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RESEARCH

Differential impairment of cerebrospinal 
fluid synaptic biomarkers in the genetic forms 
of frontotemporal dementia
Aitana Sogorb‑Esteve1,2†, Johanna Nilsson3†, Imogen J. Swift1,2, Carolin Heller1,2, Martina Bocchetta2, 
Lucy L. Russell2, Georgia Peakman2, Rhian S. Convery2, John C. van Swieten4, Harro Seelaar4, Barbara Borroni5, 
Daniela Galimberti6,7, Raquel Sanchez‑Valle8, Robert Laforce Jr.9, Fermin Moreno10,11, Matthis Synofzik12,13, 
Caroline Graff14,15, Mario Masellis16, Maria Carmela Tartaglia17, James B. Rowe18, Rik Vandenberghe19,20,21, 
Elizabeth Finger22, Fabrizio Tagliavini23, Isabel Santana24,25, Chris R. Butler26,27, Simon Ducharme28,29, 
Alexander Gerhard30,31, Adrian Danek32, Johannes Levin32,33,34, Markus Otto35, Sandro Sorbi36,37, 
Isabelle Le Ber38,39,40,41, Florence Pasquier42,43,44, Johan Gobom3,45, Ann Brinkmalm3,45, Kaj Blennow3,45, 
Henrik Zetterberg1,3,45,46,47, Jonathan D. Rohrer1,2* and on behalf of the GENetic FTD Initiative 

Abstract 

Background: Approximately a third of frontotemporal dementia (FTD) is genetic with mutations in three genes 
accounting for most of the inheritance: C9orf72, GRN, and MAPT. Impaired synaptic health is a common mechanism 
in all three genetic variants, so developing fluid biomarkers of this process could be useful as a readout of cellular 
dysfunction within therapeutic trials.

Methods: A total of 193 cerebrospinal fluid (CSF) samples from the GENetic FTD Initiative including 77 presympto‑
matic (31 C9orf72, 23 GRN, 23 MAPT) and 55 symptomatic (26 C9orf72, 17 GRN, 12 MAPT) mutation carriers as well as 
61 mutation‑negative controls were measured using a microflow LC PRM‑MS set‑up targeting 15 synaptic proteins: 
AP‑2 complex subunit beta, complexin‑2, beta‑synuclein, gamma‑synuclein, 14–3‑3 proteins (eta, epsilon, zeta/delta), 
neurogranin, Rab GDP dissociation inhibitor alpha (Rab GDI alpha), syntaxin‑1B, syntaxin‑7, phosphatidylethanola‑
mine‑binding protein 1 (PEBP‑1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal 
pentraxin 2 (NPTX2). Mutation carrier groups were compared to each other and to controls using a bootstrapped 
linear regression model, adjusting for age and sex.

Results: CSF levels of eight proteins were increased only in symptomatic MAPT mutation carriers (compared with 
controls) and not in symptomatic C9orf72 or GRN mutation carriers: beta‑synuclein, gamma‑synuclein, 14–3‑3‑eta, 
neurogranin, Rab GDI alpha, syntaxin‑1B, syntaxin‑7, and PEBP‑1, with three other proteins increased in MAPT muta‑
tion carriers compared with the other genetic groups (AP‑2 complex subunit beta, complexin‑2, and 14–3‑3 zeta/
delta). In contrast, CSF NPTX1 and NPTX2 levels were affected in all three genetic groups (decreased compared with 

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

†Aitana Sogorb‑Esteve and Johanna Nilsson contributed equally to the work.

*Correspondence:  j.rohrer@ucl.ac.uk

2 Dementia Research Centre, Department of Neurodegenerative Disease, UCL 
Queen Square Institute of Neurology, London WC1N 3BG, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13195-022-01042-3&domain=pdf


Page 2 of 12Sogorb‑Esteve et al. Alzheimer’s Research & Therapy          (2022) 14:118 

Background
Frontotemporal dementia (FTD) is the most common 
cause of dementia affecting people under the age of 60. 
Clinically, it presents heterogeneously, manifesting as a 
behavioural variant (bvFTD), language impairment (pri-
mary progressive aphasia, PPA), or with a motor presen-
tation (either amyotrophic lateral sclerosis, FTD-ALS, or 
an atypical parkinsonian disorder). The FTD spectrum 
is characteristically associated with neuronal dysfunc-
tion and loss in the frontal and temporal lobes, but more 
widespread cortical, subcortical, cerebellar, and brain-
stem involvement is now also recognized [1]. Around 
a third of people with FTD have a genetic cause, with 
the most common mutations occurring in three genes: 
GRN (progranulin), C9orf72 (chromosome 9 open read-
ing frame 72), and MAPT (microtubule-associated pro-
tein tau) [2, 3]. Lastly, the underlying pathology of FTD 
can be one of three forms: cellular inclusions contain-
ing abnormal forms of tau, TAR DNA-binding protein 
43 (TDP-43), or FET proteins (fused in sarcoma (FUS), 
Ewing sarcoma (EWS), and TATA-binding associated fac-
tor 15 (TAF15)) [4].

The interaction between clinical phenotype, neuro-
anatomical features, genotype, and pathology is complex 
and means that FTD can be hard to diagnose (particu-
larly its specific pathological form during life) and diffi-
cult to track over time. To further examine some of these 
outstanding issues in the FTD field, researchers have 
aimed to develop fluid biomarkers, measured typically in 
the cerebrospinal fluid (CSF), serum, or plasma using a 
variety of different techniques. Biomarkers can provide 
an insight into the underlying pathophysiology of FTD 
and in the context of clinical trials could offer a direct 
experimental medicine approach to understanding the 
molecular mechanisms through measurement of bioflu-
ids pre- and post-intervention [5].

Whilst some pathways are specific to certain patho-
genetic forms of FTD, studies in recent years have par-
ticularly highlighted the importance of synaptic health 
[6–10] as one of the major pathophysiological mecha-
nisms across the FTD spectrum. Progressive synaptic 

dysfunction and loss have been shown to occur in FTD, 
raising the hypothesis that any changes in synaptic pro-
teins in brain tissue may also be reflected in their con-
centrations within the CSF (and potentially the blood) of 
people with FTD. In this study, we investigated a panel 
of CSF synaptic markers in presymptomatic and sympto-
matic people with genetic FTD from the GENetic Fron-
totemporal dementia Initiative (GENFI), hypothesizing 
that we would find differential abnormalities across 
MAPT, GRN, and C9orf72 mutation carriers.

Methods
Participants and sample collection
Participants were recruited from the GENFI study, which 
follows patients with FTD due  to a pathogenic muta-
tion in MAPT, GRN, or C9orf72 (symptomatic mutation 
carriers) and healthy at-risk first-degree relatives (either 
presymptomatic mutation carriers or non-carriers) [11]. 
We included 77 presymptomatic mutation carriers (31 
C9orf72, 23 GRN, 23 MAPT), 55 symptomatic mutation 
carriers (26 C9orf72, 17 GRN, 12 MAPT), and 61 non-
carriers. Age at the time of CSF sample collection was 
not statistically different within each group, and a similar 
percentage of males and females was included (Table 1). 
Participants were assessed using a standardized history 
and examination and classified as symptomatic if they 
met consensus diagnostic criteria [12, 13]. The CDR 
Dementia Staging Instrument with National Alzheimer 
Coordinating Centre Frontotemporal Lobar Degenera-
tion component (CDR® plus NACC FTLD) was used to 
assess disease severity. Local ethics committees at each 
site approved the study, and all participants provided 
written informed consent.

CSF collection and LC–MS/MS analysis
CSF was collected in polypropylene tubes through a lum-
bar puncture and centrifuged to remove insoluble mate-
rial and cells. Supernatants were aliquoted and stored 
at − 80 °C within 2 h after withdrawal. For the mass spec-
trometry analysis, sample preparation was performed 
as described previously [14]. Briefly, to 100 µL of CSF, 

controls), with NPTXR concentrations being affected in C9orf72 and GRN mutation carriers only (decreased com‑
pared with controls). No changes were seen in the CSF levels of these proteins in presymptomatic mutation carriers. 
Concentrations of the neuronal pentraxins were correlated with brain volumes in the presymptomatic period for the 
C9orf72 and GRN groups, suggesting that they become abnormal in proximity to symptom onset.

Conclusions: Differential synaptic impairment is seen in the genetic forms of FTD, with abnormalities in multi‑
ple measures in those with MAPT mutations, but only changes in neuronal pentraxins within the GRN and C9orf72 
mutation groups. Such markers may be useful in future trials as measures of synaptic dysfunction, but further work is 
needed to understand how these markers change throughout the course of the disease.

Keywords: Frontotemporal dementia, Synaptic dysfunction, Biomarkers
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a mixture of stable isotope-labeled peptides (internal 
standard) was added (25 µL, 0.032  pmol/µL, JPT Pep-
tide Technologies, Berlin, Germany; SpikeTides L). This 
was then followed by a stepwise protocol of reduction, 
alkylation, and tryptic digestion and lastly solid-phase 
extraction for purification purposes (for detailed sample 
preparation, refer to Additional file 3: Appendix 2). LC–
MS/MS analysis was performed using a microflow HPLC, 
equipped with a Hypersil Gold reversed-phase column 
(100 × 2.1  mm, particle size 1.9  µm, Thermo Fisher 
Scientific), and a Triple Quadrupole Mass Spectrom-
eter (6495 Triple Quadrupole LC/MS system, Agilent 

Technologies). LC–MS settings are shown in Additional 
file  3: Appendix  2. To monitor the performance of the 
assay over time, quality control (QC) sample replicates 
were injected at regular intervals during runs. The panel 
of synaptic markers included (Fig. 1) AP-2 complex subu-
nit beta, complexin-2, beta-synuclein, gamma-synuclein, 
14–3-3 proteins (eta, epsilon, zeta/delta), neurogranin, 
Rab GDP dissociation inhibitor alpha (Rab GDI alpha), 
syntaxin-1B, syntaxin-7, phosphatidylethanolamine-
binding protein 1 (PEBP-1), neuronal pentraxin receptor 
(NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal 
pentraxin 2 (NPTX2). Table  2 shows the proteins and 

Table 1 Demographics of participants in the study. N number of participants. Values are shown as mean (standard deviation)

Non-carriers Presymptomatic carriers Symptomatic carriers

C9orf72 GRN MAPT C9orf72 GRN MAPT

N 61 31 23 23 26 17 12

Age at CSF sampling 44.9 (13.2) 42.2 (11.1) 45.3 (13.8) 40.3 (10.6) 63.3 (9.2) 63.1 (7.5) 61.4 (7.4)

Sex (% females) 62.3 51.6 47.8 65.2 38.5 52.9 50

CDR plus NACC FTLD sum of boxes 0.2 (0.5) 0.3 (0.6) 0.3 (1) 0.6 (0.7) 10.5 (5.6) 9.4 (5.4) 8.3 (4.5)

Plasma NfL (pg/mL) 8.7 (6.3) 10.6 (11.8) 7.5 (3.5) 7.2 (3.3) 49.1 (29.2) 65.1 (54.6) 19.8 (2.7)

Total brain volume (as a percentage 
of total intracranial volume)

80.8 (3.3) 79.7 (2.6) 80.6 (3.1) 80.9 (2.2) 72.7 (3.5) 72.6 (4.2) 74.5 (3.5)

Fig. 1 Diagrammatic representation of the synapse and the role of the different synaptic proteins included within the mass spectrometry panel. 
Adapted from Nilsson et al. [14]
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their respective proteotypic peptides targeted in the mul-
tiple reaction monitoring mass spectrometry analysis 
[14] as well as their analytical performance. For the pro-
teins for which more than one peptide was quantified, 
the peptide with the best analytical performance (lowest 
coefficient of variation) is discussed in the main manu-
script and shown in Fig. 2.

Other biomarkers
Participants underwent volumetric T1-weighted mag-
netic resonance imaging according to the harmonized 
GENFI protocol on a 3T scanner. All images underwent a 
quality control check, and scans with movement or arte-
facts were removed from the analysis. Only scans from 
mutation carriers were included in the correlative analy-
sis: of the 132 participants, 111 scans were available for 
the analysis: 49 C9orf72, 34 GRN, and 28 MAPT muta-
tion carriers. Neuroanatomical regions of interest were 

generated as previously described using an automated 
atlas segmentation propagation and label fusion strat-
egy called geodesic information flow [11]. Specifically, 
total brain volume and volumes of the frontal, temporal, 
and parietal cortices were calculated and expressed as a 
percentage of total intracranial volume (TIV), computed 
with SPM12 (Statistical Parametric Mapping, Welcome 
Trust Centre for Neuroimaging, London, UK) running 
under Matlab R2014b.

Participants also had plasma samples collected as part 
of the GENFI protocol. Plasma was collected, processed, 
and stored in aliquots at − 80  °C according to standard-
ized procedures. Plasma neurofilament light chain (NfL) 
levels were correlated with synaptic proteins with only 
measures from mutation carriers included: of 132 par-
ticipants, 108 plasma NfL values were available for the 
analysis: 47 C9orf72, 34 GRN, and 27 MAPT mutation 
carriers. Plasma NfL concentration was measured with 

Table 2 The 15 synaptic proteins and their respective peptides included in the panel. In the far right‑hand column, the repeatability 
(presented as coefficients of variation (CV)) for proteins/peptides quantified in the study is shown. Proteins/peptides marked as bold 
were included in the statistical analysis

Protein Accession Sequence Position Repeatability 
(CV%)

AP-2 complex subunit beta P63010 NVEGQDMLYQSLK [880–892] 11.1

IQPGNPNYTLSLK [905–917] 7.1

Complexin-2 Q6PUV4 AALEQPCEGSLTRPK [84–98] 15.6

Beta-synuclein Q16143 EGVVQGVASVAEK [46–58] 12.3

Gamma-synuclein O76070 ENVVQSVTSVAEK [46–58] 8.3

14–3-3 protein eta Q04917 AVTELNEPLSNEDR [29–42] 14.7

14–3-3 protein epsilon P62258 IISSIEQK [62–69] 21.7

14–3-3 protein zeta/delta P63104 VVSSIEQK [61–68] 6.7

Neurogranin Q92686 KGPGPGGPGGAGVAR [54–68] 15.0

Rab GDI alpha P31150 QLICDPSYIPDR [279–290] 11.7

Syntaxin-1B P61266 QHSAILAAPNPDEK [56–69] 16.5

Syntaxin-7 O15400 EFGSLPTTPSEQR [72–84] 9.3

PEBP-1 P30086 LYEQLSGK [180–187] 13.5

NRPTSISWDGLDSGK [48–62] 10.6

Neuronal pentraxin receptor O95502 NNYMYAR [302–308] 5.7

LVEAFGGATK [479–488] 9.5

Neuronal pentraxin-1 Q15818 LENLEQYSR [144–152] 16.9

CESQSTLDPGAGEAR [89–103] 6.1

Neuronal pentraxin-2 P47972 VAELEDEK [177–184] 4.5

WPVETCEER [419–428] 8.9

Fig. 2 Cerebrospinal fluid (CSF) concentrations of the synaptic panel proteins in the GENFI cohort including 23 presymptomatic MAPT (PS MAPT), 
31 C9orf72 (PS C9), and 23 GRN (PS GRN) mutation carriers and 12 symptomatic MAPT (S MAPT), 26 C9orf72 (S C9), and 17 GRN (S GRN) mutation 
carriers and 61 non‑carriers. The results are shown in fmol/μL. p‑values: *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, and ****p ≤ 0.0001. The bars indicate the 
median and the IQR. Only one peptide per protein is shown as discussed in the “Methods” section. Specific means, IC, and p‑values are shown in 
Additional file 1: Table S2

(See figure on next page.)
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Fig. 2 (See legend on previous page.)
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single molecule array (Simoa) technology using the Neu-
rology 4-Plex A kit (Quanterix, Billerica, USA) on an 
HD-X Analyzer following the manufacturer’s instructions 
(Quanterix, Billerica, USA). Measurements were com-
pleted in duplicate (all CVs below 15%) over a total of 3 
batches, each with an 8-point calibration curve tested in 
triplicate and 2 controls tested in duplicate, as reported 
before [15].

Data processing and statistical analysis
Mass spectrometer data processing was performed in 
Skyline 20.1 (MacCoss Lab Software). All peaks were 
visually inspected and adjusted if required for optimal 
peak area calculation. The relative peptide concentration 
(fmol/µL) was obtained by the ratio of the total area for 
each peptide against the total area of the correspond-
ing internal standard (IS) multiplied by the amount of IS 
added per volume of CSF.

All statistical analyses were performed in STATA (v.16) 
and RStudio (R version 4.0.2). The Shapiro–Wilk test was 
performed to determine the normality of distribution of 
each synaptic marker in each group. The levels of each 
synaptic protein were compared between the groups 
using a linear regression model adjusting for age at CSF 
sample collection and sex; bootstrapping with 2000 rep-
etitions was used if the synaptic measures were not nor-
mally distributed.

Spearman correlation coefficients were assessed for 
the synaptic markers between their values and other 
biomarker data including normalized volumes of total 
brain, frontal cortex, temporal cortex, and parietal cor-
tex; plasma NfL; and the CDR plus NACC FTLD sum of 
boxes score.

Results
Concentrations of synaptic markers by genotype
Significant increases in CSF levels of several synaptic 
proteins were seen in symptomatic MAPT mutation car-
riers compared with controls (Fig.  2, Additional file  1: 
Table S1): beta-synuclein, gamma-synuclein, 14–3-3 eta, 
neurogranin, Rab GDI alpha, syntaxin 1B, syntaxin-7, 
and PEBP-1. CSF levels of all of these proteins except 
14–3-3 eta were increased in the symptomatic MAPT 
group compared with the symptomatic C9orf72 group 
(as was AP-2 complex subunit beta). Similarly, levels 
of all of these proteins except 14–3-3 eta and both beta 
and gamma-synuclein were increased in the sympto-
matic MAPT group compared with the symptomatic 
GRN group (as was complexin-2). Furthermore, 14–3-3 
zeta/delta was additionally increased in the sympto-
matic MAPT group compared with both C9orf72 and 
GRN symptomatic mutation carriers. CSF levels of all of 
these proteins except syntaxin-7 were increased in the 

symptomatic MAPT mutation carriers compared with 
the presymptomatic MAPT mutation carriers (Fig. 2).

In contrast, CSF concentrations of the neuronal pen-
traxins were found to be decreased in most of the muta-
tion carrier groups compared with controls. At least 
one of the peptides measured for NPTXR, NPTX1, and 
NPTX2 were decreased in symptomatic C9orf72 and 
GRN mutation carriers compared to controls and to their 
respective presymptomatic group. One NPTX1 and one 
NPTX2 peptide were also decreased in the symptomatic 
MAPT group compared to controls and the presympto-
matic MAPT mutation carriers (Fig. 2).

Correlations of synaptic markers with other biomarkers
For the synaptic markers that had increased CSF concen-
trations in MAPT mutation carriers, no significant cor-
relations were seen with brain volumes, NfL, or CDR plus 
NACC FTLD.

However, a number of significant correlations were 
seen with the CSF levels of neuronal pentraxins across 
the genetic groups (Table 3). In presymptomatic C9orf72 
mutation carriers, there were significant positive corre-
lations of total brain volume with NPTXR and NPTX2 
(r = 0.42 and 0.38, respectively). Additionally, there were 
significant positive correlations in this group with tem-
poral cortex volume for NPTXR (r = 0.50, p = 0.006) and 
NPTX2 (0.49, 0.007) and with parietal cortex volume for 
NPTX1 (0.41, 0.029). Two of the neuronal pentraxins 
(NPTXR and NPTX2) were significantly negatively cor-
related with CDR plus NACC FTLD. In the presymp-
tomatic GRN group, there were significant positive 
correlations with the frontal lobe (r = 0.52 to 0.53) and 
parietal lobe (r = 0.45 to 0.59) for almost all of the meas-
ures. There were no correlations with any of the imag-
ing measures in the presymptomatic MAPT group, but 
there was a significant negative correlation with NfL for 
NPTX1 (r =  − 0.46, p = 0.040).

In the symptomatic C9orf72 group, NPTXR was sig-
nificantly negatively correlated with NfL concentra-
tion (r =  − 0.68), whilst in the symptomatic GRN group, 
NPTXR and NPTX2 positively correlated with both fron-
tal (r = 0.73 and 0.80, respectively) and temporal (r = 0.77 
and 0.65, respectively) lobe volumes. In the symptomatic 
MAPT mutation carriers, there was a significant positive 
correlation of total brain volume with NPTX2 (r = 0.95, 
p = 0.004).

Discussion
In this study, we showed an increased CSF concentra-
tion of multiple synaptic markers in symptomatic MAPT 
mutation carriers. In contrast, concentrations of the neu-
ronal pentraxins were decreased in all three symptomatic 
genetic groups. Although no group-wise differences in 
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CSF levels were seen presymptomatically, correlations 
with brain volumes in the C9orf72 and GRN groups sug-
gest that the neuronal pentraxins change in the lead up 
to symptom onset as the brain volume starts to decrease.

For the proteins found to have abnormal CSF levels 
in MAPT mutations, little is known previously about 
their involvement in the pathophysiology of FTD. Beta- 
and gamma-synucleins are present in the proteinaceous 
aggregates characteristic of the alpha-synucleinopathies 
[16] although their normal function is still unclear. Previ-
ous studies have shown an increase in these markers in 
the CSF of people with Alzheimer’s disease (AD) [14, 17, 
18], but in one prior study of beta-synuclein in the CSF of 
people with undifferentiated FTD, the levels were normal 
[17]. The results in this study therefore represent a novel 
association with MAPT mutations.

14–3-3 proteins are highly expressed in the brain, par-
ticularly enriched in the presynaptic site and are impli-
cated in synaptic plasticity by acting as modulators of 
neurotransmission [19]. Although they are established 
biomarkers for Creutzfeldt-Jakob disease, they have also 
been genetically linked to AD and found to colocal-
ize with tau in the neurofibrillary tangles as well as in 
Lewy bodies in Parkinson’s disease [20]. Furthermore, 
increased levels of 14–3-3 protein have previously been 
reported in CSF from people with FTD (not differenti-
ated into a specific form) in a single study, as well as in 
people with AD [14, 21]. Here, we show increased levels 
of 14–3-3 eta protein in the symptomatic MAPT muta-
tion carriers when compared with the non-carrier group, 
and for 14–3-3 zeta/delta, when compared with the other 
symptomatic groups. These results could potentially indi-
cate a specific relationship with tau pathology, related to 
the deposition in neurofibrillary tangles of 14–3-3 pro-
teins. However, there are also trends to an increase in 
some of the 14–3-3 proteins in GRN mutations, so geno-
type differences may not be as clear here.

Neurogranin has been well-studied in the AD field as 
a fluid biomarker over recent years [22, 23]. It is a post-
synaptic molecule involved in long-term potentiation 
and synaptic plasticity mediated by  Ca2+ and calmodulin 
signalling pathways [24, 25]. In CSF, neurogranin shows 
an increase in people with AD compared with controls 
[14, 26–28]. Furthermore, increased concentrations of 
neurogranin in CSF predict cognitive decline from mild 
cognitive impairment (MCI) to AD [29, 30]. In a previous 
study, FTD levels of neurogranin were not significantly 
different to controls [31], although when stratified into 
those with tau and TDP-43 pathology, there was a trend 
for an increase in the tau group. A further study has also 
shown that neurogranin was significantly decreased in 
comparison with controls in plasma exosomes from peo-
ple with FTD [32]. In this study, we show an increase in 

neurogranin levels in symptomatic MAPT mutation car-
riers, again suggesting a specific relationship with tau 
pathology.

AP-2 complex subunit beta, the syntaxins, Rab GDI 
alpha, and PEBP-1 are all implicated in the process of 
synapse vesicle exocytosis and neurotransmitter release 
at the synaptic cleft, and their CSF levels have previously 
been shown to be abnormal in AD [14, 33–36]. Syntax-
ins participate in the formation of the soluble N-ethyl-
maleimide-sensitive factor attachment receptor (SNARE) 
complex, where they participate in synapse vesicle exo-
cytosis together with complexin-2, which modulates the 
function of the SNARE complex [33, 37]. The levels of 
syntaxin 1B have been shown to be increased at an early 
preclinical stage in the CSF of people likely to develop 
AD, even before core CSF biomarkers for neurodegen-
eration [34]. None of these proteins has been previously 
studied in FTD, but given their increase also in AD, it 
may be that these are all tau-specific markers of synaptic 
dysfunction, and further study in other primary tauopa-
thies would be important.

Finally, we showed changes across all three genetic 
groups in the neuronal pentraxins. Pentraxins are multi-
functional proteins divided into different groups accord-
ing to their length. They are not exclusively localized in 
the central nervous system (CNS) and are involved in 
the inflammatory response as well as synaptic plasticity 
among other functions [35]. The sub-family of neuronal 
pentraxins includes the soluble neuronal pentraxins 1 
(NPTX1) and 2 (NPTX2) and the transmembrane neu-
ronal pentraxin receptor (NPTXR). NPTXs are impli-
cated in synaptic plasticity, synapse formation, and 
remodelling [36]. Both the two secreted NPTX1 and 
NPTX2 and the transmembrane receptor NPTXR have 
been found in several studies to be decreased in CSF 
in AD compared with controls [14, 38–41] and appear 
to be markers of disease progression in AD [42–44]. 
Recent proteomic studies have shown decreased levels of 
NPTXR in symptomatic genetic FTD, in all three genetic 
groups [45], and in sporadic bvFTD and PPA [46]. Two 
further studies additionally showed that NPTX2 was 
decreased in symptomatic mutation carriers in all three 
groups compared with controls using antibody-based 
approaches [47, 48], and one of these studies showed 
that NPTX1 was decreased in C9orf72 and MAPT muta-
tion carriers [48]. In our study, NPTX1 and NPTX2 were 
significantly decreased in all symptomatic groups, but 
NPTXR was only decreased in C9orf72 and GRN muta-
tion carriers. In one prior study, levels of NPTX2 in CSF 
correlated with disease progression, with the suggestion 
also that NPTX2 levels change just prior to symptom 
onset [48, 49]. The correlations of the neuronal pentrax-
ins with brain volumes in the presymptomatic C9orf72 
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and GRN mutation carriers suggest that for these two 
groups, NPTXR, NPTX1, and NPTX2 change in proxim-
ity to symptom onset as brain volumes start to decrease. 
In the symptomatic C9orf72 expansion carriers, the neu-
ronal pentraxin levels correlated with NfL, which can be 
variable in concentration in this group [50]. However, it 
suggests that at least in C9orf72 expansion carriers, the 
neuronal pentraxins may be a measure of disease inten-
sity and speed of progression. In contrast, in the GRN 
and MAPT mutation carriers, neuronal pentraxin con-
centrations correlated with brain volumes, suggesting 
that here they may be a measure of disease severity rather 
than intensity.

Limitations
Limitations of the study include the limited number of 
CSF samples in each group after stratification. However, 
this is the largest study so far of synaptic biomarkers in 
this uncommon disease and replicates prior work on 
neuronal pentraxins. Further work to replicate the find-
ings in other MAPT mutation cohorts (and other pri-
mary tauopathies) as well as longitudinal analysis within 
the GENFI cohort will be important. Lastly, the specific 
synaptic markers panel used here was designed specifi-
cally to target AD pathology based on prior research and 
selected from a broad proteomic study in an AD cohort 
[51]. It may therefore be that this panel was more likely to 
find abnormalities in tauopathies and that other synaptic 
proteins not included in the panel might be better bio-
markers for assessing synaptic dysfunction in FTD, par-
ticularly in those with TDP-43 pathology.

Conclusion
In this study, we show differential involvement of synap-
tic proteins in the three main genetic groups accounting 
for familial FTD. Our results suggest that different path-
ways may be related to synaptic health in relation to the 
underlying proteinopathy found in each mutation. Future 
studies will focus on replication of these findings, longi-
tudinal analyses of these measures, and a broader prot-
eomic study to better customise a synaptic biomarker 
panel targeted to different forms of FTD.
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