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Abstract

The gauge theory/ string theory correspondence has led to great progress in the
study of strongly-coupled gauge theories. In this work, we start with a detailed treat-
ment of some simple examples of this correspondence in orderto establish some of
the concepts and techniques are used on a more complicated system. We then con-
sider a (3+1)-dimensional theory of gravity with a translationally invariant horizon,
that is assumed to be dual to a (2+1)-dimensional non-conformal gauge theory at
finite temperature. We study the thermodynamics of this model and find that there
exists an exotic type of second-order phase transition wherein the symmetry-broken
phase occurs above the critical temperature. We also study the hydrodynamics of
this model and find that the speed of sound in the various phases of the model
suggests that the symmetry broken phases are thermodynamically stable, yet their
higher free energy with respect to the symmetric phase suggests that they are not
thermodynamically preferred. We calculate the bulk-to-shear viscosity ratio and
find that, in the symmetry-broken phase, it diverges at the phase transition. Finally,
we study the critical behaviour of this model close to the phase transition and com-
pute the static and dynamic critical exponents, which turn out to be of mean-field
type. We conclude that, although the symmetry-broken phases are thermodynami-
cally stable, they are perturbatively unstable. Thus, thismodel is a counter-example
to the Correlated Stability Conjecture, which relates thermodynamic and classical
(in)stabilities of black branes with translationally invariant horizons.
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Chapter 1

Introduction

The standard model of fundamental particles and interactions is formulated in terms

of quantum field theories [13]. This framework is most usefulin regimes where the

couplings measuring the strength of the interactions is weak, whereby perturbation

theory can be used to calculated observable quantities. This approach has had a

great deal of success when applied to high-energy particle collisions in accelerator

experiments. However, in the first decade of this century, heavy ion collisions at the

Relativistic Heavy Ion Collider gave results suggesting that the collisions produce

a strongly coupled quark-gluon plasma [19], whose theoretical description should

be that of strongly coupled quantum chromodynamics.

Perturbation theory fails when the couplings in the field theory become strong.

One way of dealing with strongly coupled field theories is to use the Anti de Sitter/

Conformal Field Theory (AdS/CFT) correspondence proposed by Maldacena [32].

The prototypical example of this correspondence is the duality between type IIB

string theory on AdS5×S5 andN = 4 supersymmetric Yang-Mills (SYM) theory in

3+1 dimensions, which is a conformal gauge theory. This correpondence has been

extended to conjecture a correspondence between asymptotically AdS spacetimes
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and non-conformal gauge theories. In support of this, particular massive deforma-

tions of strongly coupledN = 4 SU(N → ∞) SYM are conjectured to be dual to

AdS5 spacetime coupled to a particular set of scalar fields [35]. This proposed du-

ality has survived all of the holographic tests made so far [12, 9]. This observation

may justify one to devise a phenomenological model of gravity and conjecture that

it definesa dual field theory. This approach was used by Erlich et al. [18] to create

a phenomenological model that captures some of the key features of QCD. Herzog

and collaborators [28, 27] created phenomenological models of superfluidity and

superconductivity. The non-conformal extension of the AdS/CFT correspondence

a central theme in this thesis1. We will not go into the fine details of the corre-

spondence here. Instead we will give the some of the concepts, results and parts

of the AdS/CFT dictionary that relates quantities in the gravity theory to quantities

in the field theory. We refer the reader to reference [2] and references therein for a

thorough treatment.

1.1 General relativity, AdS spacetime and black holes

In this section we review some of the principles of general relativity (GR). For more

detail the reader is referred to references [36, 41].

The central object in GR is the metric tensorgµν(x), whose components are

generally functions of the spacetime coordinates
(

x0, x1, x2, ..., xd−1
)

, and they are

encoded in the infinitesimal line element2

ds2 = gµνdxµdxν. (1.1)

1Although we will be considering non-conformal field theories, we will continue to use the
terminology ”AdS/CFT correspondence”.

2We use Einstein’s summation convention, and signature (-+++...)



3

The metric components are governed by Einstein’s equations

Rµν −
1
2

Rgµν = 8πTµν +
Λ

2
gµν, (1.2)

whereRµν is the Ricci tensor,R is the Ricci scalar,Tµν is the stress-energy tensor

associated with the matter fields, andΛ is the cosmological constant. Einstein’s

equation can be derived by minimizing the Einstein-Hilbertaction,3

δSEH

δgµν
= 0, where SEH =

1
16πGD

∫

dDx
√−g (R+ Λ + 16πGDLm) , (1.3)

andGD is theD-dimensional Newton’s constant, andLm is the lagrangian describ-

ing the matter fields.

A metric of particular importance to us here is that of AdS4. This is the solution

to Einstein’s equations inD = 4 dimensions when we assume radial symmetry, and

set

Tµν = 0, Λ = 6. (1.4)

We will not solve this explicitly here since it will be done indetail in chapter 3. The

result is the AdS4 metric in Poincaré coordinates,

ds2 = −r2

(

1−
r3

0

r3

)

dt2 + r2
(

dx2
1 + dx2

2

)

+
dr2

r2
(

1− r3
0

r3

) , (1.5)

wherex0 ≡ t is time,x3 ≡ r is the radial coordinate andr0 is an integration constant.

The final concept we need to cover in this section is that of a black hole. There

are many entire textbooks devoted to this subject, but here we will be very brief.

A black hole is defined by a hypersurface in spacetime called the horizon, which

3Here we are being cavalier about boundary contributions andother counter-terms, but these will
be treated carefully in later chapters.
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is a boundary that separates the spacetime into two causallydisconnected regions.

Observers inside the horizon cannot communicate with thoseoutside the horizon.

To locate the horizon in spacetime we need to introduce the concept of a Killing

vector. A Killing vector is a vector, denotedξµ, that satisfies the Killing equation

∇µξν + ∇νξµ = 0, (1.6)

where∇µ is the covariant derivative, defined by

∇µξν = ∂µξν − Γλµνξλ, (1.7)

whereΓλµν are the Christoffel symbols. A static spacetime always admits a time-

like Killing vector of the form

ξµ = [1, 0, 0, 0...] (1.8)

The horizon is defined by the hypersurface where this vector becomes null. That is

horizon ⇔ gµνξ
µξν = gtt = 0, (1.9)

with the added condition that the other metric components donot vanish, or they

vanish more slowly thangtt as we approach the horizon. For our AdS4 spacetime

described by the metric in (1.5) we have

gtt = −r2

(

1−
r3

0

r3

)

, (1.10)
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so the horizon is given by the surface

r = r0. (1.11)

Notice that the geometry of the horizon is found by fixingr = r0 =constant in (1.5),

giving

ds2
∣

∣

∣

horizon
= r2

0

(

dx2
1 + dx2

2

)

, (1.12)

which is the geometry of the planeR2. Thus we have a planar black hole.

1.2 Conformal Field Theories

This thesis will focus on a phenomenological model of the AdS/CFT correspon-

dence. The Hamiltonian of the field theory we will study is notknown, but it is

not conformally invariant. Nevertheless, we will briefly review some of the main

features of CFTs here, as they will be important when we consider the conformal

limit of our model. For a detailed study of CFTs, the reader isreferred to [20].

A CFT is a quantum field theory that is invariant under conformal transforma-

tions, which are spacetime coordinate transformations that are angle-preserving.

More precisely, the infinitesimal conformal transformation is

xµ → x̃µ = xµ + vµ(x), (1.13)

where

vµ(x) = aµ + ωµ
νx

ν + λxµ +
(

bµx2 − 2bλxλxµ
)

. (1.14)

The parameters of the transformation have the following interpretation: aµ is a

translation,ωµ
νxν is a Lorentz transformation (i.e. rotations and boosts),λxµ is
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a rescaling, and
(

bµx2 − 2bλxλxµ
)

is a special conformal transformation. Under a

conformal transformation, the metric tranforms as

gµν → g̃µν(x) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
= Ω(x)gµν(x). (1.15)

For an infinitesimal transformation, we assume the formΩ(x) = 1 − ω(x), and we

can show thatvµ satisfies the conformal Killing equation,

∂µvν + ∂νvµ =
2

p+ 1

(

∂λv
λ
)

gµν, (1.16)

wherep is the spatial dimension of the spacetime in which the CFT lives.

The stress-energy tensor of a CFT describes the reaction of the system under a

perturbation of the metric, and it is given by4

Tµν =
1
√−g

δS
δgµν

(1.17)

Let us prove a key feature of CFTs - that the stress-energy tensor is traceless. The

conserved currentjµ associated with a symmetry of the form (1.13) is given by

jµ = Tµνvν. (1.18)

Since jµ is conserved, we have

∂µ jµ = vν∂µT
µν +

1
2

Tµν
(

∂µvν + ∂νvµ
)

= 0. (1.19)

Note thatTµν is symmetric, so we take only the symmetric part of∂µvν in the second

4Strictly speaking this is the Belinfante stress-energy tensor, which is related to the canonical
stress-energy tensor byTµν = Tµν

canonical+ ∂αVαµν whereVαµν = −Vµαν. Both stress-energy tensors
lead to the same conservation equations and Ward identities[20].
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term. It is always the case that∂µTµν = 0. Using (1.16), equation (1.19) becomes

1
p+ 1

(

∂λvλ
)

gµνT
µν = 0. (1.20)

Thus, the stress energy tensor is traceless

Tµ
µ = 0. (1.21)

An important quantity in a CFT is the central charge,c. The central charge is

essentially a way to measure the number of degrees of freedomin the CFT. This is

often defined in terms of the two-point function of the stress-energy tensor,

〈

Tµν(x)Tαβ(0)
〉

=
c

(

x2
)d

1

ω2
d−1

(

IµαIνβ + IµβIνα −
2
d
δµνδαβ

)

, (1.22)

where

Iµν = δµν −
2xµxν

x2
, ωd−1 =

2π
d
2

Γ
(

d
2

) , (1.23)

andδµν is the Kronecker delta function. In the next section we will see that the

AdS/CFT correspondence provides a much more convenient way to calcuate the

central charge.

From Noether’s theorem, we can find the conserved charges associated with

conformal tranformations, giving rise to the following generators of the conformal

group,

aµ → Pµ

ωµν → Mµν

λ→ D

bµ → Kµ,

(1.24)
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which obey the conformal algebra (see [20]). Of particular importance here is the

generatorD of scale transformations, which is called the dilatation operator. Given

an operatorO in the CFT, the dilatation operator acts as

DO = ∆O, (1.25)

where∆ is the scaling dimension of the operatorO, and the operatorO transforms

as

O(x)→ Õ(x) = λ∆O(λx) (1.26)

under a scale transformation parameterized byλ.

Operators in a CFT can be separated in to three classes: relevant, irrelevant, and

marginal. This characterization of operators can be made interms of their scaling

dimensions;

∆ < p+ 1 ⇒ relevant

∆ > p+ 1 ⇒ irrelevant

∆ = p+ 1 ⇒ marginal.

(1.27)

Loosely speaking, a relevant operator is one that can appearin the Hamiltonian

of the CFT, while an irrelevant operator does not (however, we may still consider

correlation functions containing irrelevant operators).In other words, Hamiltonians

with relevant operators are renormalizable, while those with irrelevant ones are not.

Let us now look at how CFTs are related to non-conformal field theories. Quite

generally, we can construct a field theory by identifying thefield content and writing

down an action of the form,

S = S0 +

∫

dp+1x
∑

i

giOi , (1.28)
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Figure 1.1: Fixed points and RG flow in coupling space.

whereS0 is the free-field part,Oi are operators characterizing all possible interac-

tions between the fields, andgi are couplings governing the strength of the interac-

tions. Under the renomalization scheme, the couplings acquire a dependence on the

energy scaleµ, and this dependence is governed by the so-called renormalization

group (RG) flow equations,

µ
dgi

dµ
= βi

(

g j

)

. (1.29)

A set of fixed points in coupling space is found by solving the system

βi

(

g∗j
)

= 0. (1.30)

At the fixed points, the theories become scale invariant and can be described a

CFT. These fixed points are very special because, if we have a CFT corresponding

to a fixed point, the couplings of that theory do not run as we lower the energy

scale. One can linearize the system (1.29) to determine the stability of these fixed

points in coupling space, where trajectories leaving the fixed point are unstable and
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those entering the fixed point are stable. This allows us to classify the operators

associated with the couplings in these directions. Operators whose couplings flow

along unstable (stable) trajectories are called irrelevant (relevant) operators. The

point here is that if we perturb a CFT by an operator, we move our theory away

from the fixed point and induce the RG flow.

1.3 AdS/CFT correspondence

Figure 1.2: Artists interpretation of the AdS/CFT correspondence. In the bulk of an
asymptotically AdS spacetime, we may have some matter fields, represented by the
blue colour, and a black hole. The dual gauge theory plasma, represented in red,
lives on the boundary of the spacetime.

Figure 1.2 shows a cartoon depicting how we can interpret theAdS/CFT cor-

respondence. The idea is that we have a (d + 1)-dimensional, asymptotically AdS

spacetime containing a black hole, and perhaps some matter fields. This defines our

gravity theory; that is, the AdS side of the correspondence.A key feature of AdS

spacetimes is that they have a boundary such that light rays emitted in the bulk of
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the spacetime can reach the boundary in finite time.5 The dual field theory lives

on this boundary. The existence of a black hole in the bulk spacetime corresponds

to thermal states in the field theory, where the radius of the black hole’s horizon is

related to the temperature of the ”plasma” living on the boundary. In the absence of

matter fields on the gravity side, we assume that the dual gauge theory is a CFT. If

we have matter fields propagating in the bulk spacetime from the gravity perspec-

tive, this corresponds to the turning on of massive fields in the field theory, thus

deforming away from the fixed point and breaking the conformal invariance.

There are several examples of the AdS/CFT correspondence that arise from

various limits of string theory. In these cases, the identity of both the gravity theory

and the field theory theory are known [32, 35, 2]. The model that we will focus

on here does not have such a string theory embedding. As such,we will adopt

the philosophy that our gravity theory on the AdS sidedefinesa field theory on

the boundary. Although this means that we do not know exactlywhat field theory

we are dealing with, the AdS/CFT correspondence allows us to glean many of its

physical features.

The most deeply studied example of the AdS/CFT correspondence is that of

AdS5×S5 andN = 4 supersymmetric Yang-Mills theory [32, 2, 38, 5]. Having a

duality between a field theory and a ”classical” gravity theory is only valid if the

’t Hooft couplingg2
YMN is infinite. We assume a similar argument for phenomeno-

logical models, so really we are considering very strongly coupled field theories.

To study finite coupling corrections, we typically would have to find a string theory

embedding of our model and look at subleading terms in a 1/N expansion.

5This is much different from Minkowski spacetime, where a light ray reaches the boundary in
infinite time
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1.3.1 Thermodynamics

A formal statement of the AdS/CFT correspondence that will be useful to us is that

the partition function of the CFT is related to the gravitational (AdS) action by

ZCFT = e−
F
T = e−Sg, (1.31)

whereSg is the Euclidean action of the gravity theory, which must be renormalized

to remove divergences at the boundary. This divergence-cancelling prescription

is called holographic renormalization, and the techniquesare described in [3, 4,

40]; although, we will work out several examples in detail inlater chapters. There

is a dictionary that enables us to relate certain quantitiesin the gravity theory to

quantities in the gauge theory. Here we will list those itemsthat we will use later;

however, we will review them as they arise later on in the context of our specific

model.

Beginning with thermodynamics, the Hawking temperature, and entropy den-

sity of the black hole in the gravity theory are equal to the temperature and entropy

in the field theory correspondingly,

TBH = T f ield ≡ T, and sBH = sf ield ≡ s. (1.32)

The stress-energy tensor of AdS gravity is given by [3]

Tµν =
2
√
γ

δSgrav

δγµν
, (1.33)

whereγµν is the induced metric on the AdS boundary, andSgrav is the renormalized

graviational action. We will see later thatTµν has divergences that must be properly

cancelled. When all is said and done, the stress-energy tensor is related to the
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energy density and pressure of the gauge theory plasma by

Tµν =



















































E 0 0 ...

0 P 0 ...

0 0 P 0
... 0 0

. . .



















































(1.34)

The diagonal structure ofTµν is a result of the fact that we consider only spherically

symmetric spacetimes, but non-zero off-diagonal may be present in more general

cases. The free energy densityF can be computed from (1.31), and we may check

thatP = −F , as expected for a homogeneous system.

The AdS/CFT correspondence allows for a simple method to calcuate the cen-

tral charge in CFTs at finite temperature with dual gravity descriptions. In ad-

dimensional CFT at finite temperature,T is the only scale in the system. By dimen-

sional analysis, we expect thats ∝ Td−1. In a thermal system, the entropy density

is a measure of the number of degrees of freedom, and so shouldbe related to the

central charge. This relation is [31]

s= c
Γ
(

d
2

)3

4π
d
2Γ (d)

(

4π
d

)d (

d− 1
d+ 1

)

Td−1. (1.35)

So computing the entropy density in the gravity theory also determines the central

charge in the CFT.
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1.4 Hydrodynamics

On the field theory side, at finite temperature, the hydrodynamics are that of a stan-

dard viscous relativistic fluid. The local stress-energy tensor is given by [11]

Tµν = ǫuµuν + P(ǫ)∆µν − η(ǫ)σµν − ζ(ǫ)∆µν∇αuα

∆µν = gµν + uµuν, σµν = ∆µα∆νβ
(

∇αuβ + ∇βuα
)

− 1
d− 1

∆µν∆αβ∇αuβ,
(1.36)

whereǫ is the local energy density,P is the pressure,uµ is the locald-velocity of

the plasma, andη andζ are the shear and bulk viscosities respectively. A plasma

with such a stress-energy tensor allows for the propagationof hydrodynamic sound

waves with the following dispersion relation

ω̂ = csq̂− iΓq̂2 + O
(

q̂3
)

, q̂→ 0. (1.37)

wherecs is the speed of the sound waves, andΓ is their attenuation,

c2
s =

(

∂P
∂ǫ

)

T

, Γ = 2π
η

s

(

d− 2
d− 1

+
ζ

2η

)

, (1.38)

and

ω̂ =
ω

2πT
, q̂ =

|~q|
2πT

, (1.39)

whereω and~q are the frequency and momentum of the waves, respectively. Also,

s is the entropy density, andd = p + 1 is the spacetime dimension. The AdS/CFT

correspondence identifies the dispersion relation (1.37) of sound waves in the field

theory (plasma) with that of quasinormal modes of the dual gravity theory in the

limit whereq→ 0. We will see how this works in chapters 4 and 6.
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In a conformal plasma, the trace of the stress-energy tensorvanishes,

Tµ
µ = 0. (1.40)

Let us show that a result of this is that for a CFT plasma,

c2
s =

1
d − 1

, and
ζ

η
= 0 (conformal). (1.41)

First, we assume thatuµ is a timelike vector field normalized touµuµ = −1. Now,

taking the trace of (1.36), we get

Tµ
µ = −ǫ + P∆µµ − ησµ

µ − ζ∆µµ (∇αuα) = 0. (1.42)

We have

∆µµ = gµµ + uµuµ = d − 1, (1.43)

and usinggµν = δµν it is straightforward to show that

σµ
µ = uαuβ

(

∇βuα − ∇αuβ
)

.

= 0,
(1.44)

where the second equality follows from the fact thatuαuβ is a symmetric tensor and
(

∇βuα − ∇αuβ
)

is an antisymmetric tensor, so their product must vanish. Wenow

have

Tµ
µ = [−ǫ + (d − 1)P] − ζ(d − 1)(∇αuα) = 0. (1.45)

Since the first term isu-independent and the second term isu-dependent, both terms
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must vanish. The first term gives

P =
ǫ

d − 1
, so c2

s =

(

∂P
∂ǫ

)

T

=
1

d − 1
. (1.46)

The second term gives

ζ = 0. (1.47)

The shear viscosityη of the plasma is related to the low-energy graviton absorp-

tion cross-sectionσ of the black hole by [37],

η =
1

16πG
σ. (1.48)

It turns out that the ratioη/s is universal for all strongly coupled gauge-theories

dual to a two-derivative gravitational theory6. The universal value is [7]

η

s
=

1
4π
. (1.49)

We will not prove this here, but we will give a brief argument of why η/s is constant,

following [33]. In [16] the authors give a theorem that says that the low-energy ab-

sorption of any black hole is equal to the horizon area, whichin turn is proportional

to the black hole entropy,

σ = A ∝ s. (1.50)

Thus
η

s
= constant (1.51)

Having a universally constant value forηs now allows us to compute the bulk-to-

6Camanho et al. [14] propose higher derivative corrections.Erdmenger et al. [17] found that in
a two-derivative gravity theory coupled to an SU(2) gauge field, spontaneous breaking of rotational
invariance induces additional shear modes whose corresponding viscosities are not universal.
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shear viscosity ratioζ/η, provided that we can compute the dispersion relation in

the hydrodynamic limit, i.e. ˆq→ 0.

1.5 Exotic Model

The goal of this thesis is to demonstrate the techniques usedto study thermody-

namics, hydrodynamics and critical phenomena in an AdS/CFT model. The latter

requires that the gravity theory be asymptotically AdS, andthat the system under-

goes a phase transition at some critical temperature. Gubser [25] remarks that a

theory with an action of the form

S =
∫

d5x
√−g

(

R− 1
2

(∂φ)2 − 1
2

(∂χ)2 − V (φ, χ)

)

V (φ, χ) = −6+
1
2

m2
φφ

2 +
1
2

m2
χχ

2 + gφ2χ2,

(1.52)

exhibits a second order phase transition. Here we will consider a gravitational ac-

tion with similar form7,

S =
1

16πG

∫

d4x
√−g (LCFT +Lr +Li) ,

LCFT = R+ 6, Lr = −
1
2

(∇φ)2
+ φ2, Li = −

1
2

(∇χ)2 − 2χ2 − gφ2χ2.

(1.53)

We can find asymptotically AdS4 solutions as long as we require that the scalars

φ, χ → 0 at the AdS boundary. Let us interpret what the form of this action means

to the dual field theory. In the absence ofLr andLi, the remaining partLCFT, of

which pure AdS-Schwarzschild black holes are a solution, isdual to a UV fixed

point (as in figure 1.1) decribed by a CFT with HamiltonianHCFT. According to

the AdS/CFT correspondence, scalar fields in the gravity theory are associated with

7We chose to work in four dimensions because we initially wanted to study this system in an
external magnetic field.
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operators in the field theory. In our model,φ andχ are associated with operators

Or andOi. The inclusion of the termsLr andLi then deform our field theory away

from the fixed point and induces the renormalization group (RG) flow,

HCFT → H̃ = HCFT + λrOr + λiOi. (1.54)

The masses of scalar fields in the gravity theory (see theφ2 andχ2 terms in (1.53))

are related to the scaling dimensions of the operators in thefield theory by [42]

m2 = ∆ (∆ − p− 1) . (1.55)

Thus, we infer scaling dimensions8 and classification of the field theory operators,

m2
φ = −2 ⇒ ∆Or = 2 < p+ 1 = 3 (relevant)

m2
χ = 4 ⇒ ∆Oi = 4 > p+ 1 = 3 (irrelevant).

(1.56)

The AdS/CFT correspondence dictates that the asymptotic behaviourof the scalar

fields near the AdS boundary takes the form

φ = λrr
d−∆Or + 〈Or〉 r−∆Or + ...

χ = λir
d−∆Oi + 〈Oi〉 r−∆Oi + ...

(1.57)

whered = 3 in our case. Having determined thatOi is an irrelevant operator, we are

forced to setλi = 0 in (1.54) in order to maintain a well-defined field theory. Thus

we expect that for our model withr → ∞

8Note that∆Or = 1 is also possible, but we will not consider this case here. See reference [10].
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φ = λrr +
〈Or〉
r2
+ ...

χ =
〈Oi〉
r4
+ ...

(1.58)

The action (1.53) has aZ2×Z2 symmetry associated with the parity transforma-

tion

φ→ −φ χ→ −χ. (1.59)

The former symmetry is broken by hand via a relevant deformation of the type

(1.54). The latter, as we will see, is broken spontaneously.In other words, we will

find a critical temperature where〈Oi〉 = 0 in one phase, and〈Oi〉 , 0 in the other.

In the field theory, to have a properly renormalized correlation function, say

〈Oi〉, we may have to mixOr with Oi in a linear combination. For example

Oi → Z0Oi + Z1Or , (1.60)

whereZ0 andZ1 are coefficients that must be carefully chosen in order to cancel any

UV divergences. This mixing of the field theoretic operatorsunder the RG flow is

accounted for in the gravity theory by the interaction termgφ2χ2. Also, as pointed

out in [25] we observe a phase transition only ifg < 0. Unless explicitly stated

otherwise, we will takeg = −100.

This concludes what we can learn about the field theory corresponding to the

gravity theory (1.53) without doing any real computations.But before exploring the

thermodynamics, hydrodynamics, and critical phenomena ofthis model, we will

warm up on some simpler examples; namely, we will consider pure AdS5, which is

dual toN = 4 supersymmetric Yang-Mills theory, and is the most well understood

example of the AdS/CFT correspondence. As well, we will consider pure AdS4,
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which is the conformal limitλr → 0 of our Exotic Model.
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Chapter 2

AdS5

In this chapter we will study anti-de Sitter gravity in five dimensions (AdS5). Start-

ing from the gravitational action, we derive the equations of motion and find their

solution. We consider black hole solutions with 3-sphere horizons. From the solu-

tion we compute the temperature and entropy density, and we perform the holo-

graphic renormalization of the gravitational action to determine the free energy

density. We compute the stress-energy tensor and, in turn, the energy density and

pressure. These exercises are done in painful detail, so many steps may be skipped

by the experienced reader.

2.1 Action

Consider a (4+1)-dimensional Einstein gravity with a cosmological constant. The

gravitational action is [3]

S =
1

16πG

∫

M
d5x
√−g (R5 + Λ) − 1

8πG

∫

∂M
d4x
√−γΘ, (2.1)
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whereg is the metric determinant,R5 is the five-dimensional scalar curvature and

Λ is the cosmological constant. For AdS gravity ind + 1 dimensions, we take

Λ =
d(d−1)

l2 wherel is a characteristic AdS length much akin to the radius for ad-

sphere. Here,d = 4 and sincel is the only relevant length scale in the problem, we

are free to choose units such thatl = 1. Also,γ is the determinant of the boundary

metric andΘ is the trace of the extrinsic curvature, which is given by

Θµν = −1
2

(∇µnν + ∇νnµ) (2.2)

wherenµ is the outward pointing unit normal 5-vector to the boundary∂M, and∇µ
is the covariant derivative operator.

2.2 Equations of motion

In order to find the equations of motion (i.e. the equations that govern the metric

gµν) we must vary the action with respect to the metric; that is, we must find δS
δgµν .

Let us look for spherically symmetric solutions. As such, wechoose an ansatz for

the metric of the form

ds2 = −c2
1(r)dt2 + c2

2(r)dS2
3 + c2

3(r)dr2, (2.3)

wheredS2
3 = dψ2 + sin2(ψ)

(

dθ2 + sin2(θ)dφ2
)

is the metric for a 3-sphere. The

determinant of the metric (2.3) is

g = −c2
1c

6
2c

2
3 sin4ψ sin2 θ. (2.4)
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To simplify the calculation of the scalar curvatureR5, let us consider the metric

ds2 = −c2
1(r)dt2 + c2

2(r)dx2 + c2
3(r)dr2, (2.5)

wheredx2 = dx2 + dy2 + dz2. The Christoffel symbols are defined to be [36]

Γαβγ =
1
2

gαµ
(

∂γgµβ + ∂βgµγ − ∂µgβγ
)

. (2.6)

Since the metric (2.3) is diagonal, only one term in the summation overµ on the

right-hand side survives, i.e. the term for whichµ = α. Also, since all components

of the metric depend only of the coordinater, then all components ofΓαβγ are zero

except those with either the formΓr
ββ or Γββr .

1 This is clearly seen if we write (2.6)

as

Γαβγ =
1
2
δαµg

αµ
(

δβµδγr∂γgµβ + δ
γµδβr∂βgµγ − δµrδβγ∂µgβγ

)

. (2.7)

The Kronecker-delta symbols reflect the facts that the metric is diagonal and de-

pends only on the coordinater. The result is

Γr
ββ =

1
2

grr
(

2δβr∂βgβr − ∂rgββ
)

andΓββr =
1
2

gββ∂rgββ, (2.8)

and all other components are zero.

The scalar curvature is defined to be

R5 = gµν
(

∂λΓ
λ
µν − ∂νΓλµλ + ΓλµνΓσλσ − ΓσµλΓλνσ

)

. (2.9)

1Here we are not contracting over the indexβ but instead just fixing them to be the same.
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Using (2.8) we get the scalar curvature for the metric (2.59)

R̃5 = 2

(

−3
c′1c
′
2

c1c2c2
3

+
c′1c
′
3

c1c3
3

−
c′′1

c1c2
3

− 3
(c′2)

2

c2
2c

2
3

+ 3
c′2c
′
3

c2c3
3

− 3
c′′2

c2c2
3

)

. (2.10)

The only difference between the metrics (2.3) and (2.59) is that we tradedthe 3-

sphere for Euclidean 3-space. In order to get the scalar curvatureR5 for the metric

(2.3) we now must add tõR5 the contribution to the curvature due to the 3-sphere

with radiusc2, which is known to beRSd = d(d − 1)/c2
2 (hered = 3). So the scalar

curvature that should be inserted into the action is

R5 = 2

(

−3
c′1c
′
2

c1c2c2
3

+
c′1c
′
3

c1c3
3

−
c′′1

c1c2
3

− 3
(c′2)

2

c2
2c

2
3

+ 3
c′2c
′
3

c2c3
3

− 3
c′′2

c2c2
3

+
3

c2
2

)

. (2.11)

Now the first term in the action (2.1), called the bulk term, becomes

Sbulk =
1

8πG

∫

M
d5xsin2ψ sinθ

×





































3c1c2c3 +
c3

2c
′
1c
′
3

c2
3

− 3
c2

2c
′
1c
′
2

c3
−

c3
2c
′′
1

c3

− 3
c1c2(c′2)

2

c3
+ 3

c1c2
2c
′
2c
′
3

c2
3

− 3
c1c2

2c
′′
2

c3
− 6c1c

3
2c3





































.

(2.12)

Now we will turn to the second term in the action, called the boundary term,

Sboundary. In our coordinate system, we will consider the boundary∂M to be de-

fined by the hypersurfacer = ρ whereρ is a constant that we will eventually take to

infinity in order to cover the entire space. The outward normal vector to the bound-

ary will then be in the direction ofvµ = (0, 0, 0, 0, 1). To construct a unit normal,

first notice thatvµvµ = gµνvµvν = grr = c2
3. So the unit normal to the boundary

is nµ = (0, 0, 0, 0, 1
c3

). From equation (2.2), we see that the trace of the extrinsic
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curvature is the negative of the divergence ofnµ. That is,

Θ = −∇µnµ

= −
(

∂µn
µ + Γµµνn

ν
)

= −
(

∂rn
r + Γµµrn

r
)

= −
[

(c−1
3 )′ + Γµµrc

−1
3

]

= −
[

−
c′3
c2

3

+ Γµµr

1
c3

]

(2.13)

From equation (2.6) we can find

Γµµr =
1
2

gµλ
(

∂rgλµ + ∂µgλr − ∂λgµr

)

=
1
2

(

(c2
1)
′

c2
1

+ 3
(c2

2)
′

c2
2

+
(c2

3)
′

c2
3

)

=
c′1
c1
+ 3

c′2
c2
+

c′3
c3

(2.14)

so that

Θ = −
(

c′1
c1c3
+ 3

c′2
c2c3

)

(2.15)

Notice this is also the extrinsic curvature for the metric (2.5) because the angular

factors played no role in the calculation. That is, the angular factors cancelled

since, in (2.14), the metric components with lower indices always come with a

partial derivative with respect tor, so the angular factors are not affected in the

numerator, and the components with upper indices carry the same angular factors

in the denominator, and thus the angular factors cancel completely.

The boundary∂M is defined byr = ρ, so we havedr = 0. The induced metric

on the boundary is

ds2 = −c2
1(ρ)dt2 + c2

2(ρ)dS2
3, (2.16)
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and the determinant is

γ = −c2
1c

6
2 sin4ψ sin2 θ

∣

∣

∣

r=ρ
. (2.17)

The boundary term in the action is

Sboundary=
1

8πG

∫

∂M
d4xsin2ψ sinθ

(

c3
2c
′
1

c3
+ 3

c1c2
2c
′
2

c3

)
∣

∣

∣

∣

∣

∣

r=ρ

(2.18)

To find the equations of motion, we demand thatδS/δgµν = 0, or, considering only

the non-zero components of the metric, we demand thatδS/δc1 = 0, and similarly

for c2 andc3. We will impose that the variationδc1 = 0 at the boundary, but we

must allowδc′1 , 0 at the boundary, and similarly forc2 andc3, in order to get

non-trivial results. Now,

δSbulk =
∂Sbulk

∂c1
δc1 +

∂Sbulk

∂c′1
δc′1 +

∂Sbulk

∂c′′1
δc′′1 + ...similiar terms forc2 andc3

=
1

8πG

∫

M
d5xsin2ψ sinθ

×





































(

3c2c3 − 3
c2(c′2)

2

c3
+ 3

c2
2c
′
2c
′
3

c3
− 3

c2
2c
′′
2

c3
− 6c3

2c3

)

δc1

+

(

c3
2c
′
3

c2
3

− 3
c2

2c
′
2

c3

)

δc′1 −
c3

2

c3
δc′′1





































.

(2.19)
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Integrating the second and third terms by parts with respectto r we get

δSbulk

δc1
=

1
8πG

∫

M
d5xsin2ψ sinθ

×





































(

3c2c3 − 3
c2(c′2)

2

c3
+ 3

c2
2c
′
2c
′
3

c3
− 3

c2
2c
′′
2

c3
− 6c3

2c3

)

δc1

−
(

c3
2c
′
3

c2
3

− 3
c2

2c
′
2

c3

)′

δc1 +

(

c3
2

c3

)′

δc′1





































− 1
8πG

∫

∂M
d4xsin2ψ sinθ

[(

c3
2c
′
3

c2
3

− 3
c2

2c
′
2

c3

)

δc1 −
(

c3
2

c3

)

δc′1

]

.

(2.20)

Integrating the final term in the integral overM we get

δSbulk

δc1
=

1
8πG

∫

M
d5xsin2ψ sinθ

×





































(

3c2c3 − 3
c2(c′2)

2

c3
+ 3

c2
2c
′
2c
′
3

c3
− 3

c2
2c
′′
2

c3
− 6c3

2c3

)

−
(

c3
2c
′
3

c2
3

− 3
c2

2c
′
2

c3

)′

−
(

c3
2

c3

)′′





































δc1

− 1
8πG

∫

∂M
d4xsin2ψ sinθ

(

c3
2

c3

)

δc′1,

(2.21)

where we dropped theδc1 term in the integral over∂M since the variation vanishes

there.

Now let us vary the boundary actionSboundarywith respect toc1.

δSboundary

δc1
=
∂Sboundary

∂c1
δc1 +

∂Sboundary

∂c′1
δc′1

=
1

8πG

∫

∂M
d4xsin2ψ sinθ

(

c3
2

c3

)

δc′1,

(2.22)

where we dropped theδc1 term as it vanishes on the boundary.

Now, sinceS = Sbulk + Sboundary, when we vary the total action, the boundary
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integrals cancel exactly2 and we are left with

δS
δc1
=

1
8πG

∫

M
d5xsin2ψ sinθ

×





































(

3c2c3 − 3
c2(c′2)

2

c3
+ 3

c2
2c
′
2c
′
3

c3
− 3

c2
2c
′′
2

c3
− 6c3

2c3

)

−
(

c3
2c
′
3

c2
3

− 3
c2

2c
′
2

c3

)′

−
(

c3
2

c3

)′′





































δc1

(2.23)

Since the variationδc1 is arbitrary and the functionsc1, c2 andc3 are assumed to be

continuous, demanding thatδS = 0 means that the quantity in square brackets must

vanish. This gives one of the equations of motion

c′′2 c2c3 + (c′2)
2c3 − c′2c

′
3c2 − 2c2

2c
3
3 − c3

3 = 0. (2.24)

Similarly, varying the action with respect toc2 andc3 gives the other equations of

motion

c′′1 c2
2c3+ 2c′′2 c1c2c3+ 2c′1c

′
2c2c3− c′1c

′
3c

2
2+ (c′2)

2c1c3− 2c′2c
′
3c1c2− c1c

3
3− 6c1c

2
2c3 = 0

(2.25)

c′1c
′
2c2 + (c′2)

2c1 − c1c
2
3 − 2c1c

2
2c

2
3 = 0. (2.26)

We can put these equations into a nicer form by using (2.24) and (2.25) to eliminate

c′′2 from the former, then to eliminatec′′1 from the latter. We find that the equations

of motion can be put in the form

c′′1 + 2
c′1c
′
2

c2
−

c′1c
′
3

c3
−

c1(c′2)
2

c2
2

+
c1c2

3

c2
2

− 2c1c
2
3 = 0. (2.27)

c′′2 +
(c′2)

2

c2
−

c′2c
′
3

c3
−

c2
3

c2
− 2c2c

2
3 = 0 (2.28)

2This cancellation is precisely the reason for inserting theboundary term in the action.
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c′1c
′
2c2 + (c′2)

2c1 − c1c
2
3 − 2c1c

2
2c

2
3 = 0. (2.29)

2.3 3-sphere black hole solutions

Now we wish to solve the equations (2.27)-(2.28). Invariance under diffeomor-

phisms permits us to choosec2(r) = r, which is a natural choice as it assigns to the

3-sphere part of the metric a radiusr. Also, let us look for solutions of the form

c1(r) = r f (r) andc3(r) = 1/r f (r). With these choices3, equation (2.28) and (2.29)

are the same; they are

r3 f (r)
d f
dr
+ 2r2

[

( f (r))2 − 1
]

− 1 = 0. (2.30)

Equation (2.27) becomes

r4 f (r)
d2 f
dr2
+ r4

(

d f
dr

)2

+ 6r3 f (r)
d f
dr
+ 2r2

[

( f (r))2 + 1
]

− 1 = 0. (2.31)

The solution to (2.30) is4

f (r) = ±
√

1+
1
r2
+

C
r4
. (2.32)

The solution to (2.31) is

f (r) = ±
√

1+
1
r2
+

C1

r3
+

C2

r4
(2.33)

These solutions are mutually compatible only ifC1 = 0 andC2 = C. The signature

of the metric (−,+,+,+) is preserved if we take the positive solution. Also, we are

3The motivation for these choices is that we expect thatf (r) → 1 asr → ∞, in which case we
have the Poincare coordinate representation of a pure AdS spacetime

4Maple was used to solve (2.30) and (2.31)
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looking for black hole solutions that are asymptotically AdS. In order for a horizon

to exist, we must havegtt ≡ c1(rH) = 0 while c2(rH) , 0 andc3(rH) , 0, where

r = rH determines the hypersurface of the horizon. For this to be possible, we must

takeC to be negative, sayC = −r4
0. Thus, we take

f (r) =

√

1+
1
r2
−

r4
0

r4
, (2.34)

so our metric is

ds2 = −r2

(

1+
1
r2
−

r4
0

r4

)

dt2 + r2dS2
3 +

dr2

r2
(

1+ 1
r2 −

r4
0

r4

) . (2.35)

By solvingc1(r) = r f (r) = 0 for the real, positive root, we find that the horizon is

at

r = rH =
1
√

2

√

−1+
√

1+ 4r4
0 (2.36)

Because of our choice of ansatz (2.3), the horizon defined byr = rH and t =

constant(i.e. dr = dt = 0) takes the form of a 3-sphere. Thus, we have found

the 3-sphere black hole solutions.

2.4 Asymptotic geometry

Asymptotically, i.e. asr → ∞, we havef (r)→ 1− 1/r2, and the metric becomes

ds2 = −(1+ r2)dt2 + r2dS2
3 +

dr2

1+ r2
. (2.37)
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Let r2 = sinh2 ρ, sodr = coshρdρ. Also, cosh2 ρ = 1 + r2. Under this change of

variables, the metric (2.37) becomes

ds2 = − cosh2 ρdt2 + sinh2 ρdS2
3 + dρ2, (2.38)

which is precisely the AdS5 metric in global coordinates [2].

2.5 Minimized action

Now we will calculate on-shell value of the action, and we will insist on getting a

finite result. This process is called holographic renormalization [3, 40]. Since we

have the exact solution (2.35), we may calculate the bulk action by substituting our

solution forc1(r), c2(r) andc3(r) into (2.12), which simplifies to

Sbulk = −
1

2πG

∫ 2π

0
dφ

∫ π

0
sinθdθ

∫ π

0
sin2ψdψ

∫ ρ

rH

r3dr
∫ τ

0
dt

= − π

4G

(

ρ4 − r4
H

)

τ,

(2.39)

whereτ is some finite time that we will determine later. What is important to note

for now is that the bulk action diverges likeρ4 asρ→ ∞. Substituting our solution

for c1(r), c2(r) andc3(r) at r = ρ into the boundary action, (2.18) simplifies to

Sboundary=
π

4G

(

4ρ4 + 3ρ2 − 2r4
0

)

τ. (2.40)

Adding the results together, we get the total actionS = Sbulk + Sboundaryto be

S =
π

4G

(

3ρ4 + 3ρ2 + r4
H − 2r4

0

)

τ. (2.41)
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The action diverges asρ → ∞. To remove this divergence, we must add a counter-

termSct to the action that depends only on the boundary metric and that is invariant

under diffeomorphisms on the boundary so that the equations of motion are un-

changed. Also, the counter-term must not depend on any derivatives of the metric

so that it does not affect the cancellation of the boundary terms that we achieved

earlier. Since
√
γ and the four-dimensional scalar curvature on the boundaryR4 are

both invariants on the boundary, a candidate for the counter-term is5

1
8πG

Sct =
1

8πG

∫

∂M
d4x
√−γ (α1 + α2R4) , (2.42)

whereα1 andα2 are constants that must be chosen to cancel the divergent part of

the action. A straightforward calculation gives

1
8πG

Sct =
π

4G
ρ2

√

ρ4 + ρ2 − r4
0

(

α1 + α2
6
ρ2

)

τ. (2.43)

Since we are interested in the limit asρ→∞, we may approximate
√

ρ4 + ρ2 − r4
0 ≈

ρ2, andρ2
√

ρ4 + ρ2 − r4
0 ≈ ρ4 + ρ2/2− r4

0/2. Then (2.43) becomes

1
8πG

Sct =
π

4G

[

α1

(

ρ4 −
r4

0

2

)

+

(

α1

2
+ 6α2

)

ρ2

]

τ. (2.44)

5In principle, we could add higher powers ofR4, however, these terms would not diverge, so they
are not included.
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Comparing equations (2.54) and (2.44) we see that choosingα1 = −3 andα2 =

−1/4 will remove the divergent part of the action, which is now given by

S = Sbulk + Sboundary+
1

8πG
Sct

=
π

4G

(

r4
H −

r4
0

2

)

τ

=
π

8G

(

r4
H − r2

H

)

τ

(2.45)

When we add scalar hair to the action in chapter 5 we will, in general, not have

the luxury of knowing the exact solution. As such, we will demonstrate a way to

calculate the result (2.58) assuming that we know only the asymptotic form of the

solution about the horizon and about the boundary.

Looking at the bulk action (2.12), the only non-trivial integration is over ther

coordinate. Let us define ther-dependent part of the integrand to be

L̃bulk = 3c1c2c3+
c3

2c
′
1c
′
3

c2
3

−3
c2

2c
′
1c
′
2

c3
−

c3
2c
′′
1

c3
−3

c1c2(c′2)
2

c3
+3

c1c2
2c
′
2c
′
3

c2
3

−3
c1c2

2c
′′
2

c3
−6c1c

3
2c3.

(2.46)

If c1, c2, andc3 are solutions to the equations of motion (2.27)-(2.29), then we

are free to add terms containing the left-hand sides of thoseequations toL̃bulk. In

particular, denoting the left-hand side of (2.28) byA, we find

L̃bulk = L̃bulk + 3
c1c2

2

c3
A

= −3
c2

2c
′
1c
′
2

c3
+

c3
2c
′
1c
′
3

c2
3

−
c3

2c
′′
1

c3

=
d
dr

(

−
c3

2c
′
1

c3

)

,

(2.47)
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where the first equality holds sinceA = 0. Now the action (2.12) can be written as

Sbulk =
πτ

4G

∫ ρ

rH

d
dr

(

−
c3

2c
′
1

c3

)

dr

= − πτ

4G

(

c3
2c
′
1

c3

)
∣

∣

∣

∣

∣

∣

ρ

rH

,

(2.48)

where we take the limitρ → ∞. This shows that in order to evaluate the bulk

action, we only need the asymptotic solutions. Using equation (2.36), we find that

r4
0 = r4

H + r2
H, so the metric (2.35) can be written as

ds2 = −r2

(

1+
1
r2
−

r4
H + r2

H

r4

)

dt2 + r2dS2
3 +

dr2

r2
(

1+ 1
r2 −

r4
H+r2

H

r4

) . (2.49)

For r →∞, we find

c1 ∼ r +
1
2r
−

4r4
H + 4r2

H + 1

8r3
+ O

(

1
r5

)

,

c2 = r,

c3 ∼
1
r
− 1

2r3
+

4r4
H + 4r2

H + 3

8r5
+ O

(

1
r3

)

.

(2.50)

For r & rH, we find

c1 ∼
(

4r2
H + 2

rH

)

1
2

(r − rH)
1
2 + O

(

(r − rH)
3
2

)

,

c2 = r,

c3 ∼
(

4r2
H + 2

rH

)− 1
2

(r − rH)−
1
2 + O

(

(r − rH)
1
2

)

.

(2.51)
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Putting these expansions into (2.48) and keeping non-vanishing orders we find

Sbulk = −
π

4G

(

ρ4 − r4
H

)

τ (2.52)

Putting the expansion into (2.18) and keeping non-vanishing orders we find

Sboundary=
π

4G

(

4ρ4 + 3ρ2 − 2r4
0

)

τ. (2.53)

Adding the results together, we get the total actionS = Sbulk + Sboundaryto be

S =
π

4G

(

3ρ4 + 3ρ2 + r4
H − 2r4

0

)

τ. (2.54)

As before, the action diverges asρ→∞, so we add a counter-term of the form

1
8πG

Sct =
1

8πG

∫

∂M
d4x
√−γ (α1 + α2R4) ,

=
πτ

4G

(

α1c1c
3
2 + 6α2c1c2

)

.

(2.55)

Inserting our expansions forc1 andc2 about the boundary and keeping non-vanishing

order, we find

1
8πG

Sct =
πτ

4G

[

α1ρ
4 +

(

1
2
α1 + 6α2

)

ρ2 − α1

8

(

4r4
H + 4r2

H + 1
)

+ 3α2

]

, (2.56)

Comparing this to (2.54) we see that in order to cancel the divergences, we must

satisfy

α1 = −3

1
2
α1 + 6α2 = −3

(2.57)

So if we chooseα1 = −3 andα2 = −1/4 in our counterterm, then we cancel the
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divergences in the action exactly. Altogether, we arrive ata finite value for the

minimized action

S = Sbulk + Sboundary+
1

8πG
Sct

=
π

8G

(

r4
H − r2

H

)

τ,

(2.58)

which is identical to the answer we obtained using the exact metric.

2.6 Planar black hole solutions

Now let us look for black hole solutions whose horizons are three dimensional

hyperplanes. Most of the details will be omitted because thecalculations are similar

to, yet simpler than, those performed in the previous sections. Let us return to the

metric ansatz

ds2 = −c2
1(r)dt2 + c2

2(r)dx2 + c2
3(r)dr2, (2.59)

wheredx2 = dx2 + dy2 + dz2. The metric determinant is

g = −c2
1c

6
2c

2
3. (2.60)

We found in section 2.2 that the scalar curvature for this metric is

R5 = 2

(

−3
c′1c
′
2

c1c2c2
3

+
c′1c
′
3

c1c3
3

−
c′′1

c1c2
3

− 3
(c′2)

2

c2
2c

2
3

+ 3
c′2c
′
3

c2c3
3

− 3
c′′2

c2c2
3

)

, (2.61)

and the extrinsic curvature of the boundaryr = ρ is given by

Θ = −
(

c′1
c1c3
+ 3

c′2
c2c3

)

, (2.62)
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and the determinant of the boundary metric is

γ = −c2
1c

6
2. (2.63)

Putting everything into the action (2.1) and setting the variation of the action with

respect to the metric components to zero, we find the equations of motion

c′′1 + 2
c′1c
′
2

c2
−

c′1c
′
3

c3
−

c1(c′2)
2

c2
2

− 2c1c
2
3 = 0 (2.64)

c′′2 +
(c′2)

2

c2
−

c′2c
′
3

c3
− 2c2c

2
3 = 0 (2.65)

c′1c
′
2c2 + (c′2)

2c1 − 2c1c
2
2c

2
3 = 0 (2.66)

Lettingc1(r) = r f (r), c2(r) = r, c3(r) = 1/r f (r), and solving forf (r) we find

f (r) =

√

1−
r4

0

r4
. (2.67)

The metric is

ds2 = −r2

(

1−
r4

0

r4

)

dt2 + r2dx2 +
dr2

r2
(

1− r4
0

r4

) , (2.68)

which has a horizon atrH = r0. This metric is also asymptotically anti de Sitter.

Settingr = r0 and t = constwe see that the the horizon is a three dimensional

hyperplane. Putting our solution (2.68) into the action gives

S =
Vτ

8πG

(

3ρ4 − r4
0

)

, (2.69)

whereV =
∫

d3x, andτ is some, as of yet undetermined, upper limit on the integra-

tion over time. The action diverges as we take the boundary toinfinity (i.e. ρ→ ∞).
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We may add a counterterm of the form

Sct =
1

8πG

∫

∂M
d4xα

√−γ

=
Vτ

8πG
αρ4

√

1−
r4

0

ρ4

≈ Vτ
8πG

α

(

ρ4 −
r4

0

2

)

(2.70)

without affecting the equations of motion. Here we have assumed thatr4
0/ρ

4 << 1.

Comparing (2.69) and (2.70) we see that choosingα = −3 will cancel the diver-

gence, and we get a finite action density

S
V
=

τr4
0

16πG
. (2.71)

2.7 Thermodynamics of black holes in AdS5

2.7.1 3-sphere black hole

Here we will derive the thermodynamics of the black hole described by the metric

ds2 = −r2 f 2(r)dt2 +
dr2

r2 f 2(r)
+ r2dS2

3, (2.72)

where

f 2(r) = 1+
1
r2
−

r4
0

r4
, (2.73)

which has a horizon is at

rH =
1
√

2

√

−1+
√

1+ 4r4
0. (2.74)
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In particular, we will examine the cases wherer0 >> 1 andr0 << 1. Note that

rH ≈ r0, if r0 >> 1, (2.75)

and

rH ≈ r2
0, if r0 << 1, (2.76)

Before moving on to calculating the thermodynamics of our black hole, we will

need to establish a relationship between imaginary time andtemperature in quantum

field theories (QFT) at finite temperature

Imaginary time and temperature

Following [22] the path integral of a QFT is given by

Z ≡ 〈φ2, t2|φ1t1〉 =
∫

d[φ]eiS[φ], (2.77)

whereφ denotes the fields in the theory andS[φ] is the action. The integral is over

all field configurations whereφ has the valueφ1 at t1 and the valueφ2 at t2. The

Schrodinger and Heisenberg pictures are related by

〈φ2, t2|φ1t1〉 =
〈

φ2|eiH (t2−t1)|φ1

〉

(2.78)

whereH is the Hamiltonian of the theory. If we seti(t1 − t2) = 1/T andφ1 = φ2,

then sum over allφ1, then we get

Z = Tre−
H
T =

∫

d[φ]eiS(φ), (2.79)
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where the integral is now over all field configurations that are periodic in imaginary

time tE = it with period 1/T. The left hand side is nothing other than the canonical

partition function of a statistical system. The interpretation here is that in a QFT

at finite temperature, imaginary timetE is periodic with period 1/T. When we

integrate over imaginary time (e.g. as in the action), we should integrate over one

periodtE ∈ [0, 1/T].

(a) Temperature

First let us calculate the Hawking temperature of our black hole. We will do this by

removing a conical singularity in the induced metric on the horizon6. Expanding

the functionr2 f 2(r) about the horizon,r ≈ rH, we get

r2 f 2(r) ≈ r2
H f 2(rH) +

d
dr

(

r2 f 2(r)
)

|r=rH (r − rH)

= 2κ (r − rH) ,
(2.80)

where 2κ = d
dr (r

2 f 2(r))|r=rH . The factor 2 has been inserted for later convenence.

The first term vanishes sincef (rH) = 0 by definition of the horizon. The metric

near the horizon takes the form

ds2 ≈ −2κ(r − rH)dt2 +
dr2

2κ(r − rH)
+ r2

HdS2
3. (2.81)

If we perform the coordinate transformation

y2 = r − rH =⇒ dr2 = 4y2dy2

t = itE =⇒ dt2 = −dt2E,
(2.82)

6In general, we should not have spacetime singularities on a black hole horizon.
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then the near-horizon metric becomes

ds2 ≈ 2κy2dt2E +
2
κ

dy2 + rHdS2
3

=
2
κ

[

dy2 + y2d (κtE)2
]

+ rHdS2
3.

(2.83)

We may identify the first term as being the metric of a cone in polar coordinates

(i.e. y being the radial coordinate andκtE being the angular coordinate). Note that

there is a conical singularity unless we impose thatκtE is periodic asκtE = κtE+2π,

in which case we get the plane�2 in polar coordinates. Since spacetime is regular

(i.e. not singular) at a black hole horizon, we must have

tE = tE + 2π/κ. (2.84)

According to the AdS/CFT correspondence, the AdS black hole and the dual field

theory have a common temperature, and the bulk spacetime andbounary share the

same time coordinate. Thus we identify the period of the imaginary time tE with

the inverse temperature. So,

T =
κ

2π
. (2.85)

In the language of GR, we callκ thesurface gravity[36]. In our language, it is

just given by the leading coefficient in the series expansion of the full metric (2.80)

about the horizon. We find that

κ =
1
2

d
dr

(

r2 f 2(r)
)

|r=rH

=
r4

H + r4
0

r3
H

=
2r4

H + r2
H

r3
H

,

(2.86)
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Figure 2.1: Plot of AdS5 black hole temperature versusr0.

so the temperature of the black hole is

T =
2r4

H + r2
H

2πr3
H

. (2.87)

Figure 2.1 shows a plot of the temperatureT versusr0. There is a minimum,

which occurs atr0 = (3/4)1/4 ≈ 1 andTmin =
√

2/π. It is apparent that for a given

temperatureT >> Tmin there are two possible black holes; i.e., one forr0 >> 1 and

one for r0 << 1 (both regimes correspond to large temperatures). Later, we will

find out that only ther0 >> 1 black hole is physical. In each of these two regimes,
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we find that the temperature is given by

T ≈ r0

π
, if r0 >> 1

T ≈ 1

2πr2
0

, if r0 << 1.
(2.88)

Inverting the formulas (2.87) and (2.88) we have

r0 =
1
√

2

(

2T4π4 ± 2T3π3
√

T2π2 − 2− 2T2π2 − 1
)

1
4 (exact)

r0 ≈ πT, if r0 >> 1

r0 ≈
√

1
2πT

, if r0 << 1,

(2.89)

where for the equality we must choose the real, positive roots. The ”plus” root

corresponds to the right branch of the temperature curve in figure 2.1 (i.e. forr0 >

(3/4)1/4), and the ”minus” root corresponds to the left branch (i.e.r0 < (3/4)1/4).

(b) Entropy

The Hawking formula for the entropy,s, of a black hole is

s=
A

4G
, (2.90)

whereA is the proper area of the horizon. To find the area of the horizon, we set

r = rH andt = constantin (2.129) to get the induced metric on the horizon

ds2 = r2
HdS2

3, (2.91)
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then we integrate the square root of the determinant
√
σ = r3

H sin2ψ sinθ, over all

angles (i.e. integrate the area measure) to get

A =
∫ 2π

0

∫ π

0

∫ π

0
r3

H sin2ψ sinθdψdθdφ

= 2π2r3
H.

(2.92)

So

s=
π2r3

H

2G
(exact)

=



















π2r3
0

2G , if r0 >> 1
π2r6

0
2G , if r0 << 1,

(2.93)

or using (2.89) to get this in terms of temperature, we get

s=
π

4G

(

−1+ Tπ
√

2
(

T2π2 ± Tπ
√

T2π2 − 2− 1
)

)

(exact)

s=
π5

2G
T3, if r0 >> 1

s=
1

16πGT3
, if r0 << 1.

(2.94)

Here we begin to see that ther0 << 1 black hole is non-physical because its en-

tropy decreaseswith temperature, which goes against our intuition about thermal

systems. However, we will not rule out this black hole yet.

(c) Mass/ Energy

There is a well-known analogy that can be drawn between the laws of black hole

mechanics and the laws of thermodynamics. For the first law, if U is the internal

energy, we have

dU = Tds ⇐⇒ dM =
κ

2π
d
( A
4G

)

, (2.95)
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from which the formulasT = κ/2π ands = A/4G that we have already used are

apparent. This analogy also tells us that the black hole massM plays the role ofU,

and from now on we might as well regard them as equivalent. Now, using the first

law we have

dM = Tds= T
ds
dT

dT

=











































√
2Tπ2

4G

(

2
√

T2π2−2T2π2±2T3π3∓3Tπ−
√

T2π2−2
√

(

T2π2±Tπ
√

T2π2−2−1
)

(T2π2−2)

)

dT (exact)

3π5

2G T3dT, if r0 >> 1

− 3
16πGT3 dT, if r0 << 1,

.
(2.96)

Integrating gives

M =
3

8G
π5T4, if r0 >> 1

M =
3

32πGT2
+ const, if r0 << 1,

(2.97)

where we have neglected the integration constant for ther0 >> 1 case because

it is irrelevant for large temperatures. We refrain from calculating the exact mass

because the integration is intractable.

(d) Heat capacity

From classical thermodynamics, the heat capacity of a system is given by

cV = T

(

ds
dT

)

V

. (2.98)
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From equation (2.96) we can just pick off the result

cV =

√
2Tπ2

4G

























2
√

T2π2 − 2T2π2 ± 2T3π3 ∓ 3Tπ −
√

T2π2 − 2
√

(

T2π2 ± Tπ
√

T2π2 − 2− 1
)

(

T2π2 − 2
)

























(exact)

cV =
3π5

2G
T3, if r0 >> 1

cV = −
3

16πGT3
, if r0 << 1.

(2.99)

Now the instability of ther0 << 1 black hole is clear; its heat capacity is neg-

ative. This is not surprising from a GR perspective. Consider, for example, the

Schwarzschild black hole in flat spacetime. The mass is well-known to beM =

1/8πT, giving a negative heat capacitycV = ∂M/∂T = −1/8πT2. For ther0 << 1

case (i.e. the horizon radius is tiny compared to the characteristic AdS curvature,

which we set to unity), the black hole is so small that it does not feel the AdS curva-

ture and is effectively living in flat space. So the situation is similar to the standard

Schwarzschild case. But our AdS spacetimes should be dual toa well-defined field

theory. Physically, the heat capacity of a system is the amount of heat required to

raise the temperature of the system by a certain amount. If the heat capacity is neg-

ative, then this means that the system can increase its temperature bylosingheat.

Thus, ar0 << 1 black hole in a heat sink will spontaneously heat up forever, which

is an unphysical scenario. So ther0 < 1 branch of solutions should be ignored as

they do not correspond to a well-defined dual CFT.
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(e) Free Energy

The free energy of a system, as defined in classical thermodynamics, is given by

F = U − sT. (2.100)

RegardingU = M and plugging in the expressions we have found forM ands we

get

F = − π
5

8G
T4, if r0 >> 1

F =
1

32πGT2
, if r0 << 1.

(2.101)

Finally we see without any doubt that ther0 << 1 black hole is unstable, as it is the

r0 >> 1 black hole that corresponds to the minimum of the free energy.

Equation (2.84) tells us how we should have treated the integration over time

in the calculation of the action of equation (2.58); we should have transormed to

imaginary time, i.e. lett = itE, and taken the integral over one period (0, 1/T).

Under this change of time coordinate integration measure becomes

∫

d4x
∫ τ

0
dt
√−g→

∫

d4x
∫ 1

T

0
(idtE)

(

i
√

gE
)

, (2.102)

wheregE = r6 sin4ψ sin2 θ. Thus, after the integration this amounts to the replace-

ment

τ→ − 1
T
, (2.103)

and the Euclidean action (2.58) becomes

SE = −
1
T

π

4G

(

r4
H −

r4
0

2

)

(2.104)
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For a theory of a fieldφ (here the field in question is the metricgµν) described

by an actionS, the path integral is given by

Z =
∫

d[φ] exp(iS[φ]) , (2.105)

where this is understood to be a functional integral. This integral is dominated by

the fieldφ that minimizesS; that is, the dominant contribution is that forφ that

is a solution to the equations of motion. Contributions fromfields away from the

solution cancel becauseeiS oscillates rapidly whenS is large. So we can write

Z ≈ exp(iS)

= exp(−SE)
(2.106)

whereS is understood to be evaluated for a solution to the equationsof motion.

Comparing this to the partition function for a statistical thermal system

Z = exp (−βF), (2.107)

whereβ = 1/T, we see that the free energy is given in terms of the Euclideanaction

by
F
T
= SE. (2.108)

Writing (2.104) in terms ofT, for r0 >> 1,

SE = −
π5

8G
T3, (2.109)

and comparing this with (2.101), we see that, indeed, (2.108) is satisfied.
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Equation (2.108) gives us an exact answer for the free energyand energy,

F = TSE = −
π

4G

(

r4
H −

r4
0

2

)

, (2.110)

and we can getU from

U = F + sT (2.111)

(f) Stress-energy tensor

The stress-energy tensor for AdS gravity is given by [3]

Tµν =
1
√−γ

δS
δγµν

. (2.112)

For the action

S =
1

16πG

∫

M
d5x
√−g (R5 + Λ) − 1

8πG

∫

∂M
d4x
√−γΘ + 1

8πG
Sct, (2.113)

we find that

Tµν =
1

8πG

(

Θµν − Θγµν + 2
√−γ

δSct

δγµν

)

. (2.114)

For a counterterm of the form

Sct =

∫

∂M
d4x
√−γ (α1 + α2R4) , (2.115)

we can use the well-known results that

δ
√−γ = 1

2

√−γγµνδγµν, and δ
(√−γR4

)

= −√−γGµνδγµν, (2.116)
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whereGµν is the Einstein tensor for the boundary metricγµν, we find that

2
√−γ

δS
δγµν

= α1γ
µν − 2α2G

µν. (2.117)

Finally, we have

Tµν =
1

8πG
(Θµν − Θγµν + α1γ

µν − 2α2G
µν) . (2.118)

Using the metric (2.35) andα1 = −3, α2 = −1/4, we can get the stress-energy

tensor explicitly. Taking the boundary to infinity, i.e.ρ → ∞, andr0 >> 1, we find

that to leading order

Tµν =
1

8πG



















































3r4
0

2ρ2 0 0 0

0
r4
0

2ρ2 0 0

0 0
r4
0

2ρ2 0

0 0 0
r4
0

2ρ2



















































(2.119)

In conformal field theories, the one-point function of the stress-energy tensor is

given by
〈

T̂µν

〉

=
2
√−η

δS
δηµν

, (2.120)

whereηµν is the Minkowski metric. Our boundary metric is related to the Minkowski

metric byγµν = c−2
µ η

µν, where no summation is implied here. We can write

〈

T̂µν

〉

=
2c1c3

2√−γ
δS
δγµν

δγµν

δηµν
. (2.121)

Sinceδγµν

δηµν
= c−2

µ , we end up with

〈

T̂µν

〉

= c1c
3
2c
−2
µ Tµν (2.122)
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As ρ→ ∞, c1c3
2c
−2
µ → ρ2, so we get a finite stress-energy tensor for the field theory

〈

T̂µν

〉

=
1

8πG



















































3r4
0

2 0 0 0

0
r4
0
2 0 0

0 0
r4
0
2 0

0 0 0
r4
0
2



















































, (2.123)

from which we identify the mass/energy densityE = M/V and pressure or free

energy densityF = F/V

E =
3r4

0

16πG
, and P = −F =

r4
0

16πG
, (2.124)

giving exact agreement with our previous results (2.97) and(2.101).

Speed of sound

In a thermal system, the speed of sound is given by

c2
s =

(

∂P
∂E

)

(2.125)

For our AdS5 black hole we get

c2
s =

(

r4
0

16πG

)

(

3r4
0

16πG

) =
1
3
, (2.126)

in agreement with the first equation in (1.41) for a CFT ind = 3+ 1 dimensions.

Also note that

c2
s =

(

∂P
∂T

)

(

∂E
∂T

) =
s

cV
. (2.127)
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In (2.94) and (2.99) we found that

s=
π5

2G
T3, and cV =

3π5

2G
T3. (2.128)

So (2.127) is satisfied and our results are consistent.

2.7.2 Planar black hole

Following the same procedure as for the 3-sphere black hole,but with the metric

ds2 = −r2 f 2(r)dt2 +
dr2

r2 f 2(r)
+ r2dx2, (2.129)

where

f 2(r) = 1−
r4

0

r4
, (2.130)

which has a horizon is at

rH = r0, (2.131)

we find the following results:

Givenr0, there is a single (stable) black hole with temperature

T =
r0

π
. (2.132)

The entropy densitys/V, mass/energy densityM/V, heat capacity per volumecV/V,
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free energy densityF/V, and speed of sound squaredc2
s are given by

s ≡ s
V
=
π3T3

4G
, E ≡ M

V
=

3π3

16G
T4, cV ≡

cV

V
=

3π3

4G
T3

F ≡ F
V
= − π3

16G
T4, c2

s =
1
3
.

(2.133)

The stress-energy tensor is given by (2.123). All of these expressions are exact.

The thermodynamics of the planar black hole are identical tothose of the 3-

sphere black hole in the limitr0 >> 1. First, we’ve already established that the

temperatures are the same. Furthermore, for the planar black hole we simply set

V =
∫

d3x, but for the 3-sphere black hole we were able to explicity carry out the

corresponding integral
∫

S3

dS3 = 2π2. (2.134)

If we defineV = 2π2 (i.e. the volume of the unit 3-sphere), then it is easy to

check that the thermodynamics of the planar black hole are identical to those of the

3-sphere black hole withr0 >> 1.

2.7.3 The first law

As an independent check that our thermodynamics make sense,let us verify that

our thermodynamics are consistent with the first law

dF = −sdT. (2.135)

For the planar black hole, this is easy to check using the formulas in (2.133)

dF
dT
= − π

3

4G
T3 = −s . (2.136)
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Having established thatSE = F/T, we can now find the exact free energy and mass

for the 3-sphere black hole. From equation (2.104) we find

F = TSE = −
π

8G

(

r4
H − r2

H

)

. (2.137)

Also, recall that

T =
2r4

H + r2
H

2πr3
H

, s=
π2r3

H

2G
. (2.138)

Now it can be easily shown that

dF
drH
= − π

4G

(

2r3
H − rH

)

(2.139)

and that

−s
dT
drH
= − π

4G

(

2r3
H − rH

)

. (2.140)

So dF
drH
= −s dT

drH
, and the first law holds.
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Chapter 3

AdS4

In this chapter we repeat the analysis of the previous chapter, but in four spacetime

dimensions. The results of this chapter will be important because they will be the

expected results for our Exotic Model when we take the conformal limit. Since the

calculations are similar to those in the last chapter, we will spare most of the details.

3.1 Solution for the metric

Settingd = 3 in (2.1), and using the same notations as before, the actionfor AdS4

is

S =
1

16πG

∫

M
d4x
√−g (R4 + 6) − 1

8πG

∫

∂M
d3x
√−γΘ. (3.1)

We are interested in black hole solutions with planar horizons, thus we choose an

ansatz for the metric to be

ds2 = −c2
1(r)dt2 + c2

2(r)dx2 + c2
3(r)dr2, (3.2)
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wheredx2 = dx2
1+dx2

2. Using this ansatz, the action is given byS = Sbulk+Sboundary

where

Sbulk =
1

8πG

∫

M
d4x





































− 2
c′1c
′
2c2

c3
+

c′1c
′
3c

2
2

c2
3

−
c′′1 c2

2

c3
− c1(c2)2

c3

+ 2
c′2c
′
3c1c2

c2
3

− 2
c′′2 c1c2

c3
+ 3c1c

2
2c3





































, (3.3)

Sboundary= −
∫

∂M
d3x

(

c′1c
2
2

c3
+ 2

c′2c1c2

c3

)

. (3.4)

If we vary the action with respect toc1, c2 andc3 respectively, we get the equations

of motion

c′′1 +
c′1c
′
2

c2
−

c′1c
′
3

c3
− 1

2

c1(c′2)
2

c2
2

− 3
2

c1c
2
3 = 0 (3.5)

c′′2 +
1
2

(c′2)
2

c2
−

c′2c
′
3

c3
− 3

2
c2c

2
3 = 0 (3.6)

2c′1c
′
2c2 + (c′2)

2c1 − 3c1c
2
2c

2
3 = 0 (3.7)

Seeking solutions of the formc1(r) = r f (r), c2(r) = r, c3(r) = 1/r f (r), the equa-

tions of motion become

2r2 f f ′′ + 2r2( f ′)2 + 10r f f ′ + 3 f 2 = 0 (3.8)

2r f f ′ + 3 f 2 − 3 = 0 (3.9)

Finally we get the solution

ds2 = −r2

(

1−
r3

0

r3

)

dt2 + r2dx2 +
dr2

r2
(

1− r3
0

r3

) , (3.10)

which has a horizon atrH = r0.
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3.2 Thermodynamics

First we will calculate the temperature. Expanding the metric (3.10) about the hori-

zonr = r0 we get

ds2 = −2κ(r − r0)dt2 + r2
0dx2 +

dr2

2κ(r − r0)
, (3.11)

where

2κ =
d
dr

(

c2
1

)

∣

∣

∣

∣

∣

r=r0

= 3r0. (3.12)

Applying the transformations given in section 2.7.1 (a) we get the temperature

T =
κ

2π
=

3r0

4π
. (3.13)

To calculate the entropy, we use the Hawking formulas= A/4G, whereA is the

area of the horizon. Since our horizon is an infinite plane, the entropy is infinite;

however, the entropy density is finite. The metric on the horizon is

ds2
H = r2

0(dx2
1 + dx2

2). (3.14)

The area element on the horizon is given byr2
0dxdy, so that the entropy is given by

s=
r2

0

!
dx1dx2

4G
. (3.15)

If we defineV =
!

dx1dx2, then the entropy density is

s =
s
V
=

r2
0

4G
=

4π2

9G
T2, (3.16)

where we used (3.13) in the last equality. Recall from (1.35)that black hole entropy



58

and central charge of the dual field theory are related by

s= c
Γ
(

d
2

)3

4π
d
2Γ (d)

(

4π
d

)d (

d− 1
d+ 1

)

Td−1. (3.17)

We find that the central charge is

c =
24
πG
=

192
κ2

, (3.18)

whereκ2 = 8πG is commonly used in place of the gravitational constantG.

To find the free energy we must compute the finite Euclidean action. Putting the

solution (3.10) into the action (3.1) and taking the boundary ∂M to be the surface

r = ρ, we get
S
V
=

τ

8πG

(

2ρ3 −
r3

0

2

)

, (3.19)

whereτ =
∫ τ

0
dt. The action diverges asρ→ ∞. To remove this divergence we may

add a counterterm to the action as follows

S
V
=

τ

8πG

(

2ρ3 −
r3

0

2

)

+
α

8VπG

∫

∂M
d3x
√−γ. (3.20)

The addition of the second term on the right-hand side does not change the equa-

tions of motion because it does not contain any derivatives of the metric components

and we assume that the variations vanish on the boundary. Putting our solution into

the counterterm and expanding it for largeρ, the action density becomes

S
V
=

τ

8πG

[(

2ρ3 −
r3

0

2

)

+ α

(

ρ3 − 1
2

r3
0

)]

. (3.21)
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If we chooseα = −2 we get a finite action density,

S
V
=

τ

16πG
r3

0. (3.22)

Changing to imaginary time we make the replacementτ = −1/T. The Euclidean

action density is
SE

V
= − 1

16πG

r3
0

T
. (3.23)

Then the free energy isF = TSE, or

F = F
V
= − 4π2

27G
T3. (3.24)

The best way to find the mass density and pressure is to computethe stress-

energy tensor. Using the formulas in section 2.7.1 (f), but with
√−γ = c1c2

2 we

find

〈

T̂µν

〉

=



































8π2

27GT3 0 0

0 4π2

27GT3 0

0 0 4π2

27GT3



































, (3.25)

giving the mass/energy density and pressure respectively as

E = 8π2

27G
T3, and P =

4π2

27G
T3. (3.26)

It is straight forward to check our thermodynamics by verifying the first law

F = E − sT. (3.27)
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We can now calculate the speed of soundcs using the thermodynamic relation

c2
s = −

∂F
∂E
= −

(

∂F
∂T

)

(

∂E
∂T

) =
1
2
, (3.28)

as expected for a CFT ind = 2+ 1 dimensions.
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Chapter 4

AdS4 fluctuations

In this chapter we will study small fluctuations of the background metricgBG
µν given

by (3.10). The results of this chapter will serve as a check ofthe results of our

Exotic Model when we look at fluctuations in the conformal limit.

4.1 Fluctuation equations

Consider fluctuations of the background metric of the form

gµν = gBG
µν + ahµν, (4.1)

wheregBG
µν is given by (3.10), andhµν are regarded to be small fluctuations about

the background. We respect the symmetry of the metric, sohµν = hνµ, and we can

orient the coordinate system such that thex2 axis is directed along the momentum

vector of the fluctuations so thathµν = hµν(t, x2, r). If we vary the bulk action

S =
1

16πG

∫

M
d4x
√−g (R+ 6) , (4.2)
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whereR is the scalar curvature for the full metricgµν, with respect to the ten in-

dependent metric fluctuation componentshµν, and expand the result in powers of

a, then one finds that the coefficient of the linear term vanishes by virtue of the

background equations of motion. The coefficient of the quadratic term then gives

the linearized equations of motion governing the fluctuations. After performing the

variations we may use diffeomorphism invariance to choosehtr = hxi r = hrr = 0.

Also let hii = hx1x1 + hx2x2. The result is the following system of partial differential

equations,

∂2hii

∂r2
+

1

r
(

r3 − r3
0

)

(

∂2hx1x1

∂x2
2

+
3
2

r3
0

∂hii

∂r
−

2r3 + r3
0

r
hii

)

= 0, (4.3)

∂2htx1

∂r2
+

1

r
(

r3 − r3
0

)

(

∂2htx1

∂x2
2

− ∂
2hx1x2

∂t∂x2

)

− 2
r2

htx1 = 0, (4.4)

∂2htx2

∂r2
+

1

r
(

r3 − r3
0

)

∂2hx1x1

∂t∂x2
− 2

r2
htx2 = 0, (4.5)

∂2hii

∂t∂r
− ∂

2htx2

∂x2∂r
+

1

r
(

r3 − r3
0

)

(

(

2r3 + r3
0

) ∂htx2

∂x2
− 1

2

(

4r3 − r3
0

) ∂hii

∂t

)

= 0, (4.6)

∂2hx2x2

∂t2
+
∂2htt

∂x2
2

− 2
∂2htx2

∂t∂x2
+ r

(

r3 − r3
0

) ∂2htt

∂r2
−

(

r3 − r3
0

r

)2
∂2hx2x2

∂r2
− 3

2
r3

0

∂htt

∂r

− 3
r3

0

r3

(

r3 − r3
0

) ∂hx2x2

∂r
− 1

2r

(

4r6 − 14r3r3
0 + r6

0

r3 − r3
0

)

htt +
2
r4

(

r3 − r3
0

) (

r3 + 2r3
0

)

hx2x2 = 0,

(4.7)

∂2hx1x2

∂t2
− ∂

2htx1

∂t∂x2
−

(

r3 − r3
0

r

)2
∂2hx1x2

∂r2
− 3

r3
0

r3

(

r3 − r3
0

) ∂hx1x2

∂r

+
2
r4

(

r3 − r3
0

) (

r3 + 2r3
0

)

hx1x2 = 0,

(4.8)

∂2hx1x2

∂x2∂r
− r2

r3 − r3
0

(

r
∂2htx1

∂t∂r
− 2

∂htx1

∂t

)

− 2
r

∂hx1x2

∂x2
= 0, (4.9)
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∂2hx1x1

∂t2
+ r

(

r3 − r3
0

) ∂2htt

∂r2
−

(

r3 − r3
0

r

)2
∂2hx1x1

∂r2
− 3

r3
0

r3

(

r3 − r3
0

) ∂hx1x1

∂r

+
2
r4

(

r3 − r3
0

) (

r3 + 2r3
0

)

hx1x1 −
3
2

r3
0

∂htt

∂r
− 1

2r

(

4r6 − 14r3r3
0 + r6

0

r3 − r3
0

)

htt = 0,

(4.10)

∂2htx2

∂t∂r
− ∂2htt

∂x2∂r
+

(

r3 − r3
0

r3

) (

∂2hx1x1

∂x2∂r
− 2

r

∂hx1x1

∂x2

)

− 2
r

∂htx2

∂t
+

1
2r

(

4r3 − r3
0

r3 − r3
0

)

∂htt

∂x2
= 0,

(4.11)
∂2htt

∂x2
2

+
∂2hii

∂t2
− 2

∂2htx2

∂t∂x2
−

(

r3 − r3
0

)

(

1
r3

∂2hx1x1

∂x2
2

− 2
∂htt

∂r
+

1
2r3

(

4r3 + r3
0

)

(

∂hii

∂r
+

2
r

hii

))

− 2
r

(

2r3 + r3
0

)

htt = 0.

(4.12)

We will be interested in fluctuations that carry a plane-waveprofile in thex2

direction. Letting1

htt(t, x2, r) = e−iωt+iqx2r2

(

1−
r3

0

r3

)

Htt(r),

htxi (t, x2, r) = e−iωt+iqx2r2Htxi (r),

hxi xi (t, x2, r) = e−iωt+iqx2r2Hxi xi (r), i = 1, 2,

(4.13)

whereω is the frequency andq is momentum, we get a system of ordinary differ-

ential equations for the componentsHtt, Hx1x1, Hx2x2, andHtx2,

H′′ii +
1
2r

(

8r3 − 5r3
0

r3 − r3
0

)

H′ii −
q2

r
(

r3 − r3
0

)Hx1x1 = 0, (4.14)

H′′tx2
+

4
r

H′tx2
+

ωq

r
(

r3 − r3
0

)Hx1x1 = 0, (4.15)

1We can choose this form of the fluctuations because spacetimeboundary is conformally flat.
Thus, for fixedr we expect a plane-wave solution to the fluctuation (wave) equations.



64

H′′tt+H′′x2x2
+

1

r
(

r3 − r3
0

)

((

4r3 −
r3

0

2

)

H′tt −
(

4r3 − r3
0

)

H′x2x2
− q2Htt

)

− ω
(

r

r3 − r3
0

)2
(

ωHx2x2 + 2qHtx2

)

= 0,

(4.16)

H′′x1x1
−H′′tt −

1

r
(

r3 − r3
0

)

((

4r3 −
r3

0

2

)

H′tt −
(

4r3 − r3
0

)

H′x1x1
− q2Htt

)

+

(

ωr

r3 − r3
0

)2

Hx1x1 = 0.

(4.17)

There are three first-order constraints,

H′ii +
q
ω

H′tx2
−

3r3
0

r
(

r3 − r3
0

)

(

1
2

Hii +
q
ω

Htx2

)

= 0, (4.18)

H′tt−
r3 − r3

0
4

r3 − r4
0

H′ii −
ωr3

(

r3 − r3
0

)2

(

ω

2
Hx2x2 + qHtx2

)

− q2

2

(

1

r3 − r3
0

)

Htt

+
q2

(

r3 − r3
0

)

− ω2r3

(

r2 − r2
0

)2
Hx1x1 = 0,

(4.19)

H′tt − H′x1x1
+

1

r3 − r3
0

(

ωr3

q
H′tx2
+

3r3
0

2r
Htt

)

= 0. (4.20)

We also get a second system of ODEs, decoupled from the first, for the components

Hx1x2 andHtx1,

H′′tx1
+

4
r

H′tx1
− q

r
(

r3 − r3
0

)

(

ωHx1x2 + qHtx1

)

= 0, (4.21)

H′′x1x2
+

4r3 − r3
0

r
(

r3 − r3
0

)H′x1x2
+

ωr2

(

r3 − r3
0

)2

(

ωHx1x2 + qHtx1

)

= 0, (4.22)
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and the first order constraint

H′x1x2
+

ωr3

q
(

r3 − r3
0

)H′tx1
= 0. (4.23)

The main goal of the rest of this chapter is to calculate the dispersion relationω =

ω(q), from which we can infer the hydrodynamics of the dual CFT.

4.2 Gauge-invariant fluctuations

4.2.1 Metric fluctuations

Let us focus on the first system (4.14)-(4.20). The redundancy of the system (that

there are four equations and three constraints, but only 4 unknown functions) im-

plies that our gauge choicehtr = hxi r = hrr = 0 does not completely remove all

of the gauge freedom. In other words, our metricgµν is not invariant under a gen-

eral coordinate transformation. In principle, we can thinkthat the three constraints

eliminate three of our unknown functions so that there is only a single function

describing the fluctuations. Of course, since the constraints are first-order in the

derivatives, we cannot pursue this direct route. Following[38] our task, then, is to

find an infinitesimal transformation of the form

xµ
′
= xµ + ξµ(t, x2, r) (4.24)

that preserves our gauge choice and leaves the metric invariant. Now,g′µν(x
′) is the

transformed metric evaluated at the transformed point, andgµν(x′) is the original

metric evaluated at the transformed point. Their difference is, by definition, the Lie
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derivative of the original metric along the curve whose tangent isξµ, that is [36]

g′µν(x
′) = gµν(x

′) − £ξgµν(x), (4.25)

where the Lie derivative is given by

£ξgµν = ξ
α∇αgµν + gαν∇µξα + gµα∇νξα

= ∇νξµ + ∇µξν,
(4.26)

where we used the fact that∇αgµν = 0 always, and we contracted the second and

third terms in the first line. So we now have the transformed metric

g′µν(x
′) = gµν(x

′) − ∇νξµ(t, x2, r) − ∇µξν(t, x2, r). (4.27)

In order to obtain such a transformation that preserves our gauge choicehtr = hxi r =

hrr = 0, we must satisfy the system of partial differential equations

∇iξr + ∇rξi = 0

∇rξr = 0.
(4.28)

Let us return to the metric

ds2 = −c2
1(r)dt2 + c2

2(r)dx2
1 + c2

2(r)dx2
2 + c2

3(r)dr2 (4.29)
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so that we may derive a general result that will be useful in later chapters. Explicitly

in this metric, the system (4.28) is

∂rξ0 − 2
c′1
c1
ξ0 + ∂tξ3 = 0

∂rξ1 − 2
c′2
c2
ξ1 = 0

∂rξ2 − 2
c′2
c2
ξ2 + ∂x2ξ3 = 0

∂rξ3 − 2
c′3
c3
ξ3 = 0.

(4.30)

It is straightforward to find the general solution

ξ0 = c2
1

(

Kx2 − (∂tKr )
∫

c3

c2
1

dr

)

ξ1 = c2
2Kx1

ξ2 = −c2
2

(

Kt +
(

∂x2Kr
)

∫

c3

c2
2

dr

)

ξ3 = c3Kr ,

(4.31)

whereKµ = Kµ(t, x2) are arbitrary functions which we will take to be plane waves;

that is, Kµ(t, x2) = e−iωt+iqx2. We are guaranteed that the above solution for the

coordinate transformation (4.24) preserves our gauge choice. From this solution
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we may construct a set of linearly independent solutions as follows

ξ
µ

(1) = e−iωt+iqx2



















































0

0

c2
2

0



















































, ξ
µ

(2) = e−iωt+iqx2



















































−c2
1

0

0

0



















































ξ
µ

(3) = e−iωt+iqx2





















































iωc2
1

∫

c3

c2
1
dr

0

−iωc2
2

∫

c3

c2
2
dr
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, ξ
µ

(4) = e−iωt+iqx2



















































0

c2
2

0
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(4.32)

Now, we wish to find a linear combination of the metric fluctuations hµν that is

invariant under our gauge transformation (4.24). That is, we need to findα, β andδ

such that

αh′tt + βh′tx2
+ h′x2x2

+ δh′x1x1
= αhtt + βhtx2 + hx2x2 + δhx1x1. (4.33)

Transforming the fluctuations according to

h′µν = hµν − ∇µξν − ∇νξµ (4.34)

equation (4.33) becomes

2α

(

c1c′1
c2

3

ξ3 − ∂tξ0

)

− β (

∂x2ξ0 + ∂tξ2
) − 2

(

∂x2ξ2 +
c2c′2
c2

3

ξ3

)

− 2δ
c2c′2
c2

3

ξ3 = 0. (4.35)
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Putting the independent solutionsξµ(1), ξ
µ

(2) andξµ(3) for ξµ into the above equation we

get the system

βω − 2q = 0

βq− 2αω = 0

αc1c
′
1 − (1+ δ) c2c

′
2 = 0,

(4.36)

which has the solution

α =
q2

ω2
, β = 2

q
ω
, δ =

q2

ω2

c1c′1
c2c′2
− 1. (4.37)

Thus, we have found a gauge invariant fluctuation

ζH =
q2

ω2
htt + 2

q
ω

htx2 + hx2x2 +

(

q2

ω2

c1c′1
c2c′2
− 1

)

hx1x1. (4.38)

Letting

htt(t, x2, r) = e−iωt+iqx2r2

(

1−
r3

0

r3

)

Htt(r),

htxi (t, x2, r) = e−iωt+iqx2r2Htxi (r),

hxi xi (t, x2, r) = e−iωt+iqx2r2Hxi xi (r), i = 1, 2,

(4.39)

we get the gauge invariant fluctuation

ZH = 2
q2

ω2

c2
1

c2
2

Htt + 4
q
ω

Htx2 + 2Hx2x2 + 2

(

q2

ω2

c1c′1
c2c′2
− 1

)

Hx1x1, (4.40)

whereZH = 2eiωt−iqx2ζH/c2
2. Note from the right-hand side thatZH = ZH(r) is a

function ofr only. With the gauge freedom completely fixed, the functionZH alone

describes the metric fluctuations.
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4.2.2 Scalar fluctuations

For our Exotic model we will add scalar fields to the action, and we will need to

consider fluctuations of these scalar fields. Consider a fieldof the formφ = φ(r).

Consider fluctuating this field asφ → φ + α whereα is considered to be a small

fluctuation of the background fieldφ. Under an infinitesimal diffeomorphismxµ →

xµ + ξµ, the fluctuation transforms as

α→ α′ = α − ξµ∇µφ

= α − ξr dφ
dr
.

(4.41)

The fluctuationαwill only transform underξµ(3). Also note thathx1x1 only transforms

underξµ(1) as well. All other metric fluctuations transform under either ξµ(1) and/or

ξ
µ

(1). So our only hope of finding a diffeomorphism-invariant fluctuation involving

the scalarα is to write down an invariant linear combination of the form

α′ + βh′x1x1
= α + βhx1x1. (4.42)

Using the transformationξµ(3) in the left hand side, this becomes

c2
3

dφ
dr
+ 2βc2

dc2

dr
= 0. (4.43)

So choosing

β = −
c2

3φ
′

2c′2c2
(4.44)

leads to the invariant combination

Zα = α −
c2c2

3φ
′

2c′2
Hx1x1 (4.45)
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where the prime in the last two equations denotes differentiation with respect tor.

4.3 Gauge-invariant fluctuation equation

Now we must find that equation which governs the single gauge-invariant fluctua-

tion (4.40). The intermediate steps in what follows are verycumbersome, so they

will be formally outlined, but the explicit formulas will not be given until the final

result is obtained.

First, we can solve equations (4.14)-(4.17) for the second derivatives,

H′′x1x1
= f1

(

H′x1x1
,H′x2x2

,Hx1x1,Hx2x2,Htt,Htx2, r
)

, (4.46)

H′′x2x2
= f2

(

H′x1x1
,H′x2x2

,Hx1x1,Hx2x2,Htt,Htx2, r
)

, (4.47)

H′′tx2
= f3

(

H′tx2
,Hx1x1, r

)

, (4.48)

H′′tt = f4
(

H′tt,H
′
x1x1

,H′x2x2
,Hx1x1,Hx2x2,Htt,Htx2, r

)

. (4.49)

If we put the solution (3.10) for the backgroundc1, c2 andc3 into (4.40), then solve

the result forHtt we get

Htt =
ω2

q2

r3

(

r3 − r3
0

)

[

ZH − 4
q
ω

Htx2 + 2Hx1x1

(

1− q2

ω2

(

1+
r3

0

2r3

))

− 2Hx2x2

]

. (4.50)

Putting (4.50) into (4.18)-(4.20) we can solve for first derivatives as follows,

H′x1x1
= f5

(

Z′H,ZH,Hx1x1, r
)

, (4.51)

H′x2x2
= f6

(

Z′H,ZH,Hx1x1, r
)

, (4.52)

H′tx2
= f7

(

Z′H,ZH,Hx1x1,Hx2x2,Htx2, r
)

. (4.53)
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Consistency ensures that
d f5
dr
− f1 = 0, (4.54)

which yields an equation of the form

F
(

Z′′H,Z
′
H,ZH,H

′
x1x1

,Hx1x1,H
′
x2x2

)

= 0. (4.55)

Substituting equations (4.51) and (4.52) into (4.55) to eliminateH′x1x1
andH′x2x2

we

get

Z′′H + AZ′H + BZH = 0, (4.56)

where the prime denotes differentiation with respect tor, and

A =
16q2r6 − 16ω2r6 − 14q2r3r3

0 + 4ω2r3r3
0 + 7q2r6

0

4q2r7 − 4ω2r7 − 5q2r4r3
0 + 4ω2r4r3

0 + q2rr 6
0

, (4.57)

B = −
4q4r7 − 5q4r3

0r
4 + q4r6

0r − 8q2ω2r7 + 5q2ω2r3
0r4 − 9q2r6

0r
3 + 9q2r9

0 + 4ω4r7

r2
(

r3 − r3
0

) (

4q2r6 − 4ω2r6 − 5q2r3r3
0 + 4ω2r3

0r
3 + q2r6

0

) .

(4.58)

All dependence on the functionsHµν has vanished, so (4.56) is a diffeomorphism

invariant.

We will have to solve the equation (4.56) numerically. It is convenient to trans-

form to a new radial coordinate

y =

√

1−
r3

0

r3
⇔ r = r0

(

1− y2
)− 1

3
. (4.59)

In this variable, the horizonr = r0 becomesy = 0, and the boundaryr → ∞
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becomesy = 1. Derivatives become

dZH

dr
=

3
2r0

(

1− y2
)

4
3

y
dZH

dy
, (4.60)

d2ZH

dr2
=

3

4r2
0























3

(

1− y2
)

8
3

y2

d2ZH

dy2
−

(

3+ 5y2
) (

1− y2
)

5
3

y3

dZH

dy























. (4.61)

Equation (4.56) becomes

Z′′H +AZ′H + BZH = 0, (4.62)

where the prime now denotes differentiation with respect toy, and

A = 1
y

















3q2
(

1− y2
)

− 4ω2

3q2
(

1+ y2
) − 4ω2

















, (4.63)

B = −4
9























q4y2
(

3+ y2
)

− q2ω2
(

3+ 5y2
)

− 9r2
0q

2y2
(

1− y2
)

4
3
+ 4ω4

r2
0y2

(

1− y2
)

4
3
(

3q2 + q2y2 − 4ω2
)























. (4.64)

4.3.1 Near-horizon behaviour

It is also convenient to extract the leading behaviour near the horizon. To do this,

we let ZH = yn and expand equation (4.62) about the horizony = 0. To leading

order, equation (4.62) gives

(

n2 +
4ω2

8r2
0

)

1
y2
+ O(1) = 0. (4.65)

This is satisfied to leading order ifn = ± 2ω
3r0

i, or

ZH ∼ C1y
− 2ω

3r0
i
+C2y

+ 2ω
3r0

i
, y→ 0, (4.66)
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whereC1 andC2 are constants. Thus we have two independent solutions near the

horizon, and we should determine their physical validity. The solutiony−
2ω
3r0

i repre-

sents a wave propagatinginto the horizon, andy+
2ω
3r0

i represents a wave propagating

out of the horizon. Imposing that the wave is completely absorbed at the horizon,

the latter solution is precluded, so we get

ZH ∼ y−
2ω
3r0

i
, y→ 0. (4.67)

Having extracted the leading behaviour near the horizon, wemay write the solution

away from the horizon as

ZH = y−iω̂zh, where ω̂ =
2ω
3r0
=

ω

2πT
(4.68)

andzh(y) is well-behaved at the horizon, admitting a regular Taylorseries expan-

sion. Letting2 q̂ = 2q
3r0
=

q
2πT along with (4.68), equation (4.62) becomes

z′′H + Âz′H + B̂zH = 0, (4.69)

where

Â = −1
y

















4ω̂2 − 3q̂2
(

1− y2
)

+ 2iω̂
(

q̂2y2 + 3q̂2 − 4ω̂2
)

q̂2y2 + 3q̂2 − 4ω̂2

















, (4.70)

and

B̂ =
4
(

1− y2
)

4
3
(

ω̂4 + q̂2y2 (1+ iω̂)
)

+ ω̂2q̂2
(

1− y2
)

1
3
(

y2
(

2+ y2
)

− 3
)

y2
(

1− y2
)

4
3
(

q̂2y2 − 4ω̂2 + 3q̂2
)

+
−4ω̂4 + ω̂2q̂2

(

3+ 5y2
)

− q̂4y2
(

3+ y2
)

y2
(

1− y2
)

4
3
(

q̂2y2 − 4ω̂2 + 3q̂2
)

.

(4.71)

2The frequency ˆω and momentum ˆq are dimensionless.
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4.4 Boundary conditions

At the horizon,zH is a regular function, and so may be expanded as a Taylor se-

ries abouty = 0. Since equation (4.69) is second-order, there are two integration

constants; that is,

zH = ζ0 + ζ1y
2 + O

(

y4
)

, (4.72)

whereζ0 andζ1 are coefficients that should be fixed by the boundary conditions.

Coefficients of higher-order terms can be found in terms ofζ0 andζ1. Since (4.69)

is invariant under rescalings of the formzH → λzH, whereλ is any constant, we are

free to choose the integration constantζ0 = 1 (i.e.λ = 1/ζ0) so that

zH

∣

∣

∣

∣

∣

y→0+
= 1. (4.73)

At the boundary the metric componentc1→ 0. The fluctuationzH must also vanish

at the boundary because, if it didn’t, then the fluctuation would dominate the back-

ground at the boundary. If this were the case, we could not interpretzH as a small

perturbation on the background. Thus, to keep our theory intact we must impose

the boundary condition

zH

∣

∣

∣

∣

∣

y→1−
= 0. (4.74)

4.5 Dispersion relation

Our goal is to calculate the dispersion relation ˆω = ω̂(q̂). We will first consider the

dispersion relation in the hydrodynamic limit where we willbe able to extract the

speed of sound and the attenuation of sound, the latter of which is related to the

bulk viscosity. We will then numerically compute the full dispersion relation and

find that there is a discrete spectrum of frequencies at fixed momentum.
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4.5.1 Hydrodynamic limit

Let us first compute the dispersion relation to leading orderwhen the momentum ˆq

is small. The limitq̂→ 0 is called the hydrodynamic limit. Begin by expanding ˆω

andzH with respect to ˆq aboutq̂ = 0 as follows3,

ω̂ = csq̂− ibq̂2, (4.75)

zh(y) = z0(y) + iq̂z1(y). (4.76)

cs andb are the speed and attentuation of sound respectively. Putting the expansions

(4.75) and (4.76) into (4.69) and expanding the result aboutq̂ = 0 to leading order,

we get

z′′0 +
1
y

(

4c2
s − 3+ 3y2

4c2
s − 3− y2

)

z′0 −
4

4c2
s − 3− y2

z0 = 0. (4.77)

The general solution is

z0 = C1

(

4c2
s − 3+ y2

)

+C2

[(

4c2
s − 3+ y2

)

ln(y) + 8c2
s − 6

]

, (4.78)

whereC1 andC2 are integration constants. The boundary conditions (4.73)and

(4.74) translate into

z0

∣

∣

∣

∣

∣

y→0+
= 1, z1

∣

∣

∣

∣

∣

y→0+
= 0,

z0

∣

∣

∣

∣

∣

y→1−
= 0, z1

∣

∣

∣

∣

∣

y→1−
= 0.

(4.79)

3We expect thatω → 0 asq→ 0. The imaginary unit appears in the subleading terms so thatb
andz1 are real.
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The boundary condition fory→ 0+ is satisfied if

C1 =
1

4c2
s − 3

, C2 = 0, (4.80)

giving

z0 =
4c2

s − 3+ y2

4c2
s − 3

. (4.81)

Expanding (4.81) about the boundaryy = 1 we get

z0 =
4c2

s − 2

4c2
s − 3

− 2
4c2

s − 3
(1− y) + O

[

(1− y)2
]

. (4.82)

The boundary condition fory→ 1− is satisfied if

c2
s =

1
2
, (4.83)

which is in agreement with (3.28). Now (4.81) becomes

z0 = 1− y2. (4.84)

Putting (4.75), (4.76), (4.83) and (4.84) into (4.69) and expanding the result about

q̂ = 0 to leading order, we get

z′′1 −
3y2 − 1

y
(

y2 + 1
)z′1 +

4
y2 + 1

z1 +
4
√

2(−4b+ 1)
y2 + 1

= 0. (4.85)

The general solution is

z1 = A1

(

y2 − 1
)

+ A2
[

(y− 1) ln (y) − 2
] −
√

2(1− 4b) , (4.86)
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whereA1 andA2 are integration constants. The boundary condition fory → 0+ is

satisfied if

A1 = −
√

2(1− 4b) , A2 = 0. (4.87)

So

z1 = −
√

2(1− 4b) y2. (4.88)

Expanding (4.88) abouty = 1 we get

z1 = −
√

2(1− 4b) + 2
√

2(1− 4b) (1− y) + O
[

(1− y)2
]

. (4.89)

The boundary condition fory→ 1− is satisfied if

b =
1
4
. (4.90)

Recall that the fluctuations are of the form

f lucs∼ F(r)e−iωt+iqx2 . (4.91)

With ω = csq− ib
2πT q2, this becomes

f lucs∼ F(r)e−bq2tei(x2−cst)q). (4.92)

So if

b > 0, fluctuations decay ⇒ stable

b < 0, fluctuations grow ⇒ unstable.
(4.93)

We haveb = 1/4 > 0 so our AdS4 black hole solution and dual CFT plasma are

perturbatively stable.
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4.5.2 Hydrodynamics

Recall from (1.37) thatb is related to the viscosities of the dual plasma by

b = 2π
η

s

(

1
2
+
ζ

2η

)

=
1
4
, (4.94)

and that the ratioη/s is universal,

η

s
=

1
4π
. (4.95)

Since we know from (3.16) thats= 4π2T2/9G, we can get the shear viscosity

η =
πT2

9G
. (4.96)

Now we can extract the bulk viscosity from (4.94),

ζ = 0, (4.97)

which is the expected result for a CFT (see (1.41)).

4.5.3 Arbitrary momentum

Now we will numerically calculate the dispersion relation for arbitrary momentum

q̂. In this section we will set up the equations and expansions that are required for

our numerical method, then give the results. The details of the numerical method are

given in Appendix B. Many of the equations are too cumbersometo give explicitly,

in which case we will just give the equations’ form. We begin by letting

ω̂ = ωr + iωi, (4.98)
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and

zH = zr + izi, (4.99)

whereωr,i = ωr,i(q̂) andzr,i = zr,i(y) are all real functions. Putting (4.98) and (4.99)

into (4.69), then separating the real from imaginary parts,we get two equations of

the form

z′′r + Arz
′
r + Brz

′
i +Crzr + Drzr = 0, (4.100)

z′′i + Aiz
′
r + Biz

′
i +Cizr + Dizr = 0, (4.101)

whereAr,i = Ar,i (y, q̂, ωr , ωi), and likewise forBr,i, Cr,i, andDr,i. It is straightforward

to find these coefficients, but the explicit expressions are too lengthy to write here.

Now we look for asymptotic solutions near the horizony = 0. The solutions forzr

andzi have regular Taylor series expansions near the horizon, so we let

zr = 1+ b1y+ b2y
2 + b3y

3 + b4y
4... (4.102)

zi = h1y+ h2y
2 + h3y

3 + h4y
4... (4.103)

Putting the expansions (4.102) and (4.103) into the equations (4.100) and (4.101)

and expanding both equations abouty = 0, we demand that the coefficient of every

power ofy must vanish. This leads to a system of equations for the coefficientsb j,

h j, ( j = 1, 2, 3, ...). Solving this system we get

b1 = h1 = 0 (4.104)

b2 =
N1

12D1
, (4.105)

h2 =
ωr N2

12D2
, (4.106)
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where

N1 = − 64ω6
r + 48q̂2ω2

r + 192q̂2ω4
i + 27q̂6 + 96q̂2ω4

r − 72q̂4ω2
r + 64ω6

i

− 48q̂2ω4
rωi − 48q̂2ω2

i + 192q̂2ω2
rωi − 96q̂2ω2

rω
2
i − 36q̂4ω2

rωi

+ 96q̂2ω2
rω

3
i + 64ω7

i − 36q̂64+ 192ω2
rω

5
i + 64ω2

rω
4
i + 144q̂2ω5

i

+ 144q̂4ω2
i + 108q̂4ω3

i + 27q̂6ωi − 64ω4
rω

2
i + 64ω6

rωi + 192ω4
rω

3
i

(4.107)

D1 =
(

32ω2
rω

2
i − 24q̂2ω2

r + 9q̂4 + 24q̂2ω2
i + 16ω4

r + 16ω4
i

)

×
(

ω2
r + ω

2
i + 2ωi + 1

)

(4.108)

N2 =96q̂2ω2
rω

2
i − 96q̂2ωi + 36q̂4ω2

i − 96q̂2ω2
i − 72q̂4 + 96q̂2ω2

r − 12ω4
rωi

− 128ω5
i − 256ω2

rω
3
i − 96q̂2ω3

i + 288q̂2ω2
rωi − 72q̂4ωi − 48ω4

i q̂
2

+ 27q̂6 − 64ω6
r − 192ω4

rω
2
i + 144q̂2ω4

r − 108q̂4ω2
r − 192ω2

rω
4
i − 64ω6

i

(4.109)

D2 =32ω2
rω

2
i + 18q̂4ωi + 32ω4

rωi + 64ω2
rω

3
i + 24q̂2ω2

i + 9q̂4 + 48q̂2ω3
i +

32ω5
i + 16ω4

i + 16ω6
r + 16ω4

r + 48ω4
rω

2
i − 24q̂2ω4

r + 9q̂4ω2
r + 48ω2

rω
4
i

+ 9q̂4ω2
i + 24q̂2ω4

i − 24q̂2ω2
r + 16ω6

i − 48q̂2ω2
rωi .

(4.110)

We may work to arbitrary order and find as many coefficientsb j, h j ( j = 1, 2, 3...)

as we like. Next we repeat this process, but expanding about the boundaryy = 1.

To do this, we first apply the transformation

y→ 1− x,
d
dy
→ − d

dx
,

d2

dy2
→ d2

dx2
(4.111)

horizon: y = 0⇔ x = 1

boundary: y = 1⇔ x = 0
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to the equations (4.100) and (4.101). We get equations of theform

z′′r +Arz
′
r + Brz

′
i + Crzr +Drzr = 0, (4.112)

z′′i +Aiz
′
r + Biz

′
i + Cizr +Dizr = 0, (4.113)

where the prime now denotes differentiation with respect tox, andAr,i = Ar,i (x, q̂, ωr , ωi),

and likewise forBr,i, Cr,i, andDr,i. We need to make an ”educated guess” at the

asymptotic expansion ofzr andzi. First note that from (4.59) we have

r = r0

(

2x− x2
)
−1
3
. (4.114)

In thex variable, the background metric components are

c1 = r

√

1−
r3

0

r3
= r0

1− x
(

2x− x2
)

1
3

, (4.115)

c2 = r = r0

(

2x− x2
)
−1
3
, (4.116)

c3 =
1

r
√

1− r3
0

r3

=
1
r0

(

2x− x2
)

1
3

1− x
. (4.117)

Expanding about the boundaryx = 0 we get

c1 = 2−
1
3 r0x−

1
3 − 5

12
r02

2
3 x

2
3 + O

(

x
5
3

)

, (4.118)

c2 = 2−
1
3 r0x−

1
3 +

1
12

r02
2
3 x

2
3 + O

(

x
5
3

)

, (4.119)

c3 =
2

1
3

r0
x

1
3 +

5
6
× 2

1
3

r0
x

4
3 + O

(

x
7
3

)

. (4.120)
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As mentioned in our discussion of the boundary conditions, we must ensure that

our fluctuation does not change the background at the boundary. Looking at the

expansions forc1, c2 andc3, we may guess4 that the expansion forzr andzi have the

form

zr = f0x
2
3 + f1x+ f2x

4
3 + f3x

5
3 + ... (4.121)

zi = g0x
2
3 + g1x+ g2x

4
3 + g3x

5
3 + ... (4.122)

Putting (4.121) and (4.122) into (4.112) and (4.113), expanding the equations about

x = 0 and setting coefficients of powers ofx equal to zero, we get a system of

equations for the coefficients f j, g j, ( j = 0, 1, 2, ...). Solving the system we get

f0 = g0 = f2 = g2 = 0, (4.123)

f3 = 2
2
3 × 9

40

[

f1
(

q̂2 − ω2
r + ω

2
i

)

+ 2g1ωrωi

]

(4.124)

g3 = 2
2
3 × 9

40

[

g1

(

q̂2 − ω2
r + ω

2
i

)

− 2 f1ωrωi

]

(4.125)

Our numerical method solves the equations (4.100), (4.101), (4.112) and (4.113)

on the intervalsx, y ∈
[

ǫ, 1
2

]

, whereǫ is some small initial value. Here we take

ǫ = 0.0001. Notice that they integration covers the part of the domain from near

the horizon, out to the midpoint of the domain, whereas thex integration covers

from the boundary, in to the midpoint of the domain. The two integrations meet in

the middle, and we use the smoothness of the solution at this point as a measure of

the error. As initial conditions we use the expansions (4.102), (4.103), (4.121) and

(4.122) and their derivatives evaluated atǫ. We numerically solve

z′′r + Arz
′
r + Brz

′
i +Crzr + Drzr = 0, (4.126)

4We assume that the asymptotic expansion of the fluctuations have the same form as that of the
background, but we remove the leading order to ensure that the fluctuations are subdominant.
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z′′i + Aiz
′
r + Biz

′
i +Cizr + Dizr = 0, (4.127)

zr(ǫ) = 1+ b1ǫ + b2ǫ
2 + b3ǫ

3 + b4ǫ
4, (4.128)

zi(ǫ) = h1ǫ + h2ǫ
2 + h3ǫ

3 + h4ǫ
4, (4.129)

where the prime denotes differentiation with respect toy, and

z′′r +Arz
′
r + Brz

′
i + Crzr +Drzr = 0, (4.130)

z′′i +Aiz
′
r + Biz

′
i + Cizr +Dizr = 0, (4.131)

zr(ǫ) = f1ǫ + f2ǫ
4
3 + f3ǫ

5
3 (4.132)

zi(ǫ) = g1ǫ + g2ǫ
4
3 + g3ǫ

5
3 , (4.133)

where the prime denotes differentiation with respect tox. There are five parameters

that must be fixed. They are ˆq, ωr , ωi, f1, andg1. We choose a value for ˆq, then

use a shooting method to fix the remaining four parameters. The shooting method

is explained in detail in Appendix B. In particular, we can get ωr,i = ωr,i(q̂). We

should start with small values of ˆq and use our results from section 4.5.1 to give us

a good initial guess. For small ˆq, referring to equation (4.75), we have

ωr ≈ csq̂, and ωi ≈ bq̂2, (4.134)

wherecs = 1/
√

2 andb = −1/4. We can choose ˆq to be a small number, say,

q̂ = 0.001. Now, from equations (4.84) and (4.88), we find that for small q̂

zr ≈ z0 = 2x− x2, and zi ≈ z1 = 0. (4.135)
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Figure 4.1: Speed of sound versus momentum of fluctuations.

Thus we may make a good guess that for ˆq = 0.01, we have

ωr ≈ 0.0071

ωi ≈ −0.000025

f1 ≈ 2

g1 ≈ 0

(4.136)

With these choices, we find a dispersion relation that is typical of a massless mode;

that is,ω(0) = 0. Figure 4.1 shows the speed of sound as a function of momentum.

We can see that in the hydrodynamic limit ˆq → 0, the speed of the fluctuations

approaches the conformal value of of the speed of soundcs = 1/
√

2. In the large

momentum limitq̂→ 0, the speed of the fluctuations approaches the speed of light

cs = 1, as expected. We may also look for solutions correspondingto massive

modes by making different initial guesses of the values of the parameters. Finding

this spectrum is largely a matter of numerical trial and error, however, each excita-

tion is usually found withwr ∼ 1, 2, .... The result is shown in figure 4.2 where we
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Figure 4.2: Left column:ωr vs q̂. Right column:ωi vs q̂. Each row corresponds to
successive excitations.
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see that at ˆq = 0, we have a massless mode (top) and two massive modes (middle

and bottom). There are two regimes, ˆq → 0 andq̂ → ∞, of particular physical

importance. For ˆq→ 0, which is relevant to the study of hydrodynamics, the fluc-

tuations represent sound modes that decay after many oscillation, and thus can be

interpreted as genuine excitations. In this regime, Reω grows linearly with a slope

equal to the speed of sound. For ˆq → ∞, the fluctuations are also long-lived, but

behave like massless particles. In this regime, Reω is linear with slope equal to the

speed of light (i.e.c = 1). This is true for all branches in figure 4.2, although in

the third branch (green) we have not shown results for larg enoughq̂ to make this

obvious. This makes sense since the rest mass becomes un-important as the mo-

mentum becomes sufficiently large, and the massive ”particle” behaves similarly to

a massless one. We may conclude that since 0< cs < 1 always, all modes are

thermodynamically stable and causality is never violated.From the firstωi vs q̂

plot, we see that for small (large) values of ˆq we get the expected resultωi → −1/4

(ωi → 0) Also, sinceωi < 0 always, all branches are perturbatively stable as well.

In this chapter we studied small fluctuations of the background spacetime. From

the dispersion relation of the fluctuations we were able to extract the speed of sound

and bulk viscosity of the dual field theory, which we found arein agreement with

the expected values for a CFT. From the sign of the attenuation we determined that

AdS4 black holes, and thus the dual field theory, are perturbatively stable. In the

next chapter we will begin our study of the Exotic Model. Although it will be

technically more difficult, the techniques used are almost identical to study AdS4.
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Chapter 5

AdS4 black holes with scalar hair

In this chapter we begin our study of the Exotic Model, which is AdS4 gravity

minimally coupled to two massive scalar fields. This model isexplained within the

context of the AdS/CFT correspondence in section 1.5. We will derive the equations

of motion and solve them numerically to compute the exact thermodynamics. We

will consider the near-conformal limit and analytically calculate the leading order

corrections to the results of the previous chapter.

5.1 Action

Here we will consider the Exotic Model, whose action is givenby

S =
1

2κ2

(∫

M
d4x
√−g

(LAdS4 +Lr +Li
) −

∫

∂M
d3x
√−γΘ + Sct

)

, (5.1)

where

LAdS4 = R4 + 6, Lr = −
1
2
∂µφ∂

µφ + φ2, Li = −
1
2
∂µχ∂

µχ − 2χ2 − gφ2χ2, (5.2)
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andΘ = gµνΘµν, where

Θµν = −1
2

(∇µnν + ∇νnµ) . (5.3)

The countertermSct will be chosen in such a way that the on-shell action is finite.

5.2 Equations of motion

We seek solutions for the metric of the form

ds2 = −c1(r)
2dt2 + c2(r)

2
(

dx2
1 + dx2

2

)

+ c3(r)
2dr2. (5.4)

Putting this metric into the bulk part of the action gives

Sbulk =
1

2κ2

∫

M
d4x



























































− 4
c′1c
′
2c2

c3
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c′1c
′
3c
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c2
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− 2
c′′1 c2

2

c3
− 2

c1(c′2)
2

c3
+ 4

c′2c
′
3c1c2

c2
3

− 4
c′′2 c1c2

c3
+ 6c1c

2
2c3 + c1c

2
2c3φ

2 − 2c1c
2
2c3χ

2

− gc1c
2
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2χ2 −
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2(φ
′)2

2c3
−

c2c2
2(χ
′)2

2c3
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(5.5)

The equations of motion are derived by settingδSbulk = 0. It can be checked that the

boundary terms arising from the variation of the bulk actionare exactly cancelled

by the boundary integral in (5.1). This is apparent since theadditional termsLr

andLi contain only up to first-order derivatives, so the cancellation is identical to

that in chapter 3. As such, we will not concern ourselves withthe boundary terms.

Varying Sbulk with respect toc1, c2, c3, φ, andχ repectively gives the equations of

motion

8c′′2 c2c3 − 12c2
2c

3
3 − 2c2

2c
3
3φ

2 + 4c2
2c

3
3χ

2 + 2gc2
2c

3
3φ

2χ2

+ 4(c′2)
2c3 + c2

2c3(φ
′)2 − 8c′2c

′
3c2 + c2

2c3(χ
′)2 = 0

(5.6)
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−4c′2c
′
3c1 + 4c′1c

′
2c3 + 2gc1c2c

3
3φ

2χ2 + 4c′′2 c1c3 − 4c′1c
′
3c2 + c1c2c3(φ

′)2

− 12c1c2c
3
3 + 4c′′1 c2c3 + c1c2c3(χ

′)2 − 2c1c2c
3
3φ

2 + 4c1c2c
3
3χ

2 = 0

(5.7)

8c′1c
′
2c2 + 4(c′2)

2c1 − 12c1c
2
2c

2
3 − 2c1c

2
2c

2
3φ

2 + 4c1c
2
2c

2
3χ

2

+ 2gc1c
2
2c

2
3φ

2χ2 − c1c
2
2(φ
′)2 − c1c

2
2(χ
′)2 = 0

(5.8)

2c1c2c
3
3φ − 2gc1c2c

3
3φχ

2 + 2c1c
′
2c3φ

′ − c1c2c
′
3φ
′ + c′1c2c3φ

′ + c1c2c3φ
′′ = 0 (5.9)

4c1c2c
3
3χ + 2gc1c2c

3
3φ

2χ − 2c1c
′
2c3χ

′ + c1c2c
′
3χ
′ − c′1c2c3χ

′ − c1c2c3χ
′′ = 0 (5.10)

Using the first two equations, we can eliminatec′′2 from the first andc′′1 from the

second. Then we can use the third equation to eliminate (φ′)2+(χ′)2 from both. The

equations of motion can be put into the form

c′′1 + c′1

(

ln
c2

2

c3

)′

−
c1c2

3

2

(

φ2 − 2χ2 − gφ2χ2 + 6
)

= 0 (5.11)

c′′2 + c′2

(

ln
c1c2

c3

)′

−
c2c2

3

2

(

φ2 − 2χ2 − gφ2χ2 + 6
)

= 0 (5.12)

φ′′ + φ′
(

ln
c1c2

2

c3

)′

+ 2c2
3φ

(

1− gχ2
)

= 0 (5.13)

χ′′ + χ′
(

ln
c1c2

2

c3

)′

− 2c2
3χ

(

2+ gφ2
)

= 0, (5.14)

with the first-order constraint

(

φ′
)2
+

(

χ′
)2 − 4(ln c2)

′
(

ln c2
1c2

)′
+ 2c2

3

(

φ2 − 2χ2 − gφ2χ2 + 6
)

= 0. (5.15)
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5.3 Asymptotic solutions

We will not attempt to solve (5.11)-(5.15) exactly. We will eventually need to resort

to using our numerical method. The domain of interest isr ∈ [rH,∞). Having a

boundary at infinity is not convenient in a numerical method.We transorm to a new

radial coordinate in which the domain becomes the unit interval. We introduce a

new radial coordinatey as

y =
c1

c2
, such that y ∈ [0, 1] (5.16)

The horizon is defined byc1 = 0, so in our new coordinate, the horizon is aty = 0.

We assume that our spacetime is asymptotically AdS4, in which case we should

havec1 = c2 at the boundary (see equation (3.10) in the limitr → ∞). Thus the

boundary is aty = 1. We know that if our spacetime is asyptotically AdS4, then we

must have

c2(r) ∼ r, r → ∞, (5.17)

so from (4.59), in terms ofy this is

c2(y) ∼ 1
(

1− y2
)

1
3

, y→ 1. (5.18)

Let us then explicitly pull out this divergent part and introduce the regular function

a(y) as

c2(y) =
a(y)

(

1− y2
)

1
3

. (5.19)

Comparing with pureAdS4 we have1

a(y = 1) = α. (5.20)

1Note thatα = r0 using the notations of the previous chapter.
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Also, to preserve our asymptotic AdS4 spacetime, we must have

φ(y→ 1) = χ(y→ 1) = 0. (5.21)

We will now extract the next leading behaviour of the solutions forc2, φ, andχ.

From the chain rule, we can write

d
dr
=

dy
dr

d
dy
,

d2

dr2
=

(

dy
dr

)2 d2

dy2
+

d2y
dr2

d
dy
. (5.22)

Using (5.16) and (5.22) we can write the equation of motion (5.11)-(5.12) in terms

of y

(

dy
dr

)2

(yc2)
′′ + (yc2)

′












(

ln
c2

2

c3

)′ (
dy
dr

)2

+
d2y
dr2













−
yc2c2

3

2

(

φ2 − 2χ2 − gφ2χ2 + 6
)

= 0

(5.23)
(

dy
dr

)2

c′′2 + c′2













(

ln
yc2

2

c3

)′ (
dy
dr

)2

+
d2y
dr2













−
c2c2

3

2

(

φ2 − 2χ2 − gφ2χ2 + 6
)

= 0 (5.24)

(

dy
dr

)2

φ′′ + φ′












(

ln
yc3

2

c3

)′ (
dy
dr

)2

+
d2y
dr2













+ 2c2
3φ

(

1− gχ2
)

= 0 (5.25)

(

dy
dr

)2

χ′′ + χ′












(

ln
yc3

2

c3

)′ (
dy
dr

)2

+
d2y
dr2













− 2c2
3χ

(

2+ gφ2
)

= 0 (5.26)

(

dy
dr

)2
[

(

φ′
)2
+

(

χ′
)2 − 4(ln c2)

′
(

ln y2c3
2

)′]
+2c2

3

(

φ2 − 2χ2 − gφ2χ2 + 6
)

= 0, (5.27)

where the prime now denotes differentiation with respect toy. Using (5.24) and

(5.27) we can eliminatedy/dr andd2y/dr2. Since we will need it later, let us write

the formula explicitly

(

dy
dr

)2

=
−2c2

3

(

φ2 − 2χ2 − gφ2χ2 + 6
)

(φ′)2 + (χ′)2 − 4(ln c2)
′
(

ln y2c3
2

)′ (5.28)
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The remaining three equations can be put in the form

c′′2 −
c′2
y
− 4

(

c′2
)2

c2
+ y

(

c′2
)2

c′3
c2c3

+
c2

4

[

(

φ′
)2
+

(

χ′
)2
]

= 0 (5.29)

φ′′ +
φ′

y
− 1

2P
∂P
∂φ





















(

φ′
)2
+

(

χ′
)2 − 8

y

c′2
c2
− 12

(

c′2
)2

c2
2





















= 0 (5.30)

χ′′ +
χ′

y
+

1
2P

∂P
∂χ





















(

φ′
)2
+

(

χ′
)2 − 8

y

c′2
c2
− 12

(

c′2
)2

c2
2





















= 0, (5.31)

whereP = φ2 − 2χ2 − gφ2χ2 + 6. Transforming to they coordinate, the metric

becomes

ds2 = −y2c2
2dt2 + c2

2

(

dx2
1 + dx2

2

)

−
(φ′)2 + (χ′)2 − 4(ln c2)

′
(

ln y2c3
2

)′

2c2
3

(

φ2 − 2χ2 − gφ2χ2 + 6
) dy2, (5.32)

where we used (5.16) in the first component, and we used the chain rule dy= dy
dr dr

and (5.28) in the last component. In order to ensure regularity of solutions at the

horizon we impose the condition

y→ 0+ :
[

a(y), φ(y), χ(y)
]→ [

αa0, p0, c0
]

, (5.33)

wherea0, p0 andc0 are constants. Regularity at the horizon allows us to expandthe

solution as a Taylor series abouty = 0,

a = α
(

a0 + a1y
2 + O(y4)

)

(5.34)

φ = p0 + O(y2) (5.35)

χ = c0 + O(y2) (5.36)
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Higher order coefficients can be found in terms of{αa0, p0, c0} by substituting these

ansatze into (5.29)-(5.31), expanding abouty = 0, then insisting that coefficients of

powers ofy vanish gives; however, they get really ugly really fast so wewon’t write

them down.

Now we need to expand the solutions about the boundary. To do this, we intro-

duce a new variable

x = 1− y. (5.37)

In the x variable the boundary is given byx = 0. Transforming the equations

(5.29)-(5.31) to thex variable we get

c′′2 +
c′2

1− x
− 4

(

c′2
)2

c2
+

c2

4

[

(

φ′
)2
+

(

χ′
)2
]

= 0 (5.38)

φ′′ − φ′

1− x
− 1

2P
∂P
∂φ





















(

φ′
)2
+

(

χ′
)2
+

(

8
1− x

)

c′2
c2
− 12

(

c′2
)2

c2
2





















= 0 (5.39)

χ′′ − χ′

1− x
+

1
2P

∂P
∂χ





















(

φ′
)2
+

(

χ′
)2
+

(

8
1− x

)

c′2
c2
− 12

(

c′2
)2

c2
2





















= 0, (5.40)

where the prime denotes differentiation with respect tox. We know that near the

boundary we haveφ, χ << 0 and

c2 ∼ x−
1
3 , (5.41)

which follows from (5.19) withy = 1 − x and the limitx → 0+. Under these

assumptions, the asymptotic form of equations (5.39) and (5.40) is

φ′′ − φ′ + 2
9
φ

x2
= 0, (5.42)
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and

χ′′ − χ′ − 4
9
φ

x2
= 0, (5.43)

which have the general solutions

φ =
√

xexp
( x
2

) [

AI 1
6

( x
2

)

+ BK1
6

(x
2

)]

∼ O
(

x
1
3

)

+ O
(

x
2
3

)

, x→ 0+,
(5.44)

and

φ =
√

xexp
( x
2

) [

CI 5
6

( x
2

)

+ DK 5
6

( x
2

)]

∼ O
(

x−
1
3

)

+ O
(

x
2
3

)

+ O
(

x
4
3

)

, x→ 0+,
(5.45)

whereIn(z) andKn(z) are the modified Bessel functions of the first and second kinds

respectively, andA andB are integration constants. Comparing the latter to (1.57)

we see that the coefficient of theO
(

x−
1
3

)

term corresponds toλi, which we must set

to zero to avoid destroying our dual AdS4 fixed point. Also, theO
(

x
2
3

)

term will

vanish automatically.

Now puttingφ ∼ x
1
3 , φ ∼ x

4
3 andc2 ∼ x−

1
3 a(x) into (5.38), we get the asymptotic

form

a′′ +
2
x
a′ +

1
36

x−
4
3 a = 0, (5.46)

which has the general solution

a = C













x−
2
3 cos













x
1
3

2













− 2
x

sin













x
1
3

2

























∼ O(1)+ O
(

x
2
3

)

, x→ 0+

(5.47)

whereC is an integration constant, and we fixed the other integration constant by

enforcing thata be a real function ofx. Now we have enough information to make
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an educated guess at the form of the asymptotic solution nearthe boundary. Let us

take

a = α
(

1+C1x
2
3 +C2x+ ...

)

(5.48)

φ = p1x
1
3 + p2x

2
3 + p3x+ ... (5.49)

χ = χ2x
2
3 + χ3x+ ... (5.50)

Substituting these ansatze into (5.38)-(5.40), expandingaboutx = 0, then insisting

that coefficients of powers ofx vanish gives

a = α

(

1− 1
40

p2
1x

2
3 − 1

18
p1p2x+ O

(

x
4
3

)

)

(5.51)

φ = p1x
1
3 + p2x

2
3 +

3
20

p3
1x+ O

(

x
4
3

)

(5.52)

χ = χ4

(

x
4
3 +

(

1
7

g− 3
70

)

p2
1x2 + O

(

x
7
3

)

)

(5.53)

The integration constants at the boundary{p1, p2, χ4} have the following interpre-

tation in the dual field theory:p1 is the coupling of the relevant operatorOr that

deforms the CFT dual to pure AdS4, p2 is 〈Or〉, andχ4 is 〈Oi〉. Note that∆Or = 2 so

p1 is a dimensionless coupling with we take to be proportional to m
T wherem is the

mass of the deformation.

5.4 Thermodynamics

First let us find the temperature. The calculation is done fora general metric in

Appendix A. Transforming to they coordinate, the metric becomes

ds2 = −y2c2
2dt2 + c2

2

(

dx2
1 + dx2

2

)

−
(φ′)2 + (χ′)2 − 4(ln c2)

′
(

ln y2c3
2

)′

2c2
3

(

φ2 − 2χ2 − gφ2χ2 + 6
) dy2, (5.54)
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where we used (5.16) in the first component, and we used the chain rule dy= dy
dr dr

and (5.28) in the last component. Now we expand the metric about the horizon

y = 0. We have

c2
2 ∼ α2a2

0, (5.55)

and

(φ′)2 + (χ′)2 − 4(ln c2)
′
(

ln y2c3
2

)′

2c2
3

(

φ2 − 2χ2 − gφ2χ2 + 6
) ∼ 16

















3a1 + a0

6a0

(

6− 2c2
0 + p2

0 − gp2
0c

2
0

)

















≡ 16A2,

(5.56)

whereA2 is the quantity in large parentheses. Changing to imaginarytime via

t → itE, we can put the metric in the form

ds2 = K

(

dy2 + y2d

(

α2a2
0

16A2
t2
E

))

+ α2a2
0dx2, (5.57)

whereK is an overall constant. We remove the conical singularity byrequiring that

tE = tE + 2π



















4A

αa
3
2
0



















. (5.58)

Identifying the period oftE with 1/T and restoringA we find the temperature

(

8πT
α

)2

=
6a3

0

(

6− 2c2
0 + p2

0 − gp2
0c

2
0

)

3a1 + a0
. (5.59)

Next we will calculate the entropy. Recall thatc2 = a(y)(1− y2)−
1
3 , and that the

horizon is given byy = 0, and the induced metric is

ds2 = c2
2(dx2

1 + dx2
2), (5.60)
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whose determinant isα2a2
0. Using the Hawking formula for the entropy we get

s=

!
α2a2

0dx1dx2

4G
, (5.61)

or

s ≡ s
V
= 2π

(

αa0

κ

)2

=
c

384
4πα2a2

0, (5.62)

whereV ≡
!

dx1dx2 and we used (3.18) in the last equality.

We can calculate the free energy by calculating a finite valuefor the action. We

can show that the equations of motion suggest

Γ ≡ 4c′′2 c1c3 − 4c′2c
′
3c1 − c1c2c

3
3

(

6− gφ2χ2
)

+
1
2

c1c2c3

(

(

φ′
)2
+

(

χ′
)2
)

= 0. (5.63)

Then, defining the quantity in parentheses in (5.5) to beL̃ we find that

L̃ + c2

c2
3

Γ = −2
d
dr

(

c′1c
2
2

c3

)

, (5.64)

and sinceΓ = 0 we can write the bulk action as

Sbulk

V
= − τ

2κ2

(

2c′1c
2
2

c3

)
∣

∣

∣

∣

∣

∣

boundary

horizon

, (5.65)

whereτ =
∫ τ

0
dt. It is straight forward to calculate the boundary action

Sboundary= −
1

2κ2

∫

∂M
d3x
√−γΘ (5.66)

or
Sboundary

V
= − τ

2κ2

(

2
c2

2c
′
1

c3
+ 4

c1c2c′2
c3

)
∣

∣

∣

∣

∣

∣

boundary

. (5.67)
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Adding the parts together we get

S
V
=

τ

2κ2















2

(

c′1c
2
2

c3

)
∣

∣

∣

∣

∣

∣

horizon

− 4

(

c1c2c′2
c3

)
∣

∣

∣

∣

∣

∣

boundary















(5.68)

Equation (5.68) is written in terms of ther variable. In order to make use of our

asymptotic solutions, we must write the first term in terms ofthe y variable, and

the second term in terms of thex variable. Although it is tedious, the calculation

is straightforward. Takec1 = yc2 and use equation (5.28), where undery→ 1 − x

we havedy/dr → −dx/dr. Then use the appropriate expansion in each term. The

result is

S
V
=

τ

2κ2























−1
2
α3a3

0

√

6a0

(

6+ p2
0 − 2c2

0 − gp2
0c

2
0

)

3a1 + a0
− 2α3

x
− 1

10

α3p2
1

x
1
3

+ 3α3 − 1
3
α3p1p2























.

(5.69)

The action diverges asx→ 0. We may add a counterterm of the form

1
2κ2

Sct =
1

2κ2

∫

∂M
d3x
√−γ

(

β1 + β2φ
2
)

. (5.70)

Since this expression is diffeomorphism invariant on the boundary and contains no

derivatives of the metric or scalar fields, we are sure that adding it to the action will

not alter the equations of motion. Straightforward calculation gives

1
2κ2

Sct

V
=

τ

2κ2













1
2
β1α

3

x
+

−3
80β1α

3p2
1 +

1
2β2α

3p2
1

x
1
3

− β1

(

1
12
α3p1p2 +

1
4
α3

)

+ β2α
3p1p2













.

(5.71)

Choosingβ1 = 4 andβ2 = 1/2 we get a finite action

S
V
=

τ

2κ2























2α3 − 1
6
α3p1p2 −

1
2
α3a3

0

√

6a0

(

6+ p2
0 − 2c2

0 − gp2
0c

2
0

)

3a1 + a0























. (5.72)
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Takingτ = i/T andF = TSE we find the free energy density

F ≡ F
V
=

1
2κ2























2α3 − 1
6
α3p1p2 −

1
2
α3a3

0

√

6a0

(

6+ p2
0 − 2c2

0 − gp2
0c

2
0

)

3a1 + a0























. (5.73)

To find the mass/energy density we will calculate the stress-energy tensor using2

Tµν =
1
κ2

(

Θµν − Θγµν +
1
√−γ

δSct

δγµν

)

, (5.74)

where
δSct

δγµν
=

1
2
√−γγµν

(

4+
φ2

2

)

, (5.75)

which follows from varying equation (5.70). Then using
〈

T̂µµ

〉

= c1c2
2c
−2
µ Tµµ, the

result is

〈

T̂µν

〉

=
1

2κ2



































2α3 − 1
6α

3p1p2 0 0

0 α3 + 1
6α

3p1p2 0

0 0 α3 + 1
6α

3p1p2



































. (5.76)

This gives us the mass/energy density and pressure

E ≡ M
V
=

1
2κ2

(

2α3 − 1
6
α3p1p2

)

, and P =
1

2κ2

(

α3 +
1
6
α3p1p2

)

. (5.77)

Now one may ask, why do we not immediately see thatP = −F . In fact, this

equality holds, which we will show now. The Einstein equations are

Rµν −
1
2

gµνR= 8πGT̃µν. (5.78)

2We do not have the factor of 2 in the last term because the entire action is normalized up to
1/2κ2.
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where

T̃µν = −2
∂L
∂gµν

+ gµνL. (5.79)

For our metric we haveR= 0. The Taking our lagrangian density to be

L = R+ 6− (∂φ)2

2
− (∂χ)2

2
+ φ2 − 2χ2 − gφ2χ2, (5.80)

we get

T̃µν = (∂µφ)(∂νφ) + (∂µχ)(∂νχ) + gµνL, (5.81)

or

T̃µ
ν = (∂µφ)(∂νφ) + (∂µχ)(∂νχ) + δµνL. (5.82)

Since our metric is diagonal and the scalarsφ andχ depend only onR, then Ein-

stein’s equations guarantee that

Rt
t − Rx1

x1 = 0. (5.83)

Explicitly in terms of ther variable this is

c′1c
′
2

c1c2c2
3

+
c′1c
′
3

c1c3
3

−
c′′1

c1c2
3

+

(

c′2
)2

c2
2c

2
3

−
c′2c
′
3

c2c3
3

+
c′′2

c2c2
3

= 0, (5.84)

which can be written as
1

c1c2
2c3

((

c1

c2

)′ c3
2

c3

)′

= 0. (5.85)

This implies that
(

c1

c2

)′ c3
2

c3
= const (5.86)

is a constant of motion. Converting to they coordinate and expanding about the
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horizon we get

lim
y→0+

(

c1

c2

)′ c3
2

c3
=

1
4
α3a3

0

√

6a0

(

6+ p2
0 − 2c2

0 − gp2
0c

2
0

)

3a1 + a0
. (5.87)

Then converting to thex variable and expanding about the boundary we get

lim
x→0+

(

c1

c2

)′ c3
2

c3
=

3
2
α3. (5.88)

Thus we have

3α3 =
1
2
α3a3

0

√

6a0

(

6+ p2
0 − 2c2

0 − gp2
0c

2
0

)

3a1 + a0
. (5.89)

Then we can write the pressure as

P =
1

2κ2

(

−2α3 +
1
6
α3p1p2 + 3α3

)

=
1

2κ2























−2α3 +
1
6
α3p1p2 +

1
2
α3a3

0

√

6a0

(

6+ p2
0 − 2c2

0 − gp2
0c

2
0

)

3a1 + a0























= −F .

(5.90)

It is easy to check that the relation

F = E − Ts (5.91)

holds.
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5.5 Conformal limit

Let us first consider solutions whereχ = 0, which corresponds to the case where

〈Oi〉 = 0. Our equations of interest are

c′′2 −
c′2
y
− 4

(

c′2
)2

c2
+

c2

4
(

φ′
)2
= 0 (5.92)

φ′′ +
φ′

y
−
φ
(

y (φ′)2 c2
2 − 12y

(

c′2
)2
− 8c′2c2

)

yc2
2

(

6+ φ2
) = 0 (5.93)

To study the conformal limit, we should expand the solutionsas a series of some

small parameterδ1 where

δ1 ∝
m
T
<< 1, (5.94)

wherem is the mass that deforms the CFT, and is related to the scalar field φ. So

the conformal limit corresponds to either3 m→ 0 or T → ∞. To leading order, we

may write the solution as

c2(y) = eA(y), and φ(y) = δ1φ1(y), (5.95)

where

A(y) = ln (αa0) −
1
3

ln
(

1− y2
)

+ δ2
1A1(y). (5.96)

Putting this into (5.93) and expanding to leading order inδ1 we get

φ′′1 +
φ′1
y
+

8
9

φ1
(

1− y2
)2
= 0. (5.97)

3Thus we may use ”conformal limit” and ”high-temperature limit” interchangably
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The general solution is found in terms of hypergeometric functions

φ1 = C1

(

1− y2
)

1
3

2F1

(

1
3
,
1
3
,
2
3

; 1− y2

)

+C2

(

1− y2
)

2
3

2F1

(

2
3
,
2
3
,
4
3

; 1− y2

)

(5.98)

This solution is singular at the horizony = 0. We must choose the integration

constants so that we cancel the divergence at the horizon. Expanding about the

horizony = 0 we get

φ1 = −2C1

Γ
(

2
3

)

Γ
(

1
3

)2

(

γ + ψ

(

1
3

)

+ ln y

)

− 2C2

Γ
(

4
3

)

Γ
(

2
3

)2

(

γ + ψ

(

2
3

)

+ ln y

)

, (5.99)

whereγ is the Euler-Mascheroni constant, andψ(x) is the digamma function. We

can remove the logarithmic divergence if we take

C2 = −
Γ
(

2
3

)3

Γ
(

1
3

)2
Γ
(

4
3

)

C1. (5.100)

Now we have

φ1 =
Γ
(

1
3

)

Γ
(

2
3

)2

(

1− y2
)

1
3

2F1

(

1
3
,
1
3
,
2
3

; 1− y2

)

−
Γ
(

2
3

)

Γ
(

1
3

)

Γ
(

4
3

)

(

1− y2
)

2
3

2F1

(

2
3
,
2
3
,
4
3

; 1− y2

)

,

(5.101)

where we redefined our integration constantC1 = C̃1Γ
(

1
3

)

/Γ
(

2
3

)2
and we absorbed

C̃1 into the expansion parameterδ1 in equation (5.95). The solution (5.101) is still
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singular at the horizony = 0. Using the transformation [1]

2F1 (a, b, c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1 (a, b, a+ b− c+ 1; 1− z)

+ (1− z)c−a−b Γ(c)Γ(a+ b− c)
Γ(a)Γ(b) 2F1 (c− a, c− b, c− a− b+ 1; 1− z)

(5.102)

we can analytically continue the solution to get

φ1 =
(

1− y2
)

1
3

2F1

(

1
3
,
1
3
, 1;y2

)

, (5.103)

which is well-behaved at the horizon. Changing (5.101) to the variablex = 1 − y

we get

φ1 =
Γ
(

1
3

)

Γ
(

2
3

)2

(

2x− x2
)

1
3

2F1

(

1
3
,
1
3
,
2
3

; 2x− x2

)

−
Γ
(

2
3

)

Γ
(

1
3

)

Γ
(

4
3

)

(

2x− x2
)

2
3

2F1

(

2
3
,
2
3
,
4
3

; 2x− x2

)

,

(5.104)

which is well-behaved at the boundaryx = 0. Expanding (5.104) near the boundary

we get

φ = δ1φ1 =
2

4
3π

√
3Γ

(

2
3

)3
δ1x

1
3 −

9Γ
(

2
3

)3

2
4
3π2

δ1x
2
3 + O

(

x
4
3

)

. (5.105)

Comparing to the asymptotic solution (5.52)

φ = p1x
1
3 + p2x

2
3 + O (x) (5.106)
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we see that

p1 =
2

4
3π

√
3Γ

(

2
3

)3
δ1, and p2 = −

9Γ
(

2
3

)3

2
4
3π2

δ1, (5.107)

and

p2 = −
9
√

3Γ
(

2
3

)6

2
8
3π3

p1. (5.108)

Let us now turn to equation (5.92). Inserting (5.95) and expanding to leading

order inδ1 we get

A′′1 −

(

3y2 + 1
)

y
(

1− y2
)A′1 +

1
4
(

φ′1
)2
= 0. (5.109)

The solution is

A1 = −
1
4

∫ y

0

z
(

1− z2
)2

dz





















γ1 +

∫ z

0

(

∂φ1

∂u

)2
(

1− u2
)2

u
du





















+ γ2, (5.110)

whereγ1 andγ2 are integration constants that are fixed by the boundary conditions.

First, note that from (5.95) and (5.96)

c2(y) =
αa0eδ

2
1A1(y)

(

1− y2
)

1
3

, so a(y) = αa0e
δ2

1A1(y). (5.111)

Comparing to the asymptotics in (5.34)

a(y) = α
(

a0 + a1y
2 + O(y4)

)

, y→ 0, (5.112)

we see that we must insist thatA1(y = 0) = 0, which fixes the integration constant

γ2 = 0. (5.113)

The solution (5.110) diverges at the boundaryy = 1, which destroys the asym-
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totically AdS4 nature of our spacetime. We must fixγ1 such that it removes the

divergence. The outer integral diverges only whenz= 1. So we must fix

γ1 = −
∫ 1

0

(

∂φ1

∂u

)2
(

1− u2
)2

u
du≈ −0.07689 (5.114)

Now, let us find the leading corrections to the conformal thermodynamics that we

found in chapter 3. Using the formula (A.7)

T =
1
2π

(

c2

c3

dy
dr

)
∣

∣

∣

∣

∣

∣

horizon

(5.115)

with χ = 0 in (5.28),

dy
dr
= c3

√

√

2
(

6+ φ2
)

4A′(y)
(

2
y + 3A′(y)

)

− (φ′)2
(5.116)

and our solutions forφ(y) = δ1φ1(y) andA(y) = ln (αa0) − 1
3 ln

(

1− y2
)

+ δ2
1A1(y),

then expanding in powers ofδ1 we get the correction to the temperature,

T =
αa0

2π

[

3
2
+

1
32

(4+ 9γ1) δ
2
1 + O

(

δ4
1

)

]

. (5.117)

The entropy density is given by equation (5.2)

s =
2π
κ2

(αa0)
2 . (5.118)

Using (5.117) to eliminateαa0 from (5.118), then expanding inδ1 we get the cor-

rections to the entropy density.

s =
2π3T2

κ2

[

16
9
− 2

27
(4+ 9γ1) δ

2
1 + O

(

δ4
1

)

]

(5.119)
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To get the corrections to the energy density and free energy density, we solve

(5.117) forαa0 and expand inδ1 to get

αa0 = πT

[

4
3
− 1

36
(4+ 9γ1) δ

2
1 + O

(

δ4
1

)

]

(5.120)

We can use the constant of motion (5.89) to simplify the expression for the temper-

ature (5.59) to get

T =
3α

4πa2
0

. (5.121)

Putting (5.121) into (5.120), we can solve fora0 and expand inδ1 to get

a0 = 1−
(

1
36
+
γ1

16

)

δ2
1 + O

(

δ4
1

)

(5.122)

We can write the energy density and free energy density from (5.77) as

E = (αa0)
3

2κ2

(

2− 1
6

p1p2

)

1

a3
0

, and
F
V
= −(αa0)

3

2κ2

(

2− 1
6

p1p2

)

1

a3
0

(5.123)

Inserting (5.107), (5.120) in the numerator and (5.122) in the denominator, then

expanding inδ1 we get

E = 64π3T3

27κ2
− 8π2T3

81κ2

(

9πγ1 + 4π − 6
√

3
)

δ2
1 + O

(

δ4
1

)

(5.124)

and

F = −32π3T3

27κ2
+

4π2T3

81κ2

(

9πγ1 + 4π + 12
√

3
)

δ2
1 + O

(

δ4
1

)

. (5.125)

The first law of thermodynamics must hold in this limit. Writingδ1 = m/T, the first

law

∂E
∂T
− T

∂s

∂T
= 0 gives − 8

81

(

πm
κ

)2 (

9πγ1 + 4π − 6
√

3
)

= 0. (5.126)
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This gives us an exact expression forγ1

γ1 = −
2
9π

(

2π − 3
√

3
)

≈ −0.07689 (5.127)

Finally, we can use the thermodynamic relation for the speedof sound

c2
s = −

∂F
∂E = −

(

∂F
∂T

)

(

∂E
∂T

) (5.128)

which gives

c2
s =

1
2
−
√

3
8π

δ2
1 + O

(

δ4
1

)

. (5.129)

5.6 Numerical results

In this section we will summarize the input for our numericalprocedure and give its

results. A detailed description of our numerical method is given in the Appendix B,

and the Mathematica code used to solve this particular system is given in Appendix

C.

The equations that we need to solve are the following

c′′2 −
c′2
y
− 4

(

c′2
)2

c2
+

c2

4

[

(

φ′
)2
+

(

χ′
)2
]

= 0 (5.130)

φ′′ +
φ′

y
− 1

2P
∂P
∂φ





















(

φ′
)2
+

(

χ′
)2 − 8

y

c′2
c2
− 12

(

c′2
)2

c2
2





















= 0 (5.131)

χ′′ +
χ′

y
+

1
2P

∂P
∂χ





















(

φ′
)2
+

(

χ′
)2 − 8

y

c′2
c2
− 12

(

c′2
)2

c2
2





















= 0, (5.132)

where the prime denotes differentiation with respect to y. Near the horizon, say
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y = ǫ = 10−6, we have the asymptotic solutions

a = α
(

a0 + a1ǫ
2 + O(ǫ4)

)

(5.133)

φ = p0 + O(ǫ2) (5.134)

χ = c0 + O(yǫ2). (5.135)

Since we will use these expansions as our initial values, we should find a few more

higher-order terms. We also have, undery = 1− x

c′′2 +
c′2

1− x
− 4

(

c′2
)2

c2
+

c2

4

[

(

φ′
)2
+

(

χ′
)2
]

= 0 (5.136)

φ′′ − φ′

1− x
− 1

2P
∂P
∂φ





















(

φ′
)2
+

(

χ′
)2
+

(

8
1− x

)

c′2
c2
− 12

(

c′2
)2

c2
2





















= 0 (5.137)

χ′′ − χ′

1− x
+

1
2P

∂P
∂χ





















(

φ′
)2
+

(

χ′
)2
+

(

8
1− x

)

c′2
c2
− 12

(

c′2
)2

c2
2





















= 0, (5.138)

where the prime denotes differentiation with respect tox. Near the boundary, say

x = ǫ = 10−6, we have the asymptotic solutions

a = α

(

1− 1
40

p2
1ǫ

2
3 − 1

18
p1p2ǫ + O

(

ǫ
4
3

)

)

(5.139)

φ = p1ǫ
1
3 + p2ǫ

2
3 +

3
20

p3
1ǫ + O

(

ǫ
4
3

)

(5.140)

χ = χ4

(

ǫ
4
3 +

(

1
7

g− 3
70

)

p2
1ǫ

2 + O
(

ǫ
7
3

)

)

, (5.141)

where, again, we should find a few higher-order terms. Since we will always plot

dimensionless quantities,αwill always cancel out of our calculations, so in practice
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Figure 5.1: Order parameterχ4 as a function ofαp1/8πT. The red curve corre-
sponds to the symmetric phase whereχ4 = 0. The purple curve corresponds to the
first symmetry-broken phase which exists forαp1/8πT < 0.0772787. The green
curve corresponds to the second symmetry-broken phase.

we just set it toα = 1. We have to fix the parametersp1, p2, χ4, a0, a1, p0, andc0.

We vary p1 and find all other parameters as functions of it. Starting with a small

value ofp1, we may use the pure AdS4 geometry to guess good starting values for

the other parameters. In particular, forp1 ≈ 0, we havep2 ≈ χ4 ≈ a1 ≈ p0 ≈ c0 ≈ 0,

anda0 ≈ 1. This configuration of starting values for the parameters will lead to

us finding solutions whereχ = 0 for all p1. However, we may numerically find

branches of solutions whereχ , 0 for certain ranges ofp1. One may wonder why

we do eliminate one of the parameters using the constant of motion (5.89). The

reason is that the numerics completely destabilize.

Figure 5.1 shows a plot ofχ4 versusαp1/8πT. Notice that we can find multi-

ple branches of solutions: the red curve corresponds to the symmetric phase where

χ4 = 0 (or where〈Oi〉 = 0 in the CFT). The purple curve corresponds to the first

symmetry-broken phase withχ4 , 0 (or where〈Oi〉 , 0 in the CFT) which exists
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for αp1/8πT < 0.0772787. The green curve corresponds to the second symmetry-

broken phase. Although there is evidence to believe that there are many more

(perhaps infinitely many) branches, the numerics on each successive branch are

increasingly unstable. We will focus solely on the first two branches (i.e. the red

and purple ones). This spontaneous symmetry breaking4 is associated with a second

order phase transition withχ4 serving as the order parameter. The critical behaviour

of our system at the phase transition will be studied in detail in chapter 7. An in-

teresting feature of these phase transitions is that the phases with broken-symmetry

exist for temperatures above the critical one. This is in contrast to most typical

phase transitions where the symmetry-breaking occurs for low temperatures. For

this reason, we consider the phase transitions we see here tobe of an exotic type.

Figure 5.2 shows the numerical results for the entropy density. In the top figure,

the red curve corresponds to the free energy calculated from(5.2), and the black

dashed curve corresponds to (5.119). The excellent agreement indicates that our

high-temperature analysis from the previous section is consistent with the full non-

conformal thermodynamics. In the bottom figure, the free energy is plotted for

the symmetric and symmetry-broken phases. The symmetric phase has the highest

entropy, and each successive symmetry-broken phase has lower entropy.

Figure 5.3 shows the numerical results for the free energy. In the top figure,

the red curve corresponds to the free energy calculated from(5.73), and the black

dashed curve corresponds to (5.125). The excellent agreement indicates that our

high-temperature analysis from the previous section is consistent with the full non-

conformal thermodynamics. In the bottom figure, the free energy is plotted for

the symmetric and symmetry-broken phases. Since the symmetric phase has the

lowest free energy for all temperatures, the symmetry-broken phases are metastable

at best, and a system in a symmetry broken phase would eventually decay into the

4The broken symmetry is theZ2 associated with the symmetryχ→ −χ.
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Figure 5.2: Entropy density as a function ofαp1/8πT. Top: The red curve corre-
sponds to the numerical results for equation (5.2) in the symmetric phase. The black
dashed curve is the result from (5.119). Bottom: Numerical results in the symmetric
and symmetry-broken phases. The colour scheme is the same asin figure 5.1.
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Figure 5.3: Free energy density as a function ofαp1/8πT. Top: The red curve
corresponds to the numerical results for equation (5.73) inthe symmetric phase.
The black dashed curve is the result from (5.125). Bottom: Numerical results in
the symmetric and symmetry-broken phases. The colour scheme is the same as in
figure 5.1.
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symmetric one. We will study the perturbative stability of these symmetry-broken

phases in chapter 7.

Figure 5.4 shows the results for the energy density (top) andthe speed of sound

(bottom). We find that the speed of sound is positive and finitein the symmetry-

broken phases. Thus, these phases are thermodynamically stable [8].

All of the results presented so far have the coupling fixed atg = −100. Figure

5.5 shows the natural logarithm of the difference between the free energy density in

the first symmetry-broken phase and the symmetric phase forαp1/8πT → 0, versus

ln(−g). As g → −∞ (i.e. large mixing betweenOr andOi), the symmetry-broken

phases approach the symmetric phase at high temperatures (αp1/8πT → 0). We

found that no phase transition occurs wheng > 0.

To summarize this chapter, we have computed the full non-conformal thermo-

dynamics of our Exotic Model. We found the leading corrections inαp1/T to the

conformal thermodynamics in the high-temperature regime.We verified that the

thermodynamics computed for our model are consistent with the first law of ther-

modynamics. We numerically computed the thermodynamic potentials, and we

verified that our results are consistent with the high-temperature corrections. We

found exotic phase transitions in our model, and we identified the order parameter

characterizing them. Before analyzing the critical behaviour near the phase transi-

tion, we will study the hydrodynamics of our model in the nextchapter.
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Figure 5.4: Top: Energy density. Bottom: Speed of sound. Thecolour scheme is
the same as in figure 5.3.
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Figure 5.5: Natural logarithm of the difference between the free energy density in
the first symmetry-broken phase and the symmetric phase forαp1/8πT → 0, versus
ln(−g).
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Chapter 6

AdS4 black holes with scalar hair -

fluctuations

In this chapter we will compute the hydrodynamics (i.e. speed of sound and bulk-

to-shear viscosity ratio) by considering the dispersion relation of small fluctuations

about the background geometry. We let

gµν → g′µν = gµν + hµν

φ→ φ′ = φ + A

χ→ χ′ = χ + Ψ,

(6.1)

wherehµν, A andΨ are understood to be small fluctuations of the background ge-

ometry. Explicitly, the line element becomes

ds2 =
(

−c2
1 + htt

)

dt2 +
(

c2
2 + hx1x1

)

dx2
1 +

(

c2
2 + hx2x2

)

dx2
2 +

(

c2
3 + hrr

)

dr2

+ 2htx1dtdx1 + 2htx2dtdx2 + 2htrdtdr+ 2hx1x2dx1dx2 + 2hx1rdx1dr + 2hx2rdx2dr.

(6.2)
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Many of the calculations in this chapter are very tedious, sowe will often give only

the form of very long equations.

6.1 Equations of motion

The bulk action that gives rise to the equations of motion forthe fluctuationshµν is

Sbulk =
1

2κ2

∫

∂M′
d4xLbulk, (6.3)

where

Lbulk =
√

−g′
[

R̃+ 6− 1
2

(

∂φ′
)2 − 1

2
(

∂χ′
)2
+

(

φ′
)2 − 2

(

χ′
)2 − g

(

φ′
)2 (

χ′
)2
]

, (6.4)

andR̃ is the scalar curvature calculated from the metric (6.2). Varying this action1

with respect to the metric (6.2) while keeping only the termsin Lbulk that are at

most quadratic2 in hµν, α, ψ and their derivatives, we get the equations of motion by

demanding thatδSbulk = 0. All of the equations of motion are linear inhµν and its

derivatives. Schematically, they have the following form,

Ett(∂
2
r hx1x1, ∂

2
r hx2x2, ∂

2
x2

hx1x1, ∂rhx1x1, ∂rhx2x2, ∂rA, ∂rΨ, hx1x1, hx2x2,A,Ψ) = 0, (6.5)

Etx1(∂
2
x2

htx1, ∂t∂x2hx1x2, ∂
2
r htx1, ∂rhtx1, htx1) = 0, (6.6)

Etx2(∂
2
r htx2, ∂t∂x2hx1x1, ∂rhtx2, htx2) = 0, (6.7)

Etr(∂t∂rhx2x2, ∂t∂rhx1x1, ∂x2∂rhtx2, ∂thx1x1, ∂thx2x2, ∂x2htx2, ∂tA, ∂tΨ) = 0, (6.8)

1In principle we should be careful with the boundary terms by adding a Gibbons-Hawking term
to the action.

2In this case, the linear terms vanish by virtue of the backround equations of motion (5.11)-
(5.15). So the first non-vanishing terms are quadratic.
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Ex1x1(∂
2
t hx2x2, ∂

2
x2

htt, ∂
2
r hx2x2, ∂t∂x2htx2, ∂

2
r htt, ∂rhx2x2, ∂rhtt, ∂rA, htt, hx2x2,A,Ψ) = 0,

(6.9)

Ex1x2(∂
2
t hx1x2, ∂t∂x2htx1, ∂

2
r hx1x2, ∂rhx1x2, hx1x2) = 0, (6.10)

Ex1r(∂t∂rhtx1, ∂x2∂rhx1x2, ∂x2hx1x2, ∂thtx1) = 0, (6.11)

Ex2x2(∂
2
r htt, ∂

2
r hx1x1, ∂

2
t hx1x1, ∂rhtt, ∂rhx1x1, ∂rA, ∂rΨ, hx1x1, htt,A,Ψ) = 0, (6.12)

Ex2r(∂x2∂rhtt, ∂t∂rhtx2, ∂x2∂rhx1x1, ∂x2A, ∂x2Ψ, ∂x2hx1x1, ∂x2htt, ∂thtx2) = 0, (6.13)

Err (∂
2
t hx2x2, ∂

2
x2

hx1x1, ∂t∂x2htx2, ∂
2
t hx1x1, ∂

2
x2

htt, ∂rA, ∂rΨ, ∂rhx1x1, ∂rhx2x2,

∂rhtt, hx1x1, hx2x2, htt,A,Ψ) = 0,
(6.14)

EA(∂2
r A, ∂

2
x2

A, ∂r A, ∂rhx2x2, ∂rhx1x1, ∂rhtt, htt, hx1x1, hx2x2,A) = 0, (6.15)

EΨ(∂2
rΨ, ∂

2
x2
Ψ, ∂rΨ, ∂rhx2x2, ∂rhx1x1, ∂rhtt, htt, hx1x1, hx2x2,Ψ) = 0, (6.16)

whereEµν is the equation of motion that arises from the variation of the action (6.3)

with respect to the fluctuationhµν, andEA andEΨ arise from the variation of the

action with respect to the fieldsA andΨ. The equationsEµν, EA, andEΨ are linear

in their arguments whose coefficients3 are functions of the background fields (c1,

c2, c3, φ, χ) and their derivatives. Also, after performing the variation of the action,

we have used diffeomorphism invariance to fix four of the fluctuation components:

htr = hx1r = hx2r = hrr = 0. (6.17)

We are assuming that the fluctuations do not change the background; rather, they

are propagatingin the background. Every slice of spacetime with fixedr can be

seen to be flat 2+1 dimensional Minkowski space, wheret → t/c1 andx → x/c2.

As such, the solutions can be separated into a radial part anda plane-wave part, i.e.

3The coefficients are not given explicitly because some of them are verylong.
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the (t, x) part of the solutions will be eigenfunctions of the flat space wave equation.

We may orient the coordinate axes such that the plane-waves propagate along the

x2 direction. Thus we may write the remaining fluctuations as

htt = c1(r)
2Htt(r)e

−iωt+iqx2

htx2 = c2(r)
2Htx2(r)e

−iωt+iqx2

hx1x1 = c2(r)
2Hx1x1(r)e

−iωt+iqx2

hx2x2 = c2(r)
2Hx2x2(r)e

−iωt+iqx2

A = α(r)e−iωt+iqx2

Ψ = ψ(r)e−iωt+iqx2 ,

(6.18)

whereω andq are the frequency and momentum of the plane wave. The functions

c2
1 andc2

2 are explicitly extracted for convenience. The equations ofmotion now

take the form

Ett(H
′′
x1x1

,H′′x2x2
,H′x1x1

,H′x2x2
, α′, ψ′,Hx1x1,Hx2x2, α, ψ) = 0, (6.19)

Etx2(H
′′
tx2
,H′tx2

,Htx2,Hx1x1) = 0, (6.20)

Ex1x1(H
′′
x2x2

,H′′tt ,H
′
x2x2

,H′tt, α
′,Htt,Hx2x2,Htx2, α, ψ) = 0, (6.21)

Ex2x2(H
′′
tt ,H

′′
x1x1

,H′tt,H
′
x1x1

, α′, ψ′,Hx1x1,Htt, α, ψ) = 0, (6.22)

EA(α′′, α′,H′x2x2
,H′x1x1

,H′tt,Htt,Hx1x1,Hx2x2, α) = 0, (6.23)

EΨ(ψ′′, ψ′,H′x2x2
,H′x1x1

,H′tt,Htt,Hx1x1,Hx2x2, ψ) = 0, (6.24)

along with the first-order constraints

Etr(H
′
x2x2

,H′x1x1
,H′tx2

, α, ψ,Hx1x1,Hx2x2,Htx2) = 0, (6.25)
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Ex2r(H
′
tt,H

′
tx2
,H′x1x1

, α, ψ,Hx1x1,Htt,Htx2) = 0, (6.26)

Err (α
′, ψ′,H′x1x1

,H′x2x2
,H′tt,Hx1x1,Hx2x2,Htt,Htx2, α, ψ) = 0, (6.27)

In addition, we have the following decoupled system,

Etx1(H
′′
tx1
,H′tx1

,Htx1,Hx1x2) = 0, (6.28)

Ex1x2(H
′′
x1x2

,H′x1x2
,Hx1x2,Htx1) = 0, (6.29)

Ex1r(H
′
tx1
,H′x1x2

,Hx1x2,Htx1) = 0. (6.30)

We focus on the system (6.19)-(6.27) which consists of 6 second-order equations

and 3 first-order constraints. The redundancy of these equations suggests that there

exists additional diffeomorphic freedom that should be fixed. Following section

4.40 we find three diffeomorphism-invariant combinations of the fluctuations,

ZH = 2
q2

ω2

c2
1

c2
2

Htt + 4
q
ω

Htx2 + 2Hx2x2 + 2

(

q2

ω2

c1c′1
c2c′2
− 1

)

Hx1x1,

Zα = α −
c2c2

3φ
′

2c′2
Hx1x1

Zψ = ψ −
c2c2

3χ
′

2c′2
Hx1x1

(6.31)
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We can solve (6.19)-(6.24) for the second derivatives, and we can solve (6.25)-

(6.27) for the first derivatives. Schematically,

H′′tt = ...

H′′tx2
= ...

H′′x1x1
= ...

H′′x2x2
= ...

α′′ = ...

ψ′′ = ...

, and

H′tx2
= ...

H′x1x1
= ...

H′x2x2
= ...

(6.32)

We can use (6.31) to eliminateHtt, α, andψ from the right-hand sides of (6.32),

then re-solve for the first derivativesH′tx2
= ..., H′x1x1

= ..., andH′x2x2
= .... Now

we demand consistency among the second-order equations andthe first-order con-

straints,

d2Hx1x1

dr2
=

d
dr

(

dHx1x1

dr

)

d2α

dr2
=

d
dr

(

dα
dr

)

d2ψ

dr2
=

d
dr

(

dψ
dr

)

,

(6.33)

where the left-hand sides are the second derivatives from (6.32), and the right-hand

sides are derivatives of the first derivatives in (6.32). It is straightforward, albeit

tedious, to show that the equations resulting from (6.33) donot contain anyHµν

components orα or ψ; this happens by virtue of the background equations (5.11)-
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(5.15). The final diffeomorphism-invariant equations in ther variable are4

AHZ′′H + BHZ′H +CHZH + EHZα +GHZψ = 0,

AαZ
′′
α + BαZ

′
α +CαZα + EαZψ + FαZ

′
H +GαZH = 0,

AψZ′′ψ + BψZ
′
ψ +CψZψ + EψZα + FψZ′H +GψZH = 0,

(6.34)

AH = 8q2ω2 (

c′2
)3 c2

1c
4
2c3

(

q2c′1c1c2 − 2ω2c′2c
2
2 + q2c′2c

2
1

)

, (6.35)

BH =8q2ω2 (

c′2
)2 c1c

3
2

[

q2c2
1c

2
2c

3
3

(

c′1c2 − c′2c1
)

(

φ2 − 2χ2 − gφ2χ2
)

−q2 (

c′2
)2 c′3c

3
1c2 − 3q2 (

c′1
)2 c′2c1c

2
2c3 − q2c′1c

′
2c
′
3c

2
1c

2
2 + 6q2 (

c′2
)3 c3

1c3

+6q2c′1c
2
1c

3
2c

3
3 − 6q2c′2c

3
1c

2
2c

3
3 + 3q2c′1c

′
2c

2
1c2c3 − 2ω2c′1

(

c′1
)2 c3

2c3

+2ω2 (

c′2
)2 c′3c1c

3
2 − 4ω2 (

c′2
)3 c1c

2
2c3

]

(6.36)

CH = 8q2ω2 (

c′2
)2 c2

2c
2
3

[

q2c2
1c

2
2c

2
3

(

c′2c1 − c′1c2
)

(

φ2 − 2χ2 − gφ2χ2
)

−2ω4 (

c′2
)2 c4

2c
2
3 − q4 (

c′2
)2 c4

1c
2
3 − q4c′1c

′
2c

3
1c2c

2
3 + 3q2ω2 (

c′2
)2 c2

1c
2
2c

2
3

+12q2c′1c
′
2c

3
1c

3
2c

2
3 − 6q2 (

c′1
)2 c2

1c
4
2c

2
3 − 6q2 (

c′2
)2 c4

1c
2
2c

2
3 − 4q2c′1

(

c′2
)2 c3

1c2

−4q2 (

c′1
)2 (

c′2
)2 c2

1c
2
2 + 4q2 (

c′1
)3 c′2c1c

3
2 + 4q2 (

c′2
)4 c4

1 + q2ω2c′1c
′
2c1c

3
2c

2
3

]

(6.37)

EH = 16q4 (

c′2
)2 c2

1c
2
2c3

(

c′1c2 − c′2c1
)

[

c1c2c
2
3φ
′
(

ω2c2
2 − q2c2

1

) (

φ2 − 2χ2 − gφ2χ2
)

−2c1c
2
3φ

(

q2c′2c
2
1 + q2c′1c1c2 − 2ω2c′2c

2
2

) (

1− gχ2
)

−2c2φ
′
(

3q2c3
1c

2
3 − 3ω2c1c

2
2c

2
3 + 2ωc′1c

′
2c2 − 2ω2 (

c′2
)2 c1

)]

(6.38)

4Beware typos in the expressions for the coefficients.
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GH = 16q4 (

c′2
)2 c2

1c
2
2c3

(

c′2c1 − c′1c2
)

[

c1c2c
2
3χ
′
(

q2c2
1 − ω2c2

2

) (

φ2 − 2χ2 − gφ2χ2
)

−2c1c
2
3χ

(

q2c′2c
2
1 − 2ω2c′2c

2
2 + q2c′1c1c2

) (

2+ gφ2
)

+2c2χ
′
(

3q2c3
1c

2
3 − 3ω2c1c

2
2c

2
3 + 2ω2c′1c

′
2c2 − 2ω2 (

c′2
)2 c2

)]

(6.39)

Aα = 4q2 (

c′2
)2 c3

1c
2
2c3

(

2ω2c′2c
2
2 − q2c′2c

2
1 − q2c′1c1c2

)

(6.40)

Bα = 4q2 (

c′2
)3 c2

1c2

(

q2c′1c1c2 + q2c′2c
2
1 − 2ω2c′2c

2
2

)

(

c′3c1c2 − c′1c2c3 − 2c′2c1c3
)

(6.41)

Cα = 2q2 (

c′2
)2 c1c

3
3

[

c2
1c

4
2

(

φ′
)2

(

w2c2
2 − q2c2

1

) (

φ2 − 2χ2 − gφ2χ2
)

+2c2
1c

2
2

(

4ω2 (

c′2
)2 c2

2 + 4ω2c′2φ
′c3

2φ − 2q2 (

c′2
)2 c2

1 − q2c′1φ
′c1c

2
2φ

−3q2c′2φ
′c1c2φ − 2q2c′1c

′
2c1c2

) (

1− gχ2
)

+2
(

ω2c2
2 − q2c2

1

) (

3
(

φ′
)2 c2

1c
4
2 + 2ω2 (

c′2
)2 c2

2 − q2c′1c
′
2c1c2 − q2 (

c′2
)2 c2

1

)]

(6.42)

Eα = 2q2 (

c′2
)2 c3

1c
2
2c

3
3

[

c2
2φ
′χ′

(

ω2c2
2 − q2c2

1

) (

φ2 − 2χ2 − gφ2χ2
)

+2φ′c2χ
(

q2c′1c1c2 + q2c′2c
2
1 − 2ω2c′2c

2
2

) (

2+ gφ2
)

+
(

ω2c2
2 − q2c2

1

) (

4c′2χ
′c2φ

(

1− gχ2
)

+ 6φ′χ′c2
2

)

+8gc′2φχ
(

q2c′1c1c2 + q2c′2c
2
1 − 2ω2c′2c

2
2

)]

(6.43)

Fα = q2ω2 (

c′2
)2 c3

1c
5
2c

3
3

[

φ′c2

(

6+ φ2 − 2χ2 − gφ2χ2
)

+ 4c′2φ
(

1− gχ2
)]

(6.44)

Gα = q2ω2 (

c′2
)2 c2

1c
4
2c

3
3

(

c′1c2 − c′2c1
)

[

4c′2φ
(

1− gχ2
)

− φ′c2

(

6+ φ2 − 2χ2 − gφ2χ2
)]

(6.45)
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Aψ = 4q2 (

c′2
)2 c3

1c
2
2c3

(

q2c′1c1c1 + q2c′2c
2
1 − 2ω2c′2c

2
2

)

(6.46)

Bψ = 4q2 (

c′2
)3 c2

1c2

(

q2c′1c1c2 + q2c′2c
2
1 − 2ω2c′2c

2
2

)

(

2c′2c1c3 − c′3c1c2 + c′1c2c3
)

(6.47)

Cψ = 2q2 (

c′2
)2 c1c

3
3

[

(

χ′
)2 c2

1c
4
2

(

q2c2
1 − ω2c2

2

) (

φ2 − 2χ2 − gφ2χ2
)

−2c2
1c

2
2

(

q2c′1χ
′c1c

2
2χ + 3q2c′2χ

′c2
1c2χ + 2q2c′1c

′
2c1c2 + 2q2 (

c′2
)2 c2

1

−4ω2c′2χ
′c3

2χ − 4ω2 (

c′2
)2 c2

2

)

−2
(

q2c2
1 − ω2c2

2

) (

q2 (

c′2
)2 c2

1 + q2c′1c
′
2c1c2 − 2ω2 (

c′2
)2 c2

2 − 3
(

χ′
)2 c2

1c
4
2

)]

(6.48)

Eψ = 2q2 (

c′2
)2 c3

1c
2
2c

3
3

[

φ′χ′c2
2

(

q2c2
1 − ω2c2

2

) (

φ2 − 2χ2 − gφ2χ2
)

+2χ′c2φ
(

q2c′2c
2
1 + q2c′1c1c2 − 2ω2c′2c

2
2

) (

1− gχ2
)

(

q2c2
1 − ω2c2

2

) (

6φ′χ′c2
2 − 4c′2φ

′c2χ
(

2+ gφ2
))

−8gc′2φχ
(

q2c′2c
2
1 + q2c′1c1c2 − 2ω2c′2c

2
2

)]

(6.49)

Fψ = q2ω2 (

c′2
)2 c3

1c
5
2c

3
3

[

4c′2χ
(

2+ gφ2
)

− χ′c2

(

6+ φ2 − 2χ2 − gφ2χ2
)]

(6.50)

Gψ = q2ω2 (

c′2
)2 c2

1c
4
2c

3
3

(

c′1c2 − c′2c1
)

[

χ′c2

(

6+ φ2 − 2χ2 − gφ2χ2
)

− 4c′2χ
(

2+ gφ2
)]

(6.51)

Using the change of variables (5.16), (5.22) and (5.28)

y =
c1

c2

(

dy
dr

)2

=
−2c2

3

(

φ2 − 2χ2 − gφ2χ2 + 6
)

(φ′)2 + (χ′)2 − 4(ln c2)
′
(

ln y2c3
2

)′

d
dr
=

dy
dr

d
dy
,

d2

dr2
=

(

dy
dr

)2 d2

dy2
+

d2y
dr2

d
dy
.

(6.52)
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we can cast the equations into the following form

AHZ′′H + BHZ′H + CHZH + EHZα + GHZψ = 0,

AαZ
′′
α + BαZ′α + CαZα + EαZψ + FαZ′H + GαZH = 0,

AψZ
′′
ψ + BψZ′ψ + CψZψ + EψZα + FψZ′H + GψZH = 0,

(6.53)

where the prime now denotes differentiation with respect toy, and the new coef-

ficients are expressed in terms ofy. The system (6.53) governs the small gauge-

invariant fluctuations of the background geometry.

6.2 Near-horizon behaviour and boundary conditions

It will be convenient to extract the leading behaviour of thefluctuations near the

horizon. We make the substitutions

ZH = yn, Zα = Mαy
n, Zψ = Mψyn, (6.54)

whereMα andMψ are propotionality constants, and we used the invariance under

rescalings of theZ’s to setMH = 1. Putting this into the first line of (6.53) and

expanding to leading order iny we get an equation of the form

Ky4 + O
(

y5
)

= 0, (6.55)

where the coefficient K depends onn, as well as the background expansion coef-

ficients {a0, a1, p0, c0}, the couplingg, and the frequencyω. SettingK = 0 and
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solving forn we get

n = ±i
4ω
α

√

3a1 + a0

6a3
0

(

6+ p2
0 − 2c2

0 − gp2
0c

2
0

) (6.56)

Looking at equation (5.59) we find that we can writen in a very neat way

n = ±i
ω

2πT
≡ ±iω̂. (6.57)

The quantityω̂ is the dimensionless frequency of the fluctuations. We also define

the dimensionless momentum to be

q̂ =
q

2πT
. (6.58)

We have found that the leading near-horizon behaviour of thefluctuationsZi (where

i here can beH, α or ψ) is

Zi ∼ y±iω̂ (6.59)

The plus/minus sign gives components of the wave that are moving out of/into the

horizon. We must chose the minus sign to satisfy the boundarycondition at the

horizon so that we have no outgoing waves. Finally, the leading behaviour is

Zi ∼ y−iω̂ (6.60)

near the horizon. It is convenient to explicitly extract this leading behaviour from

the full solution. We define the new fluctuation variablesZ̃H, Z̃α andZ̃ψ to be

ZH(y) = y−iω̂Z̃H(y), Zα(y) = y−iω̂Z̃α(y), Zψ(y) = y−iω̂Z̃ψ(y) (6.61)
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Following the reasoning in section 4.4 we must impose the following boundary

conditions,

Z̃H(y = 0+) = 1, Z̃H(y = 1−) = 0. (6.62)

6.3 High-temperature hydrodynamic limit

Recall that the goal of this chapter is to calculate the bulk-to-shear viscosity of our

dual gauge theory. This will require us to numerically solvethe fluctuation equa-

tions in the hydrodynamic limit ˆq→ 0. In order to employ our numerical shooting

method, we will need reasonably accurate estimates of the fitting parameters when

p1 is small. Recall from (5.94) and (5.107) that the smallp1 limit corresponds to the

highT limit. We can make some progress in these limits to extract initial estimates

of the parameters we will need to fit using our shooting method. This will also pro-

vide a non-trivial check of our high-temperature corrections to the speed of sound

in (5.129), and we will find the high temperature correction to the bulk-to-shear

viscocity ratio.

As in section 5.5 we expand the fluctuation variables in powers of δ1 (high-

temperature limit) and also in powers of ˆq (hydrodynamic limit). Also, we will

consider the symmetric phase whereχ = 0, which leads toZψ = 0. We write,

Z̃H =
(

Z00 + δ
2
1Z10

)

+ iq̂
(

Z01 + δ
2
1Z11

)

Z̃α = δ1 (Zα0 + iq̂Zα1)
(6.63)
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The conditions (6.62) become

Z̃00
(

y = 0+
)

= 1

Z̃10
(

y = 0+
)

= 0

Z̃01
(

y = 0+
)

= 0

Z̃11
(

y = 0+
)

= 0,

(6.64)

and Z̃α0 and Z̃α1 must be regular on the horizon. The dispersion relation can be

expanded as

ω̂ =
q̂
√

2

(

1+ β1δ
2
1

)

− i
q̂2

4

(

1+ β2δ
2
1

)

, (6.65)

whereβ1 andβ2 are new constants that we must fix. Note that we extracted the

leading (i.e.δ1 = 0) terms in the dispersion relation, which were found in section

4.5.1. Putting (6.63) and (6.65) into (6.61), then those into (6.53), we can expand

the latter in powers ofδ1 andq̂. Setting the first two leading powers to zero gives

back the same system we encountered in section 4.5.1, so we already know that

Z̃00 = 1− y2, and Z̃01 = 0 (6.66)

which satisfies the boundary conditions. Setting the next four leading terms to zero

gives us the following system:

y3Z̃′′α0 + y2Z̃′α0 +
8
9

y3

(

y2 − 1
)2

Zα0 +
3
2
φ′1 −

2
3

y
y2 − 1

φ1 = 0 (6.67)

y2
(

y2 + 1
)

Z̃′′10 − y
(

3y2 − 1
)

Z̃′10 + 4y2Z10 +
8
3

y2

(

9yφ′1 + 2
1+ y2

1− y2
φ1

)

Zα0

+
9
4

(

y2 + 1
) (

y2 − 1
)2 (

φ′1
)2
+ 18y

(

y2 − 1
)2

A′1 + 16y2β1 = 0

(6.68)
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y3Z̃′′a1 + y2Z̃′a1 +
8
9

y3

(

y2 − 1
)2

Z̃a1 −
√

2y2Z̃′a0 −
3
2

√
2φ′1 +

2
√

2
3

y
y2 − 1

φ1 = 0 (6.69)

y2
(

y2 + 1
)2

Z̃′′11 − y
(

y2 + 1
) (

3y2 − 1
)

Z̃′11 + 4y2
(

y2 + 1
)

Z̃11 −
√

2y
(

y2 − 1
)2

Z̃′10

+ 2
√

2y2
(

y2 − 1
)

Z̃10 −
8
3

y2
(

y2 + 1
)

(

9yφ′1 − 2
y2 + 1
y2 − 1

φ1

)

Z̃α1

− 8
√

2
3

y2





















9y3φ′1 −

(

y2 + 1
)2

y2 − 1
φ1





















Z̃α0 −
9
√

2
8

(

y4 − 1
)2
φ′1

− 9
√

2y
(

y2 + 3
) (

y2 − 1
)2

A′1 − 4
√

2y2
[

β2

(

y2 + 1
)

+ 2β1

(

y2 + 3
)]

= 0

(6.70)

We will solve this system numerically, so it will suffice to find series solutions of

this system expanded about the horizon (y = 0) and about the boundary (y = 1). Let

us start with equation (6.67). Recall from section 5.5 that

φ1(y) =
(

1− y2
)

1
3

2F1

(

1
3
,
1
3
, 1;y2

)

, (6.71)

Expanding about the horizon and the boundary gives

φ1 = 1− 2
9

y2 − 8
81

y4 + O
(

y6
)

, y ≈ 0

=
2

1
3π

√
3Γ

(

2
3

)3

(

2x
1
3 +

1
3

x
4
3 + O

(

x
7
3

)

)

, x ≈ 0,
(6.72)

wherex = 1 − y is the radial coordinate such that the AdS boundary is atx = 0.

At the horizonZ̃α0 should be a regular function. We can solve equation (6.67)

perturbatively about the horizon to find that

Z̃α0 = z0 +

(

1
54
− 2

9
z0

)

y2 + O
(

y4
)

, y ≈ 0, (6.73)
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wherez0 is an integration constant that must be determined.

Let us now try to find the perturbative expansion ofZ̃α0 near the boundary. If

we make the change of variablesy = 1 − x in equation (6.67), then regardx to be

very small, then we may approximate the equation near the boundary (x = 0) to be

Z̃′′α0 − Z̃′α0 +
2

9x2
Z̃α0 = 0. (6.74)

The solution is

Z̃α0 =
√

xe
x
2

(

C1I 1
6

( x
2

)

+C2K 1
6

( x
2

))

(6.75)

whereI andK are modified Bessel functions of the first and second kind. Since this

solution is only valid for smallx, we should expand it as

Z̃α0 ∼ x
1
3 + x

2
3 + O

(

x
4
3

)

, (6.76)

where we left out the coefficients. This gives us a good guess at what the asymp-

totic expansion of̃Zα0 looks like near the boundary; it is a series of powers likex
n
3

wheren is an integer. There is a caveat however, that the fluctuationZ̃α0 cannot

dominate its corresponding background fieldφ. Recall from equation (5.52) that

φ has a leadingx
1
3 behaviour near the boundary. Thus we must, by hand, remove

the leadingx
1
3 term fromZ̃α0 to ensure that it will be sub-dominant. We may solve

perturbatively near the boundary to find

Z̃α0 = ζ1x
2
3 +

π

2
2
3

√
3Γ

(

2
3

)3
x

4
3 + O

(

x
7
3

)

, x ≈ 0 (6.77)

whereζ1 is another integration constant to be determined. With equations (6.67)

along with itsx-variable version, (6.73) and (6.77) we are set up to use our shooting
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method to determine the constantsz0 andζ1. The result is

z0 ≈ −0.0833333≈ − 1
12

(6.78)

ζ1 ≈ −0.224636≈ −
9Γ

(

2
3

)3

8
(

2
1
3

)

π2
. (6.79)

The exact values on the right-hand side were determined by inspection. These

quantities have no physical significance, but they will be used as initial values when

we solve the fluctuation equations for arbitrary temperature.

We will not solve the remaining equations (6.3)-(6.70) in detail because the

method is similar to the one we just used to solve (6.67). We will just provide the

pieces required for the numerics and the final results.

Although we know the exact solution forA1, it is useful to solve equation

(5.109) perturbatively. One finds

A1 =













− 1
36
+

2π − 3
√

3
72π













+













2π − 3
√

3
36π













y2 + O
(

y4
)

, y ≈ 0

=
π2

15
(

2
1
3

)

Γ
(

2
3

)6
x

2
3 +

1

2π
√

3
x+ O

(

x
4
3

)

, x ≈ 0
(6.80)

Then the asymptotics of̃Z10 are

Z̃10 = −












2
9
+ 4β1 +

2π − 3
√

3
4π













y2 +
2
81

y4 + O
(

y6
)

, y ≈ 0

= s1x−
(

4β1 +
s1

2

)

x2 + O
(

x
8
3

)

, x ≈ 0.

(6.81)

We numerically calculate that

s1 ≈ −0.102658 and β1 ≈ −0.0689161≈ −
√

3
8π

. (6.82)



134

The asymptotics of̃Zα1 are

Z̃α1 = u0 −
2
9

u0y
2 + O

(

y4
)

, y ≈ 0

= v0x
2
3 − π

2
1
6

√
3Γ

(

2
3

)3
x

4
3 + O

(

x
5
3

)

, x ≈ 0
(6.83)

and we find numerically that

u0 ≈ 0.0457818 and v0 ≈ 0.188418 (6.84)

The asymptotics of̃Z11 are

Z̃11 = −
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√
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(
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π
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−

4π
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3Γ
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x2 + O
(

x
7
3

)

, x ≈ 0.

(6.85)

Note thatγ1 = − 2
9π

(

2π − 3
√

3
)

, andu0 andv0 are given above. The remaining

unknowns are determined numerically to be

g1 ≈ −0.0134491 and β2 ≈ 0.250000≈ 1
4

(6.86)

Using our results forβ1 andβ2 in (6.65), we have found that the dispersion relation

to leading order inδ1 is

ω̂ =
q̂
√

2













1−
√

3
8π

δ2
1













− i
q̂2

4

(

1+
1
4
δ2

1

)

, (6.87)
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Comparing this to the generic form of the hydrodynamic dispersion relation [6]

ω̂ = csq̂−
i
2

(

1
2
+
ζ

2η

)

q̂2 (6.88)

we see that the correction to the speed of sound is in perfect agreement with (5.129),

and that the correction to the bulk-to-shear viscosity is found by identifying theiq̂2

coefficients
1
4

(

1+
1
4
δ2

1

)

=
1
2

(

1
2
+
ζ

2η

)

(6.89)

or
ζ

η
∼ 0+

δ2
1

4
(6.90)

where the zero indicates that the bulk viscosity vanishes inthe conformal limit.

6.4 Hydrodynamic limit

In this section we will numerically calculate the bulk-to-shear viscosity ratio for

arbitrary temperature. In order to do this, we must solve thesystem (6.53) in the

hydrodynamic limitq̂ → 0. To get the equations of motion in the hyrodynamic

limit, we set

Z̃H = zH0 + iq̂zH1

Z̃α = zα0 + iq̂zα1

Z̃ψ = zψ0 + iq̂zψ1.

(6.91)

and

ω̂ =
β̂1√

2
q̂− i

β̂2

4
q̂2. (6.92)
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Note that we have extracted the conformal values in (6.92) sothat in the conformal

limit we haveβ̂1 = 1 andβ̂2 = 1. Putting all this into (6.61), then into (6.53), then

expanding to leading order in ˆq, we arrive at a system of the form

z′′H0 + aH0z
′
H0 + bH0zH0 + cH0zα0 + dH0zψ0 = 0

z′′α0 + aα0z
′
α0 + bα0zα0 + cα0z

′
H0 + dα0zH0 + eα0zψ0 = 0

z′′ψ0 + aψ0z
′
ψ0 + bψ0zψ0 + cψ0z

′
H0 + dψ0zH0 + eψ0zα0 = 0,

(6.93)

where the prime denotes differentiation with respect toy. The coefficients are com-

plicated functionals of the background fields5 and their derivatives, and they contain

the parameter̂β1. Expanding to the first subleading order in ˆq, we get the system

z′′H1 + aH1z
′
H1 + bH1zH1 + cH1z

′
H0 + dH1zH0 + eH1zα1 + fH1zα0 + gH1zψ1 + hH1zψ0 = 0

z′′α1 + aα1z
′
α1 + bα1zα1 + cα1z

′
H0 + dα1zH0 + eα1z

′
H1 + fα1zH1

+ gα1z
′
α0 + hα1zα0 + iα1zψ1 + jα1zψ0 = 0

z′′ψ1 + aψ1z
′
ψ1 + bψ1zψ1 + cψ1z

′
H0 + dψ1zH0 + eψ1z

′
H1 + fψ1zH1

+ gψ1z
′
ψ0 + hψ1zψ0 + iψ1zα1 + jψ1zα0 = 0.

(6.94)

Again, the coefficients are functionals of the background fields, and they contain β̂1

andβ̂2. The boundary conditions at the horizon are

zH0
(

y = 0+
)

= 1, zH1
(

y = 0+
)

= 0, zαi
(

y = 0+
)

= zψi
(

y = 0+
)

= finite (6.95)

In order to set up the numerics, we need to solve the systems (6.93) and (6.94)

perturbatively near the horizon. Since the fluctuations areregular at the horizon, we

5The explicit forms of the coefficients will be omitted as they are too cumbersome to write down,
and would likely be fraught with typos anyway.
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may substitute a Taylor series expansion for each fluctuation in (6.93) and (6.94)

and demand that the left hand side vanishes order by order. Wefind the asymptotic

behaviour near the horizon is

zH0 = 1+ O
(

y2
)

zα0 = b0 + O
(

y2
)

zψ0 = e0 + O
(

y2
)

,

(6.96)

and

zH1 = 0+ O
(

y2
)

zα1 = d0 + O
(

y2
)

zψ1 = f0 + O
(

y2
)

,

(6.97)

where{b0, d0, e0, f0} are integration constants that remain to be fixed. In practice

we must explicitly find several more terms than what are givenhere; however, the

coefficients are complicated expressions of the integration coefficients, and they are

too cumbersome to write down.

It is straightforward to write change the systems (6.93) and(6.94) in terms of

the variablex = 1 − y. Following section 6.3, at the boundaryx = 0 we find the

following asymptotics,

zH0 = z0x+ O
(

x2
)

zα0 = u0x
2
3 + O

(

x
4
3

)

zψ0 = r0x
4
3 + O

(

x2
)

,

(6.98)
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and

zH1 = v0x+ O
(

x2
)

zα1 = h0x
2
3 + O

(

x
4
3

)

zψ1 = q0 + O
(

x2
)

,

(6.99)

We are almost set up to solve (6.93) and (6.94) using our shooting method. All we

need now are some good initial guesses for our integration constants

{b0, d0, e0, f0, h0, q0, r0, u0, v0, z0} as well asβ̂1 andβ̂2. In the conformal limit,p1 →

0, we know from (6.92) that we should start withβ̂1 = 1 andβ̂2 = 1. In section 6.3

we considered the smallp1 (near conformal) regime. Identifying our asymptotic

expansions in this section with those in section 6.3, we can pick out very good

initial guesses for the integration constants ifp1 is small. Namely, if we look at the

following equations: the second line of (6.63), (6.73),(6.77), then compare them to

the analogous equations: the second lines of equations (6.91), (6.96), and (6.97).

So in a sense we are identifyingzα0 with δ1Zα0, andzα1 with δ1Zα1. Then the results

(6.78) and (6.79) tell us that we should guess that for smallp1 we have

b0 ≈ −0.0833333δ1, and u0 ≈ −0.224636δ1 (6.100)

where (see equation (5.107))

δ1 =

√
3Γ

(

2
3

)3

2
4
3π

p1 (6.101)

Similarly we guess that

d0 ≈ 0.0457818δ1, and h0 ≈ 0.188418δ1 (6.102)
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Looking at the first lines of (6.63) and (6.91), we see that we are identifyingzH0

with Z00 + δ
2
1Z10. Recall thatZ00 = 1− y2 = 2x − x2. The coefficient 2 in front of

thex definitely dominates the contribution fromδ2
1Z10, so a good initial guess is

z0 ≈ 2. (6.103)

IdentifyingzH1 with δ2
1Z11, we guess that

v0 = −0.0134491δ2
1. (6.104)

In the symmetric phase we know that the scalar fieldχ, which is associated with the

fluctuationZψ, vanishes. As such, we guess that

e0 ≈ f0 ≈ r0 ≈ q0 ≈ 0. (6.105)

We have twelve ordinary differential equations from (6.93) and (6.94), and we have

twelve parameters

{b0, d0, e0, f0, h0, q0, r0, u0, v0, z0, β̂1, β̂2} (6.106)

that must be fixed and initial guesses for all of them. Thus we are set up to numeri-

cally compute these parameters as functions of the deformation parameterp1.

6.4.1 Numerical results

Figure 6.1 (left) shows the speed of sound squared calculated from the dispersion

relation (6.92), i.e.,

c2
s =

β̂1
2

2
(6.107)
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Figure 6.1: Top: Speed of sound squared calculated from the dispersion relation
(6.92) versus the dimensionless control parameterαp1

8πT . The red curve corresponds
to the symmetric phase whereχ = 0. The purple curve corresponds to the first
symmetry-broken phase withχ , 0. Bottom: Percent difference between the speed
of sound squared calculated in this section and that shown infigure 5.4.
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versus the dimensionless control parameterαp1

8πT , whereT is given by equation

(5.59). Figure 6.1 (bottom) shows the percentage difference between the results

in figure 5.4 (bottom) and figure 6.1 (left). The difference is everywhere less than

0.007 %. This is a non-trivial check that our analysis of the background fluctuations

in this chapter is correct.

The bulk-to-shear viscosity ratio can be related toβ̂2 by comparing (6.92) and

(6.88). We find
ζ

η
= β̂2 − 1. (6.108)

Figure 6.2 shows the results for the bulk-to-shear viscosity. In the top figure, the

red curve corresponds to the symmetric phase, and the black dashed curve is the

correction to the conformal valueζ/η = 0 given by equation (6.90). There is an

excellent agreement at small values ofp1, which is another check that our analyses

are consistent and correct. In the bottom figure, the red curve corresponds to the

symmetric phase, and the purple curve corresponds to the symmetry-broken phase.

The green dashed line corresponds to the critical value ofαp1

8πT ≈ 0.0771. The bulk

viscosity in the symmetry-broken phase appears to diverge at the transition. By

pushing the calculation closer and closer to the transition, we can confirm that this

is indeed the case.

As a final remark in this chapter, we will verify the bulk viscosity bound pro-

posed in [6], which conjectures that

ζ

η
≥ 2

(

1
p
− c2

s

)

, (6.109)

wherep is the spatial dimension of the field theory. Figure 6.3 showsthe bulk-to-

shear viscosity ratio as a function of 1/2 − c2
s. The red curve corresponds to the

symmetric phase, and the purple curve corresponds to the first symmetry-broken
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Figure 6.2: Top: Speed of sound squared calculated from the dispersion relation
(6.92) versus the dimensionless control parameterαp1

8πT . The red curve corresponds
to the symmetric phase whereχ = 0. The purple curve corresponds to the first
symmetry-broken phase withχ , 0. Bottom: Percent difference between the speed
of sound squared calculated in this section and that shown infigure 5.4.
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Figure 6.3: Bulk-to-shear viscosity ratio as a function of 1/2 − c2
s. The red curve

corresponds to the symmetric phase, and the purple curve corresponds to the first
symmetry-broken phase. The dashed blue line indicates the lower limit of the bound
ζ/η ≥ 2(1/2 − c2

s). The dashed green line corresponds to the high-temperature
approximation.

phase. The dashed blue line indicates the lower limit of the boundζ/η ≥ 2(1/2−c2
s).

We find that the bound is satisfied in both the symmetric and symmetry-broken

phases. In fact, the bound is satisfied trivially in the symmetry broken phase since

c2
s > 1/2 (see figure 6.1). We also see once again the divergent behaviour of ζ/η in

the symmetry-broken phase.

In this chapter we calculated the dispersion relation of small fluctuations of the

background fields and extracted the hydrodynamics of the dual field theory. We

found that the bulk viscosity in the symmetry-broken phase diverges at the phase

transition. We verified the correctness of our results by comparing them against

those of the near-conformal limit. Next we will do an in-depth study of the critical

behaviour of the symmetry-broken phase near the phase transition.
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Chapter 7

Critical behaviour in hairy AdS 4

The observation of a second-order phase transition beckonsa study of the critical

behaviour of this system. In this chapter we will define a set of critical exponents

by relating our parameters to those of models of ferromagnets. We will explicitly

calculate all of the critical exponents, not all of which will be found to be of mean-

field type. We find that some of the scaling relations that arise from the static

scaling hypothesis are violated. We will also find that the symmetry broken phases

are perturbatively unstable.

7.1 Criticality in ferromagnets and hairy AdS4

To make our analysis as transparent as possible, it is convenient to cast the crit-

ical behaviour in terms of the language of ferromagnets. We define the reduced

temperaturet to be

t =
T
Tc
− 1 (7.1)
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So that the transition occurs att = 0. In ferromagnetism, we also denote the external

magnetic field byH . The Gibbs free energy density is given by

W (t,H) = ǫ − sT−MH

= Ωo (t,H) − Ωd (t,H) ,
(7.2)

where ǫ is the energy density,s is the entropy density, andΩo andΩd are the

Helmholtz free energies in the ordered phase and disorderedphase respectively.

As we traverse the critical temperature, there is a spontaneous magnetization in the

system given by

M = −
(

∂W
∂H

)

t

. (7.3)

The two-point correlation function of the magnetization isdefined as

G (r ) = 〈M (r )M (0)〉 (7.4)

The critial exponents1 {α, β, γ, δ, ν, η} are defined [43] as follows:

cH ∼ |t|−α (7.5)

M ∼ |t|β (7.6)

χT ∼ |t|−γ (7.7)

M (t = 0) ∼ |H|
1
δ (7.8)

G (r ) ∼



















e−
|r |
ξ , t , 0

|r |−p+2−η , t = 0
, where ξ ∼ |t|−ν , (7.9)

1Do not confuse the critical exponentα with the parameterα in (5.51). Likewise with the ex-
ponentη and the shear viscosityη. Their use should be clear from the context in which they are
used.
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wherecH is the specific heat,χT is the isothermal susceptibility, andξ is the corre-

lation length. Under the scaling hypothesis [43], we have the following relations

α + 2β + γ = 2

γ = β (δ − 1) = ν (2− η)

2− α = νp,

(7.10)

wherep is the spatial dimension of the system.

In order to employ this language we need to relate the quantities that we have

been working with in our Exotic AdS4 model to those given so far in this section.

In ferromagnetism, the order parameter isM; that is, it is zero below the transi-

tion, and non-zero above the transition. The quantity in ourmodel that fits this

description isχ4 (see figure 5.1). So we identify that

M⇔ χ4. (7.11)

The external control parameter in our model isαp1, so we identify it with the ex-

ternal magnetic field,

H ⇔ αp1, (7.12)

whereα here is as in (5.51). Having established the language in which to define the

critical exponents, we will now calculate them.

7.2 Static critical exponents

First we will calculateα, which is defined by the scaling of specific heat near the

transition,

cH ∼ |t|−α (7.13)
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Specific heat is defined by

cH =
∂E
∂T

, (7.14)

and entropy density is given by

s= −∂F
∂T

. (7.15)

Recall also that the speed of sound squared is given by

c2
s = −

∂F
∂E . (7.16)

Then

c2
s = −

(

∂F
∂T

)

(

∂E
∂T

) =
s

cH
(7.17)

Thus we have the relationship

cH ∼
1
c2

s

. (7.18)

In figure 6.1 (top) we see that the speed of soundcs on the symmetry-broken branch

is finite at the transition; that is,

cH ∼ |t|−α ⇒ α = 0. (7.19)

The critical exponentβ is defined by

χ4 ∼ |t|β . (7.20)

A plot of χ2
4 versusTc/T near the transition is given in figure 7.1. The purple dots

are the numerical results. The green dashed line is the best linear fit. The excellent

linear fit to the data suggests that

χ4 ∼ |t|
1
2 ⇒ β =

1
2
. (7.21)
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Figure 7.1: Square of the order parameterχ4 as a function of inverse temperature
near the transition. The purple dots are the numerical results. The green dashed line
is the best linear fit.

One may now be tempted to use the scaling relations (7.10) to compute the remain-

ing exponents. The result is{α, β, γ, δ, ν, η} =
{

0, 1
2, 1, 1, 3, 1, 1

}

; however, we will

see later that some of these are incorrect.

The critical exponentδ is defined by

χ4 ∼ |αp1|
1
δ . (7.22)

Figure 7.2 shows a plot ofχ2
4 versusαp1. The excellent linear fit suggests that

χ4 ∼ |αp1|
1
2 ⇒ δ = 2, (7.23)

We may have anticipated this from the value ofβ. Let us define the dimensionless

parameterΛ as

Λ =
αp1

T
(7.24)
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Figure 7.2: Square of the order parameterχ4 as a function of the external fieldαp1.
The blue dots are the numerical results. The black dashed line is the best linear fit.

At criticality2 we have (see figure 6.2)

Λc =
αp1

Tc
=
αcpc

T
≈ 8π × 0.0771 (7.25)

We can define the reduced temperaturet and external fieldh as

t =
T − Tc

Tc
, and h =

αcpc − αp1

αp1
. (7.26)

Using (7.25) to eliminateT andTc from the first equation in (7.26) we find that

t ∼ αcpc − αp1

αp1
= h (7.27)

2Note that we have two dialsαp1 andT which we can tune to establish criticality; that is, we can
fix αp1 and tuneT or vice versa. This is similar to how the critical temperature in a ferromagnet is
a function of the external field.
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This, along with the relations

M ∼ |t|β , and M ∼ |h| 1δ (7.28)

implies that

β =
1
δ
. (7.29)

From t ∼ h we can deduce the critical exponentγ, which is defined by

χT =

(

∂M
∂H

)
∣

∣

∣

∣

∣

∣

T

∼ |t|−γ . (7.30)

Sincet ∼ h we have
∂M
∂H ∼

∂M
∂t

, (7.31)

and sinceM ∼ |t|β, we have
∂M
∂t
∼ |t|β−1 . (7.32)

Thus

γ = 1− β = 1
2

(7.33)

7.3 Dynamic susceptibility

7.3.1 Static critical exponents revisited

In this section we will introduce the concept of dynamic susceptibility. This will

allow us to explicity calculate the remaining critical exponents{ν, η}without resort-

ing to the scaling relations, and it will provide a non-trivial check of the exponent
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γ. To begin we will need to backtrack to the system (6.53), re-stated below,

AHZ′′H + BHZ′H + CHZH + EHZα + GHZψ = 0,

AαZ
′′
α + BαZ′α + CαZα + EαZψ + FαZ′H + GαZH = 0,

AψZ
′′
ψ + BψZ′ψ + CψZψ + EψZα + FψZ′H + GψZH = 0,

(7.34)

where the prime denotes differentiation with respect to the radial coordinatey. Now

we extract the leading behaviour in the following way (c.f. equation (6.61))

ZH =
1
ω̂2

y−iω̂zH, Zα =
1
q̂2

y−iω̂zα, Zψ =
1
q̂2

y−iω̂zψ. (7.35)

Making the substitutions,

ω̂ = −iΩ, q̂ =
√

Q (7.36)

we get a new system of ODEs where all the variables are real,

aHz′′H + bHz′H + cHzH + eHzα + gHzψ = 0,

aαz
′′
α + bαz

′
α + cαzα + eαzψ + fαz

′
H + gαzH = 0,

aψz′′ψ + bψz′ψ + cψzψ + eψzα + fψz′H + gψzH = 0,

(7.37)

where the coefficients are functionals of the background fields andΩ andQ. Most

of the coefficients are too cumbersome to write down explicitly, but hereare a few

that you can check if you are following along,

aH = aα = aψ = 1 (7.38)
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bH = −
1

2yc′2
(

2c′2
(

Ω2 + y2Q
)

+ yc2Q
)

×
[

yc2Q
(

yc2

(

(

φ′
)2
+

(

χ′
)2
)

− 2c′2
)

+ 4Ωc′2
(

c′2
(

2Ω2 − Ω + 2y2Q
)

+ yc2Q
)]

,

(7.39)

bα = bψ =
1− 2Ω

y
. (7.40)

The asymptotics near the horizony ≈ 0 are

zH = zh
0 + O

(

y2
)

zα = α
h
0 + O

(

y2
)

zψ = ψ
h
0 + O

(

y2
)

.

(7.41)

The asymptotics near the boundaryx = 1− y ≈ 0 are

zH = z3x+ O
(

x4/3
)

zα = x
1
3 + α2x

2
3 + O (x)

zψ = ψ4x
4
3 + O

(

x2
)

.

(7.42)

Notice that we have used the scale invariance of (7.37) to fix the first boundary

coefficient of zα to one. The dynamic susceptibility is defined to be the leading

boundary coefficient ofzψ, and we regard it to be a function ofΩ andQ. That is,

ψ4 = ψ4 (Ω,Q) = dynamic susceptibility. (7.43)

Before moving on, let us justify this definition with regard to the theory of dynam-

ical critical phenomena [29, 9]. Consider spacetime-dependent variations of the
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external magnetic fieldH ,

H → H + δH (t, x) . (7.44)

The Fourier modesHω,k of the variation are defined by

δH (t, x) =
∫

d3k

(2π)3

∫

dω
2π

eik·x−iωtHω,k . (7.45)

This variation induces a corresponding variation in the magnetization; that is,

M→M + δM (t, x) , δM (t, x) =
∫

d3k

(2π)3

∫

dω
2π

eik·x−iωtMω,k . (7.46)

The dynamic susceptibility is defined to be

χω,k =

(Mω,k

Hω,k

)
∣

∣

∣

∣

∣

∣

T

. (7.47)

In the static limitω, k → 0 we recover the isothermal susceptibility

lim
ω,k→0

χω,k = χT =

(

∂M
∂H

)
∣

∣

∣

∣

∣

∣

T

(7.48)

Recall that in the static limit we identifiedM ↔ χ4 andH ↔ p1, where these pa-

rameters are defined by the asymptotics of the background scalars near the boundary

x ≈ 0+,

φ ∼ p1x
1
3 , and χ ∼ χ4x

4
3 . (7.49)

The variation of the background scalars are

φ→ φ + δφ, χ→ χ + δχ. (7.50)
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with the associated variations in their boundary coefficients

p1 → p1 + δp1, χ4 → χ4 + δχ4. (7.51)

The fluctuation associated withφ is δφ = zα and that withχ is δχ = zψ, whose

behaviour near the boundary is given by (7.42). Thus we identify

δp1 = 1 = Hω,k , and δχ4 = ψ4 =Mω,k. (7.52)

So we see that the dynamic susceptibility as defined in (7.47)is given byψ4.

We will calculate the dynamic susceptibility in the static limit to calculate the

critical exponentγ, which is defined by

χ0,0 = χT ∝ |t|−γ (7.53)

To do this, we expand the system (7.37) first aboutΩ = 0, then expand the result

aboutQ = 0, and we keep only the leading order terms. Some of the coefficents are

still to cumbersome to write down, but here are a few of the shorter ones you can

check to make sure you’re on the right track. WithΩ→ 0 andQ→ 0, we have

aH = aα = aψ = 1 (7.54)

bH =
1
2

c2

yc′2













2c′2 − yc2 (φ′)2 − yc2 (χ′)2

2yc′2 + c2













(7.55)

bα = bψ =
1
y
. (7.56)

cH =
1
2

1
yc′2





















4
(

c′2
)2
+ c2

2 (φ′)2 + c2
2 (χ′)2

2yc′2 + c2





















. (7.57)
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Figure 7.3: Inverse square of dynamic susceptibilityψ−2
4 versus inverse temperature

Tc/T in the limitΩ → 0 andQ→ 0. The blue dots are the numerical results, and
the red curve is the best linear fit.

Likewise, we expand the asymptotic expansions (7.41) and (7.42) aboutΩ→ 0 and

Q → 0 and keep the leading terms. Although the coefficients are still rather large

in the horizon expansions, the results for the boundary expansions are

zH = z3x− 3
5

p1x
5
3 + O

(

x2
)

zα = x
1
3 + α2x

2
3 +

2
5

p2
1x+ O

(

x
4
3

)

zψ = ψ4x
4
3 +

p1

70
(20χ4 (g− 1) + p1χ4 (10g− 3)) + O

(

x
8
3

)

(7.58)

We can use our shooting method to fix the constants{α2, z3, ψ4, α
h
0, z

h
0, ψ

h
0} as func-

tions of p1. Figure 7.3 shows a plot ofψ−2
4 versusTc/T. The blue dots are the

numerical results, and the red curve is the best linear fit, which intersects the hor-

izontal axis precisely at the critical temperature. The excellent linear fit suggests

that
1

ψ4 (Ω = 0,Q = 0)2
=

1

χ2
T

∼ |t| (7.59)
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or

χT ∼ |t|−
1
2 ∼ |t|−γ ⇒ γ =

1
2
, (7.60)

in agreement with our previous result (7.33).

Next we will compute the critical exponentsν and η. Let G̃ (k) denote the

Fourier transform of the two-point correlation funtionG (r ) defined in (7.4). The

dynamic susceptibility is related this by

G̃ (k) = Tχk , where χk = χ0,k . (7.61)

Close to the phase transition we have

G (r ) ∝ e−
|r |
ξ ⇒ G̃ (k) ∝

∫

d3re−
|r |
ξ eik·r (7.62)

We can do the integral in polar coordinates. The result is

G (k) =
∫ 2π

0

∫ ∞

0
e−

r
ξ+iq̂r cosθrdrdθ

=
2πξ2

(

1+ q̂2ξ2
)

3
2

,

(7.63)

whereq̂ ≡ |k|. So the dynamic susceptibility

ψ4 (0, q̂) ∼ 1
(

q̂2 + ξ−2
)

3
2

(7.64)

has a pole when

q̂2 ≡ Q = − 1
ξ2
. (7.65)

To locate these poles, we expand (7.37) aboutΩ = 0, and we keep only the leading

order terms. Some of the coefficents are still to long to write down, but here are a
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few of the shorter ones. WithΩ→ 0, we have

aH = aα = aψ = 1 (7.66)

bH =
c2

2yc′2

















2c′2 − yc2

[

(φ′)2 + (χ′)2
]

c2 + 2yc′2

















(7.67)

bα = bψ =
1
y
, (7.68)

and all other coefficients carryQ-dependence. We also expand the asymptotic ex-

pansions (7.41) and (7.42) aboutΩ → 0 and keep the leading terms. Although

the coefficients are still rather large in the horizon expansions, theresults for the

boundary expansions are

zH = z3x−
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(
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(
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Q
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3 +

[ p1

70
(20χ4 (g− 1) + p1χ4 (10g− 3))

− 3
122

2
2
3α2a3

0ψ4
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6+ p2
0 − 2c2

0 − gp2
0c

2
0
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3a1 + a1
Q

















+ O
(

x
8
3

)

(7.69)

We can use our shooting method to fix the constants{α2, z3, ψ4, α
h
0, z

h
0, ψ

h
0} as func-

tions ofQ with p1 held fixed.

Figure 7.4 (top) shows a typical plot of 1/ψ4 versusQ with p1 held fixed. In

this casep1 = 0.450. We see that there is one pole3 for Q > 0, and multiple

poles forQ < 0. The spike aroundQ ≈ −2 is just a point where the functionψ4

vanishes. Figure 7.4 (bottom) shows that the positive-Q pole moves to the origin as

3By probing very far into theQ > 0 regime we checked that there is only one pole.
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Figure 7.4: Inverse of the dynamic susceptibility 1/ψ4 versus the momentum
squaredQ with p1 fixed. Top: p1 = 0.450. Bottom: Red curve hasp1 = 0.440.
Blue curve hasp1 = 0.450. Green curve hasp1 ≈ pc ≈ 0.464344



159

Figure 7.5: Positive-Q pole as a function ofp1. The blue dots are the numerical
results. The red curve is the best linear fit.

p1 moves toward its critical valuepc ≈ 0.464344. Figure 7.5 shows the position of

the positive-Qpole on theQ-axis (as in figure 7.4) as a function ofp1. The blue dots

are the numerical results, and the red curve is the best linear fit. The line intersects

the horizontal axis precisely at the critical value ofp1. The excellent straight line

fit together with (7.65) suggests that

Qpole ∼ |t| ∼ ξ−2. (7.70)

Recalling that the critial exponentν is defined by

ξ ∼ |t|−ν , t , 0, (7.71)

we conclude that

ν =
1
2
. (7.72)
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Figure 7.6: Inverse of the dynamic susceptibility 1/ψ4 versus the momentum
squaredQ at criticality p1 = pc ≈ 0.464344 in the limit whereΩ → 0. The
blue dots are the numerical results, and the red dashed curveis the best linear fit.

At the criticality we have

G (r ) ∼ |r |−η , (7.73)

where we took the number of spatial dimensionsp = 2 in (7.9). Taking the Fourier

transforms we get

G̃ (k) ∼
∫

d3r |r |−η eik·r

=

∫ 2π

0

∫ ∞

0
r−ηeiq̂r cosθrdrdθ

= −2πη2−η
Γ
(

−η2
)

Γ
(

η

2

) |q̂|η−2

(7.74)

or sinceq̂2 = Q,

ψ4 (0,Q) ∼ 1

Q
2−η

2

. (7.75)

Figure 7.6 shows a plot of 1/ψ4 versusQ with p1 = pc ≈ 0.464344 held fixed. The



161

blue dots are the numerical results, and the red dashed curveis the best linear fit.

The linear fit crosses the horizontal axis atQ ≈ 4.27852× 10−6, suggesting thatψ4

has a pole at the originQ = 0. The excellent linear fit suggests that

ψ4 (0,Q)|critical ∼
1
Q
. (7.76)

Comparing to (7.3.1), we conclude that

η = 0. (7.77)

To summarize the results of this chapter so far, we have computed the static critical

exponents

{α, β, γ, δ, η, ν} =
{

0,
1
2
,
1
2
, 2, 0,

1
2

}

. (7.78)

Notice thatγ andδ are not of mean-field type. Mean-field critical exponents are

expected for a classical gravity dual to field theory [5, 9]. This is a result of the

fact that classical gravity corresponds to large gauge group numberN in the dual

field theory. In our Exotic model, however, the dual field theory is not a true gauge

theory. In the typical examples of largeN field theories the central charge behaves

like [2]

c ∼ N2, (7.79)

but for AdS4 we have

c ∼ N
3
2 . (7.80)

This is perhaps the reason why we do not find mean-field critical exponents.



162

Figure 7.7: Bulk-to-shear viscosity in the first symmetry-broken phase versus the
order parameter near criticality on a double logarithmic scale. The purple dots are
the numerical results. The dashed green line is the best linear fit. The slope is
-1.9999.

7.3.2 Bulk-to-shear viscosity ratio

Figure 7.7 shows the bulk-to-shear viscosity versus the order parameter near criti-

cality on a double logarithmic scale. The purple dots are thenumerical results. The

dashed green line is the best linear fit. The slope of the line is -1.9999. The power-

law behaviour strongly suggests that the bulk viscosity in the first symmetry-broken

phase diverges at the phase transition. The excellent linear fit suggests that

ζ

η
∼ 1

χ2
4

. (7.81)

In the previous section we found that

χ4 ∼ |t|
1
2 . (7.82)
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Thus we conclude that the scaling behaviour of the bulk-to-shear viscosity ratio

near criticality is
ζ

η
∼ |t|−1 (7.83)

Several proposals have been made regarding the scaling behaviour of ζ/η near crit-

icality. In [30] the authors propose that

ζ ∼ |t|−α. (7.84)

We found thatα = 0, so this model is inconsistent with our results. In [39] it is

argued that

ζ ∼ |t|α+4β−1 (7.85)

We found thatβ = 1/2, soα + 4β − 1 = 1, so this model is also not consistent with

our results. Finally, in [34], it is argued that

ζ ∼ |t|−zν+α. (7.86)

We found thatν = 1, so this model is consistent with our results provided that

the dynamical critical exponent isz = 1. In the next section we will calculatez

explicitly, and show that in factz = 2. Therefore, none of these scaling proposals

are consistent with our model.

7.3.3 Dynamical critical exponent

Following [9], the full dynamic susceptibilityψ4 (Ω,Q) will have a pole at

Ω ∼ ξ−z, (7.87)
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wherez is the dynamical critical exponent of the system. In the hydrodynamic limit,

this defines a relaxation timeτ where

τ ≡ Ω−1 ∼ ξz ∼ |t|−νz . (7.88)

To track the pole inψ4 (Ω,Q) we must numerically solve (7.37) to fix the parameters
{

α2, z3, ψ4, α
h
0, z

h
0, ψ

h
0

}

as functions ofΩ with both p1 andQ held fixed. Figure 7.8

(top) shows a typical plot ofψ−1
4 versusΩ, in this case withp1 = 0.455 andQ = 10−5

held fixed. Generically, there is one pole that occurs at a negative value ofΩ. Figure

7.8 (bottom) shows the position of the pole inψ4 (Ω,Q) as a function ofαp1 ∼ t.

The excellent linear fit suggests that

Ωpole ∼ |t| . (7.89)

Comparing to (7.88) we see that

νz= 1. (7.90)

And since we already found thatν = 1
2, we conclude that

z= 2. (7.91)

Gubser and Mitra [26] conjectured that perturbative instabilities in translationally

invariant black holes appear as Gregory-Laflamme instabilities [23, 24], which are

defined by

Im (ω̂)|q̂<q̂c
> 0, (7.92)

whereq̂c is the momentum at the threshold of the instability (i.e. thevalue of q̂

where Im(ω̂) changes sign), and we assume that Im(q̂) = 0. Figure 7.9 shows

a plot of Q vs Tc/T in the symmetry-broken phase. The red curve represents the
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Figure 7.8: Top: Plot ofψ−1
4 versusΩ, with p1 = 0.455 andQ = 10−5 held fixed.

Bottom: Position of the pole inψ4 (Ω,Q) in the hydrodynamic limit as a function
of αp1 ∼ t. The blue dots are the numerical results forQ = 10−5, the green dots are
for Q = 10−7, and the red dots are forQ = 10−9. The red line is the best linear fit to
the red dots.
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Figure 7.9: Plot ofQ vs Tc/T in the symmetry-broken phase. The red curve rep-
resents the modes at the threshold ( ˆω, q̂) = (0, q̂c). The green/blue dots are the
stable/unstable modes with ˆω = −0.1i andω̂ = 0.1i respectively.

modes at the threshold ( ˆω, q̂) = (0, q̂c). The green/blue dots are the stable/unstable

modes withω̂ = −0.1i and ω̂ = 0.1i respectively. The existence of the unstable

modes (blue dots) represents a genuine instability in the system. This is interesting

because it verifies that the Exotic Model is a counter exampleto the Correlated

Stability Conjecture given in [26]. Related counter-examples are studied in [21].
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Chapter 8

Conclusions

Let us summarize and discuss the results and conclusion of this thesis. By consid-

ering AdS gravity in four and five dimensions, we calculated the thermodynamics

of dual CFTs in three and four dimensions, respectively. We verified that the re-

sults are consistent with the laws of thermodynamics. We computed the dispersion

relation of fluctuations of AdS4 and concluded that the background solutions are

stable. Then we considered the Exotic Model, which is essentially a model of black

holes in AdS4 with scalar hair. We computed the thermodynamics of this model and

found an exotic type of second-order phase transition, where the symmetry-broken

phase occurs above the critical temperature. Certain condensed matter systems ex-

hibit this behaviour [15]. It would be interesting to study whether our model may

have some applications in such condensed matter systems. Wecomputed the speed

of sound and bulk-to-shear viscosity ratio by considering the dispersion relation

of small fluctuations of the background. We found that the bulk-to-shear viscosity

ratio diverges at the phase transition in the symmetry-broken phase.

We interpreted of our physical parameters in terms of the language of ferromag-

netism in order to study the critical phenomena associated with the phase transition
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from the symmetry-broken phase to the symmetric phase. We developed techniques

to compute the critical exponents of our theory, and we foundthat the exponents

are not of the mean-field type as expected in the largeN limit. The positivity of the

speed of sound squared suggested that all phases of this model are thermodynami-

cally stable. On the other hand, by calculating the dynamical critical exponent, we

discovered that this model has a genuine Gregory-Laflamme instability, and is thus

classically unstable. This model is a counter-example to the Correlated Stability

Conjecture.

The majority of the calculations done here had a fixed coupling g = −100. We

argued from the numerics that asg→ ∞, the symmetry-broken phases approach the

symmetric one. It would be interesting to show analyticallythat no phase crossing

occurs in this limit. If such phase crossing does occur, thenthe symmetry-broken

phases would be thermodynamically preferrable (i.e. lowerfree energy), and there

could be interesting critical behaviour associated with such phase crossing.

The model here is phenomenological, and little is known about the dual field

theory. Nevertheless, it is a simple example of the AdS/CFT correspondence in a

non-conformal setting. The techniques used in this thesis are quite general and can

be straightforwardly applied to other AdS/CFT models. For example, virtually all

of the calcuations done here have also been applied to the celebratedN = 4 SYM

theory [5], and theN = 2∗ model [9], which is among the best approximations

to strongly coupled QCD and a description of the strongly coupled quark-gluon

plasma created at the Relativistic Heavy Ion Collider [19].
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Appendix A

Hawking temperature of AdS black

holes

Here we will calculate the Hawking temperature of a metric ofthe form

ds2 = −c1(r)
2dt2 + c2(r)

2dx2 + c3(r)
2dr2. (A.1)

Changing to the new radial coordinate and imaginary time

y =
c1

c2
, t = itE (A.2)
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we can write the metric as

ds2 = y2c2(y)2dt2E + c2(y)2dx2 + c3(y)2

(

dy
dr

)−2

dy2

= c2
3

(

dy
dr

)−2 











dy2 + y2c2
2

c2
3

(

dy
dr

)2

dt2E













+ c2
2dx2

= c2
3

(

dy
dr

)−2 













dy2 + y2d

(

c2
2

c2
3

(

dy
dr

)

tE

)2












+ c2
2dx2

= c2
3

(

dy
dr

)−2
[

dy2 + y2dt′2
]

+ c2
2dx2,

(A.3)

where

t′ =
c2

c3

(

dy
dr

)

tE. (A.4)

In (A.3), the quantity in square brackets has the form of the metric for a two-

dimensional plane in polar coordinates, wherey plays the role of the radial co-

ordinate, andt′ plays the role of the angular coordinate. If we expand the metric

to leading order about the horizony = 0, we must insist that the coordinatet′ be

periodic in the sense as the angular coordinate inR2. That is

t′ = t′ + 2π. (A.5)

Otherwise, the metric in square brackes would be that of a cone, and we would have

a conical singularity at the horizony = 0. Thus we have

tE = tE +
2π

c2
c3

(

dy
dr

) . (A.6)

We identify the period of imaginary time with the temperatureT as

tE = tE +
1
T
, so T =

1
2π

(

c2

c3

dy
dr

)
∣

∣

∣

∣

∣

∣

horizon

(A.7)
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Appendix B

Numerical shooting method

B.1 Input

Here we outline the algorithm of our numerical shooting method. In the typical

scheme, we have a set ofn ordinary second-order differential equations of the form

b j

(

g′′Bi
(x), g′Bi

(x), gBi (x), x
)

= 0, which govern the set of fields that we will denote

{gBi }, i = 1...n. We have chosen the independent variablex such that the domain

is mapped tox ∈ [0, 1], wherex = 0 corresponds to the AdS boundary andx = 1

corresponds to the black hole horizon. We generate another set of n equations of

the formh j

(

g′′Hi
(y), g′Hi

(y), gHi (y), x
)

= 0 using the variabley = 1− x, such thaty = 0

(y = 1) corresponds to the horizon (boundary). Note that the domain is y ∈ [0, 1],

and thatgHi is the same field asgBi but expressed in terms of they variable. The

labelsB andH serve only to distinguish the fieldgHi andgBi as separate functions
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in our numerical method. Arranging the equations in a vector, this looks like,

f =



















































































b1

(

g′′Bi
, g′Bi

, gBi , x
)

...

bn

(

g′′Bi
, g′Bi

, gBi , x
)
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(

g′′Hi
, g′Hi

, gHi , y
)

...

hn
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g′′Hi
, g′Hi

, gHi , y
)



















































































= 0, i = 1...n (B.1)

We can produce series solutions for the fieldsgBi (gHi ) aboutx = 0 (y = 0) to

arbitrary order1. This typically generates 4n integration constants, some of which

we can immediately fix using boundary conditions and other physical conditions.

At the very least, 2n integration constants should remain unfixed2. We can arrange

the integration constantscj as

c =



































c1

...

c2n



































= 0. (B.2)

1Usually just a few terms is sufficient.
2If more than 2n constants remain, then we repeat this algorithm for each setof values for the

remaining constants in which we are interested
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And we can arrange the series solutions as

e=



















































































GB1 (c, x)
...

GBn (c, x)

GH1 (c, y)
...

GHn (c, y)



















































































, e ′ =
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∂yGHn (c, y)



















































































. (B.3)

whereGBi (GHi) is the series solution forgBi (gHi ).

B.2 Algorithm

Now we make an initial guess for the constants inc. Call this guessc0. In order

to numerically solve the system (B.1), we need to specify an initial condition for

gBi(x = 0) andg′Bi
(x = 0) for the boundary equationsb j, and likewise forgHi (y = 0)

andg′Hi
(y = 0) for the horizon equationsh j. In practice, we choose the initial value

for x, y = ǫ to be small, but not zero. Then our initial conditions become

gBi(x = 0) ≈ GBi (c0, ǫ) g′Bi
(x = 0) ≈ ∂xGBi(c0, ǫ)

gHi (y = 0) ≈ GHi(c0, ǫ) g′Hi
(y = 0) ≈ ∂yGHi (c0, ǫ)

(B.4)

Next, we feed our equations (B.1) and our initial conditions(B.4) into a numerical

ODE solver and integrate them overx, y ∈ [0, 1/2]. Notice that this integrates the

boundary (horizon) equationsb j (h j) from the boundaryx = 0 (horizony = 0) in to
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some point in the bulk given byx = y = 1/2. We define the error∆e to be

∆e = ||v (c0)|| , where v =
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(
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(
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+ ∂ygH1
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. (B.5)

The vectorv encodes the discontinuity in the fields and their derivatives at the point

x = y = 1/2. Notice that error vector is a function of the integration constants,

i.e. v = v (c), since changing the values inc will change the values inv. What we

have calculated so far isv (c0). SincegBi andgHi are actually the same funtion, the

correct values ofc should lead to a smooth solution for the fields everywhere, and

thus havev = 0. Now we slightly vary our guesses for the constant3, i.e.

c0→ c0 + ∆c0, (B.6)

and we likewise compute the new error vectorv (c0 + ∆c0). At this point we have

values populating both vectors,v (c0) andv (c0 + ∆c0). Taylor series gives

v (c0 + ∆c0) = v (c0) + V∆c0 + O
(

∆c2
0

)

, (B.7)

whereV is a matrix with elements given by

Vi, j =
∂vi

∂cj
, i, j = 1...2n. (B.8)

3In our codes, we actually vary one constant at a time, solvingthe system anew for each varied
constant.
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We can neglect terms withO
(

∆c2
0

)

if we choose∆c0 << 1. Our ultimate goal is to

have a vanishing error vector. Thus, enforcing that

v (c0 + ∆c0) = 0, (B.9)

equation (B.7) tells us that we should have chosen

∆c0 = −V−1v (c0) . (B.10)

Now we restart the algorithm with an initial guess of

c0→ c0 − V−1v (c0) , (B.11)

and continue this way until the error∆e converges to a sufficiently small value.
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Appendix C

Numerical code

Here we present the Mathematica code that was used to solve the system in section

5.6. In this example we have six equations: three boundary equations in terms of

x, and three horizon equations in terms ofy. There are seven integration constants

that must be fixed:{p1, p2, χ4, a0, a1, p0, c0}. So we have one extra constant. We

will apply our shooting method for various values ofp1 to compute the remaining

six constants1 as functions ofp1.

The following code handles the input to the algorithm:

>c2ha= alpha*(a0+ a1*xiˆ2 + a2*xiˆ4)/(1 - xiˆ2)ˆ(1/3);

>phiha= p0+ P1*xiˆ2 + P2*xiˆ4;

>chiha= c0+ C1*xiˆ2 + C2*xiˆ4;

>dc2ha= D[c2ha, xi];

>dphiha= D[phiha, xi];

>dchiha= D[chiha, xi];

>c2ba= (alpha+ A1*xiˆ(2 /3) + A2*xi + A3*xiˆ(4 /3))/(2*xi - xiˆ2)ˆ(1/3);

>phiba= p1*xiˆ(1/3) + p2*xiˆ(2/3) + p3*xi + p4*xiˆ(4/3);

>chiba= chi4*xiˆ(4/3) + c1*xiˆ2 + c2*xiˆ(7/3) + c3*xiˆ(8/3);

1That is, they are constant with respect tox andy.
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>dc2ba= D[c2ba, xi];

>dphiba= D[phiba, xi];

>dchiba= D[chiba, xi];

>c2eqnh= (1/4)*c2h[x]*(chih’[x])ˆ2 + (1/4)*c2h[x]*(phih’[x])ˆ2 + c2h”[x]

- 4*(c2h’[x])ˆ2/c2h[x] - (c2h’[x])/x;

>phieqnh= phih”[x] + (phih’[x]) /x - phih[x]*(-8*(c2h’[x])*c2h[x] - 12*(c2h’[x])ˆ2*x +

(phih’[x])ˆ2*x*c2h[x]ˆ2 + (chih’[x])ˆ2*x*c2h[x]ˆ2)*(-1 + g*chih[x]ˆ2)/(c2h[x]ˆ2*x*(-6 -

phih[x]ˆ2 + 2*chih[x]ˆ2 + g*phih[x]ˆ2*chih[x]ˆ2));

>chieqnh= chih”[x] + (chih’[x]) /x - chih[x]*(-8*(c2h’[x])*c2h[x] - 12*(c2h’[x])ˆ2*x +

(phih’[x])ˆ2*x*c2h[x]ˆ2 + (chih’[x])ˆ2*x*c2h[x]ˆ2)*(2 + g*phih[x]ˆ2)/(c2h[x]ˆ2*x*(-6 -

phih[x]ˆ2 + 2*chih[x]ˆ2 + g*phih[x]ˆ2*chih[x]ˆ2));

>c2eqnb= c2b”[x] - (c2b’[x]) /(-1+ x) - (1/4)*(-(chib’[x])ˆ2*c2b[x]ˆ2 - (phib’[x])ˆ2*c2b[x]ˆ2

+ 16*(c2b’[x])ˆ2)/c2b[x];

>phieqnb= phib”[x] + (phib’[x]) /(-1 + x) - phib[x]*(-8*(c2b’[x])*c2b[x] + 12*(c2b’[x])ˆ2

- 12*(c2b’[x])ˆ2*x - (phib’[x])ˆ2*c2b[x]ˆ2 + (phib’[x])ˆ2*c2b[x]ˆ2*x - (chib’[x])ˆ2*c2b[x]ˆ2

+ (chib’[x])ˆ2*c2b[x]ˆ2*x)*(g*chib[x]ˆ2 - 1) /(c2b[x]ˆ2*(-1+ x)*(-6 - phib[x]ˆ2 + 2*chib[x]ˆ2

+ g*phib[x]ˆ2*chib[x]ˆ2));

>chieqnb= chib”[x] + (chib’[x]) /(-1 + x) - chib[x]*(-8*(c2b’[x])*c2b[x] + 12*(c2b’[x])ˆ2

- 12*(c2b’[x])ˆ2*x - (phib’[x])ˆ2*c2b[x]ˆ2 + (phib’[x])ˆ2*c2b[x]ˆ2*x - (chib’[x])ˆ2*c2b[x]ˆ2

+ (chib’[x])ˆ2*c2b[x]ˆ2*x)*(2 + g*phib[x]ˆ2)/(c2b[x]ˆ2*(-1 + x)*(-6 - phib[x]ˆ2 + 2*chib[x]ˆ2

+g*phib[x]ˆ2*chib[x]ˆ2));

>P2= (1/9)*p0*a0ˆ6*g*c0*C1 - (1/9)*p0*a0ˆ6+ (1/9)*p0*a0ˆ6*g*c0ˆ2 - (1/3)*p0*a0ˆ5*a1

+ (1/3)*p0*a0ˆ5*a1*g*c0ˆ2 - (1/18)*P1*a0ˆ6+ (1/18)*P1*a0ˆ6*g*c0ˆ2;

>C2= (1/9)*c0*a0ˆ6*g*p0*P1+ (1/9)*c0*a0ˆ6*g*p0ˆ2+ (2/9)*c0*a0ˆ6

+ (1/3)*c0*a0ˆ5*a1*g*p0ˆ2+ (2/3)*c0*a0ˆ5*a1+ (1/18)*C1*a0ˆ6*g*p0ˆ2+ (1/9)*C1*a0ˆ6;

>a2 = -(1/216)*(36*a0*a1 + 14*a0ˆ8*c0ˆ2 + 42*a0ˆ2 - 54*a1ˆ2+ 12*a0ˆ8*c0*C1 +

6*a0ˆ8*g*p0ˆ2*c0*C1+ 6*a0ˆ8*g*p0*P1*c0ˆ2 - 6*a0ˆ8*p0*P1+ 21*a0ˆ7*a1*g*p0ˆ2*c0ˆ2

- 126*a0ˆ7*a1+ 42*a0ˆ7*a1*c0ˆ2 - 21*a0ˆ7*a1*p0ˆ2+ 7*a0ˆ8*g*p0ˆ2*c0ˆ2 - 42*a0ˆ8 -
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7*a0ˆ8*p0ˆ2)/a0;

>P1= -(2/9)*p0*a0ˆ6+ (2/9)*p0*a0ˆ6*g*c0ˆ2;

>C1= (2/9)*c0*a0ˆ6*g*p0ˆ2+ (4/9)*c0*a0ˆ6;

>A3 = -(1/28)*alpha*p2ˆ2 - (167/22400)*alpha*p1ˆ4;

>A2 = -(1/18)*alpha*p1*p2;

>A1 = -(1/40)*alpha*p1ˆ2;

>c3= (1/25200)*chi4*(-600*p2ˆ2 - 81*p1ˆ4+ 90*p1ˆ4*g+ 1400*g*p2ˆ2+ 200*gˆ2*p1ˆ4);

>c2= (1/18)*chi4*(3*g*p1*p2 + 12 - p2*p1);

>c1= (1/70)*chi4*p1ˆ2*(10*g - 3);

>p3= (3/20)*p1ˆ3;

The following code implements the algorithm:

>xs = 10ˆ-8; xf = 0.5; result= ; step= 0.0001; orgstep= 0.01; err= Infinity; g = -100;

alpha= 1;

>result= p1s= 0, p2s= 0, chi4s= 0, a0s= 1, a1s= 0, p0s= 0, c0s= 0, err= 0

>Do[p1s= p1s+ 0.01; chi4s= 0.01; c0s= 0.01;

Do[

soln= NDSolve[c2eqnh== 0, c2eqnb== 0, phieqnh== 0, phieqnb== 0, chieqnh== 0,

chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,

phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]

== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs /. p1 ->

p1s/. p2 -> p2s/. chi4 -> chi4s/. a0 -> a0s/. a1 -> a1s/. p0 -> p0s/. c0 -> c0s, c2h, c2b,

phih, phib, chih, chib, x, xs, xf, WorkingPrecision -> 30];

v = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln)[[1]];

soln2= NDSolve[c2eqnh== 0, c2eqnb== 0, phieqnh== 0, phieqnb== 0, chieqnh== 0,

chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,

phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]

== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs /. p1 ->
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p1s/. p2 -> p2s*(1+ step)/. chi4 -> chi4s/. a0 -> a0s/. a1 -> a1s/. p0 -> p0s/. c0 ->

c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingPrecision -> 30];

v2 = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln2)[[1]];

dvdp2= (v2 - v)/(p2s*step);

soln3= NDSolve[c2eqnh== 0, c2eqnb== 0, phieqnh== 0, phieqnb== 0, chieqnh== 0,

chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,

phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]

== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs /. p1 ->

p1s/. p2 -> p2s/. chi4 -> chi4s*(1+ step)/. a0 -> a0s/. a1 -> a1s/. p0 -> p0s/. c0 ->

c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingPrecision -> 30];

v3 = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln3)[[1]];

dvdchi4= (v3 - v)/(chi4s*step);

soln4= NDSolve[c2eqnh== 0, c2eqnb== 0, phieqnh== 0, phieqnb== 0, chieqnh== 0,

chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,

phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]

== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs /. p1 ->

p1s/. p2 -> p2s/. chi4 -> chi4s/. a0 -> a0s*(1+ step)/. a1 -> a1s/. p0 -> p0s/. c0 ->

c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingPrecision -> 30];

v4 = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln4)[[1]];

dvda0= (v4 - v)/(a0s*step);

soln5= NDSolve[c2eqnh== 0, c2eqnb== 0, phieqnh== 0, phieqnb== 0, chieqnh== 0,

chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,

phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]

== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs /. p1 ->

p1s/. p2 -> p2s/. chi4 -> chi4s/. a0 -> a0s/. a1 -> a1s*(1+ step)/. p0 -> p0s/. c0 ->
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c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingPrecision -> 30];

v5 = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln5)[[1]];

dvda1= (v5 - v)/(a1s*step);

soln6= NDSolve[c2eqnh== 0, c2eqnb== 0, phieqnh== 0, phieqnb== 0, chieqnh== 0,

chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,

phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]

== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs /. p1 ->

p1s/. p2 -> p2s/. chi4 -> chi4s/. a0 -> a0s/. a1 -> a1s/. p0 -> p0s*(1+ step)/. c0 ->

c0s, c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingPrecision -> 30];

v6 = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln6)[[1]];

dvdp0= (v6 - v)/(p0s*step);

soln7= NDSolve[c2eqnh== 0, c2eqnb== 0, phieqnh== 0, phieqnb== 0, chieqnh== 0,

chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,

phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]

== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs /. p1 ->

p1s /. p2 -> p2s /. chi4 -> chi4s /. a0 -> a0s/. a1 -> a1s/. p0 -> p0s/. c0 -> c0s*(1+

step), c2h, c2b, phih, phib, chih, chib, x, xs, xf, WorkingPrecision -> 30];

v7 = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln7)[[1]];

dvdc0= (v7 - v)/(c0s*step);

deltas= -Transpose[Inverse[dvdp2, dvdchi4, dvda0, dvda1, dvdp0,dvdc0]].v[[1]], v[[2]],

v[[3]], v[[4]], v[[5]], v[[6]];

p2s= p2s+ deltas[[1, 1]]; chi4s= chi4s+ deltas[[2, 1]]; a0s= a0s+ deltas[[3, 1]]; a1s=

a1s+ deltas[[4, 1]]; p0s= p0s+ deltas[[5, 1]]; c0s= c0s+ deltas[[6, 1]];

soln= NDSolve[c2eqnh== 0, c2eqnb== 0, phieqnh== 0, phieqnb== 0, chieqnh== 0,

chieqnb== 0, c2h[xi] == c2ha, c2h’[xi]== dc2ha, c2b[xi]== c2ba, c2b’[xi]== dc2ba,
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phih[xi] == phiha, phih’[xi] == dphiha, phib[xi]== phiba, phib’[xi] == dphiba, chih[xi]

== chiha, chih’[xi] == dchiha, chib[xi]== chiba, chib’[xi] == dchiba/. xi -> xs /. p1 ->

p1s/. p2 -> p2s/. chi4 -> chi4s/. a0 -> a0s/. a1 -> a1s/. p0 -> p0s/. c0 -> c0s, c2h, c2b,

phih, phib, chih, chib, x, xs, xf, WorkingPrecision -> 40];

v = (c2b[xf] - c2h[xf], c2h’[xf] + c2b’[xf], phib[xf] - phih[xf], phih’[xf] + phib’[xf],

chib[xf] - chih[xf], chih’[xf] + chib’[xf] /. soln)[[1]];

err= Norm[v]; Print[err];, l, 1, 8];

result= Append[result, p1s, p2s, chi4s, a0s, a1s, p0s, c0s, err]; Export[”output.dat”, re-

sult];, q, 1, 100]
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