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Abstract—Electricity consumption is accelerating due to eco-
nomic and population growth. Hence, energy consumption pre-
diction is becoming vital for overall consumption management
and infrastructure planning. Recent advances in smart electric
meter technology are making high-resolution energy consumption
data available. However, many parameters influencing energy
consumption are not typically monitored for residential buildings.
Therefore, this study’s main objective is to develop a data-driven
energy consumption forecasting model (next-hour consumption)
for residential houses solely based on analyzing electricity con-
sumption data. This research proposes a deep neural network
architecture that combines stationary wavelet transform features
and convolutional neural networks. The proposed approach uti-
lizes automatically extracted features from smart-meter readings
by applying wavelet decomposition, convolution, and pooling
operations. This study’s findings have demonstrated the advan-
tage of integrating wavelet features with convolutional neural
networks to improve forecasting accuracy while automating
feature extraction.

Index Terms—convolutional neural network, deep neural net-
work, energy consumption prediction, wavelet decomposition

I. INTRODUCTION

Electricity is one of the primary energy sources in today’s
world, and its rate of consumption continues to accelerate
due to economic and population growth. The residential
building sector consumes 27% of global energy generated
[12]. Therefore, energy consumption forecasting is crucial
for residential energy demand management, electricity price
market design, energy efficiency, and maintenance scheduling
of large-scale complex smart power grids [12]. In addition
to forecasting, anomaly detection models provide vital infor-
mation to improve energy efficiency [1] [2]. Recently, large
amounts of high-resolution consumption data are becoming
available from smart electric meters. The availability of this
information has motivated (data-driven) studies on forecasting
energy consumption for residential and commercial buildings.

Residential energy consumption forecasting is a multivariate
time-series prediction problem where weather, occupancy type
and behavior, type of appliances, season, time of day, price,
building age, type, and size contribute to electricity consump-
tion. However, many influencing parameters are not typically
monitored in residential buildings. Often the only available
high-resolution information is the energy consumption meter
reading. Prediction based on the consumption reading without

supporting features makes the problem univariate. Residen-
tial buildings have different consumption levels and energy
consumption patterns. For example, each family may have
a set of appliances selected to suit their needs based on
their lifestyle. Each appliance contributes to overall energy
consumption, depending on how and when it is used. Weather
variables like temperature and humidity also have an impact
on overall consumption. Building form and construction type
affect energy consumption. In addition, calendar features affect
the usage pattern. For instance, consumption during weekends,
during morning hours, and late at night have significantly
different patterns. The impact of all the factors mentioned
above is embodied in the smart-meter data.

This research’s main objective is to develop a data-driven
electricity consumption forecasting model (next-hour con-
sumption) for residential houses, solely based on analyzing
electricity consumption data. Therefore, an end-to-end fore-
casting framework that combines the stationary wavelet trans-
form and deep neural networks is proposed. The stationary
wavelet transform operation is employed to decompose the
single-source (smart-meter) readings into low frequency and
high-frequency components. After the wavelet decomposition,
a single layer of convolution followed by pooling operation is
used to extract abstract features. Furthermore, the proposed
approach can generate the final prediction from a single
model by aggregating wavelet features through convolution
and pooling operations. Thus, unlike existing wavelet-based
methods, modeling each wavelet sub-sequence and inverse
wavelet transform is not required.

The remaining sections of the paper are organized as
follows. In Section II, related studies in the area of residential
electricity consumption forecasting are summarized. Section
III provides a brief overview of common algorithms used in
energy forecasting and evaluation metrics to gauge perfor-
mance. Section IV describes the proposed forecasting archi-
tecture. Section V presents the evaluation process, including a
brief description of the data, experiments, and results. Section
VI highlights conclusions and future work.

II. RELATED WORK

Extensive research on forecasting energy consumption for
residential and commercial buildings is accessible in the

Applications,2020.

D. EneyewM. A. M. CapretzG. Bitsuamlak,S. Mir, PredictingResidentiaEnergyConsumptiorsing Wavelet
Decompositiorwith DeepNeuralNetwork, Proc.of the IEEE InternationalConferenceon MachineLearningand



Katarina
Text Box
D. Eneyew, M. A. M. Capretz, G. Bitsuamlak, S. Mir, Predicting Residential Energy Consumption Using Wavelet Decomposition with Deep Neural Network, Proc. of the IEEE International Conference on Machine Learning and Applications, 2020.


literature. Recently, numerous researchers have focused on
improving electricity consumption forecasting efficiency and
accuracy using deep learning architectures [13] [16]. Kipri-
janovska et al. [13] used a deep residual neural network to
forecast household energy consumption by combining multiple
sources of information. Deep reinforcement learning has also
been investigated for building energy consumption forecasting
[16] and compared with conventional supervised models.
The results showed that deep reinforcement learning models
improved a mean absolute error for single-step and multi-step
predictions.

Hybrid models combining the advantage of different algo-
rithms are also recommended [7] [11] [12] [17] [20] [21] [26].
Hafeez et al. [7] introduced a hybrid framework by combining
feature engineering, a modified enhanced differential evolution
(mEDE) based optimizer and a support vector machine. The
approach was evaluated using hourly load data and resulted
in improvements relative to other benchmark frameworks. Re-
lated work by Shao et al. [20] modified a conventional stacked
CNN-LSTM architecture for electric consumption forecasting.
The proposed hybrid model achieved robust results for short
and long-term forecasting scenarios.

Machine learning-based electricity consumption models
have also been proposed [3] [8] [25] [28]. Tran et al .
[25] introduced the Evolutionary Neural Machine Inference
Model (ENMIM) for estimating residential energy consump-
tion. Comparative results revealed that the ENMIM model
surpassed various benchmark models. Related work by Zhang
et al. [28] applied the Support Vector Regression (SVR)
algorithm to hourly and daily aggregated residential electricity
consumption data. According to their findings, daily data
granularity achieved better prediction than hourly data for
residential buildings.

Some researchers have used statistical methods to forecast
electricity consumption [5] [23] [24]. Tang et al., [24] offered
a novel probability forecasting model for long-term electricity
consumption. Their case study showed that the proposed
methodology has higher accuracy and adaptability than other
tested methods.

Some studies have used wavelet decomposition techniques
for time series forecasting [10] [22] [27]. A maximal overlap
discrete wavelet transform with LSTM has been used to predict
energy consumption in various sectors [10]. The prediction
models were built for each wavelet decomposed series and
aggregated at the final stage. The approach was evaluated
using monthly prediction data from residential, commercial,
and industrial sectors. This method outperformed the recurrent
neural network (RNN) models. Stolojescu et al. [22] also
recommended a wavelet-based forecasting framework. This
approach achieved a better result than a neural network, linear
regression, and a random walk.

Despite significant research, individual house-level con-
sumption forecasting solely from energy consumption data
warrant further investigations to handle challenges originat-
ing from irregular and intricate usage patterns. The studies
reviewed in this paper used either multiple indicator features

or only the electricity consumption variable as input. Both
approaches have some downsides. The most common fea-
tures used in electricity consumption forecasting are weather
variables. However, the correlation between weather variables
and consumption patterns is not always guaranteed or may
be very weak. For example, airport weather measurements
typically used for analysis may not represent the monitored
building’s micro-climate. Also, using the temperature reading
as an indicator might not be relevant when the residential
building uses other heating and cooling energy sources. On the
other hand, using only the electricity consumption reading to
sequence models has limitations when a complicated temporal
relationship exists between consecutive readings. Wavelet-
based forecasting methods proposed in previous papers also
have limitations. The most widely used approach fits multiple
models for each decomposed sub-sequence. Multiple model
fitting will become computationally expensive for a very long
input sequence with multi-level decomposition.

In this study, we propose an end-to-end forecasting frame-
work that combines the stationary wavelet transform and
convolutional neural network. The framework uses automati-
cally extracted features from smart-meter readings by applying
wavelet decomposition, convolution, and pooling operations.
Unlike existing wavelet-based methods, the proposed approach
can generate the final prediction without modeling each
wavelet sub-sequence and inverse wavelet transform.

III. BACKGROUND
A. Neural Network

Feed Forward Neural Networks (FFNN) consists of neu-
rons grouped into layers (input, hidden, and output) [9].
Deep feedforward neural networks provide a multi-hidden-
layer approach to learn data representations [18]. The goal
of the feedforward network is to approximate some function
y =f(x). Tt defines a mapping function y and learns the
network parameters that result in the best function approxima-
tion. The term deep neural network generally implies multiple
layers between the input and output layers [18].

B. Long Short Term Memory Recurrent Neural Network
(LSTM-RNN)

Recurrent neural networks (RNN) can model sequential
information by taking what has been calculated and using it
in the current output computation. Due to their suitability for
sequential data, RNNs are commonly used for time-series data.
However, regular recurrent neural networks are usually hard
to train and do not contain memory units to remember context
[19]. Thus, when long-range contextual information is needed,
RNNs become ineffective. Long short-term memory networks
(LSTM) are a special kind of RNN designed to handle
long-term dependencies, where more extended information is
needed [6].

C. Convolutional Neural Network

Convolutional neural networks (CNN) are a specialized type
of neural network for working with two-dimensional data.



CNN’s ensure shift and distortion invariance through local
receptive fields, shared weights, and spatial and temporal sub
sampling [15]. One of CNN’s main advantages is their ability
to learn useful features automatically from high-dimensional
data [14]. Recently, convolutional neural networks have been
widely used in time-series forecasting due to their ability to
learn filters representing repeated patterns in the time-series
variable. A CNN includes two main types of layers: the con-
volutional layer and the pooling layer. The convolutional layer
convolves the input with a pre-specified size called a filter to
compute a feature map. A max-pooling layer typically follows
the convolutional layer. This layer extracts the maximum value
within a given pooling size [14].

D. Stationary Wavelet Transform

A wavelet transform decomposes signals into different sub-
signals with different frequencies using a series of func-
tions called wavelets. Wavelets are localized in both time
and frequency. The wavelet transform has continuous and
discrete versions. The stationary wavelet transform (SWT) is
an extension of the discrete wavelet transform (DWT). The
original sequence data are generally decomposed into an ap-
proximate (low-frequency) sub-sequence and a detailed (high-
frequency) sub-sequence. Both the high-frequency and low-
frequency components have the same length as the original
input. Reconstruction of the original signal is feasible using
an inverse wavelet transform operation [4].

E. Performance Metric

1) Mean absolute percentage error (MAPE): The mean
absolute percentage error (MAPE) is the mean or average of
the absolute percentage errors of forecasts. This measure is
easy to understand because it provides the error in terms of
percentages. It is calculated using Equation (1).

Yt — Yp
Yt

100%
MAPE = —=7% ey

IV. PROPOSED METHOD

Fig. 1 shows the proposed architecture for residential elec-
tricity consumption forecasting. The architecture consists of
preprocessing, feature extraction, and model fitting compo-
nents. The following sections explain each component in
detail.

A. Data Preprocessing

The input data for the proposed model consist of univariate
electricity consumption readings. Before this data is used for
model fitting, it must pass through three main preprocessing
phases.

1) Daily Input Grouping: This stage groups the readings
using 24-hour-long non-overlapping windows to capture the
daily usage characteristics of users. Full day (24-hour) usage
patterns show associated peak hours and idle hours within the
time frame. The level of consumption might vary from day
to day, depending on different contributing factors. However,

daily usage patterns contain enough information to localize
the feature extraction in the time domain.

2) Stationary Wavelet Transform: After daily input group-
ing, each 24-hour reading from the previous step passes inde-
pendently through a multi-level stationary wavelet decomposi-
tion to generate stationary sub-sequences. The decomposition
is also separate for training and testing data. Haar’s mother
wavelet is used as a basis function because of its advantage in
capturing a signal’s local aspects. A three-level decomposition
is used, which is the maximum possible for input with a length
of 24. The decomposition phase generates six coefficients with
the same length as the original input. However, the last-level
approximate coefficient and detailed coefficients at each level
are kept because they are sufficient to reconstruct the input.
Finally, each day’s wavelet features are stacked into a single
dataset while maintaining the time order. The resulting data
have four wavelet features for each consumption reading.

3) Time Series to Supervised Learning: This step aims to
shape the data into a supervised learning problem. This study
used 24-hour window wavelet features as input and the next-
hour consumption reading as output. The final output of this
phase is usable with supervised learning algorithms.

B. Feature Extraction

This component uses one-dimensional convolution and
max-pooling operations to extract complex features from the
input data.

1) ID-Convolution Layer: The convolution layer convolves
the input with a weight matrix called a filter to compute
a feature map. Feature maps contain useful data features;
however, a further operation follows this step to select the
most important ones.

2) Max Pooling Layer: The max-pooling layer takes feature
maps as input and sub-samples it by selecting maximum values
within a given pooling size. It provides a compressed form
of representation for the feature map while reducing model
parameters.

C. Model Fitting

The model fitting component consists of a dense or LSTM
layer, followed by an output layer. This component fits a
nonlinear function between the extracted features and the
output variable using hidden layers.

1) Flattening Layer: This layer takes the output of the max-
pooling layer and converts it into a linear array. This step is
important because the following layers expect a linear input
to fit the model function.

2) Dense Layer/LSTM Layer: The dense/LSTM layers take
the linear input from the flattening layer and fit a forecasting
model. The neurons in dense layers use a rectified linear
unit(ReLU) as an activation function, and tan-hyperbolic acti-
vation is used for LSTM layers.

3) Output Layer: The output layer contains a single neuron
with a linear activation function. The output from this layer is
the predicted consumption value.
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V. EVALUATION due to a large number of possible combinations of these
A. Dataset parameters. Finally, the best hyper-parameters were selected

The proposed method was evaluated using residential elec-
tricity consumption from London Hydro (the electricity service
provider in London, Ontario). The data consist of the hourly
smart-meter readings in kWh for ten houses from January
2014 to January 2020. A total of 52,752 hours of readings
were prepared for each house. In the experiments, a 70%-
10%-20% train-validation-test split ratio was used to train
and evaluate the models. Fig. 2 summarizes six years’ hourly
consumption for all houses as a box plot. Based on the plot, all
houses had different overall consumption levels. In addition,
the consumption readings for all houses contained outlier
values. The lowest reading for all houses was zero, which
might have been related to a temporary power outage or no
appliances usage.
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Fig. 2. Box Plot For Six Years Electricity Consumption

B. Training and Hyper-Parameter Tuning

Model training was conducted using the training and valida-
tion process. A mean square objective function was optimized
during training using an Adam optimizer. Critical hyper-
parameters were tuned for the convolutional layer and the
model fitting layer. Hyperparameter’s search space is shown
in Table-I. A random search tuning approach was used to
generate fifty unique random combinations for each model

based on their validation score.

TABLE I
HYPER-PARAMETER VALUES TESTED DURING TUNING

Hyper Parameter Values Tested

Filter Size 16, 32, 64, 128
Kernel Size 2,4,6, 8
Pooling Size 2,3,4,5

Number of Neurons 20, 30, 50, 60

C. Experiments and Results

Three experimental scenarios were considered for this study.
The first experiment set the baseline results. The second and
third experiments evaluated the performance of the proposed
approach. The performance of the models was evaluated using
the mean absolute percentage error (MAPE) metric. The
following sections describe each experiment in detail.

1) Experiment-1: (1D-Convolution)-Dense Model: This ex-
periment builds a forecasting model for the ten houses by tak-
ing the consumption data sequence as a univariate input. The
input time-series data was first transformed into supervised
learning data by applying a sliding window method with a
twenty-four window size. The models for all houses had one
convolutional layer, a max-pooling layer, a flattening layer,
and three fully connected dense layers. Rectified linear unit
(ReLU) activation was used for all neurons within the fully
connected layers. A mean squared error objective function
with an Adam optimizer was used to train the models. The
training and tuning process followed the procedure described
in the training and hyper-parameter tuning subsection. This
experiment’s results set the baseline results to compare with
the proposed method (Experiment-2 and Experiment-3).

2) Experiment-2: SWT-(1D-Convolution)-Dense Model:
The input for this experiment was also only the consumption
reading for each house. Unlike the baseline experiment, the
input was not directly used. This experiment implemented



the suggested approach using dense layers in the model
fitting component. After the preprocessing step, the final input
had detailed coefficients at each decomposition level and an
approximate coefficient at the last decomposition level. The
remaining network configurations are the same as the baseline
models.

3) Experiment-3: SWT-(1D-Convolution)-LSTM Model:
This experiment aimed to improve the result from Experiment-
2 by replacing the fully connected layer with a three-layer
LSTM. All LSTM cells within the network had a tan-
hyperbolic activation function. The three-dimensional tensor
from the sliding window output was further subdivided into
sub-sequences to fulfill the input shape requirements of LSTM.
The remaining network configurations and tuning process of
this experiment were kept similar to Experiment-2.

TABLE 11
EXPERIMENT-1, EXPERIMENT-2 AND EXPERIMENT-3 EVALUATION
RESULTS
House Experiment-1 | Experiment-2 | Experiment-3
MAPE MAPE MAPE
House-1 36.276 11.906 11.305
House-2 26.925 10.302 7.169
House-3 36.803 5.541 5.244
House-4 30.161 10.741 9.244
House-5 36.168 16.249 18.238
House-6 7.330 2.211 1.972
House-7 36.222 9.434 8.310
House-8 65.273 18.315 10.909
House-9 37.467 15.324 13.640
House-10 23.328 5.332 3.884

The results from the baseline experiment (Experiment-1) are
shown in Table II. The best performance achieved was 7.330%
for House-6, and the worst percentage error was 65.273%
for House-8. For the remaining houses, the percent error was
greater than 30% except for House-2 and House-10.

The results from the proposed approach (Experiment-2,
Experiment-3) are also shown in Table II. The SWT-(1D-
Convolution)-Dense (Experiment-2) model significantly im-
proved the results compared to the baseline model. The lowest
MAPE was 2.211% for House-6, and the highest MAPE was
18.315% for House-8. The models for House-3, House-7, and
House-10 had a percentage error of less than 10%. The remain-
ing houses achieved less than 20% MAPE. Similarly, the SWT-
(1D-Convolution)-LSTM(Experiment-3) model improved the
baseline results and the results of the SWT-(1D-Convolution)-
Dense(Experiment-2) model. The best model attained 1.972%
MAPE for House-6, and the lowest performance was 18.238%
MAPE for the House-5 model. In general, the proposed
method improved forecasting accuracy without using man-
ually designed features or multiple models. The actual vs.
prediction plots of the best and worst-performing SWT-(1D-
Convolution)-LSTM and SWT-(1D-Convolution)-Dense mod-
els are shown in Figs. 3, 4, 5, and 6. The plots show only
the first two hundred hours of prediction to display the results
with better resolution.
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Based on Figs. 3, 4, 5, and 6, the prediction curve of
the proposed model follows the actual usage values closely.
In addition, the predictions of peak usage hours are very
close to the actual values. For the worst-performing SWT-
(1D-Convolution)-LSTM model (Fig. 4), highly fluctuating
values were difficult to predict. For the best-performing mod-
els in both approaches (Fig. 3 and Fig. 5), the SWT-(1D-
Convolution)-LSTM-based model resulted in a slightly better
prediction than the SWT-(1D-Convolution)-Dense network.

VI. CONCLUSION

Advances in energy consumption data collection from smart
meters motivate data-driven energy consumption forecasting
approaches in residential and commercial buildings. Many
studies have been conducted in residential energy consumption
forecasting. This study also focused on hourly energy usage
prediction for residential buildings.

This study proposed a model that combines wavelet features
with convolution and pooling operations to extract robust
features. Unlike existing wavelet-based methods, the proposed
approach can generate the final prediction without modeling
each wavelet sub-sequence and inverse wavelet transform. The
research findings have confirmed that the proposed framework
has significantly improved over the standard univariate in-
put (I1D-convolution)-Dense model. The results have further
proved that integrating stationary wavelet features with CNN
can extract relevant features to improve forecasting accuracy.

In this study, a single convolution and max-pooling layer
are used for feature extraction purposes. In the future, multiple
layers of convolution, max-pooling, and flexible window size
should be tested for residential houses that use mixed energy
sources (gas, electricity, and other local renewable energy
sources).
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