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Abstract 

Staphylococcus aureus is an opportunistic pathogen that asymptomatically colonizes 30% of 

humans, where it is well adapted to survive on the skin in the presence of innate defense 

mechanisms such as antimicrobial free fatty acids (FFA). While antimicrobial FFA function 

to inhibit the growth of S. aureus, they also provide a valuable source of lipids for membrane 

synthesis and energy production. We hypothesized that S. aureus possesses a novel 

antimicrobial FFA resistance pathway that is activated under conditions found on human 

skin, and that under these conditions, S. aureus can metabolize exogenous fatty acids to fuel 

growth and virulence expression. Working with the endemic strain, USA300, our data show 

that when grown with cationic antimicrobial peptides or at an acidic pH, conditions 

encountered on human skin, S. aureus becomes extremely resistant to antimicrobial FFA. 

This resistance is dependent on activation of the sensor kinase GraS, as well as the 

downstream effector protein MprF. While MprF is known for synthesizing lysyl-

phosphatidylglycerol, this antimicrobial FFA resistance is independent of this synthase 

activity, highlighting a novel function for MprF. Once resistant to high levels of host derived 

fatty acids, expression of putative ß-oxidation genes, fadXDEBA, occurs. Expression is 

upregulated by exogenous FFA in a concentration dependent manner, and is repressed by 

glucose. Additionally, expression appears to be regulated by the gene directly upstream of 

the fad locus, prsW, which is a membrane protease proposed to modulate the function of a 

stress response Sigma Factor. Interestingly, growth with exogenous FFA enhances the 

growth and protease expression of wildtype S. aureus, but severely impairs growth and 

viability in a fadXDEBA deletion mutant. Finally, we show that knocking out either graS or 

fadXEDBA results in reduced virulence in a murine abscess model, indicating both resistance 

and metabolism of host derived fatty acids are important during infection. While 

antimicrobial FFA encountered during colonization and infection of a host normally function 

to inhibit bacterial growth, S. aureus has evolved to thrive in this environmental niche 

through the use of GraS, MprF, and FadXEDBA.  
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Summary for Lay Audience 

Staphylococcus aureus is an opportunistic pathogen that asymptotically colonizes 

approximately 30% of the population, primarily in our nose or on our skin. Those who are 

colonized have a much greater risk of then becoming infected by S. aureus, and it is 

frequently the strain that colonizes us that then subsequently infects us. To combat S. aureus 

colonization, our skin produces a variety of antimicrobial compounds that function to inhibit 

the growth of this bacterium. Of these, are antimicrobial fatty acids, which can compromise 

the membrane integrity of S. aureus. However, these fatty acids are also a valuable energy 

source for the bacteria on our skin. We found there is a protein in the membrane of S. aureus, 

GraS, that can sense the antimicrobial conditions of human skin, and activate a robust 

response to resist these compounds. Specifically, activation of the protein GraS leads to high 

levels of resistance to antimicrobial fatty acids. Furthermore, once S. aureus is resistant to 

these fatty acids, we have identified a pathway in S. aureus that can metabolize these fatty 

acids to provide energy for the bacteria. This metabolism occurs through the proteins 

FadDEBA, which are predicted to conduct a metabolic process known as β-oxidation. 

Together, our findings show that although our skin produces antimicrobial fatty acids to 

inhibit the growth S. aureus, the bacteria has evolved to sense the environment of human skin 

and upregulate a robust resistance to these antimicrobial fatty acids, as well as metabolize 

these fatty acids as an energy source.  
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Chapter 1  

1 Introduction 
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1.1 Staphylococcus aureus overview  

Staphylococcus aureus is a Gram-positive bacterium, part of the Firmicute phylum, 

which asymptomatically colonizes 30% of the population (1). This bacterium primarily 

colonizes the anterior nares but can also colonize other areas of the body including the 

throat, perineum, vagina, and gastrointestinal tract (2–5). While part of the normal skin 

flora, S. aureus is an opportunistic pathogen that can cause a broad spectrum of 

infections, including severe soft tissue infections, endocarditis, osteomyelitis, pneumonia, 

and sepsis, due to the multitude of virulence factors at its disposal (6–8).  

S. aureus was first discovered in 1880 by Dr. Alexander Ogston in a knee joint abscess, 

who named the cocci bacteria after the Greek word “staphyle” meaning bunch of grapes, 

based on its clustered appearance under the microscope (9–12). Later in 1884, Dr. 

Friedrich Julius Rosenbach differentiated S. aureus from Staphylococcus albus (later 

renamed Staphylococcus epidermidis), using the Latin words “aurum” meaning gold, and 

“album” meaning white, based on the colour of the colonies (12, 13). Once discovered, 

the mortality rate for S. aureus bacteremia was approximately 80%, as antibiotics had not 

yet been discovered (14). Although the discovery of penicillin to treat S. aureus 

infections was initially promising, resistance through β-lactamases quickly arose, and by 

the 1950s, resistant isolates had been identified (15, 16). Methicillin was used next, but 

acquisition of the SCCmec cassette led to methicillin resistant S. aureus (MRSA) strains 

that are resistant to all available β-lactam drugs on the market, making it one of the 

leading causes of nosocomial infections worldwide (17–19).  

1.2 Development of antibiotic resistance in S. aureus  

The first case of antibiotic resistance in S. aureus occurred through acquisition of the 

blaZ β-lactamase gene, encoding an enzyme that inactivates penicillin by hydrolysis of its 

β-lactam ring (20, 21). In the absence of β-lactam antibiotics, BlaI represses expression 

of blaZ (22). However, upon exposure to a β-lactam, the transmembrane protease BlaR1 

is activated, degrading the BlaI repressor, leading to blaZ expression (23, 24). To 

overcome this resistance, modified β-lactam antibiotics, such as methicillin, were used 

which were resistant to BlaZ inactivation. However, methicillin resistance was also 
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acquired through horizontal gene transfer of the mecA gene, encoding an alternative 

penicillin-binding protein (PBP), PBP2a. PBPs are transpeptidases that catalyze the 

cross-linking of peptidoglycan in the cell wall, but are highly susceptible to binding and 

subsequent inactivation by β-lactam antibiotics; however, PBP2a exhibits low affinity to 

the β-lactam class of antibiotics, providing resistance to a broad range of  β-lactam 

antibiotics (25, 26). As with the β-lactamase gene blaZ, mecA is regulated by a 

transmembrane protease MecR1, which senses β-lactam antibiotics and degrades the 

MecI repressor, leading to mecA expression (27, 28). Additionally, MecR2 can 

destabilize the binding of MecI to the mecA promoter, leading to proteolytic degradation 

of MecI independent of MecR1 (29). MRSA have continued to evolve as new families of 

antibiotics are introduced into clinical practice, such that many MRSA strains are now 

resistant to a wide variety of commonly used antibiotics as outlined in Table 1.1, through 

mechanisms that include both horizontal transfer of genes as well as mutations to native 

genes (30).  
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Table 1.1. Mechanisms of antibiotic resistance in S. aureus 

Antibiotic: Resistance Mechanism:  Reference: 

β-lactams BlaZ β-lactamase, encoding an enzyme that 

inactivates certain β-lactams through 

hydrolysis of the β-lactam ring 

(20, 21) 

The MecA alternative penicillin-binding 

protein, PBP2a, exhibits low affinity to β-

lactams 

(25, 26) 

Fluoroquinolones Mutations in the conserved quinolone 

resistance-determining regions of 

topoisomerases which reduce 

fluoroquinolone affinity 

(31–33) 

Vancomycin Acquisition of the vanA gene cluster, 

transferred from vancomycin-resistant 

enterococcus, alters the peptide target that 

vancomycin and closely related antibiotics 

bind to inhibit cell synthesis 

(34–36) 

Daptomycin Variety of mutations in genes that provide 

general resistance to CAMPs and cell 

envelope damage. 

(37–42) 

Macrolides, Lincosamides, 

and Streptogramis 

Erythromycin resistance methyltransferase, 

ErmA, transfers a methyl group to the 23S 

ribosomal RNA, blocking the antibiotic-

binding site. 

(43–45) 

Tetracycline TetK and TetL efflux of intracellular 

tetracycline. 

(46, 47) 

TetO and TetM bind to the ribosome and 

dislodge tetracycline from its binding site. 

(46–48) 
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Aminoglycoside Cytoplasmic aminoglycoside modifying 

enzymes that catalyze modifications to the 

antibiotics, rendering them unable to bind 

the ribosome. 

(47, 49) 

Oxazolidinones (Linezolid), 

Chloramphenicol, and 

Florfenicol 

Cfr methyltransferase modifies the 23S 

rRNA, blocking the binding site for 

antibiotics 

(50, 51) 

Mutations to ribosomal proteins L3 (RplC), 

L4 (RplD), and L22 (RplV) are proposed to 

inhibit antibiotics through structural 

changes in the ribosome 

(52–54) 

Chloramphenicol Chloramphenicol acetyltransferase 

inactivates chloramphenicol by acetylation 

(acetyl-CoA + chloramphenicol → 

chloramphenicol 3-acetate + CoA) 

(55, 56) 

Fusidic acid  

 

Amino acid substitutions in FusA 

(elongation factor G), altering the drug 

target 

(57–59) 

FusB and FusC promote the dissociation of 

stalled ribosome caused by fusidic acid 

impairment, allowing the ribosomes to 

resume translation 

(60, 61) 

Polymyxin B and Colistin  Intrinsic resistance through GraXRS 

regulated changes to membrane surface 

charge including D-alanylation of the 

lipoteichoic acids and production of lysyl-

phosphatidylglycerol 

(62–66) 
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1.3 Community-associated methicillin resistance S. aureus 

Previously, the majority of MRSA infections were confined to healthcare settings (67); 

however, beginning in the 1990s, there has a been a dramatic rise in the number of 

community-associated MRSA (CA-MRSA) strains that are rapidly spread among the 

general population, regardless of exposure to healthcare settings (8, 68). There are five 

CA-MRSA strains that account for the vast majority of CA-MRSA infections worldwide 

(69): the Midwest clone (70, 71); the Southwest Pacific/Oceania clone (72–74); the 

European clone (75, 76); the Pacific clone (77, 78); and the USA300 clone (79, 80). 

However, amongst the five clones, the USA300 clone dominates and displaces the locally 

endemic clones once introduced into the population (80–83). In many regions, USA300 

accounts for over 50% of CA-MRSA infections, and in North America specifically, 

USA300 accounts for over 98% of infections presented to emergency departments (84). 

The success of USA300 can in part be attributed to an enhanced ability to colonize skin 

due to the acquisition of the arginine catabolic mobile element (ACME), thought to have 

been transferred horizontally from S. epidermidis (85). ACME provides resistance to 

polyamines through the detoxifying spermidine acetyltransferase, speG, and to acidic pH 

through an arginine deaminase pathway that neutralizes acidic environments (86, 87). An 

increased ability to colonize individuals poses serious concerns for healthcare systems, as 

transmission can occur more rapidly when individuals are colonized, and studies have 

shown that there exists a strong correlation between the S. aureus strains isolated from 

the blood and foci of infection, with the strains colonizing the anterior nares (1, 88). 

Furthermore, those colonized by S. aureus have a significantly greater risk of developing 

blood stream infections than non-carriers when hospitalized (88–90). Together, the rapid 

spread of CA-MRSA among the general population poses a serious health concern due to 

the increased risk of infection of subsequent infections.  

1.4 Disease progression of S. aureus  

While usually an asymptomatic colonizer of humans, S. aureus is an opportunistic 

pathogen that can cause serious infection, ranging from relatively benign skin and soft 

tissue infections (SSTIs) to life-threatening bacteremia (91). This broad range of 

infections is facilitated by a vast array of virulence factors to combat the host immune 
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system, as well as a diverse repertoire of adhesions factors allowing for colonization and 

infection of various sites throughout the body (6, 92).  

1.4.1 Adhesion of S. aureus to host tissues 

For S. aureus to colonize and infect the host, the first step is adhesion, which can occur 

through both protein and non-protein adhesion factors. One primary family of adhesion 

factors is the microbial surface components recognizing adhesive matrix molecules 

(MSCRAMMs) which allow for adhesion to a variety of different components of the 

extracellular matrix of the host including fibrinogen, fibronectin, keratin, collagen, 

elastin, and plasminogen, among others (92, 93). For example, the MSCRAMM 

fibronectin binding proteins alone can bind fibronectin, corneodesmosin, elastin, and 

plasminogen (94–98). In addition to MSCRAMMs, S. aureus possesses a variety of other 

cell wall anchored (CWA) adhesion proteins, secreted repertoire of adhesive molecules 

(SERAMs), polysaccharide intercellular adhesin, and wall teichoic/lipoteichoic acids, 

that together allow S. aureus to adhere to a wide range of niches within the human body, 

leading to long term colonization or infections of various tissues (92).  

1.4.2 Development of SSTIs and abscesses 

Once adherent, S. aureus can remain as a colonizer of skin, or progress to an infection if 

there is a breach in the epithelial barrier, with the most common manifestation of 

infection being SSTIs. S. aureus is the leading cause of SSTIs (99), which can manifest 

as cellulitis, impetigo, furuncle, carbuncle, staphylococcal scalded-skin syndrome, and 

abscesses; however, abscesses and cellulitis are the most common clinical presentations, 

accounting for approximately 63% of S. aureus SSTIs (99). A breach to the epithelial 

layers of the skin allows for penetration of S. aureus into the underlying tissues.  

Circulating polymorphonuclear leukocytes (PMNs) are rapidly recruited to the site of 

infection, in response to both tissue damage and host proinflammatory molecules elicited 

by the bacteria (100, 101), which phagocytose the invading pathogen. However, as 

outlined in Section 1.7., S. aureus has a variety of virulence factors and immune evasion 

mechanisms to combat the infiltrating leukocytes and phagocytosis. Typically, PMNs 

undergo apoptosis and are removed from circulation by macrophages in a process called 
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efferocytosis (102); however, S. aureus can divert PMNs from this apoptotic pathway in 

favour of lysis through programmed necrosis (103, 104). Additionally, a variety of 

secreted toxins from S. aureus, including Panton-Valentine leukocidin, leukocidin GH, or 

leukocidin DE, can cause lysis of neutrophils (105). This on-going battle leads to the 

development of an abscess, which when matures, forms a fibrous capsule at the periphery 

to contain the infection (106). These abscesses can resolve spontaneously, but often 

require treatment through antibiotics or surgical intervention to remove the S. aureus 

infection. 

1.4.3 Development of S. aureus blood stream infections 

In contrast to SSTIs, if S. aureus is able to penetrate deeper into the body, or accesses the 

blood stream, a much more severe infection can take place. While SSTIs are the most 

frequent type of S. aureus infections, S. aureus is also the second leading causing of 

bloodstream infections behind Escherichia coli (1–3). Upon entering the blood stream, S. 

aureus is initially cleared by Kupffer cells in the liver (4, 5). While effective in 

sequestering the infection, this is only a temporary solution, as a portion of the 

phagocytosed S. aureus will survive and begin to replicate (5, 6). Replicating S. aureus 

will eventually cause lysis of the Kupffer cells, releasing bacteria into the peritoneum and 

the blood, where they are phagocytosed again by peritoneal macrophages and 

bloodstream neutrophils (5, 6). However, once again a portion of S. aureus will survive 

and begin replication, while these phagocytes migrate throughout the body, leading to 

systemic dissemination and further disease manifestations (5–7).  

Although S. aureus can cause a wide array of additional infections not outlined in this 

section, the lifecycle of S. aureus in both abscesses and bacteremia demonstrate the 

incredible ability of S. aureus to combat the immune system. This resistance comes from 

the myriad of virulence factors at S. aureus disposal (8, 9), and the ability to regulate 

expression of these virulence factors or resistance mechanisms in response to external 

stimuli (10).  
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1.5 Comorbidities associated with S. aureus infections  

Although S. aureus infections are severe alone, they can also exacerbate co-infections 

with other bacteria or viruses, which has become much more prevalent during the onset 

of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS CoV-2) pandemic. 

SARS CoV-2 infections can be significantly complicated with secondary bacterial 

infections, which occur in approximately 5% of cases in the general population, but up to 

30% of hospitalized cases (115–118). In particular, S. aureus is the most frequent cause 

of secondary bacterial infections (115–117, 119). This may in part be due to the S. aureus 

protein IsdA manipulating host Janus kinase-signal transducer and activator of 

transcription (JAK- STAT) signaling which enhances SARS CoV-2 replication and 

production of infectious viral particles (120). Similarly, Influenza A viral infection can 

also be complicated with secondary bacterial infections, with S. aureus again being one 

of the main co-infections (121). Specifically, the S. aureus secreted lipase-1 protein can 

enhance Influenza A replication through positive modulation of virus budding (122). 

With regards to other bacterial infections, S. aureus and Pseudomonas aeruginosa 

frequently exist as a co-infection in airways of cystic fibrosis patients and in chronic 

wounds, and can enhance antibiotic resistances by forming mixed-species biofilms (123–

125). Additionally, S. aureus infections can be made worse by a variety of other 

comorbidities including cardiovascular diseases, diabetes, malignant diseases, 

immunosuppression, and human immunodeficiency virus infections (126–129). Together, 

S. aureus is a dangerous opportunistic pathogen that is made even more severe when 

combined with other diseases.  

1.6 Competition between S. aureus and skin commensals 

Although S. aureus has been shown to coexist with P. aeruginosa through a mutually 

beneficial relationship in the airways of cystic fibrosis patients and in chronic wounds 

(123–125), bacteria frequently have mechanisms to impair the growth of other bacteria in 

order to optimize growth.  For example, S. aureus must compete with resident 

commensal bacteria in order to effectively colonize human skin. Commensal bacteria can 

compete with S. aureus through a variety of mechanisms including competition for 

adhesion sites on the host epithelium, competition for limited nutrients on the skin, 
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competition through antibiosis and the production of antimicrobials, and competition 

through induction of host defense mechanisms (130). While commensal microbes can 

directly compete with S. aureus to bind certain host epithelial ligands, S. epidermidis can 

directly inhibit S. aureus adhesion by secreting high levels of extracellular proteases that 

degrade S. aureus adhesion factors (131, 132). Due to the limited nutrients available on 

the skin, commensal bacteria must also compete for these resources. For example, the 

variety of iron acquisition systems in Corynebacteria, Enterobacteria, and coagulase-

negative Staphylococci are in direct competition with S. aureus, and compete for the 

limited iron that is available (133–135). The list of antimicrobials produced by skin 

commensals which impede S. aureus colonization constantly expands and highlights the 

relevance of competition through antibiosis (130). For example, coagulase-negative 

Staphylococci produce a myriad of antimicrobials including lantibiotic-α and -β produced 

by Staphylococcus hominis (136), lugdunin produced by Staphylococcus lugdunensis 

(137), and 6-thioguanine produced by Staphylococcus chromogenes (138), which all 

severely impair the growth of S. aureus. More recently, studies have also shown that 

probiotic strains of B. subtilis which produce Fengycin can be used to inhibit quorum-

sensing of S. aureus and restrict nasal colonization (139, 140). Finally, commensal 

bacteria can stimulate a variety of immune cells and immune functions to further restrict 

colonization by pathogenic S. aureus (141, 142). Together, commensal bacteria have a 

variety of mechanisms to both directly and indirectly compete with S. aureus on the skin.  

With S. aureus still able to colonize approximately 30% of the population, it must have a 

variety of mechanisms to resist these competitive effects of commensal bacteria. For 

example, the diverse repertoire of adhesion factors produced by S. aureus allows for 

adhesion to a wide range of different host epithelial ligands, circumventing competition 

for any one specific ligand (92, 93). To counteract nutrition competition with commensal 

bacteria, S. aureus can upregulate a variety of metabolic pathways in order to optimally 

acquire nutrients on the skin and in the nose, allowing for survival in very nutrient limited 

environments (130, 143, 144). Furthermore, S. aureus has been shown to uptake foreign 

siderophores produced by other bacteria as a mechanism to directly compete for iron 

acquisition (145). In response to antibiosis competition, S. aureus can produce its own 

antimicrobials to target skin commensals. For example, phenol-soluble modulins (PSMs) 
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have been shown to have direct antimicrobial activity against S. epidermidis, E. coli, and 

S. pyogenes (146). Finally, although skin commensals can induce host defense 

mechanisms and stimulate immune function, S. aureus has a diverse repertoire of 

immune evasion strategies to resist the host immune response as outlined in Section 1.7. 

Together, the ongoing competition between S. aureus and skin commensals has resulted 

in an evolutionary arms race, where bacteria continue to evolve in order to best grow and 

persist on human skin.  

1.7 Immune evasion strategies of S. aureus  

As mentioned previously, the success of S. aureus to colonize and infect humans comes 

from a diverse repertoire of virulence factors and resistance mechanisms used to combat 

the host immune system (6, 7, 92). Some of these virulence factors include toxins, such 

as hemolysins (α, β, γ, and phenol-soluble modulin δ toxin), leukocidins (LukAB, 

LukDE, and Panton-Valentine leukocidin LukSF), and staphylococcal exfoliative toxins 

(ETs), which have direct activity against a variety of host tissues, as well as red and white 

blood cells (105). Targeting of host cell membranes can allow for tissue penetration and 

deeper infection, lysis of cells can provide access to essential nutrients like iron from red 

blood cells, and lysis of immune cells can combat immune cell phagocytosis and killing 

(105). In contrast to toxins which directly target host cells, S. aureus also possesses a 

variety of immune evasion mechanisms outlined in Table 1.2, that can dysregulate 

immune system activation, impair phagocytosis mechanisms, or resist antimicrobial 

compounds produced by the immune system (147, 148). However, production of these 

factors imposes a high energetic burden, and therefore the successful elaboration and 

coordination of these toxins and immune evasion factors relies on S. aureus sensing 

environmental stimuli and regulating gene expression, to optimally combat the host 

immune system.  
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Table 1.2. Immune evasion mechanisms in S. aureus 

Immune Evasion Mechanism: S. aureus Effector System: Reference: 

Bind Fc fragments of IgG to inhibit 

opsonization 

Protein A (149, 150) 

Cleave fibrinogen to form fibrin clots to 

create bacterial aggregates and inhibit 

leukocyte infiltration  

Coagulase and von Willebrand 

factor-binding protein 

(151–153) 

Inhibit neutrophil migration and 

activation by PAMPs 

Staphopain protease A (Scp) and 

glycerol ester hydrolase (Geh) 

(154, 155) 

Degradation of immune defense 

proteins and nutrient acquisition to 

combat nutritional immunity 

Proteases (SspA, SspB, Aur, 

Scp) 

(156–162) 

Inhibit the complement system and 

neutrophil/monocyte chemotaxis  

Staphylococcal complement 

inhibitor (SCIN) and chemotaxis 

inhibitory protein (CHIP) 

(163–166) 

Iron acquisition to combat nutritional 

immunity  

Iron regulated surface 

determinant system (Isd) and 

Staphyloferrin A and B 

(167–170) 

D-alanylation of the lipoteichoic acids 

to repel CAMPs and resist neutrophil 

killing  

DltABCD (171–173) 

Production of lysyl-

phosphatidylglycerol to repel CAMPs 

and resist neutrophil killing 

Multiple peptide resistance 

factor F (MprF) 

(64, 172, 

174) 
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Resistance to reactive oxygen species  Staphyloxanthin, Catalase 

(KatA), alkyl hydroperoxide 

reductase (AhpC), and 

superoxide dismutase  

(175–179) 

Inhibit the complement system and 

phagocytosis  

Capsular polysaccharides  (180, 181) 

Inactivate defensins and inhibit 

opsonization  

Staphylokinase (182, 183) 

Non-specific hyperactivation of T-cells 

to dysregulate proper immune responses  

Toxic Shock Syndrome Toxin 1 

and related superantigen 

enterotoxins  

(184–187) 
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1.8 Genetic regulation in S. aureus 

With S. aureus capable of both asymptomatic colonization and infectious states, there 

must be tight regulation of gene expression to coordinate these processes and optimize 

gene expression in response to environmental parameters. One of the most notable 

regulators of gene expression is the accessory gene regulator (agr) system, which 

regulates gene expression through a quorum sensing mechanism. The agr system 

involves four genes, agrABCD, and RNAIII (188). The system begins with AgrD, a 

precursor for the quorum signal of Agr known as the autoinducing peptide (AIP), being 

processed and effluxed from the cell by AgrB. In the extracellular space, the AIP is 

furthered processed by the signal peptidases SpsB into its final active form (189–192). 

The final two genes in the agr system encode a two-component sensor system, with the 

histidine kinase sensor AgrC binding to AIP, leading to phosphorylation and activation of 

the response regulator AgrA. AgrA upregulates expression of PSMs, as well as RNAIII, a 

regulatory RNA molecule that promotes expression of a variety of secreted virulence 

factors (proteases, lipase, hemolysins, etc.) while repressing expression of cell-surface 

associated proteins (fibronectin binding proteins, Protein A, etc.) (193–198).  

While agr causes a global shift in gene expression to facilitate a transition from 

colonization to infection, there are variety of other genetic regulatory mechanisms S. 

aureus employs to sense and respond to the environment, including alternative sigma 

factors (Table 1.3), additional two-component sensing systems (Table 1.4), SarA family 

DNA binding proteins (ie. SarA (197–204) and Rot (205–207), which play a fundamental 

role in regulating toxins and immune evasion mechanisms outlined in Table 1.2), and 

metal-dependent DNA binding proteins such as ferric uptake regulator Fur (208–210), 

which regulates expression of a variety of genes in response to iron availability. 

Together, this complex system of genetic regulation allows S. aureus to optimally 

colonize, infect, and resist immune system function, in a wide range of different 

environments.  
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Table 1.3. Sigma factor transcriptional regulation in S. aureus 

Sigma Factor: Function: Reference: 

σA 

(SAUSA300_1521) 

Primary (housekeeping) sigma factor:  

Directs the transcription of the bulk cellular RNA. 

  

(211) 

σB 

(SAUSA300_2022) 

General stress response sigma factor:   

Responds to a variety of stressors including non-

optimal temperatures, high salt, ethanol, oxidative 

stress, cell wall-active agents, and acid stress, to 

regulate virulence and resistance factors involved 

in cell envelope composition, membrane transport, 

protein secretion, biofilm formation, metabolism, 

and drug resistance.   

   

(212–216) 

σH 

(SAUSA300_0519) 

Bacterial competence sigma factor:  

Regulates genes important for competency, 

integration and excision of prophage, and 

stabilizes lysogeny in host cell.  

  

(217, 218) 

σS 

(SAUSA300_1722) 

Extracytoplasmic function sigma factor:  

Regulates genes important for survival during 

starvation, growth at elevated temperatures, and in 

response to membrane disrupting agents. 

  

(219–221) 
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Table 1.4. Two-component sensor system transcriptional regulation in S. aureus. 

Sensor kinases are listed in red, and response regulators are listed in blue. 

Genes: Accessory Genes: Signal: Function: Reference: 

walR 

(SAUSA300_0020) 

walK 

(SAUSA300_0021) 

walH 

(SAUSA300_0022) 

walI 

(SAUSA300_0023) 

Unknown 

Cell wall 

metabolism, 

cell wall 

division, 

biofilm 

formation, 

virulence 

expression 

(222–224) 

hptS 

(SAUSA300_0218) 

hptR 

(SAUSA300_0217) 

hptA 

(SAUSA300_0219) 

Glucose-6-

phosphate 

Glucose-6-

phosphate 

import 

(225–227) 

lytS 

(SAUSA300_0254) 

lytR 

(SAUSA300_0255) 

None 
Membrane 

potential 

Cell wall 

autolysis, 

CAMP 

resistance 

(228–230) 

graS 

(SAUSA300_0646) 

graR 

(SAUSA300_0645) 

 

graX 

(SAUSA300_0644) 

vraF 

(SAUSA300_0647) 

vraG 

(SAUSA300_0648) 

CAMPs 

(nisin, LL-37, 

colistin, 

polymyxin B, 

etc.), acidic 

pH 

Resistance to: 

CAMPs; 

acidic pH; 

growth at high 

temperatures; 

oxidative 

stress; 

glycopeptide 

antibiotics 

(63, 66, 

231–237) 
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saeS 

(SAUSA300_0690) 

saeR 

(SAUSA300_0691) 

 

saeQ 

(SAUSA300_0692) 

saeP 

(SAUSA300_0693) 

Human 

neutrophil 

peptides 1–3 

Virulence 

expression 
(238, 239) 

desK 

(SAUSA300_1219) 

desR 

(SAUSA300_1220) 

SAUSA300_1217 

SAUSA300_1218 

Low 

temperature 

Not evaluated 

in S. aureus 
(240) 

arlS 

(SAUSA300_1307) 

arlR 

(SAUSA300_1308) 

None 

Low 

manganese, 

additional 

unknown 

stimuli 

Expression of 

cell wall 

surface 

proteins, ß-

lactam 

antibiotic 

resistance, 

virulence 

expression, 

manganese 

homeostasis 

(233, 241–

246) 

srrB 

(SAUSA300_1441) 

srrA 

(SAUSA300_1442) 

None 

Hypoxia and 

nitric oxide 

concentrations 

Anaerobic 

metabolism, 

nitrosative 

stress 

resistance, 

virulence 

factor 

repression, 

growth at 

(233, 247–

249) 
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lower (28ºC) 

temperatures 

phoR 

(SAUSA300_1638) 

phoP 

(SAUSA300_1639) 

None Low inorganic 

phosphate 

levels 

Phosphate 

import and 

homeostasis 

(250) 

airS 

(SAUSA300_1799) 

airR 

(SAUSA300_1798) 

None Oxidation 

signals 

Oxidative 

stress 

resistance, 

autolysis 

resistance, 

vancomycin 

resistance, 

survival in 

blood through 

expression of 

sspABC 

(251–254) 

vraS 

(SAUSA300_1866) 

vraR 

(SAUSA300_1865) 

vraT 

(SAUSA300_1867) 

vraU 

(SAUSA300_1868) 

Cell wall 

damage 

Cell wall 

biosynthesis, 

resistance to 

cell wall 

synthesis 

inhibitors 

(233, 255–

257) 

agrC 

(SAUSA300_1991) 

agrA 

(SAUSA300_1992) 

agrB 

(SAUSA300_1989) 

agrD 

(SAUSA300_1990) 

Autoinducing 

peptide 

quorum 

sensing 

Virulence 

expression, 

repression of 

surface 

binding 

proteins 

(258, 259) 
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kdpD 

(SAUSA300_2035) 

kdpE 

(SAUSA300_2036) 

None Cyclic-di-

AMP 

Potassium 

transport, 

virulence 

expression 

(260–264) 

hssS 

(SAUSA300_2309) 

hssR 

(SAUSA300_2308) 

None Hemin 

toxicity 

Heme 

detoxification 

(265, 266) 

nreB 

(SAUSA300_2338) 

nreC 

(SAUSA300_2337) 

nreA 

(SAUSA300_2339) 

narI 

(SAUSA300_2340) 

narJ 

(SAUSA300_2341) 

narH 

(SAUSA300_2342) 

narG 

(SAUSA300_2343) 

Low oxygen, 

high nitrate 

Nitrate and 

nitrite 

reduction 

(233, 267, 

268) 

braS 

(SAUSA300_2558) 

braR 

(SAUSA300_2559) 

braE 

(SAUSA300_2556) 

braD 

(SAUSA300_2557) 

Bacitracin, 

Nisin 

Bacteriocin 

resistance 

(269–271) 
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1.9 Innate immune conditions of the skin  

In addition to the myriad of factors to resist host immune cells outlined in Table 1.2, S. 

aureus must also overcome the innate immune compounds of human skin in order to 

establish colonization. As mentioned earlier, acquisition of the speG encoded spermidine 

acetyltransferase by USA300 is essential for its success, since the polyamines spermidine 

and spermine found on human skin are highly toxic to other strains of S. aureus (86, 

272). In addition to polyamines, there are a variety of other innate conditions that must be 

overcome to establish colonization including antimicrobial unsaturated free fatty acids 

(uFFA), acidic pH, and cationic antimicrobial peptides (CAMPs), which normally restrict 

colonization and infection by pathogens (273). Antimicrobial uFFA, found in the sebum 

from sebaceous glands, are toxic to bacteria through mechanisms that include inhibiting 

the electron transport chain and proton motive force (274–276), uncoupling oxidative 

phosphorylation (277), altering cell membrane permeability and fluidity causing lysis 

(276, 278–281), release of low molecular weight proteins through the creation of small 

pores (282), and oxidative stress (283, 284). Similarly, acidic pH can disrupt the plasma 

membrane, inhibit the activity of enzymes and membrane transport proteins, and lead to 

significant alterations in the phospholipid composition of the membrane (285, 286). With 

uFFA able to alter membrane permeability and allow for penetration by H+ ions, uFFA 

and acidic pH conditions may work synergistically in combatting microbial colonization 

(287). Finally, CAMPs are a diverse set of molecules that primarily function by 

disrupting the phospholipid membrane; however, certain CAMPs can traverse the 

membrane and act on intracellular targets as well (288, 289). Of interest, all three 

mechanisms can affect the integrity of the phospholipid membrane, albeit through 

different mechanisms. Together, these mechanisms of innate immunity inhibit 

colonization by most pathogens; however, S. aureus can circumvent these defense 

mechanisms using a variety of proteins and virulence factors in order to effectively 

colonize the skin (287, 288, 290).  
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1.9.1 Response of S. aureus to acidic pH  

The pH of human skin ranges from a 4.1–5.8 (291), inhibiting the colonization of a 

majority of pathogens (292, 293). This acidic environment is maintained through a 

variety of mechanisms including degradation of filaggrin into trans-urocanic acid (294, 

295), metabolism of sebum triglycerides by both host and bacterial lipases to release free 

fatty acids (296–298), production of acidic electrolytes and lactic acid from sweat glands 

(299), and the sodium-hydrogen exchanger 1 (NHE-1) expressed in keratinocytes directly 

contributing to the acidification of the stratum corneum (300–302). To combat the acidity 

of skin, S. aureus utilizes urease activity and the arginine deaminase pathway (Figure 

1.1). Low environmental pH highly upregulates expression of urease genes, which 

metabolize urea to ammonia and carbon dioxide (303–305). The ammonia produced can 

then be used to neutralize the pH of the bacterial surroundings (306). Additionally, the 

arginine deaminase pathway can metabolize arginine into L-ornithine, ammonium, and 

carbon dioxide, again functioning to neutralize acidic environments (87) (Figure 1.1). 

Interestingly, S. aureus USA300 possesses both a native arginine deaminase pathway, as 

well as an accessory arginine deaminase pathway within ACME, which allows for higher 

arginine deaminase activity under skin-like acidic environments (87, 307) (Figure 1.1). 
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Figure 1.1. Schematic diagram for the neutralization of acidic pH through the 

arginine deaminase pathway (ADI) and urease. Acidic pH (red) can be neutralized 

through ADI (1) or urease (2) by the production of ammonia and ammonium species 

(green). S. aureus USA300 possesses two functional ADI gene clusters, the native ADI 

system (SAUSA300_2567, SAUSA300_2568, SAUSA300_2569, SAUSA300_2570) 

and one in ACME (SAUSA300_0061, SAUSA300_0062, SAUSA300_0064, 

SAUSA300_0065). 
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1.9.2 Response of S. aureus to CAMPs 

Resistance to CAMPs can occur through a variety of mechanisms such as thickening the 

cell wall and altering membrane fluidity, releasing proteases to degrade peptides, and 

altering the net surface charge of the membrane (289, 308) (Figure 1.2). Noted in both 

Enterococcus faecalis and S. aureus, thickening of the cell wall is proposed to act as a 

sieve, inhibiting CAMPs from accessing the phospholipid membrane (308–310). 

Additionally, in S. aureus, the thickened cell wall contains increased levels of non-

amidated peptidoglycan, which have a higher affinity for CAMPs (310). This 

peptidoglycan can bind and sequester the CAMPs, preventing them from accessing the 

phospholipid membrane (Figure 1.2). Altering membrane fluidity in response to CAMPs 

is another mechanism seen in various Gram-positive bacteria (39, 41). In response to 

CAMPs, Enterococcus faecium decreases the amount of unsaturated fatty acids in the 

membrane to increase membrane rigidity (311). In contrast, S. aureus maintains 

membrane fluidity through the amount of carotenoid and branched chain fatty acids in the 

cell phospholipid membrane in order to combat CAMP toxicity (39, 312, 313) (Figure 

1.2). Production of proteases can directly degrade CAMPs, and is well demonstrated by 

the S. aureus metalloprotease aureolysin, which can directly degrade LL-37 (159) (Figure 

1.2). Finally, reducing the negative net surface charge of the membrane in order to repel 

CAMPs occurs through two mechanisms in S. aureus; D-alanylation of the teichoic acids 

by DltABCD, and the production of lysyl-phosphatidylglycerol by MprF (64, 65, 314). In 

addition to creating a more positive net charge on the membrane, lysyl-

phosphatidylglycerol also stabilizes the membrane, counteracting the effects of many 

CAMPs (315) (Figure 1.2). In S. aureus, both the dlt operon and mprF are regulated by 

the two-component regulatory system, GraRS (66). 
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Figure 1.2. Schematic diagram of S. aureus CAMPs resistance mechanisms. S. 

aureus possesses a variety of mechanisms to resist CAMPs including: (1) Thickening of 

the cell wall to function as a sieve and prevent penetration of CAMPs; (2) Secretion of 

proteases to degrade CAMPs; (3) Increasing membrane rigidity by decreasing the amount 

of branched chain fatty acids (BCFA) and increasing the amount of staphyloxanthin 

(STX); and (4) increasing the cell surface charge through the production of lysyl-

phosphatidylglycerol by MprF and D-alanylation of the teichoic acids by DltABCD. 

Additionally, lysyl-phosphatidylglycerol produced by MprF has been attributed to 

stabilizing the membrane to counteract the effects of CAMPs. 

 

  



25 

 

1.9.3 The S. aureus two-component glycopeptide resistance 
associated GraRS system 

As outlined in Table 1.4, the GraRS system responds to a variety of conditions 

encountered during colonization and infection of a host, but its primary function in the 

literature is to respond to CAMPs (63, 66, 231–237) (Figure 1.3). Sensing of CAMPs 

occurs through the binding of CAMPs to a short negatively charged extracellular loop in 

the histidine kinase GraS (316), leading to phosphorylation of the response regulator 

GraR, and transcription of genes that provide resistance to CAMPs, including mprF and 

dltABCD mentioned previously (66, 237) (Figure 1.3). In contrast to classic TCS systems, 

the GraRS system requires additional accessory proteins to function including GraX and 

VraFG (236). GraX is proposed to act as a scaffold to enhance the interaction of GraR 

and GraS (232, 317), while VraFG is thought to direct the binding of CAMPs to activate 

GraS (63, 236, 269). Interestingly, VraFG comprises an ABC-transporter; a large family 

of proteins that are frequently associated with TCS systems, and function to efflux 

compounds specific to the TCS system (318). However, VraFG does not appear to 

function as an efflux pump, but rather functions through binding interactions with 

CAMPs (236, 269).  

The requirement of VraFG for proper activation of GraRS is not novel however, as there 

are a variety of other examples of TCS systems that sense antimicrobial peptides which 

also require an ABC-transporter for proper signalling activity. Interestingly, these 

systems are found almost exclusively in Firmicutes bacteria (319). The majority of these 

TCS systems are referred to as BceRS-like TCS, based on the well documented system in 

B. subtilis where the TCS BceRS requires the ABC-transporter BceAB for proper 

activation in the presence of bacitracin (320–323). BceS is an intramembrane sensor 

kinase that lacks an extracellular sensory domain (319, 324). Instead, the ABC-

transporter BceAB communicates with sensor kinase BceS in the presence of bacitracin 

to activate signalling, however the exact mechanism for this communication remains 

unknown (320–322). B. subtilis possesses three such BceRS-like TCS systems: BceRS-

BceAB which responds to bacitracin (320–322, 325); PsdRS-PsdAB which responds to 

nisin (325–327); and YxdJK-YxdLM which responds to LL-37 (325, 328, 329). S. aureus 
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only possesses two BceRS-like TCS systems: BraRS-BraDE which responds to both 

bacitracin and nisin (269, 330); and the aforementioned GraRS-VraFG which responds to 

a variety of cationic antimicrobial peptides such as LL-37, RP-1, polymyxin B, and 

indolicidin (66, 232, 237).  

In addition to providing CAMP resistance through mprF and dltABCD, the gra system 

regulates transcription of various other genes involved in envelope modification, 

oxidoreduction processes, global regulation, virulence factors, as well as additional 

antimicrobial resistance factors, making this system essential to resist innate immune 

conditions and for S, aureus to survive in vivo (Table 1.4).  
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Figure 1.3. Schematic diagram for GraRS activation and resistance to cationic 

antimicrobial peptides (CAMPs). (1) CAMPs bind the negatively charged extracellular 

loop of histidine sensor kinase GraS with assistance from the ABC transporter VraFG. 

Activation of GraS has been shown to play a role in acidic pH, temperature, oxidative, 

and cell wall stresses, indicating there may be additional stimuli which GraS can sense. 

(2) Upon activation of GraS, the response regulator GraR is phosphorylated and regulates 

the transcription of a wide range of different genes. The phosphorelay between GraS and 

GraR required the scaffold protein GraX. (3) Two of the genes regulated by GraRS 

include MprF, which produces lysyl-phosphatidylglycerol, and DltABCD, which 

produces D-alanylated teichoic acids, that create a positive cell surface charge to repel 

CAMPs. 
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1.9.4 Response of S. aureus to uFFA 

Whether colonizing the anterior nares or skin (276, 331–333), or developing into an 

abscess infection (334–336), S. aureus encounters high concentrations of host-derived 

antimicrobial uFFA. As such, S. aureus has a variety of resistance factors to counteract 

uFFA ranging from efflux of the uFFA from the cell, changes to the cell wall structure to 

prevent penetration of uFFA or to stabilize membrane structure to resist the toxic effects 

of uFFA, and metabolism of the uFFA into non-toxic derivates (Table 1.5). The sheer 

number of resistance mechanisms to combat uFFA highlights the importance of uFFA 

resistance in the ability of S. aureus to colonize and infect humans. Furthermore, 

deficiencies in uFFA production correlate with increased colonization rates of S. aureus, 

indicating that uFFA play an important role in controlling S. aureus growth (333). 

However, although these host-derived lipids are toxic to S. aureus, they also constitute a 

potential energy source for the bacteria, and can also be incorporated into membrane 

phospholipid to conserve energy of de novo phospholipid synthesis.  
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Table 1.5. S. aureus resistance mechanisms to combat uFFA toxicity 

Genes of Mechanism: Function: Reference: 

FarER 

Efflux of uFFA through the FarE 

efflux pump, regulated by the TetR-

Family regulator FarR 

(337–339) 

Tet38 
An additional efflux pump to decrease 

intracellular levels of uFFA 
(340) 

Staphyloxanthin 

(CrtOPQMN) 

Carotenoid production improves 

membrane stability to resist toxic 

effects of uFFA 

(280, 281) 

Wall teichoic acids 
Proposed to act as a filter to impair 

passage of uFFA across the cell wall 
(282, 314) 

IsdA 
Decreases cell wall hydrophobicity to 

resist uFFA penetration into the cell 
(342) 

Type VII secretion system 

(T7SS) 

Contributes to membrane integrity and 

homeostasis in response to uFFA 
(343, 344) 

Fatty acid modifying 

enzyme (FAME) 
Esterification of uFFA (345–347) 

OhyA 
Detoxification of uFFA through 

hydroxylation 
(348, 349) 

FakA 
Phosphorylation of uFFA and 

incorporation into phospholipid 
(350–354) 
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1.10 Phospholipid membrane composition and synthesis  

In S. aureus, the phospholipid membrane consists primarily of phosphatidylglycerol, 

lysyl-phosphatidylglycerol, and cardiolipin (355). Phospholipid synthesis begins with the 

acyl groups of acyl-acyl carrier proteins (acyl-ACP) being extended through the type II 

fatty acid synthesis (FASII) cycle (Figure 1.4). The acyl-ACP is converted into acyl-

phosphate (acyl-PO4) by PlsX, and then used by PlsY to catalyze the acylation of 

glycerol-3-phosphate (G3P) at the sn-1 position, into an acyl-G3P. PlsC then transfers an 

additional fatty acid from an acyl-ACP to the acyl-G3P molecule at the sn-2 position, 

with an extremely strong preference for C15 acyl chains, to produce the universal 

bacterial phospholipid precursor, phosphatidic acid (PtdOH) (356, 357). Then, through a 

series of enzymatic reactions by CdsA, PsgA, and PgpP, PtdOH is converted into 

phosphatidylglycerol, the major phospholipid in S. aureus (356) (Figure 1.4). However, 

phosphatidylglycerol can be further processed into lysyl-phosphatidylglycerol by MprF, 

or cardiolipin by Cls1 or Cls2 (64, 174, 358, 359) (Figure 1.4). The fatty acids that make 

up these phospholipids play an important role in regulating membrane fluidity, and this 

fluidity is critical to responding to antimicrobial conditions of the skin (360). In many 

bacteria, such as B. subtilis, membrane fluidity is maintained through the combination of 

saturated and unsaturated fatty acids (361). Unlike B. subtilis, S. aureus lacks a fatty acid 

desaturase enzyme, and therefore cannot produce unsaturated fatty acids (361). Instead, 

S. aureus produces branched chain fatty acids in combination with straight chain fatty 

acids to alter membrane fluidity (360). Branched chain fatty acids make up 

approximately 55-65% of the total fatty acids found in the membrane of S. aureus, and 

are synthesized using the branched chain amino acids leucine, valine, and isoleucine as 

precursors (360, 362). The pathways for producing both straight chain and branched 

chain fatty acids are energetically expensive, and therefore, incorporating host-derived 

fatty acids into phospholipid synthesis would be favourable for the bacteria.  
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Figure 1.4. Overview of phospholipid synthesis and fatty acids metabolism in S. 

aureus. An overview of phospholipid synthesis and the genes involved in each step of 

phospholipid synthesis is detailed by Kuhn et. al. 2015 (356) and summarized in this 

figure. Additionally, the known metabolic or efflux pathways for exogenous fatty acids 

including fatty acid modifying enzyme (FAME), the fatty acids efflux pump (FarE), the 

oleate hydratase (OhyA), and the fatty acid kinase (Fak), are shown. Although S. aureus 

possesses the genes capable of β-oxidation (red), this pathway has not yet been 

elucidated. All metabolic steps in grey have been confirmed to occur in S. aureus. 
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1.11 S. aureus fatty acid kinase, FakA  

Another technique to alter the membrane fluidity is by incorporating exogenous uFFA 

into phospholipid through the use of FakA, which reduces the energetic burden of 

producing branched chain phospholipids de novo (351) (Figure 1.4). Extracellular fatty 

acids translocate across the cytoplasmic membrane using the concentration gradient 

(363). Once on the inner leaflet of the membrane, the fatty acids are bound by either 

FakB1 or FakB2, and then phosphorylated by FakA (351) (Figure 1.4). FakB2 has 

specificity for unsaturated fatty acids, while FakB1 has specificity for saturated fatty 

acids (351). The acyl-PO4 produced through the Fak system can be converted into an 

acyl-ACP by PlsX and enter the FASII cycle for extension, or be used by PlsC to acylate 

the acyl-G3P to produce PtdOH (350). Additionally, the acyl-PO4 can directly be used by 

PlsY to produce an acyl-G3P (350) (Figure 1.4). This incorporation of exogenous fatty 

acids into membrane phospholipid explains why FASII inhibitors are not promising 

targets for antibiotic development in S. aureus (364). Interestingly, while FakA functions 

to incorporate exogenous fatty acids into the membrane, knockouts of fakA result in 

reduced toxin production, increased protease expression, altered phospholipid membrane 

composition, decreased susceptibility to dermcidin, and increased virulence in certain 

animal models (354, 365). Furthermore, expression of the type VII secretion system, 

which is responsible for exporting various virulence factors, is decreased in a fakA 

deletion mutant (343). Consequently, it appears that numerous phenotypic traits are 

linked to metabolism of exogenous fatty acids through the FakA pathway.  

Although FakA incorporates uFFA into the phospholipid as a detoxification strategy, 

deletion of fakA results in an increased resistance to uFFA; however, this increased 

resistance is likely due to a higher constitutive expression of the uFFA efflux pump, farE, 

documented in a fakA deletion background (366). Deletion of fakA also results in an 

altered profile of cellular metabolites, and an increased pool of cytoplasmic free fatty 

acids (353, 367). Together, these studies show that alterations to lipid metabolism by 

deleting fakA leads to pleiotropic effects which may explain the variety of phenotypes 

that occurs in ∆fakA strains (343, 354, 365). 
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1.12 Additional metabolic fates of host-derived fatty acids  

FakA is not the only metabolic fate in S. aureus for exogenous fatty acids (Figure 1.4). 

Oleate hydratase OhyA can hydroxylate host-derived uFFA, inactivating the 

antimicrobial nature of these lipids (Figure 1.4). However, this metabolic process does 

not provide a nutritional benefit to the bacteria, rather it strictly functions as a 

detoxification method. Similarly, the fatty acid modifying enzyme (FAME) is an 

extracellular enzyme responsible for detoxifying antimicrobial fatty acids through an 

esterification mechanism (Figure 1.4), but again does not provide a nutritional benefit for 

the bacteria (345–347). Therefore, the literature currently indicates that FakA is the only 

metabolic pathway used by S. aureus where exogenous fatty acids can be used for an 

energetic benefit to the bacteria (350, 357).  

Although FakA is ubiquitous in Gram-positive bacteria and is effective in promoting 

incorporation of exogenous fatty acids into phospholipid (351, 368–371), β-oxidation is 

another metabolic pathway bacteria can use to energetically benefit from host-derived 

fatty acids. β-oxidation is a cyclic process that degrades long chain fatty acids through the 

release of acetyl-CoA, which can then be fed into the tricarboxylic acid (TCA) cycle to 

generate large amounts of energy. Although β-oxidation has not previously been noted in 

S. aureus (350, 357), it has been demonstrated in Staphylococcus carnosus (372). 

Furthermore, S. aureus possesses a locus of genes, fadDEBA, orthologous to those in E. 

coli and B. subtilis that allow for β-oxidation. Additionally, these gene are highly 

upregulated in bacteria internalized by human bronchial epithelial cells, an environment 

rich in host-derived lipid species (373, 374). Together, we believe β-oxidation is an 

additional metabolic pathway for host-derived fatty acids, that works in conjunction with 

the established FakA pathway (Figure 1.4).  

1.13 Fatty acid biosynthesis and degradation in E. coli and  
S. aureus  

In E. coli, fatty acid biosynthesis occurs through the Fab proteins, while fatty acid 

degradation occurs through the Fad proteins. A simplified representation of both 

pathways can be seen in Figure 1.5. Both pathways are cyclic in nature, and either 
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increase or decrease the acyl chain length by two carbons per cycle. Since these pathways 

have opposing functions, they must be tightly regulated for proper metabolic balance in 

the bacteria. In E. coli, this regulation occurs primarily through FadR (375, 376). In the 

absence of acyl-CoA, FadR induces expression of expression of fatty acid biosynthesis 

genes (fab) and represses expression of fatty acid degradation genes (fad) (Figure 1.5). 

The net result is increased fatty acid biosynthesis to generate more acyl-CoA (57, 375). 

However, in the presence of acyl-CoA, FadR is inactivated and will dissociate from fab 

and fad promoters, stopping induction of fab and resulting in derepression of fad (375, 

376). The net result is increased fatty acid degradation to metabolize excess acyl-CoA. 

There is an additional regulator of fab called FabR; however, FabR is responsible for 

regulating additional fab genes not listed in Figure 1.5, fabA and fabB, which function in 

the FASII cycle to produce unsaturated acyl-ACP rather than saturated acyl-ACP (377–

380). 

In S. aureus, fatty acid biosynthesis occurs in a similar manner, where Fab proteins will 

extend an acyl chain by two carbons every cycle (Figure 1.5). However, even though S. 

aureus possesses genes orthologous to FadDEBA in E. coli, there is no orthologue to 

FadR, meaning regulation of fab occurs through a different mechanism. Similar to B. 

subtilis, regulation of the fatty acid biosynthesis genes occurs through FapR (381–383). 

FapR normally functions to represses expression of fatty acid biosynthesis genes (Figure 

1.5); however, elevated malonyl-CoA, a lipid precursor of the FASII cycle, will cause 

FapR to dissociate from the operator site of fatty acid biosynthesis genes, leading to 

expression of these genes (381). Interesting, FapR not only regulates expression of the 

fab genes, but also expression of plsX and plsC which are involved in phospholipid 

synthesis (381, 383).  
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Figure 1.5. Schematic diagram for fatty acid biosynthesis (Fab) and fatty acid 

degradation (Fad), and the relationship to phospholipid synthesis, in E. coli and S. 

aureus. Simplified versions of fatty acid biosynthesis or degradation pathways are 

outlined with grey dotted lines, and the metabolic connection between these pathways is 

shown. Red lines indicate repression and green lines indicate induction of genes involved 

in each pathway. Triple arrows indicate multiple metabolic steps, outlined in Figure 1.4. 

Pathways in blue indicate proposed pathways mentioned in this thesis, but which have 

not been confirmed in the literature.   
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1.13.1 Activation of acyl chains for phospholipid synthesis  

In E. coli, acylation of the glycerol backbone occurs with both acyl-CoA and acyl-ACP 

(Figure 1.5). G3P is successively acylated by PlsB at the sn-1 site (384, 385), and then 

PlsC at the sn-2 site (386), to create PtdOH. In S. aureus acylation of the glycerol 

backbone occurs with both acyl-PO4 and acyl-ACP. However, the enzymes responsible 

for acylation of G3P are substrate specific in S. aureus, with PlsY acylating with acyl-

PO4 at the sn-1 site, followed by PlsC acylating with acyl-ACP at the sn-2 site, to create 

PtdOH (356, 387, 388). The PO4 or ACP attached to the acyl chain can however be 

exchanged through PlsX (356, 387, 388). As seen in Figure 1.5, deletion of plsX removes 

the ability for S. aureus to synthesize acyl-PO4 endogenously, causing these mutants to 

be auxotrophic for exogenous fatty (350). The use of acyl-PO4 or acyl-CoA differs 

between these two systems, and changes the way in which exogenous fatty acids are 

incorporated into phospholipids.  

As mentioned previously, in S. aureus, FakA phosphorylates exogenous fatty acids to 

create acyl-PO4, which can then be incorporated into phospholipid through PlsY or 

PlsX/PlsC (351). In E. coli, FadD synthesizes acyl-CoA from exogenous fatty acids, 

which can then be incorporated into phospholipid through PlsB or PlsC (384–386, 389). 

Additionally, acyl-CoA produced from FadD can funnel into β-oxidation, through 

FadDEBA (390, 391). Although S. aureus possesses orthologous genes to FadDEBA, 

there have been no studies to date that have identified generation of acyl-CoA by FadD or 

subsequent β-oxidation function in S. aureus.  

1.13.2 Role of acyl-ACP synthases in bacterial phospholipid 

synthesis 

An additional family of enzymes capable of generating acyl-ACP for phospholipid 

synthesis are acyl-ACP synthases (Aas) (Figure 1.6). For example, in Neisseria 

gonorrhoeae and Chlamydia trachomatis, exogenous fatty acids are converted to acyl-

ACPs through AasN and AasC respectively as a mechanism to activate fatty acids for 

phospholipid synthesis (392, 393) (Figure 1.6). E. coli also possesses an acyl-ACP 

synthase; however, this enzyme is stringently linked to reacylation of lysophospholipids 
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generated by lipoprotein synthesis, and has not been shown to function in the general 

phospholipid synthesis pathway (394–396). Interestingly, acyl-ACP synthase activity has 

been detected in S. aureus lysates, but no gene has yet been identified to possess this 

function (357). This may be in part due to acyl-ACP synthases being highly similar to 

long chain fatty acyl-CoA ligases, with the only difference being the addition of a CoA or 

ACP group to the acyl chain respectively. In some bacteria, such as Synechocystis and 

Thermus thermophilus, genes annotated as long chain fatty acyl-CoA ligases can 

synthesize both acyl-ACP and acyl-CoA (397). Therefore, while the gene responsible for 

acyl-ACP synthase function in S. aureus remains elusive, the two annotated long chain 

fatty acyl-CoA ligases, fadD (SAUSA300_ 0228) and vraA (SAUSA300_0559) may be 

capable of this function. Furthermore, it is not clear if production of acyl-ACP by these 

proteins can directly enter into phospholipid synthesis, as is the case for Neisseria 

gonorrhoeae and Chlamydia trachomatis (Figure 1.6), or if these generated acyl-ACP 

serve a more specialized role, as is the case for E. coli.  
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Figure 1.6. Activation of fatty acids for incorporation into phospholipid synthesis in 

S. aureus, E. coli, N. gonorrhoeae, and C. trachomatis. Activation of fatty acids for 

phospholipid synthesis can come from generation of acyl-phosphate (green), acyl-acyl 

carrier protein (red), or acyl-Coenzyme A (orange). Activity of acyl-ACP synthases (Aas) 

are highlighted in blue. The grey dotted box in the S. aureus pathway indicates a 

proposed metabolic step that has not yet been shown in the literature. Triple arrows 

indicate multiple metabolic steps, outlined in Figure 1.4. 
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1.14 Rationale and Hypothesis 

When colonizing human skin, S. aureus encounters a variety of different host-derived 

fatty acids (276, 398, 399). We hypothesized that S. aureus has evolved to thrive in this 

environmental niche, upregulating novel resistance pathways to resist the toxic effects of 

these compounds, as well as upregulating fatty acid metabolic pathways to energetically 

benefit from these fatty acids. A list of the fatty acids used in this dissertation, and their 

physiological relevance, is outlined in Table 1.6. 

My research focuses on how Staphylococcus aureus can adapt to the antimicrobial 

conditions encountered on human skin, in particular acidic pH, cationic antimicrobial 

peptides, and host-derived free fatty acids, allowing for asymptomatic colonization of 

30% of the population. Furthermore, while uFFA function to inhibit the growth of S. 

aureus (290), they also provide a valuable source of lipids for membrane synthesis and 

energy production, and human skin also provides a rich source of less toxic saturated free 

fatty acids (sFFA) (399). We hypothesized that S. aureus possesses novel uFFA 

resistance pathways that are activated under conditions found on human skin, and that 

under these conditions, S. aureus can metabolize exogenous FFA to fuel growth and 

virulence expression.  

My first objective is to evaluate how S. aureus senses and responds to the antimicrobial 

uFFA that would be encountered on human skin. While many mechanisms for uFFA 

resistance have been studied in S. aureus (Table 1.5), these resistance mechanisms have 

been studied independently of other innate immune conditions encountered on human 

skin, specifically acidic pH and CAMPs. As noted in Tables 1.3 and 1.4, S. aureus has a 

diverse network of regulatory mechanisms that can sense and respond to environmental 

signals. Therefore, we hypothesized that S. aureus can sense the innate immune 

conditions encountered on human skin, to upregulate robust uFFA resistance pathways, 

in order to effectively colonize skin. Although VraRS (255, 256) and BraRS (270) both 

respond to cell wall damage that could be inflicted by acidic pH and CAMPs, we are 

specifically interested in the GraXRS system as GraS is known to sense and directly 

respond to CAMPs (66). Furthermore, more recent studies have shown that acidic pH can 

enhance the GraXRS response to CAMPs, and that GraXRS may play a role in resistance 
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to acidic pH (233, 400). We hypothesize that in addition to providing resistance to 

CAMPs and acidic pH, activation of the GraXRS provides resistance to uFFA.  

My second objective is to study how S. aureus can thrive in the presence of host-derived 

fatty acids. Once toxicity of host derived fatty acids has been overcome, we hypothesize 

that the fadXDEBA genes in S. aureus should have a fundamental role in metabolizing 

host-derived fatty acids to provide additional energy for growth and virulence expression. 

We hypothesize this pathway has been underappreciated in S. aureus due to TSB, the 

primary media used to study S aureus, containing glucose and therefore repressing 

expression of β-oxidation machinery (401, 402). Furthermore, studies show that host-

derived fatty acids can induce the staphylococcal proteolytic cascade (403), and that the 

metalloprotease aureolysin induced under these conditions processes the 72-kDa 

proSAL2 precursor to the 44-kDa mature SAL2 lipase (298). This lipase has been shown 

to liberate free fatty acids from host-derived triglyceride molecules, indicating that S. 

aureus may benefit from increased concentrations of host-derived free fatty acids (298). 

Together, we believe these findings indicate fadXDEBA plays a fundamental, but 

currently unelucidated, role in metabolism of host-derived fatty acids, which will provide 

more insight into the mechanisms used by S. aureus to survive in the nutrient limited 

environment of human skin.  

We believe a better understanding of how S. aureus responds to host-derived fatty acids 

to both resist the toxicity of these lipids, as well as benefit from these lipids by 

metabolizing them to liberate a valuable energy source, is fundamental to understanding 

how S. aureus colonizes human skin. Studies have shown that there exists a strong 

correlation between the S. aureus strains isolated from the blood and foci of infection, 

with the strains isolated in the anterior nares (1, 88), and that those colonized by S. 

aureus have a significantly greater risk of developing blood stream infections than non-

carriers when hospitalized (88–90). Therefore, with an increasing rise in antibiotic 

resistance, a better understanding of the mechanisms used by S. aureus during 

colonization may lead to novel therapies or adjuvants that prevent persistent colonization 

and subsequent infections, reducing the serious health burden of MRSA.  

  



41 

 

Table 1.6. Free fatty acids used in this dissertation. 

Fatty Acid Structure and Physiological Relevance 

Saturated Fatty Acids 

Myristic Acid 

(tetradecanoic 

acid; 14:0) 

 
Myristic acid can inhibit the growth of S. aureus (282), and can 

enhance the toxicity of certain unsaturated fatty acids towards S. 

aureus when encountered in combination (404). It is present in human 

nasal fluid (405, 406) and plasma (407). 

Palmitic Acid 

(hexadecanoic 

acid; 16:0) 

 
Palmitic acid does not have major inhibitory activity towards S. 

aureus, and must be encountered at very high concentrations to impair 

growth (282). It is a major lipid component of both human nasal fluid 

(405, 406) and plasma (407). Furthermore, it is the most prevalent 

saturated fatty acid in human sebum (408). It is a poor substrate for 

FakA-mediated metabolism, and must be extended to a C18 fatty acid 

before incorporation into the membrane can occur efficiently (282). 

Stearic Acid 

(octadecanoic 

acid; 18:0) 

 
Stearic acid does not have major inhibitory activity towards S. aureus, 

and must be encountered at very high concentrations to impair growth 

(282). It is present in human nasal fluid (405, 406) and plasma (407). 

Arachidic Acid 

(icosanoic acid; 

20:0) 

 
Arachidic acid does not have major inhibitory activity towards S. 

aureus, and must be encountered at very high concentrations to impair 

growth (282). It is present in human nasal fluid (406) and plasma 

(407). 
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Behenic Acid 

(docosanoic 

acid; 22:0) 

 
Behenic acid has not been shown in the literature to be inhibitory to S. 

aureus growth. It is present in human nasal fluid (406) and plasma 

(407). 

Unsaturated Fatty Acids 

Sapienic Acid 

(cis-6-

hexadecenoic 

acid; 16∶1) 

 
Sapienic acid is unique to humans and is highly inhibitory to growth of 

S. aureus (282). It is present in human nasal fluid (406), and is the 

most prevalent unsaturated fatty acid in human sebum (408). It is a 

poor substrate for FakA-mediated metabolism, and must be extended 

to a C18 fatty acid before incorporation into the membrane can occur 

efficiently (282). 

Palmitoleic 

Acid 

(cis-9-

hexadecenoic 

acid; 16∶1) 

 
Palmitoleic acid is an isomer of sapienic acid and is also highly 

inhibitory to growth of S. aureus (282). It is present in human nasal 

fluid (405) and plasma (407), and is functionally equivalent to sapienic 

acid in murine sebaceous secretions (409, 410). It is a poor substrate 

for FakA-mediated metabolism, and must be extended to a C18 fatty 

acid before incorporation into the membrane can occur efficiently 

(282). Expression of the S. aureus efflux pump tet38 provides high 

levels of resistance to this fatty acid (340). 

Oleic Acid 

(cis-9-

octadecenoic 

acid, 18:1) 

 

 

Unlike other uFFA, oleic acid does not exhibit major inhibitory 

activity towards S. aureus (282). It is present in human nasal fluid 

(405, 406) and is a major lipid component of human plasma (407). 

Due to the unsaturated nature and low toxicity of this fatty acid, it is 

frequently used to study S. aureus lipid metabolism (350, 351, 357). 
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Linoleic Acid 

(cis, cis-9,12-

octadecadienoic 

acid; 18∶2) 

 
Linoleic acid is highly inhibitory to the growth of S. aureus (282). It is 

a major lipid component of both human nasal fluid (405, 406) and 

human plasma (407). It is a strong inducer of the FarE efflux pump, 

which provides S. aureus with resistance to uFFA (338, 339). 

Arachidonic 

Acid 

(cis,cis,cis,cis-

5,8,11,14-

eicosatetraenoic 

acid; 20:4) 

 
Arachidonic acid is highly inhibitory to the growth of S. aureus (282), 

and has been shown in inhibit S. aureus growth through lipid 

peroxidation (283). It is present in human nasal fluid (406) and human 

plasma (407), and is produced in large amounts by both macrophages 

and neutrophils during inflammation (411, 412). Furthermore, 

metabolism of arachidonic acid by the host produces potent 

inflammatory mediators such as prostaglandins, hydroxytetraenoic 

acids, and leukotrienes (413–415). It is also a strong inducer of the 

FarE efflux pump, which provides S. aureus with resistance to uFFA 

(338, 339). 
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Chapter 2  

2 Novel Functions and Signaling Specificity for the GraS 
Sensor Kinase of Staphylococcus aureus in Response 
to Acidic pH1 

  

 

1
 This chapter (with the exception of Section 2.1 (published as indicated), 2.4.5, and minor alterations to 

2.5) has been previously published. Kuiack RC, Veldhuizen RAW, McGavin MJ. 2020. Novel functions 

and signaling specificity for the Gras sensor kinase of Staphylococcus aureus in response to acidic pH. J 

Bacteriol 202: e00219-20. 

Copyright © 2020, American Society for Microbiology. All Rights Reserved. 
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2.1 Chapter Preface 

2.1.1 Discovery of an antivirulence compound that reverses β-
lactam resistance in MRSA 

This collaborative work was published in 2020, in Nature Chemical Biology (1). As 

mentioned previously, the graXRS system was first discovered in S. aureus for its role in 

providing resistance to CAMPs and the glycopeptide vancomycin (2, 3). We built upon 

this discovery by showing the GraXRS system also plays an important role in β-lactam 

resistance. Specifically, we showed that an inhibitor of GraR, MAC-545496, reverses β-

lactam resistance in the MRSA strain USA300. Furthermore, MAC-545496 was able to 

synergize with components of the innate immune system such as CAMPs, oxidative 

stress, and lysozyme, to impair growth of S. aureus, inhibit biofilm formation, abrogate 

intracellular replication in macrophages, and attenuate virulence in vivo. Together, this 

paper indicates that MAC-545496, and inhibition of GraXRS function, is a promising 

new option to fight drug resistant S. aureus infections, and that a better understanding of 

GraXRS function could be paramount to identifying novel mechanisms to both inhibit S. 

aureus survival and sensitize S. aureus to existing innate immune mechanisms. My 

contribution in this publication was the construction of ∆graS and ∆graR strains, as well 

as the construction of the pGYmprF::lux reporter vector to measure GraRS activation.  

2.1.2 S. aureus uses the GraXRS regulatory system to sense and 

adapt to the acidified phagolysosome in macrophages 

This collaborative work was published in 2018, in mBio (4). Even though the 

phagolysosome of a macrophage is a highly microbicidal environment, S. aureus has 

evolved to both survive and replicate within this niche (5, 6). In addition to playing an 

essential role in combating cationic antimicrobial peptides (7), the GraXRS system has 

also been implemented in resistance to acidic pH (8) and oxidative stress (9), both of 

which are important for phagolysosome function. Therefore, we investigated the role 

GraXRS plays in the ability for S. aureus to combat macrophage eradication. We 

determined that the GraXRS system, and downstream expression of MprF, were essential 

for S. aureus survival and replication in the phagolysosome of a macrophage, but the 

SaeRS and AgrAC two-component regulatory systems, as well as the α-phenol soluble 
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modulins, were dispensable for this survival. More specifically, we determined that acidic 

pH is a novel stimulus that can directly activate GraS signalling, and that activation of 

GraS by acidic pH was required for survival in macrophages, as well as resistance to 

cationic antimicrobial peptides and reactive oxygen species. Interestingly, S. aureus was 

also unable to replicate in cathelicidin-deficient murine macrophages, indicating GraS 

must be activated by both acidic pH and CAMPs concurrently in order to properly signal, 

and promote S. aureus adaptation to the antimicrobial conditions of the phagolysosome. 

Finally, we confirmed the importance of GraS signalling and MprF activation in vivo by 

showing both these genes are required for early-stage survival of S. aureus within the 

murine liver. Together, this paper broadened our understanding of the importance for 

GraXRS in combating the innate immune system, as well as identified a novel stimulus, 

acidic pH, that could directly activate GraS signalling. My contribution in this publication 

included constructing the graS deletion strain, characterizing the phenotypes of ∆graS in 

response to various antimicrobial conditions in vitro, designing the assays and strains to 

measure GraS activation through mprF expression, and identifying the novel signal, 

acidic pH, which can directly activate GraS signalling.  

2.1.3 Rationale for Investigation  

Our collaborative papers, in addition to established literature, highlight an essential 

function for GraXRS and MprF in combating the innate immune system of humans. 

GraXRS, and induction of mprF expression, have been well established to combat 

cationic antimicrobial peptides (7), but more recent findings indicate that GraXRS also 

plays an important role in sensing and responding to acidic pH (4, 8). Additionally, 

studies show that concurrent activation of GraS by both cationic antimicrobial peptides 

and acidic pH are required for optimal signalling through this system (4, 10), indicating 

this system has evolved to optimally respond to conditions encountered on human skin 

during colonization and subsequent infection. In addition to cationic antimicrobial 

peptides and acidic pH, antimicrobial uFFA are another innate immune condition 

encountered on human skin that are highly inhibitory to S. aureus (11, 12). With GraXRS 

playing such a fundamental role in combating the innate immune conditions of human 

skin, we queried if GraXRS also plays a role in combating uFFA. Furthermore, previous 
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work into uFFA resistance had not considered what occurs when S. aureus encounters 

combined antimicrobial conditions simultaneously, and focused the ability of S. aureus to 

sense and resist uFFA toxicity alone. Therefore, we believed this investigation would 

provide valuable insight into what occurs when S. aureus is colonizing human skin, and 

could identify novel resistance pathways that have been previously undiscovered or 

underappreciated.  

2.2 Introduction 

Staphylococcus aureus is a Gram-positive opportunistic pathogen that asymptomatically 

colonizes up to 30% of humans (13) but is also a leading cause of infectious morbidity 

and mortality, such that death attributed to S. aureus in the United States has now 

exceeded that caused by AIDS, tuberculosis and viral hepatitis combined (14). Its 

preferred site of colonization in asymptomatic carriage is the anterior nares and among 

those who exhibit nasal carriage, the bacteria are also frequently found on exposed skin, 

including the hands, perineum, and axillae. This asymptomatic colonization plays a key 

role in the epidemiology of S. aureus disease, since infections are nearly always caused 

by the endogenous nasal carriage strain (15). Congruently, the ability of S. aureus to 

resist local innate immunity at sites of colonization is critical to its success as a pathogen, 

and our recent work has focused on how S. aureus is able to sense and respond to these 

signals of innate immunity (4, 16–18). 

The anterior nares of the nose are exposed to secretions of the upper respiratory tract, 

including antimicrobial unsaturated free fatty acids (uFFA) of which linoleic acid (C18:2) 

is the most abundant in human nasal secretions (19), while the major antimicrobial uFFA 

on skin is sapienic acid (C16:1); an isomer of palmitoleic acid that is uniquely produced 

by human sebaceous glands (20, 21). We found that these antimicrobial uFFA induce the 

expression of secreted proteases and also an RND family efflux pump that contributes to 

resistance (16, 17, 22). Other environmental signals relevant to innate immunity on skin 

and the anterior nares include acidic pH (23–25) and antimicrobial peptides (26–29). 

Extracellular calcium also has an important role in maintaining the dermal barrier 

function of the skin (30). Nevertheless, although S. aureus is concurrently exposed to 

multiple environmental signals and mediators of innate immunity at sites of colonization, 
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its ability to sense and respond to these signals is typically studied in a singular manner 

(7, 31, 32). In this context, our recent work has alluded to the possibility that S. aureus 

could effectively multi-task in response to sensing disparate environmental signals 

through the GraS sensor kinase (1, 4). 

GraS and its cognate response regulator GraR are part of a five-component signaling 

system comprised of the co-transcribed graXRS genes and co-associated vraFG, where 

GraX is a cytoplasmic accessory protein and VraFG comprise a two component ABC 

transporter (7, 33–35). GraS is known for its role in sensing cationic antimicrobial 

peptides (CAMPs), attributed to a short extracellular sensor loop, leading to 

autophosphorylation and phospho-relay to the response regulator GraR, which in turn 

promotes expression of genes required for resistance, including mprF and dltABCD (10, 

36, 37). MprF promotes synthesis of lysyl-phosphatidylglycerol (lysyl-PG) while the dlt 

genes promote D-alanylation of teichoic acids (36, 38), and these two activities confer a 

positive charge to the cell envelope which repels CAMPs. The role of the accessory GraX 

and VraFG proteins is less well understood, although GraX likely functions as a scaffold 

to promote protein interactions with GraS, GraR, and VraFG to fine tune the signaling 

mechanism (34, 35). Adding to the complexity, GraS is considered to belong to the 

intramembrane sensor kinase family of proteins, which signal in response to membrane 

perturbation and are characterized by having a minimal extra-cytoplasmic sensor 

segment, and their co-association with two component ABC transporters or other 

accessory signaling proteins (39–41).  

Recent work by ourselves and others has expanded the sensory capabilities of GraS to 

include acidic pH, including its requirement for growth at the pH extreme of 4.5, 

activation of GraS-dependent expression of MprF at pH 5.5, and a requirement for 

growth in acidified macrophage phagosomes (4, 8). In the current model of GraS 

function, acidic amino acids in its short nonapeptide extracellular sensor loop promote 

recognition of and signaling in response to CAMPs (37). However, exposure to acidic pH 

should reduce the charge on these acidic amino acids and also affect the properties of 

membrane phospholipid, which would include a reduction in repulsive forces between 

polar lipid head groups and tighter lateral packing (42). As such, signaling through GraS 
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at acidic pH may not be critically dependent on these acidic amino acids that contribute 

to recognition of CAMPs. 

In view of these considerations, the purpose of our present study was two-fold. First, 

since concurrent exposure to antimicrobial uFFA, acidic pH, calcium and antimicrobial 

peptides should be key environmental features of S. aureus persistence on skin and the 

anterior nares, we queried how the interplay of these environmental signals would 

influence its resistance to antimicrobial uFFA. Second, we investigated the role of the 

GraS sensor kinase and signaling mechanism in response to these combined 

environmental signals. Our experiments were conducted with the hyper-virulent and 

pandemic USA300 strain of community acquired methicillin-resistant S. aureus (CA-

MRSA), which is known for its efficient community transmission (43). Herein we report 

that acidic pH, antimicrobial peptides and environmental calcium all promote increased 

resistance of S. aureus USA300 to antimicrobial uFFA, and that during growth at acidic 

pH, this was dependent on signaling through GraS independently of acidic amino acids in 

its extracellular sensor loop. We further reveal a role for GraS in promoting the 

production of S. aureus secreted proteases in response to acidic pH. Cumulatively, these 

findings are consistent with the function of GraS as an intramembrane sensor kinase. 

2.3 Materials and Methods 

2.3.1 Bacterial Strains and Growth Conditions 

Bacteria and plasmids that were used or constructed in this study are listed in Table 2.1. 

S. aureus cultures were maintained as frozen stocks (-80°C) in 20% glycerol and streaked 

on TSB agar (TSA) when required. Tryptic soy broth (TSB; Difco) used for this study 

contained 2.5 g/L glucose (~ 14 mM). Metabolism of glucose can acidify the culture 

medium as glucose is consumed reaching a minimum of ~ 5.9 in early stationary phase 

and then increasing again as the acetate byproduct is consumed (44). In consideration of 

this, we conducted pH measurements during growth in TSB, and confirmed that pH was 

not affected during early exponential growth when bacteria are highly susceptible to 

antimicrobial uFFA. TSB or TSA was supplemented, when needed, with 10 µg/mL 

erythromycin or chloramphenicol, and 2 µg/mL tetracycline for propagation of strains 
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bearing resistance markers. Where indicated, TSB or TSA were supplemented by 

addition of 0.1 M MES buffer (Bio Can Scientific) and adjusted to pH 5.5 with HCl prior 

to autoclaving. To supplement media with fatty acids, a 10 mM stock concentration was 

first prepared in TSB containing 0.1% dimethyl sulfoxide (DMSO) and then diluted into 

TSB or warm TSA plus 0.1% DMSO to achieve the desired concentration of fatty acids. 

Linoleic acid (cis, cis-9,12-octadecadienoic acid; 18∶2) was purchased from Sigma, 

arachidonic acid (cis,cis,cis,cis-5,8,11,14-eicosatetraenoic acid; 20:4) and palmitoleic 

acid (cis-9-hexadecenoic acid; 16∶1) were purchased from Cayman Chemicals, and 

sapienic acid (cis-6-Hexadecenoic acid; 16∶1) was purchased from Abcam. As required, 

media were also supplemented with Polymyxin B (Sigma), or CATH-2 (45). E. coli 

strains were grown on LB agar or LB broth supplemented with 100 µg/mL ampicillin 

when needed. Unless otherwise stated, all cultures were grown at 37°C, and liquid 

cultures were incubated on an orbital shaking platform at 220 rpm. For all experiments, a 

minimum of at least two biological replicates were used to confirm findings.  
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Table 2.1. Strains and plasmids used in Chapter 2 

Strain or Plasmid:    Description: Citation: 

 

S. aureus: 
 

 USA300 LAC Community associated MRSA; wild type strain cured 

of resistance plasmids 

 

(16) 

 RN4220 

 

rK
− mK

+; capable of accepting foreign DNA 

 

(46) 

 USA300∆graS USA300 with markerless graS deletion 

 

(4) 

 

 USA300ΔfarER USA300 with markerless farER deletion 

 

(22) 

 USA300∆fakA USA300 with markerless fakA deletion 

 
(22) 

 USA300∆pro 

(∆sspABC-aur::lacZ) 
 

USA300 deficient in Aureolysin metalloprotease and 

sspABC serine protease operon; Ermr Tcr 

  

(16) 

 USA300mprF::Tn 

 

φNΣ1360 allele from Nebraska transposon library 

transduced into USA300 LAC; Ermr 

 

(4, 47) 

 USA300vraF::Tn 

 
Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying vraF::φNΣ; Ermr 

 

(4, 47) 

 USA300vraG::Tn Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying vraG::φNΣ; Ermr
  

 

(4, 47) 

    

E. coli: 
   

  

 DH5α F− Φ80lacZΔM15 recA1 endA1 gyrA96 thi-1 hsdR17 

(rK
−mK+) supE44 relA1 deoR Δ(lacZYAargF)U169 

phoA 
 

Invitrogen 

    

Plasmids: 
   

  

 pALC2073 Shuttle vector used for expression of genes under 

control of tetracycline-inducible Pxyl/tetO promoter in S. 

aureus; genes are expressed at a basal level in absence 

of induction 

 

(48) 

 pgraS 
 

 

Promoterless graS gene under transcriptional control 

of Pxyl/tetO promoter of pALC2073 

(4) 

 pgraS3D>G 

 

 

pgraS after mutagenesis with graS-SDM-F and graS-

SDM-R primers; Aspartic acid to Glycine substitution 

at D35, D37, and D41 

This study 

 pmprF  

 

 

 

Promoterless mprF gene amplified by PCR with 

primers mprF-pALC-F and mprF-pALC-R, and cloned 

into BamHI site of pALC2073 

This study 
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 pmprFK547A 

 

 

 

pmprF after mutagenesis with mprF-SDM-F and 

mprF-SDM-R primers; Lysine to Alanine substitution 

at K547 to inactivate lysyl-transferase activity 

This study 
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2.3.2 Strain and Plasmid Construction 

Genetic manipulation of S. aureus was conducted following established guidelines, and 

as described in previous work (16, 22, 46). All recombinant plasmids were initially 

constructed in E. coli DH5α. The integrity of plasmids was confirmed through nucleotide 

sequencing of cloned DNA segments prior to electroporation into USA300 or isogenic 

derivatives, using S. aureus RN4220 as an intermediate host. Primer sequences used for 

PCR amplification of gene segments for plasmid construction, or site directed 

mutagenesis of cloned genes, are defined in Tables 2.1 and 2.2 and are based on the 

reference genome sequence of USA300 FPR3757 (49). Plasmid pALC2073 which 

provides a basal level of gene expression from the Pxyl/tetO promoter and a stronger 

inducible level of expression with anhydrotetracycline (48, 50) was used for ectopic 

expression graS and mprF. Site directed mutagenesis was conducted on pgraS using 

primers graS-SDM-F and graS-SDM-R with Phusion DNA polymerase, to produce 

pgraS3D>G where codons for Asp35, Asp37 and Asp41 are changed to glycine, using 

guidelines described in the Stratagene QuickChange manual. Similarly, pmprF was used 

as template with mutagenic primers mprF-SDM-F and mprF-SDM-R to produce 

pmprFK547A where the codon at Lys547 is altered to encode alanine.  
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Table 2.2. Oligonucleotides used in Chapter 2 

Oligonucleotide: Description: 

  

graS-SDM-F 

 

CATTAGTCTAATCGGTTATGGTTTTCCAATAGGCAGTTTAT

TTTATATTGTTTC 

graS-SDM-R 

 

GAAACAATATAAAATAAACTGCCTATTGGAAAACCATAAC

CGATTAGACTAATG 

mprF-pALC-F 

 

GATTTATAACAGAAAGGATCCGAGGAGGTGTGAAAAAATG

AATCAGGAAG 

mprF-pALC-R TTTGGATCCCGCATCAGGCATAACTGT 

mprF-SDM-F GATATATAGTGGTGACGCGCAGTTTTTCACTAATGA 

mprF-SDM-R GCTGTTTTATTTTCATTAGTGAAAAACTGCGCGTCA 

* Underlining indicates restriction cut sites 
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2.3.3 Growth, Viability, and MIC Assays 

For growth analyses, cultures of S. aureus were prepared by inoculating 3 mL of TSB in 

a 13 mL polypropylene tube containing antibiotic as required, and grown overnight for 16 

hours. After determining the optical density at 600 nm (OD600), aliquots were sub-

cultured into 125 mL capacity flasks containing 25 mL of TSB or TSB modified by 

addition of buffer, fatty acid, antimicrobial peptide, or cation supplements, to achieve an 

initial OD600 of 0.01. Growth (OD600) was monitored at hourly intervals. Alternately, 

bacteria were sub-cultured into 200 µL of medium in wells of 96 well flat bottom assay 

plates (Fisher) to OD600 of 0.01, and growth was monitored at 37°C using a Synergy H4 

temperature-controlled microplate reader (BioTek Instruments) with measurement of 

OD600 every 20 minutes for 18-24h. For viability assays, S. aureus inoculum cultures in 

polypropylene tubes as described above were grown for 4h, and diluted to OD600 of 0.01 

in fresh TSB, followed by preparation of serial 10-1, 10-2, and 10-3. Triplicate aliquots of 

10 µL from each dilution were then plated on different formulations of TSA, and viable 

bacteria were enumerated after 24h of growth.  

For MIC assays, inoculum cultures were grown to mid-exponential phase in flasks as for 

growth assays, then subcultured at OD600 of 0.01 into triplicate 20- by 150-mm glass 

culture tubes containing 3 mL of medium supplemented with 0.1% DMSO and indicated 

concentrations of linoleic or palmitoleic acid. Cultures were incubated at 37°C with 

vigorous shaking, and OD600 values were determined after 24h. 

2.3.4 Cytochrome C Binding Assay 

Cell surface charge was measured as a function of cytochrome C binding as previously 

described (51). Briefly, bacterial cultures were grown to an OD600 of 0.5, before being 

washed twice in MOPS buffer (20 mM, pH 7.0). Cells were resuspended to an OD600 of 

7.0 in MOPS buffer, and 360 µL aliquots were mixed with 40 µL of bovine cytochrome 

C (Sigma) to a final concentration of 0.5 mg/ml. Samples were incubated for 15 minutes 

at 37ºC, followed by centrifugation at 6,000xg for 8 min, and the remaining unbound 

cytochrome C was quantified by measuring absorbance at 530 nm (A530) relative to a 

MOPS buffer blank containing 0.5 mg/mL cytochrome C.  
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2.3.5 SDS-PAGE and Zymography  

For SDS-PAGE analysis of secreted protein profiles, S. aureus cultures were grown for 

20h and proteins in cell free culture supernatant were precipitated by mixing with an 

equal volume of ice-cold 20% TCA, washed in ice-cold 70% ethanol, and then air dried 

prior to dissolving in SDS-PAGE reducing buffer as described previously (52). Protein 

equivalent to 3.0 OD600 units of culture supernatant was then loaded for protein 

separation on a 10% acrylamide gel using the Laemmli buffer system (53), and after 

electrophoresis, proteins were stained using Coomassie Blue. For detection of protease 

activity by zymogram assay, the resolving gel was co-polymerized with 1 mg/mL casein 

and protein equivalent to 0.075 OD600 units was applied to each lane.  Details on sample 

processing, electrophoresis and zymogram development are as described previously (54).  

2.3.6 Data Analysis  

Prism 8 version 8.4.0 was used to create all graphs and perform statistical analyses in this 

study. In all experiments, triplicate cultures were used and mean ± SE is used to represent 

the data in graphs. Unpaired one-tailed t tests, one-way ANOVA with multiple 

comparisons, or two-way ANOVA with multiple comparisons were used to test statistical 

significance depending on the nature of the experiment. Significance was defined as 

stated in the figure legends.  

2.4 Results 

2.4.1 S. aureus sensitivity to antimicrobial uFFA is differentially 
influenced by carbon chain length and acidic pH. 

Linoleic acid (C18:2) is the major unsaturated free fatty acid (uFFA) in tissue abscesses 

and nasal secretions, while sapienic acid (C16:1) is predominant in sebaceous secretions. 

Its isomer palmitoleic acid is the major antimicrobial uFFA in skin of mice and other 

mammals, and is also abundant in adipose triglyceride and membrane phospholipid (19, 

21, 55). Since the skin and nasal mucosa are maintained at acidic pH (24, 25), we 

evaluated how this affects S. aureus resistance to antimicrobial uFFA by conducting 

growth assays in unmodified TSB (initial pH 7.3; hereinafter referred to as TSB), or TSB 

buffered at pH 5.5. Consistent with our previous work (17), S. aureus USA300 grew well 
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in TSB + 25 µM linoleic acid, but exhibited an extended lag phase with 50 µM linoleic 

acid (Figure 2.1A). At pH 5.5, USA300 grew equally well in 25- or 50 µM linoleic acid 

(Figure 2.1A), and also grew with 250 µM linoleic or arachidonic acid (C20:4) (Figure 

2.1B).  Surprisingly, an opposite effect was observed with C16:1, where USA300 grew 

well in TSB + 25 µM palmitoleic- or sapienic acid, but not with this same concentration 

at pH 5.5 (Figure 2.1C). However, if the incubation time was extended, acidic pH 

permitted outgrowth after 48 h at palmitoleic acid concentrations ranging from 200–500 

µM, and this was not evident in unbuffered TSB (Figure 2.2). Therefore, we conclude 

that acidic pH favors increased resistance to C18:2 and C20:4 antimicrobial uFFA but 

appears to have a bimodal effect with C16:1, initially potentiating the inhibitory activity 

but also permitting outgrowth on extended incubation.  
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Figure 2.1. Influence of acidic pH on growth of S. aureus USA300 in presence of 

linoleic acid arachidonic acid, palmitoleic acid, or sapienic acid. Triplicate flasks of 

TSB or TSB pH 5.5 were supplemented with indicated concentrations of linoleic acid 

(LA; C18:2) (A), linoleic acid (LA; C18:2) or arachidonic acid (AA; C20:4) (B), and 

palmitoleic acid (PA; C16:1) or sapienic acid (SA; C16:1) (C) and inoculated to an initial 

optical density measured at 600 nm (OD600) of 0.01. Growth (OD600) was assessed at 

hourly intervals, and each data point represents the mean ± SE of triplicate flasks.   
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Figure 2.2. Following an extended lag phase, acidic pH makes S. aureus more 

resistant to C16:1 antimicrobial uFFA. Minimum inhibitory concentration assay with 

palmitoleic acid in TSB and TSB pH 5.5 after 24 hours (A) and 48 hours (B) of growth. 

Each data point represents the mean ± SE of triplicate 3 mL cultures. 
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2.4.2 Cationic antimicrobial peptides (CAMPs) and extracellular 
calcium also stimulate increased resistance to antimicrobial 

uFFA. 

Although acidic pH promoted increased sensitivity to C16:1 antimicrobial uFFA, we 

considered that S. aureus is concurrently exposed to multiple environmental signals on 

human skin, including antimicrobial peptides, and extracellular calcium which has a key 

role in promoting the structural integrity of the dermal barrier, and has been measured in 

human sweat at 16 µg/mL, equivalent to 0.4 mM (30, 56). We therefore tested whether 

these additional signals alone or in combination with acidic pH would influence S. aureus 

resistance to antimicrobial uFFA. Using polymyxin B (PmB) as a model cationic 

antimicrobial peptide, we observed that sub-inhibitory PmB eliminated the lag phase that 

normally occurs in TSB + 50 µM linoleic acid (Figure 2.3A), and the same effect was 

achieved with 0.5 mM calcium, but not sodium or magnesium (Figure 2.3B).  

Supplemental PmB or calcium also promoted growth at higher concentrations of uFFA, 

including 200 µM of linoleic, arachidonic or palmitoleic acid and 100 µM sapienic acid 

(Figure 2.3CD).  Moreover, although acidic pH impaired S. aureus growth in 25 µM 

palmitoleic or sapienic acid (Figure 2.1C), this effect was eliminated in TSB pH 5.5 

supplemented with either PmB or calcium, which permitted growth in 50 µM palmitoleic 

acid and 25 µM sapienic acid (Figure 2.3EF). To determine the full extent of resistance, 

we conducted MIC determinations with different modifications to basal TSB (Table 2.3). 

In unbuffered TSB, the MICs of palmitoleic and linoleic acid were 100- and 400 µM 

respectively. At pH 5.5, the MIC of palmitoleic acid decreased to 75 µM, while linoleic 

acid increased to 1200 µM. At pH 5.5, addition of supplemental calcium or subinhibitory 

polymyxin B increased the MIC for palmitoleic acid to 300 µM and 800 µM respectively, 

compared to 1600- and >2500 µM for linoleic acid under the same conditions.   

Although subinhibitory PmB promoted enhanced resistance to antimicrobial uFFA, we 

considered that this could be due to it being a lipopeptide, which might exhibit lipid 

mediated interactions with free fatty acids to render them less effective. However, this 

was considered unlikely, since 10 µg/mL PmB is equivalent to 7.7 µM, which promoted 

S. aureus growth in concentrations of linoleic- and palmitoleic acid that were far in 
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excess of PmB. To provide additional evidence that subinhibitory CAMPs confer 

increased resistance of S. aureus to antimicrobial uFFA, we conducted experiments with 

CATH-2. Although CATH-2 is of chicken origin, it belongs to the cathelicidin family of 

CAMPs, has high activity towards S. aureus, and compared to LL-37 its antimicrobial 

activity is less sensitive to variations in acidity and salt (57–59). Growth assays were 

conducted in microtitre plates, with preliminary experiments establishing a higher 

threshold of resistance to uFFA compared to flask cultures (Figure 2.4AB), and that 

CATH-2 was inhibitory above 6.0 µM (Figure 2.4C). Based on these trials, we compared 

the ability of 10 µg/mL PmB or 1.5 µM CATH-2, to influence growth in TSB containing 

500 µM linoleic acid or 300 µM palmitoleic acid. Although we cannot do a direct 

physiologic comparison for CATH-2, dermcidin is an antimicrobial peptide that has been 

measured at 2.1 µM in eccrine gland secretions (60), comparable to our use of 1.5 µM 

CATH-2.  As expected, PmB eliminated the lag phase with both uFFA (Figure 2.5), 

while CATH-2 reduced the lag phase from 20 h to 6 h in 500 µM linoleic acid, and 

eliminated the lag phase in 300 µM palmitoleic acid (Figure 2.5).  

As an additional test of specificity, we queried whether enhanced resistance could be 

achieved with vancomycin, a cationic antimicrobial glycopeptide that does not stimulate 

signaling through GraS (61). In unbuffered TSB, vancomycin was inhibitory beyond 0.5 

µg/mL (Figure 2.6A), and in contrast to PmB, subinhibitory vancomycin did not confer 

enhanced resistance to either linoleic or palmitoleic acid (Figure 2.6BC). Subinhibitory 

vancomycin also did not stimulate growth in 100 µM palmitoleic acid at pH 5.5, whereas 

PmB and CATH-2 both stimulated growth to a similar extent (Figure 2.6D). 

Cumulatively, these findings establish that selected CAMPs or supplemental calcium 

both promote increased resistance of S. aureus to antimicrobial uFFA, including 

amelioration of C16:1 toxicity at acidic pH.  
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Figure 2.3. Influence of Polymxin B (PmB) and cation supplements on growth of S. 

aureus USA300 in the presence of antimicrobial uFFA. (A) Growth in TSB 

supplemented with 50 µM LA, 10 µg/mL PmB, or 50 µM LA + 10 µg/mL PmB as 

indicated; (B), growth in TSB supplemented with 50 µM LA, or 50 µM LA containing 

0.5 mM CaCl2, MgCl2 or NaCl; (C), growth in TSB + 10 µg/mL PmB, containing 

indicated concentrations of PA, SA, LA or AA; (D), growth in TSB + 0.5 mM CaCl2 

containing indicated concentrations of PA, SA, LA or AA; (E), growth in TSB pH 5.5 or 

TSB pH 5.5 + 10 µg/mL PmB, with indicated concentrations of PA or SA; (F), growth in 

TSB pH 5.5 or TSB pH 5.5 + 0.5 mM CaCl2, with indicated concentrations of PA or SA. 
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All data points represent the mean ± SE of triplicate cultures. For panels A and B, OD600 

was monitored at hourly intervals, while for C-F, growth was monitored after 12h. For 

panel C-F, statistical significance between media alone and media supplemented with 

PmB or CaCl2 was measured using an unpaired one-tailed t-test. In all cases p<0.0001, 

with the exception of panel F 50 µM PA and 25 µM SA, where p=0.066 and p=0.0003 

respectively.  
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Table 2.3. Influence of acidic pH, subinhibitory PmB and supplemental calcium on 

minimum inhibitory concentration (MIC) of linoleic and palmitoleic acid for S. 

aureus USA300 

Medium 

MIC (µM) of: 

Linoleic acid Palmitoleic acid 

TSB 400 100 

TSB + 10 µg/mL PmB 1200 300 

TSB + 0.5 mM CaCl2 1800 800 

TSB (pH 5.5) 1200 75 

TSB (pH 5.5) + 20 µg/mL PmB 1600 700 

TSB (pH 5.5) + 0.5 mM CaCl2 >2500 300 
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Figure 2.4. Determining the inhibitory concentrations of LA, PA, and CATH-2 for 

S. aureus USA300 in a 96-well plate assay. Growth of USA300 in TSB with varying 

concentrations of LA (A) , PA (B), and CATH-2 (C). Inhibitory concentrations were used 

for assays in Figure 2.5. Each data point represents mean ± SE of triplicate cultures. 
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Figure 2.5. Influence of cationic antimicrobial peptides PmB and CATH-2, on 

growth of S. aureus USA300 under inhibitory concentrations of antimicrobial 

uFFA. Growth of USA300 in TSB with 500 µM LA (A) or 300 µM PA (B), 

supplemented with subinhibitory concentrations of 10 µg/mL PmB or 1.5 µM CATH-2. 

Each data point represents mean ± SE of triplicate cultures.  

  



119 

 

 

Figure 2.6. Subinhibitory vancomycin does not stimulate resistance to antimicrobial 

uFFA at neutral or acidic pH conditions. (A) Growth of USA300 in TSB with varying 

concentrations of vancomycin. (B) Growth of USA300 in 500 µM linoleic acid, 

supplemented with no antimicrobial peptide, or with subinhibitory concentrations of 

Polymyxin B or vancomycin. (C) Growth of USA300 in 300 µM palmitoleic acid, 

supplemented with no antimicrobial peptide, or with subinhibitory concentrations of 

Polymyxin B or vancomycin. (D) Growth of USA300 in TSB pH 5.5 with 100 µM PA, 

supplemented with no antimicrobial peptide, or with subinhibitory concentrations of 

Polymyxin B, vancomycin, or CATH-2. Growth in unbuffered TSB + 100 µM PA with 

no antimicrobial peptides is also included for comparison. Growth as assessed in 96 well 

plate format, and each data point represents mean ± SE of quadruplicate cultures. 
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2.4.3 GraS and the GraS-regulated gene mprF are required for 
resistance to antimicrobial uFFA at acidic pH. 

We recently established that efflux pump FarE is induced by and required for resistance 

to antimicrobial uFFA through a mechanism that is dependent on the fatty acid kinase 

fakA (17, 22), which is also required for metabolic incorporation of uFFA into 

phospholipid (62), while GraS responds to acidic pH in macrophage phagosomes (4). We 

therefore queried the role of these genes in enhanced resistance to antimicrobial uFFA 

that is manifested at acidic pH. We first assessed viability by plating exponential phase 

cultures of USA300 and isogenic variants on TSA, TSA + 200 µM LA, TSA pH 5.5, or 

TSA pH 5.5 + 500 µM LA (Figure 2.7). As expected, USA300ΔfarER exhibited a loss of 

viability on TSA + 200 µM LA. However, on TSA pH 5.5 + 500 µM LA, there was no 

loss of viability for either USA300ΔfarER or USA300ΔfakA, whereas USA300ΔgraS 

exhibited a severe loss of viability (Figure 2.7). The requirements for graS and the GraS-

regulated gene mprF were then evaluated through growth analyses in TSB pH 5.5 + 250 

µM LA, under which condition both mutants showed severely impaired growth, and 

growth was restored with the respective pgraS and pmprF complementation vectors 

(Figure 2.8A). Both genes were also required for resistance to 25 µM palmitoleic acid in 

TSB pH 5.5 + 0.5 mM calcium (Figure 2.8B). Under non-acidic growth conditions, the 

farER genes were once again required for resistance to 250 µM LA in TSB + 0.5 mM 

calcium, whereas USA300ΔgraS exhibited unrestricted growth (Figure 2.8C). From these 

data it is evident that FarE mediated efflux contributes to enhanced resistance that is 

manifested in response to supplemental calcium under non-acidic growth conditions, 

whereas GraS and MprF are both essential for enhanced resistance to antimicrobial uFFA 

at acidic pH.  
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Figure 2.7. Genetic requirement for resistance to antimicrobial uFFA differs 

depending on the pH of the media. Viability (CFU/mL) of USA300 and isogenic 

ΔfarER, ΔfakA or ΔgraS mutants after plating on TSA, TSA + 200 µM LA, TSA pH 5.5, 

and TSA pH 5.5 + 500 µM LA. Mid-exponential phase triplicate cultures grown in TSB 

were diluted in fresh TSB to OD600 = 0.01. Serial dilutions were then prepared and plated 

on different TSA formulations as indicated, to determine viability after 24h of incubation. 

Each set of serial dilutions were done in triplicate, and the average CFU/ml for each 

culture was calculated. Data graphed as mean ± SE of triplicate cultures.  
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Figure 2.8. Genetic requirements for enhanced resistance of S. aureus USA300 to 

linoleic acid or palmitoleic acid in response to calcium and acidic pH. Growth of 

USA300, isogenic ΔgraS or mprF::Tn mutants, and respective pgraS or pmprF 

complemented strains in TSB pH 5.5 + 250 µM LA (A), or TSB pH 5.5 + 0.5 mM CaCl2 

and 25 µM PA (B); Growth of USA300 and isogenic ΔgraS or ΔfarER mutants in TSB + 

0.5 mM CaCl2 and 250 µM (C). Each data point represents the mean ± SE of triplicate 

cultures. 
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2.4.4 GraS exhibits unique requirements for signaling at acidic pH. 

Since signalling through GraS in response to cationic antimicrobial peptides depends on 

three aspartate residues in a short nonapeptide extra-cytoplasmic loop (37), we queried 

whether this requirement is maintained at acidic pH, using polymyxin B (PmB) as a 

model CAMP. As expected, USA300ΔgraS failed to grow in TSB + 10 µg/mL PmB, and 

although there was a significant difference in the stationary phase cell densities of 

USA300 and USA300ΔgraS + pgraS, there was successful complementation of growth. 

However, no complementation was evident in USA300ΔgraS + pgraS3D>G encoding a 

variant GraS where three aspartate residues in the extra-cytoplasmic sensor loop are 

substituted with glycine (Figure 2.9A, Figure 2.10A). Although this supports a role for 

these acidic amino acids in recognition of and signaling in response to CAMPs (37), 

when growth was assessed in TSB pH 5.5 + 20 µg/mL PmB, both pgraS and pgraS3D>G 

were equally effective in restoring growth of USA300∆graS (Figure 2.9A, Figure 2.10B). 

Both complementation vectors also restored growth of USA300ΔgraS in TSB pH 5.5 + 

250 µM LA (Figure 2.9B). Similar results were obtained in TSB pH 5.5 supplemented 

with 20 µg/mL PmB and 25 µM palmitoleic acid, where USA300∆graS failed to grow, 

but growth was restored with both pgraS and pgraS3D>G vectors (Figure 2.9C). 

Since signaling through GraS promotes expression of MprF, which confers resistance to 

CAMPs through lysine modification of membrane phospholipid (63), we conducted 

assays of cytochrome C binding to monitor MprF-dependent modification of cell surface 

charge. Consistent with our previous work where acidic pH promoted a GraS-dependent 

increase in transcription of an mprF::lux reporter (4), growth at pH 5.5 also promoted a 

GraS-dependent increase in cell-surface positive charge, as evident in reduced binding of 

cytochrome C (Figure 2.11). Once again, pgraS and pgraS3D>G were equally effective in 

restoring cell surface charge to USA300ΔgraS grown at acidic pH (Figure 2.11). 

Cumulatively, these data support the established paradigm for signaling through GraS 

during growth in unbuffered TSB, where acidic amino acids in the extracellular sensor 

loop contribute to sensing of antimicrobial peptides (37). However, our experiments now 

reveal a novel specificity at acidic pH, where these same amino acids are dispensable for 

resistance to PmB and antimicrobial uFFA. 
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Figure 2.9. Requirement for acidic amino acids in extracellular sensor loop of GraS 

is dependent on growth conditions. (A) OD600 after 12 hours of growth in TSB + 10 

µg/mL PmB, or TSB pH 5.5 + 20 µg/mL PmB; (B) growth in TSB pH 5.5 containing 250 

µM LA; (C), growth in TSB pH 5.5 supplemented with 20 µg/mL PmB and 25 µM 

palmitoleic acid. Each data point represents the mean ± SE of triplicate cultures. 

Statistical significance for panel A was measured using one way ANOVA; *** p<0.001, 

n.s. not significant.   
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Figure 2.10. Role of GraS and GraS3D>G in resistance to PmB at neutral or acidic pH 

growth conditions. Growth of USA300 and isogenic ∆graS mutant complemented with 

pALC2073, pgraS, or pgraS3D>G
 in TSB + 10 µg/mL PmB (A) or TSB pH 5.5 + 20 

µg/mL PmB (B). OD600 was measured at hourly intervals for the first 8 hours of the end 

point growth assay represented in Figure 5A. Each data point represents the mean ± SE of 

triplicate cultures. 

 



126 

 

 

Figure 2.11. Restoration of cell surface positive charge is independent of acidic 

amino acids in the extracellular sensor loop of GraS during growth at acidic pH. 

Cultures were grown to an OD600 of 0.5 in TSB or TSB pH 5.5, and then processed for 

assay of cytochrome C binding. Each data point represents the mean ± SE of three 

replicate determinations from each of three cultures. Statistical significance was 

measured using two-way ANOVA; *** p<0.001, n.s. not significant. 

 

 

  

0

20

40

60

80

100

%
 U

n
b
o
u
n
d
 C

y
to

ch
ro

m
e 

C
 

U
SA300

pALC2073 Δgra
S

pA
LC2073 Δgra

S 

+ p
gra

S Δgra
S 

+ p
gra

S
 3

D
>G

TSB pH 5.5
n.s.

***

n.s.



127 

 

2.4.5 The ABC-transporter VraFG is required for novel GraS 
activation mechanism in response to acidic pH 

Activation of GraR by GraS has also been shown to require two-component ABC-

transporter, VraFG. Unlike typical ABC-transporters associated with two-component 

systems which have efflux capabilities, VraFG has not been shown to function as a 

detoxification module (34). Rather, VraFG is proposed to fine tune the signalling 

mechanism of GraS, as the extracellular loop of VraG has been shown to directly impact 

CAMP specificity for GraS signalling (64). Therefore, we queried whether VraFG is also 

required for activation of GraS in response to acidic pH.  As expected, knockout of vraF 

or vraG caused increased susceptibility to the CAMP polymyxin B when grown in TSB 

buffered at pH 7.3, similar to a graS deletion mutant (Figure 2.12A). Interestingly 

however, when grown in TSB pH 5.5, vraF and vraG remained essential for growth in 

the presence of PmB (Figure 2.12B), conditions that did not require the negatively 

charged extracellular region of GraS (Figure 2.10). Furthermore, knockout of vraF or 

vraG phenocopied a graS deletion mutant when grown in TSB pH 5.5 + 250 µM linoleic 

acid (Figure 2.12C), indicating GraS may not be being activated under these conditions. 

Together, these findings indicate that activation of GraS at acidic pH does not require the 

negatively charged amino acids in the extracellular region of GraS, but does require the 

two-component ABC-transporter VraFG.  
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Figure 2.12. The ABC-transporter VraFG is required for GraS signalling in 

response to both CAMPs and acidic pH. Triplicate flasks of TSB buffered at pH 5.5 or 

7.3 were supplemented with 10 µg/mL polymyxin B (PmB) (A), 20 µg/mL PmB (B), or 

250 µM linoleic acid (LA) (C). Growth (OD600) was assessed at hourly and each data 

point represents the mean ± SE from triplicate flasks. 
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2.4.6 The lysyl-transferase function of MprF is not required for 
resistance to antimicrobial uFFA during growth at acidic pH. 

MprF confers resistance to CAMPs through its ability to promote lysine modification of 

membrane phospholipid. This occurs through a two-step mechanism whereby the lysyl-

phosphatidylglycerol synthase domain transfers lysine to phosphatidylglycerol on the 

inner surface of the cytoplasmic membrane, after which a flippase domain translocates 

the nascent lysyl-PG to the outer leaflet of the membrane (38). Since MprF was required 

for enhanced resistance to antimicrobial uFFA during growth at acidic pH, we queried 

whether this was dependent on its lysyl-transferase function. We observed that during 

growth at acidic pH, cell surface positive charge was maintained up to 100 µM linoleic 

acid, followed by a sharp decrease at 200 µM (Figure 2.13A), consistent with a reduction 

in cell surface lysyl-PG.  From this we surmised that the lysyl-PG-synthase function of 

MprF should be dispensable for S. aureus resistance to 250 µM linoleic acid during 

growth at pH 5.5, and to assess this hypothesis, we constructed a K547A substitution in 

MprF, which eliminates lysyl-transferase activity without affecting the stability of the 

protein (38).  

To confirm the MprFK547A phenotype we first evaluated growth of USA300mprF::Tn 

complemented with pmprF or pmprFK547A, in TSB + 10 µg/mL PmB. As expected, 

USA300mprF::Tn exhibited impaired growth, which was restored with pALCmprF, but 

not pALCmprFK547A, consistent with abrogation of lysyl-PG-synthase activity (Figure 

2.13B). This was confirmed through cytochrome C binding, where pmprF restored cell 

surface charge to USA300mprF::Tn, but pmprFK547A did not (Figure 2.13C). These data 

are consistent with abrogation of lysyl-PG-synthase activity in MprFK547A as previously 

reported (38). Nevertheless, pmprFK547A was able to rescue growth of USA300mprF::Tn 

in TSB pH 5.5 + 250 µM linoleic acid (Figure 2.13D). Therefore, MprF is needed to 

support S. aureus resistance to antimicrobial uFFA during growth at acidic pH, through a 

mechanism that is independent of its lysyl-transferase function.  
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Figure 2.13. The LPG-synthase function of MprF is not required for S. aureus 

USA300 resistance to 250 µM linoleic acid during growth at acidic pH.  (A) 

Cytochrome C binding as a measure of MprF function in cultures of USA300 grown in 

TSB or TSB pH 5.5 containing the indicated concentration of linoleic acid, LA; (B) 

Growth in TSB + 10 µg/mL PmB, of USA300 and isogenic mprF::Tn mutant 

complemented with pALC2073, pmprF or pmprFK547A; (C), Cytochrome C binding after 

growth in TSB pH 5.5, of USA300 and isogenic mprF::Tn mutant complemented with 

pALC2073, pmprF or pmprFK547. Cultures were supplemented with 120 ng/mL aTc to 

induce expression from the Pxyl/tetO promoter; (D) Growth assay as described for panel B, 

except that cultures were grown in TSB pH 5.5 + 250 µM LA. Statistical significance 

was measured using two-way ANOVA in panel A, and one-way ANOVA in panel C. * 

p<0.05, *** p<0.001, n.s. not significant.  
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2.4.7 Signaling through GraS also contributes to production of 
secreted proteases during growth at acidic pH. 

Having established that signaling through GraS is required for S. aureus resistance to 

antimicrobial uFFA at acidic pH, we considered whether other phenotypic traits might 

also exhibit a GraS-dependent phenotype at acidic pH. Foremost, our previous work 

revealed that antimicrobial uFFA induce expression of secreted proteases (16), producing 

a characteristic change in the profile of secreted proteins attributed to the Staphylococcal 

proteolytic cascade. Notably, the 72 kDa precursor of glycerol ester hydrolase proGeh is 

converted to a mature 40 kDa form by the metalloprotease Aureolysin, which is also 

required for maturation of the SspA serine protease, and SspA then activates the proSspB 

cysteine protease precursor producing a 20 kDa mature SspB (16, 18, 52, 65). Knowing 

that S. aureus is concurrently exposed to antimicrobial uFFA and acidic pH on human 

skin, we queried whether acidic pH could also stimulate protease expression. 

Accordingly, compared to growth in unbuffered TSB, culture supernatant from USA300 

grown in TSB pH 5.5 exhibited the signature protein profile of the Staphylococcal 

proteolytic cascade, including a reduction in proGeh, and appearance of new proteins 

consistent with production of SspA and SspB. These changes were not evident in 

USA300ΔgraS, or in USA300Δpro where aur (Aureolysin) and the sspABC serine 

protease operon are inactivated (Figure 2.14AB), but were restored in USA300ΔgraS 

with both pgraS and pgraS3D>G
 (Figure 2.14B). These observations were mirrored in an 

accompanying casein hydrolysis zymogram for detection of the SspA serine protease 

(Figure 2.15AB). We further note that during growth in non-buffered TSB, induction of 

graS expression in USA300ΔgraS + pgraS was not sufficient to induce protease 

production, indicating that acidic pH is a prerequisite for signaling through GraS to 

induce production of secreted proteases. 
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Figure 2.14. Signaling through GraS contributes to S. aureus USA300 production of 

secreted proteases during growth at acidic pH. (A) SDS-PAGE profile of secreted 

proteins (upper panel) and zymogram for detection of SspA serine protease (lower panel), 

in culture supernatants of USA300 and isogenic ΔgraS or protease deficient Δpro 

mutants after growth for 20 h in TSB or TSB pH 5.5. Arrows on the right margin of each 

panel indicate the position of proteins that represent the signature protein profile of the 

Staphylococcal proteolytic cascade, including the precursor of glycerol ester hydrolase 

proGeh, mature Geh lipase, mature SspA serine protease and SspB cysteine protease. (B), 

as described for Panel A, with strains USA300 and ΔgraS complemented with pgraS or 

pgraS3D>G. Expression from the Pxyl/tetO promoter of pACL2073 was induced using 120 

ng/mL aTc. For SDS-PAGE profiles of secreted proteins, TCA precipitated protein 

equivalent to 3.0 OD600 units of culture supernatant were applied to each lane, while for 

zymogram analyses, a volume of culture supernatant equivalent to 0.075 OD600 units was 

applied to each lane. 
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2.5 Discussion  

In this study, we assessed the genetic requirements for S. aureus resistance to 

antimicrobial uFFA when exposed to signals that would be encountered at sites of 

colonization and infection, including acidic pH, antimicrobial peptides, and 

environmental calcium. It is now evident that these commonly encountered 

environmental signals confer enhanced resistance to antimicrobial uFFA, with different 

genetic requirements depending on acidic or non-acidic growth conditions, and exposure 

to calcium or subinhibitory antimicrobial peptides. We previously found that the RND 

family efflux pump FarE was required for S. aureus resistance to antimicrobial uFFA (17, 

22), and in our present work this requirement was maintained under non-acidic growth 

conditions for enhanced resistance to linoleic acid in unbuffered TSB supplemented with 

calcium. However, at acidic pH, enhanced resistance to both C18:2 and C16:1 uFFA was 

dependent on GraS and GraS-dependent expression of MprF. Moreover, this occurred 

independently of acidic amino acids in the extracellular sensor segment of GraS, and the 

lysyl-transferase function of MprF that are essential for resistance to antimicrobial 

peptides (37, 38). Growth at acidic pH also promoted GraS-dependent production of 

secreted proteases, through a mechanism that was again independent of acidic amino 

acids in the extracellular sensor segment. These novel findings broaden our 

understanding not only of S. aureus mechanisms for resistance to antimicrobial uFFA, 

but also of mechanisms through which S. aureus senses and responds to combined 

stresses that would be encountered at sites of colonization and infection.  

Central to our work is the novel signaling capacity and expanded function of GraS. 

Previous work on GraS signaling in response to CAMPs focused on acidic amino acids in 

the extra-cytoplasmic nonapeptide segment DYDFPIDSL, finding that substitution of the 

three aspartate residues with glycine led to loss of graS-dependent expression of mprF 

and dltA in response to CAMPs, concomitant with increased sensitivity (37). Our 

experiments with antimicrobial peptides under non-acidic growth conditions confirmed 

this requirement, as also reported for the CovS and PhoQ sensor kinases, where acidic 

amino acids in their large extra-cytoplasmic sensor domain interact with cations on the 

cytoplasmic membrane to maintain homeostasis, and signaling is initiated when this 
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interaction is disrupted by CAMPs (66, 67). Nevertheless, these same amino acids were 

dispensable to GraS function at acidic pH, irrespective of whether the phenotypic readout 

was cell-surface positive charge, resistance to antimicrobial peptide, resistance to 

antimicrobial uFFA, or production of secreted proteases. However, a key difference in 

comparison to CovS and PhoQ is that GraS has a minimal sensor domain, as does the 

SaeS global regulator of virulence in S. aureus (40, 68). Importantly, GraS and SaeS both 

have a minimal N-terminal sensor domain comprised of two transmembrane helices, 

separated by an eight or nine amino acid extracellular linker segment, and this 

organization conforms to a family of intramembrane sensor kinases that sense membrane 

perturbation (39).  

For GraS, this may be especially relevant to signal transduction at acidic pH, which 

reduces the charge on polar lipid head groups, leading to reduced repulsive forces and 

tighter lateral packing of phospholipid (42). Acidic pH should also reduce the charge on 

acidic amino acids in the extra-cytoplasmic linker segment of GraS, which would render 

them less effective in sensing cationic antimicrobial peptides. It is therefore logical that 

GraS should have the capacity to signal in response to altered membrane properties at 

acidic pH as opposed to a strict dependence on acidic amino acids in the extracellular 

linker segment. In this respect, it is salient to note that antimicrobial peptides also cause 

changes in membrane structure (69), which could potentially allow GraS to respond to 

membrane damage caused by these peptides. For SaeS it was proposed that the entire N-

terminal sensor domain functions as a trip wire, such that any stimulus that elicits 

conformational changes in the N-terminal domain would trigger kinase activity, while 

amino acids in the extracellular linker segment serve to fine tune the response to different 

stimulants  (40, 68). Indeed, deletion of this linker segment in GraS rendered S. aureus 

more sensitive to antimicrobial peptides (10, 37). Therefore, while our present data 

indicate that acidic amino acids in the extracellular linker segment are dispensable to 

signaling at acidic pH, it is feasible that the entire N-terminal segment of GraS functions 

as a molecular tripwire to sense membrane perturbation as described for SaeS (40, 68). 

As such, changes in phospholipid composition and physical properties in response to 

acidic pH or antimicrobial peptides would be sufficient to trigger GraS kinase activity 

independently of the need to recognize a physical antimicrobial peptide ligand. The DesK 
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sensor kinase of Bacillus subtilis operates on such a principle, whereby assembly of a 

thicker cytoplasmic membrane at low temperature stimulates signaling through DesK 

independently of the need for an extracellular sensor segment (70).  

Although the acidic amino acids in the extracellular segment of GraS were not required 

for activation in response to acidic pH, the two-component ABC-transporter VraFG 

remained essential. One plausible explanation for this VraFG requirement is due to the 

proper assembly of the five-component system requiring all proteins. Multiple studies 

have shown a high degree of protein-protein interactions in the GraXRS/VraFG system 

(Figure 2.13), and GraX is proposed to simply act as a scaffold to improve the binding 

interactions between GraR and GraS (34, 35). Therefore, it is possible protein-protein 

interactions with VraF or VraG are also required for proper assembly of the sensor 

system, and to improve the binding and signalling from GraS to GraR. However, this 

theory remains to be tested in our future studies.  
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Figure 2.15. Protein-protein interaction in the GraXRS/VraFG five component 

sensor system. The GraS histidine kinase (His. Kin.) phosphorylates the GraR response 

regulator (Resp. Reg.) through assistance from the GraX scaffold protein. Proper sensing 

for this system relies on interactions with the VraG ABC-transporter permease and VraF 

ABC-transporter ATPase. Two different studies have assessed the binding interactions 

for each of these proteins, which are shown in red (34) or green (35). Muzamal et al. 

indicated that although GraS binds GraR, this interaction is very weak and requires GraX 

for proper signal transduction (35).  
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While previous and present data confirm that signalling through GraS is critical for 

expression of MprF, which confers resistance to CAMPs through lysine modification of 

phospholipid (4, 63), we were surprised to find that during growth at acidic pH, MprF 

was also required for enhanced resistance to both C16:1 and C18:2 antimicrobial uFFA 

through a mechanism that was independent of its lysyl-transferase function. However, 

similar observations were noted on the role of MprF in promoting reduced susceptibility 

to the cationic lipopeptide antibiotic Daptomycin (71, 72). It is not completely understood 

how daptomycin kills S. aureus but current evidence supports a model whereby it targets 

fluid microdomains in the membrane, followed by oligomerization and translocation to 

the inner leaflet where it then blocks the interaction between essential membrane proteins 

and fluid membrane microdomains (73). Although clinical isolates with reduced 

susceptibility to daptomycin often have non-synonymous polymorphisms in MprF, there 

is no general consensus that this is due to increased production of lysyl-PG, and one of 

the most commonly occurring polymorphisms causes a T345A/I/K substitution at the 

junction of the flippase and lysyl-PG-synthase domains (71).  

Notably, a T345A substitution at this juncture is alone sufficient to promote reduced 

susceptibility to daptomycin, and it was proposed that this may allow the flippase domain 

to accommodate daptomycin and translocate the antibiotic out of the fluid inner 

membrane microdomains (71, 72). Since our data indicate that abrogation of the lysyl-PG 

synthase activity of MprF does not interfere with its ability to complement growth of S. 

aureus mprF::Tn at pH 5.5 in the presence of antimicrobial uFFA, this would be 

consistent with a mechanism whereby under these conditions, the flippase domain 

promotes translocation of phosphatidylglycerol containing an unsaturated fatty acid, 

instead of its physiologic lysyl-PG substrate. In support of this analysis, we note that 

growth at pH 5.5 promotes a GraS-dependent increase in cell-surface positive charge 

(Figure 2.11), which is maintained at 25 µM and 100 µM linoleic acid, but then drops 

sharply at 200 µM linoleic acid (Figure 2.13A), under which condition growth remained 

dependent on MprF (Figure 2.13D). This could be accounted for if an excess of linoleoyl-

PG competed with lysyl-PG for translocation by MprF under these conditions, or 

alternately if membrane properties under these conditions were not conducive to 

synthesis of lysyl-PG.  
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Another novel feature of signaling through GraS and downstream phenotypic traits 

revealed through our work is its requirement for production of secreted proteases during 

growth at acidic pH. Although the focus of research on GraS has been its role in 

signalling through GraR to promote expression of genes that modify cell surface 

properties as required for resistance to antimicrobial peptides (3, 10, 37), one study 

alluded to a broader role including promotion of growth at high temperatures and 

resistance to oxidative stress (9). In this latter respect, it is noteworthy that 

polyunsaturated arachidonic acid is reported to have bactericidal activity towards S. 

aureus through a lipid peroxidation mechanism (74). Expression profiling also revealed 

that several major virulence factors exhibited increased GraS-dependent expression in 

response to antimicrobial peptide, including the accessory gene regulator agr as well as 

secreted hemolysins and cell surface proteins (9). Nevertheless, the gene encoding SspA 

serine protease was not among those that were reported as being regulated through GraS 

(9). Another recent study aimed at mapping the global network of extracellular protease 

regulation in S. aureus identified seven major regulators and seven secondary regulators, 

but GraS and GraR were not among these (75). Consequently, it is likely that the role of 

GraS in promoting production of secreted protease is limited to signaling at acidic pH, 

which is encountered by S. aureus on human skin and macrophage phagosomes, but also 

on nasal mucosa (25) and in chronic abscesses (76).  

As with acidic pH and CAMPs, our findings revealed that extracellular calcium also 

promoted increased resistance of S. aureus to antimicrobial uFFA, representing a 

convergence of signals that could promote persistence of S. aureus on human skin. 

Although acidic pH initially promoted increased sensitivity of S. aureus to palmitoleic 

and sapienic acid, this effect was ameliorated with 0.5 mM calcium. While the 

mechanistic basis of this finding has yet to be elucidated, recent studies have highlighted 

the role of environmental calcium in promoting microbial persistence strategies, 

including enhanced biofilm formation in Vibrio fischeri through a mechanism that was 

dependent on the SypS sensor kinase, and calcium dependent activation of the LadS 

histidine kinase in Pseudomonas aeruginosa to induce an acute-to-chronic transition in 

virulence (77, 78). Therefore, future work will focus on understanding how 

environmental calcium may influence S. aureus persistence strategies, and on elucidating 
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how changes in membrane properties and composition during growth at acidic pH trigger 

signaling through GraS.  
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Chapter 3  

3 The fadXDEBA Locus of Staphylococcus aureus 
Contributes to Detoxification of Exogenous Palmitic 
Acid and In Vivo Growth.2 

  

 

2
 This chapter (with the exception of Section 3.1, 3.4.8–10, and minor alterations to 3.5) has been 

submitted for publication in Molecular Microbiology, and is currently under revision. Kuiack RC, Tuffs 

SW, Dufresne K, McCormick JK, and McGavin MJ. The fadXDEBA locus of Staphylococcus aureus is 

required for metabolism of exogenous palmitic acid and in vivo growth. Mol Micro. Under revision. 
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3.1 Chapter Preface 

3.1.1 Rationale for Investigation 

In Chapter 2, we outlined a novel resistance mechanism for uFFA resistance activated by 

GraS signalling and MprF expression. Resistance through this novel mechanism was 

independent of the established uFFA resistance mechanisms, the fatty acid efflux pump 

FarE, and the fatty acid kinase FakA (Figure 2.7). One nuance to this novel uFFA 

resistance mechanism is that even though acidic pH activates GraS and induces MprF 

expression, acidic pH makes S. aureus more susceptible to C16:1 palmitoleic or sapienic 

acid (Figure 2.1). In contrast, acidic pH makes S. aureus significantly more resistant to 

C18:2 linoleic acid C20:4 arachidonic acid (Figure 2.1). Therefore, there is something 

specific to C16 uFFA that defies GraS/MprF mediated resistance at acidic pH. We 

hypothesized this is due to C16 fatty acids being poor substrates for FakA-mediated 

metabolism of fatty acids (1), and that the membrane disruption caused by a buildup of 

these fatty acids may make S. aureus more susceptible to acidic pH intoxication, as 

outlined in Chapter 4. Interestingly, we see that deletion of fakA rescues growth of S. 

aureus under combined acidic pH and palmitoleic acid conditions (Figure 3.1A). At high 

enough concentrations, we see acidic pH actually increases resistance to palmitoleic acid 

in ∆fakA (Figure 3.1B). Furthermore, even though deletion of fakA causes increased basal 

expression of the efflux pump FarE (2), this is not responsible for increased palmitoleic 

acid resistance at acidic pH, as a combined fakA-farER deletion was still able to grow 

under these conditions (Figure 3.1C). Therefore, there must be an additional mechanism 

in the fakA deletion mutant responsible for this resistance. 
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Figure 3.1. US300∆fakA resists toxicity imposed by combined palmitoleic acid and 

acidic pH conditions. Triplicate flasks of TSB were supplemented with indicated 

concentrations of palmitoleic acid, and inoculated to an initial optical density measured at 

600 nm (OD600) of 0.01. Growth (OD600) was assessed at hourly intervals (A and C), or 

after 8 hours of growth (B), and each data point represents the mean ± SE from triplicate 

flasks. 
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With FakA responsible for metabolizing exogenous fatty acids, we hypothesized that 

deletion of this metabolic pathway would upregulate a different fatty acid metabolic 

pathway to compensate; however, metabolism through FakA was thought to be the only 

metabolic fate for exogenous fatty acids in S. aureus (3, 4). In contrast to S. aureus, many 

bacteria such as E. coli and B. subtilis can use β-oxidation to metabolize exogenous fatty 

acids for energy (5, 6). Furthermore, β-oxidation has also been seen in other 

Staphylococci species such as Staphylococcus carnosus (7). Therefore, we began to 

investigate if β-oxidation also occurs in S. aureus, and if this may explain the increased 

resistance we see in ∆fakA (Figure 3.1). 

Through genomic analysis, we determined that S. aureus does possess a fadDEBA locus 

comprising the minimal complement of genes that are necessary and sufficient for 

degradation of fatty acids through the canonical β-oxidation pathway in other bacteria, 

such as E. coli (6). Furthermore, studies have shown these genes are highly expressed 

when S. aureus is internalized by human bronchial epithelial cells, an environment rich is 

host-derived lipid species (8, 9). A recent study also demonstrated that fadX, an 

additional gene preceding fadDEBA in S. aureus, was required for metabolism of short 

chain (C3) fatty acids (10). Together, these findings led us to believe that S. aureus does 

possesses β-oxidation capabilities, and that this metabolic pathway plays an important 

role in metabolizing exogenous fatty acids in conjunction with the established FakA 

metabolic pathway.  

3.1.2 Expression data supports a β-oxidation function for 
FadXDEBA in S. aureus 

Although the function of the fadXDEBA locus has not been directly investigated in S. 

aureus, previous studies have noticed upregulation of the fad genes or Fad proteins in a 

variety of different environments and strains. For example, when internalized in 

bronchial epithelial cells (8, 9) or liver cells (11), during stationary growth phase (8), or 

when deleting ccpA which regulates gene expression in response to glucose availability 

(12), fad genes/proteins were shown to be expressed at significantly higher levels. With 

this expression data available, we decided to investigate if there were any common 
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genes/proteins across these studies expressed in conjunction with fad, to elucidate 

possible interactions of the fad system with other pathways in S. aureus.  

Overall, we see relatively few genes/proteins that are consistently up or downregulated 

across the multiple studies (Figure 3.2). In agreement with the genomic arrangement of 

the fad genes, upregulation of the fad genes occurred in unison, apart from fadX in one 

study (Table 3.1). Interestingly, there was not a similar trend for upregulation of other 

known fatty acid metabolism genes/proteins (Table 3.1). While no clear trends emerged 

for genes/proteins consistently downregulated across these studies, there was one group 

of genes/proteins that were consistently upregulated in conjunction with the fad genes, 

those involved in the tricarboxylic acid (TCA) cycle (Table 3.2). This was specific to the 

TCA cycle, and not due simply to increased metabolism, as there was not a similar 

pattern for genes/proteins involved in glycolysis (Table 3.2). Overall, these findings 

support a system where β-oxidation of fatty acids through FadDEBA produces acetyl-

CoA that fuels the TCA cycle. Therefore, we believed the S. aureus fad genes warranted 

further investigation.  
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Figure 3.2. Frequency of genes/proteins differentially regulated in studies where 

increased fad expression was observed. Expression data from five different 

experiments where fad genes or Fad proteins were significantly upregulated was 

amalgamated to investigate genes that were commonly upregulated or downregulated in 

conjunction with fad (8, 9, 11, 12). Genes from different S. aureus backgrounds were first 

aligned to the USA300 genome, and the frequency in which a given gene/protein was 

significantly upregulated or downregulated across the different studies was recorded. A 

more detailed breakdown of some of these genes represented in this figure can be found 

in Tables 3.1 and 3.2.   
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Table 3.1. Relative expression of fatty acid metabolism genes (mRNA) or proteins 

(Protein) in S. aureus from previous literature where fad expression was 

upregulated. Red indicates upregulation, blue indicates downregulation, and black 

indicates genes/proteins were not significantly different than controls. 

Gene 

Name 
Locus Tag1 

Bronchial 

#1 

(Protein)2 

Stationary 

 

 (Protein)3 

Bronchial 

#2 

(Protein)4 

Liver  

 

(mRNA)5 

∆ccpA 

 

 (mRNA)6 

β-oxidation Metabolic Pathway 

fadA SAUSA300_0225 32.67 49.41 3.05 6.20 7.45 

fadB SAUSA300_0226 47.18 27.52 3.32 5.10 7.29 

fadE SAUSA300_0227 21.41 26.05 3.20 5.18 7.93 

fadD SAUSA300_0228 8.40 20.18 2.85 3.25 5.07 

fadX SAUSA300_0229 121.94 0.00 2.89 2.22 4.06 

Other Fatty Acid Metabolism Pathways 

fakA SAUSA300_1119 -1.15 -1.64 0 -2.66 0 

fakB1 SAUSA300_0733 0 0 0 -2.41 0 

fakB2 SAUSA300_1318 1.13 1.99 0 -2.47 0 

ohyA SAUSA300_0108 0 0 0 1.28 0 

1 Data was collected from a variety of S. aureus backgrounds, but aligned to the USA300 

genome in order to summarize the data effectively 
2 S. aureus proteins significantly regulated when internalized by human bronchial 

epithelial cells compared to bacteria pre-infection (9) 
3 S. aureus proteins significantly regulated in stationary growth phase compared to 

exponential growth phase (8) 
4 S. aureus proteins significantly regulated when internalized by human bronchial 

epithelial cells compared to non-adherent control (8) 
5 S. aureus genes significantly regulated in a murine liver infection following tail vein 

infection compared to TSB grown controls (11) 
6 S. aureus genes significantly regulated in a ccpA deletion mutant compared to wildtype 

control (12) 
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Table 3.2. Relative expression of metabolism genes (mRNA) or proteins (Protein) in 

S. aureus from previous literature where fad expression was upregulated. Red 

indicates upregulation, blue indicates downregulation, and black indicates genes/proteins 

were not significantly different than controls. 

Gene Name Locus Tag1 

Bronchial  

#1  

(Protein)2 

Stationary 

 

(Protein)3 

Bronchial  

#2  

(Protein)4 

Liver 

 

(mRNA)5 

∆ccpA 

 

(mRNA)6 

Tricarboxylic Acid Cycle 

pyc SAUSA300_1014 1.83 2.60 0.00 3.30 0.00 

sdhC SAUSA300_1046 0.00 0.00 0.00 2.60 0.00 

sdhA SAUSA300_1047 4.41 9.43 1.96 7.29 0.00 

sdhB SAUSA300_1048 3.58 7.26 1.65 12.00 0.00 

sucC SAUSA300_1138 2.41 7.07 1.79 3.08 2.51 

sucD SAUSA300_1139 2.69 6.80 1.69 4.63 3.51 

acnA SAUSA300_1246 1.23 5.18 1.56 3.46 0.00 

sucB SAUSA300_1305 2.17 10.70 1.92 14.46 3.11 

sucA SAUSA300_1306 4.76 8.24 1.77 11.97 2.59 

icd SAUSA300_1640 3.81 8.03 2.41 28.94 3.42 

gltA SAUSA300_1641 112.99 5.24 0.00 21.58 3.00 

fumC SAUSA300_1801 2.89 6.21 1.54 3.00 0.00 

mqo SAUSA300_2312 1.64 9.56 1.85 4.30 0.00 

Glycolysis 

NA SAUSA300_0375 0.00 0.00 0.00 -2.20 0.00 

gapA SAUSA300_0756 -1.33 -1.75 0.00 1.29 0.00 

pgk SAUSA300_0757 -1.34 0.00 0.00 1.17 0.00 

gpmI SAUSA300_0759 -2.17 0.00 0.00 1.06 0.00 

eno SAUSA300_0760 1.12 0.00 0.00 1.51 0.00 

pgi SAUSA300_0865 1.30 0.00 -1.72 -1.22 0.00 

gapB SAUSA300_1633 31.12 5.69 -1.30 7.38 0.00 

pyk SAUSA300_1644 1.01 0.00 0.00 -1.03 0.00 
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pfkA SAUSA300_1645 -1.23 0.00 -1.59 -1.90 0.00 

fba SAUSA300_2079 1.18 0.00 0.00 -1.52 0.00 

pgcA SAUSA300_2433 2.06 2.60 -1.62 -1.11 0.00 

1 Data was collected from a variety of S. aureus backgrounds, but aligned to the USA300 

genome in order to summarize the data effectively 
2 S. aureus proteins significantly regulated when internalized by human bronchial 

epithelial cells compared to bacteria pre-infection (9) 
3 S. aureus proteins significantly regulated in stationary growth phase compared to 

exponential growth phase (8) 
4 S. aureus proteins significantly regulated when internalized by human bronchial 

epithelial cells compared to non-adherent control (8) 
5 S. aureus genes significantly regulated in a murine liver infection following tail vein 

infection compared to TSB grown controls (11) 
6 S. aureus genes significantly regulated in a ccpA deletion mutant compared to wildtype 

control (12) 
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3.1.3 Bioinformatic analysis of the fadXDEBA genes in S. aureus 

As previously mentioned, S. aureus possesses putative β-oxidation genes orthologous to 

those found in E. coli (Table 3.3, Figure 3.3). While more complex, with a variety of 

redundant proteins, orthologs for β-oxidation genes in the Gram-positive B. subtilis can 

also be determined (Table 3.4, Figure 3.3). However, although S. aureus possesses this 

putative β-oxidation system, there are a variety of unique differences from the systems in 

E. coli and B. subtilis. For example, rather than the β-oxidation genes being distributed 

throughout the genome, the genes are clustered into a single locus, fadXDEBA (Figure 

3.3). Additionally, in both E. coli and B. subtilis, regulation of genes distributed across 

the genome is coordinated by a transcriptional regulator, FadR; however, in S. aureus, 

there is no ortholog to FadR (Table 3.3 and 3.4). Together, the unique clustering of fad 

genes into a single locus and lack of a conventional FadR regulator indicates a unique 

regulatory method for expression of the fad genes in S. aureus, that will be elaborated on 

in Section 3.4.9. 

Additionally, there is a mistake in the annotation of the fad genes in S. aureus. In E. coli, 

and most β-oxidation pathways in other bacteria, FadD refers to the long chain fatty acyl-

CoA ligase whereas FadE refers to the acyl-CoA dehydrogenase. In S. aureus, the 

annotation for these two genes has been switched. For consistency with the established 

literature, I will be using the nomenclature of the E. coli genes to describe the system in 

S. aureus for the remainder of this thesis.  

Another unique aspect of the fad genes in S. aureus is the presence of the short chain 

acyl-CoA transferase, FadX, being clustered with the canonical β-oxidation pathway, 

FadDEBA. Like its ortholog YdiF in E. coli, FadX plays a role in metabolizing short 

chain (C2–C4) fatty acids (10, 13). This contrasts β-oxidation pathways which 

specifically respond to longer chain (greater than C8) fatty acids (5, 14). The unique 

clustering of these two systems in S. aureus further establishes the regulation and 

function of these fad genes may vary from the established system in E. coli. This is 

further supported by no short chain acyl-CoA transferase orthologs being found in B. 

subtilis (Table 3.4), indicating FadX is likely an accessory protein in S. aureus, and not 
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required for standard β-oxidation function. This theory is further supported and 

elaborated on in Section 3.4.6.  
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Table 3.3. Genetic homology and function of fatty acid degradation (fad) genes in 

Staphylococcus aureus and Escherichia coli responsible for β-oxidation.1 

S. aureus 2 E. coli 2 Function 
Query 3 

Coverage 

Percent  

Identity 

FadX (525) YdiF (531) Short chain acyl-CoA transferase 89% 35.06% 

FadD (501) FadD (561) Long chain fatty acyl-CoA ligase 92% 27.81% 

FadE (403) FadE (814) Acyl-CoA dehydrogenase 37% 26.93% 

FadB (753) 

 

FadB (729) 3-hydroxyacyl-CoA dehydrogenase, 

Enoyl-CoA hydratase 

58% 32.34% 

FadA (394) FadA (387) Acetyl-CoA acyltransferase 100% 42.32% 

No 

Ortholog 

FadR (239) GntR-family transcriptional regulator 

of fatty acid metabolism 

- - 

1 The identification of fad genes in S. aureus was based on similarities in the amino acid 

sequence and domain composition with the β-oxidation proteins in E. coli; however, 

identification in this manner does not necessarily imply an evolutionary relationship 
2 Numbers refer to amino acid size for each protein 
3 Query coverage refers to the percentage of the query sequence (E. coli protein) 

overlapped by the subject sequence (S. aureus protein) 
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Table 3.4. Genetic homology and function of fatty acid degradation (fad) genes in 

Staphylococcus aureus and Bacillus subtilis responsible for β-oxidation.1 

S. aureus 2 B. subtilis 2 Function 
Query 3 

Coverage 

Percent  

Identity 

FadX (525) 
No 

Ortholog 
Short chain acyl-CoA transferase - - 

FadD (501) 

LcfA (560) Long chain fatty acid-CoA ligase 90% 29.41% 

LcfB (530) Long chain fatty acid-CoA ligase 95% 31.36% 

FadE (403) FadE (594) Acyl-CoA dehydrogenase 52% 29.58% 

FadB (753) 

FadN (789) 
3-hydroxyacyl-CoA dehydrogenase, 

Enoyl-CoA hydratase 
99% 33.58% 

FadB (258) Enoyl-CoA hydratase 46% 30.95% 

FadA (394) FadA (391) Acetyl-CoA acyltransferase 100% 52.02% 

No 

Ortholog 
FadR (194) 

TetR-family transcriptional regulator 

of fatty acid metabolism 
- - 

1 The identification of fad genes in S. aureus was based on similarities in the amino acid 

sequence and domain composition with the β-oxidation proteins in B. subtilis; however, 

identification in this manner does not necessarily imply an evolutionary relationship 
2 Numbers refer to amino acid size for each protein 
3 Query coverage refers to the percentage of the query sequence (B. subtilis protein) 

overlapped by the subject sequence (S. aureus protein) 
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Figure 3.3. Genomic arrangement of β-oxidation genes in S. aureus, E. coli, and B. 

subtilis. Base pairs (bp) or kilobases (kb) between genes are annotated. Colouring 

indicates orthologous proteins, with purple representing short chain acyl-CoA 

transferases, red representing long chain fatty acid-CoA ligases, orange representing acyl-

CoA dehydrogenases, green representing 3-hydroxyacyl-CoA dehydrogenases/enoyl-

CoA hydratases, blue representing acetyl-CoA acyltransferases, and grey representing 

transcriptional regulators of β-oxidation metabolism. Asterisks denote misannotation in 

the S. aureus genome, where fadD and fadE are swapped. This figure, along with the rest 

of this thesis, use the gene names based on homology to E. coli genes, as shown in Table 

3.3. 
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While orthologs can be established between S. aureus and E. coli or based on sequence 

similarity, there is still a large amount of sequence variation between these proteins 

(Table 3.3). Therefore, we wanted to confirm the proteins in S. aureus structurally 

resembled their counterparts by aligning the AlphaFold predicted protein structures of 

FadX (YdiF in E. coli), FadD, FadE, FadB, and FadA between S. aureus and E. coli, and 

saw an incredibly high level of homology (Appendix A–F). While the alignment for 

FadX, FadD, and FadA are indisputable between S. aureus and E. coli, FadE and FadB 

show some variation (Appendix A–F).  

The acyl-CoA dehydrogenase FadE in E. coli is approximately twice the size of its 

counterpart in S. aureus, and possesses two additional and distinct domains (Figure 3.4). 

FadE in E. coli is predicted to be membrane bound, and as such, the N-terminus of the 

protein contains a signal peptide and two transmembrane domains, which is not the case 

for FadE in S. aureus (Figure 3.4). Furthermore, FadE in E. coli contains an additional C-

terminal domain which is functionally uncharacterized, but is found in various other 

prokaryotic acyl-CoA dehydrogenases (Figure 3.4). However, the central core of both 

FadE proteins are conserved both functionally and structurally, implying both maintain a 

similar function overall (Figure 3.4, Appendix C). 

The 3-hydroxyacyl-CoA dehydrogenase/enoyl-CoA hydratase FadB also differs slightly 

between E.coli and S. aureus. These enzymes possess dual functions, converting a trans-

enoyl acyl-CoA to a hydroxy acyl-CoA through the 3-hydroxyacyl-CoA dehydrogenase 

domain of the protein, and then converting the hydroxy acyl-CoA to a β-keto acyl-CoA 

through the enoyl-CoA hydratase domain of the protein. While both domains and 

subsequent functions are conserved in FadB of E. coli and S. aureus, the arrangement has 

been flipped (Figure 3.5), causing a reduced homology result and sequence coverage 

(Table 3.3), as well as an inability to structurally align both protein domains at the same 

time (Appendix D and E). However, when aligned separately, both domains have a high 

level of structural similarity (Appendix D and E). 

Together, these findings show that the fadDEBA genes in S. aureus should be sufficient 

to allow for β-oxidation of exogenous fatty acids. Therefore, we decided to further 
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investigate the function of fadXDEBA in S. aureus, and the role these genes play in 

metabolism of exogenous fatty acids.  
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Figure 3.4. Predicted protein domains of the acyl-CoA dehydrogenase FadE in E. 

coli and S. aureus. Protein domains were determined using InterProScan, and the 

relevant domains were reported. The functionally uncharacterized acyl-CoA 

dehydrogenase C-terminal domain (G) is identified as Pfam PF09317, and is found in a 

variety of other acyl-CoA dehydrogenase proteins. However, the both domain 

architectures of FadE in E. coli and S. aureus are well conserved in acyl-CoA 

dehydrogenases of other bacteria. 
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Figure 3.5. Predicted protein domains of the FadB 3-hydroxyacyl-CoA 

dehydrogenase/enoyl-CoA hydratase in E. coli and S. aureus. Protein domains were 

determined using InterProScan, and the relevant domains were reported. The location of 

3-hydroxyacyl-CoA dehydrogenase and enoyl-CoA hydratase domains are flipped 

between E. coli and S. aureus. Furthermore, FadB in E. coli has an additional 3-

hydroxyacyl-CoA dehydrogenase C-terminal domain. Both the single C-terminal domain 

and the double C-terminal domains are common domain architectures for 3-hydroxyacyl-

CoA dehydrogenases in other bacteria. 
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3.2 Introduction 

Staphylococcus aureus is a Gram-positive opportunistic pathogen that asymptomatically 

colonizes the anterior nares in approximately 30% of the population (15), and among 

individuals who exhibit nasal carriage, it is also found on the skin where it is adapted to 

survive in the presence of a wide range of innate defense mechanisms, including acidic 

pH, cationic antimicrobial peptides (CAMPs), and antimicrobial unsaturated free fatty 

acids (FFA) (16–20). Although part of the normal skin microbiota, S. aureus also causes 

a broad spectrum of infections, including invasive soft tissue infections, endocarditis, 

osteomyelitis, and sepsis, due to the multitude of virulence factors at its disposal (21, 22). 

It is also well established that S. aureus isolates recovered from sites of infection are 

usually a genetic match to strains recovered from the same patient’s anterior nares (15, 

23), and individuals who are colonized by S. aureus have a significantly greater risk of 

developing blood stream infections than non-carriers when hospitalized (23–25). 

Therefore, understanding the mechanisms by which S. aureus circumvents the innate 

immune mechanisms of the skin and anterior nares is of paramount importance.  

The response of S. aureus to host-derived FFA are of particular interest, as these 

molecules constitute both a threat to, and opportunity for, its growth. Unsaturated FFA 

(uFFA) are prevalent on human skin (26, 27) and the anterior nares (28), the primary sites 

of S. aureus colonization, as well as in abscesses (28–30), a common form of infection 

caused by S. aureus. These antimicrobial uFFA can disrupt the phospholipid membrane 

of S. aureus, causing leakage of cellular components (1, 31), or produce reactive oxygen 

species through lipid peroxidation to intoxicate the bacteria (32). However, exogenous 

uFFA can also represent a potential nutrient if S. aureus is able to overcome their 

toxicity, and human skin also provides a rich source of less toxic saturated FFA (33) that 

could also provide a metabolic benefit. 

S. aureus has a range of mechanisms that confer resistance to antimicrobial uFFA. Cell 

wall teichoic acid can function as a barrier to entry of uFFA and can also limit the 

leakage of cellular components consequent to membrane damage induced by uFFA (1, 

34). Iron surface determinant A (IsdA) also functions as a hydrophilic shield to restrict 

entry of uFFA (35), while fatty acids that penetrate the membrane can be eliminated by 
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the FarE efflux pump (2, 36), or detoxified through OhyA-dependent hydroxylation (37). 

Growth at acidic pH also promotes enhanced resistance of S. aureus to antimicrobial 

uFFA through a mechanism that is dependent on the GraS sensor kinase, and GraS-

dependent gene MprF (18). Exogenous uFFA can also be detoxified by incorporation into 

phospholipid, through the fatty acid kinase FakA dependent pathway, which may reduce 

the energetic cost of de novo phospholipid synthesis during growth in vivo (3, 38).  

Currently, incorporation of uFFA and saturated FFA into phospholipid is thought to be 

the only option for S. aureus to metabolize host-derived fatty acids, since previous 

studies revealed it to be incapable of metabolizing fatty acids through β-oxidation (3, 4). 

However, genome sequence data has revealed that S. aureus contains the fadDEBA locus 

comprising the minimal complement of genes that are necessary and sufficient for 

degradation of fatty acids through the canonical β-oxidation pathway in other bacteria 

(6). Notably, fad genes were highly expressed when S. aureus was internalized by 

cultured human bronchial epithelial cells that provide lipid needed for lung surfactant (8, 

9), and low human serum antibody titre to FadB was identified as one of a series of 

biomarkers that was discriminatory in patients with early S. aureus bloodstream infection 

(39). Therefore, we hypothesized that the propensity of S. aureus to colonize sites that are 

rich in host-derived fatty acids reflect an ability to thrive in this environmental niche not 

only through the established detoxification mechanisms, but also through expression of 

fad genes. To gain a better understanding of the role fad plays in S. aureus growth, we 

conducted experiments using the endemic strain of community acquired methicillin-

resistant S. aureus (CA-MRSA), USA300, known for its high virulence and rapid 

community transmission (40, 41). We aimed to elucidate the conditions which activate 

expression of these genes and assess their impact on growth and virulence of S. aureus.  

3.3 Material and Methods 

3.3.1 Bacterial Strains and Growth Conditions  

Bacteria and plasmids used or constructed in this study are listed in Table 3.5. Bacterial 

strains were maintained as frozen stocks (-80 °C) in 20% glycerol and were streaked on 

Tryptic soy agar (TSA) when required. Tryptic soy broth (TSB) containing 2.5 g/L 
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glucose (∼13.9 mM) or TSB without glucose were supplied by Bacto. TSB or TSA was 

supplemented, when needed, with 10 μg/mL erythromycin or chloramphenicol for 

propagation of strains bearing resistance markers. Where indicated, TSB or TSA was 

supplemented by addition of 0.1 M morpholineethanesulfonic acid (MES) buffer (Bio 

Can Scientific) and adjusted to pH 5.5 with HCl, or 0.1 M Bis-tris (Sigma) and adjusted 

to pH 7.4 with NaOH, prior to autoclaving. To supplement media with saturated fatty 

acids, a 100 mM stock concentration of lauric, myristic, palmitic and stearic acid, or a 75 

mM stock concentration of arachidic and behenic acid, was first prepared in 70% ethanol 

and then diluted into TSB 0.1% dimethyl sulfoxide (DMSO) to achieve the desired 

concentration of fatty acids. To supplement media with unsaturated linoleic acid, a 10 

mM stock concentration was first prepared in TSB containing 0.1% DMSO and then 

diluted into TSB to achieve the desired concentration of fatty acids. Myristic acid 

(tetradecanoic acid; 14:0) was purchased from Sigma, palmitic acid (hexadecanoic acid; 

16:0) was purchased from Cayman Chemicals, stearic acid (octadecanoic acid; 18:0) was 

purchased from Sigma, arachidic acid (icosanoic acid; 20:0) was purchased from Acros 

Organics, behenic acid (docosanoic acid; 22:0) was purchased from TCI Chemicals, 

linoleic acid (cis, cis-9,12-octadecadienoic acid; 18∶2) was purchased from Sigma, and 

methyl-palmitate was purchased from Sigma. E. coli strains were grown on LB agar or 

LB broth supplemented with 100 μg/mL ampicillin when needed. Unless otherwise 

stated, all cultures were grown at 37°C, and liquid cultures were incubated on an orbital 

shaking platform at 220 rpm. For all experiments, a minimum of at least two biological 

replicates were used to confirm findings. 
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Table 3.5. Strains and plasmids used in Chapter 3. 

Strain or Plasmid:  Description: Citation: 

S. aureus: 

 USA300 LAC Community associated MRSA; wild type strain 

cured of resistance plasmids 

(42) 

 RN4220 rK
− mK

+; capable of accepting foreign DNA (43) 

 USA300∆fakA USA300 with markerless fakA deletion (2) 

 USA300∆fad USA300 with markerless fadXEDBA deletion This Study 

 USA300∆graS USA300 with markerless graS deletion (44) 

 USA300 fadX::Tn Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying fadX::φNΣ; 

Ermr  

(45, 46) 

 USA300 fadD::Tn Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying fadD::φNΣ; 

Ermr 

(45, 46) 

 USA300 fadE::Tn Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying fadE::φNΣ; 

Ermr 

(45, 46) 

 USA300 fadB::Tn Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying fadB::φNΣ; 

Ermr 

(45, 46) 

 USA300 fadA::Tn Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying fadA::φNΣ; 

Ermr 

(45, 46) 

 USA300 prsW::Tn Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying prsW::φNΣ; 

Ermr 

(45, 46) 

 USA300 sigS::Tn Derivative of S. aureus USA300 LAC from the 

Nebraska transposon library carrying sigS::φNΣ; 

Ermr 

(45, 46) 
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E. coli: 

 DH5α 

 

F− Φ80lacZΔM15 recA1 endA1 gyrA96 thi-1 

hsdR17 (rK
−mK+) supE44 relA1 deoR 

Δ(lacZYAargF)U169 phoA 

Invitrogen 

 

Plasmids: 

  

 pGYLux E. coli-S. aureus shuttle vector harboring 

promoterless luxABCDE operon; Ampr Cmr 

(47) 

 pGYfadX::lux pGYLux with the promoter of fadX cloned 

upstream of luxABCDE 

This Study 

 pKOR-1 E. coli/S. aureus shuttle vector for creation of 

unmarked gene deletions in staphylococcal spp.; 

Ampr Cmr 

(48) 

 pKOR∆fad pKOR with regions of homology to delete 

Promoterless bioluminescent reporter plasmid 

encoding luxABCDE; Ampr Cmr 

This Study 

 pLI50 E. coli-S. aureus shuttle vector; Ampr Cmr (49) 

 pLIfadXEDBA pLI50 with fadXEDBA expressed from native 

promoters 

 

This Study 
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3.3.2 Strain and Plasmid Construction 

Genetic manipulation of S. aureus was conducted according to established guidelines and 

as described in previous work (2, 18, 42, 43). All recombinant plasmids were initially 

constructed in E. coli DH5α. The integrity of plasmids was confirmed through nucleotide 

sequencing prior to electroporation into USA300 or isogenic derivatives, using S. aureus 

RN4220 as an intermediate host. Primer sequences used for PCR amplification of gene 

segments for plasmid construction or site-directed mutagenesis of cloned genes are 

defined in Table 3.6 and are based on the reference genome sequence of USA300 

FPR3757 (50). Integrity of all the vector constructs were confirmed through DNA 

sequencing. 

USA300∆fad containing a markerless deletion of fadXDEBA (SAUSA300_0229, _0228, 

_0227, _0226, _0225) was generated using pKOR-1 as previously described (48). 

Briefly, ~ 1kb amplicons that flank the fadXDEBA locus were constructed through PCR, 

using fad-del-UP-attB1 and fad-del-UP-SacII for the upstream segment, and fad-del-DW-

SacII and fad-del-DW-attB2 for the downstream segment. The PCR products were 

digested with SacII, ligated together with T4 DNA ligase, and incorporated in pKOR-1 

through use of BP Clonase II (Invitrogen). The resulting pKOR∆fad was transformed into 

USA300 and then subjected to a two-step temperature shift and antisense 

counterselection, as previously described (48), generating USA300∆fad. 

The plasmid pGYlux was used to measure expression of the fadX gene (47), and pLI50 

was used for complementation of genes under control of their natural promoters (49). 

Primers fadX-pro-UP and fadX-pro-DW were used to amplify the prompter region of 

fadX, amplified from genomic USA300 LAC DNA. The resulting amplicon, and the 

pGYlux plasmid, were digested with BamHI-HF and SalI-HF, and ligated together with 

T4 DNA ligase, to construct pGYfadX::lux. pLIfadXDEBA was constructed using 

fadXDEBA-comp-UP and fadXDEBA-comp-DW primers. The resulting amplicon and 

pLI50 were digested with SacII-HF and ligated with T4 DNA ligase.  
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Table 3.6. Oligonucleotides used in Chapter 3.  

Oligonucleotide: Description: 

fad-del-UP-attB1 GGGGACAAGTTTGTACAAAAAAGCAGGCTAGTTAAA

CCTCAAGCAACTG 

fad-del-UP-SacII GGACCTCCGCGGTATGTGCGTTAGAATGGTTG 

fad-del-DW-SacII GGACCTCCGCGGAGTCACCTCCATCACATTT 

fad-del-DW-attB2 GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCCAAT

AAAGAACATGATA 

fad-del-UP AGAGGTTAAAACTACGGCTG 

fad-del-DW AATGCCATGTAAAACAACGG 

fadX-pro-UP TTTGGATCCCTGCTTCGTTTTTAGTATGCGG 

fadX-pro-DW TTTGTCGACGCGGGTAAGTTGGCTACAGC 

fadXEDBA-comp-UP TTTGAGCTCAACGGAAATAACCACCATCC 

fadXEDBA-comp-DW TTTGAGCTCGTTTCATGCGCTTTAGCTTC 

* Underlining indicates restriction cut sites 
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3.3.3 Protein Orthology Analysis  

A BLASTp analysis was conducted using the protein sequences for FadD, FadE, FadB, 

and FadA from Staphylococcus aureus subsp. aureus USA300_FPR3757 and 

Escherichia coli str. K-12 substr. MG1655. For proteins with no obvious ortholog, FadX 

of S. aureus and FadR in E. coli, DELTA-BLAST was first conducted to identify 

potential orthologs. 

3.3.4 FadXDEBA Protein Homology in Staphylococci spp.  

Homology of the different Fad proteins amongst Staphylococcus spp. was determined 

using NCBI tBLASTn. The protein sequences of FadX, FadD, FadE, FadB, FadA of S. 

aureus (NC_007795.1) were aligned to various other Staphylococcus spp. with the 

respective accession numbers outlined. The percent identity of the highest hit was 

recorded. The threshold for clustering of fad genes was set at having at least 3 of the 

genes occurring in tandem. The phylogenetic tree was derived from Madhaiyan et. al. 

2020 (51).  

3.3.5 Bioluminescence Assay Conditions  

Reporter assays for monitoring fadX::lux activity were conducted as previously described 

(44). Briefly, overnight cultures S. aureus USA300 or isogenic deletion mutants 

harbouring the pGYfadX::lux plasmid, or the empty pGYlux vector with no promoter 

inserted, by inoculating 3 ml of TSB in a 13-ml polypropylene tube containing TSB with 

chloramphenicol for 16 hours. After determining the optical density at 600 nm (OD600), 

aliquots were sub-cultures into 125-ml-capacity flasks containing 25 ml of TSB with or 

without glucose, to achieve an initial OD600 of 0.01. At hourly intervals, OD600 was 

measured using a spectrophotometer, and quadruplicate luminescence readings (relative 

light units, RLU) from each flask were taken on a Synergy H4 temperature-controlled 

microplate reader (BioTek Instruments). RLU readings were done with 200 µL of 

bacterial culture spiked with 20 µL of decanal to maximize luminescence. The corrected 

RLU was calculated as the mean of these measurements minus the RLU for each strain 

carrying empty pGYlux cultured under identical conditions. Where specified, bacteria 

were alternately sub-cultured into 200 μL of medium in 96-well flat-bottom assay plates 
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(Fisher) to an OD600 of 0.01, and both growth and luminescence were monitored at 37°C 

using a Synergy H4 temperature-controlled microplate reader (BioTek Instruments) with 

measurement of OD600 every 20 min for 18 to 24 h. Under this assay format, decanal was 

not used to maximize luminescence readings.  

3.3.6 Growth and Viability Assays 

For growth analyses, cultures of S. aureus were prepared by inoculating 3 mL of TSB in a 

13-mL polypropylene tube containing antibiotic as required and grown overnight for 

16 h. After determining the OD600, aliquots were sub-cultured into 125-mL-capacity 

flasks containing 25 mL of TSB, or TSB modified by addition fatty acids, to achieve an 

initial OD600 of 0.01. Growth (OD600) was monitored at hourly intervals, or after 24 

hours. For viability assays, S. aureus cultures were grown as described above, but 

aliquots were taken at the time points OD600 was measured, and serially diluted from 10-2 

to 10-8. After serial dilution, quadruplicate 10 µL aliquots were plated on TSA, and 

bacteria were enumerated after growth for ~16 h at 37°C. All cultures were grown in 

triplicate unless otherwise stated.  

3.3.7 SDS-PAGE and Zymography  

For SDS-PAGE analysis of secreted protein profiles, S. aureus cultures were grown as 

outlined for growth and viability assays in TSB without glucose buffered at a pH of 7.3 

(0.1M Bis-tris adjusted to pH 7.3 with NaOH) or 5.5 (0.1 M MES adjusted to pH 5.5 with 

HCl), with and without exogenous palmitic acid, for 24 h. Proteins in cell-free culture 

supernatant were precipitated by mixing with equal volumes of ice-cold 20% 

trichloroacetic acid (TCA), washed in ice-cold 70% ethanol, and then air dried prior to 

dissolving in SDS-PAGE reducing buffer as described previously (18, 52). Protein 

equivalent to 2.5 OD600 units of culture supernatant was then loaded for protein 

separation on a 10% acrylamide gel using the Laemmli buffer system (53), and after 

electrophoresis, proteins were stained using Coomassie blue. For detection of protease 

activity through zymography, the resolving gel was copolymerized with 1 mg/mL casein 

and protein equivalent to 0.075 OD600 units was applied to each lane. Details on sample 
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processing, electrophoresis, and zymogram development are as described previously (18, 

54). 

3.3.8 Analysis of Phospholipid Composition  

Bacterial lipids were extracted following the Bligh and Dyer method as previously 

described (55, 56). Briefly, triplicate cultures of bacteria were grown for 4 h, with a bolus 

of palmitic acid added at 2 h to achieve a concentration of 500 µM. A control with no 

palmitic acid added was also prepared. Approximately 1.5108 CFUs of culture was 

pelleted, and washed with 10 mL of PBS three times. The washed samples were 

resuspended in 1.0 ml of ddH2O and homogenized with three cycles of bead beating with 

a FastPrep Speed of 6.0 for 30 seconds, allowing samples to sit on ice for 15 minutes in 

between cycles. Four ml of chilled 1:2 chloroform/methanol (v/v) was added to samples, 

and intermittently vortexed for 5 minutes. An additional 1.0 mL of water and 1.0 mL of 

chloroform were added to induce phase separation, and samples were vortexed for 20 

seconds. The samples were then centrifuged at 2000 rpm for 10 minutes at 4°C, and the 

lower layer containing the lipids was collected and dried using nitrogen gas at 30°C. 

Lipid samples were analyzed at the Wayne State Lipidomics Core facility using Liquid 

chromatography–mass spectrometry. PG 15:0/18:1-d5 (Avanti:791640; 15:0-18:1-d7-PG, 

1-pentadecanoyl-2-oleoyl(d7)-sn-glycero-3-[phospho-rac-(1'-glycerol)]) was used as the 

internal standard during analysis. 

3.3.9 Murine Abscess Infection Model  

Inbred female and male C57BL/6J mice aged between 8–12 weeks were purchased from 

the Jackson Laboratory (USA). Overnight cultures of S. aureus were inoculated 1:50 into 

fresh TSB broth and cultured for 4 h (to OD600 ~ 4) with shaking at 37°C. Staphylococci 

were harvested by centrifugation, washed, and suspended in sterile HBSS to obtain 

desired inoculum. Prior to inoculation the animals were anesthetized with isoflurane and 

50 μL of dose 5107 (high dose) or 1107 CFU (low dose) was injected intradermally 

into each lower flank, in a shaved area of skin on the back of each mouse. Infected 

animals were monitored for health status, weight, and lesion development over a period 

of 3 days. The area of each skin lesion was measured each day. Animals were sacrificed 
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at day 3 and bacterial tissue load was determined from each separate excised skin lesion 

by homogenizing the tissue and enumerating the bacteria by serial dilution and plating 

onto mannitol salt agar (MSA). 

3.3.10 Ethics Statement 

All mouse experiments were conducted in accordance with the Canadian Council on 

Animal Care Guide to the Care and Use of Experimental Animals. The animal use 

protocol number 2020–061 was approved by the Animal Use Subcommittee at the 

University of Western Ontario (London, ON, Canada). 

3.3.11 Data Analysis 

GraphPad Prism (version 9.4.1) was used to create all graphs and perform statistical 

analyses in this study. In all experiments, unless otherwise stated, triplicate cultures were 

used and data was reported on graphs as means ± standard errors (SEs). Unpaired one-

tailed t tests, one-way analysis of variance (ANOVA) with multiple comparisons, or two-

way ANOVA with multiple comparisons was used to test statistical significance 

depending on the nature of the experiment. Significance was defined as stated in the 

figure legends. 

3.4 Results 

3.4.1 Genes required for degradative β-oxidation of fatty acids in 

E. coli are conserved in S. aureus 

The canonical pathway for metabolism of long chain fatty acids through β-oxidation, as 

first elaborated in E. coli, is conserved in a variety of both Gram-positive and Gram-

negative bacteria. In most bacteria, including the well-established E. coli system (6), fad 

genes are dispersed throughout the genome in a variety of transcriptional units that are 

coordinately regulated by a GntR family regulator, FadR (Figure 3.6A). Degradation of 

fatty acids is initiated by FadD, forming a long chain acyl-CoA, that is then converted to 

trans-enoyl acyl-CoA, hydroxy acyl-CoA, and β-keto acyl-CoA by the consecutive 

actions of FadE and FadB (Figure 3.6B). In the final step catalyzed by FadA, acetyl-CoA 
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is released, and the remaining carbon chain is combined with CoA-SH to regenerate a 

shortened fatty acid that is subjected to additional cycles of β-oxidation (6).  

Orthologous genes in S. aureus occur in a single locus fadXDEBA (Fig. 3.6A). These 

gene products are matched to orthologous proteins in the β-oxidation pathway of E. coli 

in Figure 3.6B and Table 3.3. The first gene fadX is annotated as a putative short chain 

acyl-CoA transferase, orthologous to ydiF in E. coli (Figure 3.6A, Table 3.3). While not 

part of the canonical β-oxidation pathway which shows preferential activity towards 

long-chain fatty acids, YdiF is proposed to play a role in metabolism of short-chain (< 4 

carbon) fatty acids (13). Together, these findings suggest S. aureus has the capacity to 

metabolize long-chain fatty acids through the canonical FadDEBA pathway. This synteny 

is generally conserved across the Staphylococcus genus, although the genes are absent in 

some well-studied staphylococci such as S. lugdenensis and S. epidermidis (Figure 3.7).  

 

  



179 

 

 

Figure 3.6. Genetic layout and putative function of β-oxidation genes, fadXDEBA, in 

S. aureus USA300. Colouring represents homology between genes as determined in 

Table S1. (A) Genetic layout for the β-oxidation genes in S. aureus and E. coli. 

Nucleotide sequences indicate a putative cre-box in S. aureus for glucose repression, and 

base pair (bp) markers refer to the distance between adjacent genes. * indicates mis-

annotation in the genome of S. aureus, where fadE and fadD have been switched. Gene 

names used in this diagram and paper refer to homology to E. coli, rather than the 

annotation in the S. aureus genome. (B) Putative β-oxidation pathway in S. aureus based 

on homology to E. coli. Bioinformatic analysis indicates fadX is orthologous to the short 

chain acyl-CoA transferase ydiF in E. coli, which is not part of the canonical β-oxidation 

pathway.  
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Figure 3.7. Conservation of FadXDEBA proteins across Staphylococcal species. A 

tBLASTn analysis using the protein sequences from S. aureus was conducted, and the 

percent identity to other Staphylococcal species was reported. Phylogenetic relationship 

was adapted from Madhaiyan et. al. 2020 (51), based on 16S rRNA. The threshold to 

determine if each specie contains the fad locus required all base genes (fadD, fadE, fadB, 

and fadA) to be present, and these genes to be clustered together in the genome.  
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3.4.2 Expression of fadX is repressed by glucose and induced in 
response to palmitic acid and cellular metabolic status 

To initiate our studies, we constructed a transcriptional fadX::lux reporter, and assessed 

expression in USA300. When grown in flasks with standard TSB containing 2.5 g/L 

glucose (13.9 mM), fadX::lux activity was minimal over a 24h period (Figure 3.8A), 

while in the absence of glucose, expression peaked in the transition between exponential 

and stationary phase, followed by a more intense peak in stationary phase. Hereinafter, 

the designation of TSB refers to glucose free medium, and assays were conducted in 

microtitre plates to expedite expression assays unless otherwise specified. Activity from 

the fadX::lux reporter exhibited a dose dependent increase in response to exogenous 

palmitic acid (Figure 3.8B), whereas 250 µM of longer chain length fatty acids, stearic 

(C18), arachidic (C20) and behenic acid (C22), all failed to induce fadX (Figure 3.8C).  

To test for the influence of cellular metabolic status, we assessed fadX::lux activity in 

USA300∆fakA. Our rationale was two-fold. First, FakA phosphorylates exogenous fatty 

acids as the first step in their incorporation into phospholipid, and we reasoned that 

elimination of FakA would shift metabolism towards the fad pathway. Inactivation of 

fakA also promotes accumulation of cytoplasmic FFA (57), which could stimulate fadX 

expression. Indeed, fadX::lux activity in USA300∆fakA was enhanced > 4-fold relative to 

USA300 during growth in TSB, and expression in response to 250 µM palmitic acid was 

also more than 2-fold enhanced relative to USA300 (Figure 3.8C). The selectivity of 

induction was also altered, such that expression became responsive to stearic acid, and to 

a lesser extent arachidic acid, while behenic acid again had no effect. Cumulatively, these 

data reveal that fadX expression is repressed by glucose and selectively induced in 

response to palmitic acid, and that fadX is expressed at a higher level when S. aureus is 

not able to metabolize exogenous fatty acids through incorporation into phospholipid.   
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Figure 3.8. Influence of glucose, exogenous fatty acid, and genetic background on 

expression of fadX. Expression of fadX was measured as relative luminesce units (RLU) 

from a pGYfadX::lux construct in either USA300 (A and B) or USA300 and 

USA300ΔfakA (C). In panel A, cultures were grown in 25 mL of TSB or TSB + glucose 

in a 125 mL flask, while in B and C, cultures were grown in 200 µl of TSB in 96 well 

microtitre plates. (A) Influence of glucose on temporal expression of fadX in TSB. 

Cultures were inoculated to an initial optical density measured at 600 nm (OD600) of 0.01. 

Growth (OD600) and fadX expression (RLU/OD600) were assessed at hourly intervals, and 

each data point represents the mean ± SE of triplicate flasks. (B) Influence of exogenous 

palmitic acid on expression of fadX. Cultures were inoculated at an OD600 of 0.01 and 

grown for 24 hours in 200 µL of media, n=7. Growth (OD600) and fadX expression (RLU) 

were assessed every 20 minutes, and data was reported as the area under the RLU/OD600 

curve. Data are reported as mean ± SEM. (C) Influence of fatty acid chain length on 

expression of fadX in USA300 and USA300ΔfakA. Cultures were grown as in B. 

Statistical significance was measured using ordinary one-way (B) or two-way (C) 

ANOVA with Dunnett’s multiple comparisons test, comparing all samples to the 0 µM 

palmitic acid or no fatty acid conditions ** p < 0.01, *** p < 0.001, ns = not significant.  
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3.4.3 Exogenous palmitic acid promotes increased cell density 
(OD600) and protease expression in S. aureus 

Having shown that fadX is induced in response to exogenous palmitic acid, we next 

assessed whether this could benefit growth and production of secreted virulence factors. 

When grown in flasks, concentrations of palmitic acid > 50 µM all promoted increased 

cell density (OD600) of S. aureus USA300 (Figure 3.9A). Previously, we showed that 

growth in standard TSB containing glucose buffered at pH 5.5, a pH physiologically 

relevant to human skin, promoted production of secreted proteases (18). We therefore 

evaluated the profile of secreted proteins produced during growth in glucose free TSB, 

buffered at pH 7.4 or pH 5.5, to determine if exogenous palmitic acid could stimulate 

production of secreted protease. Although supplementation with 500 µM palmitic acid 

did not significantly alter the profile of secreted proteins in TSB pH 7.4, proteolytic 

activity corresponding to the SspA serine protease was uniquely detected in medium 

supplemented with palmitic acid (Figure 3.9B). This effect was more pronounced in TSB 

pH 5.5, where medium supplemented with palmitic acid exhibited more robust 

production of SspA compared to TSB alone (Figure 3.9B). To determine if the benefit to 

growth and protease production was fad dependent, we constructed a markerless 

∆fadXDEBA deletion, USA300∆fad. However, as detailed in the next section, exogenous 

palmitic acid was toxic to USA300∆fad, which did not allow for a meaningful 

comparison.  

 

  



184 

 

 

Figure 3.9. Palmitic acid improves growth and protease expression of USA300. (A) 

Triplicate flasks of 25mL TSB without glucose were supplemented with palmitic acid at 

the indicated concentration. Cultures were inoculated with bacteria, and growth (OD600) 

was measured after 24 hours. Data is reported as mean ± SEM. Statistical significance 

was measured using ordinary one-way ANOVA with Dunnett’s multiple comparisons 

test, comparing all samples to the 0 µM palmitic acid condition. *** p < 0.001, ns = not 

significant. (B) SDS-PAGE profile of secreted proteins (top panel) and zymogram for 

detection of SspA serine protease (bottom panel) in cultures supernatants of USA300 

after growth for 24 hours in TSB without glucose, buffered at pH 7.3 or pH 5.5, with or 

without 500 µM of palmitic acid (PA). Each sample was normalized using OD600, with 

each lane containing 2.5 or 0.025 OD600 units of supernatant for the TCA precipitation 

and zymography respectively.  
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3.4.4 Exogenous palmitic acid is toxic to USA300∆fad 

When growth of USA300 and USA300∆fad was compared in TSB with 100-, 250- or 

500 µM palmitic acid, USA300∆fad exhibited a progressive impairment of growth, 

whereas USA300 was not affected (Figure 3.10A). When cell viability was monitored, 

USA300 and USA300∆fad both exhibited a similar and slower increase in viability over 

the first 2 h in TSB + 500 µM PA compared to TSB alone, after which USA300 exhibited 

an exponential increase in viability equivalent to growth in TSB alone, whereas 

USA300∆fad exhibited a > 10-fold loss of viability over the same time frame (Figure 

3.10B). Consequently, exogenous palmitic acid is toxic to USA300∆fad. Since our 

expression data indicated that induction of fadX was specific to palmitic acid, we next 

assessed the ability of longer and shorter chain fatty acids to cause loss of viability during 

growth of USA300∆fad. Reflecting our expression data, palmitic acid caused the greatest 

impairment at approximately 10-fold (Figure 3.10C), while C18 stearic acid caused an 

approximate 2-fold impairment, and C20 arachidic acid caused no impairment. Myristic 

acid (C14) also caused a significant loss of viability (Figure 3.10C). Cumulatively, these 

data establish a critical role for fad genes in metabolizing palmitic acid.  
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Figure 3.10. Exogenous fatty acids with different chain lengths exhibit differential 

toxicity towards USA300∆fad. Triplicate flasks of TSB without glucose were 

supplemented with palmitic acid at the indicated concentration (A and B), myristic acid 

(C14) at a concentration of 250 µM, or palmitic (C16), stearic (C18), or arachidic acid 

(C20) at a concentration of 500 µM (C). (A and B) Growth (OD600) or viability 

(CFU/mL) were assessed at hourly intervals, and each data point represents the mean ± 

SE from triplicate flasks. Viability was measured by plating serial dilutions in triplicate 

technical replicates. (C) Growth (OD600) was measured at hourly intervals for 8 hours, 

and area under the OD600 curve (AUC-OD) was determined. AUC-OD of cultures grown 

with exogenous fatty acids was compared to the AUC-OD of cultures grown in TSB 

alone, and data was graphed as the -Log2 ratio of (AUC-OD fatty acid cultures)/(AUC-

OD TSB alone cultures). Each data point represents the mean ± SE from triplicate flasks. 

Statistical significance was measured using an unpaired one-tailed t-test, *** p < 0.001, 

ns = not significant.  
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3.4.5 USA300∆fad exhibits an altered ability to metabolize palmitic 
acid through incorporation into phospholipid 

Since growth of USA300∆fad was abruptly halted upon challenge with exogenous 

palmitic acid, we conducted experiments to determine if this could be correlated with 

altered membrane phospholipid composition. For this purpose, USA300 and 

USA300∆fad were grown in TSB for 2 hours, and then a bolus of 500 µM palmitic acid 

was added, followed by monitoring of growth and viability, and collection of cells after 

2h for analysis of phospholipid composition. As with our previous findings, addition of 

palmitic acid halted USA300∆fad growth, accompanied by loss of viability (Figure 3.11). 

Phosphatidylglycerol (PG) in S. aureus has only saturated fatty acids, where the sn-2 

position is exclusively C15, while the fatty acid at sn-1 ranges between C15 and C20 (3, 

4). In TSB alone, USA300 and USA300∆fad exhibited similar PG composition, and the 

major component was PG32:0 as previously reported (3, 58), which is comprised of C15 

at sn-2 and C17 at sn-1. This together with PG34:0, PG35:0 and PG33:0 which have C19, 

C20 and C18 fatty acids at sn-1 respectively, accounted for > 80% of the total PG (Figure 

3.12). When USA300 was grown in TSB + palmitic acid, the PG composition was 

significantly altered, as evident from the large reduction in PG32:0 and PG34:0, 

accompanied by a dramatic increase in PG33:0 and PG35:0 (Figure 3.12). This was 

consistent with previous work documenting a peculiarity in S. aureus metabolism of 

exogenous palmitic acid, whereby the PlsY acyltransferase responsible for incorporation 

of acyl-phosphate fatty acids into PG does not function effectively with C16, which 

necessitates its transfer to an acyl carrier protein (ACP). The ACP-C16 then enters the 

fatty acid synthase (FASII) cycle where it is extended to C18 and C20, which are then 

incorporated into PG to account for the increase in PG33:0 and PG35:0 (1).  

Although the differences were not dramatic, PG recovered from USA300∆fad after 

exposure to palmitic acid had significantly less PG35:0, a trend for reduced PG33:0, and 

a significant increase in PG31:0 relative to USA300 (Figure 3.12). This latter product 

was the least abundant PG species during growth in TSB alone, and its increase upon 

exposure to palmitic acid reflects direct incorporation of C16 into PG. Consequently, in 
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the absence of fad gene function, the ability of S. aureus to metabolize exogenous 

palmitic acid through incorporation into PG is altered.  
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Figure 3.11. Growth and viability of USA300 and USA300∆fad in cultures prepared 

for membrane lipid analysis. Triplicate flasks of 25 mL TSB without glucose were 

inoculated to an initial optical density measured at 600 nm (OD600) of 0.01. After 2 hours 

of growth, a bolus of 500 µM palmitic acid was added to cultures. (A) Growth (OD600) 

and (B) viability (CFU/mL) were assessed at hourly intervals, and each data point 

represents the mean ± SE. Viability was measured by plating serial dilutions in triplicate 

technical replicates. 
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Figure 3.12. Exogenous palmitic acid is differentially incorporated into the 

phospholipid membrane of USA300 and USA300∆fad. USA300 and USA300∆fad 

were grown in triplicate cultures to an OD600 of 0.15 and a bolus of 500 µM palmitic acid 

was added as outlined in Figure 3.11. Bacteria were then grown for another 2 hours 

before samples were collected. Controls with no palmitic acid bolus were also conducted 

for both strains. Samples were homogenized, and lipids were extracted and analyzed 

through Liquid chromatography–mass spectrometry at the Wayne State Lipidomics Core 

Facility. Results are presented as mean ± SEM of the percentage of total PG each lipid 

species represents. Statistical significance was measured using Two-Way ANOVA with 

Tukey’s multiple comparisons test, ** p<0.01, *** p<0.001, *** p<0.001.  
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3.4.6 Confirming the role of fad in ablating the toxicity of palmitic 
acid 

To validate the role of fad genes in metabolism of palmitic acid, the entire fadXDEBA 

locus with endogenous promoters was cloned in pLI50 to complement USA300∆fad. 

However, at 500 µM palmitic acid, growth wildtype USA300 containing pLI50 alone 

was severely impaired (Figure 3.13A). However, we were able to partially circumvent 

this using a less toxic derivative of palmitic acid, methyl-palmitate, which could be 

supplemented at up to 2500 µM with minimal growth impairment to S. aureus containing 

plasmids (Figure 3.13B). Methyl-palmitate also induced expression of fadX::lux, but 

required 10-fold higher concentrations relative to palmitic acid to obtain similar levels of 

induction (Figure 3.14A). Since methyl-palmitate is less toxic than palmitic acid, there 

was less impairment to USA300∆fad growth; nevertheless, at 2500 µM methyl-palmitate, 

growth of USA300∆fad was impaired relative to USA300, and this was ameliorated with 

pLIfadXDEBA (Figure 3.14B).  

To assess the role of individual fad genes relative to the entire fad locus, we tested 

individual mutants from the Nebraska Transposon Library (45, 46). Importantly, 

inactivating any of the core fadDEBA genes also led to severe growth impairment 

establishing that each gene is essential for metabolism of palmitic acid (Figure 3.6, 

Figure 3.15). In contrast to the core fadDEBA genes, the transposon insertion in fadX had 

a less severe impact, although still causing significant impairment (Figure 3.15). From 

these data, we conclude that the core genes fadD, fadE, fadB and fadA are critical to S. 

aureus ability to metabolize exogenous palmitic acid, with a lesser but still significant 

contribution from fadX. 
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Figure 3.13. Palmitic acid severely impairs growth of S. aureus harbouring 

plasmids. (A) Triplicate flasks of 25 mL TSB without glucose supplemented with 500 

µM of palmitic acid were inoculated, and growth (OD600) was assessed at hourly 

intervals. (B) Triplicate flasks of 25 mL TSB without glucose alone, supplemented with 

500 µM of palmitic acid (PA), or supplemented with 2500 µM methyl palmitate (MPA), 

were inoculated and growth (OD600) was assessed after 8 hours. Each data point 

represents the mean ± SE. Statistical significance was measured using ordinary one-way 

ANOVA with Dunnett’s multiple comparisons test, comparing each strain to the TSB 

alone condition. ** p < 0.01, *** p < 0.001, ns = not significant. 
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Figure 3.14. Methyl palmitate induces fadX expression in a concentration dependent 

manner and requires fadXDEBA for proper growth. (A) Expression of fadX was 

measured as relative luminesce units (RLU) from a pGYfadX::lux construct. Cultures 

were grown for 24 hours in 200 µL of media, n=5, and growth (OD600) and fadX 

expression (RLU) were assessed every 20 minutes.  Data was reported as mean ± SEM of 

the area under the RLU/OD600 curve. (B) Triplicate flasks of 25mL TSB without glucose 

were supplemented with 2500 µM methyl palmitate and and growth (OD600) was 

measured hourly for 8 hours. Data is reported as mean ± SEM. 

 

  



194 

 

 

Figure 3.15. Individual knockouts of the fadXDEBA genes phenocopy growth 

impairment in media supplemented with palmitic acid. Triplicate flasks of TSB 

without glucose were supplemented with 500 µM palmitic acid and inoculated with the 

stated bacterial strains. Growth (OD600) was assessed at hourly intervals for 8 hours, and 

each data point represents the mean ± SE from triplicate flasks.  
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3.4.7 fad contributes to S. aureus survival in vivo 

Next, we assessed the in vivo requirement for fad in a murine subcutaneous abscess 

model, an environment rich in host-derived lipids. C57BL/6 mice challenged with 5107 

CFU of either USA300∆fakA or USA300∆fad exhibited a significantly lower bacterial 

burden in excised abscess tissue at 72h post-challenge compared to wild-type USA300 

(Figure 3.16A). For a comparative measure we also assessed a graS deletion mutant 

which exhibits reduced virulence in vivo due to impaired resistance to uFFA (18), 

cationic antimicrobial peptides (19), and macrophage killing (44). Strikingly, deletion of 

either fakA or fadXDEBA caused a reduction in bacterial burden that was comparable to 

loss of graS function (Figure 3.16A). Although there was a reduction in bacterial burden, 

there were no major differences in mouse weight or abscess size throughout the course of 

the infection (Figure 3.17AB). When this experiment was repeated with a smaller 

inoculum of 1107 CFU, we again observed a significant reduction in bacterial burden 

among each of the mutant strains, but no major difference in mouse weight or abscess 

size (Figure 3.16B, Figure 3.17CD). These findings confirm the relevance of our in vitro 

characterization and highlight the importance of fad genes during infection.  
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Figure 3.16. Deletion of genes involved in host derived fatty acids resistance and 

metabolism reduce virulence in a murine infection model. C57BL/6 mice had both 

hind thighs inoculated with a high dose of 5x107 CFU (A) or a low dose of 1x107 CFU 

(B) of the respective bacterial strains in 50 µl Hanks' Balanced Salt Solution. After 72 

hours, mice were sacrificed and CFU/lesion was determined, and normalized as CFU/mg 

of skin. Data is reported as mean ± SEM, n=6 with CFU data derived from abscesses on 

both the left and right flank of each animal. Statistical significance was determined using 

Kruskal-Wallis ANOVA. * p<0.05, ** p<0.01, *** p<0.001. 

 

  



197 

 

 

Figure 3.17. Deletion of fakA, fadXDEBA, or graS did not impact lesion size of 

weight loss in a murine infection model. C57BL/6 mice had both hind thighs inoculated 

with a high dose of 5x107 CFU (A and B) or a low dose of 1x107 CFU (C and D) of the 

respective bacterial strains in 50 µl Hanks' Balanced Salt Solution. Every 24 hours, lesion 

size (mm2) and weight loss (% of original weight) were measured. Data is reported as 

mean ± SEM, n=12 (A) or n=6 (B).  
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3.4.8 Expression of fad is regulated through an interplay of 
glucose repression, palmitic acid induction, and acidic pH 

induction 

After determining an in vivo role for fadXDEBA, we next wanted to better understand its 

regulation patterns under conditions that would be encountered during an infection, or 

during colonization of the skin. In particular, we became interested in how fad is 

expressed when S. aureus encounters both palmitic acid and glucose simultaneously, as 

well as when S. aureus encounters palmitic acid at an acidic pH. 

3.4.8.1 Glucose repression dominates over palmitic acid induction 

of fad  

Although we see fadX expression is induced by palmitic acid and repressed by glucose 

(Figure 3.8), we queried how expression patterns would change when encountering both 

conditions simultaneously. Fasted blood glucose levels range from 4.0–6.0 mM for 

healthy adults, and this can be elevated after a meal, or in individuals who suffer from 

diabetes. Therefore, although host cells sequester glucose availability as a fundamental 

aspect of nutritional immunity to reduce growth and virulence of S. aureus (59), S. 

aureus will encounter glucose and palmitic acid simultaneously during an infection.  

We hypothesized that glucose repression dominates over fatty acid induction of the fad 

genes, contributing to why this metabolic pathway has not been identified in previous 

studies (3, 4). In TSB with no glucose, there was no significant difference in growth of 

USA300 supplemented with 500 µM palmitic acid compared to the no fatty acid control 

(Figure 3.18). However, in TSB + glucose there was an abrupt exit from exponential 

growth (Figure 3.18), mirroring the phenotype of USA300∆fad grown in glucose free 

TSB with palmitic acid (Figure 3.10). This suggests that glucose represses fad 

expression, rendering USA300 susceptible to palmitic acid intoxication. To further 

support these findings, we assessed fadX expression in media containing palmitic acid 

and varying concentrations of glucose (Figure 3.19).  

For this purpose, growth was assessed over 36h in microtitre plates. In TSB with no 

glucose, USA300 exhibited unimpeded growth in the presence of 500 µM palmitic acid 
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similar to that observed in flask culture; one notable difference was a dip in optical 

density at approximately 5-6h followed by resumption of exponential growth (Figure 

3.19). Visual inspection of the plates revealed that this correlates with some transient 

aggregation at this time point. As in flask culture, fadX expression peaked in transition 

between exponential and stationary growth phases, at approximately 8h (Figure 3.19). 

When cultured in TSB with 10 mM glucose, or 13.9 mM as formulated in conventional 

TSB with glucose, there was a 6-8h lag phase prior to initiation of unimpeded 

exponential growth. This was followed by a transient cessation of growth at 10-12h, 

followed by a resumption in growth that coincided with initiation of fadX expression 

(Figure 3.19). There was also a longer cessation of growth and delay in fad expression in 

TSB + 13.9 mM glucose compared to 10 mM glucose, indicating that fadX expression is 

highly sensitive to the availability of glucose (Figure 3.19). This supports a model where 

fad expression is induced in response to palmitic acid, but requires glucose to be depleted 

from the environment before this expression can occur.  
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Figure 3.18. USA300 is more susceptible to palmitic acid in media with glucose. 

Triplicate flasks of TSB with (13.9 mM) or without glucose were supplemented with 

indicated concentrations of palmitic acid. Cultures we inoculated with bacteria and 

growth (OD600) was assessed at hourly intervals. Each data point represents the mean ± 

SE from triplicate flasks.  
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Figure 3.19. Glucose repression of fad expression appears to dominate over palmitic 

acid induction. Microtitre plate wells with 200 µL of TSB with 500 µM of palmitic acid, 

and varying concentration of glucose, were inoculated with bacteria and growth (OD600) 

and fadX expression (RLU/OD600) from a pGYfadX::lux construct were assessed every 

15 minutes. Each data point represents the mean ± SE, n = 7.  
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3.4.8.2 Acidic pH induces expression of fad 

When colonizing skin, S. aureus encounters both host-derived fatty acids and acidic pH 

concurrently (60), and we have shown acidic pH is a stimulus that enhances resistance to 

antimicrobial uFFA through GraS signalling (Chapter 2). Therefore, we queried whether 

acidic pH could also act as an environmental cue to enhance fadX expression in S. 

aureus. Compared to growth in unbuffered TSB, acidic pH promoted a significant 

increase in fadX expression, both in the absence and presence of palmitic acid (Figure 

3.20A). We next investigated whether GraS plays a role in regulating this response, and 

found that deletion of graS dampens the ability to induce fadX expression in response to 

palmitic acid (Figure 3.20BC). However, regulation of fadX expression by GraS was not 

pH-dependent, as induction of fadX expression in response to palmitic acid was 

attenuated at both neutral and acidic pH in ∆graS (Figure 3.20BC). Furthermore, there 

was no difference in fadX expression between USA300 and ∆graS in acidic pH alone 

(Figure 3.20BC). Therefore, while acidic pH induces fad expression, this induction does 

not occur through GraS. Furthermore, these findings indicate GraS does play a role in 

regulating fad expression, and is not the major regulator for this putative β-oxidation 

system.  
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Figure 3.20. Expression of fadX is increased at acidic pH, and decreased in a ∆graS 

background. Wildtype or a graS deletion mutant were grown in 200 µL of TSB without 

glucose in a microtitre plate, n=7. Media remained unbuffered, was buffered at pH 7.3 

using 0.1 M Bis-tris, or was buffered at pH 5.5 using 0.1 M morpholineethanesulfonic 

acid. Media was supplemented with the indicated concentration of palmitic acid and 

growth (OD600) and fadX expression (RLU/OD600) from a pGYfadX::lux construct were 

assessed every 15 minutes for 24 hours. Data is reported as mean ± SEM of the area 

under the RLU/OD600 curve. Each panel represents an independent experiment. Statistical 

significance was measured using an unpaired two-tailed t-test, comparing fadX 

expression in TSB pH 5.5 to unbuffered TSB (A) or comparing fadX expression in ∆graS 

to USA300 (B and C), *** p < 0.001 *** p < 0.001, ns = not significant. 
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3.4.9 The intramembrane protease PrsW is required to induce 
expression of fad 

As detailed in Section 3.1.3, the fad system in S. aureus lacks a conventional FadR 

transcriptional regulator, which is the key regulator of fad expression in E. coli and B. 

subtilis (14, 61, 62). Furthermore, the genomic arrangement of the fad genes is unusual, 

as they are clustered into a single locus rather than dispersed throughout the genome 

(Figure 3.3). Directly upstream of the fad locus is a divergently transcribed 

intramembrane protease, prsW (Figure 3.21). While work is still ongoing to determine the 

exact details of this system, PrsW is proposed to modulate the activity of a stress 

response Sigma Factor, σS, through proteolytic degradation of an anti-sigma factor 

(Figure 3.22) (63, 64). This proposed interaction is supported by a prsW knockout mutant 

phenocopying a sigS knockout mutant in sensitivity to DNA-damaging agents and cell 

wall targeting antibiotics (63). Due to the proximity of prsW to the fad genes, we queried 

whether PrsW plays a role in regulating fadX expression. Using a prsW knockout mutant 

from the Nebraska transposon library (45), we found that knocking out prsW resulted in 

an inability to induce fadX expression in response to palmitic acid (Figure 3.23). 

Furthermore, transposon knockouts of both prsW and sigS behave similarly to a fad 

deletion mutant, showing impaired growth in both 250 µM and 500 µM palmitic acid 

(Figure 3.24). Interestingly however, it appears that prsW and sigS mutants are slightly 

more sensitive to palmitic acid than a fad deletion mutant (Figure 3.24BC), likely due to 

σS having a global effect on gene expression, regulating a variety of genes in response to 

bacterial stress (64, 65). These data are consistent with PrsW being able to respond to 

membrane stress imposed from exposure to palmitic acid, leading to degradation of an as 

yet unidentified anti-sigma factor, thereby freeing σS to promote expression of fad genes 

(Figure 3.22). 
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Figure 3.21. Genomic layout of fadXDEBA and the divergently transcribed prsW. 

The intramembrane protease prsW (SAUS300_0230) is located directly upstream of the 

fadXDEBA (SAUSA300_0225–SAUSA300_0229) locus. PrsW is proposed to modulate 

the function of a stress response Sigma Factor, σS, through proteolytic degradation of an 

anti-sigma factor (63).  
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Figure 3.22. Schematic diagram for proposed PrsW and SigS regulation of gene 

expression. PrsW is activated by through an external stimulus, or by sensing membrane 

stress (1). Activation of PrsW leads to proteolytic degradation of an anti-sigma factor (2), 

freeing the sigma factor, σs, from anti-sigma factor inhibition (3). σs is then able to 

interact with RNA Polymerase (RNAP) (4), which enables binding of RNA Polymerase 

to the promoters of specific genes (5). Furthermore, we believe the fad genes are a target 

for σs mediated expression (5). This schematic likely represents a simplified version of 

the intramembrane proteolysis required for inactivation of the anti-sigma factor. For 

example, in B. subtilis, PrsW is the first in a four-part proteolytic cascade required for 

complete degradation of the anti-sigma factor, RsiW, and subsequent freeing of the sigma 

factor, σw (66).  
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Figure 3.23. Knockout of prsW results in an inability to induce fadX expression in 

response to palmitic acid. Wildtype USA300 (WT) and prsW::Tn, a mutant from the 

Nebraska Transposon Library (67) with a transposon insertion in the prsW gene, were 

grown in 200 µL of TSB without glucose in a microtitre plate, n=7. Media was 

supplemented with 500 µM palmitic acid, or remained as TSB alone as a control. 

Cultures were with bacteria and growth (OD600) and fadX expression (RLU/OD600) from 

a pGYfadX::lux construct were assessed every 15 minutes for 24 hours. Data is reported 

as mean ± SEM of the area under the RLU/OD600 curve. Statistical significance was 

measured using Two-Way ANOVA with Tukey’s multiple comparisons Test, *** 

p<0.001, ns = not significant.  
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Figure 3.24. Knockout of prsW or sigS phenocopies ∆fadXDEBA in susceptibility to 

palmitic acid. Wildtype USA300 (WT), prsW::Tn, and sigS::Tn, mutants from the 

Nebraska Transposon Library (67) were grown in triplicate flasks of TSB without 

glucose, supplemented with 0 µM (A), 250 µM (B), or 500 µM (C) palmitic acid. 

Cultures were inoculated with bacteria and growth (OD600) was assessed hourly. Each 

data point represents the mean ± SE.  
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3.4.10 fad demonstrates an important function in responding to 
conditions that impose stress on the phospholipid membrane 

After demonstrating PrsW is important for inducing fad expression, we became interested 

in the relationship between membrane stress and Fad function. In particular, we 

investigated Fad function in response at lower temperatures, and in response to 

antimicrobial peptides. Although the average body temperature is around 37ºC, various 

regions on the skin range in temperature from around 30ºC to 35ºC (68). The temperature 

of the nose in particular, the most frequent location of S. aureus colonization (69–71), is 

around 33.5ºC (68). Furthermore, the skin produces a variety of antimicrobial peptides to 

restrict the growth of various pathogens, that S. aureus must combat. Therefore, both 

growth at lower temperatures and in the presence of antimicrobial peptides represent 

conditions S. aureus would encounter when colonizing human skin, that impose stress on 

the membrane.  

3.4.10.1 Function of fad at decreased temperatures 

When grown at a lower temperature, the bacterial membrane becomes more rigid. To 

compensate, the bacteria is forced to increase membrane fluidity by incorporating shorter 

length, branched chain, or unsaturated fatty acids into phospholipid (72–75). However, S. 

aureus does not possess a membrane phospholipid desaturase, and therefore relies solely 

on the length or branching nature of phospholipids to regulate membrane fluidity.  

Previously, we noted exogenous palmitic acid dramatically altered the phospholipid 

membrane composition of S. aureus, as palmitic acid or extended derivatives of palmitic 

acid readily replaced natively produced lipid species in the membrane (Figure 3.12). 

Therefore, we queried whether the combined stress of properly metabolizing exogenous 

palmitic acid to incorporate into the membrane, as well as altering membrane fluidity to 

cope with lower growth temperatures, would create a more essential requirement for Fad. 

Although USA300 grew slower at lower temperatures, the bacteria remained resistant to 

palmitic acid at all temperatures tested (Figure 3.25). In contrast, USA300∆fad became 

more susceptible to palmitic acid at lower temperatures, with 100 µM palmitic acid 

causing complete growth arrest at 30ºC (Figure 3.25), which also occurred in a prsW 
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knockout mutant (Figure 3.25B). Importantly, in the absence of exogenous palmitic acid, 

USA300, ∆fad, and prsW::Tn grew equally well at 30ºC, indicating these genes are not 

required for growth at lower temperatures alone, but rather are required for resistance to 

palmitic acid toxicity which is further exacerbated at lower temperatures (Figure 3.25B).  

Additionally, we investigated the phospholipid membrane composition of USA300 and 

∆fad grown with exogenous palmitic acid at both 30ºC and 37ºC, as we previously noted 

incorporation of exogenous palmitic acid, or its extension products from the FASII 

pathway, dramatically altered the phospholipid membrane composition of S. aureus 

(Figure 3.12). With phospholipid length being important to combat the rigidity associated 

with growth at lower temperatures, we queried whether palmitic acid would be 

differentially incorporated into the membrane at 30ºC or 37ºC. As expected, the overall 

fatty acid chain length of PG was shortened in both USA300 and ∆fad grown at 30ºC, 

which helps maintain membrane fluidity (Figure 3.26A). Supporting this finding, 

USA300 exhibited a preference for direct incorporation of C16 palmitic acid into the 

membrane at 30ºC (PG31:0; C15+C16), whereas at 37ºC there was preferential 

incorporation of the FASII extension product C20 (PG35:0; C15+C20) (Figure 3.26B–

D). While USA300∆fad followed a similar trend, it exhibited a reduced capacity to 

directly incorporate C16 palmitic acid into the membrane at 30ºC, and also less 

incorporation of the C20 extension product at 37ºC (Figure 3.26B–D). Taken together, 

these findings indicate USA300 can effectively incorporate palmitic acid into the 

membrane in a way that optimizes membrane fluidity based on temperature, whereas 

USA300∆fad has a reduced capacity to perform this function. As the Fad proteins have 

not been shown to directly incorporate exogenous fatty acids into the membrane, this 

altered phospholipid profile may be indicative of Fad recycling membrane lipids in order 

to contribute to membrane homeostasis; a function Fad has been associated with in other 

bacteria (76).  
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Figure 3.25. Palmitic acid is more toxic to ∆fadXDEBA at lower temperatures. 

Triplicate flasks of TSB without glucose were supplemented with indicated 

concentrations of palmitic acid, and grown at either 30ºC, 33ºC, or 37ºC as indicated. 

Growth (OD600) was assessed at hourly intervals, and each data point represents the mean 

± SE from triplicate flasks.  
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Figure 3.26. Temperature impacts the length of phosphatidylglycerol (PG) in the 

membrane, and the manner in which palmitic acid is incorporated into the 

membrane. Wildtype USA300 (WT) and USA300∆fad were grown in triplicate cultures 

to an OD600 of 0.15 and a bolus of 500 µM palmitic acid was added. Bacteria were then 

grown for another 2 hours before samples were collected. Samples were homogenized, 

and lipids were extracted and analyzed through Liquid chromatography–mass 

spectrometry at the Wayne State Lipidomics Core Facility. Results are presented as mean 

± SEM of the percentage of total PG each lipid species represents. Statistical significance 

was measured using Two-Way ANOVA with Tukey’s multiple comparisons Test, * 

p<0.05, ** p<0.01, *** p<0.001, *** p<0.001, ns = not significant. 
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3.4.10.2 Function of fad in response to antimicrobial peptides 

Another common cause of membrane stress when colonizing human skin are 

antimicrobial peptides.  Furthermore, expression of the fad genes has been shown to be 

upregulated in response to a variety of membrane targeting antimicrobial agents (77, 78). 

Therefore, we wanted to determine if deletion of fad would make S. aureus more 

susceptible to antimicrobial peptides. As seen, 16 µg/mL of the lipopeptide polymyxin B 

slightly impaired ∆fad growth relative to USA300; however, this impairment was much 

more severe at 32 µg/mL, indicating fad does play a role in resistance to CAMPs (Figure 

3.27A). Although polymyxin B does not represent a CAMP encountered on human skin, 

this was only a preliminary finding, and we plan to investigate this further to determine if 

this impairment generalizes to a broad range of CAMPs.  

Additionally, we wanted to investigate if USA300∆fad was more susceptible to 

daptomycin or vancomycin, as a previous study showed increased daptomycin and 

vancomycin resistance was associated with increased fad expression (77). However, our 

findings demonstrate that USA300∆fad is only marginally more susceptible to 

daptomycin and vancomycin than USA300 (Figure 3.27BC). Therefore, while increased 

expression of fad may provide increased resistance to these antimicrobial agents (77), the 

absence of fad does not make S. aureus markedly more susceptible.  

Together, our findings indicate that Fad does play a role in resistance to antimicrobial 

peptides; however, the specificity of this resistance needs to be further elucidated. 

Furthermore, based on the predicted function of the Fad proteins (Section 3.1.3), this 

resistance is likely not due to direct interaction with antimicrobial agents, but rather due 

to metabolism of fatty acids and recycling or remodelling of the phospholipid membrane 

to maintain membrane integrity. Future investigations will be focused on better 

understanding the impact Fad has on membrane composition, and understanding how 

these impacts can promote resistance to other membrane damaging agents such as 

CAMPs or lipopeptides. 
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Figure 3.27. FadXDEBA plays a role in Polymyxin B (PmB) resistance and may play 

a minor role in daptomycin and vancomycin resistance. (A) Triplicate flasks of TSB 

without glucose were supplemented with indicated concentrations of PmB. Growth 

(OD600) was assessed at hourly intervals, and each data point represents the mean ± SE 

from triplicate flasks. (B and C) Microtitre plate wells with 200 µL of TSB, and varying 

concentration of daptomycin or vancomycin, were inoculated with bacteria and growth 

(OD600) was assessed every 15 minutes for 24 hours. Each data point represents the mean 

± SE of the area under the OD600 curve, n = 7. Media was supplemented with 0.5 mM 

CaCl2 for the daptomycin assay (B). Statistical significance was measured using an 

unpaired two-tailed t-test, * p < 0.05, ** p < 0.01, *** p < 0.001, ns = not significant (B 

and C). 
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3.5 Discussion 

This study has expanded our knowledge of lipid metabolism in S. aureus. While the 

metabolic fate of unsaturated FFA has been well documented in S. aureus through 

proteins such as FakA, OhyA, and FarE (36–38), the fate of saturated FFA has been 

much less explored, with FakA being the only known route for their metabolism through 

incorporation into phospholipid (38) (Figure 3.28). Saturated palmitic acid in particular is 

encountered at high concentrations on human skin (79) as well as in plasma (80), and is 

also the most abundant saturated fatty acid in adipose triglyceride (81). In consideration 

of the in vivo abundance of palmitic acid, it is surprising that it is a poor substrate for the 

PlsY acyl-transferase that would otherwise mediate its direct incorporation into 

phospholipid, and our data point towards a role for the fad locus in providing an alternate 

route for metabolism of exogenous palmitic acid (Figure 3.28). 
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Figure 3.28. Schematic diagram for fatty acid metabolism in S. aureus. After entering 

the bacterial cell, unsaturated fatty acids can be directly effluxed by FarE, detoxified 

through OhyA-dependent hydroxylation and then effluxed, or bound by FakB2 and 

phosphorylated by FakA as required for incorporation into membrane phospholipid. 

Saturated fatty acids instead are bound by FakB1, but follow a similar metabolic fate 

through FakA and incorporation into phospholipid. Our study documents an additional 

metabolic fate for saturated fatty acids through the putative β-oxidation proteins, 

FadDEBA, that may function to reduce the metabolic load on FakA.  
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The fad genes are well documented for their role in β-oxidation of exogenous fatty acids 

in both Gram-negative and Gram-positive bacteria (5, 6), and biochemical assays have 

demonstrated metabolic competency for β-oxidation in S. carnosus (7), which has the 

same complement and organization of fad genes as in S. aureus (Figure 3.7). Antibody to 

FadB of S. aureus was also demonstrated in human serum (39) and fad genes are 

expressed at a high level when S. aureus is internalized by cultured human respiratory 

epithelial cells which are responsible for synthesizing human lung surfactant (8, 9). 

Nevertheless, previous studies aimed at demonstrating a functional β-oxidation pathway 

in S. aureus were not successful (3, 4). Therefore, it is likely that fad function in S. 

aureus has been underappreciated due to growth conditions not being optimized to 

investigate this system. As such, our data have revealed that expression of fadX is 

strongly repressed by glucose (Figure 3.8), and fadE is preceded by a putative cre-box 

(Figure 3.6A), which in other systems functions to repress fad expression through carbon 

catabolite repression (82). Repression by glucose is further supported by recent work 

where inactivation of the glucose-dependent virulence regulator CcpA resulted in de-

repression of all fad genes in S. aureus MN8 (12). Therefore, with TSB used to study S. 

aureus often containing glucose, previous investigations into additional metabolic 

pathways for exogenous fatty acids may have inadvertently suppressed expression of the 

fad genes. Furthermore, with fad expression not being maximal until later growth phases 

(Figure 3.8A) and exhibiting a strong preference for C16 palmitic acid (Figure 3.8C), we 

believe conditions used to optimally study FakA have obfuscated Fad function in past 

research (3, 4).  

Our work has now documented that the fad locus, in addition to FakA mediated 

incorporation into phospholipid, presents a second option for metabolism of exogenous 

palmitic acid (Figure 3.28). Indeed, fadX expression was significantly enhanced in the 

absence of fakA, suggesting that incorporation of exogenous fatty acids into phospholipid 

is a preferred metabolic pathway. Although previous studies found that C16 acyl-

phosphate is a poor substrate for the PlsY acyl-transferase that promotes incorporation of 

exogenous fatty acids into PG (1), we did nevertheless observe a small amount of PG31:0 

in USA300 grown in TSB alone, comprised of PG containing C15 and C16 fatty acids, 

and PG31:0 was significantly elevated in TSB + palmitic acid (Figure 3.12). This is 
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consistent with an observation that PG in S. aureus recovered from sites of infection also 

contains a significant amount of PG31:0, indicating that during in vivo growth, S. aureus 

does incorporate palmitic acid into phospholipid (58). Of interest, our data revealed that 

USA300∆fad exhibited significantly more PG31:0 relative to USA300 in TSB + palmitic 

acid (Figure 3.12B), such that one function of the fad locus may be to draw palmitic acid 

away from incorporation into phospholipid through its conversion to acyl-CoA, which is 

not used by S. aureus as a substrate for phospholipid synthesis. This would help to 

alleviate a metabolic bottleneck attributed to C16 acyl-phosphate being a poor substrate 

for incorporation into phospholipid (Figure 3.28). 

A second clue to the physiologic function of the fad locus is evident in the temporal 

pattern of fadX expression, which when grown in glucose free TSB exhibited one peak of 

expression in transition between exponential and stationary phase (Figure 3.8A). As such, 

it may be that peak fad expression cannot occur until phospholipid synthesis begins to 

decrease in this transition phase. Moreover, when grown in flask culture with optimal 

aeration, there was a second and more intense peak of fad expression at approximately 

16h, after an extended period in stationary phase (Figure 3.8A). While this will be the 

subject of future research, it is consistent with studies where fad genes have been 

associated with recycling membrane phospholipids to maintain membrane homeostasis 

(76). Consistent with such a role, we note that fad expression is upregulated when S. 

aureus encounters cell membrane targeting antimicrobial agents such as daptomycin (77) 

and lignin (78), and was required for proper resistance to polymyxin B (Figure 3.27A). 

We have established an important in vitro role for fad genes in alleviating toxicity 

attributed to exogenous palmitic acid, which is the most abundant saturated fatty acid in 

human plasma at a concentration of ~ 100 µM (83, 84), and this physiologic 

concentration was sufficient to impair growth of USA300Δfad (Figure 3.10A). We have 

also established an in vivo requirement for fad genes in a C57BL/6J murine subcutaneous 

abscess model, where attenuated virulence was comparable in impact to deletion of the 

graS sensor kinase, and deletion of fakA which is required for incorporation of exogenous 

fatty acids into phospholipids (Figure 3.16). Although subcutaneous abscess infection 

models using SKH1 mice have indicated a fakA mutant shows increased virulence (85, 
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86), others observed attenuated virulence in a bacteremia model using C57BL/6 mice 

(87), congruent with our present findings. Having now demonstrated that deletion of fakA 

or fad individually cause a comparable and significant attenuation of virulence, and with 

our finding that fadX expression is significantly elevated in the absence of fakA, one 

focus of our future work will be to assess the impact on in vivo survival of S. aureus 

when both of these key pathways for metabolism of host derived fatty acids are 

eliminated.  

One caveat of our analysis is that we used a fadX::lux reporter as an indicator of fad gene 

expression, but have not evaluated the transcriptional organization of the fadXDEBA 

locus which as noted in Figure 3.6A, is suggestive of three transcriptional units 

comprised of fadXD, fadE, and fadBA. Nevertheless, fadX expression was repressed by 

glucose as expected for fad expression in other bacteria, and the central fadE is also 

preceded by a cre-box that is likely to mediate glucose mediated repression (Figure 

3.6A). Moreover, individual transposon mutants confirmed that each of the core 

fadDEBA genes with orthologs in E. coli are needed to alleviate in vitro toxicity of 

exogenous palmitic acid, whereas the requirement for fadX was less stringent (Figure 

3.15).  In other work, fadX was required for metabolism of C3 propionic acid (10), 

consistent with its annotation as a short chain acyl-CoA transferase and homology to 

YdiF which shows activity to short chain (< 4 carbon) fatty acids (13). Therefore, we 

cannot exclude the possibility that fadX could be subject to other regulatory signals 

related to accumulation of short chain fatty acid metabolites. However, this could also 

include short chain fatty acids generated in the final rounds of β-oxidation of palmitic 

acid through fadDEBA. 

An additional nuance to the fad system in S. aureus is that there is no ortholog to the 

canonical regulator of β-oxidation gene expression, FadR (Table 3.3 and 3.4). Instead, we 

believe the fad genes in S. aureus are regulated by the intramembrane protease, PrsW, 

which is located directly upstream of the fad genes (Figure 3.21). While the exact 

mechanism behind PrsW function is not completely understood, it has been proposed that 

PrsW functions by degrading the anti-sigma factor for σS (Figure 3.22) (63, 64). While we 

have not directly assessed the proteolytic function of PrsW in this study, we have 
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confirmed that a knockout of prsW is unable to induce fad expression in response to 

exogenous palmitic acid (Figure 3.23), and a knockout of prsW or sigS phenocopies 

USA300∆fad in susceptibility to palmitic acid (Figure 3.24). Together these findings 

provide strong evidence that PrsW, and by extension σS, play an important role in 

regulating fad function. Interestingly, PrsW and σS are proposed to play a role in 

resistance to a variety of cell wall stressors including changes in temperature, surfactants, 

and cell wall targeting antibiotics (63–65), and the fad genes have been associated with 

membrane phospholipid recycling and maintenance of proper membrane composition in 

other bacteria (76), showing a logical link between these two systems. 

This relationship between fad and membrane stress is supported by our findings, as 

growth at lower temperatures increased palmitic acid sensitivity in USA300∆fad (Figure 

3.25). Furthermore, deletion of fad genes increased the susceptibility of S. aureus to 

membrane the disrupting agent, polymyxin B (Figure 3.27). We also saw exogenous 

palmitic acid being differentially incorporated into the phospholipid membrane in 

wildtype USA300 and USA00∆fad, indicating Fad plays a role in regulating the 

membrane composition of S. aureus (Figure 3.12 and 3.26). All together, these findings 

demonstrate that fad likely does play a role in membrane homeostasis in S. aureus, 

however the exact mechanism still needs to be elucidated. Furthermore, this supports a 

model where an intramembrane protease like PrsW, capable of sensing changes to 

membrane composition, can regulate expression of fad. 

Supporting a role in maintaining membrane homeostasis, we see exogenous palmitic acid 

not only inhibits USA300∆fad from growing, but significantly reduces the viability of the 

bacteria. We do not have an explanation for the rapid loss of viability on exposure of 

USA300∆fad to exogenous palmitic acid, upon which it appears that the bacteria may 

complete one round of replication, concomitant with declining viability (Figure 3.11). We 

speculate that metabolic signals arising from a disfunction in metabolism of exogenous 

palmitic acid are responsible for triggering this loss of viability, which is the focus of on-

going research. One potential hint is that the PG of USA300∆fad exhibited a significantly 

higher content of PG31:0 attributed to direct incorporation of palmitic acid into 

phospholipid at 37 ºC (Figure 3.12). Since the PlsY acyltransferase that would produce 
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this product does not work efficiently with C16-acylphosphate substrate (1), it is feasible 

that loss of fad function contributes to a bottleneck in phospholipid synthesis that triggers 

loss of viability. A better understanding of this intoxication by exogenous palmitic acid in 

the absence of fad function would support current efforts to use fatty acids therapeutically 

as antimicrobial agents (88), or to enhance activity of antibiotic therapies (89, 90) and 

innate immune function of human skin (91, 92).  

Together, our findings have brought to light the importance of fad function in S. aureus. 

The fad genes play an important role in metabolism of C16 palmitic acid, and to a lesser 

degree C14 and C18 fatty acids. This metabolic pathway works in conjunction with the 

established FakA pathway, and knocking out one pathway imposes increased metabolic 

stress onto the remaining pathway. Our findings also indicate Fad plays an important role 

in membrane homeostasis and phospholipid recycling, and is regulated by the 

intramembrane protease PrsW; however, we have not yet fully elucidated the details of 

these findings. Finally, Fad has been directly associated with virulence regulation in a 

variety of other bacteria. For example, the virulence factor regulators TcpP in Vibro 

cholera (89–91), TfmR in Xanthomonas citri (92), and HilA in Salmonella (93), are all 

regulated by exogenous fatty acids, and require fad to metabolize these fatty acids in 

order to properly express their respective virulence factors. Although we have established 

an in vivo requirement for the fad genes in a murine subcutaneous abscess model (Figure 

3.11), we have not yet investigated if Fad directly plays a role in regulating virulence 

factors of S. aureus.  
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Chapter 4   

4 General Discussion and Conclusion  
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4.1 General Summary 

S. aureus USA300 is the current endemic strain of CA-MRSA (1), which has enhanced 

virulence and ability to colonize human skin, allowing for rapid spread amongst 

communities (2–4). In order to effectively colonize human skin, S. aureus must combat a 

variety of innate immune conditions including acidic pH, CAMPs, and host-derived 

uFFA. While uFFAs function to inhibit the growth of S. aureus, they also provide a 

valuable source of lipids for membrane synthesis and energy production, and human skin 

also provides a rich source of less toxic sFFA. Therefore, the purpose of this thesis was to 

broaden our understanding of both the resistance and metabolic pathways in S. aureus 

that allow the bacteria to both survive and thrive in the presence of host-derived fatty 

acids.  

Bacteria on human skin are concurrently exposed to acidic pH and antimicrobial fatty 

acids, and it was a reasonable assumption that these combined conditions would exhibit 

enhanced antimicrobial activity toward S. aureus. Remarkably, our work demonstrated 

that acidic pH promoted enhanced resistance to antimicrobial uFFA through a GraS 

dependent mechanism, which occurred independently of the established resistance 

mechanisms represented by FarE mediated efflux (5, 6), and FakA mediated 

incorporation into phospholipid (7). Rather, GraS mediated resistance to antimicrobial 

uFFA during growth at acidic pH was dependent on the flippase function of MprF which 

was previously found to be essential for translocation of lysyl-phosphatidylglycerol from 

the inner leaflet of the cytoplasmic membrane to the external surface (8–11). 

Consequently, our work has revealed a new function for MprF that is distinct from its 

previously ascribed function in resistance to antimicrobial peptides.  

In evaluating the mechanistic basis of signalling through GraS at acidic pH, we 

established that this occurred independently of acidic amino acids in the short 

extracytoplasmic segment that had previously been implicated in recognition of 

antimicrobial peptides (12). Activation of GraS by acidic pH also resulted in robust 

expression of secreted proteases. Furthermore, our collaborative studies demonstrated 

that activation of GraS by both CAMPs and acidic pH, allowed S. aureus to survive and 

replicate in macrophages (13). Additionally, inhibiting GraR could reverse β-lactam 
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resistance in S. aureus USA300, and made the bacteria more susceptible to innate 

immune agents such as CAMPs, oxidative stress, and lysozyme, as well as inhibiting 

biofilm formation, intracellular replication in macrophages, and in vivo virulence (14). 

Together, these findings indicate that through GraXRS, S. aureus has become 

exceptionally resistant to innate immunity encountered during both colonization and 

infection of humans.  

Once resistant to the toxic effects for host-derived fatty acids through GraS activation, we 

demonstrated that S. aureus can metabolically benefit from exogenous fatty acids through 

FadXDEBA. Bioinformatic analysis indicates FadDEBA in S. aureus is orthologous to 

the β-oxidation machinery in E. coli and B. subtilis. These genes are repressed by glucose 

and induced by palmitic acid and acidic pH. Furthermore, deletion of the established 

FakA fatty acid metabolic pathway results in heightened expression of fad, and a broader 

range of exogenous fatty acids that can induce fad expression. Expression of fad appears 

to be primarily regulated by the intramembrane protease PrsW and the alternative sigma 

factor σS, but GraS also appears to play a minor role in regulating fad expression in 

response to exogenous fatty acids. While exogenous palmitic acid promoted increased 

growth of USA300, it impaired growth of a ∆fadXDEBA mutant, and remarkably palmitic 

acid was toxic to this mutant.  

Interestingly, this ∆fadXDEBA growth impairment is exacerbated at lower temperatures. 

Additionally, ∆fadXEDBA appears to be more susceptible to the CAMP polymyxin B. 

Although palmitic acid is rapidly incorporated into the phospholipid membrane, 

presumably through the FakA pathway (7), wildtype USA300 and ∆fadXDEBA have 

differing capacities to properly modulate the manner in which palmitic acid is 

incorporated into the membrane. Together, our findings have demonstrated that the 

previously unstudied fadDEBA genes have an important role in palmitic acid metabolism, 

a fatty acid physiologically relevant to S. aureus colonization of human skin (15, 16), as 

well as a preliminary role in CAMPs resistance. Our next steps will focus on confirming 

β-oxidation occurs through FadDEBA, as well as further elucidating the regulatory 

network responsible for fad expression.  
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Together, through the resistance gained by GraS and MprF, and the metabolic benefit 

gained through FadXDEBA, we have demonstrated S. aureus can both survive and thrive 

in the presence of host-derived fatty acids. Activation of both these pathways is enhanced 

under conditions found on human skin, including acidic pH and CAMPs, indicating S. 

aureus has evolved to efficiently sense and respond to environmental conditions that 

would be encountered on human skin, promoting enhanced resistance to and efficient 

metabolism of host-derived fatty acids.  

4.2 General Discussion, Limitations, and Future Studies  

While our study has greatly expanded our understanding of host-derived fatty acid 

resistance and utilization in S. aureus during colonization of human skin, there are some 

limitations that require further investigation and explanation. Specifically, while we have 

identified novel host-derived fatty acid resistance and metabolic pathways, work is still 

required to elucidate the detailed mechanisms behind these pathways.  

4.2.1 GraS-mediated resistance to uFFA general discussion  

Our findings show that activation of GraS by acidic pH or CAMPs results in robust 

resistance to uFFA (17); however, our next steps will focus on how this activation occurs, 

and how resistance to uFFA is mediated. 

Activation of the sensor kinase GraS provides resistance to a variety of conditions 

including CAMPs, acidic pH, growth at high temperatures, oxidative stress, glycopeptide 

antibiotics, and uFFA (13, 17–25); however, the only established sensing mechanism for 

GraS occurs through a short negatively charged extracellular segment (12). While this 

sensing mechanism is compatible with sensing CAMPs, it does not explain how the 

variety of other stressors associated with GraRS function would activate GraS signalling. 

GraS belongs to a sub-family of histidine kinases known as intramembrane-sensing 

histidine kinases which sense disruptions to membrane composition rather than directly 

binding molecules (26, 27). This classification is supported by our finding that acidic pH 

activates GraS independently of the negatively charged extracellular segment (17). 

Furthermore, a variety of CAMPs are known to target and disrupt phospholipid 

membrane composition (28, 29). Therefore, we believe that in addition to sensing 
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CAMPs through a short extracellular segment, GraS is capable of sensing membrane 

perturbations in a currently unelucidated sensing mechanism, explaining its diverse role 

in resistance to antimicrobial conditions. In particular, we plan to investigate what 

additional conditions can directly activate GraS signalling, and if a low complexity 

region directly following the final transmembrane domain in GraS contributes to this 

sensing mechanism.  

Our hypothesis that activation of GraS occurs through a low complexity region is based 

on research of the sensor histidine kinase DesK in B. subtilis. DesK can act as both a 

kinase and a phosphatase, depending on temperature induced changes to the membrane 

composition (30, 31). The difference between these two states occurs due to a short linker 

region, 154RKERERLEEKLE165, which connects the final transmembrane domain to the 

cytoplasmic domain, and can exist in a random coiled state promoting the phosphatase 

state, or as a continuous helix promoting the kinase state (30). Using the online Simple 

Modular Architecture Research Tool, there exists a low complexity region directly 

following the final transmembrane domain in GraS as well, 70KHFDKDKEIEEIKHKD85 

(Figure 4.1). Like DesK, we believe this low complexity region can take on different 

conformations in GraS depending on membrane composition, regulating GraS activation. 

Acidic pH has been proposed to impact phospholipid membrane composition in various 

ways including diminishing the repulsive forces between phosphate head groups allowing 

for tighter packing, reducing membrane curvature, and increasing the thickness of the 

membrane (32–34), and these changes may be the stimulus used by GraS to respond to 

acidic pH. Like studies elucidating the mechanism for DesK activation, we plan to 

introduce a variety of mutations into this low complexity region of GraS to probe the 

functionality of this region. Once we better understand this novel sensing mechanism, we 

plan to determine other conditions that activate GraS through this mechanism. As 

mentioned, GraS has been associated with resistance to high temperatures and oxidative 

stress (18), both of which would impact membrane composition. By creating mutations in 

both the extracellular loop and the low complexity region, we will investigate if 

temperature and oxidative stress are able to directly activate GraS signalling, and the 

mechanism by which this activation occurs.  
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Figure 4.1. Domain architecture of GraS and DesK according to the online Simple 

Modular Architecture Research Tool. Transmembrane segments are coloured in blue, 

low complexity region is coloured in maroon, and histidine kinase and ATPase segments 

are coloured in orange. The amino acid scale is indicated beneath each protein.  
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Additionally, we want to determine the role the ABC-transporter VraFG plays in this 

novel GraS sensing mechanism. Preliminary findings indicate that both VraF and VraG 

are required for GraS to signal in response to acidic pH. However, these findings were 

based on growth phenotypes that require GraS activation. Therefore, we plan to directly 

measure mprF expression in response to acidic pH, in both vraF and vraG knockout 

strains, to confirm VraFG is required for activation of GraS by acidic pH. However, how 

VraFG is involved in this novel GraS sensing mechanism remains a mystery. Our current 

hypothesis is that VraFG is required for proper assembly of the sensor system, and signal 

transduction from GraS to GraR, as is the case for GraX (23, 35). However, the 

extracellular loop of VraG has been shown to impact CAMP specificity for GraS 

signalling (36), indicating VraG directly interacts with external stimuli used for GraS 

signalling. Although acidic pH isn’t a physical ligand that can bind to the extracellular 

loops of GraS or VraG, acidic pH has been shown to still interact with extracellular loops 

to induce signalling in two-component sensors. For example, the extracellular loop of 

PhoQ of Salmonella binds to CAMPs to activate the transcriptional regulator PhoP (37–

39). However, independent of binding CAMPs, the extracellular loop of PhoQ can 

undergo conformational changes in response acidic pH that also leads to signalling (40). 

We have demonstrated mutations in the extracellular loop of GraS does not impact 

signalling in response to acidic pH, but VraG possesses a large extracellular loop similar 

to PhoQ, that is better suited for responding to external stimuli. Furthermore, the specific 

interactions between the extracellular regions of VraG and GraS have not been 

elucidated. Therefore, we plan to introduce mutations into this extracellular loop of VraG 

to determine if this extracellular loop is also required for GraS signalling in response to 

acidic pH.  

While activation of GraS and expression of mprF are required for the novel uFFA 

resistance pathway we have discovered, we have not yet elucidated the exact mechanism 

for this resistance (17). We initially hypothesized the production of lysyl-

phosphatidylglycerol by MprF would allow for tighter packing of phospholipids, 

stabilizing the membrane and counteracting the toxicity associated with uFFA membrane 

disruption, as has been shown for CAMP resistance (41); however, we demonstrated that 

the synthesis of lysyl-phosphatidylglycerol was not required for uFFA resistance, rather it 
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was the flippase domain of MprF that provided the high levels of uFFA resistance (17). 

In more recent studies, a gain-of-function mutation in the flippase domain of MprF was 

shown to confer increased resistance to the lipopeptide antibiotic daptomycin (9). The 

proposed model for this resistance is that the mutation in MprF altered the substrate range 

of the MprF flippase, leading to translocation of daptomycin from the inner leaflet of the 

membrane (9). A degree of promiscuity in the substrate specificity of MprF flippase had 

been established previously, with both alanyl- and lysyl-phosphatidylglycerol able to be 

translocated by this domain (11). Therefore, our current hypothesis is that this 

promiscuity of MprF flippase allows this domain to also interact with uFFA incorporated 

into phospholipid, to improve the distribution of these uFFA in the cell membrane, and 

better maintain proper membrane integrity. 

The final limitation to our GraS-mediated uFFA resistance findings is how generalizable 

our findings are to other uFFA. We chose a variety of uFFA to study that are 

physiologically relevant to human skin and nasal colonization, namely linoleic and 

sapienic/palmitoleic acid (42, 43), as well as uFFA that have demonstrated unique 

mechanisms to impair S. aureus, namely arachidonic acid which causes oxidative stress 

for the bacteria (44). While these four fatty acids might not generalize to all uFFA S. 

aureus encounters in the environment, we believe they do provide sufficient evidence 

that this uFFA resistance mechanism is effective for a broad range of physiologically 

relevant uFFA. One caveat to these findings is that, unlike CAMP-mediated resistance 

which provides high levels of resistance to all uFFA tested, acidic pH made S. aureus 

more resistance to linoleic and arachidonic acid, but susceptible to sapienic and 

palmitoleic acid (17). Therefore, we believe it is important to understand why acidic pH 

makes S. aureus more susceptible to sapienic and palmitoleic acid before we can 

confidently generalize these findings to other uFFA. Our current hypothesis is that the 

toxicity occurring under combined acidic pH and 16:1 uFFA conditions is due to the 

acidic pH, rather than the uFFA. Studies have shown that palmitoleic acid causes rapid 

membrane depolarization and the release low-molecular weight proteins in S. aureus, 

through the production of small pores in the membrane (45). Under these conditions, we 

hypothesize H+ can migrate into the cytoplasm, leading to the toxicity seen in our 

experiments. We plan to directly investigate membrane fluidity and integrity, as well as 
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intracellular and extracellular pH, under these conditions to determine if intracellular 

acidification is responsible for growth impairment. Additionally, we plan to determine if 

increasing membrane rigidity, or expressing high levels of ADI or urease genes, can 

combat this growth impairment by preventing acidification of the cytoplasm.  

Together, our findings have broadened our understanding of GraXRS function in 

combating the innate immune conditions of human skin. While proud of our findings thus 

far, we plan to continue these investigations to better understand the nuances of this 

system, and possibly identify novel targets that will impair S. aureus resistance to the 

innate immune systems of the host.  

4.2.2 FadXDEBA metabolism of host-derived fatty acids general 

discussion 

Our study is first to directly assess the capacity of the fadDEBA genes in S. aureus to 

metabolize exogenous fatty acids; however, there are still unanswered questions we plan 

to address, in order to better understand the complex nature of lipid metabolism is S. 

aureus.  

The first limitation to our study is we have not directly confirmed that the FadDEBA 

proteins allow for β-oxidation. While we have demonstrated the Fad proteins show 

homology to β-oxidation capable genes in E. coli and B. subtilis, are induced in response 

to exogenous fatty acids, are required for resistance to high concentrations of exogenous 

fatty acids, and show importance in an in vivo murine abscess infection model, we have 

not directly assessed if β-oxidation occurs through FadDEBA in S. aureus. However, this 

is a project we are currently working on, by investigating if exogenous palmitic acid is 

converted to palmitoyl-CoA in a Fad-dependent manner.   

Although FadD, the first step in the putative β-oxidation pathway of S. aureus, is 

annotated as long chain fatty acyl-CoA ligase, it may also function as an acyl-ACP 

synthase, allowing for incorporation of exogenous fatty acids into the phospholipid 

synthesis pathway. In Synechocystis and Thermus thermophilus, genes annotated as long 

chain fatty acyl-CoA ligases can transfer fatty acids to ACP or CoA substrates (46). A 

dual function for FadD is supported by the fact acyl-ACP synthase activity has been 
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detected in S. aureus lysates, but the gene responsible for this function remains elusive 

(47), and we see USA300 and ∆fadXDEBA have differing capacities to incorporate 

exogenous palmitic acid into the phospholipid membrane in our own studies. 

Interestingly, S. aureus USA300 has an additional annotated long chain fatty acyl-CoA 

ligase, vraA (SAUSA300_0559), separate from the fad locus. VraA likely does not 

function as a redundant protein to FadD in the β-oxidation pathway of S. aureus, as we 

see a knockout of fadD alone phenocopies a complete deletion of the entire fad locus. 

Nevertheless, it is feasible that VraA could still function as an acyl-ACP synthase. Due to 

long chain acyl-CoA not being a suitable substrate for phospholipid synthesis in S. aureus 

(48, 49), generation of acyl-ACP through acyl-ACP synthase activity may represent an 

additional mechanism in S. aureus to incorporate exogenous fatty acids into 

phospholipid. 

Although palmitic acid is the strongest inducer of fad expression, and caused the 

strongest growth impairment in a ∆fadXDEBA mutant, C14 and C18 fatty acids were also 

shown to impact Fad function. However, the preference of the Fad system for C16 fatty 

acids is interesting, as C16 fatty acids are poor substrates for FakA-mediated fatty acid 

metabolism (45), indicating these two systems may have coevolved to optimally 

metabolize the free fatty acids most frequently encountered on human skin, in human 

serum, and in the cytoplasm of S. aureus (15, 16). To gain insight into the relationship 

between these pathways, we plan on deleting fakA in conjunction with fadXDEBA to 

determine what occurs when both metabolic pathways are deleted. Thus far, we have 

been unsuccessful in creating this mutant strain, indicating the combined deletion of fakA 

and fadXDEBA may be lethal to the bacteria. Therefore, we plan to clone these genes 

under inducible promoters that allow control of expression, providing us the opportunity 

to turn off expression and phenotypically create our combined deletion mutants. 

Additionally, by tracking the presence of acyl-CoA molecules in S. aureus grown with a 

variety of different exogenous fatty acids, we plan to better understand the specificity of 

Fad to fatty acids other than C16 palmitic acid, and the relationship between fatty acid 

metabolism through FakA or Fad.  
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The relationship between FakA and Fad metabolism is further evident when looking at 

sFFA toxicity. Although less toxic than uFFA, we see deletion of fad makes S. aureus 

highly susceptible to C16 sFFA intoxication, a fatty acid that is a poor substrate for FakA 

metabolism (45), with C18 and C20 sFFA, fatty acids that are ideal substrates for FakA 

metabolism, causing markedly less toxicity. We believe these findings allude to FakA 

compensating for loss of Fad function and metabolizing C18 and C20 sFFA, but not 

being unable to compensate for metabolism of C16 sFFA. This compensation between 

systems is mirrored by C16 palmitic acid being the only sFFA we tested capable of 

inducing fad expression in wildtype USA300, but C18 and C20 sFFA also inducing fad 

expression when fakA was deleted. Although we have not yet identified the basis for 

palmitic acid toxicity in a ∆fadXDEBA mutant, we believe this data supports a model 

where fatty acid metabolism is balanced between FakA and Fad function, and deletion of 

Fad severely disrupts this balance. As a result, exogenous palmitic acid not only impairs 

growth, but causes a decrease is bacterial viability. 

We have two main hypotheses to explain this palmitic acid toxicity, which vary 

depending on the role FakA plays in metabolizing C16 fatty acids. Because C16 fatty 

acids are a poor substrate for the FakA metabolic pathway (7, 45), we hypothesize a 

bottleneck in lipid metabolism is occurring at two potential points, leading to palmitic 

acid toxicity. First, if FakA does not efficiently phosphorylate the exogenous fatty acids, 

a buildup of cytoplasmic palmitic acid may occur. Although saturated fatty acids do not 

have the same structure of unsaturated fatty acids and therefore to not compromise 

membrane integrity as easily, intoxication can still occur at high enough concentrations 

(50). Therefore, we plan to use a variety of membrane integrity assays with our different 

mutants, to assess if a compromised membrane is responsible for this toxicity. Second, if 

FakA efficiently phosphorylates the exogenous fatty acids, there may be a rapid depletion 

in ACP molecules in the bacteria. Because phosphorylated C16 fatty acids are a poor 

substrate for PlsY, the acyl-PO4 molecules are first converted to acyl-ACP through PlsX 

to be extended through the FASII cycle (7, 45), which could deplete the amount of ACPs 

available in the cell. ACPs are required for endogenous phospholipid synthesis, and the 

depletion of these proteins due to a bottleneck in C16 fatty acid metabolism may cause 

toxicity to the bacteria. To assesses this hypothesis, we plan to construct an inducible 
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ACP vector in order to control ACP levels in the bacteria, and determine if this can 

circumvent palmitic acid toxicity in ∆fadXDEBA. Both of these investigations will 

provide valuable insight into the metabolic fate of C16 fatty acid in S. aureus, and the 

associated toxicity with these lipid species.  

Another question raised by our work is why β-oxidation has not been previously 

identified in S. aureus if it possesses the genes capable of this metabolic pathway. We 

have three theories for why this pathway was previously missed which include the role of 

glucose repression, the interaction with FakA, and the temporal regulation of fad 

expression. First, glucose is a known repressor of β-oxidation machinery in other bacteria 

(51), and this also appears to be the case for S. aureus (52). However, the primary media 

used to study S. aureus is Tryptic Soy Broth, which contains 13.9 mM glucose. Second, 

previous studies into lipid metabolism have inadvertently optimized conditions for FakA 

function, not FadXDEBA function (47, 53). Namely, studies of FakA function have 

typically employed oleic acid, which unlike palmitic acid does not induce fad expression 

(Figure 4.2), and have also usually sampled cells in mid-exponential growth, whereas 

peak fad expression occurs in transition between exponential and stationary growth 

phase. It may be that exogenous fatty acids are preferentially metabolized through 

incorporation into phospholipid, while fad expression occurs later in the growth phase in 

a role that could be associated with membrane homeostasis. Alternately, it is feasible that 

the cytoplasmic pool of fatty acids available to induce fad expression is kept low during 

exponential growth due to rapid phosphorylation by FakA, such that fad expression only 

occurs once growth begins to slow. Indeed, both of these explanations may be relevant.  

In favour of a role for Fad in maintaining membrane homeostasis, we see a second 

stronger spike in fad expression in late stationary phase, which has been confirmed in 

other studies (54). This later spike in expression may represent an additional function for 

Fad in recycling membrane phospholipids to maintain membrane homeostasis, a function 

attributed to Fad in both Sinorhizobium meliloti and E. coli (55). We plan to further 

investigate the role Fad has on membrane phospholipid recycling and composition, 

especially during stationary growth phases, through a variety of metabolomic and 

phospholipid analyses.  
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A role for Fad in maintaining membrane homeostasis is further supported by PrsW, and 

by extension the alternative Sigma Factor σS, playing a significant role in regulating fad 

expression. PrsW is proposed to respond to membrane stress and modulate σS activity 

(56, 57), providing a direct relationship between membrane stress and fad expression. In 

lieu of an ortholog to the FadR regulator, seen for both E. coli and B. subtilis (51, 58–60), 

PrsW may function as the primary regulator of fad expression in S. aureus.  

Although we have strong evidence to support PrsW as a regulatory mechanism for fad 

expression, there is still a lot unknown about how this regulation occurs. First, although 

PrsW is predicted to regulate the function of an alternative Sigma Factor, σS, through 

degrading an anti-sigma factor, no such substrate has been identified for PrsW in S. 

aureus. Furthermore, it is unclear if degradation of this anti-sigma factor occurs through a 

proteolytic cascade, as is the case for the PrsW associated anti-sigma factor RsiW in B. 

subtilis (61). Therefore, we plan to use copurification techniques to first isolate any 

potential substrates for proteolytic degradation through PrsW, and if the anti-sigma factor 

is discovered, we plan to further investigate the proteolytic steps required to free σS from 

this inhibition. Additionally, while we hypothesize degradation of the anti-sigma factor 

allows σS to regulate expression of fad, we have not yet directly shown this interaction. 

Therefore, we plan to use a biotinylated probe of the promoter region for fadX to pull 

down proteins which bind to this region, in both fad inducing and repressing conditions. 

Together, we believe a better understanding of the regulatory network that modulates fad 

expression will provide valuable insights into the nuances of fatty acid metabolism in S. 

aureus, and the relationship between the Fak and Fad pathways.  

The ability to properly study the details of sFFA metabolism in S. aureus is complicated 

by high concentrations of fatty acids severely impairing growth of strains containing 

plasmids. Although we were able to partially overcome this limitation by using less toxic 

methyl-palmitate, future work will focus on complementation by chromosomal allelic 

exchange to provide a truer measure of restorative function. At this time, we are not sure 

why high concentrations of exogenous fatty acids impair the growth of our bacteria 

harbouring plasmids. However, even in the absence of plasmids, and irrespective of Fad 

function, we see high concentrations of palmitic acid stimulates increased pigmentation 
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of S. aureus, likely due to increased staphyloxanthin production during late exponential 

and stationary growth phases (62), and biofilm formation in S. aureus cultures grown to 

late stationary phases (Figure 4.3 and 4.4). Together, these findings show high 

concentrations of palmitic acid have pleiotropic effects on S. aureus growth, one of 

which being impaired growth when harbouring plasmids.  

The final limitation in our study involves the use of the fadX promoter, the only gene not 

involved in the canonical β-oxidation pathway, to represent overall fad expression. Our 

reason for choosing this promoter is that the genetic layout of the fad locus favours fadX 

and fadD being co-transcribed. With FadD being the first step of β-oxidation, we wanted 

to assess expression of this gene as a measure of the overall expression of the β-oxidation 

machinery. Furthermore, previous studies, and our own unpublished RNA-seq data, 

indicate the fad genes are relatively co-expressed under inducing conditions (Table 3.1). 

However, additional experiments to confirm the inducibility and temporal regulation 

noted for fadX expression occurs for all fad genes may be beneficial. Additionally, the 

unique clustering of a short chain acyl-CoA transferase (FadX) with the canonical β-

oxidation pathway in S. aureus is interesting. While FadX has been attributed to 

metabolizing and resisting the toxic effects of short chain (C3) fatty acids (63), it was 

dispensable in resisting palmitic acid toxicity in our study. Therefore, while FadX and 

FadDEBA appear to have unique functions, the clustering of genes into a single genetic 

locus warrants further investigation into the relationship between these pathways. We 

hypothesize this relationship may be due to FadX metabolizing the final carbon chain 

remaining following subsequent rounds of β-oxidation through FadDEBA, explaining 

why these two systems are grouped together in the S. aureus genome.  

Together, our findings have demonstrated that the previously unstudied fadDEBA genes 

have an important role in palmitic acid resistance, a fatty acid physiologically relevant to 

S. aureus colonization of human skin (15, 16). Although a combination of bioinformatic 

analysis and our own experiments heavily indicate the FadDEBA proteins are capable of 

β-oxidation, we are currently working to confirm this theory. These findings provide a 

new understanding of lipid metabolism in S. aureus, and provide a foundation to build 

upon in future experiments.  
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Figure 4.2. Palmitic acid (PA), but not oleic acid (OA), induces fadX expression. 

Expression of fadX was measured as relative luminesce units (RLU) from a 

pGYfadX::lux construct. Cultures were grown for 24 hours in 200 µL of TSB without 

glucose supplemented with the indicated concentration of PA or OA, n=12. Growth 

(OD600) and fadX expression (RLU) were assessed every 20 minutes. Data was reported 

as mean ± SEM of the area under the RLU/OD600 curve. Data is reported as mean ± 

SEM. Statistical significance was measured using ordinary one-way ANOVA with 

Dunnett’s multiple comparisons test, comparing all samples to the no fatty acid (0 µM 

PA, 0 µM OA) condition. *** p < 0.001, ** p < 0.01, n.s. = not significant.   
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Figure 4.3. Palmitic acid (PA) causes increased pigmentation in S. aureus cultures. 

Cultures of both wildtype USA300 and ∆fadXDEBA were inoculated to an initial optical 

density at a 600 nm wavelength (OD600) of 0.01 in 25 mL of TSB without glucose. 

Cultures were supplemented with the indicated concentration of palmitic acid. Cultures 

were grown at 37ºC on an orbital shaker, shaking at 220 rpm, for 24 hours. Optical 

densities of all cultures were similar, at an OD600 of approximately 8.0. Cultures were 

grown in triplicate flasks, and the image taken is representative of flasks for each 

condition. 
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Figure 4.4. Palmitic acid (PA) induces production of biofilms at the air-liquid 

interface during shaking growth of S. aureus cultures. Cultures of both wildtype 

USA300 and ∆fadXDEBA were inoculated to an initial optical density at a 600 nm 

wavelength (OD600) of 0.01 in 25 mL of TSB without glucose. Cultures were 

supplemented with the indicated concentration of palmitic acid. Cultures were grown at 

37ºC on an orbital shaker, shaking at 220 rpm, and images were taken at 48, 72, and 96 

hours. At 24 hours, no visible biofilms had formed in any flasks. Cultures were grown in 

triplicate flasks, and images were taken of a representative flask for each condition.  
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Appendices 
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Appendix A. Structural alignment of the short chain acyl-CoA transferase in S. 

aureus (FadX) and E. coli (Ydif). Protein structures were predicted through AlphaFold 

and aligned through PyMol. Top panels show aligned structures of both proteins, with S. 

aureus coloured in cyan and E. coli coloured in light green. Bottom panels represent the 

same images as the top panels, however ColorByRMSD has been run on the protein 

alignment, applying a gradient of color to the protein residues with blue representing the 

stronger regions of alignment and red representing the weaker regions of alignment. Grey 

refers to residues that were not aligned between the proteins.  
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Appendix B. Structural alignment of the long-chain fatty acyl-CoA ligase FadD in S. 

aureus and E. coli. Protein structures were predicted through AlphaFold and aligned 

through PyMol. Top panels show aligned structures of both proteins, with S. aureus 

coloured in cyan and E. coli coloured in light green. Bottom panels represent the same 

images as the top panels, however ColorByRMSD has been run on the protein alignment, 

applying a gradient of color to the protein residues with blue representing the stronger 

regions of alignment and red representing the weaker regions of alignment. Grey refers to 

residues that were not aligned between the proteins. 
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Appendix C. Structural alignment of the acyl-CoA dehydrogenase FadE in S. aureus 

and E. coli. Protein structures were predicted through AlphaFold and aligned through 

PyMol. Top panels show aligned structures of both proteins, with S. aureus coloured in 

cyan and E. coli coloured in light green. Bottom panels represent the same images as the 

top panels, however ColorByRMSD has been run on the protein alignment, applying a 

gradient of color to the protein residues with blue representing the stronger regions of 

alignment and red representing the weaker regions of alignment. Grey refers to residues 

that were not aligned between the proteins. 
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Appendix D. Structural alignment of the 3-hydroxyacyl-CoA dehydrogenase 

domain of FadB in S. aureus and E. coli. Protein structures were predicted through 

AlphaFold and aligned through PyMol. Top panels show aligned structures of both 

proteins, with S. aureus coloured in cyan and E. coli coloured in light green. Bottom 

panels represent the same images as the top panels, however ColorByRMSD has been run 

on the protein alignment, applying a gradient of color to the protein residues with blue 

representing the stronger regions of alignment and red representing the weaker regions of 

alignment. Grey refers to residues that were not aligned between the proteins. 
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Appendix E. Structural alignment of the enoyl-CoA hydratase domain of FadB in S. 

aureus and E. coli. Protein structures were predicted through AlphaFold and aligned 

through PyMol. Top panels show aligned structures of both proteins, with S. aureus 

coloured in cyan and E. coli coloured in light green. Bottom panels represent the same 

images as the top panels, however ColorByRMSD has been run on the protein alignment, 

applying a gradient of color to the protein residues with blue representing the stronger 

regions of alignment and red representing the weaker regions of alignment. Grey refers to 

residues that were not aligned between the proteins. 
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Appendix F. Structural alignment of the acetyl-CoA acyltransferase FadA in S. 

aureus and E. coli. Protein structures were predicted through AlphaFold and aligned 

through PyMol. Top panels show aligned structures of both proteins, with S. aureus 

coloured in cyan and E. coli coloured in light green. Bottom panels represent the same 

images as the top panels, however ColorByRMSD has been run on the protein alignment, 

applying a gradient of color to the protein residues with blue representing the stronger 

regions of alignment and red representing the weaker regions of alignment. Grey refers to 

residues that were not aligned between the proteins.  
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