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ABSTRACT 

Proper management of sulphide rich reactive mine tailings is a growing concern for 

mining industries. Oxidation of tailings can release acids and toxic metals into the 

surroundings, which can potentially pollute the ecosystem. Confining tailings under 

shallow water covers is one of the most successfully applied technologies for long-term 

storage. The water has lower solubility and diffusivity of oxygen than air and can 

significantly reduce the influx of oxygen to the bed tailings. However, wind-induced 

waves and currents in the water can resuspend bed tailings and ultimately result in 

oxidation.  

 

Extensive field investigations were carried out to evaluate the performance of the existing 

Shebandowan tailings storage facility, Thunder Bay, Ontario, Canada.  Sediment traps 

and optical backscatter sensor data showed some amount of resuspension occurring at 

this site under existing conditions. The role of wind induced circulation currents in the 

resuspension was not clear from previous studies. A semi empirical approach was used to 

determine the total bed shear stress in the tailings pond, where the current fraction of the 

bed shear stress was obtained by fitting the Log-Law to mean velocity profiles measured 

using acoustic Doppler current profiler (ADCP). This was the first study, where the 

actual currents were measured in a tailings pond. The results showed that wave-current 

interactions increased the total bed shear stress. A graphical approach was developed to 

obtain the critical shear stress and erosion rate characteristics of the bed tailings using 

field recorded resuspension. Previous studies obtained these parameters from laboratory 

column and flume experiments that did not necessarily represent field conditions.  



iv 

 

 

Based on the field investigations, some major improvements were made to an existing 

model of water cover design and the results show that wave-current interactions 

significantly increase the required depth of water from 3.9 m in the absence of wave-

current interaction to 6.3 m to completely eliminate tailings resuspension in the west cell 

of the tailings pond. However, the optimized water depths of less than 2.2 m, 1.1 m, and 

2.0 m for the west, middle and east cells were sufficient to reduce tailings concentration 

to values within the regulatory limit of 15 mg/L, respectively.  

 

Keywords: Mine tailings; shallow water cover; resuspension; wind waves and currents; 

wave-current interaction; sediment traps; OBS sensors; ADCP; water cover design 

model; critical shear stress; erosion characteristics; Log-Law; optimization. 
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NOTATIONS 

 

Notation Description Unit 

U Wind speed measured at 10 m above the water surface m/s 

Ua Wind stress factor (= 0.71*U1.23)  

u*a Wind shear velocity m/s 

u*s Surface shear velocity of water m/s 

u Near bed velocity measured at elevation above the bed z m/s 

F Fetch length or the distance of water surface over which 
wind blows 

m 

h Water cover depth m 

Hs Significant wave height m 

Ts Significant wave period s 

L Wave length m 

τb Total bed shear stress N/m2 or Pa 

τw Bed shear stress due to wind induced waves N/m2 or Pa 

τc Bed shear stress due to circulation currents N/m2 or Pa 

τs Bed shear stress due to seiche motion N/m2 or Pa 

τm Mean shear stress N/m2 or Pa 

τcr Critical bed shear stress N/m2 or Pa 

E Erosion rate  mg/m2.s 

α Coefficient  of erosion rate equation   

M Exponent of erosion rate equation  
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Notation Description Unit 

D Sediment Particle diameter m 

D50 Particle size (50% finer than) mm 

ν Kinematic viscosity of water m2/s 

ρs Density of sediments kg/m3 

ρw Density of water kg/m3 

γw Specific weight of water N/m3 

γs Unit weight of sediment N/m3 

γbo Unit weight of consolidated sediment N/m3 

γb Unit weight of sediment on the bed N/m3 

g Gravitational acceleration m/s2 

k Constant = 2.9x10-4 N/m 

ϕ Angle of repose or friction angle Degrees 

Gs Specific gravity of sediments  

c Cohesion N/m2 or  Pa 

ubm Maximum horizontal bottom velocity in shallow water m/s 

am Maximum displacement of fluid particles corresponding 
to maximum bottom velocity 

m 

fw Wave friction factor  

Rw Wave Reynold’s number  

zsh Surface characteristic length m 

zbh Bottom characteristic length m 

λ Constant depends on intensity of turbulence in water and 
varies 0.2 to 0.5 

 

Cssc Suspended solids concentration mg/L 
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Notation Description Unit 

E0 Total evaporation m 

En Net evaporation due to radiation m 

Ea Mass transfer/aerodynamic evaporation m 

∆ Rate of change in saturation vapor pressure with 
temperature 

m 

γ Psychometric constant (≅ 0.66 mb0C-1) mb0C-1 

es Saturation vapor pressure of air mb 

ea Vapor pressure of air mb 

frh Relative humidity % 

Qn Net radiation cal/cm2.day 
or W/m2 

Lv Latent heat of vaporization cal/g 

u*cw Combined wave-current bed shear velocity m/s 

u*c Current bed shear velocity m/s 

u*w Wave bed shear velocity m/s 

θc Angle between wave and current at any location Degrees 

κ Von Karman’s constant (~ 0.40)  

z0 Bed roughness length m 

z Elevation above the bed m 

OBS Optical backscatter sensor  

ST Suspended tailings sample  

BT Bed tailings sample  

ADCP Acoustic Doppler current profiler  

SSC Suspended solids concentration mg/L 
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CHAPTER 1: INTRODUCTION 

 

1.1 GENERAL  

Metal mines typically can be classified into three main categories as (1) ferrous, (2) 

precious, and (3) base metals, depending on the importance of the end products after 

exploration of metals.  

1. Ferrous-metal mines produce primarily iron and metals such as niobium and 

tantalum that are alloyed with steel.  

2. Precious-metal mines produce primarily gold, silver, palladium, and uranium.  

3. Base-metal mines include all the remaining metallic commodities, the most 

important being nickel, copper, zinc, lead, molybdenum, magnesium and cobalt.  

In Canada metal mining is associated with the largest and the oldest geological 

formation known as the Canadian Shield, which represents about half of the land area in 

Canada. The Canadian Shield is composed of igneous, sedimentary and metamorphosed 

rocks. According to Natural Resources Canada (2009), the Canadian Shield extends from 

the eastern Northwest Territories and southern Nunavut, through north-eastern Alberta, 

northern Saskatchewan and Manitoba, western and central Ontario, most of Quebec north 

of the St. Lawrence River, to Labrador and Baffin Island in the form of a great circle 

around Hudson's Bay. The majority of metal mines in Canada are in the Canadian Shield 

stretching southeast from the gold mines of Yellowknife, through Flin Flon, Red Lake, 
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Timmins, Sudbury, Rouyn-Noranda, Val d’Or and Chibougamau, to the iron mines of 

Labrador City. The remaining areas of metal mining are found within the mountains 

along the western and south-eastern coasts (Natural Resources Canada 2009).  

Canada has reserves of major metals copper, nickel, lead, zinc, molybdenum, 

silver, and gold. Four provinces in Canada, Ontario, British Columbia, New Brunswick, 

and Quebec, were dominant in terms of probable mineable reserves of major metals 

during 2005 (Reed 2005).  Ontario has the largest metal mining sector of all the provinces 

in Canada, and accounts for one-third of Canada's mineral production. Ontario's mining 

industry generates $5-7 billion each year, primarily through exports. Nickel, gold and 

copper generate the greatest economic value among all the minerals mined in Ontario. 

Ontario had 55% of the nickel, 52% of the gold, and 40% of the copper, plus 24% of the 

silver, 21% of the zinc, and 5% of the lead in Canada.  In almost the last 100 years 

Ontario has mined (Reed 2005): 

• 166 million ounces of gold 

• 1 billion ounces of silver 

• 10.8 million tons of nickel 

• 13.8 million tons of copper 

• 10.2 million tons of zinc 

In Ontario alone, over 6,000 inactive or abandoned exploration or mining sites 

exist. Metal mines produce two common types of solid waste (1) waste rock and (2) 

tailings. A single mine, in general, produces tens of millions of tonnes of solid waste 

during its life span. Modern mines process huge quantities of ore, on the order of tens of 



 

3 

 

thousands to hundreds of thousands of tonnes a day. A rough estimate is that Canadian 

mines produce about two tonnes of solid waste every day containing toxic metals, which 

is the largest amount of waste production among all industrial wastes (Mining Watch 

Canada 2009; Environmental Mining Council of BC 2010). Once blasted and hauled 

from the mine shaft of pit, ore is crushed and processed using massive volumes of water 

and a variety of chemical and physical processes. The mineral content of an ore can be in 

the 5 % range for base metals or as low as 0.00005% for precious metals like gold. This 

means that 95% to 99.9995% of the mined and processed ore becomes a waste product 

known as tailings (Mining Watch Canada 2009). For example, in Canada, the average 

grades of mined copper are under 1 %, meaning that for every tonne of copper extracted, 

99 tonnes of waste material (waste rock and tailings) is generated (Environmental Mining 

Council of BC 2010).  

In nature, most metals are found in the form of their sulphide minerals such as 

pyrite (FeS2), galena (PbS), sphalerite (ZnS), covellite (CuS) and many others.  Mine 

tailings is the waste left behind after processing and extraction of valuable metals from 

the ore. In general, tailings are composed of residual metal minerals, sulphur, and other 

processing chemicals. These sulphide rich mine tailings are highly reactive with the 

environment. On exposure to environmental oxygen and moisture, sulphide minerals 

oxidize and generate sulphuric acid and release toxic metals to the environment. This 

problem is commonly known as acid rock drainage (ARD) or acid mine drainage (AMD) 

when the oxidation and resulting drainage are associated with either an open pit mine or 

underground mine. Toxic pollutants that are commonly found in mine tailings include: 

cyanide (Cn), mercury (Hg), copper (Cu), lead (Pb), arsenic (As), cadmium (Cd), 
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selenium (Se), zinc (Zn) and nickel (Ni) (Ljungberg and Ohlander 2001; Armienta et al. 2003; 

Da Silva et al. 2005). If left unconfined and exposed to the environment, these heavy 

metals can leach out into surface and ground water systems causing serious pollution 

problems for generations. In Canada, there are an estimated 351 million tonnes of waste 

rock and 510 million tonnes of sulphide tailings which have the potential to produce 

acidic drainage. Cleanup of existing acid-generating mines in Canada will cost between $ 

2 to 5 billion (Environmental Mining Council of BC 2010).   

Water cover technology is one of the most promising methods available for 

storing mine tailings in the long-term with minimal environmental impact. In this 

method, oxidation of tailings is eliminated or minimized by submerging them under a 

confined water cover of lower solubility and diffusivity of oxygen in comparison to those 

of air. However, wind induced resuspension of the bed tailings poses a major threat to the 

effectiveness of the method. A number of previous studies have demonstrated the 

occurrence of wind induced resuspension and subsequent oxidation of mine tailings 

under shallow water covers, which underscores the inadequacy of traditionally designed 

water cover depths to eliminate resuspension (Adu-Wusu et al. 2001; Yanful and Catalan 

2002; Mian and Yanful 2003; Mian and Yanful 2004). These studies have also shown 

that water cover depth plays an important role in controlling wind-induced resuspension 

of already submerged tailings, which could otherwise still potentially oxidize due to near 

saturation levels of dissolved oxygen in the water during turbulence (Li et al. 1997; 

Samad and Yanful 2005).  
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A resuspension model, such as the one developed by Samad and Yanful (2005), 

can prove to be an important tool in either designing a new tailings storage facility or 

managing an existing one. The lack of field representative data on return currents, critical 

shear stress and erosion rate parameters can limit the use of such models. Apart from this, 

the role of return currents in resuspension is not clear from the available studies in 

literature and needs to be further investigated. In most published studies, the wind 

induced circulation currents were determined using theoretical and empirical relations 

such as those developed by Wu and Tsanis (1995). These theoretical models were 

developed under laboratory conditions and have not been verified for field conditions, 

especially for small closed water bodies such as tailings ponds.  

The work presented in this thesis is the result of extensive field work carried out 

to study the wind-induced resuspension of tailings stored under shallow water cover in an 

existing tailings storage facility. The field data were used to address some of the 

unresolved issues of water cover technology pointed out in the prior work by many 

researchers and, also, to develop a new methodology to estimate the erosion 

characteristics of bed tailings. As a major outcome of this research, the thesis was able to 

improve an existing water cover design model developed by Samad and Yanful (2005). 

 

1.2 OBJECTIVES  

The research presented in this thesis was undertaken to address issues associated with the 

functioning of water covers over reactive mine tailings. The main objectives of the study 

were to: 
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1. Evaluate the performance of the Shebandowan tailings storage facility, which is 

divided into three cells by means of two internal wave breaks (dykes), under its 

existing conditions. This included the effect of the two wave breaks and their 

locations on the overall resuspension management of the facility.  

2. Compare field measured resuspension results with predictions from the Samad 

and Yanful (2005) model. 

3. Measure field circulation currents and study their effect on total bed shear stress.  

4. Compare field measured currents with those predicted from counter-current 

model such as Wu and Tsanis (1995) under similar wind conditions. 

5. Develop a simple design method to calculate total bed shear stress in shallow 

water conditions. 

6. Develop a new methodology to calculate critical shear stress and erosion 

parameters of bed material using field measured resuspension results. 

7. Develop an improved resuspension model to design and optimize the water cover 

depth over mine tailings. 

 

1.3 ORIGINALITY AND CONTRIBUTION OF THE THESIS 

The research work presented in this thesis involved extensive field data collection, 

laboratory experiments, and theoretical data analysis. The field data collection include 

measurements of accumulated suspended sediments with sediment traps deployed over 

certain time periods, optical backscatter (OBS) measurements of real time resuspended 

solids concentrations in water, and real-time measurements of wind-induced circulation 
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currents in the water columns with the help of an acoustic Doppler current profiler 

(ADCP). Continuous weather data, which included wind speed and direction, were also 

collected. The results provided both quantitative and qualitative understanding of the 

process of tailings resuspension and the parameters on which it depends. The outcomes of 

the study were used in improving the methodologies of resuspension prediction in tailings 

ponds and in designing optimized water cover depths over tailings. 

1. The combination of sediment traps, optical backscatter (OBS) and computer 

modelling results helped to understand resuspension under conditions exisiting in 

the tailings pond. The geochemical analysis of suspended and bed tailings showed 

that the material collected in the sediment traps were resuspended bed tailings.  

2. The effect of two wave-breaks and their locations in the tailings pond was studied 

with the help of the resuspension model. None of the published work to date has 

dealt with an assessment of resuspension in a tailings pond subdivided into cells 

by wave breaks. The wave breaks or internal dykes are generally installed in 

tailings ponds to decrease the fetch (distance over which wind blows) and 

eliminate or reduce resuspension to insignificant levels.  

3. The thesis provides measurements of wind-induced circulation currents in a 

tailings pond with the help of an acoustic Doppler current profiler (ADCP). This 

was the first study, where actual circulation currents were measured in a tailings 

pond. In most previous resuspension studies, currents were determined using 

empirical relations.  

4. The field measurement and quantitative analysis of circulation currents showed 

that wave-current interaction may enhance the total bed shear stress and should be 
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considered in the analysis. Previous studies conducted on tailings ponds ignored 

this important part.  

5. A simplified equation was derived to estimate the wind-induced total bed shear 

stress in tailings ponds under shallow water cover conditions using wind speed, 

fetch length and water depth data. This equation reduces the lengthy process of 

bed shear stress estimation from a single equation, which also incorporates the 

wave-current interaction term.  

6. A new graphical method has been developed for the estimation of erosion 

characteristics of the bed tailings. The optical backscatter data collection of 

suspended solids concentrations along with wind data were used to estimate the 

critical shear stress and erosion rate parameters using actual field measured 

resuspension. These estimated values are probably more reliable than those 

obtained from laboratory experiments conducted on disturbed bed tailings and 

under simulated conditions.  

7. The outcomes of the research resulted in an improved model to design water 

covers over reactive mine tailings, reliable prediction of resuspension under given 

conditions, and optimization of water cover depth for known regulatory limit of 

suspended solids concentration in water.  

  

1.4 THESIS ORGANIZATION  

The thesis is written in an integrated-article format, with each of the articles in individual 

chapters containing separate introduction, tables, figures, results and discussion, and 
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references. There are seven major chapters in the thesis including chapters on 

Introduction, Literature Review, and Conclusions and Recommendations. Some 

additional relevant information is presented in appendices at the end of thesis. The 

organization of thesis is as follows: 

Chapter 1: This chapter provides background information on the metal mine tailings 

origin and management issues, water cover technology and problem of wind induced 

resuspension. This chapter also defines the objectives undertaken for this research. 

Chapter 2: This chapter provides detailed literature review of metal mine tailings 

managements using water cover technology. The review of published work on 

geochemistry of mine tailings, management techniques, water cover technology, wind-

induced resuspension, and water cover design modelling have been provided to improve 

understanding of unresolved issues associated with water cover technology and hence 

delineate the motivation for the research. 

Chapter 3: The chapter presents field measured results of wind induced resuspension at 

the Shebandowan tailings pond, ON, Canada. Resuspension was measured by means of 

eight sediment traps and two optical backscatter sensors (OBS). Sediment traps collected 

the suspended material over a certain period during four sampling campaigns, while OBS 

sensors recorded real time suspended solids concentration in the water. The Samad and 

Yanful (2005) model was applied to study the effect of internal wave breaks on the 

minimum required water cover depths. Field measured and model predicted results were 

compared and found to be in good agreement.  
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Chapter 4: This chapter shows the measurement of current circulation patterns recorded 

using an Acoustic Doppler Current Profiler, or ADCP. In this chapter a semi-empirical 

approach was developed to calculate the total bed shear stress. This approach involved 

the use of empirical wind wave hindcasting formulas, the well-known Log Law and 

wave-current interaction. ADCP provided measured currents and their directions at 

different locations in the tailings pond which make it possible to incorporate the wave-

current interaction term in the model.  The result showed that wave-current interaction 

may enhance the total bed shear stress. 

Chapter 5: In this chapter a new method of estimation of critical shear stress and erosion 

rate parameters of bed material is discussed. In the method, in-situ recorded wind data 

and real time resuspension recorded by OBS were used to graphically obtain 

characteristic parameters of bed sediments.  The results obtained using this method were 

more representative than those obtained by empirical equations or laboratory 

experiments. Also, a new equation was derived to simplify the estimation of total bed 

shear stress under shallow water conditions by using wind speed, fetch length, and water 

cover depth data.  

Chapter 6: This chapter provides the results of an improved model to design water covers 

over reactive mine tailings. The work and approach discussed in chapters 4 and 5, was 

incorporated into the existing model (Samad and Yanful 2005). Results obtained from the 

existing model and improved model were also provided. The results obtained from the 

improved model were found to be more reliable to apply in the field.  
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Chapter 7:  Finally, this chapter summarizes the major outcomes and conclusions of the 

thesis and also highlights recommendations for future work. 

Appendices: The thesis includes five appendices. Appendix-I provides detailed laboratory 

calibration procedure of two OBS sensors for field bed tailings. In Appendix-II, X-ray 

diffractograms of suspended tailings samples collected in eight sediment traps and 

corresponding bed tailings samples have been provided as discussed in Chapter 3. 

Appendix-III provides current velocity profiles measured in the middle cell using an 

ADCP used in Chapter 4.  Appendix-IV provides the derivation of the simplified 

equation for bed shear stress estimation under shallow water conditions. Appendix-V 

contains photos of instrumentation deployed in the field. The copyright license obtained 

for the publication of Chapter 3 has been provided in Appendix-VI. 
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CHAPTER 2:  LITERATURE REVIEW 

 

2.1 ENVIRONMENTAL GEOCHEMISTRY OF MINE TAILINGS 

In nature, most base metals are found in the form of their sulphide minerals. The 

mineralogy of ores is different for different mining locations but is commonly composed 

of sulphide minerals such as pyrite (FeS2), chalcopyrite (CuFeS2), galena (PbS), 

sphalerite (ZnS), pyrrhotite (FeS), marcasite (FeS2), bournonite (CuPbSbS2), tetrahedrite 

(Cu12Sb4S13), arsenopyrite (FeAsS), cobaltite (CoAsS), and argentite (Ag2S) (Ljungberg 

and Ohlander 2001; Armienta et al. 2003; Da Silva et al. 2005).  

It is well known that acid mine drainage (AMD) originates from the oxidation of 

the above mentioned sulphide minerals which tend to be abundant in mining residues 

known as mine tailings (Ritcey 1989; Salomons 1995; Environment Canada 2009; 

Mining Watch Canada 2009). In general, mine tailings contain residual metal minerals 

and sulphur which are left behind after extraction of valuable metals up to the extent of 

economic feasibility. Sulphide rich mine tailings, especially iron bearing sulphides, are 

highly reactive and if exposed to environmental oxygen and moisture, will oxidize 

generating sulphuric acid and releasing toxic metals to the environment. This problem is 

commonly known as acid rock drainage (ARD) or acid mine drainage (AMD) when the 

oxidation and resulting drainage are associated with either an open pit mine or 

underground mine (Ritcey 1989; Salomons 1995; Environment Canada 2009; Mining 

Watch Canada 2009).  
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The process of sulphide mineral oxidation is quite complex, but may be 

represented by a series of simplified reactions involving pyrite (FeS2) oxidation in the 

presence of two common bacteria Acidithiobacillus ferrooxidans, and Acidithiobacillus 

thiooxidans as below (Evangelou 1995; Bennett 2002). 
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�  +  ��
 → ���
 +  2 �
�
��  + 2 �
                                                 (2.1) 

���
  +  0.25 
�  +  �
  →  ���
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                                                      (2.2) 

���
  +  3 ��
 →  ��(
�)�  +  3 �
                                                                         (2.3) 

����  +  14 ���
  +  8 ��
 →  15 ���
  +  2 �
�
��  +  16 �
                                 (2.4) 

In these pyrite oxidation reactions ferrous ion oxidizes to ferric ion. 

Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans bacteria, which are 

available naturally, do not directly take part in the chemical reactions but act as a catalyst. 

From these chemical reactions, it is evident that pyrite oxidation occurs in the presence of 

oxygen and moisture and releases the free iron metal (Fe2+) and acid (H+) in the 

environment. Both of these end products are potentially responsible for environmental 

degradation. Acidity lowers the pH of the water and accelerates the mobility of other 

toxic metal ions such as: arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), 

copper (Cu), cyanide (Cn), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), 

selenium (Se), and zinc (Zn). Aube and Zinck (2003) showed the effect of pH on the 

mobility of metals by metal hydrolysis (Figure 2.1). It can be noted that the concentration 
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of metals in solution increases with increasing acidity or decreasing pH and at higher pH 

values most metals precipitate in their hydroxide forms. 

 

 

Figure 2.1 Effect of pH on release of metals (Aube and Zinck 2003) 

 

Oxidation of reactive mine tailings can adversely affect the environment. In 

environmental risk assessment studies involving mine tailings, the effect on the following 

key environmental factors must be included (Environment Canada 2009): 

1. Ground water 
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2. Surface water  

3. Air quality 

4. Vegetation 

5. Livestock (wildlife and aquatic life) 

In an acidic environment, toxic pollutants that are commonly found in tailings 

include: arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), cyanide 

(Cn), lead (Pb), manganese (Mn), mercury (Hg), nickel (Ni), selenium (Se), and zinc 

(Zn). Ljungberg and Ohlander (2001) studied the geochemistry of oxidising mine tailings 

from Laver, northern Sweden.  Based on the analysis of 60 tailings samples, these authors 

predicted that the tailings deposits can be divided into three zones (i) a top most zone 

which was highly oxidized, (ii) the oxidation front where oxidation was occurring, and 

(iii) the bottom non-oxidized zone. The oxidation front was estimated to be moving 

downward at 2.8 cm/year and was predicted to reach the groundwater within 15-30 years. 

In another study, Da Silva et al. (2005) studied the effect of unconfined metal mine 

tailings on the soils and surface water systems of Lousal village on the southwest limb of 

the Lousal anticline, Portugal, located at the former Lousal Mine, which closed in 1988. 

Da Silva et al. (2005) found significantly high amounts of toxic metals As, Cu, Hg, Pb, 

and Zn from soil samples collected from the surrounding mine area. Waters affected by 

acid mine drainage had pH ranging from 1.9 to 2.9. Sulphate (SO4
2-) concentration, 

ranged from 9249 to 20700 mg/L. The stream water mixed with acid mine drainage 

effluents was found carrying higher SO4
2-, Fe, Al, As, Cu, Pb, Zn, and Cd than the Fresh 

Water Aquatic Life Acute Criteria.  
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Changul et al. (2009) characterised the geochemistry of tailings generated at the 

Akara Gold Mine, Thailand. The most toxic metals found were Co, Cu, Cd, Cr, Pb, Mn, 

Ni and Zn analysed on the basis of the United States Environmental Protection Agency 

(EPA 3052) guidelines. Acid-base counting and net acid generation tests showed that the 

tailings samples contain abundant sulphur and were therefore, potentially acid generating. 

The results of leaching experiments showed that leachates of low pH had heavy metals 

concentrations that were higher than the regional standards. 

The above studies showed the risk of potential environmental hazards if reactive 

mine tailings are left exposed to the environment without an effective management plan. 

A proper disposal plan may include a physical barrier of any material that can stop or 

minimize oxygen influx to tailings also remain environmentally stable in the long term. 

There are several types of barriers such as water cover, earthen cover, vegetation cover, 

and geo-synthetic cover. In the next section a brief review of each of these barrier 

technologies is provided. 

 

2.2 TAILINGS MANAGEMENT/STORAGE FACILITY 

To stop or minimize the oxidation of sulphide minerals present in tailings, a properly planned 

disposal and management strategy is required. An effective tailings management plan must 

minimize the impact on each of five already mentioned environmental factors (section 2.1).  A 

good management technique must include (O`Kane and Wels 2003): 

1. Dust control 
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2. Erosion control 

3. Chemical stabilisation of acid-forming mine waste (through control of oxygen 

ingress) 

4. Contaminant release control (through control of infiltration) 

5. Provision of a growth medium for the establishment of sustainable vegetation 

There are several techniques available that have been studied and implemented 

successfully in the field as well. The most common techniques involve application of 

different kinds of engineered cover materials to eliminate or minimize oxygen influx into 

tailings. Some of the most effective covers include earthen or soil cover, vegetation 

cover, synthetic cover and water cover. In a long term disposal plan each of these covers 

have inherent advantages and disadvantages as briefly summarized in the Table 2.1.  

Field implementation of the above mentioned cover technologies depends on 

many factors such as site conditions, climate conditions, tailings composition, resources 

availability, regional laws and regulations, and economic feasibility. A site specific 

assessment is needed before selecting one or combinations of these cover techniques. The 

Department of Fisheries and Oceans Canada, Environment Canada, and Natural 

Resources Canada work together to conduct a thorough analysis of tailings management 

options provided by the developer (Environment Canada 2009).  

In this thesis, the focus is on water cover technology. Relative to other methods, 

water cover technology is one of the most economical approaches in tailings management 

in Canada where natural water resources are readily available.  Water covers have been 

extensively studied and applied in many parts of Canada, Scandinavian countries, United  
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Table 2.1 Summary of various types of engineered cover options for reactive tailings management 

Type of Cover Approach Advantages Disadvantages or Major 

Issues 

Example Site 

Earthen or Soil 

Cover 

Single or multi layered 

compacted soil cover of 

low hydraulic 

conductivity 

1. Long term stability 

2. Variety of materials 

selection 

 

1. High cost  

2. Erosion 

3. Requires large area on 

land 

Kam Kotia Mine 

Site, north-eastern 

Ontario, Canada 

(Herlin 2007) 

Vegetation 

Cover 

Vegetation type 

depends on composition 

of tailings 

1. Acid neutralization 

2. Segregation of tailings 

3. Erosion prevention 

4. Aesthetically good 

1. Extensive pre-assessment 

of  climate conditions, 

physical, chemical and 

microbial properties 

needed 

Ekati Diamond  

Mine, Yellowknife, 

NWT, Canada (Reid 

and Naeth 2005) 
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Synthetic Cover Cover of engineered 

geosynthetic material 

eg. Geosynthetic Clay 

Liner (GCL), 

Geomembrane (GM) 

1. Light weight 

2. Easy to install 

3. Very low hydraulic 

conductivity 

1. Long term durability 

2. Fragile  

3. Should cover large area 

4. Construction and 

maintenance cost 

Premier Gold 

Project, Stewart, BC, 

Canada (Renken et 

al. 2005) 

Water Cover Tailings deposited 

under a shallow water 

cover contained by 

perimeter dams,  which 

has low diffusivity and 

solubility of oxygen  

1. Aesthetically good 

2. No dust and erosion 

3. Easy to manage by 

maintaining a designed 

water cover depth  

1. Strong wind induced 

resuspension 

2. Dam stability 

3. Seepage  

 

Shebandowan Mine, 

Thunder Bay, ON, 

Canada (Kachhwal 

et al. 2010) 
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States and many other parts of the world. In Canada, at present, there are several existing 

mining sites where water cover technology has been used for long term storage of both 

oil sands and metal mine tailings. Some of existing tailings ponds designed to store metal 

mine tailings in Canada are listed below: 

1. Heath Steel Upper and Lower Cells, New Brunswick, Canada 

2. Louvicourt Tailings Area, Val d’Or, Quebec, Canada 

3. Whistle Mine, Sudbury, Ontario, Canada 

4. Quirke Waste Management Area, Elliot Lake, Ontario, Canada 

5. Falconbridge Mine Tailings Pond, Sudbury, Ontario, Canada 

6. Shebandowan Tailings Storage Facility, Thunder Bay, Ontario, Canada 

 

2.3 WATER COVER TECHNOLOGY 

The placement of tailings under a cover of water has been shown to be an effective 

method of minimizing acid generation and metal release from reactive tailings. The 

effectiveness of water cover technology is based on the fact that oxygen has lower 

solubility and diffusivity in water (8.6 g/m3 and 2x10-9 m2/s at 250 C, respectively), than 

in air (285 g/m3 and 1.78x10-5 m2/s at 250 C). These parameters mean that the influx of 

oxygen to the tailings is low; hence oxidation is significantly reduced (Dave et al. 1997; 

Simms et al. 2001; Adu-Wusu et al. 2001). A water cover also eliminates wind erosion 

and dust from potentially toxic tailings and, in the long term, provides an anoxic or 
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reducing environment for sulphate reduction and generation of alkalinity for the 

precipitation of metals (Yanful and Catalan 2002). 

Vigneault et al. (2001) applied a water cover of 0.3 m in experimental field cells 

(size 21 x 21 x 3 m deep) over fresh sulphide rich tailings and monitored the interstitial 

water chemistry over a period of two years.  The results of the study showed that a water 

cover of 0.3 m was effective in reducing the rate of tailings oxidation, but evidence of 

progressive oxidation of tailings was found.  The penetrations of the oxidation front was 

found to be less than 7 mm. The results also showed mobilization of toxic metals, such as 

cadmium (Cd), Copper (Cu), and Zinc (Zn). In that study, wind-induced turbulence was 

not considered. The main conclusion from the study was that a water cover of 0.3 m was 

sufficient to slow down the rate of tailings oxidation, but did not completely stop the 

oxidation reaction.  

A major challenge with implementing a water cover over tailings is the presence 

of strong winds which can induce waves and currents in the water. The waves and 

currents can disturb the tailings and resuspend them. Lick (1982) found that large 

variations in suspended solids concentrations in the western basin of Lake Erie were 

directly related to high bottom shear stresses caused by wind induced wave action. 

Halfman and Scholz (1993) studied suspended sediment concentrations in water-column 

profiles in Lake Malawi using a light transmissometer and found that wind induced 

waves and currents were one of the potential causes of sediment resuspension in Lake 

Malawi. The total suspended solids concentrations were reported between 0.1 and 0.5 
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mg/L. Similarly, Jin and Wang (1998) predicted that wind induced waves were the main 

reason for sediment resuspension in Lake Okeechobee. 

In a tailings pond, wind waves deliver energy to the water cover to generate 

currents which, along with the waves, can initiate sediment motion. Wind induced 

turbulence in the water also keeps the dissolved oxygen concentration at saturation level 

(Li et al. 1997; Samad and Yanful 2005). Strong winds sustained over a long period can 

cause resuspension of tailings in water that contains dissolved oxygen, and result in a 

greater potential for tailings to oxidize and impact the water quality in the pond and at the 

outlet. Wind induced resuspension alters both the surface water quality and geochemistry 

of bed tailings.  

Yanful and Verma (1999) studied the oxidation of resuspended pyrrhotite mine 

tailings flooded under a shallow water cover (0.8 m) in laboratory column experiments. 

Resuspension of tailings was generated by a paddle rotated at prescribed speeds in the 

water. The water quality was monitored continuously for 126 days. The results showed 

that pH and DO (dissolved oxygen) of stirred water were relatively lower than those of 

static water covers. The sulphate production was increased by about 26-64 times, while 

the release of metals such as zinc, copper, and nickel was 1020, 318 and 138 times 

greater, respectively. Tailings oxidation and metal release increased with increasing 

stirrer speed and decreasing water depth. Similar results for tailings oxidation were 

obtained by Gautam et al. (2000) in a laboratory wave tank (4.5 x 1.5 x 1 m size) study, 

where imposed waves were specially designed to allow simulation of field measured 

wave height: water depth ratios. However, the oxidation rate of mine tailings exposed to 
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the environment depends on the geochemistry and mineralogy of the tailings, a detailed 

discussion of which is outside the scope of the present thesis.  

Environment Canada specifies the environmental code of practice for metal mine 

tailings stored under water cover, which addresses the following key aspects of tailings 

management (Environment Canada 2009): 

1. Dam stability 

2. Changes in tailings geochemistry 

3. Effects of seepage past the dam and from the base of the facility 

4. Surface water management and discharge 

5. Dust generation 

6. Access and security 

7. Wildlife entrapment 

8. Special considerations for some types of mines such as uranium mines 

A deep water cover is generally favourable to prevent wind induced turbulence 

from reaching otherwise stable bed material. A deep water cover can be implemented by 

placing the tailings in existing natural lakes and water bodies or artificial impoundments 

by constructing perimeter dams. Engineered deep water covers require large land areas 

and high perimeter dams, which increase construction costs and raise dam stability 

concerns. Natural lakes can provide a long-term, stable environment for storing mining 

waste. They have a lower risk of failure than engineered or artificial impoundment areas.  
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Department of Fisheries and Oceans Canada and Environment Canada requires 

that mine tailings are managed in natural water bodies in accordance with the Metal 

Mining Effluent Regulations (MMER 2002), under section 36 of the Fisheries Act with 

no net loss of natural habitats. The act requires that any mining company planning to use 

a natural water body for tailings storage should compensate for the lost habitat under the 

monitoring of Department of Fisheries and Oceans Canada (Environment Canada 2003). 

However, under new regulations it is almost impossible to obtain approval to use natural 

water bodies, such as lakes and ponds, to store the tailings.  

An alternate to deep water covers by constructing artificial impoundments is to 

store tailings under engineered shallow water covers.  An engineered shallow water cover 

has relatively low implementation cost and improved dam stability. It is generally 

implemented by maintaining a certain water cover depth sufficient to stop oxygen influx 

to the bed. Most of the existing mine tailings ponds mentioned in section 2.2 involved 

shallow water covers. Typically, a water cover depth of 1 m is adopted over reactive 

mine tailings as an industrial practice (Mian 2004). As mentioned, wind-induced erosion 

and subsequent resuspension of bed tailings is a major challenge in the implementation 

and management of engineered or shallow water covers. A number of previous studies 

have demonstrated the occurrence of wind induced resuspension and oxidation of mine 

tailings under shallow water covers, which underscore the inadequacy of traditionally 

designed water cover depths to eliminate resuspension (Adu-Wusu et al. 2001; Yanful 

and Catalan 2002; Mian and Yanful 2003; Mian and Yanful 2004).  
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All of these authors have noted that resuspension of tailings depends on variables 

such as wind speed, wind direction, pond geometry or fetch length, water cover depth and 

also on tailings properties such as particle size distribution and critical shear stress of the 

bed material. Strong winds of high frequency blowing in the direction of maximum pond 

fetch for a significantly long period may cause tailings resuspension under shallow water 

cover depths. Under such conditions, shear stress generated at the tailings bed generally 

exceeds the critical shear stress or erosion resistance of the tailings (Adu-Wusu et al. 

2001; Yanful and Catalan 2002; Samad and Yanful 2005). 

 

2.4 DESIGN APPROACH OF SHALLOW WATER COVER 

Water cover depth is a key parameter that must be known either in the design of a new 

tailings pond or in the management of an existing facility. A minimum water cover depth 

must be determined to prevent the erosion of bed material from wind-induced wave 

activity and subsequent resuspension. MEND manual (2001) provides a method to 

estimate a minimum water cover depth based on the approach by Lawrence et al. (1991). 

The method is based on the assumption that, to avoid resuspension, wind-wave induced 

near bed velocity must not exceed the critical velocity for erosion. This method 

prescribes a single water cover depth for the entire pond, which may be unrealistic 

because the mobilized bed shear stress is not the same everywhere in the pond. Also, the 

contribution of return currents in the bed shear stress is ignored which is not always valid 

(Lawrence et al. 1991; Samad and Yanful 2005).  
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Samad and Yanful (2005) resolved these problems and developed a method for 

calculating the minimum water cover depth involving the discretization of the pond area 

into a mesh of square grid cells and calculation of water cover depth at the center of each 

grid cell taking into account the fetch length for that grid cell. The method is based on the 

same premise that erosion and subsequent resuspension of bed sediment occur when the 

total bed shear stress induced by waves and return currents exceeds the critical shear 

stress of the bed material. The water cover depth required to eliminate resuspension can 

be selected by comparing predominant wind induced total bed shear stress with the 

critical shear stress of the bed material. The critical shear stress is a characteristic 

property of the bed sediments which must be determined experimentally. It is the 

minimum shear stress required to entrain the bed sediments and is a complex function of 

particle size, degree of consolidation, cementation, and geochemistry of the material. In 

order to obtain the design water depth, knowledge of wind-induced total shear stress on 

the sediment bed and critical shear stress of the bed sediments is necessary. Following is 

a review of approaches used to determine these parameters. 

 

2.4.1 Estimation of Bed Shear Stress 

Wind induced bed shear stress in a closed water body such as a mine tailings pond, where 

wind is the only driving force, is made up of two parts (i) bed shear stress due to orbital 

waves and (ii) bed shear stress due to circulatory currents. Figure 2.2 presents a 

schematic diagram of tailings pond hydrodynamics in the presence of wind (adopted from 
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Yanful and Catalan 2002). The effect of wind in the tailings pond induces wave orbital 

velocities and return currents.  

 

 
 
Figure 2.2 Schematic diagram of tailings pond hydrodynamics in presence of winds 
(Yanful and Catalan 2002) 

 

2.4.1.1 Wind Wave Action 

According to Philips (1957), wind blowing over the water surface transfers its energy and 

generates waves in the water. The reason for energy transfer is the fluctuation of air 

pressure associated with turbulent eddies. Small waves then grow with time due to 

resonance between wind-induced atmospheric pressure fluctuations and the developing 

waves. The characteristics of the waves or wave parameters such as wave period (T), 

wave height (H), and wave length (L) depend on the wind and water body conditions 

such as wind speed (U), duration of persistent wind, wind direction, water cover depth 

(h), and fetch length or the distance of water surface over which wind blows (F).  
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There are several semi-empirical methods available to predict wave parameters.  

The two most common approaches for wind wave predictions, which are also employed 

in the Samad and Yanful (2005) model, are: (i) the significant wave approach or SMB 

method, and (ii) the wave spectrum approach or CEM method. These methods are briefly 

described as follows: 

1. The SMB Method 

The Sverdrup-Munk-Bretschneider (SMB) approach based on measured wave 

statistics and frequency distributions was developed by Sverdrup and Munk 

(1947) and later modified by Bretschneider (1957). Details of this approach are 

available in CERC (1984). The approach provides two sets of equations to 

determine wave parameters one for deep water conditions (h/L >0.5) and the other 

for intermediate and shallow water conditions (h/L <0.5).  The significant wave 

height (Hs) and wave period (Ts) are given by following equations: 

Deep water conditions (h/L >0.5) 
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Intermediate and shallow water conditions (h/L <0.5) 



















































































=

4
3

2

2
1

24
3

2

2

530.0tanh

00565.0

tanh530.0tanh283.0

a

a

a

a

s

U

gh

U

gF

U

gh

g

U
H       (2.7) 



















































































=

8
3

2

3
1

28
3

2

833.0tanh

0379.0

tanh833.0tanh54.7

a

a

a

a

s

U

gh

U

gF

U

gh

g

U
T       (2.8) 

where, F is fetch length, Ua is wind stress factor (= 0.71 U1.23), U is wind speed 

measured at 10 m above the water surface, g is gravitational acceleration. 

The SMB method has been used widely in several wind-wave sediment erosion 

and transport studies. Adu-Wusu et al. (2001) used the SMB method in the 

analysis and found that strong wind induced waves were the cause of tailings 

resuspension at the Quirke Waste Management Area. Bentzen et al. (2009) 

studied the wind induced resuspension of highway detention pond deposits using 

the SMB method of wave prediction along with the linear wave theory.  In the 

present thesis, the SMB method has been used for the calculations of wave 

characteristics and subsequent determination of the bed shear stress exerted by 

wind waves. 
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2. The CEM Method 

The Coastal Engineering Manual or CEM method is based on the wave spectrum 

approach which was introduced by Pierson, Neumann and James in 1955 

assuming that wave growth is best described as a spectral phenomenon (CERC 

2002). This approach resulted in the following equations for calculating the two 

wave parameters, significant wave height (Hs) and peak wave period (Tp). 
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where, u*a is the wind shear velocity, which can be calculated using Equation 2.11 

(CERC 2002) 
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where, CD is the drag coefficient.                             

Samad and Yanful (2005) compared the results of wave height obtained from the 

SMB and CEM methods and from field measurements. As shown in Figure 2.3, 

both the SMB and CEM methods predicted results within reasonable accuracy, 

however the SMB method yielded higher magnitudes compared to the CEM 

method. Once the wave characteristics or parameters have been obtained by  
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Figure 2.3 Comparison of wave heights predicted by SMB and CEM methods with 
measured data (Samad and Yanful 2005) 

 

either of the SMB or the CEM approach, the bed shear stress can be computed by 

applying any of the existing theories of wave propagation, such as (i) the linear 

wave theory (Dean and Dalrymple 1984), (ii) Stokes wave theory, and (iii) 

cnoidal and solitary wave theory (Komar 1998). The most widely used of these is 

the linear wave theory, which assumes irrotational motion of an incompressible 

fluid, neglects frictional effects and considers wave heights much smaller than the 

wavelength and water depth (Dean and Dalrymple 1984). The SMB method along 

with the linear wave theory has been used in the subsequent chapters of this thesis 

for the determination of wave bed shear stress. The governing equations and 
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corresponding details of obtaining wind wave induced bed shear stress have been 

provided in chapter 3 of this thesis and also in Samad and Yanful (2005). 

 

2.4.1.2 Return Current Action 

Wind action at the water surface generates shear induced drift currents in the direction of 

the wind. Baines and Knapp (1965), Wu (1975), Tsuruya et al. (1983), and Yang (2001) 

predicted that the generated current produces pressure driven reverse or counter-current 

flow at the bottom, which maintains the mass balance in the vertical column. A schematic 

diagram of vertical velocity profile with counter current flow is shown in Figure 2.2. 

The bed current velocity is a useful parameter in the estimation of wind induced 

bed shear stress. When direct measurements of current velocity are not possible, it can be 

estimated empirically using methodologies such as those described by Vlag (1992), Wu 

and Tsanis (1995), and Whitehouse et al. (1999). Wu and Tsanis (1995) developed a 

methodology for the estimation of counter-current flow induced bed shear stress. In this 

approach it was assumed that vertical velocity distribution follows a double logarithmic 

structure. The simplified form of Wu and Tsanis (1995) approach along with Yang 

(2001) laboratory determined parameters has been used in this thesis and governing 

equations of this methodology have been provided in Chapter 3 and also in Samad and 

Yanful (2005). 
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2.4.1.3 Total Bed Shear Stress 

Wind induced bed shear stress in a closed water body is made of two parts (i) bed shear 

stress due to waves and (ii) bed shear stress due to circulatory currents. However it is not 

clear from published literature how the waves and currents should be handled in enclosed 

shallow water conditions to obtain the total bed shear stress exerted on the bed surface by 

wind action, which is required for analyzing resuspension and sediment transport 

processes. In many studies the current induced bed shear stress in shallow water is either 

considered too small to contribute to resuspension (Luettich et al. 1990; Bailey and 

Hamilton 1996; Cozar et al. 2005) or estimated using theoretical and empirical 

approaches developed under laboratory conditions such as those developed by Wu and 

Tsanis (1995) and Yang (2001).  

Cozar et al. (2005) studied wind induced turbidity in the shallow lake of Esteros 

del Ibera, Argentina by taking into account only wind induced orbital waves. The bed 

shear stress associated with horizontal currents was assumed to be too small to influence 

the suspended solids concentration. The horizontal currents were assumed to be having a 

secondary role of advection and distribution of sediments suspended by more energetic 

orbital waves.  A model equation was developed to predict the suspended solids 

concentration for known wind speeds: 

( )( ) ( )00 ,3.2
48.3

)/( WWWW
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LmgCSSC δα
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−+=        (2.12) 

where, CSSC is suspended solids concentration, h is depth of water cover (m), α and β are 

the coefficients depend on the characteristics of the process of remobilization of the 
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particles from the bottom, W is the wind speed (m/s), W0 is the wind speed necessary for 

the wind waves to reach the bottom or bed (m/s), which occurs when wavelength (L) 

exceeds twice the water depth (L ≥ 2h), δ (W, W0) is a step-function that determines 

when the wind-induced waves begin to resuspend sediments, δ = 0 if W< W0 and δ =1 if 

W≥ W0. The wavelength (L) of wind-induced wave is a function of wind speed (W), and 

fetch length (F) and it was determined using following empirical equation: 
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Cozar et al. (2005) observed that field measured turbidity data had a good 

agreement with model predictions. The procedure for water depth calculation described 

in MEND (2001) completely ignores the contribution of current bed shear stress while in 

some modeling studies, the currents are assumed as counter currents in the opposite 

direction to winds and the total bed shear stress is taken as a simple linear addition of the 

shear stress contributions from waves and currents (Wu and Tsanis 1995; Yang 2001; 

Catalan and Yanful 2002; Samad and Yanful 2005).  

Rodney and Stefan (1987) considered both current and wave components of shear 

stresses and added them numerically. The total bed shear stress (τb) was given by: 

scwb ττττ ++=            (2.14) 

where, τs is the shear stress due to seiche motion and the other variables are as previously 

defined. Seiche motion is standing wave phenomenon generated in a basin by the 
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reflection of a travelling wave at the shore of basin (Rodney and Stefan 1987). The 

periodic seiche motion is a function of lake geometry (or fetch length F) and wind speed. 

Assuming a flat bottom, the wave period for the seiche motion to occur can be given as

gh

F
T

2
= , where F is fetch length, h is water cover depth and g is gravitational 

acceleration (Niedda and Greppi 2007). Using a typical value of fetch length F = 1000 m, 

and water cover depth h = 1.5 m for a tailings pond, the period of a seiche wave is about 

9 minutes. The wind generated waves in the tailings pond are mostly short waves of small 

wave periods typically less than 1 minute and possibly would not generate significant 

seiche motion (Yanful and Catalan 2002; Samad and Yanful 2005). In most tailings pond 

studies the effect of seiche motion has been ignored. 

Whitehouse et al. (1999) proposed an approach for determining the total bed shear 

stress generated by wind induced waves and currents. The total bed shear stress can be 

calculated by Equations 2.15 and 2.16. 
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Where, τm is the mean shear stress, which can be determined by Equation 2.16 for 

hydraulically smooth bed conditions, and the other parameters are as previously defined.  

Quick et al. (1987) noted that linear addition of wave and current parts of the total 

bed shear stresses is a simplification of a rather complex process. In other studies, it has 
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been reported that the wave and currents should not be treated separately and that their 

interaction may increase the total bed shear stress (Grant and Madesn 1979; Jing and 

Ridd 1996; Jin and Ji 2004). In order to include wave-current interaction in the total bed 

shear stress calculations, actual field measured current data is needed. In most tailings 

pond studies, information about actual currents data have been missing and currents were 

empirically calculated as counter currents.  

 

2.4.2 Erosion Characteristics 

The erosion characteristics of sediments include critical shear stress and erosion rate 

parameters. In the Samad and Yanful (2005) model, information about the critical bed 

shear stress and erosion rate parameters of bed material is required to obtain the water 

depth needed to minimize resuspension and predicting the amount of resuspension when 

bed shear stress exceeds the critical shear stress. The critical shear stress is the minimum 

shear stress required to initiate erosion of bed material. For non-cohesive materials 

critical shear stress or resistance to erosion is mainly due to inter-particle friction which is 

controlled by weight of individual particles, while in cohesive and especially finer 

materials, critical shear stress is mainly controlled by inter-particle chemical and 

electrostatic bonding. Erosion rate parameters are the calibration constants of the erosion 

rate equation which describes the relation between erosion rate and excess shear stress 

(see Equation 2.17). The erosion of bed material generally can be quantified by erosion 

rate equations. There are several erosion rate equations developed for different field 

scenarios available in literature as described by Mehta at al. (1989). The most generalized 
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form of erosion rate equation was developed by Ariathurai–Partheniades (Ariathurai and 

Arulanandan 1978; Partheniades1986; Samad and Yanful 2005) assuming that the depth 

of erosion is small and that the critical bed shear stress for erosion does not vary with 

depth. This erosion rate equation was developed for mainly cohesive materials and has 

been applied in most tailings resuspension studies. However, a field calibrated erosion 

rate equation should be applicable for both cohesive and non-cohesive tailings. A 

generalized power law equation for erosion rate can be written as follows. 
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where, coefficient α, and exponent M are commonly called erosion rate parameters and 

are characteristic of the sediment. These parameters can be determined by calibration of 

Equation 2.17 for known values of erosion rate (E), applied bed shear stress (τb), and 

critical shear stress (τcr) for site specific sediments. These characteristic parameters of 

sediments are governed by many factors including tailings mineralogy, composition of 

pore water and eroding fluid (saline or brackish), consolidation of material, sand and silt 

content, bio-film, organic content (Kamphuis and Hall 1983; Mian 2004). In a tailings 

pond, erosion occurs when wind induced total bed shear stress exceeds the critical shear 

stress of the bed tailings (Yanful and Catalan 2002; Samad and Yanful 2005). In 

published studies so far, the erosion characteristics were calculated by using different 

approaches described in the next sections. 
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2.4.2.1 Empirical Approaches  

Some of the empirical approaches used to determine the critical shear stress of the bed 

sediments include the Shields Criterion (Shields 1936); Fischenich (2001) equation, and 

the Chien and Wan (1998) equation. Shield (1936) was one of the first researchers who 

attempted to develop an analytical approach to predict sediment erosion under wave and 

current actions, especially in rivers. He defined a dimensionless parameter and 

established a criterion (Shield’s Criterion) of incipient motion. According to this 

criterion, the factors important for the determination of incipient motion are shear stress 

(τ), difference in density between sediment and water (ρs – ρw), particle diameter (D), 

kinematic viscosity (ν), and gravitational acceleration (g). Two dimensionless parameters 

used to develop the well known Shield’s diagram (Figure 2.4) were obtained using 

Equations 2.18 and 2.19.  
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where, u* is the shear velocity and γw is the specific weight of water. The Shield’s diagram has 

been used as a criterion for determining sediment incipient motion by many engineers 

and researchers (Yang 1977; Kennedy 1995).  
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Figure 2.4 Shield’s diagram: the relationship between dimensionless critical shear stress 
and shear velocity Reynolds number (Yang 1977) 

 

Adu-Wusu et al. (2001) used the Chien and Wan (1998) empirical equation 

(Equation 2.20) to estimate the critical shear stress of bed tailings at the Quirke Waste 

Management Area (Cell 14): 
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where, γs and γw are the unit weights of the sediment and water, respectively, γb is the unit 

weight of sediment on the bed, γbo is the unit weight of consolidated sediment, k is a 

constant (= 2.9x10-4 N/m), and D is the sediment particles diameter. The unit weight of 

sediment bed (γb ), and that of consolidated sediment (γbo) were assumed to be equal for 

compacted tailings at the time of deposition. The critical shear stress obtained was in the 

range of 0.12 to 0.22 Pa with an average value of 0.17 Pa. These values were reported to 
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be similar to the critical shear stress (0.12-0.17 Pa) of Heath Steele mine tailings, where 

the critical shear stress was obtained in a laboratory rotating circular flume using a 

disturbed sample of bed tailings (Yanful and Catalan 2002). 

Fischenich (2001) provided a set of three empirical equations to determine the 

critical shear stress of different bed sediments. According to Fischenich (2001) the 

critical shear stress can be obtained by equating the applied forces to the resisting forces. 

For sediments of diameter, D, and angle of repose, ϕ, on a flat bed, the following 

equations were developed to approximate the critical shear stress of various sizes of 

sediment: 

( ) ClaysForDwscr φγγτ tan5.0 −=         (2.21) 

( ) SandsandSiltsForDD wscr φγγτ tan25.0 6.0

* −= −                  (2.22) 

( ) CobblesandGravelsForDwscr φγγτ tan06.0 −=                  (2.23) 

where,  

( ) 3
1

2*

1







 −
=

ν

gG
DD ,                                                        (2.24) 

G is the specific gravity or relative density of the sediment, g is gravitational acceleration, 

ν is the kinematic viscosity of the water/sediment mixture. The important thing to note is 

that these equations were developed for non-cohesive and uniform size sediments, but in 

nature where a mixture of various sized sediments exist, the presence of cohesion, 
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organic matter, vegetations, and geochemistry can significantly alter the critical shear 

stress of the bed material. However, Fischenich’s (2001) equation has been used in the 

present study to determine the critical shear stress of bed tailings at the Shebandowan 

tailings storage facility (Chapter 3). The results for east and west cells of the tailings pond 

were similar to those reported for tailings from other mining sites such as Quirke and 

Heath Steele (Adu-Wusu et al. 2001; Yanful et al. 2002). In the case of the finer middle 

cell tailings at Shebandowan site, the estimated critical shear stress was quite low (0.04 

Pa) and could not explain field resuspension results. 

 

2.4.2.2 Laboratory Experiments  

Krishnappan (1993) used a circular flume to determine the critical shear stress and 

erosion rate parameters. In this flume, the critical shear stress was measured by 

monitoring the concentration of suspended sediments with increasing bed shear stress 

applied by generating fluid motion with two annular plates rotating in opposite directions. 

The diameter of the set up was 7.0 m. A bulk sample of approximately 90 kg of tailings 

and 500 L of tap water were used to prepare slurry used in the flume. The speed of the 

flume rotation was increased in time steps of 30 min and suspended solids concentration 

in the water was monitored during each time step. The bed shear stress applied by the 

flume and suspended solids concentration was plotted to identify the onset of sediment 

erosion. The detailed procedure has been described in published articles by Krishnappan 

(1993), Yanful and Verma (1998), and Yanful et al. (2002). Several other authors, 

including Fukuda (1978), Sheng and Lick (1979), and Mehta et al. (1982) have used 
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similar annular rotating flumes to obtain critical shear stress of the sediments. Other 

smaller scale laboratory experiments include column tests such as used by Geremew and 

Yanful (2010).  

In laboratory experimental methods, a known value of shear stress is applied 

mechanically to packed sample of bed tailings material. However, in the field the 

presence of benthic organism and bio-films in bed sediments influence the erosion 

characteristics of bed sediments and disturbed samples used in the laboratory erosion 

tests may not represent the same physical, chemical and biological sediment 

characteristics (Krishnappan and Droppo 2006). 

 

2.4.2.3 In situ Experiments 

 It is necessary to estimate erosion characteristics or parameters in field conditions. There 

are very limited studies available on the estimation of critical shear stress and erosion rate 

parameters in the field. Several in-situ instruments are used for determining erosion 

characteristics. Amos et al. (1992) developed a benthic annular flume in the horizontal 

plane (Sea Carousel) based on the principle of laboratory developed carousels in which 

the shear stress is induced by a horizontal circulating flow. A similar principle has been 

used by Black (1993), who developed the mobile recirculating sea water flume (MORF) 

for measuring the resuspension of intertidal muds. Maa et al. (1993) developed an 

annular sea-bed flume (VIMS) which can be deployed under deep water conditions. 

Similar in-situ benthic circular flumes equipped with more advanced sensors such as 
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optical backscatter sensor (OBS) were designed and deployed in the field by Moreau et 

al. (2003), and Krishnappan and Droppo (2006). Straight flumes have also been 

developed by Young (1976) and Gust and Morris (1989).  

Houwing and Rijn (1998) reported that all of the in situ instruments basically 

work on a similar principle in which a circulating or straight water flow exerts a known 

amount of shear stress on the bed. The major disadvantage of this technique is the 

relatively large size of instrument required to ensure a logarithmic distribution of the 

velocity profile. The average size of these flumes was of the order of 2 m and the size of 

the test sections was in the range of 0.1 – 1.0 m2. Houwing and Rijn (1998) developed an 

in situ erosion flume (ISEF) to determine the critical shear stress and erosion rate 

parameters. This relatively small (1.8 m length) and light weight (50 kg) instrument was 

calibrated and tested under laboratory conditions on a kaolinite bed. The volume of the 

water in the flume was 100 dm3 and a propeller was rotated to generate the turbulent flow 

measured by disc-type electromagnetic flow meter (EMF). The suspended solids 

concentration was recorded by an optical sensor (MEX). The inaccuracy reported by 

authors in the shear stress was 20%. However, this light weight flume was not tested 

under field conditions. 

Other in situ techniques have been developed for the determination of the erosion 

characteristics of cohesive sediment bed on a smaller scale, which have not been widely 

applied. A cohesive strength meter (CSM) was developed by Patterson (1989) in which a 

generated water jet impacted a sediment surface. Tsai and Lick (1986) developed an 

instrument called “shaker” in which turbulent motion of water column was generated 
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above the sediment surface by an oscillating horizontal grid. Schunemann and Kuhl 

(1991) developed EROMES in which turbulent motions were induced just above a bed 

surface using a propeller. Williamson (1994) designed an inverted bell-shaped funnel 

(ISIS) which generates a stream of water at close range above a sediment surface. The 

test surface of these instruments was very small of the order of 0.01 m2, and the results 

were highly dependent on small scale irregularities of the bed surface and deployment of 

the instruments on the bed (Houwing and Rijn 1998). 

In most of the above mentioned in-situ and laboratory experiments, a known 

value of shear stress was applied by mechanical means. In nature, bed shear stress applied 

by wind induced waves and currents are quite unsteady and, rarely, can be simulated by 

mechanical flumes. Wang (2002) estimated erosion rate parameters for cohesive 

sediments by measuring field tidal waves and currents and turbidity at Long Island 

Sound, USA. However, no published literature was found where actual wind induced 

waves and currents data and corresponding resuspension data have been used to obtain 

critical shear stress and erosion rate parameters of bed tailings. 

 

2.5 MOTIVATION FOR THE PRESENT RESEARCH 

Water cover technology for long term tailings storage has been proven to be effective in 

the reducing the environmental impacts of reactive mine tailings.  Wind plays an 

important role in determining the required depth of water cover. From the foregoing 

literature review, it is observed that there are a number of unresolved issues with water 
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cover technology that must be investigated in order to improve the technology for 

continuing and wider applications in industry. Some common problems highlighted by 

the literature review are: 

1. The Samad and Yanful (2005) model provided a design approach for shallow 

water covers, however there were unknown variables such as wind induced 

currents, critical bed shear stress, erosion rate parameters, wave-current 

interaction that must be determined prior to using the model. 

2. From the published studies it is not clear how currents contribute to the total bed 

shear stress. The wave-current interaction term, which may enhance the shear 

stress exerted on the bed by wind action, was ignored in all previous water cover 

studies. The effect of wave-current interaction on total bed shear stress must be 

studied for mine tailings ponds. 

3. To the best of the author’s knowledge, there is no published study available, 

where actual currents were measured in a mine tailings pond. In most of the 

studies, currents were empirically determined and linearly added to obtain the 

total bed shear stress. Knowledge of current speed and direction is necessary in 

order to incorporate the wave-current interaction term, which can only be 

obtained by actual field measurement of currents. 

4. Accurate knowledge of erosion characteristics, which include the critical shear 

stress and erosion rate parameters, must be made in order to select the water cover 

depth. Most of the experimental methods to estimate critical bed shear stress 

involve disturbed or mechanically packed sample of bed sediments and simulated 

bed shear stress conditions. Hence the results may not be representative of actual 
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field values, especially in cohesive bed tailings. No study was found where field 

measured real time resuspension and wind data were used to determine erosion 

rate parameters and the critical shear stress of bed material. 

In the present thesis, an attempt has been made to resolve above the mentioned 

issues with water cover technology, based on an extensive field investigation involving a 

fully equipped weather station, sediment traps, optical backscatter sensors (OBS), and 

acoustic Doppler current profiler (ADCP).  
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CHAPTER 3: WATER COVER TECHNOLOGY FOR REACTIVE 

TAILINGS MANAGEMENT: A CASE STUDY OF FIELD MEASUREMENT 

AND MODEL PREDICTIONS 

 

3.1 INTRODUCTION 

The long-term disposal of reactive mine tailings with minimal environmental impact is a 

major challenge facing the mining industry. Many tailings, mostly from metal (for 

example, Ni, Cu, and Zn) mining operations, contain sulphide minerals like chalcopyrite 

(CuFeS2), pyrite (FeS2), sphalerite (ZnS) and galena (PbS) in abundance.  On direct 

exposure to oxygen and moisture, these sulphide minerals may oxidize, generate acidity 

and release heavy metals into the environment and adversely impact it.  

The placement of tailings under a cover of water has been shown to be an 

effective method of minimizing acid generation and metal release from tailings. The 

effectiveness of the water cover technology is based on the fact that oxygen has lower 

solubility and diffusivity in water (8.6 g/m3 and 2x10-9 m2/s at 250 C, respectively), than 

in air (285 g/m3 and 1.78x10-5 m2/s at 250 C). These parameters mean that the influx of 

oxygen to the tailings is low; hence oxidation is significantly reduced (Simms et al. 2001; 

Adu-Wusu et al. 2001). A water cover also eliminates wind erosion of tailings and, in the 

long term, provides an anoxic or reducing environment for sulphate reduction and 

generation of alkalinity for the precipitation of metals. 
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A major problem with implementing a water cover over tailings is the presence of 

strong wind induced waves and currents in water. Wind waves deliver energy to the 

water to generate currents and initiate sediment motion. Wind induced turbulence in 

water also keeps the dissolved oxygen at saturation level (Li et al. 1997; Samad and 

Yanful 2005). Strong winds sustained over a long period can cause resuspension of 

tailings in water that contains dissolved oxygen, and result in a greater potential for 

tailings to oxidize and change the water quality in the pond and at the outlet. 

A number of previous studies have demonstrated the occurrence of wind induced 

resuspension and oxidation of mine tailings (Adu-Wusu et al. 2001; Yanful and Catalan 

2002; Mian and Yanful 2003; Mian and Yanful 2004). Bennett and Yanful (2001), 

Catalan and Yanful (2001), and Adu-Wusu et al. (2001) showed evidence of tailings 

resuspension using sediment traps deployed in tailings pond, while Mian and Yanful 

(2004) used OBS (optical backscatter sensors) to measure wind induced resuspension. 

Yanful and Verma (1999) showed that the potential for the oxidation of resuspended 

tailings is greater than for flooded bed tailings under laboratory conditions. Bengtsson 

and Hellstrom (1992) used sediment traps in Lake Tamnaren, Sweden, to measure wind-

induced resuspension. All of these authors noted that resuspension of tailings depends on 

variables such as wind speed, wind direction, pond geometry or fetch length, water cover 

depth and also on tailings properties such as particle size distribution and critical shear 

stress of the bed material. Strong winds of high frequency blowing in the direction of 

maximum pond fetch for a significantly long period may cause tailings resuspension 

under shallow water cover depths. Under such conditions, shear stress generated at the 
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tailings bed generally exceeds the critical shear stress or erosion resistance of the tailings 

(Adu-Wusu et al. 2001; Yanful and Catalan 2002). 

MEND Manual (2001) and MEND Report (1998) contains a procedure for 

designing subaqueous tailings disposal facilities. Water cover depth is a key parameter 

that must be known either in the design of a new tailings pond or in the management of 

an existing facility. A minimum water cover depth must be determined to prevent erosion 

of bed material from wind-induced wave activity and subsequent resuspension. MEND 

manual (2001) provides a method to estimate a minimum water cover depth based on the 

approach by Lawrence et al. (1991). The method is based on the assumption that, to avoid 

resuspension, wind-wave induced near bed velocity must not exceed the critical velocity 

for the erosion. The method has a few limitations. First, it is limited to the design of deep-

water cover facilities such as deep lakes. It does not provide a solution for intermediate 

and shallow water covers. Second, it prescribes a single water cover depth for the entire 

pond, which may be unrealistic because fetch length is not the same everywhere in the 

pond. Fetch length depends on pond geometry and the direction of predominant winds. 

Third, the assumption that bed shear stress due to counter currents is only about 10% of 

the total shear stress may not be valid for cases where strong winds and high water cover 

depths exist (Lawrence et al. 1991; Samad and Yanful 2005).  

Samad and Yanful (2005) have developed a methodology for calculating the 

minimum water cover depth required to eliminate or minimize resuspension. A key 

feature of that methodology is discretization of the pond area into a mesh of square grids 

and calculation of the bed shear stress for each square grid cell taking into account the 
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fetch length for that grid cell. Input parameters include cell coordinates, wind data, pond 

geometry, median grain size of bed material, critical shear stress of bed material, erosion 

test results, and sulphate production rate constants. From the analysis, a specific value of 

water cover depth is obtained for each square grid cell. The method is based on the 

premise that erosion and resuspension of bed sediment occur when the total bed shear 

stress induced by waves and return currents exceeds the critical shear stress of the bed 

material. Thus the bed shear stress contribution from return currents is not ignored. The 

required water cover depth is calculated by comparing the total bed shear stress and 

critical shear stress of the bed tailings In addition, the method can be used to estimate the 

concentration of resuspended sediments and sulphate concentrations in the water cover if 

the water cover depth is below the minimum required value. The Samad and Yanful 

(2005) approach can also provide optimal water cover depths that allow regulatory 

acceptable suspended solids or tailings concentrations. In this paper, the method of 

Samad and Yanful (2005) is used to investigate tailings resuspension at the Shebandowan 

tailings storage facility and the results are compared to field measured values. The 

minimum required water cover depth is calculated and compared with existing water 

cover depth to predict resuspension. The major limitation of the Samad and Yanful 

(2005) was found to be that it does not take into account sediment transportation and 

redeposition from one station to other station. 

The main objectives of the present work are to investigate resuspension that 

occurs in a tailings pond subdivided into cells by wave breaks using the Shebandowan 

tailings storage facility as a study site and to compare field measured data to model 

predictions using the methodology of Samad and Yanful (2005). At the Shebandowan 
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tailings site, located 100 km northwest of Thunder Bay, Ontario, tailings have been 

decommissioned with several perimeter dams and two wave breaks that divide the pond 

into three cells: east, middle and west cells. Although resuspension of flooded mine 

tailings has been extensively studied, as indicated by the papers cited above, none of the 

published work to date has dealt with an assessment of resuspension in a tailings pond 

subdivided into cells by wave breaks. The wave breaks or internal dykes are generally 

installed in tailings ponds to decrease the fetch (distance over which wind blows) and 

eliminate or reduce resuspension to insignificant levels.  

Resuspension was measured in the tailings pond using sediment traps and optical 

backscatter (OBS) sensors. A sediment trap measures the amount of suspended material 

over a certain period while an OBS sensor gives the time series results of the 

concentration of resuspended material in water. The use of OBS sensors also allowed 

relation of wind events to episodic resuspension during the monitoring period, 

information that would not have been available from sediment trap measurements alone. 

In previous work and in many published tailings pond studies, this information had been 

lacking. In this paper, an attempt has also been made to compare measured resuspension 

to predicted values.  

 

3.2 THE STUDY SITE 

The study was conducted at the Shebandowan Mine tailings storage facility, located 100 

km west of Thunder Bay, northwestern Ontario, Canada. The site is located along the 

south shore of Lower Shebandowan Lake. The Shebandowan mine was operated as an 
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underground nickel and copper mining and milling facility from 1971 to 1998 (with two 

interim shut down periods from 1986 to 1989 and 1992 to 1995). Figure 3.1 shows the 

plan view of the tailings storage facility. The tailings storage facility includes six 

perimeter dams of crest elevation of 482 m and occupies an area of about 115 ha. In 1999 

approximately 85,000 m3 of potentially acid generating waste rock from around the mine 

and mill site were deposited within the tailings basin in a submerged state (Golder 

Associates 2000). Two wave breaks (internal dykes) were constructed across the tailings 

facility, which divided the pond into three cells, namely, west cell, middle cell and east 

cell. The purpose of the wave breaks is to reduce the fetch length and hence eliminate or 

minimize sediment disturbance and subsequent erosion and resuspension of tailings. The 

depth of water cover in the pond varies from less than 1 m at some locations to over 2 m 

at others. On average, the depth of water cover is about 1 m at most locations in the pond.  

 

3.3 METHODS AND MATERIALS 

3.3.1 Weather Station 

Much research has shown that wind is a very important factor that controls the 

performance of a tailings pond. The erosion and resuspension of tailings is caused by 

energy transfer to the bed, and this energy transfer is a function of wind speed, direction, 

and duration. At the study site, a fully equipped weather station, consisting of a Young 

Wind Monitor model 05103-10 RM (wind speed and direction), CS500-U (air 

temperature and relative humidity), NR LITE Kipp and Zonen Net Radiometer sensor  
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Figure 3.1 Map of Shebandowan Mine tailings storage facility showing the location of 
sediment traps (ST) and OBS sensors 

 

(Solar radiation), TE525M Texas Electronics Tipping Bucket Metric Rain Gauge 

(precipitation) linked with a CR10X data logger (Campbell Scientific Canada Corp. 

Edmonton, Alberta), has been installed. The instruments and sensors were mounted on a 

tower close to the tailings pond at a height of 10 m from the water surface. Wind 

measurements must be made at standard 10 m height from the water surface for wind 

induced waves predictions using wave hindcasting equations mentioned later in section 

3.4 (CERC 1984). The variation of weather data within the location area of the tailings 

pond is likely to be very minimal and therefore one weather station can be considered 
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representative for the pond. The data logger was programmed to record weather data 

including wind speed and direction every 15 minutes.  

 

3.3.2 Measurement of Resuspension 

3.3.2.1 Sediment traps: 

The sediment trap is a widely used device to evaluate the amount of sedimentation in 

oceans and lakes; however, in shallow and turbulent water, these traps also collect 

secondary sedimentation or resuspended material and hence can overestimate 

sedimentation (Rosa 1994; Kozerski 1994). Sediment traps can be used to quantify 

resuspension by measuring the secondary sedimentation (Kozerski 1994). In a tailings 

pond where water is shallow and there is no primary sedimentation, sediment traps are 

used to measure the near bed cumulative resuspension and redeposition of tailings over a 

certain period of deployment.  

The sediment traps used in this study are exactly the same as those used and 

described by Adu-Wusu et al. (2001) and Catalan (2002). The whole sediment trap 

assembly consists of two parts. The metallic sediment trap holder and cylindrical 

sediment trap made of clear polycarbonate with a diameter of 10 cm and a height of 40 

cm as shown in Figure 3.2. The top part of the sediment trap is a hexagonal 

polycarbonate plate with slots at ends to facilitate sliding of the trap into its metal holder.  

The sediment trap can be pulled out and put back in the holder by means of two ropes 

attached to the hexagonal plate. The third rope is attached to the lid provided on the 

hexagonal plate. This rope is used to close and open the inlet of sediment trap whenever 



 

68 

 

required. The sediment trap can be easily sampled by means of a valve provided at the 

bottom of the trap; this valve was closed during operation. The metallic sediment trap 

holder is used to keep the sediment trap in place and maintain a vertical position. The trap 

holder is made of stainless steel with a diameter of 13 cm and depth of 53 cm, and is 

welded to stainless steel rods of about 1 m length.  

 

 
 

Figure 3.2 Schematic diagram of sediment trap (Adu-Wusu et al. 2001) 

 

During installation the trap was hammered down into the tailings at the bottom of 

the pond. An extra pair of stainless steel rods was screwed onto the welded rods to 

provide extension. A polycarbonate slab was used to hold the rods in place. The sediment 

trap was placed in the holder by sliding it onto the steel rods and ropes attached to the 

sediment trap were tied to the slab to keep them visible out of the water. 
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Eight sediment traps were installed at selected locations in the tailings pond first 

time on July 26, 2006 to collect suspended and redeposited material in the water cover. 

Three sediments traps were installed in the east and west cells of the pond and two in the 

middle cell. The exact locations of the traps were recorded in terms of latitude and 

longitude using a handheld GPS device. The locations were selected to provide a good 

coverage of the tailings pond and to allow a comparison of the amount of resuspended 

material at different depths. The locations were assigned the identification numbers of 

ST-1 to ST-8 as shown in Figure 3.1. All sediment traps were sampled on August 30 and 

October 06, 2006, called Trip-1 and Trip-2 respectively in this paper. 

The sediment traps were again installed on May 29, 2007 at the same locations 

(within GPS accuracy) using GPS data. The lids of the traps were opened two days after 

installation on May 31, 2007. First sampling was done on July 19, 2007 (Trip–3) and 

second on October 03, 207 (Trip-4). Unfortunately, the top hexagonal plate of sediment 

trap ST-2 came off during sampling and the sample was lost.  

 

3.3.2.2  OBS sensors:  

The optical backscatter sensor or OBS sensor has been used extensively to record time 

dependent resuspension activity in coastal areas, lakes, streams and tailings pond. 

Osborne and Greenwood (1993) used an array of OBS sensors in the field to measure 

near bed sediment resuspension due to waves and currents. Malcolm and Boon (1993) 

used OBS in the laboratory to investigate the resuspension of non-homogeneous 
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sediments like silt/sand mixtures. OBS sensors have also been used to measure in situ 

erosion rate or sediment flux (Debnath et al. 2007; Bass et al. 2007).  

In the present study, two OBS3+ sensors (Campbell Scientific Canada Corp., 

Edmonton, Alberta), also known as turbidity sensors, were used to measure the 

concentration of suspended sediments. The sensors must be installed at least 10 cm above 

the tailings bed to avoid scouring of sediments during period of strong flow. The OBS 

sensor consists of a high intensity infrared emitting diode (IRED) and an optical sensor 

that measures turbidity and suspended solids concentration by detecting infrared (IR) 

radiation scattered from suspended material in water. The IRED emits an infrared beam 

with half-power points at 500 in the axial plane of the sensor and 300 in the radial plane. 

The optical detector integrates the IR scattered between 1400 and 1600. A filter absorbs 

visible light incident on the sensor. These sensors were connected to a CR10X datalogger 

(Campbell Scientific, Edmonton, Alberta, Canada) and programmed to measure the total 

suspended solids concentration every 5 minutes. The output was recorded in millivolts.  

The response of an OBS sensor depends on the size, composition, and shape of 

suspended particles. For this reason, the OBS sensors must be calibrated with suspended 

solids from the water to be monitored. The two OBS sensors used in the study were 

calibrated in the laboratory using bed tailings from the west and middle cell of the site. 

Sensor readings in millivolts and gravimetric suspended solids concentrations in mg/L 

were recorded for distilled water alone (zero suspended solids) and then for known 

amounts of tailings added to distilled water to form suspensions. The calibration curves 

(mg/L versus milivolts) were all found to be linear (R2 = 0.9903 to 0.9968) as shown in 
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Figure 3.3. The equations of the straight lines were then used to convert voltage outputs 

from the OBS sensors to total suspended solids concentration, recorded in the tailings 

pond. The detailed OBS calibration procedure is provided in the Appendix-I of the thesis. 

 

 
 

Figure 3.3 Field calibration curves of OBS sensors for West and Middle cell tailings  
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3.3.3 Characteristics of Bed Tailings 

The particle size distributions of bed tailings collected near the location of each sediment 

trap were determined by sieve and hydrometer analysis and results are presented in 

Figure 3.4. The results show that bed tailings at all locations vary in particle size 

distribution. Bed tailings located between the wave break (ST 4 and ST 5) were finer than 

those at other locations. With the exception of tailings at ST8, all tailings fall in the silt to 

medium sand range (0.002-0.25 mm) with very small amounts (≤ 5%) of clay size (< 

0.002 mm) material. Bed tailings near ST8 contain a high amount of gravel. Given their 

finer sizes, bed tailings near ST4 and ST5 could be cohesive. The median grain size D50 

(particle size below which 50% of the material is finer) is used as the representative 

particle size in subsequent computational analysis in the rest of this paper (Soulsby and 

Whitehouse 1997; Pohl 2004; Kubicki 2008). Some basic index and geotechnical 

properties of bed tailings determined by laboratory experiments are provided in Table 

3.1. 

 

3.3.4 A New Approach to Predicting Resuspension  

Samad and Yanful (2005) developed a new approach to the design of a water cover for 

mine tailings. The method can calculate a minimum water cover depth to eliminate 

resuspension as well as an optimized cover water depth that allows tailings resuspension 

to a prescribed limit. During the analysis, the entire tailings pond is discretized into a 

mesh of square grids and the water depth is computed for each grid cell. The bed shear 
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stress is calculated for each grid cell accounting for the difference in fetch length for the 

particular square grid spacing. Input parameters include grid cell coordinates, wind data, 

pond geometry, median grain size of bed material, critical shear stress of bed material, 

and erosion test data (erosion coefficient and exponent) (see, Samad and Yanful (2005)). 

 

 
 
Figure 3.4 Particle size distribution curve of bed tailings samples collected from location 
of each sediment trap 

 

The key computational steps used in the present study are summarized below. 

1. Long-term (51 years for the present study) wind speed and wind direction data 

were analyzed statistically to determine wind speed for a design return period. A 

wind speed of 19.57 m/s was obtained for a 20-year return period. The tailings 

pond area was divided into a mesh of square grids of 50 m design spacing 

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10

%
 F

in
e
r

Prticle Size (mm)

Prticle Size Distribution Curves

BT-1

BT-2

BT-3

BT-4

BT-5

BT-6

BT-7

BT-8



 

74 

 

interval. A value of fetch length (F) was calculated for each square grid cell 

according to the wind direction frequency distribution. 

 

Table 3.1 Some basic characteristics properties of bed tailings 

Sample 

No. 

Colour D50 (50% 

finer), mm 

Specific 

Gravity, 

(Gs) 

Friction 

Angle (ϕ), 

Degrees 

Cohesion 

(c), Pa 

BT-1 Black 0.15 2.71 35 0 

BT-2 Black 0.14 2.71 38 0 

BT-3 Black 0.08 2.73 38 0 

BT-4 Grey 0.0064  2.78 34 11 

BT-5 Grey 0.009 2.75 37 8 

BT-6 Black 0.12 2.73 38 0 

BT-7 Black 0.18 2.71 38 0 

BT-8 Black 0.55 2.70 38 0 

 

2. Total bed shear stress was calculated at each square grid spacing using the 

calculated wind speed and fetch length from step one. Previous resuspension 

studies have indicated erosion and entrainment of sediments at the bottom of a 

water body is initiated when the shear stress exerted on a bed material exceeds its 

critical shear stress. Wind that blows over the water surface in the pond generates 

waves in the direction of the wind and return currents or countercurrents near the 



 

75 

 

bed (Wu and Tsanis 1995; Yang et al. 2002). The maximum total bed shear stress 

(τb) is assumed to have two parts: bed shear stress due to waves (τw), which is 

maximum shear stress over a complete wave period and bed shear stress due to 

countercurrents (τc). The total bed shear stress is given by following equation: 

cwb τττ +=               (3.1) 

Resuspension occurs in a closed water body when the total bottom shear stress 

exerted by wind waves and currents exceeds the critical shear stress of the bed 

material (Partheniades 1965; Bengtsson et al. 1990). The rate of resuspension 

increases with wind speed in the direction of longest fetch (Mian and Yanful 

2003). The erosion and resuspension of bed material for given wind conditions 

can be predicted by comparing the calculated bed shear stress to the estimated 

critical shear stress.  

In the present study, the maximum bed shear stress exerted by wind waves was 

calculated using the SMB (Sverdrup-Munk-Bretschneider) method of wave 

characteristics (CERC 1984) and linear wave theory. Assuming shallow water 

wave conditions (h/L<0.5), wave parameters, significant wave height, H and 

significant wave period T may be calculated using the following equations: 
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and, 
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where, UA is wind stress factor (= 0.71 U1.23, where U is wind speed (in m/s) 

measured at height of 10 m from water surface), h is water cover depth, F is the 

fetch length, g is the acceleration due to gravity and L is the significant 

wavelength (m) which can be calculated using the following equation: 
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The maximum horizontal bottom velocity in shallow water is calculated using 

equation: 



























=

L

hT

H
ubm π

π

2
sinh

1

                                                                                     (3.5)

 

The maximum displacement of fluid particles corresponding to maximum bottom 

velocity can be obtained as: 
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Using the above parameters, the bed shear stress due to wind induced waves can 

be calculated as (Jonsson 1966): 
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where, 
w

w
R

f
2

=  is the wave friction factor for laminar wave boundary; 

ν
mbm

w

au
R =  is the wave Reynolds number and ν is kinematic viscosity of fluid 

(m2/s). The value of wave Reynolds number Rw for the onset of turbulent flow is 

about 105 for smooth bed conditions and varies from 103 to 105 for relatively 

rough bed conditions (Jonsson 1966; Samad and Yanful 2005). In most tailings 

pond studies including present study, wave Reynolds number was in the range of 

laminar wave boundary (Rw < 105) (Yanful and Catalan 2002; Samad and Yanful 

2005). Jonsson (1966) calculated Rw ≥ 1.26x104 at the onset of turbulence.  

Wind induced countercurrent flow in a water column has been studied 

experimentally by Baines and Knapp (1965), Tsuruya et al. (1983) and Yang 

(2000). Wu and Tsanis (1995) developed a numerical model for wind-induced 

counter current flow and verified it with laboratory experimental results. Shear 

stress at the bed due to currents can be calculated using the following equations 
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derived by Samad and Yanful (2005) based on the Wu and Tsanis (1995) 

approach of counter-currents and equation parameters determined by Yang et al. 

(2000) based on laboratory experiments: 
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The variables A and B in the above equation are given as: 
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The variables zsh (=2.2x10-4) and zbh (=1.4x10-4) are the surface and bottom 

characteristic lengths, respectively, and are calculated based on experimental data 

(Yang et al. 2000). The parameter λ is a constant that depends on the intensity of 

turbulence in water. It varies from 0.2 to 0.5 with an average value of about 0.35. 

The variation in the values of these parameters affects mainly the near surface 

shear stress but has little influence on the bed shear stress (Yang 2002; Samad and 

Yanful 2005). The surface shear velocity of water u*s is given by 
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Where U is the wind speed (m/s), ρa is the density of air (kg/m3) and ρw is the 

density of water (kg/m3).  The countercurrent induced bed shear stress calculated 

using the above equations depends on wind speed and water cover depth.  

 

3. The required minimum water cover depth was calculated by comparing the total 

bed shear stress at each square grid cell and the critical shear stress of the bed 

material. To eliminate resuspension total bed shear stress must theoretically be 

less than the critical shear stress of bed material. For the present study, critical 

shear stress was calculated using Fischenich’s (2001) method as mentioned in the 

section 3.5 of this paper.  

 

4. Finally, the suspended tailings concentration was calculated using a generalized 

power law relationship (Equation 3.11) for erosion.  
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Here, E is the erosion rate (kg/m2.s), τb and τcr are the total bed and critical shear 

stress, respectively, coefficient (α) and exponent (M) are erosion rate parameters 

and can be determined by laboratory erosion test results. In the present study 

coefficient (α) and exponent (M) for the west cell tailings obtained from Geremew 
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and Yanful (2010) were used to predict resuspension in the west cell. The 

suspended solids concentration (mg/L) can be calculated from ci = Ei/hi, assuming 

an even distribution of resuspended material in the entire column of water depth. 

In addition to the aspects covered in the present study, the method of Samad and 

Yanful (2005) can also predict the sulphate production in the tailings pond, 

provided the site-specific oxidation rate of bed tailings is known.  

 

3.3.5 Critical Shear Stress  

The critical shear stress is the minimum mobilized bed shear stress required to initiate 

sediment motion. It is a characteristic property of bed material and depends on physical 

and chemical properties of material such as particle size, cohesiveness, cementation, and 

degree of consolidation. Apart from measurement using various experimental methods, 

the critical shear stress of tailings can also be approximately calculated using empirical 

equations.  

 Fischenich (2001) proposed the following equation to approximate the critical 

shear stress of silt and sand sized particles:  

τcr = φγγ tan)(25.0 6.0
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Here, ϕ is the angle of repose of particle, G is the specific gravity of bed material, g is the 

acceleration due to gravity, γs is the unit weight of sediment, γw is the unit weight of 

water, ν is the kinematic viscosity, d is the particle size of sediment.  The median grain 

size D50 (particle size below which 50% of the material is finer) was used as the 

representative particle size of the bed tailings sample in the calculation of the critical 

shear stress (Soulsby and Whitehouse 1997; Pohl 2004; Kubicki 2008). The value of 

angle of repose ϕ, specific gravity (G) and median grain size D50 of bed tailings were 

used as tabulated in Table 3.1. 

The critical shear stress (τcr) was estimated using the approach by Fischenich 

(2001) and D50 as the representative particle size. The critical shear stress varies from 

0.04 Pa at station 4 to 0.25 Pa at station 8. The critical shear stress is very small (0.04 Pa) 

for middle cell bed tailings at station 4 and 5 due to the fine particle size (D50 0.0065 and 

0.009 mm respectively). For the east and west cells, the critical shear stress is almost 

similar except at station 8 where the bed material is coarser. The average value of the 

critical shear stress of 0.13 Pa for east and west cells can be used in the analysis. 

Experimentally measured values of critical shear stress of tailings from other sites in 

Canada show almost similar values, for example, 0.12 Pa for the Heath Steele upper cell, 

New Brunswick (Yanful and Catalan 2002); and 0.09 Pa for the Falconbridge site, 

Ontario (Bennett 2002). Adu-Wusu (2001) estimated the critical shear stress of bed 

tailings and reported values in the range of 0.12 to 0.22 Pa. The critical shear stress 

values calculated for the Shebandowan site are of similar order of magnitude as 

compared to other sites. 
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Fischenich’s (2001) equation does not account for cohesive properties of fine 

particles. The presence of binding cohesive forces in fine particles can increase the 

resistance to erosion and resuspension. The critical shear stress for the middle cell 

particles may be higher than calculated by Fischenich’s (2001) method due to the 

presence of cohesion.  

 

3.4 RESULTS AND DISCUSSION 

3.4.1 Wind Data Analysis 

At the Shebandowan site, the period May-November is the only time when both strong 

wind storm events and unfrozen tailings pond water conditions may be expected. Thus 

analysis was carried out only for this 7-month period in the 2006 and 2007 years. Wind 

speed (in m/s) and wind direction (degrees from North) data recorded and averaged every 

15 minutes were used in the analysis. The observed maximum wind speed for each month 

was above 10 m/s for both years. The average maximum wind speed was 12.57 m/s for 

year 2006 (May to November) and 12.00 m/s for year 2007. Long-term wind data of the 

last 51 years recorded at Thunder Bay airport were obtained from Environment Canada. 

The wind direction frequency distribution for data recorded on site during years 2006 and 

2007 and long-term wind data are presented in Figure 3.5. The data show that the most 

dominant wind direction at the site is 2700 to 3150 from the north (that is, northwest). 

This would explain the design (location and orientation) of the wave breaks shown in 

Figure 3.1. Without the breaks, the fetch in the direction of the dominant winds would 
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have been quite long (up to 1650 m) resulting in significant tailings erosion and 

resuspension.  

 

 
 
Figure 3.5 Wind direction frequency distribution plotted for summer (May to November) 
months of year 2006, 2007 and for long-term wind data 

 

3.4.2 Evaporation and Precipitation 

Knowledge of onsite evaporation and precipitation gives an indication of the total water 

demand required to provide a certain water cover depth. The total evaporation during 

each Trip in the study was calculated using the following method. Total evaporation 

consists of evaporation from radiation and evaporation from mass transfer/aerodynamics 

and is given by the following equation (Thomson 1999). 
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Total Evaporation= Evaporation from radiation + Evaporation from mass 

transfer/aerodynamics 

an EEE
γ

γ

γ +∆
+

+∆

∆
=0

          (3.14)
 

where, 

∆ = Rate of change in saturation vapor pressure with temperature = des/dT  

= (0.000815T + 0.8912)7  

γ = Psychometric constant (≅ 0.66 mb0C-1) 

Ea = Mass transfer/aerodynamic evaporation = (0.013 + 0.00016U)*(es – ea) 

U = Wind speed (km/day)  

es = Saturation vapor pressure of air (mb) = vapor pressure of water surface ea =  

ea = Vapor pressure of air = f * es  

f = Relative humidity (%) 

En = Net evaporation due to radiation = Qn/ ρLv  

Qn = Net radiation (cal cm-2 day-1) (1W/m2 = 2.016 cal cm-2
 day-1) 

Lv = Latent heat of vaporization (cal/g) = 597.3 – 0.564T 
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ρ = Density of water (1 g/cm3) 

The input data in the above evaporation formula, for example, temperature (T), 

radiation (Qn), relative humidity (f), and wind speed (U) were recorded by the weather 

station installed at the site. Evaporation was calculated for two scenarios. First, maximum 

evaporation was calculated using daily measured maximum wind speed, maximum 

temperature, maximum radiation, and minimum relative humidity. In the second case, 

evaporation was calculated using daily measured averaged values of wind speed, 

temperature, relative humidity and radiation. The precipitation at Shebandowan site was 

recorded by a rain gauge installed at the weather station. Evaporation calculated for each 

Trip is tabulated below in Table 3.2. 

 

Table 3.2 On site recorded precipitation and calculated evaporation during different trips 

Trip I II III IV 

Period of Deployment (days) 32 34 49 72 

Total Precipitation (cm) 10 6 16 23 

Total Maximum Evaporation (cm) 84 75 138 169 

Total Average Evaporation (cm) 23 21 65 49 

Daily Maximum Evaporation (cm/day) 2.63  2.21 2.82 2.35 

Daily Average Evaporation (cm/day) 0.72 0.62 1.32 0.68 
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The calculated average evaporation was significantly higher than the recorded 

precipitation during sediment trap deployment periods (Trips) as shown in Figure 3.6. 

The data show the need for additional water to be pumped into the tailings pond to 

provide sufficient water depths to eliminate or decrease tailings resuspension. Seepage 

losses from the pond add to water demand.  

 

 
 

Figure 3.6 Total precipitation and total average evaporation during each Trip 

 

3.4.3 Water Cover Depth to Eliminate Resuspension 

The minimum water depth required to protect the tailings bed and resuspension at each 

grid was calculated. The computation was performed for the whole pond neglecting the 
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presence of wave breaks (internal dykes) and for each cell of the pond (in the presence of 

wave breaks) separately. The whole pond area and each cell area were discretized into a 

grid of 50 m intervals, as shown in Figure 3.7. The fetch length for each grid cell was 

determined according to pond geometry and wind direction distribution. Contour plots of 

the fetch length for the whole pond and for the east and west cell are shown in Figure 3.8. 

The presence of wave breaks in the pond significantly decreases the fetch length 

considerably, which could result in none or reduced erosion of bed depending on the 

water cover depth.  

 

 
 

Figure 3.7 Shebandowan mine tailings pond boundary and location of square grids of 50 
m interval for whole pond and west, middle and east cells 
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Figure 3.8 Contour plots of fetch length (in m) for whole pond (without wave breaks) 
and each cell (with wave breaks) 
 
 

The minimum water cover depth for each grid was determined by comparing the 

total bed shear stress (Equation 3.1) with the critical shear stress of bed material and by 

assuming that, there is no resuspension for a specific water depth when the total bed 

stress is less than the critical shear stress. Figure 3.9 presents contour plots of required 

minimum water depth computed for the whole pond (without wave breaks) and for each 

cell (with wave breaks) separately. To see the effect of wave breaks, a uniform 0.12 Pa 

value of critical shear stress was used throughout the pond including the middle cell 

where actual calculated critical shear stress was equal to 0.04 Pa.  
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Figure 3.9 Contours of minimum required water cover depth to completely eliminate 
resuspension for whole pond and each cell 

 

In the absence of wave breaks, the minimum required depth of water cover for the 

whole pond varies between 1.23 m to 4.74 m. The contour plot (Figure 3.9) shows that 

the maximum water depth of the whole pond is required in the southwest section. In the 

presence of wave breaks or dykes, each cell of the pond can be treated as a separate water 

body. Water cover requirements depend on the size and geometry of each cell. The 

required water depth for the east cell varies from 1.3 m to 3.3 m and, for the west cell, 

from 1.4 m to 3.6 m and for the middle cell, from 1.1 m to 2.8 m. These results show that 
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the wave breaks have significantly reduced the water cover depth requirements at the 

Shebandowan tailings storage facility.   

Particle size distribution of middle cell tailings showed that bed tailings are very 

fine in nature and therefore actual predicted minimum water cover depth is 5.0 m in the 

entire middle cell area, due to the very small value of the critical shear stress (0.04Pa) of 

the tailings. The Fischenich’s empirical formula for estimating the critical shear stress 

does not account for cohesive properties of fine particles and may have underestimated 

the critical shear stress.  

 

 

3.4.4 Resuspension Measured with Sediment Traps 

The sediment trap data are presented in Table 3.3. As indicated, the dry mass of collected 

suspended material varied from 0.18 g in sediment trap 4 during Trip-2 to 6.50 g in 

sediment trap 3 during Trip-3. An exceptionally high amount of 31.82 g was recovered 

from sediment trap 6 during Trip-1, but this high amount was not repeated and was 

therefore considered an outlier. 

These observed amounts of resuspension are not as high as those reported for the 

Heath Steele Mines tailings pond located in New Brunswick, Canada, where up to 54 g of 

suspended material was collected at some locations (Catalan and Yanful 2001). However 

they are comparable to resuspended tailings amounts observed at the Quirke Cell 14 

tailings site, near Elliot Lake, Ontario (Adu-Wusu et al. 2001; Yanful and Catalan 2002). 

The difference in the amount of resuspended tailings may be attributed to the different 
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particle size distributions. Finer particles have low critical shear stress as previously 

mentioned in this paper and hence can be resuspended more easily than coarser particles.  

The Heath Steele tailings had a finer nature than the Quirke tailings. With the exception 

of locations 4 and 5 (ST4 and ST5), the bed tailings at the Shebandowan site (present 

study) were sandy and coarse, similar to tailings from the Quirke site. At locations 4 and 

5 of Shebandowan, bed tailings were finer and likely, of cohesive nature.  

 

Table 3.3 Total suspended solids (TSS) collected in sediment traps and corresponding 
water cover depth 

Sediment 

Trap No. 

Trip-1 (32 days1) Trip-2 (34 days) Trip-3 (49 days) Trip-4 (72 days) 

TSS 

(g) 

Depth 

of  

water 

(cm) 

TSS 

(g) 

Depth 

of  

water 

(cm) 

TSS 

(g) 

Depth 

of 

water 

(cm) 

TSS 

(g) 

Depth 

of 

water 

(cm) 

ST-1 1.80 99 0.31 86 1.03 86 1.44 88 

ST-2 6.03 91 0.47 81 Broken -- Broken -- 

ST-3 1.78 93 3.21 91 4.60 89 1.70 95 

ST-4 2.22 150 0.18 152 4.30 142 1.89 152 

ST-5 4.00 211 0.72 213 6.50 130 2.10 140 

ST-6 31.822 95 0.52 97 1.01 91 1.65 93 

ST-7 1.46 241 0.31 117 1.14 136 1.84 144 

ST-8 3.95 93 0.36 104 0.8 124 0.96 137 

 Notes:    TSS = Total Suspended Solids, 1 = Period over which sediments traps were deployed, 2 = Outlier  
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However, no correlation was found between water cover depth and amount of suspended 

material during each trip (Figure 3.10). This could be a result of sediment transport of 

tailings from one station to the other due to waves and currents following erosion. During 

the period that it is deployed, a sediment trap would collect not only eroded material at 

particular location, but also material that has been eroded and transported from a different 

location and re-deposited at the location of the trap. Thus water cover depths may not 

always correlate with amount of material collected in sediment traps especially if there is 

significant bed movement.   

 

 
 
Figure 3.10 Total suspended solids collected in sediment traps versus depth of water 
cover 

 

These results are similar to those observed for the Heath Steele site (Catalan and 

Yanful 2001). Bed shear stress may decrease with increasing water cover depth at a 
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specific wind speed but wind direction or fetch length is also a major factor that can 

influence the amount of resuspension. Sediment trap data represent the cumulative effect 

of several wind events each of which may have a different direction or fetch length and 

hence different bed shear stress for each sediment trap location. Thus a simple correlation 

between depth and resuspended amount (measured by sediment traps) may not always 

exist.     

 

3.4.5 Mineralogical and Elemental Analysis of Suspended and Bed Material  

Bed tailings sampled from the same locations as the sediment traps and resuspended 

material collected in the sediment traps were vacuum dried to perform mineralogical and 

elemental analyses. X-ray diffractograms showed that both bed and resuspended tailings 

do not contain much clay mineral (Figure 3.11). This was later verified by clay 

fractionation of the samples. The only clay mineral identified in X-ray powder analysis 

was chlorite. Non-clay minerals identified in the diffractograms are quartz, pyrite, 

pyrrhotite, feldspar, calcite and dolomite. X-ray diffractograms of bed and resuspended 

materials show similar peaks but of different heights or intensities. Figure 3.11 shows, 

that the chlorite peak intensity for the bed tailings at ST-5 in the middle cell is slightly 

higher than at ST-2, suggesting higher clay content at ST-5 as indicated in the grain size 

curves. Resuspended material shows reduced intensity of pyrrhotite and pyrite peaks 

relative to those of the bed material. This could be because of the oxidation of pyrrhotite 

and pyrite in resuspended tailings. X-ray diffractograms of remaining resuspended and 

bed tailings samples are provided in the Appendix-II at the end of this thesis. 
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Figure 3.11 X-ray diffractograms of resuspended material collected at ST2 during Trip-1 
and bed tailings at ST-2 and ST-5 
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Elemental analysis showed that both bed and resuspended tailings are rich in iron 

and sulphur. Iron concentration in bed tailings vary from 10.23 % to 45.16% (by weight) 

and in resuspended tailings from 9.90% to 22.66% (by weight) while sulphur 

concentration vary in bed material from 0.28 % to 36.40% (by weight) and in 

resuspended tailings from 1.05 % to 35.20% (by weight). Other major elements are Si, 

Cu and Ni (Tables 3.4 and 3.5). A comparison of selected elemental composition of bed 

tailings and resuspended tailings with typical crustal composition has presented in Table 

3.6. The elemental composition of resuspended tailings (collected in sediment traps) 

showed much higher amount of elements such as S, Fe, Cu, Ni, Pb, and Zn than the 

typical crustal composition (Wedepohl 1995). Since the Shebandowan site has been 

remediated and all tailings have been collected and deposited in the tailings pond under 

water cover. Natural soil material at the site would not be expected to contain Fe, S, Cu, 

Ni, Pb, and Zn at concentrations similar to those of the bed tailings. It is clear that the 

sediment trap samples (ST-1 to ST-8) in Tables 3.4 and 3.5 were derived from mine 

tailings because of their relatively high suphur (S) and heavy metal concentrations.  

The mineralogy and elemental analysis results strongly indicate that material 

collected in the sediment traps come from bed tailings and not from outside the tailings 

pond. This would indicate that wind-induced erosion of bed tailings and entrainment into 

the water cover may be occurring at the Shebandowan site. However, elemental 

concentrations of bed and resuspended tailings were not correlated because of possible 

sediment transportation and redeposition from one station to other.  
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Table 3.4 Composition of Tailings: Major Oxides in wt% by XRF (BT = Bed tailings & ST = Suspended Tailings) 

Sample ID SiO2 TiO2 Al2O3 Fe2O3 MgO MnO CaO K2O Na2O P2O5 

BT-1 10.66 0.21 0.01 65.21 4.53 0.11 1.83 0.01 0.01 0.04 

ST-1 30.95 0.21 0.01 18.89 5.22 0.18 7.26 0.36 0.38 0.16 

BT-3 43.16 0.32 9.71 14.62 16.75 0.18 4.50 0.42 0.59 0.07 

ST-3 36.21 0.31 3.80 26.02 11.71 0.16 4.64 0.30 0.75 0.10 

BT-5 42.13 0.29 8.44 15.37 17.09 0.19 4.77 0.50 0.69 0.01 

ST-5 34.14 0.32 3.32 32.40 11.44 0.18 3.13 0.30 0.57 0.09 

BT-6 27.09 0.34 0.01 43.57 8.87 0.16 4.06 0.25 0.32 0.07 

ST-6 25.92 0.19 0.01 14.16 5.23 0.50 17.04 0.35 0.48 0.14 

BT-7 19.53 0.29 0.01 50.60 7.21 0.11 2.15 0.13 0.01 0.07 

ST-7 28.77 0.19 2.18 22.79 5.58 0.72 4.33 0.38 0.41 0.39 

BT-8 49.68 0.70 8.92 19.06 4.32 0.10 4.78 1.05 2.06 0.13 

ST-8 34.57 0.25 4.52 20.40 6.05 0.50 6.81 0.55 0.91 0.01 

ST-4 43.57 0.36 6.99 14.50 14.57 0.23 6.34 0.32 0.93 0.10 
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Table 3.5 Tailings Composition: Trace elements in µg/g by ICP-AES (BT = Bed Tailings & ST = Suspended Tailings) 

Sample ID Ag As Cd Cu Ni Pb S Zn U Th 

BT1 < 0.01 < 0.01 70.5 566 3950 367 18.70% 58 < 0.01 4.56 

ST1 < 0.01 12.70 20.7 596 2200 179 35.20% 116 < 0.01 < 0.01 

BT3 < 0.01 3.76 12.2 684 2400 176 0.28% 118 < 0.01 < 0.01 

ST3 < 0.01 < 0.01 26.6 698 2540 139 5.70% 110 < 0.01 < 0.01 

BT5 < 0.01 8.96 13.1 671 3160 145 0.67% 137 < 0.01 < 0.01 

ST5 < 0.01 9.86 33.4 803 2070 167 7.35% 94 < 0.01 3.94 

BT6 < 0.01 7.28 41.8 1060 4170 215 11.10% 116 < 0.01 0.49 

ST6 < 0.01 14.60 15.6 441 1750 111 2.31% 103 < 0.01 < 0.01 

BT7 < 0.01 < 0.01 50.9 1130 3090 232 12.80% 71 < 0.01 2.13 

ST7 < 0.01 36.30 24.2 541 2250 176 2.08% 139 < 0.01 1.57 

BT8 < 0.01 < 0.01 16.5 1030 1570 120 36.40% 50 < 0.01 0.91 

ST8 < 0.01 9.37 23.8 570 2210 167 2.75% 97 < 0.01 < 0.0 

ST4 < 0.01 2.11 11.8 787 1280 82 1.05% 117 < 0.01 < 0.01 
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Table 3.6 Concentration of selected elements in tailings compared to typical crustal 
compositiona (Fe is in weight % as oxide and other elements in µg/g) 

Sample  

Location 

Cu 

(µg/g) 

Ni  

(µg/g)  

Pb 

(µg/g) 

Zn 

(µg/g) 

S 

(µg/g) 

Fe2O3 (as 

Oxide in wt 

%) 

 

BT-1 566 3950 367 58 18.7x104 65.21%  

ST-1 596 2200 179 116 35.2x104 18.89%  

BT-5 671 3160 145 137 6700 15.37%  

ST-5 803 2070 167 94 73500 32.40%  

Crustal Compositiona 14.3 18.6 17 52 953 4.32%  

 Notes: a = Wedepohl (1995) 

 

3.4.6 Resuspension Data from OBS Sensors 

As previously mentioned, two OBS sensors were installed in the tailings pond to identify 

temporal variations in resuspension and possible correlation with wind activity. The 

output from the OBS sensors was recorded every 5 minutes and then averaged every 15 

minutes for comparison with corresponding wind data. The main limitation in selecting 

the location of the OBS in the pond was the length of cable connecting the OBS sensor to 

the datalogger. As the cable for each sensor was only 30 m, the distance from sensor to 

shore was only approximately 24-27 m. The locations of OBS sensors in the west and 

middle cells of the pond are shown in Figure 3.1. The OBS data and relations to wind 

events at the site are discussed in the sections that follow. 



 

99 

 

Case I: OBS in middle cell, July 19 to 21, 2007: 

During this period both OBS sensors were installed in the middle cell of the pond near 

the wave break dyke dividing the east and middle cells. The sensors were located 15 m 

from each other and 10 cm above the tailings bed. The depth of water cover at the 

locations of both sensors was approximately the same (71 cm). During this period (July 

19-21, 2007) both wind direction and speed changed rapidly and wind speed was quite 

low (maximum of 4 m/s). The most favoured wind direction for resuspension to occur in 

the middle cell was 270-360 degrees to north (northwest). Wind blowing in this direction 

had the longest fetch in the middle cell.  

Initially, the wind blew along 0-450 to north (northeast direction) with a speed of 

approximately 3 m/s. Results from both OBS sensors show that the suspended solids 

concentration in the water was negligible. Wind blowing in the northeast direction had 

negligible fetch length to initiate resuspension at both OBS locations. At approximately 

08:15 PM (July 19, 2007) and after, wind was slowing down and also changing direction. 

At this time, even though the wind speed was relatively low (approximately 2 to 2.5 m/s), 

the changing direction allowed wind to blow over the longer fetch of the tailings pond. 

This likely resulted in resuspension, as indicated by the peaks of suspended solids 

concentration in water (Figure 3.12). The suspended solids concentration reached up to a 

maximum value of 25.1 mg/L for OBS-1 and 37.5 mg/L for OBS-2 sensor. Considering 

the slow wind, this is a significant value of resuspension. At approximately 9:45 PM 

(July 20, 2007), when wind speed was 3.5 m/s and wind direction changed from  
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Figure 3.12 Case I: Time series results of total suspended solids concentration (TSS) 
measured by OBS-1 and OBS-2 on July19 to 21, 2007 in the middle cell with 
corresponding wind data 
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southeast to southwest direction  (180-225 degree to North), a higher value of suspended 

solids concentration of 17 mg/L for OBS-1 and 20 mg/L for OBS-2 resulted.  

 

Case II: OBS in West cell, July 21 to 23, 2007: 

On July 21, 2007 the two OBS sensors were removed from the middle cell and installed 

in the west cell at approximately 20 m from each other and 10 cm above the tailings bed. 

The water cover depth was approximately 0.51 m at the location of OBS-1 sensor and 

0.42 m at OBS-2 sensor. The sensors recorded suspended solids concentrations till 12:00 

noon of July 23, 2007. At the locations of the OBS sensors, the most important wind 

direction that covered the longest fetch length and caused resuspension of tailings was 

northeast. Winds blowing from 45-180 degrees to the north also likely contributed 

significantly to resuspension. 

The suspended solids concentration recorded by OBS-1 was quite low in 

comparison with the records from OBS-2. The main reason for the difference could be 

the greater water depth at OBS-1. It can be seen that the dominant wind direction that can 

produce the most amount of resuspension was not present during the entire monitoring 

period. As indicated in Figure 3.13, peaks of suspended solids concentration for both 

sensors occur, when wind was in the southerly direction (1800 from North). During this 

time the maximum wind speed was approximately 5 m/s and the maximum recorded 

suspended solids concentration was 7.5 mg/L for OBS-1 and 18 mg/L for OBS-2. Again  
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Figure 3.13 Case II: Time series results of total suspended solids concentration (TSS) 
measured by OBS-1 and OBS-2 on July21 to 23, 2007 in the west cell with 
corresponding wind data 
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the difference may be attributed to the slightly deeper water cover at OBS-1, which 

meant that wind-wave activity was relatively less at that location. 

 

Case III: OBS in West cell, October 04, 2007: 

OBS records obtained on October 04, 2007 for the west cell are presented in Figure 3.14. 

The selected location was the same as it was for OBS-1 in Case II, but at different heights 

from the tailings bed. OBS-1 was at a height of 25 cm while OBS-2 was 10 cm above the 

bed. As expected, the amount of suspended solids concentration recorded from OBS-2 

was higher than from OBS-1. The depth of water cover at this location was about 0.70 m. 

As discussed in Case II, the most important wind directions at this location were 0-450 to 

north (northeast to southwest) and 45-1800 to north (east to west) and could contribute to 

significant resuspension.  

The wind data show that wind direction was consistently 2000 to 3000, which is 

not at all the direction that covers the longest fetch over pond water. Even if the wind 

speed was approximately 5 m/s and above for most of the time, the data from both 

sensors showed almost no resuspension. Most of the time, the suspended solids 

concentration in water was below 6 mg/L. There are some sudden peaks in the OBS data 

(max up to 16 mg/L) in Figure 3.14, but not consistent and may not be related to wind 

data. 
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Figure 3.14 Case III: Time series results of total suspended solids concentration (TSS) 
measured by OBS-1 and OBS-2 on October 04, 2007 in the west cell with corresponding 
wind data 
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Case IV: OBS in West cell, October 09, 2007: 

The method of sensor installation, sensor location in the pond, water cover depth, 

preferred wind direction for resuspension and all other conditions were exactly same here 

as in Case III. From the observed results we can see that at approximately 8:00 AM and 

after, the wind speed was relatively high (around 6 m/s) (Figure 3.15). Wind direction 

also contributed to resuspension as indicated by much higher values of suspended solids 

concentration. The maximum amount of resuspension was 25 mg/L for OBS-1 and 80 

mg/L for OBS-2. The difference in resuspended concentration is due to the height of the 

sensors from the bed. The sensor closer to the bed shows higher value of resuspension 

than the other one. 

These OBS results from four cases (Case-I, II, III and IV) of different wind and 

deployment conditions confirm the contribution of strong winds and wind directions to 

resuspension. If wind direction covers a long fetch, then a high wind speed can result in 

high resuspension. During strong wind events, there will always be some resuspension 

because strong winds do not allow the resuspended material to settle back and, instead, 

add to the suspended solids concentration. Settling velocity depends on the nature of 

resuspended particles. Large particles settle immediately after the wind ceases while finer 

particle may remain in suspension for longer periods.  Once a sediment load is in 

suspension in water, currents generated by long duration storm events can carry it to the 

outlet. 
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Figure 3.15 Case IV: Time series results of total suspended solids concentration (TSS) 
measured by OBS-1 and OBS-2 on October 09, 2007 in the west cell with corresponding 
wind data 
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3.4.7 Predicted and Measured Resuspension 

The predicted water cover depths presented in the earlier section of the paper were to 

completely eliminate resuspension. However, the existing water cover depths in each cell 

of the pond were measured at all sediment trap locations during each trip, as shown in 

Table 3.3 and OBS sensor locations. The existing water depths in the tailings pond at all 

locations were smaller than the minimum required water depth. This might be the main 

reason for sediment resuspension recorded by sediment traps and OBS sensors.  

Using the method developed by Samad and Yanful (2005), depth restriction was 

applied to predict the resuspended sediment concentration. The restricted water depth was 

chosen close to the existing or operating average depth in the tailings pond. Sediment 

resuspension was determined for each square grid cell using the power law erosion 

equation (Equation 3.14). The coefficient (α = 0.0025) and exponent (M = 1.121) in 

Equation 3.14 were calculated from laboratory erosion tests using tailings from the west 

cell of the Shebandowan Mine site (Geremew and Yanful 2010). The Samad and Yanful 

(2005) model is an erosion model and it does not account possible sediment 

transportation and redeposition to one station to another in the tailings pond. 

Figure 3.16 shows the contours of total bed shear stress (Pa) and predicted 

resuspended tailings concentration (mg/L) in the west cell with the water depth restricted 

to 0.9 m. The value of 0.9 m is also the average existing water cover depth in the west 

cell.  For the restricted water cover depth of 0.9 m, the total bed shear stress calculated 

from the model was 0.35 Pa to 0.75 Pa, which is much higher than the critical shear stress 

of bed tailings (0.12 Pa) in the west cell. The fact that the calculated mobilized bed shear 
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stress is higher than the critical shear stress of the tailings may explain the occurrence of 

resuspension in the west cell. For the water depth of 0.9 m., the calculated resuspended 

tailings concentration is 6.5 mg/L to 22.7 mg/L with an average value of 15.0 mg/L. 

Thus, for this water depth, sediment resuspension on the average may not exceed the 

regulatory limit of 15 mg/L (MMER 2002). 

 

 
 
Figure 3.16 Contours of total bed shear stress (Pa) and predicted resuspension 
concentration (mg/L) in the west cell after applying depth restriction of 0.9 m  

 

The OBS measured resuspension and model predicted resuspension were 

compared. The two OBS sensors installed in the west cell during October 2007 (Case-IV) 

showed resuspended tailings concentration up to 80 mg/L. As already mentioned, in this 

case (Case-IV) the OBS-1 sensor was 25 cm above the bed, while OBS-2 sensor was 10 

cm above the bed. By virtue of its location from the bed OBS-1 would record 

resuspended tailings concentrations more representative to the water column than OBS-2, 

which would record resuspension close to the bed. The OBS-1 sensor recorded 
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resuspended tailings concentrations of 3 to 25 mg/L. These values are similar to the range 

of values calculated from Samad and Yanful (2005).  Thus the model was able to 

reasonably predict the field resuspension tailings concentration in the west cell. The 

suspended solids concentration recorded during Case-II and Case-III were also within the 

range of model prediction. During Case-II, both OBS recorded concentration 7-18 mg/L 

and during Case-III, it was 12-16 mg/L.   

Figure 3.17 presents a plot of calculated maximum total bed shear stress versus 

water cover depth for the west cell. As indicated, an increase in water cover depth 

decreases the bed shear stress. Figure 3.18 shows the predicted maximum concentration 

of resuspended material for different water depths using the Samad and Yanful (2005) 

model.  The data show that a water depth of 0.9 m results in a resuspension tailings 

concentration of approximately 22 mg/L under strong wind conditions. The 

corresponding calculated total bed shear stress was 0.75 Pa compared to the value of 0.12 

Pa for the critical shear stress of the tailings. As shown, a maximum water depth of 4.0 m 

may be required to completely eliminate resuspension in the west cell. Most importantly, 

the data show that even a water depth of 2.0 m can substantially reduce the resuspended 

tailings concentration to approximately 2.0 mg/L.  

In the same way, results were obtained for the east cell, where bed tailings have 

similar texture, color and particle size distribution (except at sediment trap location 8, 

where bed tailings are coarser) as was the case for the west cell bed tailings. The erosion 

coefficient (α = 0.0025) and exponent (M = 1.121) experimentally obtained for the west 

cell tailings can be used for the east cell as well. As a result of a restricted water depth to  
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Figure 3.17 Change in total bed shear stress (Pa) with increasing water cover depth (m) 

 

 
 
Figure 3.18 Change in resuspended solids concentration (mg/L) with water cover depth 
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1.0 m (average of existing water cover depth) in the east cell, the suspended tailings 

concentration was calculated to be 1.0 mg/L to 10.9 mg/L with an average value of 6.0 

mg/L. These values are again within regulatory limits and may not raise any concerns. 

However, for the east cell, OBS data were not available to be compared with model 

predicted values. The application of the methodology by Samad and Yanful (2005) to 

both the east and west cell of the tailings pond indicated a small amount of resuspension 

with the existing water cover depths. The sediment trap data (Table 3.3) obtained during 

year 2006 and 2007 supports this finding however the sediment trap results were 

cumulative effect of sediment erosion and transportation by waves and currents and 

redeposition from one station to another station. The model predicted results may not be 

correlated with sediment trap results.  

The particle size distribution of tailings in the middle cell showed that bed tailings 

are very fine (0.0065 mm) in nature and have a very low critical shear stress. Due to this 

low critical shear stress and the existing shallow water depth (average 1 m) relative to the 

minimum limit (5 m), the middle cell tailings can resuspend more easily. The sediment 

trap and OBS results did not show any unusual amount of resuspension in the middle cell. 

The actual critical shear stress of the middle cell tailings may be higher than the 

estimated value probably because of the existence of cohesiveness in the tailings. 

The model predicted and field measured results indicate a small amount of 

resuspension occurring in the west cell of the pond with existing water depths. This 

resuspension does not raise an immediate concern because of the existing discharge 

monitoring and management strategies adopted at the site. In the long term though, the 
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water cover depth in the west cell of the pond may need to be managed (say, by dredging 

when necessary) to maintain an acceptable level of resuspension. Dredged tailings from 

shallow depths may be relocated to deeper areas. It is quite possible that disturbing the 

bed tailings by relocating dredged tailings may increase the degree of resuspension, but 

this would be the case in the short term only. In the long term, however, dredging has 

shown to eliminate resuspension. 

The model calculations are performed ignoring the presence of any other natural 

and structural variables that might affect resuspension, such as the presence of vegetation 

and rocks in the bed tailings. Patches of dense vegetation were observed in parts of the 

Shebandowan mine tailings pond during multiple field visits especially in the west and 

east cells. At the present time, the model is not able to account for vegetation effects. The 

values of erosion rate constants used in the analysis were obtained from laboratory test 

results from Geremew and Yanful (2010). The location and sampling conditions of bed 

tailings in the west cell in the present study may be different from where Geremew and 

Yanful (2010) obtained their sample. Thus the values may be not representative of the 

whole site. The results of sediment resuspension directly depend on these values and a 

slight difference in these values can change the predicted values. The predicted sediment 

resuspension depends on the values of coefficient and exponent used in the erosion 

equation.  
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3.5 CONCLUSIONS  

An attempt has been made in this paper to examine water cover technology and wind-

induced erosion and resuspension of bed tailings at a tailings storage facility at the 

Shebandowan mine where reactive sulphide tailings have been deposited under water. 

The idea of discretizing the pond into grid cells and solving for bed shear stress and 

required water depths using the method developed by Samad and Yanful (2005) gave 

reasonable estimates of resuspended tailings concentrations similar to field measured 

values. The approach provides an economic solution for managing subaqueous tailings 

storage facilities by optimizing water cover depths. The model results and field 

measurements show that a small amount of resuspension is occurring under the existing 

conditions at the site. The following are key conclusions from the study: 

1. The minimum water cover depth was significantly reduced by the presence of the 

wave breaks. The existing water depths in all cells were found to be less than the 

required values. This would explain the occurrence of resuspension. However for 

existing water cover depths, the resuspended tailings concentration for west cell 

and east cell was predicted to be within regulatory limits. The middle cell bed 

tailings are finer and representative erosion test results are required to predict the 

resupension.  

2. Combining sediment traps and optical back scatter (OBS) data provides a reliable 

assessment of resuspension. 

3. Sediment trap results helped to quantify the amount of resuspension over a certain 

period of time. Resuspension did not directly correlate with water cover depth. 
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Sediment trap data are a cumulative effect of wind events of different speeds and 

directions or fetch lengths, duration of wind events, water cover depth, erosion, 

sediment transportation and redeposition processes.  Mineralogical and chemical 

analysis of bed tailings and resuspended tailings collected by sediment traps 

showed similarity between the two tailings which confirms erosion and 

subsequent resuspension of bed tailings. 

4. The optical back scatter (OBS) results support the fact that some wind-induced 

resuspension may be occurring at the site and that resuspension depends on wind 

speed, direction and water cover depth. Strong winds that do not blow in 

directions that develop long fetches have minimal effect on resuspension. 

5. The Samad and Yanful (2005) method is probably more rigorous than other 

tailings resuspension models (for example, MEND Manual (2001)) as it is able to 

predict both minimum and optimum water cover depths and resulting resuspended 

tailings concentrations.  

The wave breaks appear to be working well at the Shebandowan site. There is 

some amount of resuspension, but, overall, it is within acceptable limits. One can always 

design the water cover to eliminate resuspension by using a deeper water cover. 

However, at the Shebandowan site where wave breaks have been implemented, this is not 

necessary. Increasing water depth to eliminate resuspension may not always be 

preferable. The design and stability of perimeter dams and other site-specific constraints 

must be taken into account. Depending on the severity of the impact, proper management 

of the tailings pond, such as dredging of tailings at locations with shallow water cover, 

can be undertaken. The calculation method outlined in this paper can be used to assess 
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the effectiveness of the dredging operation. The method can also be used in a preliminary 

design of new tailings facilities where very little data initially exists and no in-situ 

measurements can be conducted.  
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CHAPTER 4: A SEMI-EMPIRICAL APPROACH FOR ESTIMATION 

OF BED SHEAR STRESS IN A TAILINGS POND 

 

4.1 INTRODUCTION 

In a pond where sulphide rich reactive mine tailings are submerged under water, erosion 

and resuspension of the bed tailings can potentially alter the water quality and adversely 

affect the environment by releasing acid and metals. The only driving force available to 

initiate sediment motion in such a tailings pond is wind blowing over the water surface. 

Wind induced waves and currents exert shear stress on the tailings bed.  The importance 

of knowledge of the wind induced bed shear stress in a tailings pond has been pointed out 

by several researchers (e.g., Yanful and Catalan 2002; Samad and Yanful 2005). The bed 

shear stress can be used to assess tailings erosion and resuspension, which further helps 

in the design and management of a tailings pond.  

Wind induced total bed shear stress has two components: that due to waves and 

that due to current velocities. However it is not clear from published literature how the 

waves and currents should be handled in shallow water conditions to analyze 

resuspension and sediment transport processes. In many studies the current induced bed 

shear stress in shallow water is either considered too small to contribute to resuspension 

(Luettich et al. 1990; Bailey and Hamilton 1996) or estimated using theoretical and 

empirical approaches such as those developed by Wu and Tsanis (1995) and Yang 

(2001). Luettich et al. (1990) concluded that the bed shear stresses due to horizontal 
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currents are generally too small to contribute to sediment motion in shallow waters, 

however these circulatory currents are known to play an important role in the 

redistribution of material eroded and resuspended by wave action. In previous modeling 

studies the currents were assumed as counter currents in opposite direction to winds 

while waves in the direction of the wind and the total bed shear stress were taken as a 

simple linear addition of the shear stress contributions from waves and currents (Wu and 

Tsanis 1995; Yang 2001; Catalan and Yanful 2002; Samad and Yanful 2005; Kachhwal 

et al. 2010). 

It has been reported in other studies that wave-current interaction in shallow 

waters enhances the bed turbulence and causes an increase in the bed shear stress (Grant 

and Madesn 1979; Jing and Ridd 1996; Jin and Ji 2004). In most tailings pond studies, 

even though pure wave induced flow was found to be in laminar range, however in reality 

the wave motion near bed is turbulent because it is superimposed on a current which 

might be turbulent. According to Grant and Madsen (1979) near bed unsteady oscillatory 

wave motion will generate significant turbulence at the bed which may significantly 

affect the current motion in the case of combined wave and current flows. In the 

immediate vicinity of bed the shear stress and turbulent intensities are due to combined 

effect of both the wave and the current, which are coupled non-linearly (Grant and 

Madsen 1979). Jing and Ridd (1996) used a wave-current interaction model developed by 

Grant and Madsen (1979) to investigate resuspended sediment concentrations in 

Cleveland Bay, Australia. They found high correlation (R2 = 0.83) between wave-current 

bed shear stresses and suspended solids concentration. In their study, Jing and Ridd 

(1996) found that the maximum total bed shear stress estimated by the wave-current 
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interaction model was greater than that estimated by waves alone. Grant and Madsen 

(1979) predicted that currents actually contribute to the total bed shear stress, and that 

waves and current motions should not be treated separately. They developed a model 

based on non-linear interaction between waves and currents responsible for sediment 

erosion and transportation. Signell et al. (1990) showed that wave-current interaction 

significantly affects the wind driven current circulation in shallow embayment.  The non-

linear wave-current interaction model of Grant and Madsen (1979) has been adopted by 

many other researchers to estimate the total bed shear stress and to model the flow pattern 

in shallow waters (Jones and Davies 2001; Liang and Li 2008; Dufois et al. 2008). 

Rennie at al. (2002) found a strong correlation between apparent bed load velocity and 

current bed shear stress which indicates that the current induced bed shear stress was 

sufficient to initiate sediment motion. Jin and Ji (2004) found that wind induced currents 

contribute significantly to both the total bed shear stress and sediment redistribution in 

shallow lake Okkechobee, Florida, USA. 

In most studies so far conducted on tailings ponds, the total bed shear stress was 

taken as a simple linear addition of the shear stress contributions from waves and currents 

(Catalan and Yanful 2002; Samad and Yanful 2005; Kachhwal et al. 2010). In these 

studies near bed currents were assumed as counter current flow in opposite direction to 

wind based on the Wu and Tsanis (1995) theoretical model developed for pure currents in 

absence of waves. In presence of both waves and currents, linear addition may not be 

accurate especially for strong currents and may underestimate the total bed shear stress. 

The empirical approaches used to estimate wind induced currents in these tailings pond 

studies do not provide any information on current directions and circulation patterns. The 



 

124 

 

lack of field measured wind induced current data in small tailings pond is a constraint. 

The main objectives of the present study were to measure real time wind induced currents 

in a tailings pond and study the effect of wave-current interaction on total bed shear 

stress. 

The presents study was conducted in a tailings pond where an Acoustic Doppler 

Current Profiler (ADCP) was used to measure circulatory currents near the bed. To the 

best of the authors’ knowledge, this is the first study in which an ADCP has been used to 

measure wind induced small magnitude currents in a mine tailings pond. In the study, a 

semi empirical approach is employed to estimate the total bed shear stress due to wind 

induced waves and currents. The approach is based on the wave-current interaction 

model of Grant and Madsen (1979). The bed shear stress due to circulatory currents is 

calculated from field measured vertical current profiles obtained using an ADCP and the 

well-known Log-Law relation (Wilcock 1996; Rennie et al. 2002; Yu and Tan 2006; 

Garcia 2007). The bed shear stress due to wave orbital velocities was calculated using 

shallow water wave hindcasting equations as provided in CERC (1984) and discussed in 

Samad and Yanful (2005). The total bed shear stress was calculated using the Grant and 

Madsen (1984) model considering non-linear wave-current interaction. The ADCP results 

were also used to visualize the three-dimensional complex current flow circulation in the 

tailings pond. The results showed that the concept of counter currents near the bed 

opposite to the wind direction (Wu and Tsanis 1995; Yang 2001; Samad and Yanful 

2005) could be augmented by one of circulatory currents under wave-current interactions 

in field conditions.  
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4.1 STUDY SITE 

The study was conducted at the Shebandowan Mine tailings storage facility, located 100 

km west of Thunder Bay, northwestern Ontario, Canada. The Shebandowan mine was 

operated as an underground nickel and copper mining and milling facility from 1971 to 

1998. Figure 4.1 shows the map of the Shebandowan tailings storage facility. Two wave 

breaks (internal dykes) divide the tailings storage facility into three cells, namely, the 

West cell, Middle cell and East cell. In 1999 approximately 85000 m3 of sulphide rich 

mine tailings were deposited in the Shebandowan tailings storage facility. The present 

study was conducted in the Middle cell. Figure 4.1 shows the middle cell and the 

locations of ADCP stationary data collection points. The depths of water cover in this 

particular cell varied from less than 1 m at some locations to over 3.4 m at others. The 

bathymetry of the pond showed an abrupt depression (3.4 m depth) in the bed close to the 

east dyke. The average median grain size of the bed tailings was of the order of 0.007 

mm. The grain size of the tailings in this cell was finer than those in the other two cells 

and was likely to be of cohesive nature (Kachhwal et al. 2010). 

 

4.2 METHODS AND MATERIALS 

4.2.1 The Acoustic Doppler Current Profiler (ADCP) Data Collection 

For the present study, a 1200 kHz Workhorse Rio Grande ADCP (Teledyne, RD 

Instruments, CA, USA) was used. An Acoustic Doppler Current Profiler (ADCP) can be 

used to measure real time currents in a water body.  The ADCP uses ultrasonic sound  
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Figure 4.1 The map of Shebandowan tailings storage facility, the Middle cell, and ADCP 
data collection locations in the Middle cell 

 

waves with Doppler’s principle, which relates the change in frequency of a source to the 

relative velocities of the source and the observer. The ADCP transmits an acoustic pulse, 

or “ping”, into the water column and then receives the return echo backscattered off small 

suspended material present in the water, which is assumed to be moving at the same 

velocity as the water. The ADCP’s onboard signal processing unit compares the 

frequencies of the initial transmitted and received signals and calculates the Doppler shift 

in the frequency. As the time after transmission of the initial ultrasonic pulse increases, 

the returned signal comes from successively more distant sample volumes known as 

range bins. Backscattered energy from each range bin arrives at the transducer with a 

Doppler shift proportional to the average speed of many scatterers within the sampled 

volume. This ADCP has four independently working acoustic beams angled at a specific 

angle (200) from vertical axis (Janus configuration) to measure three dimensional velocity 
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components. The 1200 kHz Workhorse Rio Grande ADCP used in the present study can 

measure water velocities with an accuracy of ± 0.25 cm/s (±0.25%) (Teledyne RD 

Instruments 2009). A Differential Global Positioning System (DGPS) is generally linked 

with the ADCP to measure absolute current velocities and avoid errors associated with 

relative boat velocities. The additional information on the ADCP’s working principles 

and related terminology can be found in Simpson (2001).  

In the present study, bottom tracking ADCP data were collected in the Middle cell 

of the Shebandowan tailings pond on September 19, 2008 using the 1200 kHz Workhorse 

Rio Grande ADCP linked to a DGPS.  As shown in Figure 4.2, the ADCP was mounted 

on a boat looking downward using a steel fabricated mounting assembly. Stationary boat 

current profiles were recorded at different locations in the Middle cell as shown in Figure 

4.1. The stationary boat profiling was chosen because very small current velocities were 

expected. Stationary boat measurements of current velocities and depths have greater 

 

 
 
Figure 4.2 Boat mounted Workhorse Rio Grande 1200 kHz ADCP with mounting 
assembly 
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accuracy due to increased temporal averaging than those measured from a moving boat, 

especially in the case where current velocities were expected to be very small (Muste et 

al. 2004). The bottom tracking, water velocity profile in columns and depth of each 

ensemble at several locations in the pond were recorded for approximately 180 seconds at 

each location. Current velocities were recorded along three beams in depth cells or bins 

vertically spaced 5 cm apart, using pulse coherent water mode 11. The use of pulse 

coherent processing increased the accuracy and resolution of the velocity data, and was 

appropriate for the shallow and low velocity conditions of the site (Teledyne RD 

Instruments, 2009). A MATLAB code was developed to process and filter raw data to 

obtain mean current velocity and direction at different depth cells in a column. ADCP 

data in the tailings pond were useful for quantification and visualization of circulatory 

currents near the bed. However the major limitation of the boat mounted ADCP was that 

it could not measure velocities in the top 0.35 m of water due to instrument size and 

blanking distance. Moving boat data were also collected and used only to develop the 

approximate bathymetry of the middle cell.  

 

4.2.2 Estimation of Bed Shear Stress 

In a tailings pond, erosion and resuspension occur when the wind induced bed shear 

stress exceeds the critical shear stress of the bed tailings (Samad and Yanful 2005). The 

critical shear stress is a characteristic property of bed material and depends on its physical 

and chemical composition. Accurate estimation of total bed shear stress due to wind 

induced waves and circulatory currents is not always easy. In the present study we used a 
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semi-empirical approach based on the Grant and Madsen (1979) model of wave-current 

interaction with the well-known “Log-Law” and ADCP measured current profiles in the 

tailings pond. The total bed shear stress due to waves and currents (τb) can be written as a 

tensor addition: 

cwb τττ +=                                                                                                                      (4.1) 

where, τc is the shear stress due to currents and τw is the maximum shear stress due to 

waves calculated over one wave period. 

In the Grant and Madsen (1979) model, waves and currents are not treated 

separately. The waves influence the drag felt by currents at a reference level and this 

enhancement of drag is a function of wave orbital velocities, current velocities at 

reference level, wave period, bottom roughness and the angle between waves and 

currents. The combined wave-current bed shear velocities can be obtained by: 

( ) 2
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2
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2

** cos2 cwcwccw uuuuu θ++=                                                                                   (4.2) 

where, u*w and u*c are wave and current bed shear velocities, respectively and θc is the 

angle between the direction of wave propagation and current, ranged between 0 to 900 

considering the simple harmonic motion of waves in linear wave theory.  

Using Equation 4.2, and the definition that τ = ρu*
2 in general, we can write the 

combined total bed shear stress under wave-current interaction as: 

cwcwccwb u θττττρτ cos22

* ++==                                                                            (4.3) 
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The bed shear stress due to wind induced wave orbital velocities τw can be 

calculated using the empirical wave hindcasting equations provided in CERC (1984) 

based on linear wave theory. These equations have been applied in tailings resuspension 

studies by several researchers (Samad and Yanful 2005; Kachhwal et al. 2010).  The 

input data required in this process are wind speed, direction, pond geometry or fetch 

length, and water cover depth.  

22

*
2

1
wwww Ufu ρρτ ==                                                                                                     (4.4) 

)2sinh(
L

hT

H
U w π

π
=                                                                                                         (4.5) 

Where, ρ is fluid (water) density, ƒw is the wave friction factor, Uw is the near-bed wave 

orbital velocity, H is the significant wave height, T is the significant wave period.          

The well-known “Log-Law” (Wilcock 1996; Rennie et al. 2002; Garcia 2007) 

describes a methodology for the estimation of bed shear stress due to currents by 

assuming a log linear velocity profile for both smooth and rough bed boundary 

conditions. The relationship between the current bed shear velocity u*c and variation of 

near-bed velocity u with elevation above the bed z can be written as: 


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ln
1

z

z

u

u

c κ
                                                                                                              (4.6) 

Where, κ is von Karman’s constant (~ 0.40), z0 is the bed roughness length 

corresponding to u = 0.  
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The near bed shear velocity u*c can be estimated as the slope of the log linear near 

bed velocity profile multiplied by κ, von Karman’s constant. The bed shear stress due to 

currents can thereby be obtained by using measured horizontal current velocities at 

different elevation above the bed in a vertical column. In a tailing pond, the bottom 

boundary can be assumed sufficiently smooth, the currents will suppressed drastically in 

an extremely thin layer (viscous sub-layer) near bed, where velocity distribution holds a 

linear profile. For a hydraulically smooth bottom boundary, the bed roughness length z0 = 

ν/9u*c, where ν is kinematic viscosity of water.  The advantage of this method is that 

knowledge of bed roughness length z0 is not required. However, z0 values can be used as 

acceptability criteria for the field measured current results as discussed in section 4.3.2. 

Detailed explanation on the use of low-law in hydraulically smooth and rough flow 

conditions is available in Garcia (2007). The bed shear stress due to currents can be 

calculated using bed shear velocity u* as follows: 

2

*cc uρτ =                                                                                                                      (4.7) 

 

4.3 RESULTS AND DISCUSSION 

4.3.1 ADCP Measured Flow 

In a tailings pond where only wind driven flow exists, accurate knowledge of wind data 

becomes necessary and important. In the present study, on-site wind data were collected 

with a Young wind monitor installed at standard 10 m height above the water surface 

along with a weather station. During the ADCP data collection on September 19, 2008 
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wind was quite consistent both in speed and direction as shown in Figure 4.3. The 

average wind speed was about 6.5 m/s and the direction was 2500 from North. The wind 

direction varied within 10 degrees during the period of data collection. 

 

 
 

Figure 4.3 Plot of wind data during ADCP data collection  

 

Figure 4.4 shows the contour maps of water cover depth or bathymetry of the 

middle cell. Water cover depth near east dyke was as high as 3.5 m due to abrupt 

depression in the bed. Three-dimensional vector plots of the time-averaged circulatory 

horizontal current velocities along with approximate bathymetry are shown in Figure 4.5. 

The group of figures show flow patterns in the middle cell of the tailings pond viewed 

from different angles for enhanced visualization. The X and Y-axis represent the East and 

North directions respectively while the Z-axis represents the depth of the pond. These 

results showed a complex pattern of near bed circulation of flow. The magnitude of  
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Figure 4.4 Contour map of water cover depth or bathymetry of the middle cell 
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Figure 4.5 Three-dimensional visualization of current flow pattern with bathymetry in 
the Middle cell viewed from different angles (Note: Vector color represents velocity 
magnitude and pond color represents depths as shown in color scale legends for both) 
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measured velocities was of the order of 5 cm/s. The standard error in the ADCP measured 

horizontal velocities at all profile locations were less than 0.1 cm/s. Jin and Ji (2004) 

reported wind induced current velocities typically ranging from 1 to 10 cm/s in Lake 

Okeechobee, Florida, USA. The mean depth of this lake was 2.7 m. The current 

velocities measured in the present study were within the same order of measured values 

in Lake Okeechobee.  

At most locations in the Middle Cell, current velocities consistently varied in both 

magnitude and direction throughout the profile except at locations close to the east wall 

of the pond where an abrupt depression in the bed produced anomalies in flow. The 

measured velocities were small but the pattern of circulation currents is remarkably 

visible. The depth-averaged data of horizontal current velocities were plotted on an 

interpolated grid using Surfer. The two dimensional view is shown in Figure 4.6, which 

shows the complex near bed flow circulation pattern in the pond. It was evident that 

wave-current interaction, irregular bathymetry, abrupt depression and pond geometry 

were causing this complex flow pattern.  

A number of researchers have discussed wind induced flow patterns in lakes or 

ponds in terms of flow in the direction of wind at the top surface and near bed counter 

current flow in the opposite direction to maintain energy or mass conservation based on 

laboratory experimental results (Wu and Tsanis 1995; Yang 2001). This flow pattern 

would occur where the influence of surface waves is negligible and counter current flow 

conditions are fully developed.  Non-linear interaction between waves and currents is 

responsible for generating complex current circulation (Signell et al. 1990). The present  
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Figure 4.6 Two-dimensional near bed currents flow circulation pattern 
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ADCP results show the complex flow pattern near the tailings bed. The near bed counter 

current flow opposite in direction to the wind was seen in only a few profiles, for 

example at locations 16 and 18, in the present study (Figure 4.5, and Appendix-III), and 

flow reversal within these profiles appeared to be related to the complicated pattern of 

flow circulation within the entire pond.  In the field where irregular bathymetry is present 

and wave and current interaction cannot be neglected, the concept of counter currents can 

be replaced with circulatory currents.       

 

4.3.2 The Bed Shear Stress 

The bed shear stress due to wind waves is a function of fetch length and water cover 

depth. The estimated bed shear stress due to wind waves in general was very small 

because of slow winds and minimal fetch length available for the wind waves to grow. 

The wind-wave induced bed shear stress varied from almost zero along the west dyke 

locations to 0.02 Pa close to the east dyke in the northeast corner of the pond. The fetch 

available for locations along the west dyke of the Middle cell was negligible. The 

variation was also associated with depth. At locations close to the east dyke where there 

was a depression in the bed and the depth was approximately 3.4 m, the estimated bed 

shear stress was still close to zero even though some fetch was available for the waves to 

grow. The estimated results for all locations were plotted in the form of a contour map as 

shown in Figure 4.7. The zero bed shear stress contour essentially divided the cell into 

two parts. On the west side of the Middle cell, there was no effect of wind waves whereas 

on the east side some stress was exerted on the bed. However these results were estimated  
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Figure 4.7 Contour map of estimated bed shear stress due to wind induced wave orbital 
velocities 
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for observed winds blowing at low speed along the shorter axis of the Middle cell. These 

bed shear stress conditions would be different in the case of stronger wind events and 

longer fetch lengths. 

  The current bed shear velocity (u*c) was calculated by measuring the slope of a 

least-square line fitted to ADCP measured velocities in each depth cell and calculating 

the log of elevation above the bed of that particular depth cell. The intercept of the linear 

regression line provides an estimate of the bed roughness coefficient (k*c), depending on 

whether smooth or fully rough turbulent flow conditions (Garcia 2007). Figures 4.8(a) 

and 4.8(b) show typical time-averaged velocity profiles at locations 10 and 14 (Figure 

4.1), respectively, plotted with elevation above the bed on a log scale. Only the portion of 

the data that showed a linear trend near the bed was used to fit the least-square line to 

obtain a velocity profile slope for that particular location. For example, for the log profile 

shown in Figure 4.8(a) a linear profile was fitted to seven data points, while in Figure 

4.8(b), twenty-six data points were fitted (see Appendix-III for remaining current velocity 

profiles). The advantage of this method was that knowledge of the bed roughness length, 

z0, is not required because u*c depends only on the slope of the velocity profile. Results 

thus obtained for bed shear velocity (u*c) due to bed currents were weakly filtered to 

exclude unrealistic bed roughness (ks) values, considering smooth bed conditions. All the 

profiles with bed roughness values of more than 1.0 m were excluded from further 

calculations.  
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Figure 4.8 (a), (b) Log linear current velocity profile for locations 10 and 14 

 

Figure 4.9 shows a contour map of the bed shear stress due to circulatory currents 

obtained for each ADCP profiling location. The ADCP measured current profiles at all 

locations were almost of the same order of magnitude, hence variation in current induced 

bed shear stress was localized. The bed shear stress due to currents is not a function of 

fetch length and thus variation is not related to location in the pond. At the location of 

abrupt depression higher current velocities were recorded, which would explain the 

relatively higher bed shear stress at that location. 
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Figure 4.9 Contour map of estimated bed shear stress due to wind induced circulatory 
current velocities 
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The direction of current vectors measured by ADCP was from East in the counter-

clockwise direction while wind direction was measured clock wise direction from the 

North. In order to find the angle between waves and currents, the current direction was 

first transformed in the same reference system. It can be assumed from the field 

observations that surface waves propagate in the same direction as the wind and this 

assumption is reasonable because wind is the only driving force available for the waves 

in tailings pond. The angle between the wave propagation direction and depth averaged 

current direction was obtained for each location and used in Equations 4.2 and 4.3 to 

obtain combined wave-current bed shear stress. Figure 4.10 presents the contour plot for 

combined bed shear stress under wave-current interaction. The estimated combined 

wave-current bed shear stress varied from 0.001 Pa at location 51 to 0.160 Pa at location 

26 (see Figure 4.1 for location numbers). Location 26 was at the depression where 

relatively strong currents were recorded. The average value of total bed shear stress in the 

pond was 0.028 Pa. It was evident that on the west side of the zero wave-induced bed 

shear stress contour line (shown in Figure 4.7), the bed shear stress was mostly due to 

circulatory currents, while on the east side it was the result of combined wave-current 

interaction. From the results it may be concluded that circulatory currents greatly affect 

bed shear stress in a tailings pond and they cannot be ignored. It also should be noted that 

maximum bed shear stress was the location of deepest water cover. It was due to stronger 

currents recorded at the locations of abrupt depression in the pond. In general, magnitude 

of currents is not a function of water depth and depends on topography of bed. 

Previous studies (Catalan and Yanful 2002) ignored current induced bed shear 

stress in a tailings pond, assuming it to be only 10% of the total bed shear stress.  
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Figure 4.10 Contour map of estimated bed shear stress due to combined wave current 
interaction 
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However, Samad and Yanful (2005) later found that bed shear stress due to 

currents often exceeded 20% of the total bed shear stress. In their study Samad and 

Yanful (2005) also calculated total bed shear stress as a linear addition of both wave and 

current induced bed shear stresses. They ignored any possible wave-current interaction. 

In the present study, an attempt has been made to compare linear versus non-linear 

addition of wave and current bed shear stresses as shown in Figure 4.11. The ratio of pure 

current bed shear stress (τc) to non-linear total wave-current bed shear stress (τcw) was 

found to be up to 0.97 (97%) and ratio of non linear wave-current total bed shear stress 

(τcw) to linearly added wave-current bed shear stress was found up to 1.97. In Figure 4.11, 

the total bed shear stresses obtained from linear and non-linear additions of wave and 

current bed shear stress were almost equal at locations where wind wave induced bed 

shear stress was negligibly small, especially westward of the zero bed shear stress (wave-

induced) contour line shown in Figure 4.7, and the total bed shear stress was mainly due 

to currents. But at locations where wave induced bed shear stress is higher, the non-linear 

total bed shear stress is greater than that obtained by linear addition of wave and current 

shear stresses. It is clear from these results that currents significantly contribute to total 

bed shear stresses and they cannot be ignored. Also non-linear wave-current interaction 

enhances the total bed shear stress as predicted by Jing and Ridd (1996).  

Resuspension occurs when bed shear stress exceeds the critical shear stress of the 

bed tailings. The critical shear stress is a characteristic property of bed tailings and 

depends on the physical and chemical properties of tailings, such as grain size 

distribution, degree of consolidation, mineral composition, and cohesiveness. The 

empirically estimated average value of the critical shear stress of bed tailings in the East 
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and West cells of the Shebandowan tailings pond were of the order of 0.12 Pa while in 

the Middle cell it was estimated to be 0.04 Pa (Kachhwal et al. 2010).  The median 

particle size (D50) was 0.08-0.55 mm in the east and west cell while in the middle cell it 

was 0.007 mm. The bed tailings in the Middle cell were comparatively finer than bed 

tailings in the other two cells. In the present study the total bed shear stress in the Middle 

cell was calculated to be 0.16 Pa, which was higher than the empirically estimated critical 

shear stress of 0.04 Pa. However for finer sediment particles that are likely to be 

cohesive, such as the bed tailings in the Middle cell, empirical approaches may not 

reliably predict the critical shear stress (Blake et al. 2004).  

 

 
 

Figure 4.11 Comparison of wind wave and current induced bed shear stresses 
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4.3.3 Sources of Error 

Apart from possible field measurement and instrumental limitations, the following are the 

major sources of error that could have affected the estimation of bed shear stress under 

wave-current interaction. 

1. The empirical wave hindcasting equations used in the calculation of wave induced 

bed shear stress are simplified solutions of complex wave growth and propagation 

phenomena (CERC 2002). The amount of error introduced in using these 

equations can be measured only if the actual wave parameters could be measured 

in the field. The ADCP that was used in this study was capable of measuring only 

currents and not waves. Other ADCPs are capable of measuring both waves and 

currents simultaneously. This could be considered in future studies. 

 

2. In complex flow conditions when the current velocity profile is not completely 

log linear, only the portion of profile near the bed that can be fitted to a least-

square regression line should be used for current induced bed shear stress 

estimation. The manual selection of this linear portion depends on visible 

deviation of the velocity profile from log linearity. This may introduce some error 

in the calculated current induced bed shear stress. A typical shape of log velocity 

profile was shown in Figure 4.8(a) for location number 10, where seven 

measurement points from the bed were chosen to calculate the slope. Here we will 

repeat the calculation of bed shear stress by taking only three measurement points 

near the bed and taking the complete velocity profile (Figure 4.12). The results 

are presented in Table 4.1. If we consider the seven-point measurement accurate 
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then the three-point measurement overestimates the bed shear stress by 48% while 

the full profile measurement underestimates it by only 6%. However the amount 

of error depends on the shape of log velocity profile, which was different for each 

measurement location. 

 

 
 
Figure 4.12 Log current velocity profile at location 10 with linear regression line fitted 
for three points and for full profile 

 

Table 4.1 Comparison of log linear profile fitted with different number of measurement 
points at location 10 

# Points Bed shear velocity 

(m/s) 

Bed shear stress 

(Pa) 

% Difference 

 

3 5.44x10-3 0.029 48% (over) 

7 4.46x10-3 0.019  

Full profile 4.32x10-3 0.018 6% (under) 
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4.4 CONCLUSIONS 

Wind-induced currents in a tailings pond were measured using an ADCP.  An intricate 

pattern of flow circulation was observed in the pond, which was more complex than the 

near-bed flow reversal that is typically assumed. Knowledge of the total bed shear stress 

induced by wind waves and currents is an important parameter in the management of a 

tailings pond. A semi-empirical approach of bed shear stress calculation was used that 

considered non-linear wave-current interactions. The ADCP measured circulatory 

currents were used to estimate the bed shear stress due to currents.  A major finding of 

the study was that linear addition of wave and current bed shear stresses can 

underestimate the total bed shear stresses and that a non-linear approach accounting for 

wave-current interaction should be used. Given knowledge of the bed tailings 

characteristics, such as critical shear stress and erosion rate constants, accurate estimation 

of bed shear stress can help in the prediction of resuspended concentrations, and hence 

provide a useful tool for tailings pond management.  
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CHAPTER 5: ESTIMATING THE EROSION CHARACTERISTICS OF 

TAILINGS USING FIELD RESUSPENSION DATA  

 

5.1 INTRODUCTION 

Sulphide rich mine tailings are frequently deposited under shallow water cover to 

minimize the ingress of oxygen. Tailings entrained into the overlying water have a 

greater potential to oxidize from contact with dissolved oxygen in the near surface water 

than tailings at rest (Catalan and Yanful 2000). Oxidized tailings can generate acidity and 

release heavy metals, which can adversely affect the water quality and surrounding 

environment. Wind induced resuspension of bed tailings deposited under shallow water 

covers pose a significant environmental threat as discussed by many researchers (Adu-

Wusu et al. 2001; Yanful and Catalan 2002; Mian and Yanful 2003, 2004). There is, 

therefore, the need to develop a simple method for predicting resuspension and 

suspended solids concentration in water.  

In water bodies of closed boundary, such as tailings pond, erosion and subsequent 

resuspension of bed material occurs when bed shear stress induced by wind waves and 

currents exceeds the critical shear stress of bed material. The erosion of bed material is, 

in general, quantified by erosion rate equations. In most resuspension studies, suspended 

solids concentration in water has been predicted using various erosion rate equations 

(Partheniades 1986; Maa et al. 1998; Mehta at al. 1993; Sanford et al. 1991; Samad and 

Yanful 2005).  In these equations, erosion rate is defined as a function of the excess bed 
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shear stress over the critical shear stress. Mehta et al. (1993) reviewed and listed some 

common erosion rate equations. The most generalized form of erosion rate equation was 

developed assuming the depth of erosion is small and that the critical bed shear stress for 

erosion does not vary with depth (Partheniades 1986; Samad and Yanful 2005). The 

generalized power law equation for erosion rate can be written as follows:  
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where, E is erosion rate (in g/m2.s), τb is total bed shear stress (in N/m2 or Pa), and τcr is 

critical shear stress of bed material for erosion (in N/m2 or Pa). The coefficient (α) and 

exponent (M), generally known as erosion rate parameters, are typically obtained from 

laboratory erosion tests such as the rotating annular flume test and column tests 

(Krishnappan 1993; Geremew and Yanful 2010; Samad and Yanful 2005). In typical 

laboratory experiments, a disturbed bulk sample of bed material is subjected to known 

values of shear stresses by mechanical means and the amount of eroded material is 

obtained. The results obtained in this way are plotted using Equation 5.1 and the best fit 

erosion rate parameters are obtained for that sample.  

The two major drawbacks of using laboratory experiments to estimate erosion 

rates are that: (i) considerable effort and time are required to conduct such experiments, 

which also include the collection and transportation of representative bed material sample 

from the field, and (ii) in most cases the laboratory experiments are conducted on 

disturbed bed samples and the results may not be representative of actual field conditions. 
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In most cases, field conditions of bed materials are completely different from those 

imposed in the laboratory experiments. The bed material in the field generally has two 

layers. The top layer is made of loose sediment of high water content while the bottom 

layer contains consolidated sediments. The top layer, also commonly called the “fluffy 

layer”, is a result of exposure to frequent erosion and re-deposition processes occurring in 

the field. The bed materials in the two layers have different erosion characteristics. In 

general, the top layer bed material has lower critical shear stress than the bottom 

consolidated material and can be easily resuspended by combined wave-current bed shear 

stresses (Wang 2002).  In the field, the presence of benthic organisms and bio-films in 

bed sediments influence the erosion characteristics of cohesive sediments and disturbed 

samples used in the laboratory erosion tests may not represent the same physical, 

chemical and biological sediment characteristics (Krishnappan and Droppo 2006).   

In field applications, it is important to estimate the critical shear stress and erosion 

rate parameters from field measured resuspension data. There are limited published 

studies available on the estimation of erosion rate parameters from field experiments. 

Wang (2002) estimated erosion rate parameters of cohesive sediments by field 

measurement of tidal waves and currents and turbidity at the Long Island Sound, USA. In 

that study, a two term power law was applied between erosion rate and bed shear stress. 

Moreau et al. (2003) obtained in-situ measured sediment erosion parameters using a 

benthic flume at Saguenay Fjord, Quebec, Canada. The rotating flume was mechanically 

powered to exert known amounts of bed shear stresses at the bed and a pre calibrated 

OBS sensor was attached to measure the corresponding suspended solids concentration. 

Krishnappan and Droppo (2006) used an in-situ erosion flume to measure erosion 



 

155 

 

parameters at Hamilton Harbour, Ontario, Canada. In most cases, the nature of the bed 

shear stresses applied by mechanical flume and wind induced waves and currents are 

totally different. The bed shear stresses generated in mechanical flumes are steady in 

nature while bed shear stresses generated by wind induced waves and currents are mostly 

unsteady.  

The main objectives of the present study were to obtain erosion rate parameters 

using field measured wind induced resuspension obtained in an engineered tailings 

storage facility, and to develop a simplified approach to predict resuspension using field 

measured wind and depth data. In this study, the critical shear stress and erosion rate 

parameters of bed tailings were determined using OBS measured suspended solids 

concentration data along with wind data. A simplified equation was derived and used to 

estimate the total bed shear stress in shallow water conditions using wind and water depth 

data. Once the site specific erosion rate parameters have been determined, the erosion 

rate Equation 5.1 can be used to predict field resuspension for known wind and water 

depth conditions. A major limitation of the present approach is that the erosion equation 

cannot predict the instantaneous suspended solids concentrations. For example, it does 

not take into account the changes in the suspended solids concentration with time due to 

varying settling velocities after the wind conditions have changed. The role of settling 

velocity and its impact on the suspended solids concentration was not considered. 

However if settling is significant it would result in a reduction in the amount of 

suspended tailings and hence the oxidation rate. Consequently it is conservative to 

assume that settling is not important when predicting oxidation due to resuspension. In 

tailings pond studies, knowledge of accumulated suspended solids concentrations is more 
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important than the settling velocity. The suspended bed tailings are prone to oxidation 

through contact with high dissolved oxygen in the water cover. This paper differs from 

the work of Samad and Yanful (2005) and Kachhwal et al. (2010) in the sense that it 

proposes a method for estimating the critical shear stress and erosion parameters from 

field measured OBS data. Previous papers, such as Mian et al. (2007), Geremew and 

Yanful (2010) estimated critical shear stress and erosion parameters from laboratory 

column and flume experiments, which may not always be feasible because of cost or 

other limitations.                      

                                                                                                                                                   

5.2 STUDY SITE  

The study was conducted at the Shebandowan Mine tailings storage facility, located 100 

km west of Thunder Bay, northwestern Ontario, Canada. The site is located along the 

south shore of Lower Shebandowan Lake. The Shebandowan mine was operated as an 

underground nickel and copper mining and milling facility from 1971 to 1998. Figure 5.1 

shows the plan view of the tailings storage facility. The tailings storage facility occupies 

an area of about 115 ha. In 1999 approximately 85,000 m3 of potentially acid generating 

mine tailings were deposited under shallow water cover (Golder Associates 2000). Two 

engineered wave breaks (internal dykes) were constructed across the tailings facility, 

which divided the pond into three cells, namely, west cell, middle cell and east cell. The 

purpose of the wave breaks was to reduce the fetch length and hence eliminate or 

minimize sediment disturbance and subsequent erosion and resuspension of tailings. The 

depth of water cover in the pond varies from less than 1 m at some locations to over 3 m 
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at others. On average, the depth of water cover is about 1 m at most locations in the pond. 

The present study resuspension data were collected at locations in the west and middle 

cells of the tailings storage facility as shown in Figure 5.1.  

 

 
 
Figure 5.1 Map of Shebandowan tailings storage facility showing the OBS data 
collection locations in the west and middle cells and location of weather station 
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5.3 METHODS AND MATERIALS 

Wind induced erosion and subsequent resuspension of bed material in a closed water 

body is a function of wind velocity (U), wind direction or fetch length (F), that is, the 

length of water surface over which wind blows in a particular direction, water cover 

depth (h), and erosion characteristics of bed material (K) which include the critical shear 

stress and erosion rate parameters (Kachhwal et al. 2010).  

( )KhFUfE ,,,=                                                                                                             (5.2) 

In tailings ponds with shallow water cover, erosion and subsequent resuspension 

of bed material occurs when bed shear stress exerted by wind induced waves and currents 

exceeds the critical shear stress of bed material (Partheniades 1965; Bengtsson et al. 

1990; Samad and Yanful 2005). The erosion of bed material generally can be quantified 

by erosion rate equations. As mentioned in the previous section, the most generalized 

form of erosion rate equation was developed assuming that the depth of erosion is small 

and that the critical bed shear stress for erosion does not vary with depth 

(Partheniades1986; Samad and Yanful 2005).  

The main objective of the present study is to obtain erosion rate parameters in 

equation (1), the coefficient (α) and exponent (M) by calibration of Equation 5.2 to field 

measured resuspension data. In order to calibrate Equation 5.2, the erosion rate (E) was 

determined using OBS recorded suspended solids concentrations (SSC) and total bed 

shear stress (τb) can be calculated using corresponding wind data. In this study, 

simultaneously recorded, suspended solids concentrations (SSC) by OBS sensors and 
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wind data were used to derive erosion rate parameters and critical shear stress of bed 

material as outlined below.  

 

(1) Estimation of Erosion Rate (E) 

The erosion rate, E, can be estimated for various wind conditions in the field using OBS 

recorded suspended solids concentration data. Suspended solids concentration (Cssc) for a 

particular time can be converted to erosion rate (E) assuming equal distribution of eroded 

sediment in the water column depth (h) (Samad and Yanful 2005). This assumption is 

valid for depth averaged suspended solids concentration at any location in the tailings 

pond.  

hCEor
h

E
C sscssc *==  (5.3) 

 

(2) Estimation of Total Bed Shear Stress (τb) 

Wind that blows over the water surface in the pond generates waves and currents by 

transferring its energy to the water surface in the direction of the wind. The waves grow 

during their travel over the water surface and along the available fetch length. These 

waves start to feel the bed of the pond when they are grown enough to exert shear stress 

on the bed. The strength of wind generated currents does not depend on fetch length, but 

on the intensity of turbulence generated in the water by waves. The total bed shear stress 

exerted by wind-induced waves and currents at the bottom of the pond is made of three 

components: pure wave bed shear stress, pure currents bed shear stress and a third term 
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due to wave-current interaction (Kachhwal et al. 2011).  In most studies the total bed 

shear stress can be calculated as a linear addition of bed shear stress due to waves and 

currents. Previous research based on the Grant and Madsen (1979) theory showed that the 

non-linear wave-current interaction may enhance the bed shear stress (Kachhwal et al. 

2011). The total bed shear stress from non-linear wave-current interaction can be given 

by following equation: 

cwcwcb θτττττ cos2++=                          (5.4) 

where, τw and τc are the bed shear stress due to waves and currents, respectively; θ is the 

angle between waves and currents which varies between 0 to 900 
, assuming simple 

harmonic motion of waves. The third term in Equation 5.4 is due to non-linear wave 

current interaction.  The value of this term is maximum when the angle between wave 

and current is zero or they are collinear, while it is zero when wave and currents are 

perpendicular to each other. The angle, θ, between waves and currents mostly needs to be 

determined from field experiments.  

The total bed shear stress can be calculated using wind speed U (m/s) measured at 

10 m above the water surface, fetch length F (m) measured in the direction of the wind, 

and water cover depth h (m). The following Equation 5.5 has been derived by combining 

wind waves and currents bed shear stress estimation methods discussed in Samad and 

Yanful (2005) and Kachhwal et al. (2010) to obtain total bed shear stress using wind 

speed (U), Fetch length (F), and water cover depth (h).  
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In the Equation 5.5, the first term on the right-hand-side is the bed shear stress 

due solely to wind waves. It was obtained by simplifying the shallow water wave 

hindcasting equations used in the SMB method (CERC 1984). The second term defines 

the bed shear stress due to currents and was obtained by using the approach adopted by 

Wu and Tsanis (1995) and Yang (2001). The third term shows the enhancement in bed 

shear stress due to non-linear wave-current interaction based on the Grant and Madsen 

(1979) model. As discussed later in section 6.3.2 of Chapter 6 that Wu and Tsanis (1995) 

approach can predict the magnitude of currents shear velocities similar to those measured 

in the field using ADCP for the similar conditions. However, the theoretical approach 

used for calculating the bed shear stress due to currents did not provide any information 

on current direction (Wu and Tsanis 1995; Yang 2001). In this equation, the waves and 

currents were assumed collinear (Angle θ = 0 or 180 degrees) to obtain maximum total 

bed shear stress.  Detailed derivation of the simplified Equation 5.5 of the total bed shear 

stress estimation is provided in Appendix-IV of this thesis.  

 

(3) Estimation of Critical Shear Stress 

Once the erosion rate (E) and total bed shear stress (τb) have been obtained for different 

wind conditions, the critical shear stress can be estimated by assuming that (i) erosion 

rate E is zero if total bed shear stress is less than the critical shear stress of bed material 
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and, (ii) if the bed shear stress is greater than the critical stress, then erosion rate is 

directly proportional to total bed shear stress.  The critical bed shear stress can be 

determined by plotting erosion rate versus total bed shear stress and fitting the data to a 

linear regression line. The critical shear stress of bed material would be equal to value of 

total bed shear stress obtained by extrapolating the regression line to intercept the x-axis, 

which corresponds to zero erosion rate (E = 0). 

 

(4) Estimation of Erosion Rate Parameters 

Once the erosion rate, E, estimated from field measured resuspension data and total bed 

shear stress obtained from wind and water depth data are known, erosion rate parameters, 

such as the coefficient (α) and exponent (M), can be determined as follows: 
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Erosion rate parameters, coefficient (α) and exponent (M) can be obtained as the intercept 

and slope of a linear plot between the logarithms of erosion rate (E) and 

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5.4 DATA COLLECTION  

In the present study, resuspension data were collected in the west and middle cells of the 

pond using two optical backscatter sensors or OBS sensors (OBS-3+, Campbell Scientific 
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Canada Corp., Edmonton, Alberta). These sensors have been used reliably to measure 

wind induced resuspension and results were fairly correlated with wind data (Kachhwal 

et al. 2010). The wind data, wind speed and wind direction were recorded from a Young 

Wind Monitor installed close to the tailings pond at 10 m height above the water surface. 

The locations of OBS sensors in the middle and west cells and weather station are shown 

in Figure 5.1. 

The OBS sensor works on the principle of emission of infrared light signal and 

reception of light backscattered by suspended particulates in water. The intensity of 

backscattered light can be directly correlated with the concentration of suspended solids 

in water. However, the interaction of emitted light with particulate material depends on 

the size, shape and composition of material and, therefore, varies between different 

materials. The two OBS sensors used in the present study were calibrated in the 

laboratory for bed tailings from the west and middle cells (Kachhwal et al. 2010). One 

OBS sensor was installed at a height of 10 cm above the bed and the other at 25 cm 

above the bed. However, the variation in the suspended solids concentrations in the water 

column with respective to their locations above the bed was not used, and only the depth 

averaged OBS results were used in the calculations. Details of OBS data collected in the 

west and middle cells along with corresponding wind data are presented below for two 

cases:  

Case- 1: OBS in West Cell on October 09-10, 2007: 

OBS results recorded in the west cell on October 09-10, 2007 and corresponding wind 

data are shown in Figure 5.2. The longest fetch at the location of the OBS sensors was 
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1055 m for winds blowing in the direction of northeast (00-450). A significant fetch 

length was also available for the winds blowing in the direction 450 to 1800, that is, 

northeast to southwest. Winds of relatively high speed, up to 6 m/s, and in the direction 

of longer fetch length were available periodically to resuspend the bed tailings. The depth 

averaged suspended solids concentration was up to 40 mg/L.   

 

 
 
Figure 5.2 OBS recorded suspended solids concentration (SSC) and corresponding wind 
data in the west cell of the tailings pond on October 09-10, 2007 
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Case- 2: OBS in Middle Cell on July 25-26, 2008: 

OBS sensors deployed in the middle cell during July 19-21, 2007 showed small peaks of 

suspended solids concentration (Kachhwal et al. 2010). However, for the middle cell bed 

tailings, the empirically calculated critical shear stress was small (0.04 Pa) in comparison 

with the wind induced total bed shear stress and the total bed shear stress always 

exceeded the critical value, which should have resulted in a relatively larger amount of 

suspended solids concentration than those recorded in the field by two OBS sensors. The 

authors pointed out that the bed tailings in the middle cell were likely to be cohesive and 

the critical shear stress of the bed tailings in the middle cell could be higher than the 

empirically determined value. In that study, the erosion rate parameters for the middle 

cell bed tailings were not available and due to that the Samad and Yanful (2005) model 

predicted and field measured resuspension results could not be compared.  During the 

summer of 2008, OBS sensors were installed in the middle cell using a specially 

fabricated steel platform. The sensors were deployed to record long term episodic 

resuspension events. As the sensors are prone to fouling by deposition of suspended 

material, only data from the first few days of monitoring were used in the present study.  

Figure 5.3 shows the time series variation in depth averaged suspended solids 

concentration recorded in the middle cell on July 25-26, 2008 and the corresponding 

wind data. Wind conditions during this period were favourable to induce high bed shear 

stress. Wind direction was mostly northwest (2700-3600), which was also the direction of 

the longest axis of the middle cell. Thus this direction provided a relatively long fetch 

length for the wind-waves to grow. Wind speed varied periodically. The maximum wind 
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speed recorded was above 9 m/s. The high wind speed and long fetch mobilized 

sufficient bed shear stress to resuspend the tailings and depth averaged suspended solids 

concentration was up to 60 mg/L.  

  

 
 
Figure 5.3 OBS recorded suspended solids concentration (SSC) and corresponding wind 
data in the middle cell of the tailings pond on July 25-27, 2008 
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5.5 DATA ANALYSIS  

Erosion of bed tailings occurs when wind induced total bed shear stress exceeds the 

critical shear stress of the bed material. The erosion rate of the bed material is directly 

related to the total bed shear stress. The total bed shear stress and hence the erosion rate 

change with wind speed and direction. It can be assumed that eroded material stays in 

suspended state in the water until the bed shear stress exceeds the critical shear stress, 

which means there will be no settling of the suspended material and increasing suspended 

solids concentration between two time steps is the result of net erosion. The time series of 

depth averaged concentrations of suspended solids obtained from OBS data can be 

converted into erosion rates using the following steps.  

1. First, not all the SSC values in Figures 5.2 and 5.3 are due to erosion. The SSC 

values increasing with time, that is, the values on the ascending side of peak, 

should be used in the calculations. Values on the descending side of the peak, 

where SSC is decreasing with time, should be avoided. These values show the 

effect of settling velocities after the wind conditions have changed and the total 

bed shear stress is below the critical shear stress under new wind conditions.  

2. Once the bed shear stress is higher than the critical shear stress of bed material, 

continuous erosion of bed material adds to the suspended solids concentration 

until the wind condition changes to lower the bed shear stress. It can be assumed 

that during the period when bed shear stress is greater than the critical shear 

stress, there will be no settling of resuspended material. In order to obtain the net 

concentration of material eroded between two successive measurements, the 
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difference between SSC values should be taken into account for the estimation of 

erosion rates. 

3. The OBS results were recorded as the average concentration of suspended solids 

concentration every 15 minutes. The net concentration obtained in step two was 

the increase in suspended solids concentration over 15 minutes.  From this, the net 

increase in concentration per second was calculated. The erosion rate (g/m2.s) was 

calculated using Equation 5.3 by multiplying the net suspended solids 

concentration by water cover depth. Prior to that, suspended solids concentrations 

were converted from mg/L to g/m3.  

 

5.6 RESULTS AND DISCUSSION 

The total wind induced bed shear stress is a function of wind speed (U), fetch length (F) 

and water cover depth (h). A simplified equation was developed in terms of these three 

parameters to obtain total bed shear stress in shallow water conditions. The time series of 

total bed shear stress was obtained from field measured wind data using simplified 

Equation 5.3. At any moment, the fetch length (F) was determined at the location of OBS 

sensors in the direction of wind and water cover depth (h) was measured at the time of 

OBS sensors deployment in the pond. Figure 5.4 shows the variation in wind induced 

total bed shear stress with time corresponding to OBS results presented in Case-1 and 

Case-2 in the west and middle cells respectively.  
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Figure 5.4 Time series of total bed shear stress (in Pa) calculated from wind data 
corresponding to OBS data collected in (a) the west cell or Case-1 and (b) the middle cell 
or Case-2 
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bed shear stress is equal to or less than the critical shear stress. Graphs of estimated 

erosion rates (from OBS data) versus calculated total bed shear stresses for the west and 

middle cells were plotted as shown in Figure 5.5. The fitted regression line was 

extrapolated back to the x-axis to yield the critical shear stress (corresponding to erosion 

rate, E, of zero) of the bed material. The graphically calculated critical shear stress for the 

west cell bed tailings was 0.10 Pa. This value was slightly less than the empirically 

calculated value of 0.12 Pa obtained by Kachhwal et al. (2010). The empirical approach  
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Figure 5.5 Plot of calculated erosion rates versus total bed shear stress data to obtain 
critical shear stress values for the (a) west cell and (b) middle cell 
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stress was estimated for the middle cell bed tailings to be 0.08 Pa. The bed tailings in the 

middle cell were finer than the west cell bed tailings and, therefore, in our previous study, 

the empirically calculated critical shear stress of the middle cell bed tailings was 0.04 Pa 

(Kachhwal et al. 2010). It was found that, field measured resuspension with sediment 

traps and OBS sensors did not agree with such a low critical shear stress value and it was 

predicted that the critical shear stress of the middle cell tailings might actually be higher 

than the empirically calculated value due to the presence of binding cohesive forces in the 

finer middle cell bed tailings.  The higher value of critical shear stress of the middle cell 

bed tailings obtained in the present study supports that finding. 

The erosion rate parameters were obtained by plotting the graph between 

logarithm of calculated erosion rate (Log10(E)) (in g/m2.s) and logarithm of ratio of total 

bed shear stress to critical shear stress minus one (Log10(τb/τcr -1)) as per Equation 5.6. 

The data were fitted to a linear regression line and from the equation of the straight line, 

the slope and intercept were used to obtain erosion rate parameters. Figure 5.6 shows the 

graphs plotted for the west cell and middle cell results. The results fitted with a linear 

regression line, showed good correlation with R2 = 0.86 and R2 = 0.54 for the west and 

middle cell results respectively. A higher correlation was found between the west cell 

data than the middle cell data. It may be attributed to the complex nature of binding 

cohesive forces in the finer middle cell bed tailings. These binding forces provide 

additional strength to the bed material for erosion but finer bed tailings will resuspend 

with a higher erosion rate once these binding forces have been broken by applied bed 

shear stress. For the west cell, the slope of linear regression line provided the value of 

erosion rate exponent M = 0.6145, while the intercept was equivalent to Log10(α) = - 
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1.7943, which results in an erosion rate coefficient, α = 0.0161.  Using the similar 

approach, for the middle cell erosion rate parameters, the exponent M = 0.6121 and the 

coefficient α = 0.0069 were obtained. For the west cell bed tailings at the Shebandowan  

 

 
 
Figure 5.6 Plot of logarithm of erosion rate versus logarithm of bed shear stress over the 
critical shear stress to obtain erosion rate parameters of the bed tailings in the (a) west 
cell and (b) middle cell 
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site, values of erosion rate parameters, exponent (M) and coefficient (α) were calculated 

to be 1.121 and 0.0025, respectively, through laboratory column experiments by 

Geremew and Yanful (2010).  

For mine tailings, Samad and Yanful (2005) predicted typical values of erosion 

parameters, exponent M = 1.333 and coefficient α = 0.1667. The erosion rate parameters 

obtained in this study were of the same order of magnitude but at the same time were 

quite different from those obtained by Geremew and Yanful (2010). These values may be 

different because of two reasons. First, the location and sampling conditions of bed 

tailings collected by Geremew and Yanful (2010) may be different from the location of 

the OBS sensors used in the present study. Second, as discussed earlier, erosion and 

resuspension occurs mostly in the surface layer of the bed material and due to frequent 

erosion and redeposition, the erosion characteristics of the material in the surface layer 

will be different from those of the disturbed bulk sample of bed material. The erosion rate 

parameters calculated in this study was for actual resuspended material in water and can 

be considered more representative. 

 

5.7 CONCLUSIONS 

Time series suspended solids concentrations of bed tailings were obtained using optical 

backscatter sensors (OBS) in the west cell and middle cell of the Shebandowan tailings 

storage facility.  A simplified equation was derived for calculating the total bed shear 

stress under shallow water conditions using wind and water depth data. The critical shear 
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stress and erosion rate parameters of bed tailings were obtained using field measured 

resuspension and wind data. These results were found to be more reliable and 

representative of actual field conditions than data obtained mathematically and using 

laboratory-derived erosion characteristics. Field-derived erosion characteristics of the bed 

material can be used with the simplified equation developed in the present paper to 

estimate the wind induced bed shear stress for the prediction and evaluation of erosion 

and resuspension in engineered mine tailings storage facilities.  
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CHAPTER 6: AN IMPROVED MODEL FOR THE DESIGN OF 

WATER COVER FOR REACTIVE MINE TAILINGS  

 

6.1 INTRODUCTION 

Water cover technology is one of the most effective methods for the long-term storage of 

reactive mine tailings with potential environmental impacts strongly dependent on the 

structural integrity and safety of the impoundments (dams and dykes). A reliable 

resuspension model can play an important role in designing and managing a water cover 

over reactive mine tailings, where wind induced erosion and resuspension of bed tailings 

pose a major threat to the effectiveness of the cover. However, resuspension models 

available to design water cover over mine tailings are very limited. Samad and Yanful 

(2005) reviewed existing methods, such as those by Lawrence et al. (1991), Mohamed et 

al. (1996) and MEND (2001) used in the design of water covers. Major limitations with 

these models include the assumptions that return currents are too weak to contribute to 

the total bed shear stress; the restriction that selected water depths must always eliminate 

resuspension completely which sometimes result in uneconomical water depths; the use 

of the threshold bed velocity to identify incipient motion of the bed instead of the critical 

shear strength, which is a tailings material property. 

Other than those mentioned above, another common limitation of these models is 

that only one water cover depth can be calculated for the entire tailings pond. However, 

in a tailings pond where wind is the only driving force causing bed erosion and 
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resuspension, wave parameters are a function of fetch length which is the distance over 

the water covered by the waves in the direction of the wind. Greater fetch length will 

provide more distance available for wind waves to grow and a greater chance for bed 

erosion to occur. Samad and Yanful (2005) developed a model that takes fetch length into 

consideration in order to calculate the design water cover depth for a particular grid 

station or location in the pond. In this model, the total pond area is discretized into a 

mesh of grids of fixed design interval or spacing and a fetch length and hence a water 

cover depth is obtained for each of the square grid cell in the pond area. Circulation 

currents, which were ignored in previous models, are incorporated into the Samad and 

Yanful (2005) model considering them as counter-currents in the opposite direction to the 

wind based on the Wu and Tsanis (1995) and Yang (2001) models. Details of the Samad 

and Yanful (2005) model are available in two foundational papers by Samad and Yanful 

(2005) and Kachhwal et al. (2010). 

Kachhwal et al. (2010) used the existing Samad and Yanful (2005) model to 

compare field measured and model predicted results for the Shebandowan tailings storage 

facility, located near Thunder Bay, ON, Canada. In general, the results showed that 

model predicted and field measured suspended tailings concentrations were in agreement. 

Although the Samad and Yanful (2005) model advanced the design of water covers for 

reactive mine tailings, there are still some limitations, some of which outlined below:  

1. The lack of field representative data such as return currents, critical shear stress 

and erosion rate parameters limits the use of the model. Erosion rate parameters 

can be estimated from laboratory experiments using empirical relations available 
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in literature, but the accuracy of the results is questionable without actual field 

data for verification.  

2. The return currents computational scheme used in the model is based on 

theoretical equations developed by Wu and Tsanis (1995) and Yang (2001). The 

parameters used were obtained from laboratory water tank studies and were not 

verified under field conditions. 

3. Linear addition of wave and current bed shear stresses adopted in the model 

cannot be justified (Kachhwal et al. 2011). In field conditions, where waves and 

currents are both present, the interaction between them should not be ignored 

(Grant and Madsen 1979). 

4. Accurate knowledge of bed material characteristics such as the critical shear 

stress and erosion rate parameters is necessary for obtaining reliable results. 

Existing methods for the estimation of these parameters include either laboratory 

erosion tests or empirical relations, which may not be representative as pointed 

out by Kachhwal and Yanful (2011b).  

5. The Samad and Yanful (2005) model calculates the resuspended solids 

concentrations in the water cover at each grid point for a single water cover depth 

restricted over the entire area of the pond. The fetch length is different for each 

grid point; therefore, a single water cover depth for the entire area of the pond 

would not be economical. This approach needs to be improved by providing an 

optimized water depth for each grid cell.  

An attempt was made in the present study to resolve the above limitations in the 

Samad and Yanful (2005) model. The main objective of the study was to improve the 
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resuspension prediction model developed by Samad and Yanful (2005) by incorporating 

the results of field studies and new approaches to the computation of the wave-current 

interactions. In order to achieve this objective the following four main improvements in 

the existing model were made: 

1. The field measured currents were compared with currents predicted using the Wu 

and Tsanis (1995) model.  

2. Wave-current interaction was incorporated into the model. An interaction term 

was included in the estimation of total bed shear stress, instead of the linear 

addition of wave and current induced bed shear stresses. 

3. The critical shear stress and erosion rate parameters were determined using field 

recorded wind induced resuspension instead of empirical equations. A graphical 

technique developed by Kachhwal and Yanful (2011b) based on the field 

recorded real-time resuspension data using optical backscatter sensors (OBS 

sensors) was used. 

4. Instead of a single optimized water cover depth over the entire area of the pond, a 

different water cover depth was obtained at each grid cell in the discretized pond 

area for known regulatory limits of the suspended solids concentration in the 

water.  

In the present paper, wherever the term “existing model” is used, it refers to the existing 

Samad and Yanful (2005) model.  
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6.2 METHODS AND MATERIALS 

6.2.1 The Total Bed Shear Stress 

In the existing Samad and Yanful (2005) model, the total bed shear stress τb is calculated 

as linear addition of empirically determined bed shear stresses due to waves and currents. 

cwb τττ +=                            (6.1)    

where, τw is the shear stress due to waves and τc is the shear stress due to currents. The 

bed shear stress due entirely to waves, τw, was determined by wave hindcasting equations, 

also known as the SMB method (CERC 1984) and linear wave theory. This method 

provides a set of equations that can be used to calculate the bed shear stress (Kachhwal et 

al. 2010). The input parameters needed are wind data, pond geometry and fetch length. 

The bed shear stress due to circulation currents was estimated using equations derived by 

Samad and Yanful (2005) based on the Wu and Tsanis (1995) approach of counter-

currents and equation parameters determined by Yang et al. (2001) from laboratory 

experiments. More details on the SMB method of wave predictions and the method of 

Wu and Tsanis (1995) can be found in summaries provided in Samad and Yanful (2005) 

and Kachhwal et al. (2010). 

Grant and Madsen (1979) noted that under conditions where both waves and 

currents are present in water simultaneously, neither of them can be treated separately 

and wave-current interaction must be taken into account. It has also been reported in 

other studies that wave-current interaction in shallow waters enhances bed turbulence and 

causes an increase in the bed shear stress (Grant and Madesn 1979; Jing and Ridd 1996; 
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Jin and Ji 2004). Since SMB method predicts bed shear stress due to pure currents while 

Wu and Tsanis (1995) model for pure currents, the interaction between wave-currents 

should be included in calculations. Therefore Kachhwal et al. (2011) proposed a 

relationship to determine the total bed shear stress under wave-current interaction derived 

from the Grant and Madsen (1979) model.  

cwcwcb θτττττ cos2++=                                         (6.2) 

where, θc is the angle between wind induced waves and circulation currents at any 

location. In order to improve the Samad and Yanful (2005) model, wave-current 

interaction must be considered and this requires knowledge of the angle, θc, between 

wind-induced waves and circulation currents. 

 

6.2.2 Prediction of Currents 

The wind induced currents can either be predicted by mathematical modeling or be 

measured in the field using instruments such as an acoustic Doppler current profiler 

(ADCP). In this section, details are provided of two approaches used to obtain bed shear 

velocities due to currents, which will later be used to compare predicted and field 

measured circulation currents. Kachhwal et al. (2011) used an ADCP to obtain field 

current data, which were then used to evaluate the effect of wave-current interaction on 

the total bed shear stress. In that study, the bed shear velocities were obtained by fitting 

the current profile to the Log- Law. The near bed shear velocity was estimated as the 

slope of the log linear bed velocity profile. The relationship between the current bed 
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shear velocity u*c and the variation of the near-bed velocity u with elevation above the 

bed z can be written as:  









=

0*

ln
1

z

z

u

u

c κ
                                                                                                              (6.3) 

where, κ is von Karman’s constant (~ 0.40), z0 is the bed roughness length corresponding 

to u = 0. 

  The Wu and Tsanis (1995) approach of near bed counter-current flow was used in 

the existing Samad and Yanful (2005) model to obtain the bed shear stress due to 

currents. In this approach, the surface shear velocity of water u*s is given by: 

w

a

s Uu
ρ

ρ
035.0* =

             (6.4) 

 

where, U is the wind speed (m/s), ρa is the density of air (kg/m3) and ρw is the density of 

water (kg/m3). The bed shear stress due to currents can be written as: 
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The variables A and B in the above equation are defined as: 
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where,  
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The variables zsh (=2.2x10-4) and zbh (=1.4x10-4) are the surface and bottom 

characteristic lengths, respectively, and are calculated based on experimental data (Wu 

and Tsanis 1995; Yang 2001). The parameter λ is a constant that depends on the intensity 

of turbulence in water. It varies from 0.2 to 0.5 with an average value of about 0.35. The 

variation in the values of these parameters affects mainly the near surface shear stress but 

has little influence on the bed shear stress (Yang 2001; Samad and Yanful 2005). The 

current bed shear velocity u*c can be obtained using the following relationship: 

w

c

cu
ρ

τ
=*               (6.7) 

The Wu and Tsanis (1995) model gives one value of current induced bed shear 

stress corresponding to input wind speed regardless of the location and water depth in the 

pond. However, this model cannot predict the direction of currents; consequently, it was 

assumed to be in the opposite direction to the wind.  
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6.2.3 Erosion Characteristics of Bed Material 

Another challenge encountered in the use of the existing Samad and Yanful (2005) model 

is the availability of characteristic erosion parameters for the bed material, namely, the 

critical shear stress and erosion rate constants. Any resuspension prediction model is 

quite sensitive to these parameters. The existing model depends on the prior knowledge 

of these values. In most cases, these parameters are either determined empirically or 

through laboratory experiments on a disturbed bulk sample of the bed material which 

may not be representative of actual field conditions such as tailings pore water and the 

presence of bio film and organic matter (Adu-Wusu et al. 2001; Krishnappan 1993; 

Geremew and Yanful 2010). Kachhwal and Yanful (2011b) recently developed a 

graphical method to estimate these parameters using real time field resuspension data 

obtained with optical backscatter (OBS) sensors and the corresponding wind data. Details 

of the method can be found in Kachhwal and Yanful (2011b).  

 

6.3 RESULTS AND DISCUSSION  

6.3.1 Results from Existing Samad and Yanful (2005) Model 

Table 6.1 presents erosion characteristics of bed tailings used in the Samad and 

Yanful (2005) model and predicted results. The critical shear stress of bed tailings was 

estimated using Fischenich’s (2001) empirical equation and D50 as the representative 

tailings particle size. Average critical shear stress values of 0.12 Pa for the west and east 
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Table 6.1 Input data and results of water cover depth predictions using the existing Samad and Yanful (2005) model  

*NA = not available, ** Whole pond without wave breaks 

 

 

 

 

 

Location Fetch length Erosion characteristics Water cover depth 

Minimum 

(m) 

Maximum 

(m) 

Critical shear 

stress (Pa) 

Coefficient 

(α) 

Exponent 

(M) 

Minimum 

(m) 

Maximum 

(m) 

Average 

(m) 

West Cell 553 1067 0.12 0.0025 1.121 1.4 3.6 2.9 

Middle Cell 470 870 0.04 NA* NA* Greater than 5.0 m 5.0  

East Cell 482 938 0.12 0.0025 1.121 1.3 3.3 2.2 

Whole pond** 887 1827 0.12 0.0025 1.121 1.2 4.7 2.8 
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cells and 0.04 Pa for the middle cell tailings were used in the analysis. The empirically 

determined critical shear stress of the middle cell bed tailings was very small due to their 

fine particle size (average D50 0.007 mm).  The Fischenich’s (2001) empirical approach 

did not take presence of cohesiveness into account for the determination of the critical 

shear stress of fine tailings, which otherwise can increase the resistance to erosion and 

hence the critical shear stress. Erosion rate parameters, coefficient (α) and exponent (β), 

used in the model were 0.0025 and 1.121 respectively. These values were obtained in 

laboratory erosion tests by Geremew and Yanful (2010) for the west cell bed tailings. The 

same values were used in the model to predict resuspension in the west and east cells due 

to the similar geotechnical characteristics of bed tailings in the two cells (Kachhwal et al. 

2010). However, the same values of erosion parameters could not be used for the middle 

cell because bed tailings in the middle cell were much finer and likely to be cohesive 

(Kachhwal et al. 2010).   

The required minimum water cover depths to eliminate resuspension were up to 

3.6 m in the west cell and 3.3 m in the east cell (Table 6.1). For the middle cell, the 

required water cover depth was greater than 5.0 m. The rather deep water cover was due 

to the very small critical shear stress determined empirically. The existing water depths 

observed during sediment trap sampling and OBS sensor installation were found to be 

smaller than the minimum required to eliminate resuspension. In the case of the middle 

cell, existing average water depth was 1 m, which was much smaller than the model 

predicted minimum water depth of 5 m. However, the sediment traps and OBS did not 

record any unusually high amount of resuspension in the middle cell. The reason could be 

the cohesive nature of fine bed tailings in the middle cell. The presence of binding 
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cohesive forces in fine particles can increase the resistance to erosion and resuspension. 

The critical shear stress for the fine middle cell tailings material may be higher than the 

value calculated from Fischenich’s (2001) method due to the presence of cohesion.   

 

6.3.2 Comparison of Model Predicted and Field Measured Currents  

Kachhwal et al. (2011) made measurements of wind induced circulation currents at 32 

locations in the middle cell of the Shebandowan tailings storage facility using the ADCP. 

The ADCP data provided evidence of increase in the total bed shear stress due to wave-

current interactions. However, the currents were measured only for a small range of wind 

speed of 5-8 m/s blowing in the direction 2500 to the North. In order to incorporate the 

wave-current interactions into the existing Samad and Yanful (2005) model, a tool for the 

prediction of currents under various wind conditions, such as the Wu and Tsanis (1995) 

model, is needed. 

A comparison was made between the magnitude of bed shear velocities due to 

currents obtained from field measured current profiles at 32 different stations in the 

middle cell and those predicted by the Wu and Tsanis (1995) model under similar wind 

conditions. The results are presented in Table 6.2. The bed shear velocities obtained from 

field measured currents ranged from 0.0001 m/s to 0.0226 m/s.  The ADCP recorded 

currents showed that the magnitude of the bed shear velocities were not constant but 

almost of the same order at most of the locations. However, the direction of the currents 

varied between different locations (Kachhwal et al. 2011).  Only 5 out of the 32 stations 

showed measured results that were either much lower or higher than the model  
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Table 6.2 Comparison of field measured and model predicted bed shear velocities under 
similar wind conditions 

 

 

 

Current bed shear velocities 

Field measured Wu and Tsanis (1995) model prediction 

Profile ID Bed shear velocity 

(m/s) 

Wind speed          

(m/s) 

Bed shear velocity 

(m/s) 

8 0.0024 5.0 0.0028 

10 0.0045 5.2 0.0029 

11 0.0050 5.5 0.0031 

12 0.0030 5.8 0.0033 

14 0.0048 6.0 0.0034 

15 0.0046 6.2 0.0035 

16 0.0050 6.5 0.0037 

29 0.0030 6.8 0.0038 

30 0.0010 7.0 0.0040 

31 0.0020 7.2 0.0041 

32 0.0039 7.5 0.0043 

40 0.0048 7.8 0.0044 

41 0.0035 8.0 0.0045 
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predictions.  After excluding these five stations, the magnitude of field recorded bed 

shear velocities for the remaining stations ranged from 0.002 m/s to 0.007 m/s. In 

comparison, the Wu and Tsanis (1995) model predicted current bed shear velocities for 

wind speeds of 5-8 m/s of the order of 0.0028 m/s to 0.0045 m/s. Thus most of the bed 

shear velocities obtained from field measured currents were very close to those predicted 

by the model. Statistical analysis was performed comparing the two data sets using the 

single factor analysis of variance (ANOVA) method. The results gave a P value of 0.71, 

which indicated that the two data sets were comparable to each other.    

The foregoing results show that the Wu and Tsanis (1995) model can give the 

currents of the same order of magnitude as those measured in the field.  However, the 

direction of the currents could not be predicted by this model. It is possible to incorporate 

the wave-current interaction into the existing Samad and Yanful (2005) model by 

introducing an additional term in Equation 6.1 to determine the total wind induced bed 

shear stress. The angle between waves and currents, which is generally not easily 

measured, can be assumed to be either 00 or 1800 in order to maximize (Cosine of 00 

and1800 =1) the total bed shear stress, considering the worst case scenarios. This 

assumption will result in slightly higher water depths than those predicted if the actual 

angle was known.  

 

6.3.3 Wave-Current Interactions 

In order to improve or enhance the resuspension model of Samad and Yanful (2005), the 

Wu and Tsanis (1995) model of circulatory currents prediction was used with an added 
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term for wave-current interaction. Total bed shear stresses were obtained for two 

conditions: (i) without wave-current interaction, which is similar to the existing Samad 

and Yanful (2005) model, and (ii) with wave-current interactions, assuming collinear 

waves and currents, which maximizes the total bed shear stress. The critical shear stress 

and erosion rate parameters were determined through a graphical technique developed by 

Kachhwal and Yanful (2011b) using field recorded resuspension data. The characteristics 

parameters of the bed tailings are listed in Table 6.3. Long term wind data (50 years) with 

a return period of 10 years were used in analysis. Water cover depths required to 

eliminate resuspension and the magnitude of resuspension were determined.  

The minimum required water cover depth to completely eliminate resuspension 

predicted by the modified Samad and Yanful (2005) model are presented in Figures 6.1 

and 6.2. The results show that wave-current interaction significantly increased the 

minimum water cover depth required to eliminate resuspension. For example, in the west 

cell, without considering the wave-current interaction, the model predicted water cover 

depth varied from 1.5 m to 3.5 m with an average value of 2.5 m. When wave-current 

interaction was considered, the model predicted water depths ranged between 2.5 and 6.0 

m. Wave-current interaction only increased the total bed shear stress which resulted in 

greater required water cover depths, however it did not affect the pattern of water cover 

distribution over the area of the pond. The results also show that a relatively deep water 

cover was required in the southwest area of the pond. 

Analysis was also carried out for the whole pond area without the wave breaks.  

The results are presented in Figures 6.3 and 6.4 for the cases without wave-current  
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Table 6.3 Erosion characteristics derived from field measured resuspension data and model predicted water cover depth with and 
without wave-current interactions 

** Whole pond without wave breaks 

 

 

 

Location Erosion parameters Water cover depth to eliminate resuspension  

Critical shear stress 

(Pa) 

Erosion Rate Without interaction With interaction 

Coefficient  

(α) 

Exponent 

(M) 

Max. 

(m)         

Min. 

(m) 

Avg. 

(m) 

Max. 

(m) 

Min. 

(m) 

Avg. 

(m) 

West Cell 0.10 0.0161 0.6145 3.9 1.5 2.6 6.3 2.1 4.0 

Middle Cell 0.08 0.0069 0.6121 3.1 1.0 1.8 5.2 1.6 3.0 

East Cell 0.10 0.0161 0.6145 3.2 1.3 2.2 5.3 1.9 3.4 

Whole Pond** 0.10 0.0161 0.6145 4.7 2.2 3.3 7.5 3.2 5.1 
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Figure 6.1 Contour map of minimum required water cover depth without wave
interaction in the each cell of tailings pond

 

Contour map of minimum required water cover depth without wave
interaction in the each cell of tailings pond 

 

Contour map of minimum required water cover depth without wave-current 
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Figure 6.2 Contour map of minimum required water cover depth with wave
interaction in the each cell of tailings pond

 

 

Contour map of minimum required water cover depth with wave
interaction in the each cell of tailings pond 

 

Contour map of minimum required water cover depth with wave-current 



 

196 

 

 
Figure 6.3 Contour map of minimum required water cover depth without wave
interaction in the whole pond in absence of wave breaks

 

 

Contour map of minimum required water cover depth without wave
interaction in the whole pond in absence of wave breaks 

 

Contour map of minimum required water cover depth without wave-current 
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Figure 6.4 Contour map of minimum required water cover depth with wave
interaction in the whole pond in absence of wave breaks

 

 

Contour map of minimum required water cover depth with wave
interaction in the whole pond in absence of wave breaks 

 

 

Contour map of minimum required water cover depth with wave-current 
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interactions and with wave current interaction, respectively. In the absence of the two 

wave breaks, the required water depth to eliminate resuspension of bed tailings would be 

quite high. In the absence of wave-current interaction, the maximum required water depth 

was 4.5 m in the southwest area of the pond, while in the presence of wave-current 

interaction; it increased to a maximum value of 7.0 m.  Similar results obtained for the 

west cell, middle cell, east cell, and the entire pond (in the absence of the wave breaks) 

and with and without wave-current interactions are presented in Table 6.3. It is evident 

from these results that the presence of the two wave breaks significantly reduced the 

water depth required to eliminate resuspension. However in the presence of the wave 

breaks, the water cover requirement for the west cell is still quite high (up to 6.3 m) and 

over 5 m for the middle and east cells. The greater fetch length available in the west cell 

is responsible for this higher water depth requirement, while the relatively small fetch 

length of the middle cell  helped to reduce the water depth requirement in that cell.  

In the next step of the analysis, the effect of water depth restriction on 

resuspended tailings concentrations was studied. Results were obtained for water cover 

depths restricted to 1 m and 2 m over the entire tailings pond using the erosion rate 

parameters determined from Kachhwal and Yanful (2011b) (also provided in Table 6.3). 

Figures 6.5 and 6.6 show contour maps of model predicted suspended solids 

concentration with the water depth restricted to 1 m for the cases of with and without 

wave-current interactions respectively. The minimum, maximum, and average model 

predicted suspended tailings concentrations are listed in Table 6.4. The maximum 

suspended tailings concentrations predicted were 42.4 mg/L for the west cell, 10.9 mg/L  
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Figure 6.5 Contour map of predicted resuspension without wave-current interaction for 
restricted depth of 1.0 m over the entire tailings pond area 
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Figure 6.6 Contour map of predicted resuspension with wave-current interaction for 
restricted depth of 1.0 m over the entire tailings pond area 
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Table 6.4 Model predicted resuspended tailings concentrations after applying depth restrictions under conditions of with and without 
wave-current interactions 

Location Resuspended tailings concentration with applied depth restrictions  

1.0 m over the entire area 2.0 m over the entire area 

Without interaction With interaction Without interaction With interaction 

Max.    

(mg/L) 

Min.  

(mg/L) 

Avg.  

(mg/L) 

Max. 

(mg/L) 

Min.  

(mg/L) 

Avg. 

(mg/L) 

Max. 

(mg/L) 

Min. 

(mg/L) 

Avg. 

(mg/L) 

Max. 

(mg/L) 

Min. 

(mg/L) 

Avg. 

(mg/L) 

West 

Cell 

42.4 16.0 31.4 62.0 22.1 48.1 10.51 0.0 4.6 18.7 1.0 11.5 

Middle 

Cell 

10.9 0.0 6.1 18.2 4.6 12.4 2.3 0.0 0.4 5.3 0.0 2.2 

East 

Cell 

37.6 9.3 26 56.6 19.4 41.9 8.0 0.0 2.3 15.7 0.0 8.3 
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for the middle cell and 37.6 mg/L for the east cell, ignoring the wave-current interactions. 

When wave-current interactions were taken into consideration, the predicted maximum 

suspended tailings concentrations were 62.0 mg/L, 18.2 mg/L, and 56.6 mg/L for the 

west, middle and east cells respectively. Figures 6.7 and 6.8 show contour maps of model 

predicted suspended solids concentration with the water depth restricted to 2 m for the 

cases of with and without wave-current interactions respectively. For a water depth 

restriction of 2 m over the tailings pond, the model predicted maximum suspended 

tailings concentrations were 10.6 mg/L for the west cell, 2.3 mg/L for the middle cell and 

8.0 mg/L for the east cell ignoring wave-current interactions, and 18.7 mg/L, 5.3 mg/L, 

and 15.7 mg/L respectively, taking wave-current interactions into consideration.  

From the foregoing results, it is evident that a water cover depth of 1.0 m, which 

was close to the observed or existing water depths at most locations in the pond, was not 

sufficient to eliminate the wind-induced resuspension of bed tailings at the Shebandowan 

tailings storage facility.  However, the results showed that a uniform water cover of 2 m 

over the entire tailings pond was sufficient to reduce the suspended tailings 

concentrations under the regulatory limit of 15 mg/L (MMER 2002) even when wave- 

current interactions are considered. These results suggest that tailings at locations where 

the water cover is significantly shallower than  2 m would have to be dredged and move 

to deeper areas to ensure an overall water cover depth of 2 m or deeper, which will ensure 

that erosion-induced suspended tailings concentrations meet effluent discharge limits (15 

mg/L).  
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Figure 6.7 Contour map of predicted resuspension without wave-current interaction for 
restricted depth of 2.0 m over the entire tailings pond area 
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Figure 6.8 Contour map of predicted resuspension with wave-current interaction for 
restricted depth of 2.0 m over the entire tailings pond area 
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6.3.4 Optimized Water Cover Depths 

The minimum water depth required to completely eliminate resuspension was as high as 

6 m. Obviously, implementing this water cover in the field would not be economically 

feasible due to high cost of construction of dams to store that much water. The long-term 

stability of high dams is also matter of concern. However, the results of depth restriction 

showed that a water depth of 2.0 m over the entire tailings pond was able to reduce the 

resuspension of bed tailings substantially. It would be economically and technically 

preferable if the model can determine the water depth that would allow resuspension to 

occur within the regulatory limits at the center of each square grid cell in the pond, 

instead of adopting a single water cover depth of 2 m for the entire tailings pond area. 

Since fetch length is different for each grid station, a separate optimized water cover 

depth can be assigned for each grid station.  

If the regulatory limit of suspended solids concentration in the water is known, 

e.g. 15 mg/L for metal mining effluents in Ontario, Canada (MMER 2002), an optimized 

water cover depth can be obtained for each grid station allowing resuspension to occur 

under the regulatory limit.  A contour map of optimized water depths for a regulatory 

suspended solids concentration limit of 15 mg/L is shown in Figure 6.9 taking wave-

current interactions into account.  From these results, which are also summarised in Table 

6.5, it can be shown that a maximum water depth of 2.2 m in the west cell, 2.0 m in the 

east cell and 1.1 m in the middle cell would be sufficient to reduce the resuspension of 

bed tailings to values below the regulatory limit of 15 mg/L. 

 



 

 

Table 6.5 Optimized water cover depths for allowed maximum resuspended tailings 
concentrations of 15 mg/L

 

 
Figure 6.9 Contour map of optimized water cover depths in the each cell with allowed 
resuspension of under 15 mg/L 

Location 

Maximum      

(m)

West Cell 2.2

Middle Cell 1.1

East Cell 2.0

Optimized water cover depths for allowed maximum resuspended tailings 
concentrations of 15 mg/L 

Contour map of optimized water cover depths in the each cell with allowed 
resuspension of under 15 mg/L  

Optimized water cover depths for allowed 

resuspension up to 15 mg/L  

Maximum      

(m) 

Minimum      

(m) 

Average      

(m) 

2.2 1.2 1.8 

1.1 0.7 0.9 

2.0 1.1 1.6 
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Optimized water cover depths for allowed maximum resuspended tailings 

 

 

 

 

 

 

 

Contour map of optimized water cover depths in the each cell with allowed 

Average      
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6.4 CONCLUSIONS  

The present work makes three major improvements to the existing Samad and Yanful 

(2005) resuspension model based on the results of our previous field studies. The 

improvements are: 

1. The addition of a wave-current interaction term to the model.  

2. The critical shear stress and erosion rate parameters were obtained from field 

results and used in the model to more accurately predict resuspension. 

3. The addition of an option to estimate the optimized water cover depths at any 

location in the pond for a known regulatory limit of suspended solids 

concentration in the water.  

The main outcome of the above improvement was that the overall requirement for 

the water cover depth was increased due to the added term of wave-current interaction in 

the total bed shear stress. In the west and east cells, the required water depth was 

increased due to the relatively small critical shear stress obtained graphically in relation 

to the one computed empirically, while in the middle cell the minimum required water 

depth was lower than those predicted by the existing Samad and Yanful (2005) model . 

The reason was that the critical shear stress obtained graphically was higher than the one 

computed empirically for fine middle cell bed tailings. In the end, the optimized water 

depth was obtained for each cell of the Shebandowan tailings storage facility. A 

maximum water depth of 2.2 m in the west cell, 2.0 m in the east cell and 1.1 m in the 

middle cell would be sufficient to reduce the resuspension of bed tailings below the 

regulatory limit of 15 mg/L. 
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CHAPTER 7:  CONCLUSIONS AND SCOPE FOR FUTURE WORK 

 

7.1 CONCLUSIONS 

An evaluation of wind induced resuspension of mine tailings was performed at an 

existing tailings storage facility at the decommissioned Shebandowan Mine, located near 

Thunder Bay, Ontario, Canada. Extensive field investigations by means of sediment 

traps, OBS sensors, and acoustic Doppler current profiler (ADCP) surveys and laboratory 

analysis and theoretical modeling were done to achieve the objectives set at the beginning 

of the research. The main conclusions from the research are summarized below: 

1. The most dominant wind direction at the site is 2700-3150 to North, that is, 

southwest direction. This justified the design, which includes the locations and 

orientations of the two existing wave breaks in the tailings pond.  

2. Evaporation determined from weather data was higher than the recorded 

precipitation during the periods of sediment trap deployment in the summers of 

year 2006 and 2007. These results showed that it may be necessary to pump 

additional water into the tailings pond in order to maintain a certain water level to 

eliminate or decrease tailings resuspension.  

3. Under existing conditions of water depths, small amount of tailings resuspension 

(up to 80 mg/L) was recorded in all three cells of the tailings pond by the 

sediment traps and OBS sensors. At the time of the study, the amount of 

resuspension was not a matter of concern, because all the discharge from the pond 



 

212 

 

was collected and managed before it reports to the final effluent. However, in a 

long-term disposal plan even this small amount of resuspension should be 

considered.  

4. The mineralogical and elemental analyses were performed on samples of 

resuspended tailings collected by sediment traps on samples of bed tailings 

collected from the location of the sediment traps. The major non-clay minerals 

identified in x-ray diffractograms were pyrite, pyrrhotite, quartz, feldspar, calcite, 

and dolomite. The only clay mineral identified was chlorite. Resuspended tailings 

showed reduced intensity of pyrite and pyrrhotite peaks relative to those of the 

bed material.  This indicated oxidation of pyrite and pyrrhotite in the suspended 

tailings.  

5. Elemental analysis showed that both bed and resuspended tailings are rich in iron 

and sulphur. Iron concentration in bed tailings varies from 10.23 % to 45.16% (by 

weight) and in resuspended tailings from 9.90% to 22.66% (by weight) while 

sulfur concentration in bed material varies from 0.28 % to 36.40% (by weight) 

and in resuspended tailings from 1.05 % to 35.20% (by weight). Other major 

elements identified in the tailings were Si, Cu, Ni, Pb, and Zn. The concentrations 

of iron, sulphur, and other major metals in the tailings were much higher than the 

typical crustal composition.  

6. The mineralogical and elemental analysis of the resuspended and bed tailings 

samples showed compositional similarity, which supports the claim that material 

collected in sediment traps was mostly resuspended tailings and that little or no 
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foreign material was deposited in the sediment traps. It added to the evidence that 

some amount of resuspension was occurring at the study site.  

7. The average critical shear was 0.13 Pa for the west and east cells and 0.04 Pa for 

the middle cell bed tailings due to the finer particle size (average D50 0.008 mm) 

of the latter.  Fischenich’s (2001) equation does not account for the cohesive 

properties of finer particles. The presence of binding cohesive forces in the fine 

particles can increase the resistance to erosion and resuspension and hence the 

critical shear stress. The field measured resuspension data (from sediment traps 

and OBS sensor measurements) did not confirm such a low critical shear stress 

value. The finer bed tailings in the middle cell could be of cohesive nature, an 

inference which was supported by higher content of clay minerals in the middle 

cell bed tailings.   

8. The OBS sensor installed at a depth of 25 cm above the bed recorded suspended 

tailings concentrations of 3 to 25 mg/L, values that were more representative of 

the average concentration in the water column than the up to 80 mg/L measured 

by the OBS sensor installed close to the bed (10 cm above the bed). The Samad 

and Yanful (2005) model prediction of suspended tailings concentrations in the 

west cell under the existing water depth was 6.5 to 22.7 mg/L. The field measured 

and model predicted values were found to be in the same range. The field 

recorded suspended solids concentration using OBS sensors during two other 

events of the study were also within the range of model predictions. 

9. Wind induced circulation currents were recorded using an ADCP in the middle 

cell of the Shebandowan tailings storage facility. This was the first ever attempt 
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where actual currents have been recorded in a tailings pond. From the recorded 

currents, an intricate pattern of flow circulation was observed, which was found to 

be depending on wind direction and field geometry and more complex than the 

near-bed flow reversal that was typically assumed in previous tailings pond 

studies.  

10. The magnitude and direction of current velocities were also found to be varying 

from one location to another in the pond. This finding is somewhat contradictory 

to observations from counter-current flow models (Wu and Tsanis 1995), in 

which a single current velocity is predicted over the entire tailings area. However, 

the order of magnitudes of current velocities was found to be similar to model 

predicted values at most locations in the pond. 

11. An important contribution from the ADCP recorded current data was that it 

allowed the effect of wave-current interaction on the total bed shear stress to be 

studied. A semi-empirical approach was developed to estimate the total bed shear 

stress, where the bed shear stress due to circulatory currents was determined by 

fitting a log linear profile to near bed measured currents.  The results showed that 

wave-current interaction enhances the total bed shear stress and that linear 

addition of the wave and current bed shear stresses may underestimate the total 

bed shear stress.  

12. The bed shear stress due to circulation currents is not a function of fetch length 

and thus its variation is not related to location in the pond. At locations where the 

fetch length was negligible, depending on the direction of wind and hence the 

wave induced bed shear stress, the total bed shear stress was mostly due to 
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circulatory currents. These results showed that circulatory currents significantly 

contributes to total bed shear stress and cannot be ignored. 

13.  A simplified equation was derived to estimate the total bed shear stress under 

shallow water conditions for known values of wind speed (m/s), water depth (m), 

and fetch length (m). The multiple equations of SMB method of wave parameter 

prediction, linear wave theory, Wu and Tsanis (1995) model of current prediction, 

and wave-current interaction were reduced into a single equation. This simplified 

equation provides a relatively easy approach to estimate the total bed shear stress 

under shallow water conditions, such as exists in tailings ponds.  

14. As an another major outcome of this research, a graphical approach was 

developed to estimate the critical shear stress and erosion rate parameters using 

real-time field recorded wind-induced resuspension and wind data. The critical 

shear stress obtained from this graphical technique was 0.10 Pa for the west cell 

tailings and 0.08 Pa for the middle cell tailings.  

15. For the west cell, slightly lower value of the critical shear stress than empirically 

determined value of 0.12 Pa may be attributed to less dense top layer (fluffy 

layer) of bed sediments which is subjected to frequent erosion and re-deposition 

processes. However, in the case of the middle cell, a higher value of the critical 

shear stress than the empirically calculated value of 0.04 Pa was obtained. The 

higher value of the critical shear stress supported the previous claim that the finer 

tailings in the middle cell might be cohesive. 

16. A major improvement was made in the Samad and Yanful (2005) resuspension 

model by incorporating the term of wave-current interactions in determination of 
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total bed shear stress. Current directions were assumed to be collinear to wind 

induced waves, which would maximize the total bed shear stress and result in 

slightly higher water cover depth requirements. This is probably a conservative 

approach to the design of water covers. 

17. The improved Samad and Yanful model showed that wave-current interactions 

significantly increased the required depth of water from 3.9 m in the absence of 

wave-current interaction to 6.3 m to completely eliminate tailings resuspension in 

the west cell of the Shebandowan tailings pond and similar results were obtained 

for the middle and east cells of the tailings pond. 

18. The minimum water depth required to completely eliminate resuspension was as 

high as 6.3 m. Obviously, implementing this water cover in the field would not be 

economically feasible due to high cost of constructing large dams to store that 

much water. The long-term stability of high dams is also matter of concern. It 

would be economically and mechanically preferable if the model can determine 

the water depth that would allow resuspension to occur within the regulatory 

limits at the center of each square grid cell in the pond. Another major 

improvement was made in the Samad and Yanful (2005) model by the addition of 

an option to optimize the water cover depth at the center of each square grid cell 

for known regulatory limits. The model showed the optimized water depths less 

than 2.2 m for the west cell, 1.1 m for the middle cell and 2.0 m for the east cell 

were sufficient to reduce the resuspension within regulatory limits of 15 mg/L.  
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7.2 APPLICATIONS 

The overall results of this research will help in understanding the process of wind-

induced resuspension of mine tailings deposited under shallow water covers. Equation 

(5.5) in chapter 5, derived to determine the total bed shear stress and the graphical 

approach developed to estimate the erosion characteristics using field measured 

resuspension, reduce the time and effort required to obtain the same parameters using 

previous, published methods. The use of this approach and the improved model can be 

useful either in designing a new tailings storage facility or managing an existing one. The 

most obvious benefit of the research is significant improvement in the development of a 

design, management and validation tool for tailings storage facilities. The findings and 

approaches presented in the present thesis can also be applied to other sediment erosion 

and resuspension practices e.g. prediction of resuspension in highway detention ponds 

(Bentzen et al. 2009) or in waterways. 

 

7.3 RECOMMENDATIONS FOR FUTURE WORK 

From the observations made and results obtained through the present research, the 

following recommendations are suggested for future work: 

1. The OBS sensors used in present study were subject to fouling during long-term 

deployments and this limited their use for recording resuspension during storm 

events. The use of self-cleaning OBS sensors can eliminate this problem and 

provide a better picture of resuspension. 
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2. The graphical technique developed in this model to estimate the erosion 

characteristics of bed sediments should be applied to different sites and verified 

with other field experiments. 

3.  Simultaneous field measurements of the wind-induced waves and currents must 

be made in order to evaluate their contribution to the total bed shear stress. 

Advanced acoustic Doppler current profilers (ADCPs) capable of measuring both 

waves and currents simultaneously in shallow waters should be used for 

measurements at tailings storage facilities. 

4. The improved model should be verified in field measurements of resuspension 

under different site conditions. 

5. Hydrology of the storage facility, which includes the water balance, should be 

incorporated into the model. This requires knowledge of seepage losses from run- 

off in the tailings pond. This will help to determine the net water required to be 

pumped into the pond to maintain a certain water cover depth. 
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APPENDIX-I: CALIBRATION OF OBS SENSORS 

 

In the present study, two OBS-3+ sensors (Manufactured by D&A Instrument Company, 

USA) purchased from Campbell Scientific Canada were used. The OBS (Optical Back 

Scatter) sensors are also known as turbidity sensors. It consists of a high intensity 

infrared emitting diode (IRED) and an optical sensor that measures turbidity and 

suspended solids concentration by detecting infrared (IR) radiation scattered from 

suspended material in water. The IRED emits an infrared beam with half-power points at 

500 in the axial plane of the sensor and 300 in the radial plane. The optical detector 

integrates the IR scattered between 1400 and 1600. Visible light incident on sensor is 

absorbed by a filter. These sensors were connected with CR10X datalogger 

(Manufactured by Campbell Scientific Canada Corp.) and programmed to measure the 

total suspended concentration every 5 minutes. Basic operational details of the OBS-3+ 

sensors are presented in Table I-1. 

The response of the OBS sensors to turbidity and suspended solids concentrations 

can be shown by Figure I-1 which has been divided in three regions A, B and C. In region 

A, the voltage output of the sensor is proportional to backscatter intensity and backscatter 

intensity is proportional to turbidity levels or suspended solids concentrations. The OBS 

sensors, in general, should be calibrated and used in this linear range. 
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Table I-1 Basic operational properties of OBS-3+ sensor (D&A Instrument Company, 
USA) 

OBS-3+ 

 (D&A Instrument Company) 

 

 

 

       

Range 

SSC Mud 0-5000 mg/L 

SSC Sand 0-50 g/L 

Turbidity 0-4000 NTU 

Accuracy 

SSC Mud 0.5 mg/L (1% of reading) 

SSC Sand 0.25 g/L (1% of reading) 

Turbidity 0.25 NTU (1% of reading) 

Operational Data 

Voltage output 0-1.25 V, 0-2.50 V, or 0-5.00 V 

Current output 4-20 mA (optional) 

Maximum data rate 10 Hz 

Maximum depth 500 m 

Daylight rejection -28 dB (48 mV/cm2) 

Drift < 2% per year 

Housing Material 316 stainless steel  

Connector  MCBH-5-FS  (wet pluggable) 

 

141 mm 

25 mm 

Sensor 

Window 
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Figure I-1 response of OBS sensors with increasing turbidity and suspended solids 
concentration 

 

The two OBS sensors were factory calibrated by the manufacturer (D & A 

Instrument Company, Washington, USA) using Formazin standards for nominal and high 

range turbidity measurements. The factory calibration certificates are provided in Figures 

I-2 and I-3. The turbidity calibration shows that the each OBS sensor has its own 

measurement characteristics and they are not interchangeable. Turbidity and suspended 

solids concentration of water is directly proportional to each other. But it is not possible 

to find a universal conversion equation. Measurement of suspended solids concentrations 

with optical instruments depend greatly upon variety of parameters such as particle size, 

composition and shape, as well as environmental characteristics. Calibration for 

suspended solids is a local phenomenon and calibration coefficients change with 

characteristics of sediments. Calibration of OBS sensors for field sediments is most 

important part prior to using them on site. 
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Figure I-2 Factory calibration certificate of OBS-1 sensor for turbidity measurements 
(Serial Number S7299) 
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Figure I-3 Factory calibration certificate of OBS-2 sensor for turbidity measurements 
(Serial Number S7300) 
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The calibration was done in laboratory using the bottom tailings samples collected 

at site. Both sensors were immersed in a black color bucket full of distilled water. Black 

color of the bucket was chosen to minimize the effect of other light sources present in the 

laboratory room. Sensors were oriented in such a way that they don’t interfere with each 

other and also remain submerged at least 10cm in water at all times. Now readings from 

both sensors for mili-volts and turbidity units (NTU) were recorded for distilled water or 

zero suspended solids through the datalogger attached to the two sensors. In the next step 

a little amount of tailings material was mixed thoroughly and after mixing suspended 

solids concentration was again recorded. Also a 100 ml water sample preserved to 

measure suspended solids concentration gravimetrically. In the same way tailings 

material was added in the water in increasing amount and each time water sample was 

collected to measure suspended solids concentration. The water samples collected during 

each step were oven dried and weight of the net suspended material was obtained. The 

volume of each water sample was fixed 150 ml and the concentrations of suspended 

solids (in mg/L) in water were obtained by dividing the weight of suspended tailings to 

the volume of water sample. 

The mili-volts output from each sensor was plotted against corresponding 

suspended solids concentration or SSC value (mg/L) and fitted for a straight line. The 

equation of this straight line is further used to convert voltage outputs from the OBS 

sensors to total suspended solids concentration, recorded at site. For example, data 

obtained from the OBS calibration for the west cell bed tailings are provided in Table I-2. 

Figure I-4 shows the calibration curves plotted for the two OBS sensors. The data were 
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fitted to linear regression line with very good correlation coefficient R2 = 0.99 for both 

OBS sensors. 

 

Table I-2 Laboratory calibration data of two OBS sensors for suspended solids 
concentrations (SSC) using the west cell bed tailings 

 OBS 1 Output 

(mili-volts) 

OBS 1 Output 

(mili-volts)  

SSC 

(mg/L) 

Step 1 4.61 4.91 0 

Step 2 49.10 52.32 15 

Step 3 67.33 66.70 23 

Step 4 126.00 130.12 36 

Step 5 130.77 135.00 41 

Step 6 158.75 163.05 52 

Step 7 205.80 228.90 68 

 

Two OBS sensors were also calibrated for the middle cell bed tailings using the 

similar process. The calibration data for the middle cell bed tailings were fitted to linear 

regression lines with correlation coefficient R2 = 0.99 for both OBS sensors. The 

calibration curves for the middle cell bed tailings have been already provided in Figure 

3.3 of chapter 3. Bed tailings in the east cell were of the similar geotechnical properties as 

of the west cell and hence the same calibration curves were used for the suspended solids 

concentration measurements in the each cell. From all these calibration curves following 
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equations were obtained and used in the conversion of miliVolts output of the OBS 

sensors to the suspended solids concentrations or SSC (mg/L). 

 

 
 
Figure I-4 Laboratory calibration curves of two OBS sensors for suspended solids 
concentrations (SSC) measurement in the west cell of the tailings pond. 
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• West and East Cell 

OBS-1 (Serial Number S7299) 

486.1*3306.0 −=




 miliVolts

L
mg

SSC  

OBS-2 (serial Number S7300) 

2255.0*3029.0 −=




 miliVolts

L
mg

SSC  

• Middle Cell 

OBS-1 (Serial Number S7299) 

9688.0*2771.0 −=




 miliVolts

L
mg

SSC  

OBS-2 (serial Number S7300) 

2105.1*2651.0 −=




 miliVolts

L
mg

SSC  
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APPENDIX-II: MINEROLOGY OF BED TAILINGS 

 

Total eight sediment traps were installed in the Shebandowan tailings storage facility 

such as sediment trap number 1, 2 and 3 in the west cell, 4 and 5 in the middle cell, and 6, 

7, and 8 in the east cell of the tailings pond as already mentioned in section 3.3 of chapter 

3. Resuspended tailings were collected in the eight sediment traps for a certain time 

period and samples were named ST-1 to ST-8.  Eight bed tailings samples were collected 

from the deployment location of each sediment trap and named BT-1 to BT-8. These 

samples were vacuum dried in desiccators using desiccant silica gel. After completely 

drying, samples were grounded using a rubber pastel and passed through number 200 

sieve. The material passed through the sieve was used to obtain the X-ray powder pattern 

diffractograms. The detailed diffractograms of suspended tailings collected in each 

sediment traps and corresponding bed tailings and identified clay and non-clay minerals 

are shown in Figures II-1 to II-8.  

All of these samples showed almost similar mineralogy but of different peak 

intensities, which suggest difference in the content of minerals. In all of these samples, 

the non-clay minerals identified were quartz, pyrite, pyrrhotite, feldspar, calcite, and 

dolomite. The only clay mineral identified was chlorite.  
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Figure II-1 X-ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST-1  
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Figure II-2 X-ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST-2  
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Figure II-3 X-ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST-3  
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Figure II-4 X-ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST-4  
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Figure II-5 X-ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST-5  
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Figure II-6 X-ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST-6  



 

 

 
Figure II-7 X-ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST

ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST-7  
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ray diffractograms of resuspended and corresponding bed tailings 
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Figure II-8 X-ray diffractograms of resuspended and corresponding bed tailings 
collected at sediment trap location ST-8  
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APPENDIX-III: FIELD MEAUSRED CURRENT VELOCITY PROFILES 

 

Following are the current velocity distributions in water column measured at different 

stationary locations in the middle cell of the Shebandowan tailings storage facility 

(Figure 4.1). Velocity data was fitted to log-law to obtain near bed current shear velocity. 

Current directions were measured in counter-clockwise direction from east in radians.  

Profile Location# 8 

Water cover depth = 0.99 m, and average current direction = 3.26 radians  

 

 

Profile Location# 10 

Water cover depth = 1.52 m, and average current direction = 0.78 radians  
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Profile Location# 11 

Water cover depth = 2.72 m, and average current direction = 1.44 radians  

 

 

Profile Location# 12 

Water cover depth = 2.23 m, and average current direction = 4.39 radians  

 

 

Profile Location# 13 

Water cover depth = 2.69 m, and average current direction = 4.12 radians  
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Profile Location# 14 

Water cover depth = 2.47 m, and average current direction = 3.55 radians  

 

 

Profile Location# 15 

Water cover depth = 1.94 m, and average current direction = 3.78 radians  

 

 

Profile Location# 16 

Water cover depth = 2.22 m, and average current direction = 1.45 radians  
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Profile Location# 17 

Water cover depth = 0.92 m, and average current direction = 1.80 radians  

 

 

Profile Location# 18 

Water cover depth = 1.24 m, and average current direction = 4.63 radians  

 

 

Profile Location# 19 

Water cover depth = 1.52 m, and average current direction = 4.75 radians  
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Profile Location# 20 

Water cover depth = 1.55 m, and average current direction = 4.20 radians  

 

 

Profile Location# 21 

Water cover depth = 1.54 m, and average current direction = 2.07 radians  

 

 

Profile Location# 22 

Water cover depth = 3.04 m, and average current direction = 1.49 radians  
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Profile Location# 25 

Water cover depth = 3.56 m, and average current direction = 1.43 radians  

 

 

Profile Location# 26 

Water cover depth = 3.12 m, and average current direction = 1.62 radians  

 

 

Profile Location# 28 

Water cover depth = 1.08 m, and average current direction = 1.50 radians  
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Profile Location# 29 

Water cover depth = 1.04 m, and average current direction = 1.33 radians  

 

 

Profile Location# 30 

Water cover depth = 0.82 m, and average current direction = 3.11 radians  

 

 

Profile Location# 31 

Water cover depth = 0.95 m, and average current direction = 2.88 radians  
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Profile Location# 32 

Water cover depth = 1.53 m, and average current direction = 2.60 radians  

 

 

Profile Location# 33 

Water cover depth = 1.65 m, and average current direction = 4.26 radians  

 

 

Profile Location# 34 

Water cover depth = 1.57 m, and average current direction = 5.55 radians  
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Profile Location# 36 

Water cover depth = 1.55 m, and average current direction = 4.99 radians  

 

 

Profile Location# 37 

Water cover depth = 1.24 m, and average current direction = 4.69 radians  

 

 

Profile Location# 39 

Water cover depth = 0.96 m, and average current direction = 4.93 radians  
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Profile Location# 40 

Water cover depth = 0.97 m, and average current direction = 5.07 radians  

 

 

Profile Location# 41 

Water cover depth = 1.00 m, and average current direction = 5.00 radians  

 

 

Profile Location# 44 

Water cover depth = 1.07 m, and average current direction = 4.07 radians  
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Profile Location# 45 

Water cover depth = 1.14 m, and average current direction = 4.35 radians  

 

 

Profile Location# 48 

Water cover depth = 0.89 m, and average current direction = 3.80 radians  

 

 

Profile Location# 50 

Water cover depth = 1.10 m, and average current direction = 3.64 radians  
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Profile Location# 51 

Water cover depth = 1.17 m, and average current direction = 4.77 radians  
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APPENDIX-IV: DERIVATION OF SIMPLIFIED EQUATION FOR 

TOTAL BED SHEAR STRESS  

 

In section 5.3 of chapter 5 in this thesis, a simplified equation (Equation 5.5) of the total 

bed shear stress estimation under shallow water conditions was used. This equation 

facilitates the direct estimation of the total bed shear stress under shallow water 

conditions for known values of water depth (h), wind speed (U), and fetch length (F) 

instead of a lengthy step by step approach used in chapter 3 of this thesis. Derivation of 

the simplified equation has been provided below. 

The total bed shear stress from non-linear wave-current interaction can be given 

by the following equation: 

cwcwcb θτττττ cos2++=                  (1) 

where, τw and τc are the bed shear stress due to waves and currents, respectively; θ is the 

angle between waves and currents which varies between 0 to 900 
, assuming simple 

harmonic motion of waves. The third term in Equation 1 is due to non-linear wave 

current interaction. 

  

(1) Bed shear stress due to waves 

The total bed shear stress due to wind induced waves can be determined using the SMB 

(Sverdrup-Munk-Bretschneider) method with linear wave theory as detailed in section 
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3.3.4 of chapter 3 in this thesis. In shallow water conditions (h/L<0.5), wave parameters, 

significant wave height (H), significant wave period (T), and wave length (L) may be 

calculated using following equations: 
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Taylor expansion series were for hyperbolic tangent function is shown below: 

valuesxfiniteallfor
xx

xx
2

....
15

2

3
)tanh(

53 π
<−+−=                                                        (5) 

For small values of x, the second and higher order terms will be very small comparatively 

to x and can be ignored. Using only first order terms Equations 2, 3, and 4 can be 

simplified without compromising much in accuracy as written in following equations:   
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The wind stress factor can be written in term of wind speed U as follows: 

23.1*71.0 UU a =                                                                                                                  (9) 

The maximum horizontal bottom velocity in shallow water is calculated using equation: 
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The maximum displacement of fluid particles corresponding to maximum bottom 

velocity can be obtained as: 
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
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                                                                                                            (11) 

Substituting the values of H, T, L, and Ua from Equations 6, 7, 8, and 9 respectively into 

Equations 10, and 11, the following equations were obtained. 
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The wave friction factor is given by 

w

w
R

f
2
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                                                                                                                        (15) 

and Reynolds number by 

ν
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w

au
R =

                                                                                                                     (16) 

where, the kinematic viscosity of water ν = 10-6 m2/s at 200 C. On substituting the values 

of ubm and am into the Equation 15, the wave friction factor can be written as: 
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Using the above simplified parameters, the bed shear stress due to wind induced 

waves can be calculated as: 

2

2

1
bmww uf ρτ =

                          (18)
 

After substituting appropriate simplified parameters, the bed shear stress due to 

wind waves in terms of water depth (h), wind speed (U), and fetch length (F) can be 

written as: 
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In above equation, numerical value in the hyperbolic sine function was adjusted to 

increase the accuracy of the equation and following corrected equation was obtained. 
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(2) Bed shear stress due to currents 

Shear stress at the bed due to wind induced return currents can be calculated using the 

following equations as already described in section 3.3.4 of chapter 3. 
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The variables A and B in the above equation are given as: 
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where, the surface characteristics length zsh = 2.2x10-4;  

the bottom characteristics length zbh = 1.4x10-4; and 

the constant λ = 0.35 

The surface shear velocity of water  

w

a

s Uu
ρ

ρ
035.0* =

                                                                                                           (22)

 

On substituting the values of zsh, zbh, and λ and solving above parameters, the bed shear 

stress due to return currents can be written as: 

24 *10734.3 Uc

−×=τ                                                                                                       (23) 

It is evident that the bed shear stress due to return currents is a function of wind speed 

only and it does not depend on the water depth (h) and fetch length (F). 
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(3) Total bed shear stress 

The total bed shear stress in simplified form can be obtained by substituting values of τw 

and τc from Equations 7 and 8 respectively into equation 1. Here, the waves and currents 

are assumed collinear (Angle θ = 0 or 180 degrees) to obtain maximum total bed shear 

stress.  The simplified equation of the total bed shear stress can be written as: 
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In the Equation 24, the first term on the right-hand-side is the bed shear stress due 

solely to wind waves, the second term defines the bed shear stress due to currents, and the 

third term shows the enhancement in bed shear stress due to non-linear wave-current 

interactions. 
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APPENDIX-V: MISCELLANEOUS PICTURES OF SITE SHOWING 

DEPLOYMENT OF VARIOUS INSTRUMENTS  

 

 
 
Figure IV-1 Shebandowan Mine tailings storage facility, located near Thunder Bay, ON, 
Canada 
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Figure IV-2 Main entrance to the Shebandowan tailings storage facility 
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Figure IV-3 Pictures of open spillway (outlet) and a wave break, which separates the 
cells in tailings pond 
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Figure IV-4 Weather station installed at the Shebandowan tailings storage facility 
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Figure IV-5 Deployment of sediment traps by professional divers in the tailings pond 
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Figure IV-6 Deployment of sediment traps by professional divers under supervison of 
Prof. Ernest K. Yanful (on right) and a properly installed sediment trap 
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Figure IV-7 Sampling process of the sediment traps and samples collected from each 
sediment trap stored in 4 liter containers 
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Figure IV-8 Deployment of OBS sensors in the middle cell with datalogger and solar 
panel sitting on a steel fabricated platform 
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Figure IV-9 Testing of  ADCP and pheipherals prior to deployment in the tailings pond 
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Figure IV-10 ADCP and GPS mounted on the boat with especially fabricated mounting 
assembly 
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Figure IV-11 Stationary boat data circulation current data collection with ADCP in the 
middle cell of the tailings pond 
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