced representation of the data which prevents a direct 

reconstruction [16, p. 71]. Normal data will be reconstructed well by the model while 

anomalous data will have larger reconstruction errors since the features will not be as 

present [21].  
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Figure 2-5: Autoencoder neural network  

The loss function to get the error is taken by calculating the distance between the points 

in the original and reconstructed point clouds. In this context, distance is a non-negative 

function which measures the dissimilarity between the two point clouds [22]. By looking 

at the differences between the input and output data, the accuracy of the reconstruction 

can be evaluated. A common metric used for calculating the differences between point 

clouds is the Chamfer Distance (21).  

When using a loss function for comparing point clouds, certain conditions must be met. 

The loss function must be differentiable across all point locations, efficient to compute, 

and robust against point outliers [23]. The Chamfer Distance calculation meets these 

requirements while also not requiring point pairings from each point cloud to be 

explicitly defined. For each point in point cloud A, the CD algorithm [22] finds the 

nearest neighbor in point cloud B. The point-level pair-wise distances for all points are 

averaged together. This is done symmetrically for points from A → B and B → A to get 

the average distance between points.  
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𝑑𝐶𝐷(𝑆1, 𝑆2) =
1

|𝑆1|
∑ 𝑚𝑖𝑛

𝑦∈𝑆2

‖𝑥 −  𝑦‖2

𝑥∈𝑆1

+
1

|𝑆2|
∑ 𝑚𝑖𝑛

𝑥∈𝑆1

‖𝑦 −  𝑥‖2

𝑦∈𝑆2

(21) 

2.2.8 Hyperparameter Optimization 

As mentioned in previous sections, when building a model there are some parameters that 

must be set by the user. These parameters are called hyperparameters since they cannot 

be estimated from the data[13, p. 119]. The majority of the model’s parameters will be 

optimized using the loss and optimization functions during training, but hyperparameter 

tuning must be implemented separately.  

The number of hyperparameters that can be turned for each model depends on the type of 

model that is being used. Deep learning models have many hyperparameters which can 

be optimized. For the model itself, the number of hidden layers, the number of neurons 

on each layer, and the activation function for each layer are all hyperparameters. If the 

model architecture doesn’t require a specific value for each of those hyperparameters 

then they can all be tuned. For model compilation, hyperparameters include the 

optimization function, the learning rate and momentum of the optimization function, and 

the method of regularization. For model fitting, some hyperparameters include batch size 

and the number of epochs that the model is trained for.  

To tune these parameters, the validation set discussed in Section 2.2.2 is used. This data 

set is a subset of the training data that the model did not see during training. The 

generalization error is calculated at the end of each run using the validation set, and this 

is used to check the performance of the model with various hyperparameters [13, p. 119]. 

The hyperparameters can then be updated according to the hyperparameter optimization 

method (HOM) to improve performance. This means that given a hyperparameter 

configuration space Λ =  Λ1 ×  Λ2.×. . Λ2 with vectors of hyperparameters 𝜆 ∈ Λ, the 

formula for optimizing hyperparameters is [24, p. 5], 

𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜆∈𝛬𝔼(𝐷𝑡𝑟𝑎𝑖𝑛,𝐷𝑣𝑎𝑙𝑖𝑑)~𝒟𝑉(ℒ, 𝒜𝜆 , 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑) (22) 
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where 𝑉(ℒ, 𝒜𝜆, 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑) is the loss of the model for the applied hyperparameters 𝜆 

on the algorithm 𝒜. Additionally, the maximum may be searched for instead of the 

minimum. 

The most basic HOM is the grid search. The grid search takes the cross product of the 

sets of values for each hyperparameter and looks for the combination that minimizes the 

error [24, p. 7]. While this method may be effective for simple models with few 

hyperparameter options, large configuration spaces are impractical with this method due 

to how the number of computations grows with the number of hyperparameters. Instead 

of grid search, the parameters can be chosen using the random search method. Marginal 

distributions are chosen for each hyperparameter instead of finite values and the values 

are chosen at random while the search is being conducted. This method parallelizes better 

than grid search and was found to be more efficient than grid search at determining the 

optimum parameters [13, p. 429].  However, there are still guided search options that may 

perform better than random search.  

One of the popular guided methods for HPO is Bayesian optimization (BO). Bayesian 

optimization consists of an acquisition function to pick the hyperparameters for 

evaluation and a probabilistic surrogate model based on a prior distribution. In pseudo 

code the BO algorithm is as follows [25]: 

1: for n = 1,2,…., do 

2: select new xn+1 by optimizing acquisition function 𝛼 

xn+1 =  arg maxX  𝛼(x; 𝒟n) 

3: query objective function to obtain yn+1 

4:  augment data 𝒟n+1 = 𝒟n , (xn+1, 𝑦𝑛+1) 

5:  update statistical model 

6: end for 
 

This method uses the previous observations to improve the model using posterior 

updating. This allows for a more refined search procedure when compared to the random 

search since the algorithm is learning from previous configurations. 
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Another strategy is to use the Hyperband (HB) algorithm. This method is an evolution of 

the random search method. HB compares the performances of several random 

configurations of parameters and stops the worst performing ones using successive 

halving [24, p. 17]. It removes half of the configurations that performed the worst and re-

evaluates the remaining ones until only one configuration remains. The HB method 

performs this in sections by dividing up the computational budget that has been allocated 

for HPO.  

2.2.9 Performance Metrics 

After the model has been developed the quality of its prediction needs to be assessed. 

This can be done beyond the error that is calculated using the loss function of the model. 

For classification problems, performance metrics are used to compare the model’s 

predictions to the ground truth from the test dataset. The model’s predictions are 

identified as either a True Positive (TP), False Positive (FP), True Negative (TN), or 

False Negative (FN) depending on how they compare to the actual label of the data 

(Figure 2-6). A common way to display this data is by using a confusion matrix. Based 

upon those categories, many performance metrics can be calculated [26]. Common ones 

for binary classification can be seen below in Table 2-1. 

 

Figure 2-6:Binary performance matrix 
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Table 2-1: Binary performance metrics 

Metric Equation Purpose 

Accuracy 
𝑡𝑝 +  𝑡𝑛

𝑡𝑝 +  𝑡𝑛 +  𝑓𝑝 +   𝑓𝑛
 

How well the classifier 

identifies true labels 

Precision 
𝑡𝑝

𝑡𝑝 +  𝑓𝑝
 

How well the classifier 

predicts the positive class 

Recall 
𝑡𝑝

𝑡𝑝 +  𝑓𝑛
 

The classifier’s ability to 

properly identify positive 

labels 

Specificity 
𝑡𝑛

𝑓𝑝 +  𝑡𝑛
 

The classifier’s ability to 

properly identify negative 

labels 

Area Under 

Curve (AUC) 

1

2
(𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

The classifier’s ability to 

avoid false classification 

 
 

2.3 Deep Learning on Point Clouds 

2.3.1 Introduction to Deep Learning on Point Clouds 

Applying deep learning techniques onto point clouds has been a focus in recent years as 

researchers have explored the potential uses of ML algorithms trained on point cloud 

data. Challenges arise from the fact that point clouds are unordered and have high 

dimensionality [7]. CNNs and other neural networks require a structured input to 

generate appropriate weights for each layer [27]. 

There are three main objectives when it comes to deep learning on 3D point clouds: point 

cloud segmentation, object detection and tracking, and shape classification. Point cloud 

segmentation involves separating the point cloud into various subsets based upon the 

semantics of each point [7]. Object detection and tracking involves identifying 3D objects 

within their scene and tracking them as the scene changes. The focus of this research is 

on shape classification, which involves identifying a 3D object and classifying it as 

belonging to a category. These objectives have all been achieved in recent years using 2D 

images, with applications including text processing and facial recognition [14]. Images 

consist of structured arrays of easily labelled and processed pixels, making them ideal 
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data formats for deep learning applications. Successful 2D deep learning algorithms 

include RCNN [28] and YOLO [29]. To achieve the same success using point clouds, 

various methods have been proposed to address the challenges of the data format. These 

methods can be categorized into view-based methods, volumetric-based methods, and 

point-based methods.  

2.3.2 View-Based Methods 

View-based methods involve translating the 3D shape into multiple 2D images. It 

circumvents the challenges of the 3D data format by converting the data into a 2D format. 

A perspective camera is moved around the 3D shape and collects images from all 

different angles [30]. Features are then learned from the 2D images, using the successful 

image-based convolution methods mentioned above. The view-wise features that are 

extracted then need to be aggregated from all the images in order to get an accurate shape 

classification model [7].  

Multi-view CNN (MVCNN) [31] is the pioneering work for view-based methods. The 

model pre-trains on large 2D datasets, such as ImageNet, and is then fine-tuned using the 

views of the 3D object. It uses element-wise maximum operating view-pooling layers to 

aggregate the results from each view that is passed through the first CNN. That means 

that only the maximum element from each view is included for the final CNN and soft 

max classification. This results in information loss [7] as other features are not included 

in the classification decision. Additionally, there are some challenges when it comes to 

determining the multiple views used in the approach. There is no method provided to 

decide the number of views of the object and where those views should be [32]. Too 

many views would be inefficient, but too few could result in self-occlusions. The optimal 

camera field of view and distance for each object must also be considered to capture 

shape data in the image.  

2.3.3 Volumetric-Based Methods 

Volumetric-based methods approach the point cloud problem by converting the point 

cloud to a 3D voxel representation and then use a CNN on the ordered grid to classify the 

shapes [7]. The voxelization process creates a volumetric occupancy grid to estimate free 
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and occupied space based on the point cloud [33]. Each coordinate (x, y, z) is converted 

to a voxel (i, j, k) by a uniformly discretized mapping process. The resulting grid is also 

dependent on the chosen resolution. If the resolution is too large, aliasing can occur, and 

data can be lost. If the resolution is too small, shape information from the object may be 

lost [33]. Additionally, the computational and memory requirements for the occupancy 

gird scale cubically with the resolution [34]. This puts a limitation on most volumetric-

based methods as it would not be practical to work with a high voxel grid resolution.  

An approach to address this is to use an octree to reduce the computational memory 

requirements. An octree recursively subdivides a 3D space into octants, which means the 

space is split up into eight equal parts. The approach by Riegler et al. [34] applies 

subdivisions only to cells containing relevant information. That way, sparse areas will be 

allocated to large cells while dense areas will have voxels of a significant resolution to 

extract meaningful features. There are limitations to the efficiency of this method since 

the CNN is not trained on all the voxels of the object. Specifically, it was found that this 

method was less efficient than full-voxel solutions when the voxel resolution was lower 

than 643 [32].    

2.3.4 Point-Based Methods 

Point based methods were introduced in 2017 with PointNet [6], and have become 

popular because they work directly with the raw point cloud data. This prevents 

information loss that is inherent in the view-based and volumetric-based methods through 

data conversion [7]. The different point-based methods can be split into pointwise MLP 

networks, convolution-based networks, graph-based networks, and hierarchical data 

structure-based networks.  

2.3.4.1 Pointwise MLP Networks and PointNet 

Pointwise MLP networks involve using fully connected MLPs to extract local features 

from each point and aggregate them using max pooling layers[4]. PointNet (Figure 2-7) is 

the pioneering work for this type of method and will be the focus of the experiments in 

this research for reasons described below. The PointNet architecture works directly on 

the point cloud represented as a set of 3D points {𝑃𝑖|𝑖 = 1, ⋯ , 𝑛}, where each point is a 
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vector containing at minimum Cartesian coordinate values [6]. As mentioned above, 

point clouds are unordered. To process a point cloud of N points, the network must be 

invariant to order and be able to work on any of the N! combinations of the point cloud. 

PointNet addresses this by using a symmetrical function on the input that will result in 

the same vector output regardless of the order of the input. A MLP network learns local 

features for each point, and then the symmetric max pooling function aggregates the 

results to extract all the global features [4]. PointNet can be represented by the following 

function 𝑓 [27]: 

𝑓(𝑃1,𝑃2, ⋯ , 𝑃𝑛) = 𝛾 ( MAX
𝑖=1,⋯,𝑛

ℎ(𝑃𝑖)) (23) 

where γ and ℎ are features learned from MLPs and MAX is the symmetric function. 

 

Figure 2-7: PointNet architecture[6] 

The PointNet algorithm also is invariant to geometric transformations. If a point cloud of 

an object undergoes a rigid transformation of rotation or translation, the algorithm still 

classifies the point cloud under the same global category as before the transformation. To 

achieve this, PointNet implements a mini transformation network called T-net which 

develops an affine transformation matrix to align the input coordinates to a canonical 

space [35]. The T-net block is a regression network that predicts a 3 × 3 matrix to 

multiply with the 𝑛 × 3 input to achieve pose normalization. It consists of shared 

MLP(64, 128, 1024) layers, a max pooling layer, and fully connected Dense(512, 256) 
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layers [6]. The weights and biases are then reshaped into a 3 × 3 matrix for the matrix 

multiplication with the input.  

After alignment, the point cloud is then passed through an MLP(64, 64) network to 

extract features from each point [36]. The T-net block is applied with higher 

dimensionality a second time in the architecture, after the 64-dimensional feature 

extraction. This implementation predicts a matrix to align the extracted features of the 

point cloud, where the first one aligns the point cloud itself within the canonical space 

[4][6]. After the second T-net, a second MLP(64, 128, 1024) is applied for additional 

feature extraction on the aligned features. Next, the previously discussed max pooling 

layer is used as the symmetric function to extract the global features of the point cloud. 

With the global features known, a final MLP(513, 256, k) is used to generate 

classification scores for each category [36]. Here, k is the number of categories to choose 

from for classification. PointNet then uses a SoftMax cross-entropy function as the loss 

function in the activation layer to predict the classification probability for each category. 

The loss function is defined below [36]:  

𝐿𝑜𝑠𝑠 = −
1

𝑘 + 1
∑ ∑(𝑖𝑛𝑑𝑖𝑐𝜍,𝑙 ⋅ log(�̂�𝑙

𝑗
))

𝑘

𝑙=0𝜍

+ 𝑤𝑒𝑖𝑔ℎ𝑡𝑟𝑒𝑔𝑟𝑒𝐿𝑟𝑒𝑔 (24) 

𝑖𝑛𝑑𝑖𝑐𝜍,𝑙 = {[

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 ⋯ 0 1

]

𝐹𝑖𝑟𝑠𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝜁 = 0
𝑆𝑒𝑐𝑜𝑛𝑑 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝜁 = 1

⋮
 𝑛𝑡ℎ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦, 𝜁 =  𝑛 − 1

(25) 
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(26)  

𝑍𝑙
𝑗

= 𝜔 ∗ 𝑝𝑗 (27) 

The 𝑤𝑒𝑖𝑔ℎ𝑡𝑟𝑒𝑔𝑟𝑒 value is chosen to be 0.001, while the indicator matrix holds the one 

hot encoded (OHE) values of the categorical label. This is what translates the qualitative 

categories into values that the architecture can work with. 𝑍𝑙
𝑗
 uses the weights (𝜔) of 

each layer to calculate the probability of each categorical output l for each point cloud 𝑝𝑗. 
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𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑍𝑙
𝑗
) then takes those values and predicts what is the most likely category that 

the point cloud belongs to. 

Optimization gets more difficult because of the high dimensionality, so a regularization 

term is applied to the SoftMax optimization to help with stabilization. PointNet uses an 

approximated orthogonal matrix to constrain the feature transformation matrix, 

𝐿𝑟𝑒𝑔 = ‖𝐼 − 𝐴𝐴𝑇‖𝐹
2 (28) 

where A is the predicted output matrix from the second implementation of the T-net 

block [6]. 

PointNet is also shown to be robust against various input corruptions. In testing accuracy, 

Qi et al. [6] found it took more than 70% of the points to be missing from the point cloud 

to see a significant drop in the metric. PointNet detects critical points for each shape and 

has upper bounds for point clouds that would result in the same classification. If a point 

cloud provides points between the critical and upper-bounds limits, it will result in the 

same classification as another point cloud with points within that range. This is a good 

basis for extending the research to classification accuracy while using point clouds that 

only show part of the object. Theoretically, if the critical points for each object are still 

identifiable, the object can be accurately classified. It is also robust against outliers, as 

tests showed that when 20% of the points in the cloud were outliers the accuracy of the 

model was still over 80% [6]. This robustness makes this method a viable choice when 

working with LiDAR data, as it can withstand the natural variance that may occur within 

LiDAR scans. 

In terms of computational efficiency, PointNet is more efficient than methods previously 

discussed. When compared to MVCNN, it has a floating-point operations/sample 

(FLOPs/sample) rate that is 141x more effective [6]. Compared to the squared and cubic 

complexities found in other models, PointNet operates in a linear manner, making it more 

efficient to operate for real-time applications. PointNet has limitations when it comes to 

scene segmentation, since it does not consider the local features of neighbouring points 

[4]. It that scenario, other architectures may be more appropriate. Since it is the first 
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architecture of its kind, PointNet is very well documented and has been a launching point 

for many other networks. Because of this and the abilities described above, PointNet was 

chosen as the primary architecture for this research.   

2.3.4.2 Convolution-Based Networks 

Convolution-based networks involve applying pointwise convolutional operations on 

each point of the point cloud either through continuous or discrete convolution. These 

operations extract the relationships between local features of neighbouring points. For 

continuous convolution, convolution is applied on a continuous space across all points 

surrounding a center point. The spatial distribution between the neighbouring points and 

the center point is then used to modify the developed weights from other learned features 

[7]. An example of this type of convolutional network is Relation-Shape CNN (RS-CNN) 

which implements the developed relation-shape convolution (RS-Conv) operator [37]. 

RS-Conv uses an MLP to apply convolution to a neighbourhood of points around the 

center point. It learns features by relation, such as the Euclidian distance and relative 

position for each point to the center point [7]. By convoluting in such a way, the local 

relationships between points are known, which translates information to the underlying 

global 3D shape made by the point cloud. This creates a model that is shape-aware [37]. 

Discrete convolution involves assigning a uniform grid over the neighbourhood points 

before convolution. Instead of extracting the spatial distribution surrounding the center 

point, the convolution extracts the offsets of the neighbouring points to the center one. 

This is what is used to modify the weights learned by the layers [7].  An example 

architecture is Pointwise CNN [38], which uses this principal in their pointwise 

convolution operators. There is a 3 × 3 × 3  convolutional kernel centered at each point 

of the point cloud, and it assigns the same weights to all points within the kernel. Unlike 

in PointNet, no pooling layers are used. Instead, the mean features of neighbouring points 

around a center point are calculated using previous layers [7]. This also means that there 

is no up-sampling or down-sampling since all the convolutions are pointwise [4]. Another 

aspect of Pointwise CNN is that it requires points to be ordered for processing, which is 

an extra step that PointNet does not need. 
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2.3.4.3 Graph-based Networks 

Another way to process point clouds is by using graph-based methods. Each point in the 

point cloud is used as a vertex of a graph, assigning direction between each of the points 

[7]. Complex geometric structures can be encoded within the graph, making this type of 

network desirable when dealing with intricate data [39]. There are two ways to perform 

feature learning on the graphs, either using a spectral or spatial filtering method. For 

spectral methods, the convolution is done in the spectral domain using eigen-vectors of 

the graph Laplacian matrices. The signal on the graph is multiplied with the eigen-vector 

matrix. An example of this type of network is the Regularized Graph Convolution 

Network (RGCNN) [40]. The geometry of the point cloud is taken as an input through the 

coordinates and normal of each point. The graph Laplacian matrix is updated after each 

layer to learn the dynamic features of the point cloud. Without any approximations, 

spectral methods have high computational complexity due to the eigen-decomposition of 

the graph Laplacian matrices [40]. 

When spatial filtering is used, the convolution operations are defined in the spatial 

domain where points are assigned to spatial neighbourhoods [7]. An MLP can be 

implemented over each neighbourhood with pooling used to aggregate features and 

down-sample the data into a coarser graph. Edge-Conditioned Convolution (ECC) [41] is 

the pioneering method for this method. The vertices of the graph are connected to nearby 

points with edges, and a convolution operation is performed where filter weights are 

conditioned on each edge label. In this way, the features of each neighbourhood are 

extracted.  

2.3.4.4 Hierarchical Data Structure-based Networks 

Hierarchical data structure-based networks use various structures to extract features 

hierarchically from the point cloud [7]. These structures, such as octrees described in 

Section 2.3.3, divide the 3D space into tiered groups. A primary example, Kd-Net [42] 

uses k-dimensional trees (kd-trees) to organize the point clouds. A kd-tree splits the data 

along a coordinate axis into two sections containing an equal number of data points. The 

division starts at the originating root node and then happens recursively for a set depth D, 
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ending with the tree’s leaf nodes. By identifying the direction and location of the splits 

within a kd-tree, the geometric information of the data can be encoded. The networks are 

then processed from the leaves to the roots to learn local and global features. For each 

level, an MLP is used to extract the features of a node. The features are then combined 

with all other features of the child nodes to create the representation of the parent node 

[7]. This continues until the network culminates in the root node, upon which 

classification scores are predicted.  

2.4 Related Works 

There are multiple related works to this research which focuses on anomaly detection 

using point cloud data from partial scans of fixed objects and Deep Learning. Griebel et 

al. [43] looked at using the PointNet algorithm for anomaly detection using Radar data. 

Their application was identifying anomalies for autonomous vehicles during adverse 

weather conditions. In contrast to this research, their anomalies are dynamic bodies such 

as pedestrians or bicyclists. By modifying the PointNet and other algorithms they were 

able to achieve an F1 score and inference time that showed the ability for this method to 

be used for anomaly detection. 

In [44] the researchers Masuda et al. developed a variational autoencoder (VAE) to 

perform anomaly detection on 3D point clouds. They believe their paper to be the first to 

attempt anomaly detection on 3D point clouds of general objects. They looked at 

reconstruction errors between the original and reconstructed point clouds to determine if 

the point cloud contained anomalies. However, in contrast to this research, their anomaly 

detection was performed on whole objects from the ShapeNet database instead of partial 

scans. For the encoder they didn’t define a specific method but used skip-connection and 

max-pooling layers to extract the features from the point clouds. For their decoder, they 

used an architecture called FoldingNet. For their reconstruction loss metric, they used the 

Chamfer Distance calculation (21) to obtain the distance between the reconstructed and 

original point clouds.  

Another relevant paper is that by Wang et al. [45]. Their research is looked at using 

PointNet and other encoders to reconstruct and ‘repair’ point clouds that have occlusions. 
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The method for generating occlusions involves taking complete point clouds and viewing 

them from a 3D camera reference frame. They used the ModelNet40 dataset in the 

research, which contains complete point clouds of singular objects. The occluded point 

clouds were generated by projecting the view from a virtual pinhole camera and 

removing all the points that were occluded from that view. The encoder mapped the 

occluded point clouds, and the decoder reconstructed the point cloud and attempted to 

recreate it without the occlusions. The Chamfer Distance (21) was also used as a loss 

metric to calculate the distance between the predicted reconstruction and the ground truth 

point clouds.  
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3 Methodology 

As discussed in the previous section, the PointNet ML architecture was chosen for 

processing the point clouds and the Parametric Statistical Modeling and Neural Networks 

autoencoder methods were chosen to conduct the research into using ML on 3D point 

clouds for damage detection. 

The following approach was used: 

1. Synthetic datasets comprised of several types of 3D scans were created and used 

for training, testing and validation. The types of 3D scans were categorized as full 

scans, targeted partial scans, and random partial scans. The random partial scans 

were used for both training research and the final testing data since they best 

represent the type of 3D point cloud data that would be collected on the space 

station.  

2. A PointNet-based object classification model was built, and an Optimal Training 

Data experiment was conducted to determine which type of scans were most 

effective in classification given that the random partial scans would be used for 

the testing data. 

3. Multiple models that perform both classification and anomaly detection were 

created and trained using the optimal training data type determined in the previous 

step. 

4. The model that worked the best for anomaly detection was then chosen and 

hyperparameter tuning was done to optimize its performance. 

5. The tuned model was then tested and validated, and its results analyzed. 

3.1 Data Generation and Preprocessing 

The synthetic dataset used for this research is referred to as the Simple Objects dataset. It 

contains 3D object models of four basic geometric shapes: a cube, cylinder, cone, and 

pyramid (Figure 3-1), which were chosen as representatives of components that would 

make up a spacecraft. The 3D object models were used to generate full and partial 3D 

scans (point clouds) of each object, which were used then to test and create a baseline for 
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the ML models being evaluated. The partial scans were created with the goal of 

representing the real-world scenario where occlusions are a common occurrence and, in 

many cases, only a part of an object will be captured in the field of view of a LiDAR 

scan. 

 
a) Cone Object Model 

 
b) Cube Object Model 

 

 
c) Cylinder Object Model 

 
d) Pyramid Object Model 

Figure 3-1: Simple Object CAD Models 

The Simple Objects data set was chosen to perform the primary research and create a 

baseline since: a) most complex objects can be made up from basic shapes, b) if the 

model could not be used to detect simulated damage on basic shapes, then it would most 

likely not succeed on more complex shapes. To frame this research, each simple object is 
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representative of a component that would be found on a space station, as seen in Figure 

3-2. 

 

Figure 3-2: Theoretical spacecraft comprised of Simple Objects 

Full and partial scans were first used to investigate which type of scan would be more 

effective in training the model using an Optimal Training Data experiment. Once this was 

determined, the less effective data styles were discarded and only the optimal training 

data style was used. The dataset was then used to research and evaluate an optimal 

anomaly detection method.  

3.1.1 Simple Objects Full Scans 

Full scans are defined as point clouds where an object is completely represented in the 

scan, in that there are no occlusions, and the point density is sufficient to fully render the 

object. Full scans of the four simple objects were generated for the purpose of testing the 

effectiveness of the scan type as training data. The scans were made by starting with the 

solid models of the objects in the dataset, representing them with triangular surface 

meshes (Figure 3-3), and then generating point clouds from the meshes. Triangular 

meshes describe the surface geometry of a 3D object using triangles that are connected by 

their common vertices and are a simple and effective way of digitizing an object. 
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Figure 3-3: STL triangular mesh of the cube object model, used for sampling point 

clouds 

The 3D models of the objects were made using Blender [46], a free CAD modeling 

software. The models for the cube, cone, and cylinder were made using existing Blender 

‘Primitives’, which are premade meshes in simple 3D shapes. The pyramid model was 

constructed from a Primitive cone model by setting the number of vertices around the 

base of the cone to four and transforming it into a square-based pyramid. After this, the 

models were exported as triangular meshes to STL files, which is a common file format 

used for prototyping and 3D printing. The file type makes it very easy to transfer models 

between software. 

The software used for the point cloud generation was CloudCompare (CC). CC is a free, 

open-source software that was developed for processing 3D point clouds and triangular 

meshes. One of CC’s functions is to generate a point cloud by sampling points on a mesh. 

A benefit to using CC is that it has a Python API called CloudComPy that provides the 

ability to use some of its functions programmatically. This allowed for a Python script 

called FullScan.py (Figure 9-1: FullScan.py preambleFigure 9-1 and Figure 9-2) to be 

written that automated the sampling of points on the mesh so many point clouds could be 

generated. 

For the automated point cloud generation, an input text file was made that specified the 

file location and label for each of the meshes. This allowed for the number of meshes to 
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be variable so the code could be reused in the future. It was decided that 2,000 point 

clouds would be generated for each object to create an appropriately sized, balanced 

dataset that provided enough point clouds for training. With four different objects, this 

would lead to a training dataset of 8,000 point clouds.  

Each point cloud was generated using the samplePoints() function from CloudComPy, 

where the sampling parameter for number of points was set to 50,000. This number of 

points was selected because it was found through trial and error to provide an appropriate 

point density that allowed all the features of each object to be visible. It also allowed for 

various levels of down sampling when using the clouds as training data without losing 

too much resolution. The samplePoints() function divides the sampling parameter by the 

number of triangles in the mesh and randomly samples that number of points in each 

triangle. The function sampled points on the entire mesh, creating a point cloud that 

represented the whole object. The point clouds (Figure 3-4) were saved to a folder, and a 

.csv file was made as a directory containing the location and object label for each of the 

point clouds. 

 

Figure 3-4: Example Full Scan PC 
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3.1.2 Simple Objects Partial Scans 

Partial scans are defined to be point clouds where the full object is not represented in the 

scan. Three types of partial scans were generated, “targeted”, “random”, and “random 

damaged”. The random partial scans were generated with views taken at random to 

simulate real-world conditions. These scans were used in the training dataset and as the 

normal data in the test dataset. In contrast, the targeted partial scans were generated to 

‘target’ the features that make up an object being classified, such as its edges and 

vertices, and were only used in the training dataset. Here the theory is that since PointNet 

works by identifying the critical features that make up the objects, it may be possible to 

improve the overall test results by pre-isolating these features in the training dataset when 

comparing the data style to random or full scans. The random damaged scans were 

random partial scans that included simulated damage to test the model in anomaly 

detection. These scans were not used for training and were used in the test dataset as 

anomalous data.  

3.1.3 Simple Objects Targeted Partial Scans 

To create the targeted partial scans, the STL files created in 3.1.1 for the Full Scans of 

each object were used. First the unique features of each object were identified, such as 

face top, edge, and vertex. A virtual camera was then simulated to view the point cloud of 

the object from different perspectives that isolated each feature. To obtain the different 

perspectives, the point clouds were rotated around each axis such that a targeted feature 

was within the camera’s field of view. Only the points within the field of view were then 

kept, all other points were discarded using a function that removes occluded points. This 

was repeated for each unique feature of the object. The unique features and the axis 

rotations to achieve them are summarized in Table 3-1 below. Here, ‘R’ stands for 

“Rotation around the axis”. The degrees were found through estimation and trial and 

error. 
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Table 3-1: Object model transformations for targeted scan generation 

Label View RX (°) RY (°) RZ (°) 

Cube Face 0 0 0 

 Edge 15 0 0 

 Vertex 15 15 0 

Cone Top 0 0 0 

 Side 30 0 0 

Cylinder Face 0 0 0 

 Side 30 0 0 

 Edge 0 15 0 

Pyramid Top 0 0 0 

 Edge 15 90 0 

 Face 300 0 0 

To implement the method described above, the software Open3D [47] was used. Open3D 

is an open-source library for 3D data processing that has well-defined point cloud classes, 

and a Python API which made it desirable for use in this application. Similar to 

CloudCompare, Open3D has functions for sampling points off of a mesh. The sampling 

algorithms are either to uniformly sample points over the mesh in an assumed grid, or to 

sample them using a Poisson disk sampling algorithm. As explained in 2.1.2, the Poisson 

disk sampling algorithm uses a minimum distance parameter to guarantee an even 

distribution of randomly sampled points. This algorithm is closer to the algorithm used in 

CC, which is random sampling over a defined area, than the uniform grid sampling, so 

the sample_points_poisson_disk() function was chosen. The sampling parameter of 

50,000 was kept consistent between generating methods to guarantee the same point 

density for all point clouds. 
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The Open3D function hidden_point_removal() is based off of Katz et al. [48] and takes in 

a defined camera location and camera view radius as parameters. It uses a very simplistic 

model of a pinhole camera, which projects a view onto the point cloud based upon the 

location and aperture radius of the virtual camera. After experimenting with the function, 

it was decided that for each targeted feature two different levels of ‘zoom’ should be 

simulated. One would be far away, capturing all points visible from that perspective. The 

other would be zoomed in to provide a view where the data isn’t as clear and clean, in the 

hopes of creating a more robust training set less prone to overfitting. Given the eleven 

views in the table above and the two zoom levels, it was decided that each mesh should 

be sampled 1,000 times to have sufficient training data for each view. This would give a 

total of 22,000 point clouds for the targeted partial scans training dataset.  

In a similar manner to the full scan generation, the mesh locations were read in from an 

input text file (Figure 9-4). The camera views were also read in from a text file. The 

location of the virtual camera was chosen by setting the X and Y coordinates to 0 and 

setting the Z coordinate to the normal of the difference between the maximum and 

minimum point cloud bounds. This would guarantee that for the far zoom level the entire 

feature would be visible. 

For each mesh sample, the point cloud was rotated the required amount by converting the 

view parameters to a transformation matrix and applying it to the point cloud (Error! 

Reference source not found.). The level of zoom for the camera was then applied by 

adjusting the simulated cameras radius. For the far zoom level, the camera radius was set 

equal to the Z distance of the location of the camera. For the close zoom level, the radius 

was set to half that value. This narrowed the field of view as if the camera had zoomed in. 

After this the hidden point removal function was applied so that the points not within the 

camera’s field of view were removed. Each point cloud (Figure 3-5) was saved to a folder 

and their object labels and file locations were exported to a directory.  
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Figure 3-5:Targeted partial scan example of a cylinder ‘face’ 

3.1.4 Simple Objects Random Partial Scans 

The random partial scans were generated with CloudCompare by creating random slices 

of the Full Scan sampled point cloud. CC was used since it has easier to implement 

functions for creating random slices than Open3D. For each generated point cloud, the 

bounding box was retrieved. The bounding box is a property of the point cloud which 

contains the minimum and maximum point locations in each of the XYZ directions which 

“bound” the point cloud (Figure 3-6). A random transformation was then applied to the 

bounding box so that a new bounding box was generated that had different maximum and 

minimum point locations. This made the new bounding box contain only part of the 

original point cloud (Figure 3-7).  

 

Figure 3-6: Complete point cloud with original bounding box in yellow 
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Figure 3-7: New partial point cloud from translated bounding box (yellow) 

For each of the roll, pitch, and yaw in the random transformation matrix a number was 

randomly chosen between 0 and 180 to represent the degree of rotation. The length of the 

new bounding box in each direction was calculated by subtracting the location of the 

minimum corner from the maximum corner (Figure 9-5). A random translation was then 

chosen for each direction by multiplying the length by a random value between 0.1 and 

0.9. This range guaranteed that there would be points in each point cloud. The direction 

of the translation was also randomized to avoid translating to the same corner of the point 

cloud each time.  The CloudComPy class ccGLMatrix has a function 

initFromParameters() that can create a new bounding box based upon the calculated 

rotation and translation parameters.  

The CloudComPy function ExtractSlicesAndContours() allowed for a ‘slice’ to be 

extracted from an existing point cloud by providing the existing bounding box and the 

transformed bounding box of the desired slice. This method was used to generate both 

testing and training datasets. They were generated at different times to keep the datasets 

separate. For the training data, 2000 samples for each mesh were taken, creating a total of 

8000 point clouds. For the testing dataset, 1000 samples were taken for each mesh, 

creating a total of 4000 point clouds.  
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The meshes used were the same ones used for the other data generation. The location and 

label for each mesh was read in through an input file and the output directory DataFrame 

was pre-allocated for the number of point clouds being made. Each mesh was then 

sampled, and for each sample a random slice was generated using the method above 

(Figure 9-6Error! Reference source not found.). The new sliced point cloud was 

retrieved and saved to the output folder location. The location, label, and id of the point 

cloud were then saved to the directory. The id of each point cloud (Figure 3-8) was the 

label of the object combined with the creation number of the cloud.  

 

Figure 3-8: Example random partial point cloud of a cone 

3.1.5 Simple Objects Damaged Scans 

The damaged scans were additional random partial scans in the test dataset containing 

physical abnormalities that the model would try to identify as anomalous compared to the 

rest of the data. To make the damaged scans, each object model was randomly modified 

to include different types of damage. After the object models were modified with 

damage, the same procedure used to generate the normal random partial scans was 

followed.  
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The damage was generated and applied to each model using the Blender Python API and 

Blender nodes. Blender provides the functionality to create nodes, which are nodal blocks 

that allow for the modification of the active scene. There are many different types of 

nodes, and they can take the active model as the input, apply a specified modification, 

and return the output to the active scene. These modifications are precise, repeatable, and 

consistent. When nodes are combined into nodal groups, modifications can be performed 

on a large scale.  

To develop a nodal group to randomly generate damage, the scale and type of the damage 

first needed to be defined. For this research the type of damage to the spacecraft to be 

identified is classified as “microscopic”. This would include smaller scale damage such 

as craters, cracks, or divots. So-called “macroscopic” damage such as parts broken into 

pieces or large chunks being missing is out of scope and hence was not simulated. To 

simulate the microscopic damage, a YouTube tutorial [49] was followed that showed 

how to build a node group that would procedurally generate crater damage.  This node 

group served as the basis for the damage that was generated on the Simple Objects 

(Figure 3-9). 

 

Figure 3-9: Blender damage node group 

The geometry of the shape was first read in using the Group Input node. The damage was 

applied to the geometry as an offset using a Set Position node, was then transferred to the 

Group Output node. The offset which creates the damage is comprised of multiple node 

blocks which feed into each other. The starting point for the damage is the Voronoi 
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Texture block, which implements a Worley noise function. Worley noise, introduced by 

Steven Worley in 1996, is a texture function based off the distribution of irregularly 

scattered feature points [50]. This creates a pattern that mimics biological cell walls and 

can be used as a surface texture for generated objects such as stone pavements, reptilian 

skin, or hammered metal. For this implementation, the F1 feature was used which means 

to compute the distance to the nearest neighbour of each point. This was done using 

Euclidean distance as the metric calculated between points. The scale of the Voronoi 

texture node is a multiplier which determines the scale of the pattern, and the randomness 

determines if the pattern will appear in an orderly repeating fashion or not (Figure 3-10).  

 
a) Scale = -5.0 

 
b) Scale = 0 

 

 

 

 

 
c) Scale = 0.35 

 

 

 

 

 

 
d) Randomness = 0 

 

 
e) Randomness = 0.35 

 
f) Randomness = 1 

 

 

 

 

Figure 3-10: Effect of varying scale and randomness values of Voronoi Texture 

block 

The Voronoi Texture node was then fed into a Color Ramp node. The traditional purpose 

of a Color Ramp node is to map values to colours using a gradient. In this method, it was 

used to set the intensity of the pattern generated by the Voronoi Texture block. The hue 
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and saturation of the HSV colour wheel were both set permanently to 0 while the value 

slider was used to change the depth of the pattern (Figure 3-11). The position of the first 

colour block was set to 0, while the second one was used to add variability and determine 

the direction of the pattern (Figure 3-12). The output of the Colour Ramp was fed into a 

‘Multiply’ block which converted the value into a vector. The vector was then multiplied 

with a ‘Normal’ node, which is the normal to the surface of the active object. This is what 

is applied to the objects surface as an offset using the Set Position node. When combined 

in this way, these nodes created an effect that looks like surface level damage that might 

occur on the exterior of a space craft. 

 
Figure 3-11: HSV Colour wheel from Colour Ramp node 
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a) Value = 0.035 

 
b) Value = 0.1 

 

 

 

 

 
c) Position = 0.2 

 

 
d) Position = 0.8 

Figure 3-12: Effect of varying Value and Position numbers in Colour Ramp Node 

To create random damage, ranges were determined for the scale, randomness, value, and 

position variables (Table 3-2). These ranges were found through experimentation and 

deciding what would be reasonable damage for the exterior of a spacecraft. The damage 

needs to be surface level damage that is distinct enough to be identifiable as anomalous 

when compared to the normal object. Variables that created patterns that were too 

orderly, or damage that was too deep or tall, were excluded from the acceptable range. 

Table 3-2: Ranges for damage generation variables 

Range Min value Max value 

Scale -5 2 

Randomness 0.35 1 

Value 0.1 0.95 

Position 0.2 0.8 
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Random number generators were then used to select numbers in those ranges for each 

variable. The Python API allowed for the node group to be applied programmatically to 

the simple object dataset. Since the damage is applied as normal to each face of the base 

object, the object’s faces were subdivided until a sufficient granularity was achieved so 

that the damage was noticeable (Figure 3-13). The node group was added to each object’s 

Blender file and a new STL file was saved for each damage variant (Figure 3-14a)). For 

each simple object, 25 damaged STL files were created to have a large variation of 

damage in the test dataset.  

 
a) Undivided object model 

 
b) Subdivided object model 

Figure 3-13: Cube model before and after face subdivision 

 

 

a) STL of damaged pyramid 

 

 

b) Partial point cloud of the damaged 

STL file 

Figure 3-14: Example of damaged pyramid STL and damaged partial scan 
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The same code used to create the random partial scans test dataset in 3.1.4 was used on 

each of the damaged STL files to create the random test point clouds (Figure 3-14b)). Ten 

point clouds were created from each STL file, creating 250 per object and 1000 total 

anomalous point clouds. To designate if a test data point cloud contained damage, a new 

label was created in the directory which assigned a zero to all normal data and a one for 

all anomalous data. This had to be done manually for the damaged scans due to the nature 

of their creation. The partial scans were created by randomly generating a bounding box. 

Since the damage is randomly generated on the surface of the object and the slicing of the 

point cloud is also random, there is a chance that the damage could be missed, and the 

final point cloud would not contain anything identifiable as anomalous. Each point cloud 

had to be assessed visually and manually approved as containing anomalous damage. 

This reduced the overall number of anomalous point clouds to 616. A breakdown of the 

per-object anomalous point clouds can be seen below in Figure 3-15.  

 

Figure 3-15: Breakdown of damaged scans by object label 
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4 Optimal Training Data Model Experiment 

The Optimal Training Data Model was used to determine what type of training data 

would be the most effective in classifying the object. Classifying the objects is one of the 

constraints of this research, and it is a more straight forward and definable task compared 

to anomaly detection. The options for the type of training data were full scans, targeted 

partial scans, random partial scans, or a mixture of the full scans and random partial 

scans. A jupyter notebook was created to train the PointNet algorithm on each of the 

different types of training data to compare the loss, accuracy, area under the curve, and 

recall for each type. Making the model in a jupyter notebook allowed for greater control 

while debugging since code cells could be executed individually in comparison to a 

normal python script which executes everything all at one. This model was heavily based 

off the Keras point cloud classification tutorial authored by David Griffiths [35]. Keras is 

a Python deep learning API that implements the ML platform TensorFlow [51]. 

The roots for all the file locations were set appropriately depending on the type of 

training data being assessed. The directories for the test and training data were then read 

into pandas DataFrames (Figure 9-7). Due to an oversight in data generation, the test 

partial scans were not saved with the right label in the directory. This was rectified in the 

next step, shown in Figure 9-8. The labels were then mapped to numerical values. This 

was done in alphabetical order to keep the numerical labels consistent between trials 

(Figure 9-9). A function was then defined to access and down sample the individual point 

clouds. The function took in the number of points that were being sampled from each 

point cloud and returned multiple arrays containing the points and their label (Figure 

9-10). The default hyperparameters were specified and the points and labels for each 

point cloud were extracted using the dataset function. For this model, the 

hyperparameters of the number of sampled points and the batch size of data being 

processed were kept consistent between all training models (Figure 4-1).  
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Figure 4-1: Predefined parameters 

The arrays containing the points and labels were then converted into TensorFlow Dataset 

objects. TensorFlow Dataset objects are used to streamline the processing of large 

amounts of data while using the TensorFlow library. Transformations and augmentation 

can be performed over large amounts of data and functionality is provided for iterating 

over elements. Converting the data to Dataset objects also directly links the points and 

labels together beyond the order in the array. The training data is augmented here to 

introduce more variability to avoid overfitting. The data is augmented by jittering the 

points in a uniform manner between -0.01 and 0.01 and by shuffling the order of the 

points in each point cloud (Figure 9-11).  

The labels for each of the point clouds were then one hot ended (OHE) (Figure 4-2). One 

hot encoding means to create a legend for the labels using binary data. Each object 

represents a column and a “1” is used to signify when that label is “True”. Every other 

object label would be equal to zero. OHE is often used for categorical data when there is 

no numerical link between the categories. This makes the categories easier for the model 

to process. The integer encoding done earlier may be sufficient, but OHE is considered 

more foolproof as no relationship or numerical order between categories is presumed.  

 

Figure 4-2: OHE object labels 

The machine learning model was built next. For the Training Data Test, the model was 

kept as the basic PointNet algorithm using a Keras implementation (Figure 9-12). The 

convolution and fully connected dense layers were implemented as functions that 
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included the batch normalization layer and the ReLu activation function. The tnet block 

was implemented as a function that could be used for both applications in the model. The 

model was then created following the architecture outlined in Figure 2-7. The model was 

compiled using a Categorical Crossentropy loss. The optimizer was set to Adam with a 

learning rate of 0.001. The metrics being measured were accuracy, areas under the curve, 

and recall. The model was fit on the training dataset for 10 epochs before evaluation. 

Predictions were then made by applying the trained model to the test dataset. The 

function MakePredictions() was created to access the predictions for each point cloud, as 

well as the probabilities calculated for each class label. The predictions were displayed 

against the ground truth data in a confusion matrix to assess the accuracy of the model.  

4.1 Results 

The model was run with four different training data styles to find which was the most 

effective (Figure 4-3). The different styles of training data were Full Scans, Targeted 

Partial Scans (TPS), Random Partial Scans (RPS), and an equal mix of Full and Random 

Partial Scans called Mixed Scans. The initial hypothesis was that the best performance 

would be found from either TPS or RPS based upon the nature of the testing data and the 

model. Examples of each of the training data types can be found below.  

 
a) Full scans 

 
b) Targeted partial scans 

 
c) Random partial scans 

 

 
d) Mixed scans 

Figure 4-3: Training data types being tested 
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For each training data type, the point clouds were down sampled to 2048 points for the 

purpose of fitting within computational memory restrictions. All experiments were run on 

a 24GB Nvidia GeForce RTX 3090 GPU with a compute capability of 8.6. The same 

testing data consisting of only normal test Random Partial Scans was used for all runs. 

Confusion matrices (Figure 4-4) were used as the primary method of comparing the 

results, with the accuracy, area under curve (AUC), and recall also being considered 

(Figure 4-5).  

 
a) Full scans 

 
b) Targeted partial scans 

 

 

 

 

 
c) Random partial scans 

 

 
d) Mixed scans 

Figure 4-4: Optimal Training Data confusion matrices 
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a) Full scans 

 
b) Targeted partial scans 

 
c) Random partial scans 

 
d) Mixed scans 

Figure 4-5: Optimal Training Data performance metrics 

Based upon the confusion matrices, the training data that performed the best with the 

testing data was the Random Partial Scans (RPS) with a classification accuracy of 

98.68%. The Mixed Scans performed comparably with an accuracy of 97.78% but given 

the poor performance of the Full Scans at 29.32% it can be assumed that mixing the 

training data types did not provide any additional benefit. The good performance of the 

RPS makes sense for a couple of reasons. The first is that the style of training data 

directly matches with the style of the testing data. The model is training on partial scans 

and learning the expected features from this style of data. Presenting similar data for the 

testing dataset is more likely to have good results compared to a new style of data that 

has not been seen before. This is why it was expected Full Scans would perform the 

worst.  

Another reason for the good performance of RPS is that the point clouds include context 

for the model to learn the objects features. While the intention for the TPS dataset was to 

highlight the critical features for the PointNet model for easier identification, this may not 

have had the intended effect. PointNet learns the critical features of the point cloud by 

learning where changes such as corners happen within the point cloud. By isolating the 

features, this may inhibit the model’s ability to detect where the changes occur leading to 

a weaker model. With RPS, the scans provide enough context for the critical features to 

be properly identified. RPS was determined to be the optimal training data style and was 

used for all models moving forward.  
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5 Anomaly Detection Models Evaluation 

5.1 Single Output Model with Statistical Anomaly 
Detection 

The first model evaluated for anomaly detection was a single output model that used 

statistical methods for anomaly detection. It used the PointNet algorithm to classify the 

point clouds as objects and performed anomaly detection based upon the confidence level 

of the classification. The Random Partial Scans (RPS) were used as the training data 

since this was found to perform the best, based upon the results from the previous 

section.  

This model followed the same structure as the Optimal Training Data Model. A jupyter 

notebook was used to facilitate the implementation of the Keras model. The location of 

the training and testing point clouds were read into training and testing pandas 

DataFrames. Since anomaly detection was being performed, damaged scans were also 

used as testing data. The locations of the damaged scans were read in and intermixed with 

the ‘normal’ testing data. Before doing this, a ‘damage’ label was added to the existing 

testing data where every ‘normal’ scan was set to 0 (Figure 5-1).  

 

Figure 5-1: Loaded normal testing data 

After combining the damaged and normal testing data there were a total of 4616 point 

clouds in the test dataset. The training data was then split into a training and a validation 

set. This split was set to an 80-20 training-validation split (Figure 9-13). This left 6400 

point clouds in the training set with 1600 being allocated to the validation set.  
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The label map was created the same way as the previous model (Figure 9-9). The base 

parameters for the number of points in the point clouds, the number of classes, and the 

batch size were set the same as in the Optimal Data Model (Figure 4-1). These 

parameters were not able to be tuned with the other hyperparameters since they were used 

to create the Dataset objects and had to be set ahead of time. They were manually tuned 

by comparing various runs to find the optimal conditions, as discussed in the Results and 

Analysis section.  

The Dataset objects were then created from the point clouds using the same method as 

the previous model. A small variation was a validation Dataset was created at the same 

time as the training and testing dataset objects. The other change from the previous 

model’s Dataset generation function was the addition of the damage labels as a target for 

the testing Dataset (Figure 9-14). This allowed for the multiple objectives of this model 

to be achieved. The same data augmentation was applied to the training dataset.  

The PointNet classification model was then built in the same way as in the Optimal 

Training Data Model with the same parameters for the layers and activation functions. 

Predictions were then made using the trained model on the test dataset. These predictions 

returned the predicted class label for each point cloud as well as the probability of the 

point cloud belonging to each class label. The predicted classification labels were 

displayed in a confusion matrix against the ground truth data to evaluate the classification 

performance. A Z-Score was then calculated from the probabilities of each of the 

predictions using the getZScore() function (Figure 9-15). For each point clouds top 

predicted label, the percentage of that prediction was collected. This represents how 

confident the SoftMax output is that it predicted the correct label. The mean and standard 

deviation of these top predictions were then calculated. The threshold for what was 

considered anomalous data was created by saying 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑚𝑒𝑎𝑛 +  𝑠𝑡𝑑 of the Z-

Scores.  

The anomalous data was then predicted by comparing the calculated Z-Score for each test 

point cloud with the calculated threshold. The point clouds with Z-Scores greater than the 
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threshold would be labeled anomalous. These predictions were plotted in a confusion 

matrix using against the ground truth damage labels from the test dataset.  

5.1.1 Results 

The single output model was the first method used for anomaly detection. The same 

PointNet model from the Optimal Training Data Model was trained over a minimum of 

10 epochs and used to predict the class labels of the test dataset. The predictions were 

returned as a percent probability of a point cloud belonging to each potential class. The 

class with the highest percentage became the predicted label for that point cloud. For 

anomaly detection, the percentage predictions were used to determine which point clouds 

had damage. The theory was that for a normal and a damaged point cloud belonging to 

the same class, the percent confidence would be different for their class predictions. 

Since the identifiable features in the normal point cloud would more closely match the 

training dataset, the confidence in the prediction would be greater than for the damaged 

dataset. It was hypothesized that damaged point clouds would be more difficult to 

classify correctly, and statistical methods could be used to differentiate them from the 

normal point clouds based on their classification scores. This method was first tested with 

point clouds containing 2048 points in batches of 32 clouds.  

The results from the first run performed poorly, as seen in Figure 5-4 a), b). While the 

classification accuracy was a very high 97.89%, the anomaly detection went very poorly. 

Overall, only 6.15% of the damaged point clouds were identified correctly, with ‘Cones’ 

having the highest damage identification percentage at 14.66%. Evidently the model was 

doing a very good job at classifying the object type for each scan and there was not a 

noticeable difference in classification confidence between normal and damaged scans. 

One of the reasons for this may be the resolution of the point clouds. The point clouds 

were down sampled from their original amount of 50,000 points to the computationally 

efficient number of 2048 points. Too much down sampling will result in the damage not 

being noticeable since the space between “point” could cause the damage to be missed. 

To test this hypothesis, the same model was run on point clouds of increasing size to 

establish a relationship between resolution and the ability to identify damage. The model 

was run with point clouds containing 8192, 16384, and 32768 points. The batch sizes had 
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to be decreased to train models with data of this magnitude, meaning fewer point clouds 

could be processed at a time and the models took longer to run. The different batch sizes 

meant some point clouds had to be dropped to have complete batches, resulting in slight 

differences in the total number of clouds in each testing dataset.  

 

 
a) 2048 points 

 
b) 8192 points 

 
c) 16384 points 

 
d) 32768 points 

Figure 5-2: Model training accuracy with increasing point cloud resolution 
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a) 2048 points 

 
b) 8192 points 

 
c) 16384 points 

 
d) 32768 points 

Figure 5-3: Model training loss with increasing point cloud resolution 
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a) 2048-Point Class CM 

 
b) 2048-Point Anomaly CM 

 
c) 8192-Point Class CM 

 
d) 8192-Point Anomaly CM 

 
e) 16384-Point Class CM 

 
f) 16384-Point Anomaly CM 

Figure 5-4: Confusion matrices for classification (left) and anomaly detection (right) 

with increasing point cloud resolution 

As seen in Figure 5-2 and Figure 5-3, the 8192 and 16384 models trained well over the 

10 epochs, while the 32768 was never able to train even with additional epochs used. 
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This is potentially because of computational limitations, or because the nature of the 

model meant there were too few parameters for the number of points and no patterns 

could be determined. Given that, no predictions were made using the 32768 model. It was 

found that overall, the anomaly detection did improve with increased point cloud 

resolution. The best performing model was found using point clouds containing 16384 

points and it was able to detect damaged point clouds with a recall of 20.10%. While still 

not desirable, this is a dramatic increase from the recall of the 2048 model at 6.15%.  

However, it can also be seen that while the damage detection increased, the classification 

accuracy dropped to 89.06% from the high of 97.89% with the 2048 model. Given the 

anomaly detection performance increased, it can be assumed that many of the improperly 

classified point clouds were damaged and that is why they were not classified properly. 

This indicates that as the resolution of the point cloud increased, the damage became 

more easily detectable, and the model had more difficulty classifying the damaged point 

clouds as belonging to a specific class. It also could be that the number of points in 

comparison to the parameters of the model did not allow for proper training and for 

features to be completely identified, like with the 32768 model. To test this, a new model 

would need to be built with more layers to see if training improved. Either way, the limit 

of the method with the current model was shown.  

Unfortunately, the need to increase point cloud resolution and the size of the model 

required to make this method feasible would be impractical to implement due to the 

expected computational limitations available on the space station. Additionally, these 

results show that when using this method, the two objectives of accurate object 

classification and damage detection are reciprocals making this method sub-optimal. 

Even with hyperparameter tuning this would not be a practical method since both 

classification and anomaly detection need to be performed to a high degree. 

5.2 Multi-Output Model with Autoencoder Anomaly 
Detection 

The next model evaluated for anomaly detection was an autoencoder. However, 

classification of the point cloud still needed to occur which could not be easily done 
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using only an autoencoder reconstruction model. To address this, a multi-output model 

was made to perform both classification and anomaly detection using an autoencoder 

(Figure 5-5). The datasets were created using the same methods from the Single Output 

model presented above. The same PointNet architecture was used to encode the point 

clouds and extract their features. The split into multiple outputs occurs after the Max 

Pooling layer congregates the features. The first output was the classification part of the 

model which continued the same way as the previous models. Dense layers were used to 

reduce the number of features and a SoftMax activation function was used to predict the 

class of the point cloud. The second output was a fully connected decoder. It takes the 

features from the encoder and learns them for the purpose of reconstructing the point 

cloud as the output. The output is a list of points that is a reconstruction of the original 

point cloud. Both outputs were used by passing them as a list as the model’s output 

(Figure 9-16).  

 

Figure 5-5: Multi-output model architecture, with a PointNet encoder and 

classification and reconstruction outputs 

The parameters for the PointNet encoder and the classification output were set using the 

same values from the original PointNet paper. For the reconstructing decoder, the 

architecture and initial parameters were chosen based off a GitHub repository created by 

PointNet author Charles Qi [52]. In the repository, multiple decoder options are 

presented. This architecture was based off the default model seen in model.py in the 

repository and can be seen in the above Figure 5-5. 
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When the model was compiled, different loss functions were used for each output due to 

the different objectives to be achieved. The classification output used the Keras provided 

Categorical Crossentropy loss that has been used for all previous models. The 

autoencoder output used Chamfer Distance (21) as the loss function which did not come 

implemented in the Keras library and had to be implemented as a custom metric. 

Research was done into how to implement this in an efficient way. Since the datasets 

were generated as Tensorflow Dataset objects, methods that used Numpy arrays could 

not be easily implemented. The method that ended up being chosen was presented by 

StackOverflow User keineahnung2345 [53]. This method was chosen because the 

Tensorflow implementation was easily scalable to use on large, batched, Datasets (Figure 

9-17). Additionally, the User provided other non-Tensorflow methods to calculate CD 

that were used to validate results using fake data. This provided the level of confidence 

needed to move forward with this metric.  

To train the model, the data were read into the Jupyter Notebook using the same 

procedure as the previous models. However, since this model contained multiple outputs, 

the Dataset objects needed to be generated differently. For each input point cloud, there 

were two target outputs. One was the object label for the classification, and the other was 

the desired point cloud formation, which in the case of reconstruction is the ground truth 

input data. The autoencoder is technically an unsupervised model since it is not being 

told exactly what the point cloud should look like, simply that the difference between the 

output and input point clouds should be minimized. When using the Keras function API 

for implementation, the ground truth data still needed to be provided as a target so that it 

could be used as a part of the loss calculation (Figure 9-18). Because of this, the amount 

of memory required to load a point cloud into a Dataset object doubled as the input points 

were also being allocated as output points. This limited the resolution of the point clouds 

to 4096 points, as any larger would cause the GPU to run out of memory even with 

minimal batch sizes.  

After training the model, predictions were made for the testing data. This meant for each 

test point cloud the output generated would be a class label and a reconstructed point 

cloud. The predicted class labels were compared to the ground truth labels by using a 
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confusion matrix like in previous models. For determining the anomalous point clouds, a 

multi-step process was used.  

First, the trained model was used to create predictions on the training data. This was done 

to create best-case-scenario point cloud reconstructions. Since the data had been used 

during training, the model was expected to perform better on this data than for the testing 

data. The chamfer distances were then calculated between the training and reconstructed 

point clouds. The mean and standard deviation of the chamfer distances were made to 

create a threshold for determining what is considered anomalous. Next, the chamfer 

distances were calculated between the testing point clouds and their reconstructed 

equivalents. These distances were compared against the threshold and anything higher 

than it was considered a damaged point cloud. These predictions were then compared to 

the ground truth ‘damage’ label that the testing dataset has. 

5.2.1 Results 

The Multi-Output Model was used to perform both classification and reconstruction on 

each point cloud. Output 1 of the model returned the percent probability of the object 

belonging to each of the class labels, the same as in the previous models. Output 2 was a 

new output consisting of a point cloud reconstruction of the original point cloud and was 

used for anomaly detection. The reconstructed point cloud was compared to the original 

input point cloud and the difference between the clouds would be the loss of the model. 

The theory is that point clouds containing damage will have a greater reconstruction error 

since the features of the point cloud don’t match the features learned by the model during 

training. By getting the best-case reconstruction errors from the model on the training 

data, a threshold was created that was used to predict damage for any point cloud with a 

reconstruction error greater than the threshold. 

With the Datasets loaded, the model was trained. For each output, the loss and accuracy 

of the model’s performance were logged. To maximize performance, the model was set 

to train for a maximum of 50 epochs with an early stopping condition. If over the course 

of three epochs a change of less than 0.5 was detected in the loss of Output 2 the training 



67 

 

would stop. The loss of Output 2 was the CD calculation and if no change occurred then 

training has reached a steady state. As seen in Figure 5-6 the model trained for 23 epochs.   

 
a) Model Accuracy 

 
b) Model Loss 

Figure 5-6: Multi-output model loss and accuracy 

After training, predictions were first made on the training data. The classification 

predictions were discarded, while the reconstructed point clouds were used to create the 

anomaly threshold. The CD was calculated between each of the reconstructed and 

original point clouds (Figure 5-7 a)). It should be noted that since CD is a distance metric, 

the magnitude of the loss will be correlated to the scale of the point clouds. For this 

experiment, the mean and standard deviation of the training CD were used to get the 

reconstruction error threshold seen in Error! Reference source not found. by saying 

that 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑚𝑒𝑎𝑛 +  (0.5 ∗  𝑠𝑡𝑑). This choice was made based upon the same 

statistical methods that were chosen to calculate the threshold in the previous Single 

Output model. However, the datapoints from the Single Ouput model were normalized by 

calculating the ZScore, and the errors from the Multi-Output CD metric were not. 

Therefore, using the mean and standard deviation to calculate the threshold was not 

appropriate for this data since the distribution was not normalized. In future experiments 

this was realized, and the threshold calculation metric was changed.  

The intended purpose of the current threshold calculation was to use the mean and 

standard deviation to calculate a threshold that landed in the theoretical transitional range 

between normal and damaged point clouds. There is some overlap between the errors of 

the normal and damaged point clouds, and it would be impossible to completely split 

them cleanly into separate groups. For the research problem of identifying damage on a 
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spacecraft, it is more important to avoid missing damaged point clouds than it is to avoid 

falsely labeling normal point clouds as having damage. Half of the standard deviation 

was added to the mean as an intended conservative estimate that would allow for most of 

the damaged scans and some of the normal scans to be classified as anomalies. On this 

dataset this resulted in a reconstruction error threshold of 14.199. 

 
a) Training CD distribution 

 
b) Testing CD distribution 

Figure 5-7: Chamfer Distance distributions for training and testing datasets 

After getting the reconstruction error threshold from the training data, predictions were 

then made on the testing data using the custom prediction function. A classification 

confusion matrix was made from the results to evaluate the performance of the 

classification side of the model (Figure 5-8 a)). The results were admirable, with 95.7% 

of the point clouds being accurately labeled as the correct object. The reconstructed point 

clouds of the testing dataset were used to calculate the CD for each point cloud, with the 

CD loss distribution being shown in Figure 5-7 b). After using the reconstruction error 

threshold to predict anomalies, the results were compared in a confusion matrix to the 

ground truth damage labels with ‘1’ representing damaged point clouds (Figure 5-8 b)).  
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g) Classification CM 

 
h) Anomaly CM 

Figure 5-8: Confusion matrices for classification and anomaly detection of the 

multi-output model 

Even with the incorrect threshold calculation method, the results showed a great 

improvement over the Single Output Statistical anomaly detection method. This method 

resulted in an anomaly detection recall of 59.9%, an increase from the previous best of 

20.10%. While not incredible, there is potential for improvement in the model to be able 

to better differentiate between the normal and damaged point clouds. This model also 

shows promise since the recall was achieved with a False Positive (FP) rate of 23.07%. 

Given that it is very important to identify the anomalous damage and the distribution 

overlap of the normal and damaged testing data is unknown, a FP of 25% or below is 

considered appropriate for this research. These results also show that when using this 

method optimizing one objective did not worsen the other. Both object classification and 

damage detection could be optimized. Given this, the Multi-Output method was chosen 

for moving forward with hyperparameter tuning. 
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6 Hyperparameter Tuning and Final Test Results 

The results from section 5 showed that the Multi-Output model performed the best for 

anomaly detection, so this was the model chosen for the final hyperparameter tuning to 

optimize the performance. Hyperparameter tuning was done by modifying the existing 

multi-output model so that the performance with various hyperparameter values could be 

evaluated. This was done using the KerasTuner framework API. KerasTuner allows for 

the easy implementation of hyperparameter tuning algorithms on Keras models. Random 

Search and Bayesian Optimization algorithms are built-in and can be implemented as 

KerasTuner objects.  

To modify the existing model for optimization, it was recreated using the base 

HyperModel class. The class allows for the search space of the hyperparameters to be 

defined within a model by overriding the build() and fit() methods of the class. The 

previously created model was implemented in the overridden build() method with the 

value options for the various hyperparameters provided for the tuner. The specific 

hyperparameters were identified in the model by using the KerasTuner argument hp 

which is used to pass in a Keras HyperParameter class object.  

The HyperParameter class allows for the definition of hyperparameters with a variety of 

different search spaces. The first hyperparameter in the model is the number of nodes 

used in each layer of the model. The PointNet algorithm follows a specific architecture of 

the number of nodes in the layers used to encode the point clouds. These variations in 

layer size are all multiples of the base number of nodes. To preserve this relationship, 

only the base number of nodes was implemented as a hyperparameter while the sizes of 

the other layers were set using the existing ratios. The layers and their ratios can be seen 

in Figure 9-19. For this hyperparameter, the HyperParameter Int method was used to 

create the search space. The space was defined so the base node number could be an 

integer between the values of 32 to 256 using a step size of 32.  

The other hyperparameters used to build the model were momentum values in the batch 

normalization layers and the activation functions used in the convolution and dense 

layers. The momentum was defined using a HyperParameter Float method with the range 
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being between 0.0 to 0.8 with a step size of 0.1. The activation functions were decided to 

either be ReLU or tanh by using the HyperParameter Choice method, which makes a 

choice between a predetermined list of values. In this case, the values were Strings which 

identified the function to be used. The final hyperparameter was created during the 

compilation of the model. The Adam function was being used as the optimization 

function, and a hyperparameter was set to tune the value for the learning rate. It was also 

chosen using the Float method, with the range being from 0.001 to 1 using a base-10 log 

for the step size.  

After defining the model through the build() and fit() methods, the HyperModel was 

passed into a Tuner object of the desired search method. The objectives of the Tuner were 

then set. The Tuner was told to minimize the loss from the autoencoder output and 

maximize the accuracy from the classification output on the validation dataset. The 

number of trials for the Tuner to run with different hyperparameter values from the 

search space was set to 15. Each hyperparameter configuration was additionally set to run 

twice to minimize the risk of bad results from poor initialization. The best results from 

the Tuner were then used to train the model completely and the results were analyzed 

using the same methods as in the multi-output model. This was done using both the 

RandomSearch and Bayesian Optimization tuners to compare the results of the multi-

output model.  

6.1 Results 

Random Search was chosen for the hyperparameter tuner because of the size of the 

search space and the speed of the tuning algorithms. Doing a Grid Search would take an 

excessive amount of time to cover the search space and Random Search allows for a large 

variety of combinations to be seen. While Bayesian Optimization may converge on the 

optimal hyperparameters with fewer iterations, it takes longer to run. When working on a 

shared resource such as the lab computer, time is limited so this tuner was not chosen. 

The best hyperparameters found by the tuner can be seen in Appendix B and the 

summary of the model using the hyperparameters is in Appendix C.  
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With these hyperparameters, the model was trained with the same conditions as the 

previous multi-output model. The model was allowed to run for a maximum of 100 

epochs with an early stopping condition in place that monitored the Output 2 loss for lack 

of change. The model trained for a total of 30 epochs, and the accuracy and loss can be 

seen in Figure 6-1 and Figure 6-2. 

 
a) Model Accuracy 

 
b) Model Loss 

Figure 6-1: Hyperparameter tuned model classification accuracy and loss 

 

Figure 6-2: Hyperparameter tuned model Chamfer Distance loss 

In comparison to the original multi-output model, the tuned model reached a lower loss 

before reaching steady state. This is also reflected in the CD loss distribution plots 

(Figure 6-3) for both the training and testing data. Both distributions have peaks closer to 

zero than with the untuned model. Using the Training CD losses, the reconstruction error 
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threshold was calculated. At this time, the incorrect calculation was still being used 

which resulted in a threshold value of 10.77 (Figure 6-4). 

 
a) Training CD Loss 

 
b) Testing CD Loss 

Figure 6-3:HP model Chamfer Distance distributions 

In terms of the classification and anomaly detection, the results are like the untuned 

model, if slightly improved (Figure 6-4). The classification output improved to 97.93% of 

the point clouds being predicted correctly. For the anomaly detection output, with the 

incorrect threshold the recall improved to 68.17%. Additionally, the level of False 

Positives decreased by a large amount, from 23.07% being incorrectly labeled in the 

previous model to only 12.35%, which gives a specificity of 87.65%. 

 
a) Classification CM 

 
b) Anomaly CM 

Figure 6-4: HP model classification and anomaly detection confusion matrices, old 

threshold 

The lower FP rate with an improved TP rate shows that there is a clearer distinction 

between the errors of the damaged clouds and the normal clouds compared to the untuned 
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model. When looking at the Testing CD losses compared to the Training CD losses, there 

are larger numerical loss values in the Test losses. This means that the algorithm is likely 

working as expected and the damaged points clouds are being reconstructed worse than 

the normal point clouds. Optimizing the threshold would improve the anomaly detection 

results. 

It was at this point that the understanding of the distribution of CD Loss and the 

inappropriateness of the current threshold calculation came about. Instead of using the 

mean and standard deviation to calculate the threshold, the threshold was calculated by 

finding the value of the 75th percentile of the training loss distribution. This would 

provide a threshold value where at a maximum 25% of the training losses would be 

above the threshold and labeled anomalous. This 25% FP rate is considered acceptable 

given the expected overlap of the normal and anomalous error values and that the 

distribution of the anomalous CD errors is not known. It is more important to detect the 

anomalous data than it is to not falsely label the normal data. A low threshold would 

provide a better recall, but the FP rate would be too high and would lower the specificity 

of the results. In the other direction, a threshold that is too high could misclassify many 

anomalies. Without tuning, it was decided that 25% would be the maximum FP 

considered acceptable for these reasons. This provided a reconstruction error threshold of 

8.131. Predicting the ideal threshold to optimize the anomaly detection is discussed more 

in Future Considerations.   

When the new threshold calculation was used, the anomaly detection confusion matrix 

showed a drastic improvement (Figure 6-5). The recall improved to 90.42% with an FP 

rate of 20.69%. The specificity shows 79.31% of the ‘normal’ test point clouds have CD 

error values below the threshold, which is a similar but improved distribution from the 

training data.  
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Figure 6-5: Anomaly detection confusion matrix, new threshold 

Given these results on the Simple Object dataset, there is merit to using an autoencoder to 

detect anomalous point clouds.  
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7 Summary and Conclusion 

The results of this research show that the PointNet ML architecture has the potential to 

allow classifier and autoencoder models to be trained on 3D point cloud data for the 

successful identification of structural anomaly detection on spacecrafts. Synthetic data 

comprised of Full Scans, Targeted Partial Scans, and Random Partial Scans with and 

without damage were generated for basic geometric shapes representing components of a 

space station. These datasets were used to train and evaluate the model’s performance in 

classification and anomaly detection. Random Partial Scans were determined to be the 

best style of training data by running the Optimal Training Data experiment. These scans 

were then used to train a Single Object model for anomaly detection using classification 

probabilities. The results from this experiment were compared to the results from a Multi-

Output model which used an autoencoder for anomaly detection. The Multi-Output 

model was found to work better and hyperparameter tuning was then performed on the 

model. The final tuned model was able to classify the point clouds with an accuracy of 

97.93% while identifying point clouds that contained damage with a recall of 90.42% and 

a specificity of 79.31%. This level of anomaly detection accuracy is promising and 

indicates that the overall approach should be further explored to confirm its feasibility for 

identifying damaged point clouds on more complex spacecraft components. 

Recommended next steps for the research are discussed in Future Considerations.  
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8 Limitations and Future Considerations  

While this research explores and presents a possible method for using machine learning 

to identify anomalous damage on space crafts, there are a few major limitations when it 

comes to extending this research to a practical application. One of the major ones is the 

quality and resolution of the data that is needed for this method to work. The synthetic 

data used in these experiments provided very clean, high resolution representations of 

each of the objects in the dataset. While noise was added through jittering, the scans were 

still ‘ideal’ point clouds in that there were no flaws that are introduced through using a 

LiDAR sensor such as skipped sections. A future step would be to test the model on a 

dataset containing LiDAR data to see how the ML model performs when introduced to an 

imperfect environment. Since the scans on the Gateway station will be generated using 

LiDAR it is important to test this method on real-world instead of synthetic data.  

A dataset could be made by 3D printing a model of a spacecraft and then using a LiDAR 

to take scans of it. Specific damaged components could also be 3D printed so damaged 

scans could be generated. Scene segmentation would have to be done to isolate the scans 

into their pre-determined components, after which the method could proceed as defined. 

Testing on real LiDAR data would provide more confidence in this method’s ability to 

detect structural damage on the exterior of the Gateway space station. This would also 

explore if a LiDAR scanner would be able to provide the necessary resolution to perceive 

the damage and how much computer memory would be required for the LiDAR scans.  

This leads to another limitation of this research, which is the memory requirements of the 

model and the scans. Memory limits were being hit while performing the multi-output 

experiment on a GPU that had 24GB of RAM. In order to train the model, the resolutions 

of the scans and the number of scans being trained on at once had to be reduced. In a 

space application, the computing power is likely to be lower and memory will be an even 

bigger issue. The model will be pre-trained, but it is still likely that there will be 

limitations on the size and resolution of the point clouds. Identifying these limitations is 

an important step for the practical implementation of this method.  



78 

 

A future step for further improvement of the results would be to build a model to predict 

what the optimal reconstruction error threshold would be for the Testing CD losses. This 

would be used to fine-tune the threshold and lower the False Positive rate while 

maintaining the high recall rate of the model. Datasets could be made using the Training 

CD losses as training data and the Testing CD losses as testing data. The datasets can be 

generated from a combination of training the MO-model numerous times with the 

optimal hyperparameters to get various models, and by creating many datasets to get 

various sets of CD calculations. A new model could be trained to predict a threshold 

value given a distribution of CD losses that would optimize the recall of the anomaly 

detection while minimizing the FP rate. This would improve the current procedure by 

helping to tune the MO-model to optimize the anomaly detection results.   

Another next step for this research would be to recreate the multi-output autoencoder on a 

more complicated dataset. While the Simple Object dataset proves the validity of the 

method for point cloud anomaly detection, testing the model on a more complicated 

dataset would be necessary before moving forward to test the robustness of the model. A 

3D model of a spacecraft that would normally be used for 3D printing could be used as 

the main model for the dataset. Components could be identified from the main model and 

separated to make classification groups. From here the procedure for dataset generation 

and model testing would proceed as it went for the Simple Object dataset.  
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9 Appendices 

Appendix A: Code Snippets 

 

Figure 9-1: FullScan.py preamble 

 

Figure 9-2: FullScan.py main loop 
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Figure 9-3:TargetedScan.py preamble 
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Figure 9-4:TargetedScan.py main loop 
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Figure 9-5: scanPartial.py preamble 

 

Figure 9-6: scanPartial.py main loop 
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Figure 9-7: Optimal Training Data Model data input 

 

Figure 9-8: Labeling point clouds 

 

Figure 9-9: Mapping labels to values 
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Figure 9-10: Dataset generation 

 

Figure 9-11: Data augmentation 
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Figure 9-12: Keras implementation of PointNet algorithm 
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Figure 9-13: Splitting the training and validation data 

 

Figure 9-14: Adding damage label as a testing dataset target 

 

Figure 9-15: Z-Score calculation 
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Figure 9-16: Keras implementation of multi-output architecture 
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Figure 9-17: CD TensorFlow calculation method [53] 

 

 

Figure 9-18: Dataset generation with input point clouds being set as the target data 

for the autoencoder 
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Figure 9-19: Multi-output model hyperparameter tuning implementation 
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Appendix B: Hyperparameter Summary 

momentum_tnet1:3: 0.1 

activation_tnet1:3: relu 

momentum_tnet2:3: 0.0 

activation_tnet2:3: relu 

momentum_tnet3:3: 0.2 

activation_tnet3:3: tanh 

momentum_tnet4:3: 0.8 

activation_tnet4:3: relu 

momentum_tnet5:3: 0.5 

activation_tnet5:3: relu 

units_base: 32 

momentum_layer1: 0.2 

activation_layer1: tanh 

momentum_layer2: 

0.30000000000000004 

activation_layer2: tanh 

momentum_tnet1:32: 0.5 

activation_tnet1:32: relu 

momentum_tnet2:32: 0.8 

activation_tnet2:32: relu 

momentum_tnet3:32: 0.5 

activation_tnet3:32: tanh 

momentum_tnet4:32: 0.0 

activation_tnet4:32: tanh 

momentum_tnet5:32: 

0.30000000000000004 

activation_tnet5:32: relu 

momentum_layer3: 0.0 

 

 

activation_layer3: relu 

momentum_layer4: 0.4 

activation_layer4: relu 

momentum_layer5: 0.2 

activation_layer5: tanh 

momentum_classi1: 0.0 

activation_classi1: tanh 

momentum_classi2: 0.5 

activation_classi2: relu 

momentum_enc1: 0.2 

activation_enc1: relu 

momentum_enc2: 0.0 

activation_enc2: tanh 

learning_rate: 0.01 

momentum_tnet1:64: 

0.6000000000000001 

activation_tnet1:64: tanh 

momentum_tnet2:64: 

0.6000000000000001 

activation_tnet2:64: tanh 

momentum_tnet3:64: 

0.6000000000000001 

activation_tnet3:64: tanh 

momentum_tnet4:64: 0.1 

activation_tnet4:64: relu 

momentum_tnet5:64: 

0.6000000000000001 

activation_tnet5:64: tanh 

momentum_tnet1:128: 0.0 

activation_tnet1:128: relu 

momentum_tnet2:128: 0.0 

activation_tnet2:128: relu 

 

momentum_tnet3:128: 

0.6000000000000001 

activation_tnet3:128: relu 

momentum_tnet4:128: 0.1 

activation_tnet4:128: relu 

momentum_tnet5:128: 

0.30000000000000004 

activation_tnet5:128: relu 

momentum_tnet1:224: 0.0 

activation_tnet1:224: tanh 

momentum_tnet2:224: 0.8 

activation_tnet2:224: relu 

momentum_tnet3:224: 

0.7000000000000001 

activation_tnet3:224: tanh 

momentum_tnet4:224: 

0.30000000000000004 

activation_tnet4:224: relu 

momentum_tnet5:224: 0.5 

activation_tnet5:224: relu 

momentum_tnet1:160: 0.4 

activation_tnet1:160: tanh 

momentum_tnet2:160: 0.2 

activation_tnet2:160: tanh 

momentum_tnet3:160: 0.0 

activation_tnet3:160: relu 

momentum_tnet4:160: 0.1 

activation_tnet4:160: tanh 

momentum_tnet5:160: 0.2 

activation_tnet5:160: relu 

Score: 27.590384483337402 
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Appendix C: Model Summary 

_______________________________________________________________________________________________
___ 

 Layer (type)                   Output Shape         Param #     Connected to                      

====================================================================================

============== 

 input_2 (InputLayer)           [(None, 4096, 3)]    0           []                                

                                                                                                   
 conv1d_11 (Conv1D)             (None, 4096, 3)      12          ['input_2[0][0]']                 

                                                                                                   

 batch_normalization_19 (BatchN  (None, 4096, 3)     12          ['conv1d_11[0][0]']               
 ormalization)                                                                                     

                                                                                                   

 activation_19 (Activation)     (None, 4096, 3)      0           ['batch_normalization_19[0][0]']  
                                                                                                   

 conv1d_12 (Conv1D)             (None, 4096, 6)      24          ['activation_19[0][0]']           

                                                                                                   
 batch_normalization_20 (BatchN  (None, 4096, 6)     24          ['conv1d_12[0][0]']               

 ormalization)                                                                                     

                                                                                                   
 activation_20 (Activation)     (None, 4096, 6)      0           ['batch_normalization_20[0][0]']  

                                                                                                   

 conv1d_13 (Conv1D)             (None, 4096, 48)     336         ['activation_20[0][0]']           
                                                                                                   

 batch_normalization_21 (BatchN  (None, 4096, 48)    192         ['conv1d_13[0][0]']               

 ormalization)                                                                                     
                                                                                                   

 activation_21 (Activation)     (None, 4096, 48)     0           ['batch_normalization_21[0][0]']  
                                                                                                   

 global_max_pooling1d_3 (Global  (None, 48)          0           ['activation_21[0][0]']           

 MaxPooling1D)                                                                                     
                                                                                                   

 dense_11 (Dense)               (None, 24)           1176        ['global_max_pooling1d_3[0][0]']  

                                                                                                   
 batch_normalization_22 (BatchN  (None, 24)          96          ['dense_11[0][0]']                

 ormalization)                                                                                     

                                                                                                   
 activation_22 (Activation)     (None, 24)           0           ['batch_normalization_22[0][0]']  

                                                                                                   

 dense_12 (Dense)               (None, 12)           300         ['activation_22[0][0]']           
                                                                                                   

 batch_normalization_23 (BatchN  (None, 12)          48          ['dense_12[0][0]']                

 ormalization)    
 

activation_23 (Activation)     (None, 12)           0           ['batch_normalization_23[0][0]']  

                                                                                                   
 dense_13 (Dense)               (None, 9)            117         ['activation_23[0][0]']           

                                                                                                   

 reshape_2 (Reshape)            (None, 3, 3)         0           ['dense_13[0][0]']                
                                                                                                   

 dot_2 (Dot)                    (None, 4096, 3)      0           ['input_2[0][0]',                 

                                                                  'reshape_2[0][0]']               
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conv1d_14 (Conv1D)             (None, 4096, 32)     128         ['dot_2[0][0]']                   
                                                                                                   

 batch_normalization_24 (BatchN  (None, 4096, 32)    128         ['conv1d_14[0][0]']               

 ormalization)                                                                                     
                                                                                                   

 activation_24 (Activation)     (None, 4096, 32)     0           ['batch_normalization_24[0][0]']  

                                                                                                   
 conv1d_15 (Conv1D)             (None, 4096, 32)     1056        ['activation_24[0][0]']           

 

batch_normalization_25 (BatchN  (None, 4096, 32)    128         ['conv1d_15[0][0]']               
 ormalization)                                                                                     

                                                                                                   

 activation_25 (Activation)     (None, 4096, 32)     0           ['batch_normalization_25[0][0]']  
                                                                                                   

 conv1d_16 (Conv1D)             (None, 4096, 32)     1056        ['activation_25[0][0]']           

                                                                                                   
 batch_normalization_26 (BatchN  (None, 4096, 32)    128         ['conv1d_16[0][0]']               

 ormalization)                                                                                     

                                                                                                   

 activation_26 (Activation)     (None, 4096, 32)     0           ['batch_normalization_26[0][0]']  

                                                                                                   

 conv1d_17 (Conv1D)             (None, 4096, 64)     2112        ['activation_26[0][0]']           
                                                                                                   

 batch_normalization_27 (BatchN  (None, 4096, 64)    256         ['conv1d_17[0][0]']               

 ormalization)                                                                                     
                                                                                                   

 activation_27 (Activation)     (None, 4096, 64)     0           ['batch_normalization_27[0][0]']  
                                                                                                   

 conv1d_18 (Conv1D)             (None, 4096, 512)    33280       ['activation_27[0][0]']           

                                                                                                   
 batch_normalization_28 (BatchN  (None, 4096, 512)   2048        ['conv1d_18[0][0]']               

 ormalization)                                                                                     

                                                                                                   
 activation_28 (Activation)     (None, 4096, 512)    0           ['batch_normalization_28[0][0]']  

                                                                                                   

 global_max_pooling1d_4 (Global  (None, 512)         0           ['activation_28[0][0]']           
 MaxPooling1D)                                                                                     

                                                                                                   

 dense_14 (Dense)               (None, 256)          131328      ['global_max_pooling1d_4[0][0]']  
                                                                                                   

 batch_normalization_29 (BatchN  (None, 256)         1024        ['dense_14[0][0]']                

 ormalization)                                                                                     
                                                                                                   

 activation_29 (Activation)     (None, 256)          0           ['batch_normalization_29[0][0]']  

                                                                                                   
 dense_15 (Dense)               (None, 128)          32896       ['activation_29[0][0]']           

                                                                                                   

 batch_normalization_30 (BatchN  (None, 128)         512         ['dense_15[0][0]']                
 ormalization)                                                                                     

                                                                                                   

 activation_30 (Activation)     (None, 128)          0           ['batch_normalization_30[0][0]']  
                                                                                                   

 dense_16 (Dense)               (None, 1024)         132096      ['activation_30[0][0]']           

                                                                                                   
 reshape_3 (Reshape)            (None, 32, 32)       0           ['dense_16[0][0]']                

                                                                                                   

 dot_3 (Dot)                    (None, 4096, 32)     0           ['activation_25[0][0]',           

                                                                  'reshape_3[0][0]']               

                                                                                                   

 conv1d_19 (Conv1D)             (None, 4096, 32)     1056        ['dot_3[0][0]']                   
                                                                                                   

 batch_normalization_31 (BatchN  (None, 4096, 32)    128         ['conv1d_19[0][0]']               

 ormalization)                                                                                     
                                                                                                   

 activation_31 (Activation)     (None, 4096, 32)     0           ['batch_normalization_31[0][0]']  

                                                                                                   
 conv1d_20 (Conv1D)             (None, 4096, 64)     2112        ['activation_31[0][0]']           

                                                                                                   

 batch_normalization_32 (BatchN  (None, 4096, 64)    256         ['conv1d_20[0][0]']               
 ormalization)                                                                                      
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activation_32 (Activation)     (None, 4096, 64)     0           ['batch_normalization_32[0][0]']  
                                                                                                   

 conv1d_21 (Conv1D)             (None, 4096, 512)    33280       ['activation_32[0][0]']           

                                                                                                   

 batch_normalization_33 (BatchN  (None, 4096, 512)   2048        ['conv1d_21[0][0]']               

 ormalization)                                                                                     

                                                                                                   
 activation_33 (Activation)     (None, 4096, 512)    0           ['batch_normalization_33[0][0]']  

                                                                                                   

 global_max_pooling1d_5 (Global  (None, 512)         0           ['activation_33[0][0]']           
 MaxPooling1D)                                                                                     

                                                                                                   

 dense_17 (Dense)               (None, 256)          131328      ['global_max_pooling1d_5[0][0]']  
                                                                                                   

 batch_normalization_34 (BatchN  (None, 256)         1024        ['dense_17[0][0]']                

 ormalization)                                                                                     
                                                                                                   

 dense_19 (Dense)               (None, 512)          262656      ['global_max_pooling1d_5[0][0]']  

                                                                                                   
 activation_34 (Activation)     (None, 256)          0           ['batch_normalization_34[0][0]']  

                                                                                                   

 batch_normalization_36 (BatchN  (None, 512)         2048        ['dense_19[0][0]']                
 ormalization)                                                                                     

                                                                                                   

 dropout_2 (Dropout)            (None, 256)          0           ['activation_34[0][0]']           

                                                                                                   

 activation_36 (Activation)     (None, 512)          0           ['batch_normalization_36[0][0]']  
                                                                                                   

 dense_18 (Dense)               (None, 128)          32896       ['dropout_2[0][0]']               

                                                                                                   
 dense_20 (Dense)               (None, 512)          262656      ['activation_36[0][0]']           

                                                                                                   

 batch_normalization_35 (BatchN  (None, 128)         512         ['dense_18[0][0]']                
 ormalization)                                                                                     

                                                                                                   

 batch_normalization_37 (BatchN  (None, 512)         2048        ['dense_20[0][0]']                
 ormalization)                                                                                     

                                                                                                   

 activation_35 (Activation)     (None, 128)          0           ['batch_normalization_35[0][0]']  
                                                                                                   

 activation_37 (Activation)     (None, 512)          0           ['batch_normalization_37[0][0]']  

                                                                                                   
 dropout_3 (Dropout)            (None, 128)          0           ['activation_35[0][0]']           

                                                                                                   

 dense_21 (Dense)               (None, 12288)        6303744     ['activation_37[0][0]']           

                                                                                                   

 out_1 (Dense)                  (None, 4)            516         ['dropout_3[0][0]']               

                                                                                                   
 out_2 (Reshape)                (None, 4096, 3)      0           ['dense_21[0][0]']                

                                                                                                   

================================================================================
================== 

Total params: 7,378,821 

Trainable params: 7,372,491 
Non-trainable params: 6,330 

___________________________________________________________________________________________

_______  
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