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Abstract

The gauge theorystring theory correspondence has led to great progress in th
study of strongly-coupled gauge theories. In this work, taetsvith a detailed treat-
ment of some simple examples of this correspondence in toaestablish some of
the concepts and techniques are used on a more complicatedsy\e then con-
sider a (31)-dimensional theory of gravity with a translationallyamiant horizon,
that is assumed to be dual to a+@®-dimensional non-conformal gauge theory at
finite temperature. We study the thermodynamics of this rhade find that there
exists an exotic type of second-order phase transitionsunéne symmetry-broken
phase occurs above the critical temperature. We also sh&digytdrodynamics of
this model and find that the speed of sound in the various ghalsthe model
suggests that the symmetry broken phases are thermodyaignsiable, yet their
higher free energy with respect to the symmetric phase stggeat they are not
thermodynamically preferred. We calculate the bulk-teashviscosity ratio and
find that, in the symmetry-broken phase, it diverges at tlaseltransition. Finally,
we study the critical behaviour of this model close to thegghtaansition and com-
pute the static and dynamic critical exponents, which twinto be of mean-field
type. We conclude that, although the symmetry-broken ghasethermodynami-
cally stable, they are perturbatively unstable. Thus,riiogel is a counter-example
to the Correlated Stability Conjecture, which relates ineatynamic and classical
(in)stabilities of black branes with translationally imant horizons.
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Chapter 1

Introduction

The standard model of fundamental particles and intenasi®formulated in terms
of quantum field theories [13]. This framework is most us@iukgimes where the
couplings measuring the strength of the interactions ikywshereby perturbation
theory can be used to calculated observable quantitiess dpgproach has had a
great deal of success when applied to high-energy partiilisions in accelerator
experiments. However, in the first decade of this centurgyhen collisions at the
Relativistic Heavy lon Collider gave results suggestirgf tihe collisions produce
a strongly coupled quark-gluon plasma [19], whose thewaietiescription should

be that of strongly coupled quantum chromodynamics.

Perturbation theory fails when the couplings in the fieldbtigdbecome strong.
One way of dealing with strongly coupled field theories isge the Anti de Sittef
Conformal Field Theory (Ad®&FT) correspondence proposed by Maldacena [32].
The prototypical example of this correspondence is theityua¢tween type 11B
string theory on Ad$<S® and N = 4 supersymmetric Yang-Mills (SYM) theory in
3+1 dimensions, which is a conformal gauge theory. This camédpnce has been

extended to conjecture a correspondence between asyoaiyohdS spacetimes



and non-conformal gauge theories. In support of this, @aer massive deforma-
tions of strongly coupledv’ = 4 SUN — o) SYM are conjectured to be dual to
AdSs spacetime coupled to a particular set of scalar fields [3Bjs proposed du-
ality has survived all of the holographic tests made so far §1. This observation
may justify one to devise a phenomenological model of gyaaitd conjecture that
it definesa dual field theory. This approach was used by Erlich et al} td 8reate
a phenomenological model that captures some of the keyré=ati QCD. Herzog
and collaborators [28, 27] created phenomenological nsooesuperfluidity and
superconductivity. The non-conformal extension of the /&F correspondence
a central theme in this thesisWe will not go into the fine details of the corre-
spondence here. Instead we will give the some of the concegstslts and parts
of the AdSCFT dictionary that relates quantities in the gravity tlyetorquantities
in the field theory. We refer the reader to reference [2] afereaces therein for a

thorough treatment.

1.1 Generalrelativity, AdS spacetime and black holes

In this section we review some of the principles of geneiaknaty (GR). For more
detail the reader is referred to references [36, 41].

The central object in GR is the metric tengpr(x), whose components are
generally functions of the spacetime coordina(bé’sxl, X2, ..., xd‘l), and they are

encoded in the infinitesimal line elemént

ds = g, dx¥dx. (1.1)

1Although we will be considering non-conformal field thestieve will continue to use the
terminology "AdSCFT correspondence”.
2We use Einstein’s summation convention, and signature--..)



The metric components are governed by Einstein’s equations
1 A
R, — ERg‘V =8rT,, + Eg’”’ (1.2)

whereR,, is the Ricci tensorR is the Ricci scalarT,, is the stress-energy tensor
associated with the matter fields, andis the cosmological constant. Einstein’s

equation can be derived by minimizing the Einstein-Hillzation?

O0SEH 1
=0 here Sgy=-—"+—
sgr W T e

dex\/—_g(R+A+16nGD£m), (1.3)

andGp is theD-dimensional Newton’s constant, ad, is the lagrangian describ-
ing the matter fields.

A metric of particular importance to us here is that of Ad®his is the solution
to Einstein’s equations iD = 4 dimensions when we assume radial symmetry, and
set

T, =0, A =6. (1.4)

We will not solve this explicitly here since it will be donedietail in chapter 3. The

result is the Adgmetric in Poincaré coordinates,
dr?
r2 (1 _ ﬁ) ,
I‘3

wherexg = tistime,xs = r is the radial coordinate angis an integration constant.

dsZ:—rz(l—:—é)dtz+r2(d>§+d>§)+ (1.5)

The final concept we need to cover in this section is that oaakohole. There
are many entire textbooks devoted to this subject, but hergviV be very brief.

A black hole is defined by a hypersurface in spacetime caledhbrizon, which

3Here we are being cavalier about boundary contributions#mel counter-terms, but these will
be treated carefully in later chapters.



is a boundary that separates the spacetime into two caubstignnected regions.
Observers inside the horizon cannot communicate with tbassde the horizon.
To locate the horizon in spacetime we need to introduce theegut of a Killing

vector. A Killing vector is a vector, denoted, that satisfies the Killing equation
V.é +V,E, =0, (1.6)

whereV,, is the covariant derivative, defined by
Viér = 0ué, —Tuéa, (1.7)

whereI™,, are the Christfiel symbols. A static spacetime always admits a time-

like Killing vector of the form
& =11,0,0,0..] (1.8)
The horizon is defined by the hypersurface where this veaootmes null. That is
horizon & Q,&¢ =0 =0, (1.9)

with the added condition that the other metric componentaatovanish, or they
vanish more slowly thagy as we approach the horizon. For our Ad®acetime

described by the metric in (1.5) we have

Ot = —r2(1— r—g) (1.10)
tt — r3 ) .



so the horizon is given by the surface
r=ro. (1.11)

Notice that the geometry of the horizon is found by fixmg ro =constant in (1.5),
giving
AL orizon = T (A + d3). (1.12)

which is the geometry of the plai®. Thus we have a planar black hole.

1.2 Conformal Field Theories

This thesis will focus on a phenomenological model of the /&FF correspon-
dence. The Hamiltonian of the field theory we will study is knbwn, but it is
not conformally invariant. Nevertheless, we will brieflwr@v some of the main
features of CFTs here, as they will be important when we canghe conformal

limit of our model. For a detailed study of CFTs, the readeeferred to [20].

A CFT is a quantum field theory that is invariant under confalrtransforma-
tions, which are spacetime coordinate transformations dh& angle-preserving.

More precisely, the infinitesimal conformal transformatis
X — X=X+ V(X), (1.13)

where

V(X)) = & + o X+ AX + (b“x2 = 20", %), (1.14)

The parameters of the transformation have the followingrpretation: & is a

translation,w*,x” is a Lorentz transformation (i.e. rotations and boosts), is



a rescaling, ant@b“x2 - 2b‘x1x“) is a special conformal transformation. Under a

conformal transformation, the metric tranforms as

o ox
ox 9%y

O — gﬂv(x) = = 'Q'(X)guv(x)' (115)

For an infinitesimal transformation, we assume the for(r) = 1 — w(x), and we

can show that* satisfies the conformal Killing equation,
2_ (o
ANy + OV, = T (02v") G (1.16)

wherep is the spatial dimension of the spacetime in which the CFasliv

The stress-energy tensor of a CFT describes the reactidre @yistem under a

perturbation of the metric, and it is givenby

T __1 s
" VEgeg”

(1.17)

Let us prove a key feature of CFTs - that the stress-energptes traceless. The

conserved current' associated with a symmetry of the form (1.13) is given by
J*=THV,. (1.18)
Sincej” is conserved, we have
: 1
o =v,0, T + ET’” (ayvv + 6Vv,1) =0. (1.19)

Note thafT*” is symmetric, so we take only the symmetric pardpf, in the second

4Strictly speaking this is the Belinfante stress-energgaenwhich is related to the canonical

stress-energy tensor Gy = T’C’;nomca|+ 0,V* whereV® = —V¢2’_ Both stress-energy tensors

lead to the same conservation equations and Ward iderjtés



term. It is always the case thg{T*” = 0. Using (1.16), equation (1.19) becomes

i (6'va) g T =0. (1.20)

Thus, the stress energy tensor is traceless
T, =0. (1.21)

An important quantity in a CFT is the central charge,The central charge is
essentially a way to measure the number of degrees of fregdtma CFT. This is

often defined in terms of the two-point function of the streaergy tensor,

c 1 2
<TﬂV(X)Ta,’3(O)> = WE (Iyalvﬁ + I/t,Blva - aéﬂvdaﬁ) N (122)
where ,
2%, X, 22
Ipv = Opy — +, Wd-1 = ’ (123)
X r(s)

ando¢,, is the Kronecker delta function. In the next section we walé ghat the
AdS/CFT correspondence provides a much more convenient wayltoata the

central charge.
From Noether’s theorem, we can find the conserved chargesiass] with
conformal tranformations, giving rise to the following geators of the conformal

group,

a — P

w

uv ny

(1.24)
A—-D

b — K,



which obey the conformal algebra (see [20]). Of particutaportance here is the
generatoD of scale transformations, which is called the dilatatiorrapor. Given

an operato© in the CFT, the dilatation operator acts as
DO = AO, (1.25)

whereA is the scaling dimension of the opera®@rand the operatad transforms
as
0(x) = O(X) = 1°0(1x) (1.26)

under a scale transformation parameterized.by

Operators in a CFT can be separated in to three classesamelevelevant, and
marginal. This characterization of operators can be maderms of their scaling

dimensions;

A<p+1 = relevant
A>p+1 = rrelevant (1.27)

A=p+1 = margina

Loosely speaking, a relevant operator is one that can appaee Hamiltonian
of the CFT, while an irrelevant operator does not (howevermay still consider
correlation functions containing irrelevant operatohs)other words, Hamiltonians
with relevant operators are renormalizable, while thogh isielevant ones are not.
Let us now look at how CFTs are related to non-conformal fiedbties. Quite
generally, we can construct a field theory by identifyingfiblel content and writing

down an action of the form,

S=Sy+ fdp”xz g0, (1.28)
i



8;
stable
(irrelevant)
unstable
(relevant)
fixed point
/;‘(g';i‘) =(
g,
J

Figure 1.1: Fixed points and RG flow in coupling space.

whereSy is the free-field partQ; are operators characterizing all possible interac-
tions between the fields, amgglare couplings governing the strength of the interac-
tions. Under the renomalization scheme, the couplingsiezgquependence on the
energy scale:, and this dependence is governed by the so-called renaatiah

group (RG) flow equations,

W =Ai(a). (1.29)

A set of fixed points in coupling space is found by solving thetem

Bi(g;) =0. (1.30)

At the fixed points, the theories become scale invariant amdbe described a
CFT. These fixed points are very special because, if we hav€lacGrresponding
to a fixed point, the couplings of that theory do not run as weelothe energy
scale. One can linearize the system (1.29) to determinetaibdity of these fixed

points in coupling space, where trajectories leaving thedfpoint are unstable and
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those entering the fixed point are stable. This allows usdesifly the operators
associated with the couplings in these directions. Opesathose couplings flow
along unstable (stable) trajectories are called irreleyatevant) operators. The
point here is that if we perturb a CFT by an operator, we movetloeory away

from the fixed point and induce the RG flow.

1.3 AdSCFT correspondence

Figure 1.2: Artists interpretation of the AMST correspondence. In the bulk of an
asymptotically AdS spacetime, we may have some matter fiedgsesented by the
blue colour, and a black hole. The dual gauge theory plasepaesented in red,
lives on the boundary of the spacetime.

Figure 1.2 shows a cartoon depicting how we can interpreAt&CFT cor-
respondence. The idea is that we haved a ()-dimensional, asymptotically AdS
spacetime containing a black hole, and perhaps some mattis. firhis defines our
gravity theory; that is, the AdS side of the corresponderc&ey feature of AdS
spacetimes is that they have a boundary such that light rajtsed in the bulk of



11

the spacetime can reach the boundary in finite fimiEne dual field theory lives
on this boundary. The existence of a black hole in the bulksii@e corresponds
to thermal states in the field theory, where the radius of thelkdhole’s horizon is
related to the temperature of the "plasma” living on the latang. In the absence of
matter fields on the gravity side, we assume that the dualegthepry is a CFT. If
we have matter fields propagating in the bulk spacetime filwergtavity perspec-
tive, this corresponds to the turning on of massive fieldhafteld theory, thus

deforming away from the fixed point and breaking the confdimariance.

There are several examples of the AQBT correspondence that arise from
various limits of string theory. In these cases, the idgmtitboth the gravity theory
and the field theory theory are known [32, 35, 2]. The modd wwwill focus
on here does not have such a string theory embedding. As wechyill adopt
the philosophy that our gravity theory on the AdS sdidinesa field theory on
the boundary. Although this means that we do not know exadtigt field theory
we are dealing with, the AJSFT correspondence allows us to glean many of its

physical features.

The most deeply studied example of the AOBT correspondence is that of
AdSxS® and N = 4 supersymmetric Yang-Mills theory [32, 2, 38, 5]. Having a
duality between a field theory and a "classical” gravity ttyeis only valid if the
't Hooft couplingg?,,N is infinite. We assume a similar argument for phenomeno-
logical models, so really we are considering very stronglypied field theories.
To study finite coupling corrections, we typically would leawo find a string theory

embedding of our model and look at subleading terms ifi\aeixpansion.

5This is much diferent from Minkowski spacetime, where a light ray reachesttbundary in
infinite time
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1.3.1 Thermodynamics

A formal statement of the AJSFT correspondence that will be useful to us is that

the partition function of the CFT is related to the gravidiatl (AdS) action by
Zepr =€ =@, (1.31)

whereSy is the Euclidean action of the gravity theory, which mustdrgrmalized
to remove divergences at the boundary. This divergenceetlarg prescription
is called holographic renormalization, and the technicaresdescribed in [3, 4,
40]; although, we will work out several examples in detaildater chapters. There
is a dictionary that enables us to relate certain quantiti¢be gravity theory to
guantities in the gauge theory. Here we will list those iteha we will use later;
however, we will review them as they arise later on in the exnof our specific

model.

Beginning with thermodynamics, the Hawking temperaturel entropy den-
sity of the black hole in the gravity theory are equal to thagerature and entropy

in the field theory correspondingly,
Ten =Ttiea =T, and Sy = Sfield = S. (1.32)

The stress-energy tensor of AdS gravity is given by [3]

X
Y OV

(1.33)

wherey,, is the induced metric on the AdS boundary, &, is the renormalized
graviational action. We will see later th&” has divergences that must be properly

cancelled. When all is said and done, the stress-energprténselated to the
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energy density and pressure of the gauge theory plasma by

&0 0
o loP o0 .
L IS (1.34)

0 O

The diagonal structure @ is a result of the fact that we consider only spherically
symmetric spacetimes, but non-zend-diagonal may be present in more general
cases. The free energy densitycan be computed from (1.31), and we may check

thatP = —F, as expected for a homogeneous system.

The AdSCFT correspondence allows for a simple method to calcuateeh-
tral charge in CFTs at finite temperature with dual gravitgatgtions. In ad-
dimensional CFT at finite temperatufiejs the only scale in the system. By dimen-
sional analysis, we expect thatc T4, In a thermal system, the entropy density
is a measure of the number of degrees of freedom, and so sheuklated to the

central charge. This relation is [31]

r(%)3 ar\(d-1 4
= ir @) (F) (m)Td ' (1.35)

So computing the entropy density in the gravity theory alstednines the central
charge in the CFT.
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1.4 Hydrodynamics

On the field theory side, at finite temperature, the hydrodyogsare that of a stan-

dard viscous relativistic fluid. The local stress-energyste is given by [11]

TH = elf'U” + P(e) A" — n(e)d"” — {(e) A"V U"
(1.36)

1
AV =gV, o = AAY (Vo + V) - 5

1MA“ﬂva Ug,

wheree is the local energy density is the pressuray is the locald-velocity of
the plasma, ang and{ are the shear and bulk viscosities respectively. A plasma
with such a stress-energy tensor allows for the propagatibgdrodynamic sound

waves with the following dispersion relation
b=ch-iTef+0(6%). q-0. (1.37)

wherec; is the speed of the sound waves, &nd their attenuation,

2 _ (9P _,n(d=2_ <
Cs_(aeT’ F—27rs d—1+2n’ (1.38)

and

" w N |q1
- =T 1.
w = , oxT’ ( 39)

wherew andq are the frequency and momentum of the waves, respectivédp, A
sis the entropy density, andi= p + 1 is the spacetime dimension. The AGET
correspondence identifies the dispersion relation (1.B3pond waves in the field
theory (plasma) with that of quasinormal modes of the duavity theory in the

limit whereq — 0. We will see how this works in chapters 4 and 6.
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In a conformal plasma, the trace of the stress-energy temsishes,
T, =0. (1.40)
Let us show that a result of this is that for a CFT plasma,

1
cz £

=——, and =0 (conformal) (1.41)
d-1 n

First, we assume that' is a timelike vector field normalized t@#'u, = —1. Now,

taking the trace of (1.36), we get
T, = —e + PA*, —no', — (A, (VU") = 0. (1.42)
We have
A =g+ U0y, =d -1, (1.43)

and usingy', = ¥, it is straightforward to show that

o, = u'f (Vﬁua - Vauﬁ). (1.44)
=0,

where the second equality follows from the fact tira¥® is a symmetric tensor and
(Vﬂua - Vauﬁ) is an antisymmetric tensor, so their product must vanish.néde
have

T, =[-e+(d-1)P] - £(d - 1)(V,u") = 0. (1.45)

Since the first term is-independent and the second terrasdependent, both terms



16

must vanish. The first term gives

€ 2_@_1
P=a-1 *° %_( )T_ ' (49

The second term gives
¢=0. (1.47)

The shear viscosity of the plasma is related to the low-energy graviton absorp-

tion cross-section of the black hole by [37],

1
- 1.4
= 16nG7 (1.48)

It turns out that the ratig/s is universal for all strongly coupled gauge-theories

dual to a two-derivative gravitational the8ryThe universal value is [7]

n 1
- =— 1.49

S A4n ( )
We will not prove this here, but we will give a brief argumehwdny n/sis constant,
following [33]. In [16] the authors give a theorem that sdyatithe low-energy ab-
sorption of any black hole is equal to the horizon area, whahrn is proportional
to the black hole entropy,

oc=Axs (1.50)

Thus

(EES]

= constant (1.51)

Having a universally constant value férmow allows us to compute the bulk-to-

6Camanho et al. [14] propose higher derivative correcti@mdmenger et al. [17] found that in
a two-derivative gravity theory coupled to an SU(2) gaugl fispontaneous breaking of rotational
invariance induces additional shear modes whose corrdsppwiscosities are not universal.
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shear viscosity ratid/n, provided that we can compute the dispersion relation in

the hydrodynamic limit, i.eq = O.

1.5 Exotic Model

The goal of this thesis is to demonstrate the techniques tasstlidy thermody-
namics, hydrodynamics and critical phenomena in an/&&3% model. The latter
requires that the gravity theory be asymptotically AdS, #rad the system under-
goes a phase transition at some critical temperature. G(@8eremarks that a

theory with an action of the form

5= [ x=a(R- 5 @08 - 5 @07V (6.0 o

1 1
V(¢ x) = -6+ Em§¢2 + E”ﬁxz + 9oy,

exhibits a second order phase transition. Here we will c@rsa gravitational ac-

tion with similar forn?,

1
S=—— fd“x V=0 (Lcrr + L + L),
162G (1.53)

1 1
Lorr =R+6, Li=-5(V9)+¢° Li=-5(W)°-2¢"-0x".

We can find asymptotically AdSsolutions as long as we require that the scalars
¢,y — 0 at the AdS boundary. Let us interpret what the form of thivoaaneans
to the dual field theory. In the absence£ff and £;, the remaining parfcgr, of
which pure AdS-Schwarzschild black holes are a solutiodual to a UV fixed
point (as in figure 1.1) decribed by a CFT with Hamiltonigfarr. According to

the AASCFT correspondence, scalar fields in the gravity theory sse@ated with

"We chose to work in four dimensions because we initially wertb study this system in an
external magnetic field.
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operators in the field theory. In our modelandy are associated with operators
O; andQ;. The inclusion of the termg, and £; then deform our field theory away

from the fixed point and induces the renormalization grou@ ) Row,
Heer = H = Herr + 1,0, + 0. (1.54)

The masses of scalar fields in the gravity theory (segtrandy? terms in (1.53))

are related to the scaling dimensions of the operators ifidltetheory by [42]
m=AA-p-1). (1.55)
Thus, we infer scaling dimensichand classification of the field theory operators,

Mm=-2 = A =2<p+1=3 (relevant)
(1.56)

Mm=4 = Ap=4>p+1=3 (irrelevant)
The AJSCFT correspondence dictates that the asymptotic behawfdbe scalar

fields near the AdS boundary takes the form

¢ = Q182 4 (O)yrbor 4
(1.57)
x = Arda 1 (O r a4

whered = 3 in our case. Having determined tldatis an irrelevant operator, we are
forced to sett; = 0 in (1.54) in order to maintain a well-defined field theory.ush

we expect that for our model with— oo

8Note thatAp, = 1 is also possible, but we will not consider this case here.réerence [10].
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Or)

r2

¢ =Ar+
()

r4

+ ...
(1.58)

+ ...

The action (1.53) hasZ x Z, symmetry associated with the parity transforma-
tion

¢ — —¢ X — —x. (1.59)

The former symmetry is broken by hand via a relevant defaonadf the type
(1.54). The latter, as we will see, is broken spontaneouislgther words, we will

find a critical temperature whet@;) = 0 in one phase, an@;) # 0 in the other.

In the field theory, to have a properly renormalized corretatunction, say

(O;), we may have to mix, with O; in a linear combination. For example

Oi — Zo0: + 210, (1.60)

whereZ, andZ; are codficients that must be carefully chosen in order to cancel any
UV divergences. This mixing of the field theoretic operatansler the RG flow is
accounted for in the gravity theory by the interaction tegdy?. Also, as pointed
out in [25] we observe a phase transition onhgik 0. Unless explicitly stated
otherwise, we will takegy = —100.

This concludes what we can learn about the field theory qooreding to the
gravity theory (1.53) without doing any real computatioBsat before exploring the
thermodynamics, hydrodynamics, and critical phenomentaisfmodel, we will
warm up on some simpler examples; namely, we will consides pulS;, which is
dual toN = 4 supersymmetric Yang-Mills theory, and is the most wellenstbod

example of the AAJ&FT correspondence. As well, we will consider pure AdS



which is the conformal limift, — 0 of our Exotic Model.
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Chapter 2

AdSs

In this chapter we will study anti-de Sitter gravity in fivextknsions (Ad§. Start-
ing from the gravitational action, we derive the equatiohmotion and find their
solution. We consider black hole solutions with 3-sphenezoms. From the solu-
tion we compute the temperature and entropy density, andesferm the holo-
graphic renormalization of the gravitational action toedstine the free energy
density. We compute the stress-energy tensor and, in tuergriergy density and
pressure. These exercises are done in painful detail, sp steps may be skipped

by the experienced reader.

2.1 Action

Consider a (41)-dimensional Einstein gravity with a cosmological camst The

gravitational action is [3]

16WGde’x\/_(R5+A)—— d*x V=70, (2.1)
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whereg is the metric determinanRs is the five-dimensional scalar curvature and
A is the cosmological constant. For AdS gravitydn+ 1 dimensions, we take

A = 482 wherel is a characteristic AdS length much akin to the radius fdr a

sphere. Herel = 4 and sincé is the only relevant length scale in the problem, we
are free to choose units such that 1. Also,y is the determinant of the boundary

metric and® is the trace of the extrinsic curvature, which is given by
1
" = -5 (V" + V'rt') (2.2)

wheren* is the outward pointing unit normal 5-vector to the boundasyt, andV,

is the covariant derivative operator.

2.2 Equations of motion

In order to find the equations of motion (i.e. the equatiord overn the metric
0.») We must vary the action with respect to the metric; that is,naust findd%f’y.
Let us look for spherically symmetric solutions. As such,cheose an ansatz for

the metric of the form
ds = —cﬁ(r)dt2 + cﬁ(r)dsg + c§(r)dr2, (2.3)

wheredS? = dy? + sir(y) (de? + sir(¢)d¢?) is the metric for a 3-sphere. The

determinant of the metric (2.3) is

g = —cicScssin' y sir? . (2.4)



23

To simplify the calculation of the scalar curvatiRg let us consider the metric
ds = —c3(r)dt® + c5(r)dx? + c3(r)dr?, (2.5)
wheredx? = dx + dy? + dZ. The Christéfel symbols are defined to be [36]

« 1 1
Fﬁy = Eg H (8yg#ﬂ + aﬂgw — Bﬂgﬁy) . (26)

Since the metric (2.3) is diagonal, only one term in the sutionaveru on the
right-hand side survives, i.e. the term for whjgh:- a. Also, since all components
of the metric depend only of the coordinatethen all components df"ﬁy are zero
except those with either the forﬁ‘iﬁﬁ or Fﬁﬁr.l This is clearly seen if we write (2.6)
as

re, = %%g‘w (6760, + " DpQuy — 50,9, (2.7)
The Kronecker-delta symbols reflect the facts that the meérdiagonal and de-

pends only on the coordinate The result is
[ = %9” (25ﬂ "OpQpr — 5r9ﬁﬁ) andl”’; = %QB P6; 9, (2.8)
and all other components are zero.
The scalar curvature is defined to be

Rs = g (0., - 8,1, + T\, T%, —T7, ", ). (2.9)

uv Ao

1Here we are not contracting over the ingielut instead just fixing them to be the same.
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Using (2.8) we get the scalar curvature for the metric (2.59)

/ ~ %
GC GG O

C1 020:2,’ C1 Cg C1 C:2,’

3

N c)?  _cc c)
R5:2(—3 (@) '223—'22). (2.10)

+ J J
3
e Gt G

The only diference between the metrics (2.3) and (2.59) is that we trdoed-
sphere for Euclidean 3-space. In order to get the scalaatuneRs for the metric
(2.3) we now must add tBs the contribution to the curvature due to the 3-sphere
with radiusc,, which is known to béRs, = d(d — 1)/c3 (hered = 3). So the scalar

curvature that should be inserted into the action is

cic, CiCy ¢ C,)? _CyC. ¢, 3
Rszz(_s L2 52 A 2232 +—). (2.11)

Now the first term in the action (2.1), called the bulk term;draes

1

Shuk = 87TGLd XSIHZI,ZISIHQ

3~/ 2~ 7
CZClCé _ 3C2C1C,2 _ Cgcl

cs Cs Cs
I (A R (A v c,cec)
3— 2 +3—223 322 _6eiCcs
C3 C3 C3

3c1CoC3 + (2.12)

Now we will turn to the second term in the action, called therary term,
Shoundary 1N our coordinate system, we will consider the boundamf to be de-
fined by the hypersurfage= p wherep is a constant that we will eventually take to
infinity in order to cover the entire space. The outward ndsreator to the bound-
ary will then be in the direction o#* = (0,0,0,0,1). To construct a unit normal,
first notice thatv'v, = g,,V¥v' = g = c3. So the unit normal to the boundary
isr = (0,0,0,0, 0—13). From equation (2.2), we see that the trace of the extrinsic
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curvature is the negative of the divergencerafThat is,

Q=-V,n
= — (6ﬂn“ + F"an)

den’ +T,17) (2.13)

(
= - [y + ¢

From equation (2.6) we can find

1
F/‘M = _gﬂ/l ((9rg/l;1 + ayg/" - (9/19”)

2
_ }((Ci)l p3@ (C%)’) 2.14
2q e e .
c c, C,
— 1 + 3_2 + 3
C1 C; GC3
so that
C G
®=- +3—= (2.15)
C1C3 CoC3

Notice this is also the extrinsic curvature for the metricGj2ecause the angular
factors played no role in the calculation. That is, the aagtactors cancelled
since, in (2.14), the metric components with lower indickgagis come with a
partial derivative with respect to, so the angular factors are ndfected in the
numerator, and the components with upper indices carrydhesangular factors

in the denominator, and thus the angular factors cancel eieiyp

The boundary M is defined byr = p, so we havelr = 0. The induced metric

on the boundary is

ds’ = —C(p)dt® + C3(p0)d S5, (2.16)
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and the determinant is

y = —c2cSsinty sir? 9|r=p. (2.17)

The boundary term in the action is

1 . . cc C]_CZC’
Shoundary = e f d‘&smﬁpsm@(% + 3%)
oM 3 3

(2.18)

r=p

To find the equations of motion, we demand ®&tsg,, = 0, or, considering only
the non-zero components of the metric, we demand&Baic,; = 0, and similarly
for ¢, andcs. We will impose that the variatiofic, = 0 at the boundary, but we
must allowsc]; # 0 at the boundary, and similarly fas andcs, in order to get

non-trivial results. Now,

O0Spulk OSpuk .,  OSpulk

OSpuk = o0Cy + o¢) + ———0o¢] + ...similiar terms forc, andc
T ae, T o Tt aey Tt 2
1
=—— | d°sirfysing
8nG [M v
c(C))? e cacy
(3c2c3—3 () +3222 _322 _6cics |y
Cs Cs3 Cs3
cc. c3c. c
v (ﬂ _ 3£)5c; _ G
C:2,’ C3 C3

(2.19)



Integrating the second and third terms by parts with redpacive get

S 1 . .
0Sbuk _ fd5xsmzwsm9
M

oCy B 8rG
c(C)?  cic.c c2c/ ]
(3qqy-32(9 +3-2278 3722 —6@QJ6Q
C3 C3 C3
cc e\ 3y
—(%—3 2 2) 6cl+(—2) ¢,
Cc3 C3 Cs
1 c3c, c2c. c3
- d*xsirfysing || -2 — 3222 5¢, — | -2 |6 |.
817G faM v [( 2 s ) - o \eg)t

3

Integrating the final term in the integral ovat we get

0Shuk __1 deXSinzwsinH
M

0Cy B %
c(C)? _ccc c3cy
(30203—3 AG) | 300G %% —6c§c3)
C3 C3 C3 sc
, s\ 7 1
c3 C3 C3
Fusing(2
- d*xsirf ¢ sing| = sc,
87G Jyp 0 STV (03) '

27

(2.20)

(2.21)

where we dropped thie; term in the integral oved M since the variation vanishes

there.

Now let us vary the boundary acti@youndaryWith respect ta;.

0S 0S 0S
boundary _ boundarydCl + boundarydc&
oCy ocy aCi
?sing (2
= d*xsiry sing| = | s¢c;,
8nG Jom v (03) !

where we dropped th&c; term as it vanishes on the boundary.

(2.22)

Now, sinceS = Spuik + Spoundary When we vary the total action, the boundary
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integrals cancel exactlyand we are left with

S 1 . .
%S _ —f d®xsir? ¢ sing
0C; 8rG M
c(c)?  cice, e
(30203—3 AG) | 3%5% 3% —60§c3) (2.23)
C3 C3 C3 sc
Cg C3 C3

Since the variatiodc, is arbitrary and the functiong, ¢, andc; are assumed to be
continuous, demanding thé® = 0 means that the quantity in square brackets must

vanish. This gives one of the equations of motion
7 ’\2 /A 2.3 3 _
C;CoC3 + (C5)“Cs — C45C5C, — 2655 — €3 = 0. (2.24)

Similarly, varying the action with respect tg andc; gives the other equations of

motion

C}/ C5C3 + 2C5 C1CoC3 + 2C; ChCaC3 — C; C4C5 + (Ch)?C1C3 — 2CHC5C1Co — C1C3 — 6C;C5C3 = O

(2.25)
C)C,Co + (C5)%Cy — 1G5 — 2¢,1C5C5 = 0. (2.26)

We can put these equations into a nicer form by using (2.2dJ2125) to eliminate
c; from the former, then to eliminat’ from the latter. We find that the equations

of motion can be put in the form

CiCy  CiC  CuG)? . C1C3

c/+2 3 _2c,2=0. 2.27

1 C, Cs c2 c s (2.27)
() ¢ G 2

VoL f2 2 26 =0 2.28

2 Co C3 Co 23 ( )

2This cancellation is precisely the reason for insertingabendary term in the action.
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C)C,Co + (Ch)%Cy — €165 — 26,6565 = O. (2.29)

2.3 3-sphere black hole solutions

Now we wish to solve the equations (2.27)-(2.28). Invareanader difeomor-
phisms permits us to choosgr) = r, which is a natural choice as it assigns to the
3-sphere part of the metric a radius Also, let us look for solutions of the form
ci(r) = rf(r) andcs(r) = 1/rf (r). With these choicés equation (2.28) and (2.29)

are the same; they are
3 df 2 2
PR g+ 2 [(f()*-1|-1=0. (2.30)

Equation (2.27) becomes

2 2
r”(r)% + r4($) + 6r3f(r)% +2r?|(f(n)?+1]-1=0, (2.31)

The solution to (2.30) fs

1 C
f(r)== 1+E+F' (2.32)
The solutionto (2.31) is
1 C C
f(r):i\/l+ﬁ+r_3l+r_j (2.33)

These solutions are mutually compatible onlZif= 0 andC, = C. The signature

of the metric €, +, +, +) is preserved if we take the positive solution. Also, we are

3The motivation for these choices is that we expect fifet — 1 asr — o, in which case we
have the Poincare coordinate representation of a pure Aak&Eme
4Maple was used to solve (2.30) and (2.31)
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looking for black hole solutions that are asymptotically3A\din order for a horizon
to exist, we must havgy = ¢i(ry) = 0 while cy(ry) # 0 andcs(ry) # 0, where
r = ry determines the hypersurface of the horizon. For this to lssipte, we must

takeC to be negative, sa§ = —rg. Thus, we take

R

)= 1+5- r_g (2.34)
SO our metric is
2 1 rg 2 24a2 dr?
ds? = —r 1+ﬁ_r_4 dt? + r2ds; + (2.35)

1Y
r2(1+r—2—r—2)

By solvingc,(r) = rf(r) = O for the real, positive root, we find that the horizon is

1 [
r=ry= % -1+ 1+ 4r8' (236)

Because of our choice of ansatz (2.3), the horizon defined byry andt =

at

constant(i.e. dr = dt = 0) takes the form of a 3-sphere. Thus, we have found

the 3-sphere black hole solutions.

2.4 Asymptotic geometry

Asymptotically, i.e. ag — oo, we havef(r) — 1 - 1/r?, and the metric becomes

dr?

_ 2 2 2 2
d = —(1+rd)dt? +r d83+m.

(2.37)
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Let r? = sintf p, sodr = coshpdp. Also, cosRp = 1+ r2. Under this change of

variables, the metric (2.37) becomes
ds = — coslf pdt? + sint? pdS2 + dp?, (2.38)

which is precisely the AdSmetric in global coordinates [2].

2.5 Minimized action

Now we will calculate on-shell value of the action, and welwitist on getting a
finite result. This process is called holographic renoreadion [3, 40]. Since we
have the exact solution (2.35), we may calculate the bulkmadty substituting our

solution forcy(r), cx(r) andcs(r) into (2.12), which simplifies to

21 T T O T
Sbmk:—if d¢f sin@def sinzwdwf r3drf dt
21G Jo 0 0 M 0 (2.39)

= —% (p4 - rﬁ)r,

wherer is some finite time that we will determine later. What is intpot to note
for now is that the bulk action diverges liké asp — co. Substituting our solution
for cy(r), cx(r) andcs(r) atr = p into the boundary action, (2.18) simplifies to

T
Sboundary: E (4/04 + 3P2 - ZFS) T. (2.40)

Adding the results together, we get the total actoa Sy + Spoundaryto be

T

S4G

(30" + 302 + 1y — 2rg) 7. (2.41)
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The action diverges gs— 0. To remove this divergence, we must add a counter-
termSg, to the action that depends only on the boundary metric artdstiavariant
under dffeomorphisms on the boundary so that the equations of mot®mra
changed. Also, the counter-term must not depend on anyadexs of the metric

so that it does notfeect the cancellation of the boundary terms that we achieved
earlier. Sincey/y and the four-dimensional scalar curvature on the bounBagaye

both invariants on the boundary, a candidate for the couater iS

1 1
81G Sat = 81G

f d'x VT (01 + 2Ry, (2.42)
oM

wherea; anda, are constants that must be chosen to cancel the divergdnifpar

the action. A straightforward calculation gives

1 V4 [ 6
%Sct = Epz p4 +p2 - rg (a/l + Cl’z;)?’. (243)

Since we are interested in the limit@s»> co, we may approximate‘/,o4 +p2 -3~
p?, andp? \[p* + p? — 1§ ~ p* + p?/2 — r3/2. Then (2.43) becomes

1 rs
=Sy = [0!1 (104 - —0) + (% + 60/2)/)2] T. (2.44)

5In principle, we could add higher powersR{, however, these terms would not diverge, so they
are notincluded.
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Comparing equations (2.54) and (2.44) we see that choesing —3 anda, =

—1/4 will remove the divergent part of the action, which is nowegi by

1
S = Spuk + Sboundary+ =St

8rG
LA P (2.45)
= E ry — E T .
_ (a2

When we add scalar hair to the action in chapter 5 we will, imegal, not have
the luxury of knowing the exact solution. As such, we will damstrate a way to
calculate the result (2.58) assuming that we know only tlyenasotic form of the

solution about the horizon and about the boundary.

Looking at the bulk action (2.12), the only non-trivial igtation is over the
coordinate. Let us define tedependent part of the integrand to be

/ ~ 2~ ~ 377 2 ’ ’
Cgclc:a_3(:20102_Czcl _QClCZ(Clz) +sclc§CZCé_sclc§C’2

—6c;c3¢cs.
C% C3 C3 C3 Cg C3 2

(2.46)

If ci, c;, andcs are solutions to the equations of motion (2.27)-(2.29)nthe

Lpuik = 3C1CoC3+

are free to add terms containing the left-hand sides of tegsations talpuk. In

particular, denoting the left-hand side of (2.28)A&ywe find

. . c1C2
Louik = Louk + 3—=A
Cs3
R 047
C3 C2 C3 '

3

4 &g
Tdr\ & )’
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where the first equality holds sinée= 0. Now the action (2.12) can be written as

mr (Y d [ ¢
So= 2= [ L (-2 gr
TN dr( Cs )

2.48
__ () (249
B 4G\ c3

My

where we take the limip — oo. This shows that in order to evaluate the bulk
action, we only need the asymptotic solutions. Using equgi.36), we find that

re =ry, +r2, so the metric (2.35) can be written as

ré +r2 2
ds = —r2(1 e M)dtz +12dS3 + dr (2.49)

2 4 42\’
r r rz(l_i_r%_ Hr4H)

Forr — oo, we find

Ci~I+—-—
2r 8r3

1 4t +4r2 +1 1
H H +O( ),
C, =T, (2.50)
1 1 4r,‘}|+4ra+3+0(1)

C3~—— — +
Ty T o8 8rd

Forr > ry, we find

4r2 + 2 % 1
c1~( H ) (r—ry)? +0((r—rH)%),
MH
C,=t, (2.51)

42 + 2
C3~( H

MH

)_z (r=ru) 2 +O((r —rn)?).
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Putting these expansions into (2.48) and keeping non-ag®rders we find

_ T (a4 o4
Spuik = e (p - FH)T (2.52)

Putting the expansion into (2.18) and keeping non-vangsbiers we find

T
Sboundary: E (4/04 + 3P2 - ZFS) T. (2.53)

Adding the results together, we get the total actoa Sy + Spoundaryto be

T

S4G

(30" + 302 + 1y — 2rg) 7. (2.54)

As before, the action diverges as—» o, so we add a counter-term of the form

1
8nG

1
Set = f d*xvV=y (@1 + @2Ry),
871G Jom (2.55)

m( C1C3 + BarCyC
= = \a1l1 01212)-
4G 2

Inserting our expansions fof andc, about the boundary and keeping non-vanishing

order, we find

. (2.56)

1 ot . (1 2 Q1,4 2
%Sct = E[le +(§0/1+6012)p — §(4rH +4I’H +l)+3Q2

Comparing this to (2.54) we see that in order to cancel thergances, we must

satisfy
a1 = -3
1 (2.57)
Eal + 6&2 =-3

So if we chooser; = —3 anda, = —1/4 in our counterterm, then we cancel the
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divergences in the action exactly. Altogether, we arriva dinite value for the

minimized action

1
S= Sbulk + Sboundary+ Esct
T (2.58)

= % (rﬁ -~ rﬁ)r,

which is identical to the answer we obtained using the exattim

2.6 Planar black hole solutions

Now let us look for black hole solutions whose horizons ameehdimensional
hyperplanes. Most of the details will be omitted because#heulations are similar
to, yet simpler than, those performed in the previous sestihet us return to the
metric ansatz

ds = —c3(r)dt® + c5(r)dx? + c3(r)dr?, (2.59)

wheredx? = dx + dy? + dZ. The metric determinant is
g = —CcScs. (2.60)
We found in section 2.2 that the scalar curvature for thiginmet

R5:2 —3

C;C. C/C. c/ c,)? C,.C- c)
172 | 173 1 3(2)+Q23 Qz)’ (2.61)

C1CC; €G3  CiCh C5C3 CoC3 CoC3

and the extrinsic curvature of the boundary p is given by

< <
@=_[-L 32|, (2.62)
C.C3 CoC3
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and the determinant of the boundary metric is
y = —C3cS. (2.63)

Putting everything into the action (2.1) and setting theataim of the action with

respect to the metric components to zero, we find the equsatibmotion

ARG

c/+2 -2063=0 2.64
1 CZ C3 C% 1% ( )
c,)? ¢
q+£2-—ii—2qﬁzo (2.65)
Co C3
C)CHCo + (C,)%Cy — 2¢1C5¢5 = 0 (2.66)

Lettingcy(r) = rf(r), co(r) =r, c3(r) = 1/rf(r), and solving forf (r) we find

s
f(r)=1- 5. (2.67)

4

r
ds = —r? (1 - r_?‘) dt? + rldx? +

The metric is
dr?

r2 (1— :—‘3)

which has a horizon aty = ro. This metric is also asymptotically anti de Sitter.

(2.68)

Settingr = rp andt = constwe see that the the horizon is a three dimensional

hyperplane. Putting our solution (2.68) into the actioregiv

V1

S=—
8nG

(30° -13), (2.69)

whereV = fd3x, andr is some, as of yet undetermined, upper limit on the integra-

tion over time. The action diverges as we take the boundanyitoty (i.e. p — ).
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We may add a counterterm of the form

4
Sct = 871Gf d*xa v~-y

Vr rg‘
- 1-2 2.70
8:G p* ( )

vVt 4 rg
~ 8iG” 2
without &fecting the equations of motion. Here we have assumed3hatt << 1.

Comparing (2.69) and (2.70) we see that choosing —3 will cancel the diver-

gence, and we get a finite action density

4
S 71,

V167G’

(2.71)

2.7 Thermodynamics of black holes in Ad$

2.7.1 3-sphere black hole

Here we will derive the thermodynamics of the black hole dbsd by the metric

2

r
ds = —r2f2(r)dt2 + ZF) + r2dS§, (2.72)
where
2 1 g
f (r) =1+ r—2 - r—4, (273)

which has a horizon is at

1+ 1+4rd. (2.74)
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In particular, we will examine the cases whege-> 1 andry << 1. Note that
'y = I, if o >> 1, (275)

and
ry ~rg, if ro << 1, (2.76)

Before moving on to calculating the thermodynamics of oacklhole, we will
need to establish a relationship between imaginary timéeangerature in quantum

field theories (QFT) at finite temperature

Imaginary time and temperature
Following [22] the path integral of a QFT is given by

Z = (¢, olaty) = f d[¢]€°, (2.77)

where¢ denotes the fields in the theory a8flp] is the action. The integral is over
all field configurations where has the value; att; and the valuep, att,. The

Schrodinger and Heisenberg pictures are related by

(2, tolpats) = (pal€" =g ) (2.78)

whereH is the Hamiltonian of the theory. If we sgt; — t;) = 1/T and¢, = ¢,,

then sum over alp,, then we get

Z=Tre" = f d[4]€5®, (2.79)
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where the integral is now over all field configurations thateriodic in imaginary
timetg = it with period I/ T. The left hand side is nothing other than the canonical
partition function of a statistical system. The interptieta here is that in a QFT
at finite temperature, imaginary tinte is periodic with period 1T. When we
integrate over imaginary time (e.g. as in the action), waukhmtegrate over one

periodte € [0, 1/T].

(a) Temperature

First let us calculate the Hawking temperature of our blaak hWe will do this by
removing a conical singularity in the induced metric on tleeizorf. Expanding

the functionr?f2(r) about the horizom, ~ ry, we get

() ~ 1 () + (260 o (7 )

= 2¢(r —rn),

(2.80)

where Z = %(rzfz(r))lrzm. The factor 2 has been inserted for later convenence.
The first term vanishes sindgry) = 0 by definition of the horizon. The metric

near the horizon takes the form

2

~ _ _ 2
ds ~ —2«(r — ry)dt® + =)

+r4dSss. (2.81)
If we perform the coordinate transformation

V=r—ry = dr?=4y’dy?

t=itg = dt* = —dtZ,

(2.82)

8In general, we should not have spacetime singularities dackimole horizon.
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then the near-horizon metric becomes

d€ ~ 26PdE + %dyz 1dS2 -
_2 |dy? + y°d (kte)?| + rudS3.
K

We may identify the first term as being the metric of a cone ilapooordinates
(i.e. y being the radial coordinate artk: being the angular coordinate). Note that
there is a conical singularity unless we impose tats periodic axtg = «tg + 2n,

in which case we get the plaiR? in polar coordinates. Since spacetime is regular

(i.e. not singular) at a black hole horizon, we must have
te =t + 27'[//( (284)

According to the AdZCFT correspondence, the AdS black hole and the dual field
theory have a common temperature, and the bulk spacetimeamdry share the
same time coordinate. Thus we identify the period of the imey timetg with

the inverse temperature. So,

In the language of GR, we callthe surface gravity{36]. In our language, it is
just given by the leading cdiécient in the series expansion of the full metric (2.80)

about the horizon. We find that

_1d

k= 5 (PFO) b

4 4
VEAr

(2.86)
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Figure 2.1: Plot of Ad§black hole temperature versus

so the temperature of the black hole is

4 2
L2 +ry

(2.87)
2nr?

Figure 2.1 shows a plot of the temperatdreversusr,. There is a minimum,
which occurs atg = (3/4)Y* ~ 1 andTmin = V2/7. It is apparent that for a given
temperaturd >> T,,, there are two possible black holes; i.e., onerfos> 1 and
one forry << 1 (both regimes correspond to large temperatures). Laterviv

find out that only the, >> 1 black hole is physical. In each of these two regimes,
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we find that the temperature is given by

fro .
Tz—o, ifro>>1
T

1 (2.88)
Tz—z, ifr0<<l.
2nrg
Inverting the formulas (2.87) and (2.88) we have
1 1
ro=— (2T%* £ 2T VT222 - 2 - 2T - 1) (exact)
V2
ro=~nT, if ro>>1 (289)

[ 1 .
o = ﬁ’ if Mo << 1,

where for the equality we must choose the real, positivestodthe "plus” root
corresponds to the right branch of the temperature curvgumdi2.1 (i.e. forg >

(3/4)44), and the "minus” root corresponds to the left branch (iges (3/4)Y4).

(b) Entropy

The Hawking formula for the entropy, of a black hole is

A
= 2.90
5= 15 (2.90)

whereA is the proper area of the horizon. To find the area of the horine set

r = ry andt = constanin (2.129) to get the induced metric on the horizon

ds = r3ds;, (2.91)
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then we integrate the square root of the determingnt= r3 sir’ y sing, over all

angles (i.e. integrate the area measure) to get

21 T T
A:f ffrﬁsinzwsinedwdedgb
o Jo Jo (2.92)
= 27°r}
So
—ﬂzrﬁ' xact
s= oG (exact)
[Tt re>>1 (2.93)
- 2.6
B2, i ro<<1,

or using (2.89) to get this in terms of temperature, we get

s= L (—1 +Tr \/2 (T27r2 +TaVT2n2 -2 - 1)) (exact)

4G
5
/s .
S= ET?), ifro>>1 (294)
Szt ifro<<1
T 1eGT 0 T

Here we begin to see that tihg << 1 black hole is non-physical because its en-
tropy decreasesvith temperature, which goes against our intuition aboatrtial

systems. However, we will not rule out this black hole yet.

(c) Mass/ Energy

There is a well-known analogy that can be drawn between thie ¢d black hole
mechanics and the laws of thermodynamics. For the first faW, is the internal
energy, we have

K A
dU = Tds e dM:Zd(E), (2.95)
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from which the formulag = «/2r ands = A/4G that we have already used are
apparent. This analogy also tells us that the black hole agkays the role otJ,

and from now on we might as well regard them as equivalent.,Nsimg the first

law we have
ds
dM =Tds=T—=dT

dT

V2Tr? [ 2312221272+ 2T 53T n- V222 | 4T exact

4G (22T VT2022-1)(T22-2) ( ) (2.96)
= ST, if ro>>1
—eamsdT, if ro<<1,

Integrating gives

M = 3n5T4, if ro>>1
8G 2 (2.97)
= 32:GT? + const if rp << 1,

where we have neglected the integration constant forghe> 1 case because
it is irrelevant for large temperatures. We refrain fromcaédting the exact mass

because the integration is intractable.

(d) Heat capacity

From classical thermodynamics, the heat capacity of asystgiven by

ds
cv=T (ﬁ)v (2.98)
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From equation (2.96) we can just picK the result

V2Tn? | 2VT2n2 - 2T%2% = 2T%% £ 3Tn - VT2 - 2
C —_—

Y G (exact)
(22 £ T VT2 =2 - 1) (T2 - 2)
3n° .
Cy = %T:g, if ro>>1
Cv = _3 ifro<<1
Vo 1eGT 0 T T
(2.99)

Now the instability of thers << 1 black hole is clear; its heat capacity is neg-
ative. This is not surprising from a GR perspective. Consithe example, the
Schwarzschild black hole in flat spacetime. The mass is kvadlvn to beM =
1/8xT, giving a negative heat capacity = OM/dT = —1/8xT?2. For therg << 1
case (i.e. the horizon radius is tiny compared to the charatt AdS curvature,
which we set to unity), the black hole is so small that it doetSfeel the AdS curva-
ture and is &ectively living in flat space. So the situation is similar be tstandard
Schwarzschild case. But our AdS spacetimes should be daalvtdl-defined field
theory. Physically, the heat capacity of a system is the atoluheat required to
raise the temperature of the system by a certain amount ti¢lat capacity is neg-
ative, then this means that the system can increase its tatape bylosing heat.
Thus, arg << 1 black hole in a heat sink will spontaneously heat up forevbich

is an unphysical scenario. So thg< 1 branch of solutions should be ignored as

they do not correspond to a well-defined dual CFT.
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(e) Free Energy

The free energy of a system, as defined in classical thernamaligs, is given by
F=U-sT (2.100)

RegardingJ = M and plugging in the expressions we have foundi¥bands we

get

7.(5
F=——T% ifrg>>1
8Gl (2.101)

F= G2 if ro << 1.

Finally we see without any doubt that the<< 1 black hole is unstable, as it is the

ro >> 1 black hole that corresponds to the minimum of the free gnerg

Equation (2.84) tells us how we should have treated the riatem over time
in the calculation of the action of equation (2.58); we skduhve transormed to
imaginary time, i.e. let = itg, and taken the integral over one period X0r).

Under this change of time coordinate integration measucerbes

f d*x f dty=g — f d*x f " (idte) (i VG2) . (2.102)
0 0
wherege = résinty sir? 6. Thus, after the integration this amounts to the replace-
ment
- ! (2.103)
T _I_, .

r4
Sg=-=— (rﬁi - 50) (2.104)
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For a theory of a fiel@ (here the field in question is the metdg,) described

by an actiorS, the path integral is given by

Z:fd[qﬁ]exp(iS[gb]), (2.105)

where this is understood to be a functional integral. Thisgral is dominated by
the field ¢ that minimizesS; that is, the dominant contribution is that ferthat
is a solution to the equations of motion. Contributions frivelds away from the

solution cancel becaus® oscillates rapidly whe is large. So we can write

Z ~ exp(iS) (2.106)
= exp(-Sg) |

whereS is understood to be evaluated for a solution to the equatdmsotion.

Comparing this to the partition function for a statistidatmal system
Z = exp (-BF), (2.107)

whereB = 1/T, we see that the free energy is given in terms of the Euclideton

by
— = Sg. (2.108)

Writing (2.104) in terms ofl, for ro >> 1,

Se = —’T—ST3 (2.109)
£ 8G '

and comparing this with (2.101), we see that, indeed, (3.H0&atisfied.
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Equation (2.108) gives us an exact answer for the free ersrdenergy,

4
(4 To
F=TSg= 4G(r 2),

and we can gat) from
U=F+sT

(f) Stress-energy tensor

The stress-energy tensor for AdS gravity is given by [3]

o 205
V=Y Y
For the action
S= 16::rGf d5x\/_(R5+A)—ﬁ d*x V=0 +
we find that . ) se
o
™= 8rG ( Oy + \/—_5)/5)

For a counterterm of the form

Set = f d*xvV=y (a1 + a2Rs),
oM

we can use the well-known results that

1
6\/__ = E \/—’)/’)/#Vd’}/#v, and 5( V—'}/R4) = - V—YG’W&}’W,

1
8nG

SCt’

(2.110)

(2.111)

(2.112)

(2.113)

(2.114)

(2.115)

(2.116)
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whereG"” is the Einstein tensor for the boundary metrj¢, we find that

2 6S
— = a1y — 2a,G". (2.117)
V_y &ypv
Finally, we have
1
T = — (" — Oy" + ay™ — 2a,G"). (2.118)
8nG
Using the metric (2.35) and; = -3, a; = —-1/4, we can get the stress-energy

tensor explicitly. Taking the boundary to infinity, i,2.— o, andrp >> 1, we find

that to leading order

;LE 0 0 0
4
110 %5 0 o0
Ty =—— 2% (2.119)
ToeGl g 0 5 o0
2o 4
0 0 0 55

In conformal field theories, the one-point function of theess-energy tensor is

given by
(2.120)

o 2 6S

<T’“’> T T s’
V=101

wherer,, is the Minkowski metric. Our boundary metric is related te Minkowski

metric byy*” = c;zn*”, where no summation is implied here. We can write

<_IA_ >_ 2¢,C3 6S L
u

) = . 2.121
v o o @120

Since

6’}/;” A2 .
s = G5 we end up with

<f > = G °T,, (2.122)

124 U
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Asp — oo, clcgc;2 — p?, so we get a finite stress-energy tensor for the field theory

w
=
[S¥N

=2 000
110 % 0 o
T —— 2 2.123
<W>87TG00£0’ ( )
2r4
0O 0 0 2

from which we identify the magsnergy densityc = M/V and pressure or free

energy densityy = F/V

3o d P=-F "o 2.124
giving exact agreement with our previous results (2.97)(@nt01).
Speed of sound
In a thermal system, the speed of sound is given by

oP
2= (= 2.125
For our AdS black hole we get
5
5 167G
c:= = (2.126)

s 3rd B é’
(35)
in agreement with the first equation in (1.41) for a CFOia 3 + 1 dimensions.

Also note that

(N}

S
=13

~—
(7]

ci= = —. (2.127)

%)
—~
DI
&l
~
o
<
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In (2.94) and (2.99) we found that
7r_5_|_3 3n°

and oy = —T3. (2.128)

S=3G 2G

So (2.127) is satisfied and our results are consistent.

2.7.2 Planar black hole

Following the same procedure as for the 3-sphere black hoteyith the metric

2

dr
_ 2¢£2 2 242
ds® = —r?f3(r)dt* + 220) + r2dx?, (2.129)
where
r-4
f2(r)=1- r—ﬁj (2.130)
which has a horizon is at
My =ro, (2.131)

we find the following results:

Givenry, there is a single (stable) black hole with temperature

7= (2.132)
T

The entropy densitg/V, masgenergy density/V, heat capacity per voluntg /V,
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free energy densitf/V, and speed of sound squargcare given by

s T3 M 3 cy 31
_s_rl- M _ 9 14 =V _ 2T 3
=V T G 8=V =1 Y=V T a6
(2.133)
F 3 1
=_—=-__T ==
F=EvyT 16 c: 3

The stress-energy tensor is given by (2.123). All of theggessions are exact.
The thermodynamics of the planar black hole are identicéhtse of the 3-
sphere black hole in the limiy >> 1. First, we've already established that the
temperatures are the same. Furthermore, for the plangs btde we simply set
V = fd3x, but for the 3-sphere black hole we were able to explicityycaut the

corresponding integral
dSs = 272 (2.134)

S3
If we defineV = 272 (i.e. the volume of the unit 3-sphere), then it is easy to
check that the thermodynamics of the planar black hole antiichl to those of the
3-sphere black hole withy >> 1.

2.7.3 The first law

As an independent check that our thermodynamics make semses verify that

our thermodynamics are consistent with the first law
dF = —sdT. (2.135)
For the planar black hole, this is easy to check using thettsin (2.133)

3
‘;i; _ _Z_GT3 s (2.136)
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Having established th&g = F/T, we can now find the exact free energy and mass

for the 3-sphere black hole. From equation (2.104) we find

F=TSe= —% (r - r2). (2.137)
Also, recall that , ) s
2rk +r3 m°rd,

= S= . 2.138

2nr3 2G (2.138)

Now it can be easily shown that

dF e
m = —E (2r|?_’| - rH) (2139)
and that
dT n
—Sm = —E (2r,3_| — rH) . (2140)

Soé’T: = —sé’TTH, and the first law holds.
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Chapter 3

AdS,

In this chapter we repeat the analysis of the previous chdpiein four spacetime
dimensions. The results of this chapter will be importartauese they will be the
expected results for our Exotic Model when we take the can&bitimit. Since the

calculations are similar to those in the last chapter, wespare most of the details.

3.1 Solution for the metric

Settingd = 3in (2.1), and using the same notations as before, the actichdS,
IS
S= 1 fd4x\/_(R4+6 1 d*x=y® (3.1)
~ 161G J,, g 871G J,u, 7 '
We are interested in black hole solutions with planar herizahus we choose an

ansatz for the metric to be

ds = —cf(r)dt® + c5(r)dx? + c3(r)dr?, (3.2)
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wheredx? = dx¢ +d>5. Using this ansatz, the action is given®y= Spuik+ Spoundary
where

GGt Ged ¢S o)

Sourc = —— [ dix G G & G (3.3)
buk = 871G C.CLC1C,  CUCiCo ’ '
M y2238 "~ o2 + 3c,C%C3
< Cs ’

cc2 CCG
oM 3 3

If we vary the action with respect @, ¢, andcs respectively, we get the equations

of motion
o o 1c(e)?® 3
cy - - = --cc5=0 3.5
1 + CZ C3 2 Cg 2 1% ( )
1(c))* cc 3,
Cl+=——"——-—==—-—cc5;=0 3.6
2 + 2 C, 3 2 243 ( )

2¢,C5Co + (Ch)?C1 — 3616565 = 0 (3.7)

Seeking solutions of the formy(r) = rf(r), cx(r) = r, ca(r) = 1/rf(r), the equa-

tions of motion become
2r2F 7 + 2r2(F)> + 10rf 7 + 3f2 =0 (3.8)
2rff’ +3f2-3=0 (3.9
Finally we get the solution

3 dr2

r
dg = —r? (1 —~ r—g) dt? + r2dx® + — (3.10)

which has a horizon at; = r.
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3.2 Thermodynamics

First we will calculate the temperature. Expanding the mé®.10) about the hori-

zonr =rp we get

dr?

— _ 2 2Av2
ds = —2(r — ro)dt? + ridx? + T

(3.11)

where

2% = %(cf) = 3ro. (3.12)

Applying the transformations given in section 2.7al \fe get the temperature

K 3ro
T=X_-20 3.13
2r  A4m ( )

To calculate the entropy, we use the Hawking forma#aA/4G, whereAis the
area of the horizon. Since our horizon is an infinite plane,dhtropy is infinite;

however, the entropy density is finite. The metric on thezwriis
ds, = r3(dx + dx). (3.14)

The area element on the horizon is giverrfyxdy, so that the entropy is given by

r2 [[ dxdx
= - = = A
S G (3.15)
If we defineV = [ dx,dx, then the entropy density is
r2 2
_S_ o Mg (3.16)

*TVTac T oG

where we used (3.13) in the last equality. Recall from (1tB&j) black hole entropy
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and central charge of the dual field theory are related by

F(%)g 4\ (d-1\_,
= air (@) (F) (m)Td - (3.47)

We find that the central charge is

24 192
C —_— —_—

=— = — 3.18
7G K2 ( )

wherex? = 87G is commonly used in place of the gravitational cons@nt

To find the free energy we must compute the finite EuclideaonmcPutting the
solution (3.10) into the action (3.1) and taking the bougdi¥1 to be the surface
r =p, we get

S T rs

JCaal3) (319

wherer = fOT dt. The action diverges as— co. To remove this divergence we may
add a counterterm to the action as follows
S_ T (o3 o), o f Pxv= (3.20)
V "~ 81G 2|7 8VAG S,y & '
The addition of the second term on the right-hand side doeshange the equa-
tions of motion because it does not contain any derivatifdssometric components

and we assume that the variations vanish on the boundamyndPatir solution into

the counterterm and expanding it for laggehe action density becomes

3
. S
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If we chooser = —2 we get a finite action density,

S T 3

= Tea’ (3.22)

Changing to imaginary time we make the replacemert -1/T. The Euclidean

action density is

Se 113
V © 1enG T (3.23)
Then the free energy I8 = T Sg, or
F=r = A g (3.24)
V271G '

The best way to find the mass density and pressure is to contpaitsress-
energy tensor. Using the formulas in section 2.7)1kut with =y = c;c5 we
find

87T2
%T?’ 0 0

<-fyv> = 0 %T?) 0 s (325)
0 0 273

giving the mas®nergy density and pressure respectively as

8%,
271G

2
_47r 3

8 - % .

and P (3.26)
It is straight forward to check our thermodynamics by vengythe first law

F=8&-sT. (3.27)
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We can now calculate the speed of soggdsing the thermodynamic relation

_ o _ (%)
> JE (a_E)

aT

=5}
T

oF (3

-

1
=5 (3.28)

as expected for a CFT ih= 2 + 1 dimensions.
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Chapter 4

AdS4 fluctuations

In this chapter we will study small fluctuations of the baakgrd metriag?® given
by (3.10). The results of this chapter will serve as a checthefresults of our

Exotic Model when we look at fluctuations in the conformalitim

4.1 Fluctuation equations
Consider fluctuations of the background metric of the form
g/lV = 9553 + ahpv’ (41)

wheregfvG is given by (3.10), andh,, are regarded to be small fluctuations about
the background. We respect the symmetry of the metrity,se h,,, and we can
orient the coordinate system such that ¥a@xis is directed along the momentum

vector of the fluctuations so thht, = h,,(t, X, r). If we vary the bulk action

S:ﬁfMd“x\/—_g(R+6), (4.2)
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whereR is the scalar curvature for the full metny,, with respect to the ten in-

dependent metric fluctuation componehts, and expand the result in powers of

a, then one finds that the cfieient of the linear term vanishes by virtue of the

background equations of motion. The fo®ent of the quadratic term then gives

the linearized equations of motion governing the fluctusdicAfter performing the
variations we may use fieomorphism invariance to chookg = hy, = h, = 0.

Also leth; = hyy, + hy,x,. The result is the following system of partiaki@rential

equations,

o2h; . ax, §rgﬁ _ ohii =0, (4.3)

ar2 r(r3—r8) o 27 o '

5h 1 [Py, Phey) 2
e o Phas) 20 o @4

ot r(p-rg)\ 0% o]

Phog 1 Phay 2

2 w20 g 4.5
oz r(r3 - r3) 9o e o

62h.. athxz 1 8ht 1 ohe
1 _ 2 3 3 _XZ _ = 4 3 _ 3 I _ 4
aor  oxgor (-3 (( 1) g 5 (47 =) _at) 0. (46)

2 2
6 hX2 X2 + a htt _ 2
ot2 an 6t8x2

2
hy, ot (r3 B r3) 0°hy B r° =15\ 8°hy, B §r38_htt
o) or2 r or2 29 6r

3
fo

oh 1 (4r® — 1433 4+ 18 2

3 3 Xo X 0 0 3 3 3 3 —
_3r3(r —ro) ar“_z( i )htt+r—4(r —ro)(r +2r0)hX2X2_O,
4.7)

PN _ Mg _ r°-rg ’ Phyx, - 3§ ( 3_ r3) UL
o2 otox r or? r3 o) or (4.8)
2
* 3 (r3 - rg) (r3 + ZrS) Ny, = O,

Phe 12 [ Py 0| 20N _ “.9)

%0r  r3—r3\ otor ot r ox, '
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2
azhxlxl 3 3 azhtt r* - rg 32hxl><1 3r8 3 3 ahxlxl
—2+r(r—r0) >~ = —3(r—r0)—
ot or r or or (4.10)
2 3 .6h 1 (4r% — 14r3r3 +r8 '
t (r®=r3) (r®+2rg) hyys, - Erga—r“ - E( o r30 O)htt =0,
0

8he, ) 6%hy . r3—r3\ (6%hyy, ) gahxlxl ) gahth N 1 4r3 -2 Oy o
otor  9%,0r r3 0X%0r I 0% rot  2r\r3—r3)ox ’
(4.11)

3 ox2 ar = 2r3

2 2h.. 2 2 "
6 htt a hu 6 htxz 3 3) (ia hx1x1 Zahtt + 1 (4!'3 rg)(ahu 2 ))

- - —— + —hi
o2 e “atox fo Nar ™7

- % (2r3 + rg) htt = O

(4.12)

We will be interested in fluctuations that carry a plane-wpx@file in thex,

direction. Letting

. r3
h(t, X2, 1) = g o2 (1 - r—g) Hu(r),

hey, (t, Xo, 1) = €712 2H (1), (4.13)

hyx (L, Xo, 1) = €7H2r2H (1), i=1,2

wherew is the frequency and is momentum, we get a system of ordinaryfeii-

ential equations for the componefits, Hy, x,, Hx,x,,» andHy,,

TP k) PR TR 4.14
“+§Trg n—m xa = 0, (4.14)
4
Hi + - H; A h =0 (4.15)
r

We can choose this form of the fluctuations because spacetmedary is conformally flat.
Thus, for fixedr we expect a plane-wave solution to the fluctuation (waveatgns.
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” ” 1 r ’ ’
Htt +HX2X2 + 3) ((4r3 - EO) Htt - (4r3 - rg) |_|X2X2 - qutt)

r(r3-r
r 5 (4.16)
- w(r3 _ rg) ((al)szx2 + 2thX2) = O,
H// _H//_ l 43_@ H/_43_3H/ _2H
xixa it el | I ( r r0) s — A7
r(re-r5) (4.17)
wr \?
(e o
0
There are three first-order constraints,
A, I (1, . a9, \_
H|| + ZHth - m EH" + ZHtXZ —_ O, (418)
0
ré— § wrd w q? 1
H{t_mHi/i - W (EHX2X2 + thxZ) 5 (rrg) Hu
0 (4.19)
q2 (r3 _ rg) — w23
2 HX1X1 O’
(-
’ ’ l wr3 ’ 3r8
Hy — Hxlxl + 3 _ rg FHtxz + ?Htt =0. (4.20)

We also get a second system of ODEs, decoupled from the éirdhé components

HX]_X2 and Htxl )

144 4 ’
Hoo + —Hbg = % (wHyx, + qHye) = 0, (4.21)
r(r3-r})
. 4rd—r3 wr?
Hyx, * ———Hyx, * = (WHxx, + QHy,) = 0, (4.22)

3 xaxe 2
r(r3- ro) (-3
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and the first order constraint

r3
H 4 H;,, = 0. (4.23)

X1 X2 q (r3 _ rg)
The main goal of the rest of this chapter is to calculate tepefision relatiomw =

w(q), from which we can infer the hydrodynamics of the dual CFT.

4.2 Gauge-invariant fluctuations

4.2.1 Metric fluctuations

Let us focus on the first system (4.14)-(4.20). The redungafnthe system (that
there are four equations and three constraints, but onlykdawn functions) im-

plies that our gauge choidg, = hy, = h, = 0 does not completely remove all
of the gauge freedom. In other words, our megjicis not invariant under a gen-
eral coordinate transformation. In principle, we can thimkt the three constraints
eliminate three of our unknown functions so that there igy@bkingle function

describing the fluctuations. Of course, since the congtaire first-order in the
derivatives, we cannot pursue this direct route. FollowWB&] our task, then, is to

find an infinitesimal transformation of the form
X = X+ (L, X, 1) (4.24)

that preserves our gauge choice and leaves the metricantaNow,g; (X is the
transformed metric evaluated at the transformed point,@nc’) is the original

metric evaluated at the transformed point. Theffedence is, by definition, the Lie



66

derivative of the original metric along the curve whose tmgsé”, that is [36]
g;zv(xl) = guv(xl) - £§guv(x)’ (4.25)
where the Lie derivative is given by

£§g;1v = é‘:avagyv + gavvyfa + gﬂavvé‘:a
= va;l + Vufv,

(4.26)

where we used the fact th8t,g,, = 0 always, and we contracted the second and

third terms in the first line. So we now have the transformettime

0, (X) = Gu(X) = V,&u(L, X2, 1) = VE,(L, Xo,T). (4.27)

In order to obtain such a transformation that preserves auge choicéy, = hy, =

h, = 0, we must satisfy the system of partiaffdrential equations

Vi& + V& =0
(4.28)
V& =0.

Let us return to the metric

ds = —c3(r)dt? + G3(r)dxé + c5(r)dx + ca(r)dr? (4.29)
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so that we may derive a general result that will be usefulterlehapters. Explicitly
in this metric, the system (4.28) is
<
Oéo—2—=60+01&3=0
%]
<
Oré1 - Zc—fl =0
o (4.30)
arfz - Zc—ifz + 8X2§3 =0

Cs
&3 —2—&3=0.
Cs
It is straightforward to find the general solution
2 Cs
Cl
&1 = Cngl
C
& = —C2 (Kt + (0,,Kr) f é’dr)
2

& =K,

(4.31)

whereK, = K,(t, ;) are arbitrary functions which we will take to be plane waves
that is, K,(t, X)) = e % We are guaranteed that the above solution for the

coordinate transformation (4.24) preserves our gaugecehdtrom this solution
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we may construct a set of linearly independent solutionsk®is

0 -
fu _ alot+igx 0 g}l _ a-lot+igx 0
1) — 4 2) —
1) C% 2 0
0 0
(4.32)
: C;
Iwci f gjdr 0
2
é:l(lg) — —iwt+igXe 0 , §;(14) — —iwt+igxe CZ
—iwc [ Sdr 0
2
C3 0

Now, we wish to find a linear combination of the metric fluctaas h,, that is
invariant under our gauge transformation (4.24). That espeed to findr, 8 andd

such that
ahy +,8h{x2 + h;zXz + (Shg(lx1 = ahy + BNy, + N,y + 0Ny 5, - (4.33)
Transforming the fluctuations according to
h,, =hy = V.ié -V, (4.34)
equation (4.33) becomes

€1y C2C, C2C,
20 (?63 - atfo) — B (Ox,é0 + Oié2) — 2 (axzfz + —253) —20—2&=0. (4.35)
3 C3 C5
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Putting the independent solutiogf§,, &, andé, for &, into the above equation we

get the system

Pw—-29=0
ﬁq —2aw =0 (436)

1€ — (14 6) cc, = 0,
which has the solution

2 ZCC/
a:q—z, ﬁzzﬂ, s= 92 g (4.37)
w

w w? CC,

Thus, we have found a gauge invariant fluctuation

2 2 c.C
qzhtt + ZﬂhtXQ + hX2X2 + (q : 1 1) thxl' (438)
w

w w? CC,

th =

Letting

. rs
htt(t, Xo, r) = e_lequzrz (1 — r—g) Htt(r),

hex, (t, X, 1) = €7 %2 2H (1), (4.39)
hyexi (t, o, 1) = €7 HPer2H, (1), =12,
we get the gauge invariant fluctuation
q2 c q q2 ciC,
Zy = ZEC_%H“ + 4ZHtX2 + 2HX2X2 + Z(E;C; -1 Hxlxl, (4.40)

wherez, = 29719, /c2. Note from the right-hand side thdl = Zu(r) is a
function ofr only. With the gauge freedom completely fixed, the funcdgralone

describes the metric fluctuations.
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4.2.2 Scalar fluctuations

For our Exotic model we will add scalar fields to the actiond are will need to
consider fluctuations of these scalar fields. Consider a dittde form¢ = ¢(r).
Consider fluctuating this field as — ¢ + @ wherea is considered to be a small
fluctuation of the background fielsl Under an infinitesimal dieomorphism —

X' + &, the fluctuation transforms as

a—ad =a—-&V

 do
dr’

(4.41)
- - é?

The fluctuatior will only transform undeg—“*é). Also note thah, ,, only transforms
underé;;, as well. All other metric fluctuations transform under ettt andor
fﬁ)- So our only hope of finding a fleomorphism-invariant fluctuation involving
the scalaw is to write down an invariant linear combination of the form

a +ph, . =a+Bhyy. (4.42)

X1 X1

Using the transformatiogt, in the left hand side, this becomes

(jqb (j(}z _
c%a + zeczW = 0. (4.43)
So choosing
e (4.44)
200 '
leads to the invariant combination
C,C2¢’
Z, =a- 250 (4.45)

2c,
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where the prime in the last two equations denoté&dintiation with respect ta

4.3 Gauge-invariant fluctuation equation

Now we must find that equation which governs the single gaoggriant fluctua-
tion (4.40). The intermediate steps in what follows are \@mnbersome, so they
will be formally outlined, but the explicit formulas will ndoe given until the final
result is obtained.

First, we can solve equations (4.14)-(4.17) for the secanivakives,

H;(,].X:L = f (H;(;LX]_’ H),(ZXZ’ HX1X1’ HX2X2’ Htt’ Htxz, r) 5 (446)
H>,<,2X2 - f2( X1X1? H;(ZXZ’ HX1X1’ HXzXz’ Htt, Htxz, r) ) (447)
Ht’)/(z - f3( txo? X]_X:|_9 r) ’ (448)

H{t/ = f4(H{ta ;(1)(1, H;(2X2’ HX;LX]_’ HX2X2’ Htt’ Htha r) . (449)

If we put the solution (3.10) for the backgroued ¢, andcs into (4.40), then solve

the result forH; we get

2 r3 r3

2
w [ZH ~ 494, + 2He, (1 a (1 + —)) _ 2HX2X2]. (4.50)
w

Htt=¥m 2r3

Putting (4.50) into (4.18)-(4.20) we can solve for first gdatives as follows,

- f5 (ZH9ZH9 HX]_X]_, r), (451)

X1 X1

- fG (ZH9ZH9 HX]_X]_, r), (452)

X2 X2

th - f7 (Z/ ) ZH’ HX]_X]_’ HX2X2’ Htha r) . (453)
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Consistency ensures that

dfs
— —f,=0, 4.54
dr* ( )
which yields an equation of the form
F (201 Z0. Zn. Hi - Hig Higy,) = 0. (4.55)

Substituting equations (4.51) and (4.52) into (4.55) to&lateH; , andH;,, we

get
Z! + AZl, + BZy =0, (4.56)

where the prime denotesftérentiation with respect tg and

160°r® — 16w?r® — 149%r3r3 + 4wr3r3 + 70Pr§
- 2r7 _ 2r7 _ 2r4r3 2r4r3 2rr6
4g°r’ — 4w’ — 5g°riry + 4w rirg + gerr g

(4.57)

Ag*r” = 5q%r3r + o*rSr — 8qPw?r” + 50Pw?r3rt — 9oPrsrs + 9org + dwr’

r2(r3 - r3) (402re — 4w2r6 — BEPr3rd + 4w 3rs + 2rg)

(4.58)
All dependence on the functiort,, has vanished, so (4.56) is afgiomorphism

invariant.

We will have to solve the equation (4.56) numerically. It@eenient to trans-

form to a new radial coordinate

y= — r—3 =4 r= ro(l—yz) . (459)

In this variable, the horizom = r, becomesy = 0, and the boundary —
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becomey = 1. Derivatives become

4
3

dzy 3 (1-¥}) dz,

— = — 4.
dr 2rg vy dy’ (4.60)
8 5
fz,_ 3|0 g2 @90 a0
drz = 42|70 y2 dy? y3 dy |’ '
Equation (4.56) becomes
2+ AZ, + BZy =0, (4.62)
where the prime now denotedidirentiation with respect tg and
3q2 1- y2 _ 4(”2
B G ] 463
y {302 (1 +y?) — 4w?
g ATV (BrY)-dur (3 57) oy (1-y) vaet|
0 23y (1= )} (3 + Py - 4e?) -

4.3.1 Near-horizon behaviour

It is also convenient to extract the leading behaviour neartrizon. To do this,
we letZ, = y" and expand equation (4.62) about the horigoa 0. To leading

order, equation (4.62) gives

2
(n2 + %)y—lz +0(1) = 0. (4.65)
0

This is satisfied to leading ordernf= 13—2ﬁzi, or

Zy~Cry % +Cy' %',y 0, (4.66)
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whereC; andC, are constants. Thus we have two independent solutions Imear t
horizon, and we should determine their physical vaIidiﬂ;re'Bqutionf32705i repre-
sents a wave propagatingo the horizon, an(jF%i represents a wave propagating
out ofthe horizon. Imposing that the wave is completely absorbekeahorizon,

the latter solution is precluded, so we get
_ 2w
Zy~y %, y—0. (4.67)

Having extracted the leading behaviour near the horizomae write the solution

away from the horizon as

. . 2w w
Zy = y_leh, where = 3—r0 = ﬁ (468)

andz,(y) is well-behaved at the horizon, admitting a regular Tageries expan-

sion. Letting = 2 = L along with (4.68), equation (4.62) becomes
3ro 27T

Z, + Az, + Bz = 0, (4.69)
where
. 1(407 - 362 (1-y?) + 2id (6%y? + 342 - 40?) .
== 4.7
=7 GPy? + 32 — 42 ’ (470
and

4(1- yZ)% (@ + 02y? (L +i0)) + %62 (1 - yZ)% (*(2+y?)-3)

V2 (L-y2)F (@2 - 40 + 3) 4.71)
—40* + O’ (3 + 5y2) — gy? (3 + y2)

B =

+

y2 (1 - y2)3 (G3Y2 — 402 + 362)

2The frequency,"and momentung are dimensionless.
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4.4 Boundary conditions

At the horizon,z, is a regular function, and so may be expanded as a Taylor se-
ries abouty = 0. Since equation (4.69) is second-order, there are twgrati®n

constants; that is,

24 = o+ 01y + O(Y'), (4.72)

where(y, and{; are codicients that should be fixed by the boundary conditions.
Codficients of higher-order terms can be found in termgyadnd{;. Since (4.69)
is invariant under rescalings of the foum — Az, wherea is any constant, we are

free to choose the integration consténe 1 (i.e. 1 = 1/p) so that

2| =1 (4.73)
y—0,

At the boundary the metric componeant— 0. The fluctuatiorzy must also vanish
at the boundary because, if it didn’t, then the fluctuatiomlda@ominate the back-
ground at the boundary. If this were the case, we could netpnétz; as a small
perturbation on the background. Thus, to keep our theogcinve must impose
the boundary condition

2l =o (4.74)
y—1_

4.5 Dispersion relation

Our goal is to calculate the dispersion relatiors- w(g). We will first consider the
dispersion relation in the hydrodynamic limit where we Vsl able to extract the
speed of sound and the attenuation of sound, the latter afhwhirelated to the
bulk viscosity. We will then numerically compute the fullsgiersion relation and

find that there is a discrete spectrum of frequencies at fixathemtum.
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4.5.1 Hydrodynamic limit

Let us first compute the dispersion relation to leading ovd®n the momenturg ~
is small. The limitg'— 0 is called the hydrodynamic limit. Begin by expandiag ~

andzy with respect tayaboutd'= 0 as follows,
O = csf — ib6P, (4.75)

Z(y) = 2o(y) +iGa(y). (4.76)

csandb are the speed and attentuation of sound respectivelynButie expansions

(4.75) and (4.76) into (4.69) and expanding the result aceuD to leading order,

we get
. 1(4c2-3+3y? 4
SR E e KR el &
The general solution is
2 = Cy (4¢3 - 3+y?) + Cz (42 - 3+ y?) In(y) + 8¢Z - 6, (4.78)

whereC,; andC, are integration constants. The boundary conditions (4an8)

(4.74) translate into

y—0,

y=0: (4.79)

y—1_

3We expect thaty — 0 asq — 0. The imaginary unit appears in the subleading terms sdthat
andz are real.
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The boundary condition foy — O, is satisfied if

1

= — = 4,
Cl 402 _ 3a C2 Oa ( 80)
giving
4c2 - 3 +y?
=— - 4.81
4cZ-3 ( )

Expanding (4.81) about the boundary 1 we get

_4c2-2 2
 4c2-3  4c-

3(1—w+«9k1—wﬂ. (4.82)
The boundary condition foy — 1_ is satisfied if

=2, (4.83)

NI =

which is in agreement with (3.28). Now (4.81) becomes

Zn=1-y. (4.84)

Putting (4.75), (4.76), (4.83) and (4.84) into (4.69) andanding the result about

= 0 to leading order, we get

aﬁ—J_z 4 4v2(-4b+1)

S — ) 4.85
Z y(y2+1)1+y2+121Jr y2 +1 0 ( )

The general solution is

z =AYy’ - 1)+ Af(y-1)In(y) - 2] - V2(1-4b), (4.86)
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whereA; andA; are integration constants. The boundary conditioryfes 0, is
satisfied if

A =-V2(1-4b), A, =0. (4.87)

So
z = -V2(1-4b)y~ (4.88)

Expanding (4.88) aboyt= 1 we get
21:—\/5(1—4b)+2\/5(1—4b)(1—y)+0[(1—y)2]. (4.89)

The boundary condition foy — 1_ is satisfied if

1
b=-. 4.90
2 (4.90)
Recall that the fluctuations are of the form
flucs~ F(r)e otioxe, (4.91)
With w = csq - 52-¢?, this becomes
flucs~ F(r)e dTtele-ca), (4.92)
So if
b>0, fluctuations decay =  stable
(4.93)
b<0, fluctuations grow =  unstable

We haveb = 1/4 > 0 so our Ad$ black hole solution and dual CFT plasma are

perturbatively stable.
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4.5.2 Hydrodynamics

Recall from (1.37) thab is related to the viscosities of the dual plasma by

_on(l )\ _1
b_2ﬂ8(2+2n)—4, (4.94)

and that the ratig/sis universal,

(4.95)

n 1
s 4n
Since we know from (3.16) that= 472T2/9G, we can get the shear viscosity

aT?

= —. 4.96
= 35G (4.96)

Now we can extract the bulk viscosity from (4.94),
=0, (4.97)

which is the expected result for a CFT (see (1.41)).

4.5.3 Arbitrary momentum

Now we will numerically calculate the dispersion relati@m &rbitrary momentum
g. In this section we will set up the equations and expansioatsare required for
our numerical method, then give the results. The detailseohtimerical method are
given in Appendix B. Many of the equations are too cumberstnggve explicitly,

in which case we will just give the equations’ form. We begyrdtting

W= wr + ia)i, (498)
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and

=27z +iz, (4.99)

wherew,; = wy;(§) andz; = z;(y) are all real functions. Putting (4.98) and (4.99)
into (4.69), then separating the real from imaginary pavesget two equations of
the form

z’+AzZ+BZ+Cz+Dz =0, (4.100)
z'+AzZ +BZ+Cz +Diz =0, (4.101)

whereA;; = A (Y, §, wr, i), and likewise foB, j, C;;, andDy;. Itis straightforward
to find these ca@cients, but the explicit expressions are too lengthy toenngre.
Now we look for asymptotic solutions near the horizos 0. The solutions fog,

andz have regular Taylor series expansions near the horizongdetw

Z =1+ by +boy? + bgy® + bayt... (4.102)

Z = h1y+ h2y2 + hgy3 + h4y‘1 (4103)

Putting the expansions (4.102) and (4.103) into the equsijé.100) and (4.101)
and expanding both equations abgut 0, we demand that the cfieient of every
power ofy must vanish. This leads to a system of equations for théficmmtsb;,

h;, (J = 1,2,3,...). Solving this system we get

by=h, =0 (4.104)
Ny

b, = 755 (4.105)

h, = <N (4.106)
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where

N; = — 64wl + 48G%w? + 192Fw! + 27¢° + 96G°w; — 72G*w? + 64w?

- 48d2wfwi - 48d2wi2 + 192(12wr2wi - 96d2wr2wi2 - 36q“4wr2wi

(4.107)
+ 96°w?w? + 64w — 36464 + 1922w’ + 64wlw! + 144G w?
+ 1445°w? + 108§°w? + 27¢°w; — 64w} w? + 64wlw; + 192w} w?
D; = (32wiw? - 246Pw? + 9G* + 246Pw! + 16w} + 16wy;)
(4.108)

x(wr2+wi2+2wi+1)

N, =96°w?w? — 96G°w; + 36G*w? — 96G°w? — 724" + 96G°w? — 12w w;
— 128w° — 2560w — 966°w? + 288Fwiw; — 726 w; — 48w} G?
+ 27¢° - 64wP — 192w w? + 1445 w! - 108 w? — 192w2w! — 64w?
(4.109)

Dy =32w?w? + 18§ w; + 32w]w; + 64w?w? + 2462 w? + 9G* + 48§ w3+
32w? + 16w + 16w° + 16w; + 48wiw? — 24§ w! + 9§ w? + 48wiw!
+ 9§ w? + 24G2w! - 24GPw? + 16w° — 48F wiw;.
(4.110)
We may work to arbitrary order and find as many féiegentsb;, h; (j = 1,2,3...)
as we like. Next we repeat this process, but expanding abeutdundary = 1.
To do this, we first apply the transformation

d d d? d?

y—>1—X, d_y—)—a(, @—)&

(4.111)

horizon: y=0o x=1

boundary: y=1 x=0
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to the equations (4.100) and (4.101). We get equations dbthe
Z'+ Az +B7Z +Cz + Dz =0, (4.112)

Z-” +ﬂi2; + B,Z’ +Cizs + Diz, = 0O, (4113)

where the prime now denotedfdirentiation with respect tg andA, ; = A;; (X, §, wr, wi),
and likewise fors,, C.i, andD;;. We need to make an "educated guess” at the

asymptotic expansion @ andz. First note that from (4.59) we have
-1

r=ro(2x-x)°. (4.114)

In the x variable, the background metric components are

/ r3 1-—
co=rqfl- r—g = ro—xl, (4.115)
(2x — x?)2

Co=r="rp (2x— x2) , (4.116)

Cs = == . (4.117)

Expanding about the boundaxy= 0 we get

5
CL= 231X 3 — 1—2r02% X3 + O(xg), (4.118)
Co = 273X 3 + irozgxé + O(xg) (4.119)
12 ’
25 , 5 25, z
Ca= X5+ = X =x3+0(x3). (4.120)

o o
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As mentioned in our discussion of the boundary conditiors,must ensure that
our fluctuation does not change the background at the boundaoking at the
expansions focy, ¢, andcs, we may guesgthat the expansion fag andz have the
form

Z = foX3 + fix+ 255 + fax3 + ... (4.121)
Z = gox% + 01X+ gzx% + g3x§ + ... (4.122)

Putting (4.121) and (4.122) into (4.112) and (4.113), exipanthe equations about
x = 0 and setting cd@&cients of powers ok equal to zero, we get a system of

equations for the cdkcientsf;, g;, (j = 0,1, 2,...). Solving the system we get

fo=0o=f=0=0, (4.123)
f—2%><3[f (67 - w? + w?) + 2 ] (4.124)
3= 20 1\]" — wy + wj Jrwr Wi .

_ 52 9 A2 2 2
Oz =23 X 70 [gl (q — Wi + W, ) - 2f1wrwi] (4.125)

Our numerical method solves the equations (4.100), (4,1@1)12) and (4.113)

on the intervalsx,y € [e, %] wheree is some small initial value. Here we take
€ = 0.0001. Notice that thg integration covers the part of the domain from near
the horizon, out to the midpoint of the domain, whereasxlietegration covers
from the boundary, in to the midpoint of the domain. The twegmnations meet in
the middle, and we use the smoothness of the solution atolims @ a measure of
the error. As initial conditions we use the expansions (2)1(%#.103), (4.121) and

(4.122) and their derivatives evaluatedate numerically solve

z'+ Az +BZ +Cz + Dz =0, (4.126)

4We assume that the asymptotic expansion of the fluctuatiaves the same form as that of the
background, but we remove the leading order to ensure thdhutttuations are subdominant.
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z'+AZ +BZ+Cz +Diz =0, (4.127)
Z(e) =1+ be+ boe? + bse® + bye?, (4.128)
z(e) = he + hoe? + hze® + hye?, (4.129)

where the prime denotesftérentiation with respect tg and

Z' + AZ + BZ +Ciz + Dz =0, (4.130)
Z’+ﬂi2;+8i;’+cizr + Diz, =0, (4131)
Z(€) = fre + f263 + fze3 (4.132)
Z(€) = gre + Qoe? + gae?, (4.133)

where the prime denotesft#rentiation with respect te. There are five parameters
that must be fixed. They ae @, wj, f;, andg;. We choose a value fag, then
use a shooting method to fix the remaining four parameters.shiboting method

is explained in detail in Appendix B. In particular, we cart gg; = w;(§). We
should start with small values gfand use our results from section 4.5.1 to give us

a good initial guess. For smaj) feferring to equation (4.75), we have
wy ~ GO, and w;~ be?, (4.134)

wherecs = 1/ V2 andb = —1/4. We can choosg fo be a small number, say,

g = 0.001. Now, from equations (4.84) and (4.88), we find that foaka

zZ~7p=2x-x, and z~z=0. (4.135)
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A~

¢s (q)
1.00}

0.95}
0.90
0.85}

0.80}

0.70F

Figure 4.1: Speed of sound versus momentum of fluctuations.

Thus we may make a good guess thatder 0.01, we have

w; ~ 0.0071
w; ~ —0.000025
(4.136)
fl ~ 2
01~ 0

With these choices, we find a dispersion relation that iclmf a massless mode;
that is,w(0) = 0. Figure 4.1 shows the speed of sound as a function of mommentu
We can see that in the hydrodynamic limgit—> 0, the speed of the fluctuations
approaches the conformal value of of the speed of sayrd1/ V2. In the large
momentum limitg"— O, the speed of the fluctuations approaches the speed of light
Cs = 1, as expected. We may also look for solutions corresponttingassive
modes by making dlierent initial guesses of the values of the parameters. igndi
this spectrum is largely a matter of numerical trial and etowever, each excita-

tion is usually found withw;, ~ 1,2, .... The result is shown in figure 4.2 where we
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Wr = Cs (4) {} Wi = b (d) {}2
5
s ~0.05[
sl —0.10f
o —015f
- -0.20 -
‘ B ‘ LG
1 2 3 4 5 4 1 2 3 4 5 4
Wr = Cs (G) {} Wi = b ((j) (}2
—14
~15
~16F
q -7t
L L L L L A
G
[ — 1 2 3 4 5 4
w; = b(§) ¢*
29¢ —2.55F
2.8} ~2.60
27¢ ~2.65]
26l —2.70F
—2.75
2.5
L L L L 1 {A
5 1 2 3 4 54

Figure 4.2: Left columnw;, vs .
successive excitations.

Right column:w; vs §.

Each row corresponds to
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see that aj = 0, we have a massless mode (top) and two massive modes (middle
and bottom). There are two regimep,— 0 andd — oo, of particular physical
importance. Fog ™= 0, which is relevant to the study of hydrodynamics, the fluc-
tuations represent sound modes that decay after manyatsmill and thus can be
interpreted as genuine excitations. In this regimey §eows linearly with a slope
equal to the speed of sound. Fpr= oo, the fluctuations are also long-lived, but
behave like massless particles. In this regimey Relinear with slope equal to the
speed of light (i.e.c = 1). This is true for all branches in figure 4.2, although in
the third branch (green) we have not shown results for lacpighd to make this
obvious. This makes sense since the rest mass becomes artantpas the mo-
mentum becomes fliciently large, and the massive "particle” behaves simjltol
a massless one. We may conclude that since & < 1 always, all modes are
thermodynamically stable and causality is never violatEcbm the firstw; vs §
plot, we see that for small (large) valuespivé get the expected result — —-1/4
(wi — 0) Also, sincaw; < 0 always, all branches are perturbatively stable as well.
In this chapter we studied small fluctuations of the backgd®spacetime. From
the dispersion relation of the fluctuations we were able teaekthe speed of sound
and bulk viscosity of the dual field theory, which we found sr@greement with
the expected values for a CFT. From the sign of the atteruatéodetermined that
AdS, black holes, and thus the dual field theory, are perturbgtstable. In the
next chapter we will begin our study of the Exotic Model. Altlgh it will be

technically more dticult, the techniques used are almost identical to study,AdS
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Chapter 5

AdS4 black holes with scalar hair

In this chapter we begin our study of the Exotic Model, whishAdS, gravity

minimally coupled to two massive scalar fields. This modebiglained within the
context of the AdBCFT correspondence in section 1.5. We will derive the equati
of motion and solve them numerically to compute the exaattioelynamics. We
will consider the near-conformal limit and analyticallyl@aate the leading order

corrections to the results of the previous chapter.

5.1 Action

Here we will consider the Exotic Model, whose action is gitgn

1
S= %2 (f d*X V=0 (Lags, + Lr + L) — d*xy=y0 + Sct)’ (5.1)
M

oM

where

1 1
Lags, =Ra+6, Li=-50,09"¢ + ¢*, Li= ~50ux&'x - 2¢° - 96*x% (5.2)
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ando® = g,,0", where

Q" = —% (VA + V') . (5.3)

The counterterns.; will be chosen in such a way that the on-shell action is finite.

5.2 Equations of motion

We seek solutions for the metric of the form
ds? = —cy(r)%dt + ca(r)? (6 + dx) + co(r)?dr2. (5.4)

Putting this metric into the bulk part of the action gives

’ /) ~ /7 /\2 / ~
_ G%c chc3c§ LY G 201(02) L 4550

Cs c3 Cs Cs c3
1 4
Shulk = 2 d*x| -4
M

C,C1Co
2 2.2
— gCiCC3p Y —

+ BC;C5C3 + C1C5Cap° — 2C1C5Cay >

C1C5(¢")? 3 GG (x')
2C3 2C3

(5.5)
The equations of motion are derived by setisg,x = 0. It can be checked that the
boundary terms arising from the variation of the bulk actawa exactly cancelled
by the boundary integral in (5.1). This is apparent sincedthditional terms/;
and £; contain only up to first-order derivatives, so the cancelfais identical to
that in chapter 3. As such, we will not concern ourselves wighboundary terms.
Varying Sy With respect tacy, ¢,, Cs, ¢, andy repectively gives the equations of

motion

8¢, o3 — 12626 — 23342 + 4G + 298Gy

(5.6)
+ 4(Ch)%Cs + C5C3(¢')? — 8C,LC4C, + CaCs(x)> = 0
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—4C,C4Cy + 4C,CoC3 + 29C1CoCah°x % + 4CH C1C3 — 4T, C4Co + C1CaC3(¢)?
— 12C1C5C3 + 4C] CoC3 + C1CoC3())? — 2C1CoCa¢° + 4C1CoCox? = 0

(5.7)

8C,C,C, + 4(C,)%C1 — 121C5C5 — 2C,C5C5¢° + 4C1CoC5y? 5.8)
+296165C50°x” — C165(¢')” ~ e1G5(x')? = 0

2C1CoC3p — 29C1C2C3dx > + 2C1C,Ca¢ — C1CaCh)’ + C1CaCa¢)’ + C1C2Ca¢” = 0 (5.9)
4C1CoCox + 29C1CoC3p%y — 2C1ChCax” + C1CaChx” — C1CaCax” — C1CoCax” = 0 (5.10)

Using the first two equations, we can eliminafefrom the first andc] from the
second. Then we can use the third equation to elimirg}é« (’)? from both. The

eqguations of motion can be put into the form

2\’ CZ
c/ + c’l(ln %) _ 85 (6% - 2¢% - gp*x* + 6) = 0 (5.11)
C3 2
’ c2
& + ¢ (In Cé—?) - % (62— 2¢° - g¢** +6) =0 (5.12)
ez
¢ +¢’(In —) +203¢(1-?) =0 (5.13)
Cs
ez
X' +x (In ] - 2¢3 (2+ g¢%) = O, (5.14)
3

with the first-order constraint

(¢)°+ (¢')° - 4(nc) (Inchey) +263(¢2 - 2%~ g#? >+ 6)=0.  (5.15)
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5.3 Asymptotic solutions

We will not attempt to solve (5.11)-(5.15) exactly. We wilentually need to resort
to using our numerical method. The domain of interest &[ry, ). Having a

boundary at infinity is not convenient in a numerical methd.transorm to a new
radial coordinate in which the domain becomes the unit vaier\We introduce a

new radial coordinatg as

y= % such that y e [0,1] (5.16)
2

The horizon is defined bg; = 0, so in our new coordinate, the horizon isyat 0.
We assume that our spacetime is asymptotically Ad®which case we should
havec; = ¢, at the boundary (see equation (3.10) in the limi o). Thus the
boundary is ay = 1. We know that if our spacetime is asyptotically Ad#en we
must have

Co(r) ~r, r — oo, (5.17)
so from (4.59), in terms of this is

1

—, y— 1 (5.18)
(1-y?)?

Ca(y) ~

Let us then explicitly pull out this divergent part and irduze the regular function

a(y) as

Ca(y) = ) T (5.19)
(1-y?)?
Comparing with puréAdS, we havé

Note thata = rg using the notations of the previous chapter.
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Also, to preserve our asymptotic AglSpacetime, we must have

oy—>1)=x(y—1)=0. (5.21)

We will now extract the next leading behaviour of the solnsidorc,, ¢, andy.

From the chain rule, we can write

dr — drdy’ dr2

¥ (5.22)

d _dyd ®  (dy\ & L dyd
dy " drzdy

Using (5.16) and (5.22) we can write the equation of motioa1}p(5.12) in terms
ofy

dv\? 2 2 gy 2

(&) o+ 0o |0 2) (2) + 52| - 122 (- 2¢ - gt o) =0
, (5.23)

d

eS8 2 S o

2 2 d2y

o B are

dy
dr
%’ 2
dr

2 dzy‘
) ( ) |- 2¢5y (2+g¢%) = 0 (5.26)

2
(%) (@) + (') = 4(nco) (Iny?cY) | +2c3 (#2 — 2% — g¢*® + 6) = 0, (5.27)

where the prime now denotesfi@direntiation with respect tg. Using (5.24) and
(5.27) we can eliminatdy/dr andd?y/dr?. Since we will need it later, let us write

the formula explicitly

( y)z _ —205(¢7 - 2% - go*x” + 6)

= 5.28
ar (¢')2+cv)2—4(lnc2)'(lny2c§)’ o
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The remaining three equations can be put in the form

¢ (o) (3¢

- VZ e Vo T % (49" + ()| =0 (5.29)
' s o)

0+ o55e | @+ WP -T2 - 12%2} —0 (530)
, 2

e - 2 12%} ~0, (53D

whereP = ¢? — 2y? — g¢?x? + 6. Transforming to the coordinate, the metric

becomes

()2 + (¢')? - 4(Incy) (Iny?c3)
2 (¢ - 2% — g#%* + 6)

ds’ = —y?c3dt® + ¢ (dx¢ + dxg) - dy, (5.32)

where we used (5.16) in the first component, and we used the chady = %’dr
and (5.28) in the last component. In order to ensure redulafisolutions at the

horizon we impose the condition

y—0,: [a(y), #(¥), x(¥)] — [@@o, Po, Co] , (5.33)

whereag, po andcy are constants. Regularity at the horizon allows us to exffand

solution as a Taylor series abgut 0,
a=a (ao +ay? + O(y“)) (5.34)

¢ = po+O(Y") (5.35)

X = Co+ O(Y) (5.36)
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Higher order cofficients can be found in terms fafay, po, Co} by substituting these
ansatze into (5.29)-(5.31), expanding abptt 0, then insisting that cdicients of
powers ofy vanish gives; however, they get really ugly really fast sowoa’t write

them down.

Now we need to expand the solutions about the boundary. Thisloae intro-
duce a new variable

X=1-y. (5.37)

In the x variable the boundary is given by = 0. Transforming the equations

(5.29)-(5.31) to thex variable we get

2
¢+ leX - 4% + %2 (@) + )] =0 (5.38)
: ()
0 1 e | W (1) 2 - 12%%} 0 (539
2
2 Z—LZ—;’ @+ ()P + (%X)C% _ 12%} =0, (5.40)

where the prime denotesftlrentiation with respect t&. We know that near the

boundary we have, y << 0 and

Wi

Co ~ X3, (5.41)

which follows from (5.19) withy = 1 — x and the limitx — 0,. Under these

assumptions, the asymptotic form of equations (5.39) artD}5s

2
¢ — ¢ + 5% =0, (5.42)
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and
4¢
= 4
X' =X - 92 -0 (5.43)
which have the general solutions
o= ol ()2 )
2/1 s\2 512 (5.44)
~O(x%)+0(x%), X— 0,

and

o= roal3 o ()3

¢ (5.45)
~0(x‘§) (x%) O( 4) X — 0,,

wherel,(2) andK,(z) are the modified Bessel functions of the first and secondskind
respectively, and\ andB are integration constants. Comparing the latter to (1.57)
we see that the cdigcient of theO (x‘%) term corresponds t@, which we must set

to zero to avoid destroying our dual Agixed point. Also, theD () term will

vanish automatically.

Now putting¢ ~ X3, ¢ ~ X3 andc, ~ X‘%a(x) into (5.38), we get the asymptotic
form

2 1 4
a’+-a +—x3a=0, 5.46
X% 36 (5.46)

which has the general solution
x3) 2
a=C lx 3 cos(—) - — sm(x3 )l
x \2 (5.47)

whereC is an integration constant, and we fixed the other integnatanstant by

enforcing that be a real function ok. Now we have enough information to make
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an educated guess at the form of the asymptotic solutionthedroundary. Let us

take
a= a(l+ Clx% + CoxX + ) (5.48)
¢ = plx% + pzx% + P3X + ... (5.49)
§% :)(ZX% + X3X+ ... (5.50)

Substituting these ansatze into (5.38)-(5.40), expanalooytx = 0, then insisting

that codficients of powers ok vanish gives

1 2 1 4
a= a(l - Epﬁxg — TgPiPX+ 0(x3)) (5.51)
b= PiX3 + PaXE + ip:"x+ O(x%) (5.52)
201
4 1 3 2.2 7
X :)(4(x3 + (?g - %) PIX + O(X3)) (5.53)

The integration constants at the boundgpy, p,, v4} have the following interpre-
tation in the dual field theoryp; is the coupling of the relevant operatOr that
deforms the CFT dual to pure AdSp; is (O;), andy, is (O;). Note thatAp, = 2 so
p; is a dimensionless coupling with we take to be proportiond tvheremis the

mass of the deformation.

5.4 Thermodynamics

First let us find the temperature. The calculation is doneafgeneral metric in

Appendix A. Transforming to thg coordinate, the metric becomes

()2 + (¢')? - 4(Incy) (Iny?cd)
203 (¢% — 24 - G + 6)

ds’ = —y?c3dt? + ¢ (dx¢ + dxg) - dy?, (5.54)
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where we used (5.16) in the first component, and we used the chady = %’dr

and (5.28) in the last component. Now we expand the metricitath@ horizon
(5.55)

y = 0. We have
G~ o,

3a; + a9

= 16A%
6—203+p3—9p303)]

(5.56)

and
() + (¢)? — 4(ncy) (Iny?c3) 16[
6a0(

2¢3(¢? — 2v* — gp*%x® + 6)
where A? is the quantity in large parentheses. Changing to imagitiarg via

t — itg, we can put the metric in the form
(5.57)

212
4 = K(dy2 +y2d(“ aotz)) + P,

whereK is an overall constant. We remove the conical singularitydairing that

16A2 E

A (5.58)

3
2

tE:tE+27T

ag,
Identifying the period ofg with 1/T and restoringA we find the temperature
8rT\> 6a (6 —2¢3+ p3 — gpgcg)
— = . (5.59)
a 3a; +

Next we will calculate the entropy. Recall that= a(y)(1 - y2)‘%, and that the

horizon is given by = 0, and the induced metric is
(5.60)

d< = (X + dxd),
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whose determinant ig?a3. Using the Hawking formula for the entropy we get

[ e?a3dxdx
_ 61
o (5.61)
or
_ S _, (¥ _ €, o
s=o= ( - ) = o’ (5.62)

whereV = [[ dxdx and we used (3.18) in the last equality.

We can calculate the free energy by calculating a finite viduthe action. We

can show that the equations of motion suggest
1
I = 4cC1C3 — 4C4C5C1 — C1CoC (6 - 9¢2X2) + 5010203 ((¢,)2 + ()(’)2) =0. (5.63)

Then, defining the quantity in parentheses in (5.5) tlvee find that

=~ G d (GG
£ c3 dr ( cs /)’ ( )
and sincd” = 0 we can write the bulk action as
S 20,02 boundary
bulk _ _iz( 1 2) ’ (5.65)
\% 2 Cs horizon
wherer = fOT dt. It is straight forward to calculate the boundary action
1 3
Sboundary: _i " d°x V—yO (5.66)
or
Sboundary _ _iz ( ﬂ N 4C1CZC'2) (5.67)
v 2 Cs Cs boundary
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Adding the parts together we get

S |, (¢ C1CoC)
v:ﬁ[z(c—g) | _4( ‘ (5.68)
horizon 3 boundar

Equation (5.68) is written in terms of threvariable. In order to make use of our

asymptotic solutions, we must write the first term in termsh&fy variable, and

the second term in terms of thevariable. Although it is tedious, the calculation

is straightforward. Take; = yc, and use equation (5.28), where unglep 1 — X

we havedy/dr — —dx/dr. Then use the appropriate expansion in each term. The

result is

T 1, 3\/630(6“' pcz)_ZC(z)_gp(z)C(z)) 2a° 1a/3p%

S 3 13
v—ﬁ—zaao - — —= +3a—§a/p1p2.

3a; + ag X 10 x3
(5.69)
The action diverges as— 0. We may add a counterterm of the form
1 1 3 2
ﬁsct = 5a aMd XV=y (,31 + B¢ ) (5.70)

Since this expression isftkomorphism invariant on the boundary and contains no
derivatives of the metric or scalar fields, we are sure thdiragit to the action will

not alter the equations of motion. Straightforward caltatagives

1S 7 (1810 2B1a’p? + 1Baalp? 1 1

12 4
(5.71)

Choosing3; = 4 andB, = 1/2 we get a finite action

2 _ 2¢2 - gpAc2
_ T o5 15 _}33\/6610(6+po 2, gpéo)
= 52|20~ 5@ PPz — 5078 N . (5.72)

<lwn
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Takingr = i/T andF = T Sg we find the free energy density

F =

1 1 1 \/6ao(6+ P — 263 - gc?) (5.73)

F
_:_23__3 _ =333
Vo 22| T P30 % 38, + 2

To find the mas&nergy density we will calculate the stress-energy tensioigt

1

1 6SCt
T=t (@,N ~Ort = W), (5.74)
where
6Seq 1 ¢°
=~ /- 44+ — 5.75
6')”’“’ 2 yyyv ( + 2 B ( )

which follows from varying equation (5.70). Then usié‘ﬁ@ = €1C5C,° Ty, the

result is
2a° — %a3p1 P2 0 0
N 1
<T;1v> = 5@ 0 @® + za®p.p2 0 . (5.76)
0 0 ad+ %Cke)pl P2

This gives us the magnergy density and pressure

M 1 1 1 1
E= vV = 22 (2&3 - 6a3p1p2), and P = o (a3 + 6a3p1p2). (5.77)

Now one may ask, why do we not immediately see that —%. In fact, this

equality holds, which we will show now. The Einstein equati@re

1 ~
Ry — Eg’”R = 87GT,,. (5.78)

2We do not have the factor of 2 in the last term because theeemttion is normalized up to
1/242.
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where

~ 0L
T,uv = —2@ + gﬂV‘E' (579)

For our metric we hav® = 0. The Taking our lagrangian density to be

097 (@x)?

L=R+6- 5 >+ - 2¢° — 9oy, (5.80)
we get
T = (0,0)(0,0) + 00)x) + G L, (5.81)
or
T+, = (0"9)(0,9) + (1) (@x) + &, L. (5.82)

Since our metric is diagonal and the scalarandy depend only orR, then Ein-

stein’s equations guarantee that
R, - R4, =0. (5.83)
Explicitly in terms of ther variable this is

2
/7 / / ~ ’
g L a% o (@) g

_ — =0, 5.84
C1CoC5  Ci1C3  Ci1C3 €35  CC3  CoG3 ( )
which can be written as
1 3y
((3) —2) 0. (5.85)
C103C3 C/ C3
This implies that
a) G
— | —= = const (5.86)
C/ C3

is a constant of motion. Converting to tgecoordinate and expanding about the
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horizon we get

lim (%) G 1y 3\/66‘0(6+ pS—ZCS—gpSCS). (5.87)

—~="q
y—0,\Cy/ C3 4 % 3al + do

Then converting to th& variable and expanding about the boundary we get

. ‘S 3
im (%) 222203, (5.88)
X—0;4 2

Thus we have

1 3\/6a0(6+p§—203—gp§c§). 5.89)

3 3:_ 3
“ 2“a° 3a; +

Then we can write the pressure as

1 1
P= %2 (—20/3 + 60/3 pP1pP2 + 30/3)

1 s 1 1 33\/6a0(6+p§—203—gp§c(2)) (5.90)
= —|-2° + za°p1p2 + za’q; .
2«2 6 2 3a; + qg
= —F.
It is easy to check that the relation
F=E-Ts (5.91)

holds.
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5.5 Conformal limit

Let us first consider solutions wheye= 0, which corresponds to the case where
(O;) = 0. Our equations of interest are
2
2 C/Z (C/Z) CZ N2 _
cz—y—4 . +4(¢)_O (5.92)
¢( (@) &-12y(c)) - 8se )
7 ¢, y 2 2 2 2
+ _— =
y yG (6 + ¢

To study the conformal limit, we should expand the solutiagsa series of some

& =0 (5.93)

small parametef; where

m
6y 0 = << 1, (5.94)

wherem is the mass that deforms the CFT, and is related to the scaldifi So
the conformal limit corresponds to eiten — 0 or T — co. To leading order, we

may write the solution as

c(y) =€, and  ¢(y) = S1¢1(y), (5.95)

where

A(Y) = In (aap) — % In(1-y?) + 62A(y). (5.96)

Putting this into (5.93) and expanding to leading ordef;iwe get

4,8 b
y 9a-yy

o7 + (5.97)

3Thus we may use "conformal limit” and "high-temperatureitinmterchangably
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The general solution is found in terms of hypergeometricfioms

224

11— y2)+(:2( y2)22F1(3 331- y2) (5.98)

: 112
=Cy(1- F

¢ 1( yz) 2 1(3 33

This solution is singular at the horizogn= 0. We must choose the integration

constants so that we cancel the divergence at the horizopartgng about the

horizony = 0 we get

rs

¢ = —2C1r(%)2 (7 + w(%) +1In y) - 2C2r(%)2 (y + w(%) +1In y), (5.99)

wherey is the Euler-Mascheroni constant, an(k) is the digamma function. We

can remove the logarithmic divergence if we take

Ci. (5.100)

Now we have

r(3) 1
1= —5(1-y) o
r(3) ( (5.101)

B3 5)

where we redefined our integration const@nt= Cll“( )/F( ) and we absorbed

C. into the expansion paramet&rin equation (5.95). The solution (5.101) is still
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singular at the horizog = 0. Using the transformation [1]

I'cl'(c—a-Db)

oF1(a,b,c 2 = I(c- AT b)zFl(a,b,a+ b-c+1,1-2)
nl(©I'@a+b-c)
__ \Cc-a-b _ _ A -1
+(1-2 [ (@r®) oFi(c—ac-bc—-a-b+1;1-2
(5.102)
we can analytically continue the solution to get
o= (1-y) oFi(2. 2 1y2 (5.103)
3’ 3, ) b

which is well-behaved at the horizon. Changing (5.101) touériablex = 1 -y

we get

2
r(3) (5.104)

which is well-behaved at the boundary= 0. Expanding (5.104) near the boundary

we get .
2in , ()
¢ =011 = Wﬁlxs T i

61x% +0 (x%) ) (5.105)
Comparing to the asymptotic solution (5.52)

¢ = puxe + PoxE + O (X) (5.106)
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we see that .
25 or(2
pL=———06, and p,=- 4(33 o1, (5.107)
5 2
\/§r(§ 23
and .
9ar (2
P2 = ——— P1. (5.108)
2373

Let us now turn to equation (5.92). Inserting (5.95) and exiiay to leading

order in§; we get
(3y2 + 1) 1
vl N 4+ (4)=0. 5.109
1 y(l_yz) 1 4(¢1) ( )

The solution is

A = 1fy Z__dz +fz 01 2(1_uz)2du + (5.110)
1—-1 o m Y1 o (%) U Y2, .

wherey; andy, are integration constants that are fixed by the boundaryitonsl.
First, note that from (5.95) and (5.96)

iAl(y)
C(y) = aa'ﬁ;%, S0 a(y) = age ), (5.111)

(1-y?)®

Comparing to the asymptotics in (5.34)
aly) =a (a0 +ay’ +Oy)).  y-0. (5.112)
we see that we must insist tha&f(y = 0) = 0, which fixes the integration constant
y2=0. (5.113)

The solution (5.110) diverges at the boundgry 1, which destroys the asym-
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totically AdS; nature of our spacetime. We must fix such that it removes the

divergence. The outer integral diverges only wienl. So we must fix

1 (9¢l ? (1_ U2)2d
= _ /=) ~— du~ -0.07 114
Y1 L (8u) y u 0.07689 (5 )

Now, let us find the leading corrections to the conformal in@atynamics that we

found in chapter 3. Using the formula (A.7)

_ 1 (cdy
T- 2 (C3 dr) horizon (5115)
with y = 0in (5.28),
dy 2(6+¢%)
dngmm@me4w2

and our solutions fop(y) = 51¢61(y) andA(y) = In (aag) — %In(l —~ y2) + 62A4(Y),
then expanding in powers 6f we get the correction to the temperature,
ady |3 i

-3

|5 32(4+9y1)5§+0(5‘1‘)]. (5.117)

The entropy density is given by equation (5.2)
2
$== (adg)?. (5.118)

Using (5.117) to eliminatea, from (5.118), then expanding i we get the cor-
rections to the entropy density.
_ 27°T?[16

2
|5~ (4+9y1) 62 + 0(5‘1‘)] (5.119)

s
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To get the corrections to the energy density and free eneeggity, we solve

(5.117) foraag and expand i@, to get

4 1
a8 =T | 5 = = (4+9y) 52+ 0(5‘1‘)] (5.120)
We can use the constant of motion (5.89) to simplify the esgioa for the temper-

ature (5.59) to get
3a

T=—. 5.121
47raé ( )
Putting (5.121) into (5.120), we can solve frand expand i@, to get
d=l-(L 2 52 +0(s%) (5.122)
36 16) * !

We can write the energy density and free energy density fE0i#v] as

_ (e@g)’® (2 1

1 F (adg)® 1
&= 22 _éplpZ) %, and =

1
E__ba z—éplpz)% (5.123)

Inserting (5.107), (5.120) in the numerator and (5.122)i@ denominator, then

expanding ins; we get

3 643T3 87213

2 4
&= 75~ g1a (97y1 +4m - 6V3) 62 + O (6%) (5.124)
and
3273T3  4x2T3 ) .
F=-"0os + g1a (97y1 + 4 + 12V3) 6% + O (51). (5.125)

The first law of thermodynamics must hold in this limit. Winigié; = m/T, the first

law

o0& Os . 8 [mm\?
T Ta_T =0 gives - 8_1(7) (97r)/1 +4r — 6‘/5) =0. (5.126)
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This gives us an exact expression far

2
71=—= (27— 3V3) ~ —0.07689 (5.127)
O

Finally, we can use the thermodynamic relation for the spéasdund

or (%)
2= —2E = _(g_?) (5.128)
which gives
2= % - ‘/5’52 +0(6%). (5.129)

5.6 Numerical results

In this section we will summarize the input for our numerigaicedure and give its
results. A detailed description of our numerical methodvegin the Appendix B,
and the Mathematica code used to solve this particularsyistgiven in Appendix

C.

The equations that we need to solve are the following

2
// C/ (C/Z) CZ ’ ’
oS- dD il e
(&)
, ¢ 1P e 8¢ (&) |
'+ 259 @)+ () 02 12c§ =0 (5.131)
2
’” X’ lap ’ (C’) _
F B @Y+ ()P - -2 1222 z =0, (5.132)

where the prime denotesftirentiation with respect to y. Near the horizon, say
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y = € = 10°%, we have the asymptotic solutions

= a (a0 + aye® + O(e")) (5.133)
¢ = po+ O(e?) (5.134)
X = Co + O(Ye?). (5.135)

Since we will use these expansions as our initial values heald find a few more
higher-order terms. We also have, unger 1 — x

2
¢ + & —4(C,2)

T et @ ] =0 (5.136)
2

0 - 15 g |+ 0+ (1) 2 (Cj”:o (5.137)
2

. 1X’X leg @Y+ (W) + (%() 2_2 _ 12%‘ —0,  (5.138)

where the prime denotesfiiirentiation with respect ta. Near the boundary, say

X = € = 1075, we have the asymptotic solutions

(1_ _pl €3 _ _plp2€+()( %)) (5.139)
¢ = ple3 + p263 + —ple +0( %) (5.140)
X:X4(e%+( g—i)pfez+0( 3)) (5.141)

where, again, we should find a few higher-order terms. Sineevill always plot

dimensionless quantities,will always cancel out of our calculations, so in practice
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0.02 0.04 0;06/6.08 0.10 0.12 87T

Figure 5.1: Order parametgt, as a function otxp,/87T. The red curve corre-
sponds to the symmetric phase whege= 0. The purple curve corresponds to the
first symmetry-broken phase which exists tgp, /87T < 0.0772787. The green
curve corresponds to the second symmetry-broken phase.

we just set it tax = 1. We have to fix the parameteps, p,, x4, @, a1, Po, andco.
We vary p; and find all other parameters as functions of it. Startindn\aitsmall
value ofp;, we may use the pure Adgeometry to guess good starting values for
the other parameters. In particular, far~ 0, we havep, ~ y4 ~ a; ~ po =~ Co = 0,
andap ~ 1. This configuration of starting values for the parameteitklg@ad to

us finding solutions wherg = 0 for all p,. However, we may numerically find
branches of solutions whege+ 0 for certain ranges gb;. One may wonder why
we do eliminate one of the parameters using the constant 6bm(.89). The

reason is that the numerics completely destabilize.

Figure 5.1 shows a plot gf; versusap;/87T. Notice that we can find multi-
ple branches of solutions: the red curve corresponds toythengtric phase where
x4 = 0 (or where(O;) = 0 in the CFT). The purple curve corresponds to the first
symmetry-broken phase wigh, # 0 (or where(O;) # 0 in the CFT) which exists
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for ap,/87T < 0.0772787. The green curve corresponds to the second symmetry
broken phase. Although there is evidence to believe thatthee many more
(perhaps infinitely many) branches, the numerics on eacbessive branch are
increasingly unstable. We will focus solely on the first twariches (i.e. the red
and purple ones). This spontaneous symmetry bredidgragpsociated with a second
order phase transition wijy serving as the order parameter. The critical behaviour
of our system at the phase transition will be studied in detazhapter 7. An in-
teresting feature of these phase transitions is that thegshaith broken-symmetry
exist for temperatures above the critical one. This is intrast to most typical
phase transitions where the symmetry-breaking occursofertémperatures. For
this reason, we consider the phase transitions we see hieeeotftan exotic type.

Figure 5.2 shows the numerical results for the entropy dgrsithe top figure,
the red curve corresponds to the free energy calculated f5o2), and the black
dashed curve corresponds to (5.119). The excellent agréenticates that our
high-temperature analysis from the previous section isisbent with the full non-
conformal thermodynamics. In the bottom figure, the freergynés plotted for
the symmetric and symmetry-broken phases. The symmetaisephas the highest
entropy, and each successive symmetry-broken phase hasdatvopy.

Figure 5.3 shows the numerical results for the free energythé top figure,
the red curve corresponds to the free energy calculated orn3), and the black
dashed curve corresponds to (5.125). The excellent agreanticates that our
high-temperature analysis from the previous section isistent with the full non-
conformal thermodynamics. In the bottom figure, the freerggnés plotted for
the symmetric and symmetry-broken phases. Since the symorpétise has the
lowest free energy for all temperatures, the symmetry-émgihases are metastable

at best, and a system in a symmetry broken phase would elgrdaeay into the

4The broken symmetry is tH&, associated with the symmetpy— —y.
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Figure 5.2: Entropy density as a functionap,/87T. Top: The red curve corre-
sponds to the numerical results for equation (5.2) in themsgtric phase. The black
dashed curve is the result from (5.119). Bottom: Numeriesiliits in the symmetric
and symmetry-broken phases. The colour scheme is the saméagse 5.1.
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Figure 5.3: Free energy density as a functior@f/87T. Top: The red curve

corresponds

to the numerical results for equation (5.73hénsymmetric phase.

The black dashed curve is the result from (5.125). Bottommbitical results in
the symmetric and symmetry-broken phases. The colour sslethe same as in

figure 5.1.
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symmetric one. We will study the perturbative stability bése symmetry-broken
phases in chapter 7.

Figure 5.4 shows the results for the energy density (top)laadpeed of sound
(bottom). We find that the speed of sound is positive and finitthe symmetry-
broken phases. Thus, these phases are thermodynamiealky F].

All of the results presented so far have the coupling fixegl at—100. Figure
5.5 shows the natural logarithm of thefdrence between the free energy density in
the first symmetry-broken phase and the symmetric phasgggBrT — O, versus
In(-g). Asg — —o (i.e. large mixing betwee®, andQ;), the symmetry-broken
phases approach the symmetric phase at high temperatwpg8tT — 0). We
found that no phase transition occurs wiges 0.

To summarize this chapter, we have computed the full noriecoral thermo-
dynamics of our Exotic Model. We found the leading corret$ion ap,/T to the
conformal thermodynamics in the high-temperature regife. verified that the
thermodynamics computed for our model are consistent \wetfitst law of ther-
modynamics. We numerically computed the thermodynamiermils, and we
verified that our results are consistent with the high-terajpee corrections. We
found exotic phase transitions in our model, and we identifie order parameter
characterizing them. Before analyzing the critical bebavnear the phase transi-

tion, we will study the hydrodynamics of our model in the neixapter.
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Figure 5.4: Top: Energy density. Bottom: Speed of sound. ddieur scheme is
the same as in figure 5.3.
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Figure 5.5: Natural logarithm of theftierence between the free energy density in
the first symmetry-broken phase and the symmetric phasggigBrT — O, versus

In(-g).
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Chapter 6

AdS4 black holes with scalar hair -

fluctuations

In this chapter we will compute the hydrodynamics (i.e. sbefesound and bulk-
to-shear viscosity ratio) by considering the dispersidati@n of small fluctuations

about the background geometry. We let

Qv — g;/n/ = O + Ny

p—>¢ =¢p+A (6.1)
x—=x =x+V¥,

whereh,,, A and¥ are understood to be small fluctuations of the background ge-

ometry. Explicitly, the line element becomes

dS" = (=G + hy) A + (G + Ny, ) A + (GG + i, ) A + (G + i ) dIF?
+ 2hyy, dtd X + 2hy, dtdX% + 2hg dtdr + 2hy, ., d X% dX% + 2h,  dXxdr + 2h, dXxdr.
(6.2)
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Many of the calculations in this chapter are very tediousysavill often give only

the form of very long equations.

6.1 Equations of motion

The bulk action that gives rise to the equations of motiortterfluctuations,, is

Shuk = == d*XLouks (6.3)

where
Lou= VG |R 65 (00 - 5 @0 + 0 - 20) - 9@ (P, (6.4

andRis the scalar curvature calculated from the metric (6.2)yg this action
with respect to the metric (6.2) while keeping only the teim<,, that are at
most quadratftin h,,, @, ¢ and their derivatives, we get the equations of motion by
demanding thaéSpux = 0. All of the equations of motion are linear Ir), and its

derivatives. Schematically, they have the following form,
Ett(arzhxlxl, 6r2hX2X2’ 6)2(2 hX1X1’ 6[’ hX1X1’ 6[’ hX2X2’ 6FA7 al’\P7 thXl? hX2X27 A’ \Il) = 07 (65)

Eth_ (6)2(2 htxl ) ataXZ hX1X2 ) 6r2h[X1 ) aI’ htxl ) htxl) = O’ (6 . 6)
EtXZ (atghtxz ’ 8taX2 hX;LX]_ s al‘ hth ’ hth) = Oa (6 7)

Etl‘ (atar thXz s atal‘ hX]_X]_ s anar hth s at hX1X1 5 at thXg s 8X2 hth s atA’ ath) = O’ (6 8)

LIn principle we should be careful with the boundary terms tigiag a Gibbons-Hawking term
to the action.

2In this case, the linear terms vanish by virtue of the badkdoequations of motion (5.11)-
(5.15). So the first non-vanishing terms are quadratic.
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EX1X1 (achXZXQa 8§2 htta ashXZXQa atBXZ htXQ’ arzhtta 8[’ thXZ’ al‘ htt’ al‘Aa htt’ thXza A’ lIJ) = Oa

(6.9)
EX1X2 (6t2hX1X2’ ataXZ h[X17 a[?hXJ_Xz’ aI’ hX1X27 hX1X2) = O? (610)
Exlr(atar htxl, axzar hxlxz, 8x2hx1x2, 8thtx1) =0, (6-11)

EX2X2 (arzhtt’ arzhxlxl, atzhxlxl, 8[’ htta 8[’ hX1X1’ al‘Aa ar\}’, hX1X1, htta A’ lIJ) = Oa (612)
EXQI’ (6X2 6[’ h[t7 atar h[Xz ) 6X26r hX1X1 ) anA’ 6X2\P7 an hX1X1 ) an htt7 at hth) = O’ (6 13)

Err (atth2X2 s 8§2 hX1X1 s atBXZ hth s atzhxlxl s 8§2 htta 8[’ A’ al‘ lPa 8[’ hX]_X]_ s al‘ hX2X2 s

(6.14)
aI’ htt’ hX1X1’ hX2X27 htt? A7 \P) = 07

EA(arZA, a)ZQA, arA, ar hxzxz, ar hxlxl, ar htt, htt, hxlxl, hxzxz, A) = O, (6-15)

E‘P(arzlp, 8§2l{l, ar\}’, ar hxzxz, ar hxlxl, ar htt, htt, hxlxl, hxzxz, lI”) = O, (6-16)

whereE,, is the equation of motion that arises from the variation efahtion (6.3)
with respect to the fluctuatioh,,, andE, andEy arise from the variation of the
action with respect to the fieldsand¥. The equation&,,, EA, andEy are linear
in their arguments whose cfieients are functions of the background fields; (
C,, C3, ¢, x) and their derivatives. Also, after performing the vaoatof the action,

we have used dieomorphism invariance to fix four of the fluctuation compdsen

he = hyy = hyr = Ny = 0. (6.17)

We are assuming that the fluctuations do not change the baakdy rather, they
are propagatingn the background. Every slice of spacetime with fixedan be
seen to be flat 21 dimensional Minkowski space, whetre» t/c; andx — Xx/c.

As such, the solutions can be separated into a radial pad pfahe-wave part, i.e.

3The codficients are not given explicitly because some of them are logxy.
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the ¢, x) part of the solutions will be eigenfunctions of the flat spa@ve equation.
We may orient the coordinate axes such that the plane-waepsgate along the

X, direction. Thus we may write the remaining fluctuations as

h = Ca(r)*Hy(r)e e
htxz — Cz(r)ZHtxz(r)e—ithqxz
hX1X1 - CZ(r) Hxlxl(r)e lut+igee
- (6.18)
hX2X2 = CZ(r)Zszxz(r)e_lequz

A= a(r)e—ining
Y= w(r)e—ithng,
wherew andq are the frequency and momentum of the plane wave. The furgctio

cz andc; are explicitly extracted for convenience. The equationsofion now

take the form

Ett(H;(,lxl’ H;(,zxz’ H;(lxl’ H>,<2xz’ ,’ W, HX1X1’ HX2X2’ a, '7[’) = O’ (619)
Etx,(Hix,» Hixps Hix» Hxixg) = O, (6.20)

EXle(H)/(’ZXZ? Ht/t’7 H;ZXZ’ Ht’t’ CY’, th HX2X27 HtXZ’ a, w) = O’ (621)
EXZXZ(Ht/t” H;(;Xl’ Ht’t’ H)/(]_X]_’ ” W’, HX]_X]_’ Htta a, w) = 0, (622)
EA(Q’” a’ H),(2X2’ H>,<1X1’ Ht,t, Htta HX;LX;L’ HXnga a’) = 0, (623)

EW(¢I, '7[’ sz)(27 Xlxl’ Htt’ Htt’ HX1X17 HX2X27 '7[’) = O’ (624)

along with the first-order constraints

Etr(szxz’ X1 X1 txz’a ¥, Hyxg s Hxoxos Hth) =0, (6.25)
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le'(Htta tX2’ H)’(lXI’ H] w’ HX]_X]_’ Htta Htxz) = O, (626)
Err (a w HX1X1’ H),(sz’ Ht,p HX1X17 HX2X27 Htt’ Hth’ a, '7[’) = 07 (627)

In addition, we have the following decoupled system,

Eux, (Hix,» Hix» Hixg» Hxpxo) = O, (6.28)
EX1X2(H>,<,1x2’ H;qxz’ Hxlxz, Htxl) = O, (6.29)
Xlr(Htxl’ xuxo0 Hxixes Hix,) = 0. (6.30)

We focus on the system (6.19)-(6.27) which consists of 6 rse@vder equations
and 3 first-order constraints. The redundancy of these mmsaduggests that there
exists additional dieomorphic freedom that should be fixed. Following section

4.40 we find three dieomorphism-invariant combinations of the fluctuations,

CZ ciC,
ZH — 2q CZHtt +4thX2 +2HX2X2 +2((?)2 CZC} 1) HXJ_XJ_,
0202¢
Z, =a- 2—§'HX1X1 (6.31)
2
C2C23)(,

Z¢ =y - ?Hxlxl
2
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We can solve (6.19)-(6.24) for the second derivatives, aadcan solve (6.25)-

(6.27) for the first derivatives. Schematically,

Hi = ...
Ht’)’(2 = ... oo
H/’ _ th — eee
, and H, =.. (6.32)
H,, — 1X1
we H ., =..
a’ = .. 27
'7[/// —

We can use (6.31) to eliminatdy, a, andy from the right-hand sides of (6.32),
then re-solve for the first derivatives, = .., H;, = .., andH}, = ... Now

we demand consistency among the second-order equationtbaficst-order con-

straints,

PHy,  d (dHs
dr2  ~ dr\ dr
d?c d [(da
dy _ d (dy
drz = dr\dr )’

where the left-hand sides are the second derivatives frad2)6and the right-hand
sides are derivatives of the first derivatives in (6.32).slstraightforward, albeit
tedious, to show that the equations resulting from (6.33phabcontain anyH,,,

components ot or y; this happens by virtue of the background equations (5.11)-
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(5.15). The final dieomorphism-invariant equations in theariable aré

AHZ;_; + BHZ{_' + CHZH + EHZQ + GHZw = O,
AZ! +B,Z, +C,Z, + E,Z, + F,Z, + G, Zyy = 0, (6.34)
AZ) +B,Z, +CyZy + EyZ, + FyZly + GyZu = O,

Ay = 80Pw? (c)® c3cics (qzc’lclcz — 20°CHCs + qzc’ch) : (6.35)

Bi =80%w? (¢;)” 163 | aPeese3 (¢1cz — o) (¢ — 2¢° — 9k

7 () a3z — 307 (64)° C5e163s — CPCLCHeACEES + 607 (cy)° Cica

(6.36)
+607C,C2C3CE — BGPC,CICACS + 307C; C,C2C,Cs — 2w2C () Cics
+2w° (6)° 4G - 4w® (€5)° a iy
Ch = 807w (¢,)” GG | qPCiC3C5 (Chc — €1Ca) (¢ — 24° — 96™x)
—20" (¢))° 6565 - o (¢)° €16 — ' c5ciaC5 + 30Pw” (6)° ST 5C5 (6.37)

+1207¢,CHC3C3C3 — 647 (C;)* C2Cac3 — 607 (C))° CICACE — 40PC, (Cy)° Cic
—4q? ;) (¢)* G3c3 + 40P (c))* i3 + 40P ()" ¢} + oP’Cichei 33

En = 169° (¢3)° 36503 (€12 — G5C1) [€16:G¢" (GG — 0°CF) (#7 - 2¢° — 9¢°x?)
261636 (6PCoCE + oPCicacy — 20°65) (1 - )
—2C,¢’ (3q2cf(§ — Bw?C;C3C2 + 2wC, CyCp — 212 (C)° cl)]
(6.38)

4Beware typos in the expressions for the fiiogents.
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Gr = 160" (¢;)* 26303 (G4e1 — €1¢) [erey’ (P2 - w?EE) (97 - 2¢2 - 9¢’x?)
261Gy (0P64C; - 2066 + ey ) (2 + 9¢°)
+2Cox" (39°C365 — Bw?C1G5C] + 2w°CChC, — 20 (C) )|
(6.39)
A, = 407 (c5)* €365¢5 (2wcC5 — GPChCE — GPeicaCy) (6.40)

B, = 407 (c))* ¢, (qzc’lclcz + QPC,CE - szc’zcg) (C4C1Co — C;CaC3 — 2C5C1C3)

(6.41)
C. = 207 (¢)* €163 [ G5ch (¢)* (W25 — oPc?) (¢° — 2¢° — 96™x)
+20163 (4o (c)" &3 + 4w’y 36 - 207 ()" ¢f — ePeio erchs 642
~30°Cy¢ C1Cagp — 207G ChC1Co) (1 - Gx)
+2(0?S - 07c2) (3(¢')? 3ch + 20 (¢))° & — AP GeiCe — OF (&) &)
E. = 207 (c,)* 636563 [ By (w75 — 0°c}) (#° - 2¢° — go™x”)
+2¢'Cox (0PCiCaCr + 0PCHCE — 20°C,CE) (2 + g9 6.43)

+ (w76 — oPch) (dep co (1 - 9) + 69'x )
+896x (oPCiCiC, + PCCE — 207G )|
Fo = P0® (6)° 5G| #/C2 (6 + 0% — 2¢° — go’x®) + 450 (1 - 0x®)|  (6.44)

Go = 0P’ (6) GehC3 (CiCa — Coa) [4chp (1 - Gy®) — ¢/C2 (6 + ¢* — 2¢° — g’k
(6.45)
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A, = 49? (c,)* c3c3cs (qzc’lclcl + QPC,CE - szc’zcg) (6.46)

B, = 49%(c))’ c2c, (qzc’lclcz + 02C,CE — szc’zcg) (2¢5€1C3 — C4C1Cp + CCoCa)

(6.47)
Cy = 207 ()’ &3 | (x)* €33 (0P CE — w?3) (% — 2¢° - g*x?)
—-2c2cs (qzc;)(’clcg)( + 3P ey + 207, C,C1Co + 207 (C)° G2 6.48)
—4w’Cy Gy - 4’ () S5)
~2(0?¢ - ) (o (1) & + GPeiCheaCy — 207 (6) G - B(x')’ cic‘z‘)]
E, = 207 (c)” 63363 [k 5 (0P cf — w5) (¢ — 2 — 99%x?)
+2¢'C20 (APCHC + QP CaC — 20°ChC3) (1 - gy (6.49)

(oPc? ~ w?ch) (6¢'x'CS ~ Acpecax (2 + 96°))
~89chpy (PchGE + PeiCiC, — 20PGdE) |
Fy = P’ (5)* G363¢3 |4y (2+ 9¢%) — x'c2 (6 + ¢° — 2 - g¢*x®)|  (6.50)
2cic303 (€1 — 6oCr) [z (6 + 67 — 2¢° — g¢°x”) — 4chy (2+ 9¢°) |
(6.51)

Gy = fw?(cy)

Using the change of variables (5.16), (5.22) and (5.28)

_a (d—y)z (-2 - ooy’ + )
C dr (0 + () - 4(Incy) (In yZCg)’ (6.52)
d ) dy d d2 ~ (dy)2 o2 d2y d

dr ~ drdy drz ~ \dr

dy drzdy
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we can cast the equations into the following form

ﬂHZﬁ +BHZ|,_| + CHZn + (SHZQ +QHZ¢ = O,
AZ" + BoZ. + CoZy + EaZy + FaZly + GaZit = 0, (6.53)
AZy + ByZy + Cyly + EyZo + FyZyy + GyZn = 0,

where the prime now denotesfidirentiation with respect tg, and the new coef-
ficients are expressed in termsyof The system (6.53) governs the small gauge-

invariant fluctuations of the background geometry.

6.2 Near-horizon behaviour and boundary conditions

It will be convenient to extract the leading behaviour of thetuations near the

horizon. We make the substitutions

Zy = yn’ Z, = Mayn’ ZW = Miﬂyn’ (654)

whereM, and M, are propotionality constants, and we used the invarianderun
rescalings of th&'s to setMy = 1. Putting this into the first line of (6.53) and

expanding to leading order ynwe get an equation of the form

Ky*+0(y°) =0, (6.55)

where the coicientK depends om, as well as the background expansion coef-

ficients {ag, a1, po, Co}, the couplingg, and the frequencw. SettingK = 0 and
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solving forn we get

n= 29 33+ % (6.56)
a 6a§(6+ p2 — 2¢2 - gpgcg)

Looking at equation (5.59) we find that we can wnita a very neat way

. W
n==*l——

2T

+id). (6.57)

The quantityw'is the dimensionless frequency of the fluctuations. We atSme

the dimensionless momentum to be
= ——. (6.58)

We have found that the leading near-horizon behaviour ditictuationsz; (where
i here can béd, a ory) is

Zi ~ yHo (6.59)

The plugminus sign gives components of the wave that are moving gintothe
horizon. We must chose the minus sign to satisfy the boundangition at the

horizon so that we have no outgoing waves. Finally, the legptehaviour is
Zi~y® (6.60)

near the horizon. It is convenient to explicitly extractstiteading behaviour from

the full solution. We define the new fluctuation variakifes Z, andZ, to be

Zu(y) =Y Zuly),  Zu(Y) = YOZ,(y),  Zu(y) = Y02, (y) (6.61)
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Following the reasoning in section 4.4 we must impose thiewehg boundary
conditions,
Zuly=0" =1 Zuy=1)=0. (6.62)

6.3 High-temperature hydrodynamic limit

Recall that the goal of this chapter is to calculate the batkhear viscosity of our
dual gauge theory. This will require us to numerically satve fluctuation equa-
tions in the hydrodynamic limigg = 0. In order to employ our numerical shooting
method, we will need reasonably accurate estimates of thgffjarameters when
p: is small. Recall from (5.94) and (5.107) that the snpalimit corresponds to the
highT limit. We can make some progress in these limits to extratalestimates
of the parameters we will need to fit using our shooting metAduk will also pro-
vide a non-trivial check of our high-temperature correcsido the speed of sound
in (5.129), and we will find the high temperature correctiorttie bulk-to-shear

viscocity ratio.

As in section 5.5 we expand the fluctuation variables in pevedis; (high-
temperature limit) and also in powers @f(Aydrodynamic limit). Also, we will

consider the symmetric phase whgre 0, which leads t&, = 0. We write,

ZH = (ZOO + 5%210) + Iq (Z()]_ + 5%211)
Zy = 61(Zoo +10Z01)

(6.63)
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The conditions (6.62) become

Zoo(y=0") =1
Z10 (y=0)=0
. (6.64)
Zo1(y=0")=0
211 (y = 0+) = O,

andZ,, andZ,; must be regular on the horizon. The dispersion relation @n b
expanded as

A A2
% (1 + /3155) - iqz (1+ ﬁzéi) : (6.65)

wherep; andp, are new constants that we must fix. Note that we extracted the

W=

leading (i.e.6; = 0) terms in the dispersion relation, which were found in isect
4.5.1. Putting (6.63) and (6.65) into (6.61), then those {6t53), we can expand
the latter in powers of; andd. Setting the first two leading powers to zero gives

back the same system we encountered in section 4.5.1, soeeelaknow that
Zoo=1-y?, and Zy =0 (6.66)

which satisfies the boundary conditions. Setting the naxt ieading terms to zero

gives us the following system:

8 3, 2 vy

Y Zio+ YL+ 5—(y2 ~ 1)Zzao + §¢'1 - §y2——1¢1 =0 (6.67)

YV (Y + 1)Zi5 - y(3y? - 1) Zig + 4y Zuo + 2 (9y¢’1 +27" yz¢1) Zao
3 1-y (6.68)

9 2, .2 2.,
+Z(y2+1)(y2—1) (¢7)? +18y(y? - 1) AL + 168, = 0
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P2l g = VB2 2+ B -0 (669)

V(P +1) Z-y (y2+1)(3y2—1)211+4y2(y2+1)211— V2y (v - 1) Z,
+2V2y? (yz )Zlo - —y2 (yz + 1) (QY¢1 t 1¢1) Z
(9)/31 (y+1)¢)~ 92

) ZQO—T(Y4—1)2¢'1

—9\/_2y(y2+3)(y2—1)2A’1—4\/_2y2[,82(y2+1)+2,81(y2+3)] -0

(6.70)
We will solve this system numerically, so it will fice to find series solutions of

this system expanded about the horizpa:(0) and about the boundary € 1). Let
us start with equation (6.67). Recall from section 5.5 that

pa(y) = (1- yz)l zFl( = L yz)

(6.71)
Expanding about the horizon and the boundary gives
2 8
¢p1=1- 5)’2—@_)’4"‘0()’6), y=0
i ) A . (6.72)
__ 2%z (Zx§ + :—éxﬁ +O(x3)), X~ 0,
V(g

wherex = 1 -y is the radial coordinate such that the AdS boundary s at0

At the horizonZ,, should be a regular function. We can solve equation (6.67)
perturbatively about the horizon to find that

Zoo = Z°+(5_14_S_2320)y2+0(y4)’ y ~ 0, (6.73)
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wherez, is an integration constant that must be determined.
Let us now try to find the perturbative expansionZg§ near the boundary. If

we make the change of variablgs= 1 — x in equation (6.67), then regasdto be

very small, then we may approximate the equation near thaday x = 0) to be

S = 2 >
Zlo=Zig+ 5200 =0. (6.74)
The solution is
% 0= VX (Cllé (5) +CoK; (5)) (6.75)

wherel andK are modified Bessel functions of the first and second kindcestihis

solution is only valid for smalk, we should expand it as

Zyo ~ X3 + X5 + O(x%), (6.76)

where we left out the cdicients. This gives us a good guess at what the asymp-
totic expansion o, looks like near the boundary; it is a series of powers ke
wheren is an integer. There is a caveat however, that the fluctuaijgrrannot
dominate its corresponding background figld Recall from equation (5.52) that

¢ has a Ieading(% behaviour near the boundary. Thus we must, by hand, remove
the Ieadingx% term fromZ,, to ensure that it will be sub-dominant. We may solve

perturbatively near the boundary to find

i +0(x3), x~0 (6.77)

where/; is another integration constant to be determined. With tops (6.67)

along with itsx-variable version, (6.73) and (6.77) we are set up to uselmotsg
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method to determine the constam®nds;. The result is

1

2~ ~0.0833333~ - (6.78)
9r(§)3

{1 ~ —0.224636~ ———2— (6.79)
8(25)7r2

The exact values on the right-hand side were determined ¢pention. These
guantities have no physical significance, but they will beduss initial values when

we solve the fluctuation equations for arbitrary tempegatur

We will not solve the remaining equations (6.3)-(6.70) inadebecause the
method is similar to the one we just used to solve (6.67). Wijugt provide the

pieces required for the numerics and the final results.

Although we know the exact solution fok,, it is useful to solve equation

(5.109) perturbatively. One finds

) A (6.80)

Then the asymptotics df, are

. 2 27 - 3V3 2
Zyo = —(§+4ﬁ1+T)y2+8—1y“+0(y6), y~0 6.8
:slx—(4,81+%)x2+0(x%), X = 0.

We numerically calculate that

3
s ~ 0102658 and B; ~ —0.0689161~ ‘;;/—,T—' (6.82)
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The asymptotics of,; are

5 2
Zal=Uo—§UoY2+O(Y4), y~0
6.83
:voxé—%xg+0(x%), X~0 ( )
2 var (1)
and we find numerically that
Up ~ 0.0457818 and vy ~ 0.188418 (6.84)
The asymptotics of;; are
18V28, - 2\ [2 + 2L (-3y1) + 24uo
~ bl V2 2
Zy = — f L y2+0(y4), y~0
9(—2 + \/Q)
(6.85)
o 1 [3 471(2%)v0 .
= 01X+ ‘/_2,32— 5 TN T T =3 X2+O(X§), X~ 0.
d 3Var()
Note thaty; = —é (27r— 3\/:_%), andug andvyp are given above. The remaining
unknowns are determined numerically to be
1
0; ~ —0.0134491 and B, ~ 0.250000~ 2 (6.86)

Using our results foB, andp, in (6.65), we have found that the dispersion relation

to leading order ird, is

W=

A A2
% (1 - g’ai) - iqz (1 n 355) : (6.87)
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Comparing this to the generic form of the hydrodynamic disjpa relation [6]

R . i1 R
b=ch- 3 (E + 2%) 6° (6.88)

we see that the correction to the speed of sound is in pedeeement with (5.129),

and that the correction to the bulk-to-shear viscosity ismfbby identifying thad?

codficients
1 1 1(1 ¢
- 1+—§):—(—+-—) (6.89)
A 4t 2\2 2
or )
5
¢ .0+2 (6.90)
n 4

where the zero indicates that the bulk viscosity vanishéisarconformal limit.

6.4 Hydrodynamic limit

In this section we will numerically calculate the bulk-tbesr viscosity ratio for
arbitrary temperature. In order to do this, we must solvesystem (6.53) in the

hydrodynamic limitg°— 0. To get the equations of motion in the hyrodynamic

limit, we set
Zy = Zyo + 10241
Zy = Zyo + 102 (6.91)
Z# = Zy0 + |qu1
and A A
~ PB1a P2
w=—0-i=0q. 6.92
507174 (6.92)
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Note that we have extracted the conformal values in (6.9%)a&adn the conformal
limit we haveB; = 1 andB, = 1. Putting all this into (6.61), then into (6.53), then

expanding to leading order op We arrive at a system of the form

Zo + aH0Zyg + BHoZHo + cH0Zao + droZyo = 0

Zo + 8,02, + 600200 + €20Zy0 + da0ZHo + €00Zyo = 0 (6.93)
Z)o + a07Z0 + byoZyo + cyoZo + dy0ZHo + ey0Zeo = 0,
where the prime denotesftérentiation with respect tp The codficients are com-

plicated functionals of the background fieldsd their derivatives, and they contain

the parametes;. Expanding to the first subleading ordemjnwe get the system

Zhq + an1Zyy + br1Zut + ci1Zyo + dH1Zho + en1Zo + fH1Ze0 + gH1Zy1 + AHaZyo = 0
Z + 12,1 + 6y1Z01 + c01Zyo + d01ZH0 + €01Zy1 + fa1ZH1

+ fa1Zy0 + 21200 + 101Zy1 + ja1Zy0 = O
Z)y + a1Zy + by1Zy1 + qaZyo + dyaZuo + e1Zyy + f1Zia

+ g51Z0 + AyaZy0 + iy1Zo1 + jyaZeo = 0.
(6.94)

Again, the coéicients are functionals of the background fields, and theyaiog;

andp3,. The boundary conditions at the horizon are
Zyo(y=0") =1 zu(y=0")=0, Zi(y=0")=2z,(y=0")="finite (6.95)

In order to set up the numerics, we need to solve the systera3)(énd (6.94)

perturbatively near the horizon. Since the fluctuationsegelar at the horizon, we

5The explicit forms of the ca@icients will be omitted as they are too cumbersome to writergow
and would likely be fraught with typos anyway.
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may substitute a Taylor series expansion for each fluctuatid6.93) and (6.94)
and demand that the left hand side vanishes order by ordefind/the asymptotic

behaviour near the horizon is

Zo = 1+0(y2)
Z,0 = by + O (Y?) (6.96)
Z0=e+0(Y),
and
Zy = O+O(y2)
Zy1 = 0o + O y) (6.97)
Zy1 = fo+0(y2),

where{by, do, €, fo} are integration constants that remain to be fixed. In practic
we must explicitly find several more terms than what are givere; however, the
codficients are complicated expressions of the integratiofficants, and they are

too cumbersome to write down.

It is straightforward to write change the systems (6.93) @n84) in terms of
the variablex = 1 —y. Following section 6.3, at the boundaxy= 0 we find the

following asymptotics,

zHO:zox+O( 2)

Wi

X
Zuo = WX’ + O (X?) (6.98)

Zy0 = FoX3 + O(XZ)
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and

Zy1 = VoX+ O (xz)
Z1 = hox% + O(X%) (6.99)
Z1 = o +0(X),

We are almost set up to solve (6.93) and (6.94) using our sigpotethod. All we
need now are some good initial guesses for our integratinstaats

{bo, do, €, fo, No, Ao, I, Uo, Vo, Zo} @s Well asB; andp.. In the conformal limit,p; —

0, we know from (6.92) that we should start wigh= 1 and3, = 1. In section 6.3
we considered the smal, (near conformal) regime. ldentifying our asymptotic
expansions in this section with those in section 6.3, we c¢ek @ut very good
initial guesses for the integration constantpiifis small. Namely, if we look at the
following equations: the second line of (6.63), (6.73){®, then compare them to
the analogous equations: the second lines of equations)(§®96), and (6.97).
So in a sense we are identifyiag, with 6,20, andz,; with §,Z,;. Then the results

(6.78) and (6.79) tell us that we should guess that for smyalle have
by ~ —0.0833333;, and uy =~ -0.224636, (6.100)

where (see equation (5.107))

01=—=F—PM (6.101)
Similarly we guess that

o ~ 0.0457818;, and hy~ 0.188418; (6.102)
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Looking at the first lines of (6.63) and (6.91), we see that weeidentifyingzy,
with Zoo + 62Z;0. Recall thatZgy = 1 - y? = 2x — x%. The codficient 2 in front of

the x definitely dominates the contribution frofdZ;,, so a good initial guess is
2o~ 2. (6.103)
Identifying zyy, with 6324, we guess that
Vo = —0.013449%7. (6.104)

In the symmetric phase we know that the scalar figeld/hich is associated with the

fluctuationzZ,, vanishes. As such, we guess that
e~ foxrg~go=~0. (6.105)

We have twelve ordinary ffierential equations from (6.93) and (6.94), and we have

twelve parameters

{bo, do, €, o, ho, Go, To, Uo, Vo, Zo, B1. B2} (6.106)

that must be fixed and initial guesses for all of them. Thus mesat up to numeri-

cally compute these parameters as functions of the defamparametep;.

6.4.1 Numerical results

Figure 6.1 (left) shows the speed of sound squared calcufeden the dispersion

relation (6.92), i.e.,
=" (6.107)
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Figure 6.1: Top: Speed of sound squared calculated from ipeeision relation
(6.92) versus the dimensionless control paramgier The red curve corresponds
to the symmetric phase whexe= 0. The purple curve corresponds to the first
symmetry-broken phase wigh# 0. Bottom: Percent dlierence between the speed
of sound squared calculated in this section and that shofgure 5.4.
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versus the dimensionless control parame}&r, whereT is given by equation
(5.59). Figure 6.1 (bottom) shows the percentagéerBnce between the results
in figure 5.4 (bottom) and figure 6.1 (left). Theffdrence is everywhere less than
0.007 %. This is a non-trivial check that our analysis of taekground fluctuations

in this chapter is correct.

The bulk-to-shear viscosity ratio can be relategidy comparing (6.92) and
(6.88). We find
S Bo—1. (6.108)

n

Figure 6.2 shows the results for the bulk-to-shear visgosit the top figure, the
red curve corresponds to the symmetric phase, and the b&shed curve is the
correction to the conformal valug/n = 0 given by equation (6.90). There is an
excellent agreement at small valuegoef which is another check that our analyses
are consistent and correct. In the bottom figure, the redecaovresponds to the
symmetric phase, and the purple curve corresponds to theetmybroken phase.
The green dashed line corresponds to the critical vall%ofz 0.0771. The bulk
viscosity in the symmetry-broken phase appears to divergeeatransition. By
pushing the calculation closer and closer to the transita@ncan confirm that this

is indeed the case.

As a final remark in this chapter, we will verify the bulk visity bound pro-

posed in [6], which conjectures that

£ > 2(& — Cg), (6109)
n p

wherep is the spatial dimension of the field theory. Figure 6.3 shthesbulk-to-
shear viscosity ratio as a function of2l— c2. The red curve corresponds to the

symmetric phase, and the purple curve corresponds to thesyinsmetry-broken
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Figure 6.2: Top: Speed of sound squared calculated from ipeeision relation
(6.92) versus the dimensionless control paramgier The red curve corresponds
to the symmetric phase whexe= 0. The purple curve corresponds to the first
symmetry-broken phase wigh# 0. Bottom: Percent dlierence between the speed
of sound squared calculated in this section and that shofgure 5.4.
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Figure 6.3: Bulk-to-shear viscosity ratio as a function ¢2 + c2. The red curve
corresponds to the symmetric phase, and the purple curvespands to the first
symmetry-broken phase. The dashed blue line indicateswer limit of the bound

Z/n = 2(1/2 - c2). The dashed green line corresponds to the high-temperatur
approximation.

phase. The dashed blue line indicates the lower limit of thend /5 > 2(1/2-c2).
We find that the bound is satisfied in both the symmetric andnsgtry-broken
phases. In fact, the bound is satisfied trivially in the syrmnleroken phase since
c2 > 1/2 (see figure 6.1). We also see once again the divergent loemafiz /7 in
the symmetry-broken phase.

In this chapter we calculated the dispersion relation oflstho@tuations of the
background fields and extracted the hydrodynamics of thé faeld theory. We
found that the bulk viscosity in the symmetry-broken phaserdes at the phase
transition. We verified the correctness of our results by gammg them against
those of the near-conformal limit. Next we will do an in-degtudy of the critical

behaviour of the symmetry-broken phase near the phasetioans
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Chapter 7

Critical behaviour in hairy AdS 4

The observation of a second-order phase transition beckstisdy of the critical
behaviour of this system. In this chapter we will define a $efritical exponents
by relating our parameters to those of models of ferromagynate will explicitly
calculate all of the critical exponents, not all of whichMaé found to be of mean-
field type. We find that some of the scaling relations thateafism the static
scaling hypothesis are violated. We will also find that thesetry broken phases

are perturbatively unstable.

7.1 Criticality in ferromagnets and hairy AdS,4

To make our analysis as transparent as possible, it is caneto cast the crit-
ical behaviour in terms of the language of ferromagnets. ‘fend the reduced
temperature to be

t=— -1 (7.1)

T
Te
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So that the transition occurstat 0. In ferromagnetism, we also denote the external

magnetic field byH. The Gibbs free energy density is given by

WEH)=€e—sST-MH 7.2)
= Qu (L, H) — Qq (L. H), '

wheree is the energy densitys is the entropy density, an®, and Q4 are the
Helmholtz free energies in the ordered phase and disorderade respectively.

As we traverse the critical temperature, there is a spoontamagnetization in the

system given by

ow
=—|—]. 7.3
M= (G), 79
The two-point correlation function of the magnetizationléined as
G(r) = M) M(0)) (7.4)
The critial exponents{a, 8, y, 6, v, 7} are defined [43] as follows:
Cp ~ It (7.5)
M~ |tP (7.6)
Xt ~ It (7.7)
M(t =0) ~ |H]> (7.8)
e F , t#0
G(r) ~ , Where &~|t|7, (7.9)
r| P27, t=0

Do not confuse the critical exponemtwith the parametew in (5.51). Likewise with the ex-
ponentp and the shear viscosity. Their use should be clear from the context in which they are
used.
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wherecy, is the specific heaj is the isothermal susceptibility, agds the corre-

lation length. Under the scaling hypothesis [43], we haesftitlowing relations

a+28+y=2
y=B06-1)=v(2-n) (7.10)

2—a=vp,

wherep is the spatial dimension of the system.

In order to employ this language we need to relate the quesitihat we have
been working with in our Exotic AdSmodel to those given so far in this section.
In ferromagnetism, the order parameterM§ that is, it is zero below the transi-
tion, and non-zero above the transition. The quantity in model that fits this

description ig¢4 (see figure 5.1). So we identify that
M & yy. (7.11)

The external control parameter in our modetis;, so we identify it with the ex-
ternal magnetic field,

H o P, (712)

wherea here is as in (5.51). Having established the language inhtbidefine the

critical exponents, we will now calculate them.

7.2 Static critical exponents

First we will calculater, which is defined by the scaling of specific heat near the
transition,

Cpe ~ U7 (7.13)



Specific heat is defined by

and entropy density is given by
oF

—aT

Recall also that the speed of sound squared is given by

5 oF

Cs = —%.

Then

Thus we have the relationship
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(7.14)

(7.15)

(7.16)

(7.17)

(7.18)

In figure 6.1 (top) we see that the speed of socywh the symmetry-broken branch

is finite at the transition; that is,

cu~tIr* = a=0.

The critical exponeng is defined by

xa~ItP.

(7.19)

(7.20)

A plot of x4 versusT,/T near the transition is given in figure 7.1. The purple dots

are the numerical results. The green dashed line is theibeat fit. The excellent

linear fit to the data suggests that

1
xa~\t = pB=

NI

(7.21)



148

X4
L]
" 2
¥ [}
" L
0.0010 .
L ]
- L ]
b L]
=t L]
" @
]
0.0005 e,
L ]
e L}
. L ]
b o
i T
09992 09994 0999 09998  1.0000 r

Figure 7.1: Square of the order paramegtgias a function of inverse temperature
near the transition. The purple dots are the numericalteslihe green dashed line
is the best linear fit.

One may now be tempted to use the scaling relations (7.1@nbpuate the remain-
ing exponents. The result {&,.7.6,v.7} = {0,3,1,1,3,1,1}; however, we will

see later that some of these are incorrect.

The critical exponend is defined by
1
Xa~ lap®. (7.22)
Figure 7.2 shows a plot af2 versusep;. The excellent linear fit suggests that
xa~lapl? = §=2 (7.23)

We may have anticipated this from the valuggofLet us define the dimensionless

parameteA as
A= 2P (7.24)
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Figure 7.2: Square of the order paramgteas a function of the external fieleb; .
The blue dots are the numerical results. The black dashedslithhe best linear fit.

At criticality? we have (see figure 6.2)

A= 2P %ePe o 00771 (7.25)
T. - T

We can define the reduced temperatusad external fieldh as

, and h= M
Tc apy

(7.26)

Using (7.25) to eliminat& andT. from the first equation in (7.26) we find that

t ~ @cPe—@P1 _ h (7.27)

apy

°Note that we have two diatsp; andT which we can tune to establish criticality; that is, we can
fix ap; and tuneT or vice versa. This is similar to how the critical temperatir a ferromagnet is
a function of the external field.
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This, along with the relations
M~1tf, and M~ |hj (7.28)

implies that
1
=-. 7.29
p=3 (7.29)

Fromt ~ h we can deduce the critical exponentwhich is defined by

oM
=== ~1tI”. 7.30
o= ()~ (7.30)
Sincet ~ h we have
oM oM
—_—~ — 7.31
OH ot’ ( )
and sinceM ~ |tf, we have
oM 51
oM , 7.32
=~ (7.32)
Thus
'yzl—ﬁ:% (7.33)

7.3 Dynamic susceptibility

7.3.1 Static critical exponents revisited

In this section we will introduce the concept of dynamic sysibility. This will
allow us to explicity calculate the remaining critical exgmts{v, } without resort-

ing to the scaling relations, and it will provide a non-talvcheck of the exponent
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v. To begin we will need to backtrack to the system (6.53) tatesl below,

AnZy + BuZy + Culy + Enle + Gz, = 0,
AL + By L, + Coly + EZy + Foliy + Goln =0, (7.34)
AL + ByZ, +CyZy + EyZy + FyZly + GyZn = 0,

where the prime denotesftirentiation with respect to the radial coordinat®&ow

we extract the leading behaviour in the following way (cduation (6.61))

1

1 .
ZH=§YI 2y, Za:q2

N 1 .
Yz, Z,= ?y “z,. (7.35)
Making the substitutions,
O=-iQ, §=+Q (7.36)

we get a new system of ODEs where all the variables are real,

aHZ4 + PHZy + cHZn + enZy + guZy = 0,

a2, + boZ, + coZy + €Zy + foZiy + guZn = 0, (7.37)

ayZ) + byZ, + ¢yZy + eyZo + fyZy + gyZn = 0,

where the coicients are functionals of the background fields éndndQ. Most
of the codficients are too cumbersome to write down explicitly, but Feeea few

that you can check if you are following along,

g =a,=a,=1 (7.38)
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1
2y, (26, (Q? +y?Q) + y&,Q)
x |yeQ(ye: ((#)° + (1)) - 2c) + 4Q¢; (¢ (207 - @ + 2°Q) + y&,Q)|

EH:

(7.39)
by = by = 1-20 (7.40)
y
The asymptotics near the horizgn: 0 are
Zh =2+ O(yz)
z, = ah+ O(y?) (7.41)
7, =Yg +0(y).
The asymptotics near the boundary 1 -y ~ 0 are
Zy = ZsX + O(x4/3)
Z, = X3 + aXi + O (X) (7.42)

z, = YaX3 +O(x2).

Notice that we have used the scale invariance of (7.37) tohixfirst boundary
codficient of z, to one. The dynamic susceptibility is defined to be the legadin

boundary cofficient ofz,, and we regard it to be a function 8fandQ. That is,
Vs = Yq (Q, Q) = dynamic susceptibility (7.43)

Before moving on, let us justify this definition with regaathe theory of dynam-

ical critical phenomena [29, 9]. Consider spacetime-ddpahvariations of the
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external magnetic field,

H — H + 6H (t,X). (7.44)

The Fourier modeg{, « of the variation are defined by

d3k

OH (t,x) = 2

%“’ék'x-iw‘%,k. (7.45)

This variation induces a corresponding variation in the megigation; that is,

ok
(2n)°

M- M+M(LX), SM(tX) = %‘”ék'x—iww,k. (7.46)

The dynamic susceptibility is defined to be

Mok
wk = . . 7.47
= (52 (7.47
In the static limitw, k — 0 we recover the isothermal susceptibility
. oM
wl,lkrEoX“”k =XT = (W) ) (7.48)

Recall that in the static limit we identifieM < y4 andH < p;, where these pa-
rameters are defined by the asymptotics of the backgroutatrsceear the boundary

X =~ 0,

[V

1
3

¢~ pxs, and x ~ yaX:. (7.49)

The variation of the background scalars are

o> P+0¢p, x — x+0y. (7.50)
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with the associated variations in their boundaryfioents

Pr— P1+0P1,  xa— xa+oxa. (7.51)

The fluctuation associated withis 6¢ = z, and that withy is oy = z,, whose
behaviour near the boundary is given by (7.42). Thus we ifyent

5p1 =1= Ww,ka and 5){4 =iy = Mw,k- (752)

So we see that the dynamic susceptibility as defined in (7s43iyen byy,.

We will calculate the dynamic susceptibility in the staiiit to calculate the

critical exponeny, which is defined by

Xoo = xT o [t (7.53)

To do this, we expand the system (7.37) first al@ut 0, then expand the result
aboutQ = 0, and we keep only the leading order terms. Some of th&iceets are
still to cumbersome to write down, but here are a few of thatsh@nes you can

check to make sure you're on the right track. With—» 0 andQ — 0, we have

t=tp=a =1 (7.54)
16 (26 -Y0 (@) - Yo )
=50 ( T ) (7.55)
by = by = % (7.56)
11 (4(e) +&@)+ &)
CH = EE[ ZyC'Z s . (757)
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Figure 7.3: Inverse square of dynamic susceptibitifyversus inverse temperature
T./T inthe limit Q — 0 andQ — 0. The blue dots are the numerical results, and
the red curve is the best linear fit.

Likewise, we expand the asymptotic expansions (7.41) ad@)abou) — 0 and
Q — 0 and keep the leading terms. Although thefioents are still rather large

in the horizon expansions, the results for the boundaryresipas are

3
Zy = ZzX — gplx% + O(xz)
2
Z, = X3 + aoXi + §p§x+ O(xg) (7.58)

2, = vt + 22 (200 (g - 1) + puxa (109 - 3) + O(<!)

We can use our shooting method to fix the constémtszs, v, of), 2, yh} as func-

tions of p;. Figure 7.3 shows a plot of,? versusT./T. The blue dots are the
numerical results, and the red curve is the best linear fiichvimtersects the hor-
izontal axis precisely at the critical temperature. Thee#lrat linear fit suggests

that

1 1
= — ~ |t 7.59
Ya(Q=0,Q=072 2 . (7:59)



156

or

1
Yt~ I~ >y = 5 (7.60)

in agreement with our previous result (7.33).

Next we will compute the critical exponentsandn. Let G (k) denote the
Fourier transform of the two-point correlation funti@(r) defined in (7.4). The

dynamic susceptibility is related this by
G(K)=Txx, where x=xox. (7.61)
Close to the phase transition we have
G(r) et = Gk) o fd:"re‘%e“‘" (7.62)

We can do the integral in polar coordinates. The result is

21 00
G(K) = f f g eHarcosrgrdg
0 0

ong? (7.63)
gt
whereq = |k|. So the dynamic susceptibility
N 1
¥a(0,0) ~ — (7.64)
(G +&72)2
has a pole when
R 1
F=Q= v (7.65)

To locate these poles, we expand (7.37) alpet 0, and we keep only the leading

order terms. Some of the dbeents are still to long to write down, but here are a
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few of the shorter ones. Witk — 0, we have

=y =ay =1 (7.66)
o (2% -ye|@)?+ (Y
by = G Y (7.67)
1
by = 6y = (7.68)

and all other coféicients carryQ-dependence. We also expand the asymptotic ex-
pansions (7.41) and (7.42) abadt — 0 and keep the leading terms. Although
the codficients are still rather large in the horizon expansions réselts for the

boundary expansions are

2 2.3 2
3 3 2% a023(6+ pO—ZCS—gpSC%) 5 X
ZH = ZzX — gp1+% 3+ o Qf x +O(x)
2 2.3 2 2
o : (2, 323aa0(6+p0—203—gp(2,00) 4
Z, = X3 + asX3 + §p1—1—6 ot a Q x+O(x) 7.69)
2, = vt +| 22 (200 (g - 1) + pure (209 - 3)
23a2ady, (6 + p2 — 22 — gpRc2 .
_ 3 aow4( Po 0 gpcz) O)Q +O(X5)
122 33+

We can use our shooting method to fix the constémtszs, v, o, Z, yh} as func-

tions of Q with p; held fixed.

Figure 7.4 (top) shows a typical plot of i, versusQ with p; held fixed. In
this casep; = 0.450. We see that there is one pofer Q > 0, and multiple
poles forQ < 0. The spike aroun@@ ~ -2 is just a point where the function

vanishes. Figure 7.4 (bottom) shows that the posifyasle moves to the origin as

3By probing very far into th&) > 0 regime we checked that there is only one pole.
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Figure 7.4: Inverse of the dynamic susceptibilityyl versus the momentum
squaredQ with p, fixed. Top: p; = 0.450. Bottom: Red curve hgs = 0.440.
Blue curve hagp; = 0.450. Green curve hgy ~ p. ~ 0.464344
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Figure 7.5: Positive pole as a function op;. The blue dots are the numerical
results. The red curve is the best linear fit.

p; moves toward its critical valup. ~ 0.464344. Figure 7.5 shows the position of
the positiveQ pole on theQ-axis (as in figure 7.4) as a function pf. The blue dots
are the numerical results, and the red curve is the best liite@he line intersects
the horizontal axis precisely at the critical valuemf The excellent straight line

fit together with (7.65) suggests that

Qpole ~ Itl ~ €72, (7.70)
Recalling that the critial exponents defined by

E~NT, t#0, (7.71)

we conclude that
1
=—_. 7.72
v=3 (7.72)
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Figure 7.6: Inverse of the dynamic susceptibilityyl versus the momentum
squaredQ at criticality p; = p. ~ 0.464344 in the limit wher€)2 — 0. The
blue dots are the numerical results, and the red dashed isuthve best linear fit.

At the criticality we have
G(r) ~Ir[™, (7.73)

where we took the number of spatial dimensigns 2 in (7.9). Taking the Fourier

transforms we get

C§(k)~fd3r|r|"7e”"r

21 00
_ -1 AGr cosd
_fo fo r1glreosfygrdg (7.74)
r

(-9) .

= —2m2 " ——==|g"?

r(z)

NI

or sincecf? = Q,
1
¥4(0,Q) ~ —- (7.75)

Q>

Figure 7.6 shows a plot of/#4 versusQ with p; = p. ~ 0.464344 held fixed. The
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blue dots are the numerical results, and the red dashed =utfre best linear fit.
The linear fit crosses the horizontal axis@t 4.27852x 10°°, suggesting that,

has a pole at the origi® = 0. The excellent linear fit suggests that

1
Ya (O, Q)|critica| ~ 6 (7-76)
Comparing to (7.3.1), we conclude that
n=0. (7.77)

To summarize the results of this chapter so far, we have ctadphbe static critical
exponents

{@,B,7,6,n,v} = {0, % %,2, 0, %} (7.78)
Notice thaty and¢ are not of mean-field type. Mean-field critical exponents are
expected for a classical gravity dual to field theory [5, 9hisTis a result of the
fact that classical gravity corresponds to large gaugemraumberN in the dual
field theory. In our Exotic model, however, the dual field ttyeis not a true gauge
theory. In the typical examples of lar@éfield theories the central charge behaves
like [2]

c~ N?, (7.79)

but for AdS, we have
c~ N2. (7.80)

This is perhaps the reason why we do not find mean-field drggiqaonents.
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S

Figure 7.7: Bulk-to-shear viscosity in the first symmetrgplen phase versus the
order parameter near criticality on a double logarithmaecThe purple dots are
the numerical results. The dashed green line is the bedrliite The slope is
-1.9999.

-2 I

7.3.2 Bulk-to-shear viscosity ratio

Figure 7.7 shows the bulk-to-shear viscosity versus therqudrameter near criti-
cality on a double logarithmic scale. The purple dots arentheerical results. The
dashed green line is the best linear fit. The slope of the §r&.6999. The power-
law behaviour strongly suggests that the bulk viscosithefirst symmetry-broken

phase diverges at the phase transition. The excellent linsaggests that
¢ .1 (7.81)
In the previous section we found that

xa~ It (7.82)
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Thus we conclude that the scaling behaviour of the bulkhiEas viscosity ratio

near criticality is

¢t (7.83)
n

Several proposals have been made regarding the scalingibehaf //n near crit-

icality. In [30] the authors propose that
L~ (7.84)

We found thate = 0, so this model is inconsistent with our results. In [39sit i
argued that
£~ et (7.85)

We found thap = 1/2, soa + 48 — 1 = 1, so this model is also not consistent with

our results. Finally, in [34], it is argued that
¢~ e (7.86)

We found thaty = 1, so this model is consistent with our results provided that
the dynamical critical exponent 5= 1. In the next section we will calculate
explicitly, and show that in fact = 2. Therefore, none of these scaling proposals

are consistent with our model.

7.3.3 Dynamical critical exponent
Following [9], the full dynamic susceptibility, (Q, Q) will have a pole at

Q~¢7 (7.87)
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wherezis the dynamical critical exponent of the system. In the byggnamic limit,

this defines a relaxation timewhere
T=Q &~ (7.88)

To track the pole iy, (Q2, Q) we must numerically solve (7.37) to fix the parameters
{az, Z3, Ya, @, 25, wB} as functions of with both p; and Q held fixed. Figure 7.8
(top) shows a typical plot af,* versug, in this case witlp; = 0.455 andQ = 10
held fixed. Generically, there is one pole that occurs at athegvalue of). Figure

7.8 (bottom) shows the position of the poleyin(Q2, Q) as a function ofxrp; ~ t.

The excellent linear fit suggests that
onle ~ [t (7.89)
Comparing to (7.88) we see that

vz=1. (7.90)

And since we already found that= % we conclude that
z=2 (7.91)

Gubser and Mitra [26] conjectured that perturbative in$itags in translationally
invariant black holes appear as Gregory-Laflamme instagsilj23, 24], which are
defined by

Im (®)lg<q. > O, (7.92)

whered; is the momentum at the threshold of the instability (i.e. vakie ofq
where Im(@) changes sign), and we assume that{d@n= 0. Figure 7.9 shows

a plot of Q vs T/T in the symmetry-broken phase. The red curve represents the
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Figure 7.8: Top: Plot of,* versusQ, with p; = 0.455 andQ = 10 held fixed.
Bottom: Position of the pole i, (Q2, Q) in the hydrodynamic limit as a function
of ap; ~ t. The blue dots are the numerical results@g 107°, the green dots are
for Q = 1077, and the red dots are f@ = 10°°. The red line is the best linear fit to
the red dots.
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Figure 7.9: Plot ofQ vs T¢/T in the symmetry-broken phase. The red curve rep-
resents the modes at the threshaldd)” = (0,§.). The greerblue dots are the
stabl¢unstable modes witly = —0.1i andw = 0.1i respectively.

modes at the threshold)(§) = (0, §.). The greefblue dots are the stabiiestable
modes withw” = —0.1i and« = 0.1i respectively. The existence of the unstable
modes (blue dots) represents a genuine instability in teegy. This is interesting
because it verifies that the Exotic Model is a counter exartplihe Correlated

Stability Conjecture given in [26]. Related counter-exésre studied in [21].
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Chapter 8

Conclusions

Let us summarize and discuss the results and conclusiornsahisis. By consid-
ering AdS gravity in four and five dimensions, we calculateel thermodynamics
of dual CFTs in three and four dimensions, respectively. \&fied that the re-
sults are consistent with the laws of thermodynamics. Weprded the dispersion
relation of fluctuations of AdSand concluded that the background solutions are
stable. Then we considered the Exotic Model, which is essnd model of black
holes in AdQ with scalar hair. We computed the thermodynamics of thisehadd
found an exotic type of second-order phase transition, &tiex symmetry-broken
phase occurs above the critical temperature. Certain c@edematter systems ex-
hibit this behaviour [15]. It would be interesting to studya&ther our model may
have some applications in such condensed matter systemsowauted the speed
of sound and bulk-to-shear viscosity ratio by considerimg dispersion relation
of small fluctuations of the background. We found that thé&tatshear viscosity

ratio diverges at the phase transition in the symmetry-dmgihase.

We interpreted of our physical parameters in terms of thguage of ferromag-

netism in order to study the critical phenomena associatdttire phase transition
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from the symmetry-broken phase to the symmetric phase. Weajged techniques
to compute the critical exponents of our theory, and we folilvad the exponents
are not of the mean-field type as expected in the Ialdgenit. The positivity of the
speed of sound squared suggested that all phases of thid anedeermodynami-
cally stable. On the other hand, by calculating the dynaheitzcal exponent, we
discovered that this model has a genuine Gregory-Laflametabiiity, and is thus
classically unstable. This model is a counter-example ¢oGbrrelated Stability
Conjecture.

The majority of the calculations done here had a fixed coggis —100. We
argued from the numerics that@s-» o, the symmetry-broken phases approach the
symmetric one. It would be interesting to show analyticttigt no phase crossing
occurs in this limit. If such phase crossing does occur, thersymmetry-broken
phases would be thermodynamically preferrable (i.e. Idwesr energy), and there
could be interesting critical behaviour associated witthgphase crossing.

The model here is phenomenological, and little is known albioel dual field
theory. Nevertheless, it is a simple example of the /&F correspondence in a
non-conformal setting. The techniques used in this thesigaite general and can
be straightforwardly applied to other AMSFT models. For example, virtually all
of the calcuations done here have also been applied to thbreg¢dV = 4 SYM
theory [5], and theV = 2* model [9], which is among the best approximations
to strongly coupled QCD and a description of the stronglypted quark-gluon

plasma created at the Relativistic Heavy lon Collider [19].
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Appendix A

Hawking temperature of AdS black

holes

Here we will calculate the Hawking temperature of a metrithefform
ds® = —cy(r)?dt? + c,(r)?dx? + cs(r)?dr?. (A.1)

Changing to the new radial coordinate and imaginary time

C

y=—, t=itg (A.2)
C2
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we can write the metric as

2
4% = Poay + ooy + ) oy

- %’ K ldy2 + yzgz (%)2 dt2 | + cadx?
A.3
-2 o e[ (2)e] | o0 -
= % K [dy2 + yzdt’z] + Codx?,
where
t = 2—2(%) te. (A.4)

In (A.3), the quantity in square brackets has the form of tredrim for a two-
dimensional plane in polar coordinates, whgrplays the role of the radial co-
ordinate, and’ plays the role of the angular coordinate. If we expand thaimet
to leading order about the horizgn= 0, we must insist that the coordinatebe

periodic in the sense as the angular coordinaf®?inThat is

=t +2r (A.5)

Otherwise, the metric in square brackes would be that of a,cmd we would have

a conical singularity at the horizgn= 0. Thus we have

te =t + % (A6)
cg \dr
We identify the period of imaginary time with the temperatiiras
1 1 d
te=te+=, SO T=_ (@—y) (A7)
T 2n Cs dr horizon
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Appendix B

Numerical shooting method

B.1 Input

Here we outline the algorithm of our numerical shooting rodthin the typical
scheme, we have a setmmbrdinary second-order fierential equations of the form
bj (95, (%), 9, (¥). gs(¥), X) = 0, which govern the set of fields that we will denote
{gg}, 1 = 1..n. We have chosen the independent variab&ich that the domain
is mapped tox € [0, 1], wherex = 0 corresponds to the AdS boundary ang 1
corresponds to the black hole horizon. We generate ano¢heaf a equations of
the formh; (g, (¥). gy, (¥)- G (¥), X) = O using the variablg = 1-x, such thay = 0

(y = 1) corresponds to the horizon (boundary). Note that the domg € [0, 1],
and thatgy, is the same field agg, but expressed in terms of tlyevariable. The

labelsB andH serve only to distinguish the fielgl, andgg, as separate functions



172

in our numerical method. Arranging the equations in a vedtis looks like,

b1 (05, G, 981, X)

f= b (05, G- G- ¥ =0, i=1.n (B.1)

ha (9 9 O )

| hn (g;',h’ g;-h’ ngy) E

We can produce series solutions for the fiedgs (gy,) aboutx = 0 (y = 0) to
arbitrary ordet. This typically generatesrdintegration constants, some of which
we can immediately fix using boundary conditions and othesyal conditions.
At the very least, & integration constants should remain unfiked/e can arrange

the integration constants as

C1
c=| : |=0. (B.2)

Con

lUsually just a few terms is sicient.

2If more than 2 constants remain, then we repeat this algorithm for eacbfsetlues for the
remaining constants in which we are interested
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And we can arrange the series solutions as

[ Gg, (C,%) | [ 0,Gs, (C.X) |
Gg. (C, X 0,Gg. (C, X
o= Bn( ) , e/ = X Bn( ) . (B.3)
GH1 (C’ y) ayGHl (C’ y)
| Gh, (CY) | | 0,Gh, (C,Y) |

whereGg, (Gy,) is the series solution fa¥g, (9y,)-

B.2 Algorithm

Now we make an initial guess for the constantg.inCall this guess,. In order
to numerically solve the system (B.1), we need to specifyndial condition for
g (X = 0) andgg, (x = 0) for the boundary equatiot, and likewise foigy,(y = 0)
andgy, (y = 0) for the horizon equatiorts. In practice, we choose the initial value

for X,y = € to be small, but not zero. Then our initial conditions become

s (X = 0) = Gg,(Co, €) 913. (X =0) ~ 9xGg (Co, €)
(B.4)

O (y = 0) = Gni(Co, €) O, (y = 0) = 8,Gy(Co, €)
Next, we feed our equations (B.1) and our initial conditi¢Bst) into a numerical
ODE solver and integrate them ovely € [0, 1/2]. Notice that this integrates the
boundary (horizon) equatiotg (h;) from the boundary = 0 (horizony = 0) in to
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some point in the bulk given by =y = 1/2. We define the errak, to be

gBl (X = %) - ng (y: %)

(B.5)

Ae =|IV(co)ll, where v= 9, (X - %) ~ O (y - %)
2

(9)(951 (X =

0x0, (X = %) + OyQH, (y = %)

The vectow encodes the discontinuity in the fields and their derivatatethe point

X =y = 1/2. Notice that error vector is a function of the integratiammstants,
i.e. v = v(c), since changing the values @will change the values in. What we
have calculated so far is(cp). Sincegg, andgy, are actually the same funtion, the
correct values ot should lead to a smooth solution for the fields everywherd, an

thus haver = 0. Now we slightly vary our guesses for the constaig.

Co — Co + ACy, (B.6)

and we likewise compute the new error vectdc, + Acy). At this point we have

values populating both vectons(cy) andv (cy + Acy). Taylor series gives
V (Co + ACo) = V (Cp) +VACO+O(AC(2)), (B.7)

whereV is a matrix with elements given by

oV, o
ij = a_cl,-, I, ] =1.2n (8.8)

3In our codes, we actually vary one constant at a time, soltfirgsystem anew for each varied
constant.
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We can neglect terms witf (Acg) if we chooseAcy << 1. Our ultimate goal is to

have a vanishing error vector. Thus, enforcing that
V (Co + Acg) = 0, (B.9)
equation (B.7) tells us that we should have chosen
Ao = -V (c). (B.10)
Now we restart the algorithm with an initial guess of
Co— Co— Vv(c), (B.11)

and continue this way until the errdg converges to a shiciently small value.
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Appendix C

Numerical code

Here we present the Mathematica code that was used to selsytkem in section
5.6. In this example we have six equations: three boundargteans in terms of
X, and three horizon equations in termsyofThere are seven integration constants
that must be fixed{p, P2, x4, &, @1, Po, Co}. SO we have one extra constant. We
will apply our shooting method for various valuesmfto compute the remaining
six constantsas functions of;.

The following code handles the input to the algorithm:
>c2ha= alpha*(a0+ al*xi"2 + a2*xi"4)/(1 - xi"2)"(Y3);
>phiha= p0+ P1*xi"2 + P2*xi"4;
>chiha= c0+ C1*xi"2 + C2*xi"4;
>dc2ha= D[c2ha, xi];
>dphiha= D[phiha, xi];
>dchiha= DJ[chiha, xiJ;
>c2ba= (alpha+ A1*xi"(2/3) + A2*xi + A3*xi"(4/3))/(2*xi - xi"2)"(1/3);
>phiba= p1*xi"(1/3) + p2*xi"(2/3) + p3*Xi + p4*xi"(4/3);
>chiba= chid*xi"(4/3) + c1*xi"2 + c2*xi"(7/3) + c3*xi"(8/3);

1That is, they are constant with respecktandy.
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>dc2ba= D[c2ba, xi];

>dphiba= D[phiba, xi];

>dchiba= DJ[chiba, xi];

>c2egnh= (1/4)*c2h[x]*(chih’[x])"2 + (1/4)*c2h[x]*(phih’[x])"2 + c2h”[X]

- 4*(c2h’[x])"2/c2h[x] - (c2h’[x])/x;

>phiegnh= phih”[x] + (phih’[x])/x - phih[x]*(-8*(c2h’[x])*c2h[x] - 12*(c2h’[X])"2*x +
(phih’[x])"2*x*c2h[x]"2 + (chih’[x])"2*x*c2h[x]"2)*(-1 + g*chih[x]"2)/(c2h[X]"2*x*(-6 -
phih[x]"2 + 2*chih[x]"2 + g*phih[x]"2*chih[x]"2));

>chieqnh= chih”[x] + (chih’[x])/x - chih[x]*(-8*(c2h’[x])*c2h[x] - 12*(c2h’[x])"2*x +
(phih’[x])"2*x*c2h[x]"2 + (chih’[x])"2*x*c2h[x]"2)*(2 + g*phih[x]"2)/(c2h[x]"2*x*(-6 -
phih[x]"2 + 2*chih[x]"2 + g*phih[x]"2*chih[x]"2));

>c2eqgnb= c2b”[x] - (c2b’[x]) /(-1 + X) - (1/4)*(-(chib’[x])"2*c2b[x]"2 - (phib’[x])"2*c2b[x]"2
+ 16*(c2b’[x])"2)/c2b[X];

>phiegnb= phib”[x] + (phib’[x])/(-1 + X) - phib[x]*(-8*(c2b’[x])*c2b[x] + 12*(c2b’[x])"2

- 12*(c2b’[x])"2*x - (phib’[x])"2*c2b[x]"2 + (phib’[x])"2*c2b[x]"2*x - (chib’[x])"2*c2b[x] 2
+ (chib’[x])"2*c2b[x]"2*x)*(g*chib[x]"2 - 1) /(c2b[X]"2*(-1 + x)*(-6 - phib[x]"2 + 2*chib[x]"2
+ g*phib[x]"2*chib[x]"2));

>chieqnb= chib”[x] + (chib’[x])/(-1 + x) - chib[x]*(-8*(c2b’[x])*c2b[x] + 12*(c2b’[x])"2

- 12*(c2b’[x])"2*x - (phib’[x])"2*c2b[x]"2 + (phib’[x])"2*c2b[x]"2*x - (chib’[x])"2*c2b[x]"2
+ (chib’[x])"2*c2b[x]"2*x)*(2 + g*phib[x]"2)/(c2b[x]"2*(-1 + X)*(-6 - phib[X]"2 + 2*chib[x]"2
+g*phib[x]"2*chib[x]"2));

>P2=(1/9)*p0*a0°6*g*c0*C1 - (¥9)*p0*a0°6 + (1/9)*p0*a0°6*g*c0"2 - (¥3)*p0*a0"5*al
+ (1/3)*p0*a0"5*al*g*c0°2 - (¥18)*P1*a0"6+ (1/18)*P1*a0"6*g*c0"2;

>C2 = (1/9)*c0*a0"6*g*p0*P1 + (1/9)*c0*a0"6*g*p0°2 + (2/9)*c0*a0"6

+ (1/3)*c0*a0"5*al*g*p0~2+ (2/3)*c0*a0"5*al+ (1/18)*C1*a0"6*g*p0°2+ (1/9)*C1*a0"6;
>a2 = -(1/216)*(36*a0*al + 14*a0"8*c0"2 + 42*a0"2 - 54*al™2+ 12*a0"8*c0*C1 +
6*a0"8*g*p0°"2*c0*C1+ 6*a0"8*g*p0*P1*c0"2 - 6*a0"8*p0*P 1+ 21*a0"7*al*g*p0™2*c0"2
- 126*a0"7*al+ 42*a0"7*al*c0"2 - 21*a0"7*al*p0™2 7*a0"8*g*p0°2*c0"2 - 42*a0"8 -
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7*a0"8*p0"2)ao;

>P1=-(2/9)*p0*a076 + (2/9)*p0*a0"6*g*c0"2;

>C1 = (2/9)*c0*a0"6*g*p0"2 + (4/9)*c0*a0’6;

>A3 = -(1/28)*alpha*p2°2 - (16722400)*alpha*pl1°4;

>A2 = -(1/18)*alpha*pl*p2;

>Al = -(1/40)*alpha*pl°2;

>c3=(1/25200)*chi4*(-600*p2°2 - 81*p1l "4 90*p1l-4*g+ 1400*g*p2°2+ 200*g 2*pl°4);
>c2 = (1/18)*chi4*(3*g*p1*p2 + 12 - p2*pl);

>cl= (1/70)*chi4*p1"2*(10*g - 3);

>p3 = (3/20)*p1°3;

The following code implements the algorithm:
>xs = 107-8; xf = 0.5; result=; step= 0.0001; orgstep= 0.01; err= Infinity; g = -100;
alpha=1;
>result= pls= 0, p2s= 0, chi4s= 0, a0s= 1, als= 0, pOs=0, c0s=0, err=0
>Do[pls= pls+ 0.01; chi4s= 0.01; cOs= 0.01;
Do[
soln= NDSolve[c2egnh== 0, c2egnb== 0, phiegnh== 0, phiegnb== 0, chiegnh== 0,
chiegnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]
== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs/. p1 >
pls/. p2 = p2s/. chi4 = chi4s/. a0 > a0s/. al > als/. p0 = p0s/. c0 > c0s, c2h, c2b,
phih, phib, chih, chib, x, xs, xf, WorkingPrecision 30];
v = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],
chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln)[[1]];
soln2= NDSolve[c2eqnh== 0, c2egnb== 0, phiegnh== 0, phiegnb== 0, chiegnh== 0,
chiegnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]
== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs/. p1 >
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pls/. p2 > p2s*(1+ step)/. chi4 > chids/. a0 > a0Os/. al > als/. pO > pOs/. cO >
c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingRsem -> 30];

v2 = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln2)[[1]];

dvdp2= (V2 - v)/(p2s*step);

soln3= NDSolve[c2eqnh== 0, c2egnb== 0, phiegnh== 0, phiegnb== 0, chiegnh== 0,
chiegnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]
== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs/. p1 >
pls/. p2 > p2s/. chi4 = chi4s*(1 + step)/. a0 = a0s/. al = als/. p0O = p0Os/. cO >
c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingRsem -> 30];

v3 = (c2b[xf] - c2h[xf], c2h’'[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln3)[[1]];

dvdchi4= (v3 - v)/(chids*step);

solnd= NDSolve[c2eqgnh== 0, c2eqnb== 0, phiegnh== 0, phiegnb== 0, chiegnh== 0,
chiegnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]
== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs/. p1 >
pls/. p2 > p2s/. chi4 = chi4ds/. a0 = a0s*(1+ step)/. al > als/. p0O = p0Os/. cO >
c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingRs&m -> 30];

v4 = (c2b[xf] - c2h[xf], c2h’'[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln4)[[1]];

dvdaO= (v4 - v)/(aOs*step);

soln5= NDSolve[c2eqgnh== 0, c2eqnb== 0, phiegnh== 0, phiegnb== 0, chiegnh== 0,
chiegnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]
== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs/. p1 >
pls/. p2 > p2s/. chi4 - chi4s/. a0 > a0s/. al > als*(1+ step)/. pO > pOs/. cO >
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c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingRs&m -> 30];

v5 = (c2b[xf] - c2h[xf], c2h’'[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln5)[[1]];

dvdal= (v5 - v)/(als*step);

soln6= NDSolve[c2egnh== 0, c2eqnb== 0, phiegnh== 0, phiegnb== 0, chiegnh== 0,
chiegnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]
== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs/. p1 >
pls/. p2 > p2s/. chi4 > chi4s/. a0 > a0s/. al > als/. pO > pOs*(1+ step)/. cO >
c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingRsem -> 30];

v6 = (c2b[xf] - c2h[xf], c2h’'[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln6)[[1]];

dvdpO= (v6 - v)/(pOs*step);

soln7= NDSolve[c2eqgnh== 0, c2eqnb== 0, phiegnh== 0, phiegnb== 0, chiegnh== 0,
chiegnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]
== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs/. p1 >
pls/. p2 = p2s/. chi4 > chids/. a0 > a0s/. al > als/. pO > p0s/. cO > cOs*(1 +
step), c2h, c2b, phih, phib, chih, chib, x, xs, xf, Workingéision > 30];

v7 = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln7)[[1]];

dvdcO= (V7 - v)/(cOs*step);

deltas= -Transpose[Inverse[dvdp2, dvdchi4, dvdaO, dvdal, dvdp@¢cO]].v[[1]], V[[2]],

VI[31], vi[41], vIIS]l, vIIell;

p2s= p2s+ deltas[[1, 1]]; chids= chids+ deltas[[2, 1]]; aOs= aOs+ deltas[[3, 1]]; als=
als+ deltas[[4, 1]]; pOs= pOs+ deltas[[5, 1]]; cOs= cOs+ deltas[[6, 1]];

soln= NDSolve[c2eqgnh== 0, c2eqnb== 0, phiegnh== 0, phiegnb== 0, chiegnh== 0,
chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
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phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]
== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs/. p1 >
pls/. p2 > p2s/. chi4 = chi4s/. a0 > a0s/. al > als/. p0 > p0s/. c0 - c0s, c2h, c2b,
phih, phib, chih, chib, x, xs, xf, WorkingPrecision 40];

v = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],
chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln)[[1]];

err= Norm[v]; Print[err];, I, 1, 8];

result= Append[result, pls, p2s, chids, a0s, als, p0s, c0s, erdorifoutput.dat”, re-
sult];, g, 1, 100]
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