
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

4-12-2011 12:00 AM 

Descent Systems, Eulerian Polynomials and Toric Varieties Descent Systems, Eulerian Polynomials and Toric Varieties 

Letitia Mihaela Golubitsky, The University of Western Ontario 

Supervisor: Lex Renner, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Mathematics 

© Letitia Mihaela Golubitsky 2011 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Algebra Commons 

Recommended Citation Recommended Citation 
Golubitsky, Letitia Mihaela, "Descent Systems, Eulerian Polynomials and Toric Varieties" (2011). Electronic 
Thesis and Dissertation Repository. 134. 
https://ir.lib.uwo.ca/etd/134 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 











19

face lattice of the polytope Pλ:

e ∈ E(T ) ↔ Fe,

such that

rank(e) = dim(Fe) + 1, (2.2)

where Fe is a face of the polytope Pλ.

Next we present several examples of various polytopes Pλ when W is finite Weyl

group of type A2 and of type A3.

Example 6. A2, (W,S) = (S3, S = {s1, s2}) and J = {s2} .

s1λ

Example 7. A2, (W,S) = (S3, {s1 = (12), s2 = (23)}), J = ∅.

s1λ
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Example 8. A3, (W,S) = (S4, {s1 = (12), s2 = (23), s3 = (34)}), J = {s2, s3}

s1λ

Example 9. A3, J = {s3} ⊂ S = {s1, s2, s3}.

The next corollary recorded without a proof in [32] is a key result in our com-

putations of the h–polynomial of the polytope Pλ.

Corollary 1 (21, Corollary 1.3). Let W be a Weyl group and let r : W → GL(V ) be

the usual reflection representation of W . Let C ⊂ V be the rational Weyl chamber

and let λ ∈ C. Assume that J = {s ∈ S | s(λ) = λ}. Then the set of orbits of

W acting on the face lattice Fλ of Pλ is in one-to-one correspondence with the set

{I ⊆ S | no connected component of I is contained entirely in J}.
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We conclude the W–orbit contains a representative face whose W–stabilizer/isotropy

subgroup is the parabolic subgroup WI∗
J
, generated by the set

I∗
J = {I} ∪ {s ∈ J | st = ts for all t ∈ I}.

Next, let S(J) = {I ⊂ S | no connected component of I is contained entirely in J},

S(J) ⊆ P(S), the power set of S. The following examples turn out to be extremely

helpful for a better understanding of Corollary 1.

Example 10. Let G = SL4 and W = S4 where S = {s1, s2, s3}.

For J = {s2, s3} we have S(J) = {∅, I1, I2, S} where I1 = {s1}, I2 = {s1, s2}. The

subset I ⊆ S corresponds to the unique face F of the polytope Pλ with I = {s ∈

S | s(F ) = F and s|F 6= id} whose relative interior F 0 has nonempty intersection with

the Weyl chamber C. To I1 it corresponds an edge labeled I1 and to I2 it corresponds

a triangle labeled I2, both faces drawn in Figure 2.1.

s1λ

Figure 2.1: Tetrahedron

For J = {s3} we have S(J) = {∅, I1, I2, I3, I4, S}, where I1 = {s1}, I2 = {s2},

I3 = {s1, s2} and I4 = {s2, s3}. The corresponding faces to Ii, 1 ≤ i ≤ 4 are drawn

in Figure 2.2.
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Figure 2.2: Truncated Tetrahedron

Next, we know that T is a Zariski open subset of T . Hence the torus T/C∗ is

an open subset of [T − {0}]/C∗.

Our interest is in the projective toric variety denoted by X(J), terminology

justified since it depends only on J = {s ∈ S | s(λ) = λ} and not on λ or M :

X(J) =
T − {0}

C∗
= Proj[C[T ]],

The T–orbit structure of X(J) can be described as follows: for e ∈ T denote

[e] ∈ X(J). We have that the T–orbit of [e] is of dimension rank(e) − 1. Hence from

(2.2) we associate uniquely to every k–dimensional T–orbit of X(J) a k–dimensional

face of the polytope Pλ.

The set of T–fixed points of X(J), denoted by X(J)T , corresponds to vertices

of the polytope Pλ as X(J)T is in one-to-one correspondence with the set of one-

dimensional T -orbits on T . In order to see this consider [x] ∈ X(J) for x ∈ T . Then

[x] is a T -fixed point if and only if [tx] = [x] for all t ∈ T . Hence tx = αx for α ∈ C∗

and for all t ∈ T . We conclude that Tx = C∗x. We know that x = te where t ∈ T

and e ∈ E(T ) such that Tx = Te = k∗te and so e ∈ E1(T ).

Remark 1. In general in order to obtain the variety X(J) given a set J ⊆ S we do
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the following: we choose a weight in the fundamental Weyl chamber corresponding

to (W,S) such that J = {s ∈ S | s(λ) = λ}. Then consider the representation ρ of

G0 of highest weight λ, where Go is a semimsimple algebraic group. Take the Zariski

closure of G = k∗ρ(G0). A maximal torus inside G is T = k∗ρ(T0) where T0 is a

maximal torus of G0. We considered k any algebraically closed field.

Define X(J) = T \ {0}/k∗. It can be shown that X(J) depends only on J and

not on M or λ using the theory of algebraic monoids of type J . See [26] for more

details.

Remark 2. Using the inner normal fan construction associated to the polytope Pλ

(i.e., the fan is obtained by taking cones over faces of the dual polytope of Pλ and

they satisfy a natural notion of ′′gluing” affine varieties) we get the projective toric

variety X(J).

Next, we illustrate the construction of X(J) in the following examples.

Proposition 4. Let G = SL4(C) with S = {s1, s2, s3} and J = {s1, s2}. The

polytope Pλ is a tetrahedron and X(J) = P3.

Proof. In this case the simple roots are given by α1 = ǫ1−ǫ2, α2 = ǫ2−ǫ3, α3 = ǫ3−ǫ4

where ǫi ∈ X(T4) and ǫi(A) = ti for A = diag(t1, t2, t3, t4).

We have the relation ǫ1 + ǫ2 + ǫ3 + ǫ4 = 0.

Next, consider the three dimensional vector space V , whose basis is given by ǫ1, ǫ2,

ǫ3. Let sα, sβ, sγ be reflections into planes orthogonal to α, β, γ in V such that the

following holds:

1. sα(λ) = λ − 2 (λ,α)
(γ,γ)

α.

2. s1(λ) = λ. Hence (λ, α1) = 0.

3. s2(λ) = λ. Hence (λ, α2) = 0.

4. (ǫi, ǫj) = δij.
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5. si(αj) = αj − nαi,αj
αj.

Using the above properties we can compute nαi,αj
which corresponds to the

(i, j) entry of the Cartan matrix of A3 given by

X =





2 −1 0

−1 2 −1

0 −1 2





The convex hull of W.λ in V , when W = 〈s1, s2, s3〉 is a tetrahedron with

vertices given by: λ, s3(λ), s2s3(λ), s1s2s3(λ).

First note that the following computations hold: s3(λ) = λ − α3, s2s3(λ) =

λ − α2 − α3 and s1s2s3(λ) = λ − α1 − α2 − α3.

Next λ, s3(λ), s2s3(λ), s1s2s3(λ) are affine independent ⇐⇒ s3(λ)−λ, s2s3(λ)−

λ, s1s2s3(λ) − λ are linearly independent.

Using the inner normal fan construction associated to the tetrahedron Pλ we

obtain the toric variety X(J) = P3.

2.) For G = SLn, S = {s1, s2, · · · , sn} and J = {s2, · · · , sn} we obtain the

polytope Pλ as a (n − 1)–simplex and X(J) = Pn using similar computations as in

the previous example.

3.) For G any reductive algebraic group with ρ an irreducible representation of

G then its highest weight λ belongs to the interior of the fundamental Weyl chamber

if J = ∅ and the toric variety obtained is the toric variety associated to the Weyl

chamber decomposition (the fan in this case is a family of cones given by the Weyl

chambers) studied by Processi in [22]

2.2 Cell structure of X(J)

The BB-cell decomposition discovered by Bialynicki-Birula is the most commonly

studied cell decomposition in algebraic geometry. If k∗ acts on a smooth complete
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variety X, with finite fixed point set F ⊂ X, then X = ⊔α∈F Xα, where each BB–cell

is defined as Xα = {x | limt→0 tx = α} and it turn out that Xα is isomorphic to an

affine space. The BB–cells make sense even if X is not smooth but in that case they

don’t behave so well.

In the case of the projective rationally smooth toric variety X(J) Renner quan-

tifies the BB–cells in terms of idempotents, B × B-orbits and other monoid notions.

In [33] Renner describes the BB-decomposition for an appropriate one-parameter sub-

group of T in terms of the idempotents of T . For proofs of the following results see

[33].

Definition 7. Let e, e′ ∈ E1(T ). We say that e < e′ if eBe′ 6= 0 and e 6= e′.

By the results of [32] the poset (E1(T ),≤) is anti-isomorphic to the poset (W J ,≤).

Theorem 7. [33] Let M be a J-irreducible reductive monoid of type J ⊂ S with unit

group G and connected center Z ⊂ G. Let Bu ⊂ B be the subgroup of unipotent

elements of B and E1 = E1(T ). Choose a one-parameter subgroup λ : k∗ → T such

that

1. limt→0(tut) = 1 for all u ∈ Bu

2. {x ∈ T \ {0} | λ(t)x ∈ Zx for all t ∈ k} =
⋃

e∈E1(T ) eT.

Let

X(J) = ⊔e∈E1
X(J)(e)

be the BB-decomposition of X(J) relative to λ. Then X(J)(e) = ⊔f∈ρe
T [f ] where

ρe = {f ∈ E(T ) | ef = e and e′f = 0 for all e′ > e}

Theorem 8. [33] The following are equivalent:

1. [f ] ∈ X(J)(e)

2. fe′ = 0 for all e′ > e and fe = e.
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In the same paper Renner studies the case when X(J) is rationally smooth

toric variety and recovers the dimension of the BB-cells {X(J)(e) ⊂ X(J) | e ∈ E1}

from the Bruhat poset (W J ,≤, {νs}). Here νs(w) is the cardinal of the ascent set

associated with s ∈ S \ J and w ∈ W J .

Assume now that Y is a rationally smooth projective toric variety with the

torus action T × Y → Y . Let F ⊂ Y be the set of T -fixed points. Choose a 1-psg

λ : k∗ → T so that Y has BB-decomposition

Y =
⊔

α∈F

Yα

Proposition 5. [33] Let Uα = {x ∈ Y | α ∈ Tx}. Then Yα is the closure in Uα of a

T-orbit. In particular Yα is irreducible.

Proof. T acts on Uα and α ∈ Uα is the unique fixed point of this action. Uα ⊂ Y is

rationally smooth as Y is rationally smooth. Thus there exists a finite dominant flat

T -equivariant morphism

pα : Uα → kn

where n = dim(Y ) and kn has the usual structure of an affine toric variety for the n-

torus. Thus we may write pα(x) = (x1, · · · xn) and λ(t)(x1, . . . xn) = (ta1x1, · · · , t
anxn).

Thus by definition of the BB-cell,

Yα = {x ∈ Uα | xi = 0 if ai < 0} = p−1
α ({(x1, · · · xn) ∈ kn | xi = 0 if ai < 0})

This is the closure of a T -orbit in Uα since pα induces a bijection on T -orbits.

We return to the situation where X(J) comes from a Weyl group (W,S). We

assume also that X(J) is rationally smooth.

Let

X̂(J)(e) = {y ∈ T | [y] ∈ X(J)(e)}.



27

Consider X to be the cone on X(J), and if e ∈ E1(X) let Ue = {x ∈ X | ex 6= 0} and

E2(Ue) = E2(X) ∩ E(Ue), wherfe E2(X) is the set of two-dimensional T -orbits of X.

Notice that X̂(J)(e) ⊂ Ue.

Proposition 5 turn out to be extremely useful in obtaining the following result.

Theorem 9. [33] Let e ∈ E1 and let U = ∪e′>eUe′ .

Then

X̂(J)(e) = Ue \ U = fUe

where f ∈ E(X) is the unique smallest idempotent with fh = h for all h ∈ E2(Ue)−A.

In particular, dim(X̂(J)(e)) = |E2(Ue) − A| + 1 = |S| − |A| + 1. In this case,

A = {g ∈ E2(X) | ge = e and ge′ = e′ for some e′ > e}.

The next formula calculates the dimension of the BB-cells corresponding to the

BB-decomposition of X(J).

For e ∈ E1(X), let

Γ(e) = {g ∈ E2(X) | ge = e, and ge′ = e′ for some e′ < e}

Notice that

Γ(e) = E2(Ue) \ A

where A is defined as in Theorem 9.

Theorem 10. [33] Assume X(J) is rationally smooth. For e ∈ E1 recall that

X(J)(e) = {[x] ∈ X(J) such that ex 6= 0 and e′x = 0 for all e′ > e}

and as above let X̂(J)(e) = {y ∈ X | [y] ∈ X(J)(e)}. Then

X̂(J)(e) = Ue \ U = fUe

as in Theorem 9 and dim(X(J)(e) = |Γ(e)|.
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From the previous theorem we can recover the dimensions of the BB-cells

{X(J)(e) ⊂ X(J) | e ∈ E1} from (W J ,≤, {νs}). If ν(w) =
∑

s ν(s) then from part 3

of Theorem 2.23 in [32] we obtain that ν(w) = |Γ(e)|

Remark 3. The following table was taken from [33] and it provides the reader with

a summary-translation between X(J) and the Bruhat poset jargon. Let

Λ× = {I ⊂ S | no component of I is contained in J}

and for I ∈ Λ× let I∗ = I ∪ {t ∈ J | ts = st forall s ∈ I }.

For each w ∈ W J the BB-cell Cw is defined as:

Cw =
⊔

A∈A∈O(w)

A

where O(w) = {A ⊂ X(J) | A = Tx for some x ∈ X(J), w(x0) ∈ Ā and v(x0) /∈

Ā if v < w} A T -orbit A ⊆ X(J) is in Cw if and only if any one-dimensional T -orbit

of Ā has w(x0) in its closure.

Renner showed in [32] that (W J ,≤) is isomorphic to the poset (E1(T ),≤).

If w ∈ W and x0 ∈ X(J)T is the element corresponding to e0 ∈ Λ1 then wx0 is

the element of X(J)T corresponding to wx0w
−1. We have that W J is canonically

identified with the set of fixed points X(J)T of T acting on X(J).

The set of one-dimensional T -orbits O1(X(J)) of X(J) is identified with {(u, v) ∈

W J × W J | u < v and u−1v ∈ SJWJ}. If (u, v) ∈ W J × W J and u−1v ∈ SJWJ then

either v < u or else u < v. The question of whether v < w or w < v, is coded in the

“descent system” (W J , SJ).



29

X(J) jargon W J jargon

x0 ∈ X(J)T 1 ∈ W J

x = w(x0) ∈ X(J)T w ∈ W J

The T -orbit A ⊂ X with A ∩ XT = WIx0 I ∈ Λ×

{(u, v) ∈ W J × W J such that

The set of T -orbits (on X(J)) of dim = 1 u < v and u−1v ∈ SJWJ}

The set of T -orbits of dim = 1 with x0 ∈ A SJ = (WJ(S \ J)WJ) ∩ W J

The set of T -orbits of dim = 1 in Cw AJ(w) = {r ∈ SJ | w < wr}

The set of T -orbits on X(T ) {(w, I) | I ∈ Λ×, w < ws if s ∈ I∗}

2.3 h-polynomial of X(J)

This section is a brief discussion of the h-polynomial associated to a simple poly-

tope. For details and proofs of the following statements consult [42]. A convex

n-dimensional polytope P is called simple if exactly n − 1- codimension-one faces

meet at each vertex.

Definition 8. Let P be a simple n-polytope. Denote by fi the number of codimension

(i + 1)–faces of P where i = −1, 0, · · · , n − 1. The integer vector (f0, f1, · · · , fn−1) is

called the f–vector of P . We also put f1 = 1 as P itself is a face of codimension zero.

The h–vector of P is the integer vector (h0, h1, · · · , hn) defined from the equation

n∑

i=0

hit
n−i =

n−1∑

i=−1

fi(t − 1)n−i−1. (2.3)

The f–vector and h–vector carry the same information about the polytope and

determine each other by means of linear relations, namely

hk =
k∑

i=0

(−1)k−i



n − i

k − i



 fi−1, for k = 0, · · · , n,
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and

fj =

j∑

i=0



j

i



 hi, for j = 0, · · · , n.

Proposition 6. (Dehn-Sommerville Equations). If P is a simple n-polytope then

i∑

j=0

(−1)j



n − j

n − i



 fj = fi, for i = 0, · · · , n.

Equivalentely,

hi = hn−i for 0 ≤ i ≤ n.

Furthermore, the equation h0 = hn is equivalent to the Euler-Poincaré formula,

n∑

i=0

(−1)ifi = 1.

Moreover when Pλ is a simple integral polytope, the cohomology ring of the

toric variety X(J) over Q has the form:

[?] H∗(X(J); Q) = H0(X(J); Q) ⊕ H2(X(J); Q) ⊕ · · · ⊕ H2d−1(X(J); Q),

where dimH2i(X(J); Q) = hi that is, the 2i-th Betti numbers of X(J) are the same

as hi while the (2i + 1)-th Betti numbers of X(J) are zero.

Hence the Poincaré polynomial of X(J) is expressed in terms of the h-polynomial:

P (X(J), t) =
∑

i

(−1)ibit
i =

∑

i

(−1)2ib2it
2i =

∑

i

hit
2i = h(t2)

The Poincaré duality holds when X(J) is rationally smooth:

dimHq(X(J); Q) = dimH2d−q(X(J); Q).

Next, using the theory of algebraic monoids and cross section lattice associ-
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ated to an algebraic monoid we present a formula for calculating the number of

i-dimensional faces of the polytope Pλ. This formula appeared in [17] and it turns

out to be extremely useful for our computations.

Proposition 7. [17] Let n = dim(Pλ). The number of i-dimensional faces of Pλ is:

fi =
∑

e∈Λi

|W |

|WI∗(e)|

where Λi = {e ∈ Λ | rank(e) = dim(Te) = i + 1} and 0 ≤ i ≤ n.

Proof. Let Fi be the set of all i–dimensional faces of the polytope Pλ. We know that

W.Fi = Fi as the Weyl group permutes the i dimensional faces of Pλ.

We use the lattice isomorphism between E(T ) and the face lattice of the poly-

tope Pλ obtained in (2.2) where the action of Weyl group W is on E(T ) is given by

conjugation. Then for any e ∈ E(T ), the isotropy group of e is the centralizer of e in

W , namely WI∗(e) according to Theorem 4. Hence we get:

fi = |Fi| = |W.Fi| =
∑

e∈Λi

W.e =
∑

e∈Λi

|W |

|WI∗(e)|

Let S(J) = {I ⊂ S | no connected component of I is contained entirely in J}.

From Theorem 8 we have that Λ \ {0} ∼= S(J). Define for any I ∈ S(J),

I∗
J = I ∪ {s ∈ J | st = ts for all t ∈ I}.

Proposition 8. The h–polynomial of X(J) can be expressed in terms of the cross

section lattice Λ as follows:

h(t) =
∑

I∈S(J)

|W |

|WI∗
J
|
(t − 1)|I|.
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Proof. According to Theorem 8, to each element e ∈ Λ \ {0} corresponds uniquely

to a subset of S, denoted by I(e) such that I(e) = {s ∈ S | se = es 6= e} and

rank(e) = |I(e)| + 1. We associate to I(e) the following set

I∗
J(e) = I(e) ∪ {s ∈ J | st = ts for all t ∈ I(e)}.

Under the correspondence 2.2 we have that rank(e) = dimFe +1 where Fe is the face

of the polytope Pλ that corresponds uniquely to e ∈ E(T )\{0}. We know that the h–

polynomial of X(J) is defined in terms of the f -polynomial, i.e., h(t) =
∑n

i=0 fi(t−1)i,

where fi is the number of i-dimensional faces of the polytope Pλ. Using the preceding

proposition and the fact that

Λ =
n⊔

i=0

Λi,

we conclude that the h-polynomial is given by the following formula:

h(t) =
n∑

i=0

fi(t − 1)i =
n∑

i=0

∑

e∈Λi

|W |

|WI∗(e)|
(t − 1)i

=
n∑

i=0

∑

e∈Λi

|W |

|WI∗(e)|
(t − 1)rank(e)−1

=
n∑

i=0

∑

e∈Λi

|W |

|WI∗(e)|
(t − 1)|I(e)|

=
∑

e∈Λ\{0}

|W |

|WI∗
J
(e)|

(t − 1)|I(e)|

To simplify the notation in the preceding formula we replace for every e ∈ Λ \ {0}

the corresponding set I(e) ∈ S(J) by I ∈ S(J). We know from Theorem 8 that

Λ \ {0} ∼= S(J) hence, this yields the desired formula.



Chapter 3

Betti numbers of X(J) in terms of

Descent Systems

3.1 Descent systems

The notion of descent systems for algebraic monoids was introduced by Renner. For

a systematic discussion on descent systems see [32].

I would refer to (1.1) for the definition of W J , when J ⊂ S.

Definition 9. Let (W,S) be a Weyl group and let J ⊂ S be a proper subset. Define

the descent system associated with J ⊂ S as:

SJ = (WJ(S \ J)WJ) ∩ W J

We refer to (W J , SJ) as the descent system associated with J ⊂ S. We say J is

combinatorially smooth if Pλ is a simple polytope.

An important result was obtained by Danilov in [11], namely Pλ is a simple

polytope if and only if X(J) is rationally smooth. Renner showed the following

holds:

33
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w

Figure 3.1: Descent system

Proposition 9. [32] Let (W J , SJ) be the descent system associated with J ⊂ S. The

following are equivalent:

1. J is combinatorially smooth.

2. |SJ | = |S|.

3. X(J) is rationally smooth.

Definition 10. Let w ∈ W J and SJ
s = WJsWJ ∩ W J . Define

DJ
s (w) = {r ∈ SJ

s | wrc < w in the Bruhat order for some c ∈ WJ}.

AJ
s (w) = {r ∈ SJ

s | w < wr in the Bruhat order}.

We refer to DJ(w) =
⊔

s∈S\J DJ
s (w) as the descent set of w relative to J , and

AJ(w) =
⊔

s∈S\J AJ
s (w) as the ascent set of w relative to J . We have for w ∈ W J

that SJ = DJ(w) ⊔ AJ(w).

Remark 4. Notice that wrc < w for some c ∈ WJ if and only if (wr)0 < w, where

(wr)0 ∈ wrWJ is the element of minimal length in wrWJ .

Notice that at every vertex w of the polytope Pλ there are SJ - number of edges.

And some edges are ascent edges, they correspond to the ascent set associated to that

vertex and some other edges correspond to the descent set associated to that vertex

as in Figure 3.1.

Proposition 10. [32] Let u, v ∈ W J be such that u−1v ∈ SJWJ . In particular u 6= v.

Then either u < v or v > u in the Bruhat order < on W J .
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Theorem 11. [32] Assume J ⊂ S is combinatorially smooth. Then:

1. SJ =
⊔

SJ
s .

2. Let s ∈ S \ J . In case st = ts for all t ∈ J , SJ
s = {s}. Otherwise,

SJ
s = {s, t1s, t2t1s, · · · , tm · · · t1s}

where Cs = {t1, t2 · · · , tm} is the connected component of J attached to s,

st1 6= t1s and titi+1 6= ti+1t1 for i = 1, · · · ,m − 1.

The following remark, which summarizes how J –irreducible monoids are in-

volved here, is taken from [32]. See Remark 2.24 of [32].

Remark 5. Let E = E(T ) be the set of idempotents of T and let Ei = {f ∈

E | dim(fT ) = i} ⊂ E. We have e1 ∈ E1 = E1(T ) the unique element such that

e1B = e1Be1. For e ∈ E1 let v ∈ W J be the unique element such that e = ve1v
−1. We

write e = ev. For e, f ∈ E we write e ∼ f if there exists w ∈ W such that wew−1 = f .

If s ∈ S \ J , let gs ∈ E2 be the unique idempotent such that gss = sgs 6= gs and

gsB = gsBgs. Let Λ× = {I ⊂ S | no component of I is contained in J} and for

I ∈ Λ× let I∗ = I ∪ {t ∈ J | ts = st for all s ∈ I }.

In the following table Renner provides a summary-translation between the

monoid jargon and the Bruhat poset jargon.

The picture here is this: The subset W J ⊂ W is canonically identified with the

subset of vertices of the rational polytope Pλ. Evidently (E1,≤) and (W J ,≤) are

anti-isomorphic as posets. Furthermore the set of edges Edj(Pλ of Pλ is canonically

identified with E2 = E2(T ). If g(v, w) = g(w, v) ∈ Edj(Pλ is the edge of Pλ joining

the distinct vertices v, w ∈ W J then either v < w or else w < v. Given v ∈ W J , with

edges edj(v) = {g ∈ E2 | g = g(v, w) for some w ∈ W J}, the question whether v < w

or w < v is coded in the descent system (W J , SJ).
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Reductive Monoid Jargon Bruhat Order Jargon

e1 ∈ Λ1 = {e1} 1 ∈ W J

e = ev ∈ E1 v ∈ W J with e = ve1v
−1

ev ≤ ew in E1, i.e. evBew 6= 0 w ≤ v in W J

{(u, v) ∈ W J × W J}
E2 = {g ∈ E | dim(gT ) = 2} u < v and u−1v ∈ SJWJ}
{g ∈ E2 | gB = gBg} S \ J
{g ∈ E2 | ge1 = e1 } SJ = (WJ(S \ J)WJ) ∩ W J

{g ∈ E2 | ge1 = e1, g ∼ gs} SJ
s = (WJsWJ) ∩ W J

E2(ew) = {g ∈ E2 | gew = ew} {v ∈ W J | w−1v ∈ SJWJ}
Γ(ew) = {g ∈ E2(ew) | ge′ = e′ for some e′ < ew} AJ(w) = {r ∈ SJ | w < wr}
Γs(ew) = Γ(ew) ∩ {g ∈ E2 | g ∼ gs } AJ

s (w) = {r ∈ SJ
s | w < wr}

E(T ) \ {0} {(w, I) | I ∈ Λ×, w < ws if s ∈ I∗}

3.2 Betti numbers of X(J). Known examples

In the previous chapter we have seen how the structure and the dimensions of the

BB-cells of X(J) ca be described in terms of the descent system (W S, SJ). The

notion of the descent system turn out to be extremely useful in the study of the

variety X(J) and the main theorem of this chapter is Renner’s description of the

Poincare polynomial of X(J) in terms of the augmented poset (W J ,≤, {νs}). By

definition, (W J ,≤) is the usual Bruhat poset (which is canonically isomorphic to the

poset (E1,≤)) and νs(w) = |AJ
s (w)|, where AJ

s (w) is the ascent set associated with

s ∈ S \ J . Renner illustrates his new method with several examples: two are of type

An where J = {s2, · · · , sn} and J = {s3, · · · , sn}. A third example is (W,S) of type

Bl, where J = {s1, · · · , sl−1}.

Theorem 12. [33] Assume X(J) is rationally smooth. Then the Poincare polynomial

of X(J) is

P (X(J), t) =
∑

w∈W J

t2ν(w).

Proof. From Proposition 5 the map pα induces a bijection on T -orbits so that the

T -orbit structure on the BB-cell of dimension d is the same as the Td-orbit structure

on kd. Here Td is the set of invertible diagonal d × d- matrices and the action of Td
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on kd is given by multiplication. In order to determine the h-polynomial of a BB-cell

of dimension d we need to find the number of codimension (i+1) Td-orbits of kd. A

codimension (i + 1) Td-orbit is of the following form: {α1, α2, · · ·αn−i−1, 0, 0, · · · 0)}.

The number of all such Td -orbits is



 d

i + 1



.

Hence the h-polynomial of a d-dimensional BB-cell is given by:

h(e) = (t − 1)d +



d

1



 (t − 1)d−1 + · · · + 1 = td

By Theorem 10 there is a BB-cell X(J)(e) for each e ∈ E1 whose dimension

turn out to be equal to d = dimX(J)(e) = |Γ(e)| = |AJ(w)| = ν(w) where w ∈ W J .

We proved that h(e) = tν(w), where w ∈ W J corresponds uniquely to e ∈ E1.

But X(J) = ⊔e∈E1
X(J)(e), and so the h-polynomial of X(J) is given by

h(t) =
∑

e∈E1

h(e) =
∑

w∈W J

tν(w).

Next, we illustrate the previous theorem with several examples studied by Ren-

ner in [33].

Example 11. [33] Assume that J = ∅ and let X = X(∅). We want to compute

P (X, t) =
∑

e∈E1

t2ν(e)

In this case W J = W and SJ = S. In this case W ≃ E1 via w → ew if

ew = we1w
−1 where e1 ∈ E1(T ) is the unique element such that e1B = e1Be1.

By the results of [33] we have:

Γ(ew) ≃ {s ∈ S | l(w) < l(ws)}
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Thus ν(ew) = |{s ∈ S | l(w) < l(ws)}| = |S| − |D(w)| where

D(w) = {s ∈ S | l(w) > l(ws)}.

We let d(w) = |D(w)|. By Poincaré duality
∑

w∈W tν(w) =
∑

w∈W t2d(w).

By theorem 7.2.1 of [3] we have (taking into account the doubling of degrees)

that

P (X, t) =
∑

I⊂S

t2|S\I|(t2 − 1)|I||W I |

where W I = {w ∈ W | D(w) ⊂ S \ I}. This sum is called the Eulerian polynomial

of W .

Next, in the case when (W,S) is the Coxeter group of type An−1, define the

Eulerian numbers to be E(n, k) = |{w ∈ Sn | D(w) = k+1}|. Thus, for the associated

variety X,

P (X, t) =
n−2∑

k=−1

E(n, k)t2(k+1)

Similar formulas can be derived for the Coxeter groups of type B and D.

Example 12. [33] In this example we list the Poincaré polynomials associated with

combinatorially smooth polyhedra of type A3. Here S = {s1, s2, s3} with s1s2 6= s2s1

and s2s3 6= s3s2.

J Associated Polyhedron Poincaré Polynomial of X(J)

{s1, s2} tetrahedron 1 + t2 + t4 + t6

{s1} truncated tetrahedron 1 + 5t2 + 5t4 + t6

{s2, s3} tetrahedron 1 + t2 + t4 + t6

{s3} truncated tetrahedron 1 + 5t2 + 5t4 + t6

φ permutahedron 1 + 11t2 + 11t4 + t6

Example 13. In this example we list the Poincaré polynomials associated with com-

binatorially smooth polyhedra of type C3. Here S = {s1, s2, s3} with s1s2 6= s2s1 and
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s2s3 6= s3s2. ∆ = {α1, α2, α3} and α3 is the long simple root.

J Associated Polyhedron Poincaré Polynomial of X(J)

{s1, s2} cube 1 + 3t2 + 3t4 + t6

{s1} truncated cube 1 + 11t2 + 11t4 + t6

{s3} truncated octahedron 1 + 11t2 + 11t4 + t6

φ rhombitruncated cuboctahedron 1 + 23t2 + 23t4 + t6

Example 14. [33] In this example we discuss the Poincaré polynomial of X(J) where

(W,S) = (Sn+1, {s1, s2, · · · , sn}) is the Weyl group of type An (n ≥ 2) and J =

{s3, s4, · · · sn}. Renner illustrates in [33] the computation of P (X(J), t) using the

structure of (W J , SJ).

First we need to determine the set W J . We know that |W J | = |Sn+1|
|Sn−1|

= n(n+1).

The following relations are true:

Sn+1 =
n⊔

i=1

(si · · · s1)Sn ∪ id Sn

Sn =
n⊔

j=2

(sj · · · s2)Sn−1 ∪ id Sn−1

Hence

Sn+1 =
⊔n

i=1

⊔n

j=2 (si · · · s1)(sj · · · s2)Sn−1 ∪
⊔n

i=1 (si · · · s1)Sn−1 ∪
⊔n

j=2 (sj · · · s2)Sn−1 ∪ id Sn−1.

The above calculation shows that

W J = {(sp · · · s1)(sq · · · s2)} ∪ {sp · · · s1} ∪ {sq · · · s2}

where 1 ≤ p ≤ n and 2 ≤ q ≤ n. Furthermore, by Theorem 4.2 of [32] we have

SJ
n = {s1, s2, s3s2, s4s3s2, · · · snsn−1 · · · s3s2} = SJ

n−1 ∪ {snsn−1 · · · s3s2}
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Notice also that

W J
n = W J

n−1 ∪ {(sn · · · s1)(sp · · · s2)} ∪ {sn · · · s1)} ∪ {sq · · · s1)(sn · · · s2)} ∪ {sn · · · s2},

(3.1)

where 2 ≤ p ≤ n.

The following proposition records the computation of the ascent sets of w ∈ W J ,

AJ(w) = {r ∈ SJ | w < wr}.

Proposition 11. [33] Let (W,S) and J ⊂ S be as above.

1. If w ∈ W J
n−1 then sn · · · s1 ∈ AJ

n(w). Thus

AJ
n(w) = AJ

n−1(w) ∪ {sn · · · s2}.

2. AJ
n(sn · · · s1) = {s2, s3s2, ..., snsn−1 · · · s2}

AJ
n(sn · · · s1s2) = {s3s2, s4s3s2, ..., snsn−1 · · · s2}

AJ
n(sn · · · s1s3s2) = {s4s3s2, s5s4s3s2, ..., snsn−1 · · · s2}

...

AJ
n((sn · · · s1)(sn−1sn−2 · · · s2)) = {snsn−1 · · · s2}

AJ
n((sn · · · s1)(snsn−1 · · · s2)) = φ.

3. AJ
n((sp · · · s1)(sn · · · s2)) = {s1} if 1 ≤ p < n.

AJ
n(sn · · · s2) = {s1}.

We omit the proof as it can be found in great details in [33]. Now we have

all the necessary information to determine the Poincaré polynomial of X(J) using

Theorem 16.

Corollary 2. [33] Let (Wn, Sn) =< s1, s2, ..., sn > (n ≥ 2), where Sn = {s1, s2, ..., sn}.

As above, we also let J = {s3, s4, ..., sn} ⊂ Sn and Xn(J) the associated torus em-

bedding. Then

P (Xn(J), t) = t2n + (n + 2)t2(n−1) + (n + 2)t2(n−2) + ... + (n + 2)t4 + (n + 2)t2 + 1.
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Proof. We use induction on n. When S = {s1, s2, · · · , sn} we denote the variety X(J)

by Xn(J) and Xn−1(J) when S = {s1, s2, · · · , sn−1}.

Assume

P (Xn−1(J), t) = t2(n−1) + (n + 1)t2(n−2) + · · · + (n + 1)t2 + 1.

Using the relation 3.2 we can prove the following:

P (Xn(J), t) =
∑

w∈W J
n

t2νn(w) =
∑

w∈W J
n−1

t2νn(w) +
∑

w∈W J
n \W J

n−1

t2νn(w).

From Proposition 11 the following relations hold:

νn(w) = νn−1(w) + 1.

|AJ
n(sn · · · s1)| = n − 1.

AJ
n(sn · · · s1s2)| = n − 2.

AJ
n(sn · · · s1)(sn−1 · · · s2)| = 1.

AJ
n(sn · · · s1)(sn · · · s2)| = 0.

AJ
n(sq · · · s1)(sn · · · s2)| = 1 for1 ≤ q < n.

AJ
n(sn · · · s2)| = 1.

Hence we have

P (Xn(J), t) =
∑

w∈W J
n−1

t2(νn−1(w)+1) +
n∑

p=2

t2νn((sn···s1)(sp···s2)) + t2(νn(sn···s1).

+ t2νn(sn···s2) +
n−1∑

q=1

t2νn(sq ···s1)(sn···s2).

= t2P (Xn−1(J), t) + t2(n−2) + · · · + t2 + t2(n−1) + · · · t2(n−1) + 1



42

= t2(t2(n−1) + (n + 1)t2(n−2) + · · · + (n + 1)t2 + 1)

+ (t2(n−1) + · · · + t2 + 1) + nt2.

= t2n + (n + 2)t2(n−1) + · · · + (n + 2)t4 + (n + 2)t2 + 1.

Example 15. [33] In this example we consider the root system of type Bl. Let E be

a real vector space with orthonormal basis {ǫ1, ..., ǫl}. Then

Φ+ = {ǫi − ǫj | i < j} ∪ {ǫi + ǫj | i 6= j} ∪ {ǫi}, and

∆ = {ǫ1 − ǫ2, ..., ǫl−1 − ǫl, ǫl} = {α1, ..., αl}.

Let S = {s1, s2, · · · sl−1, sl} be the corresponding set of simple reflections. Here

we consider the case J = {s1, · · · , sl−1}.

We first calculate W J = {w ∈ W | w(αi) ∈ Φ+ for all 1 ≤ i ≤ l−1}. We obtain

the following:

W J ≃ {1 ≤ i1 < i2 < · · · < ik ≤ l},

via

w(ǫv) = ǫiv for 1 ≤ v ≤ k

and

w(ǫk+v = −ǫjv
for 1 ≤ v ≤ l − k

where l ≥ j1 > j2 > · · · > jl−k ≥ 1 (so that {1, ..., l} = {i1, i2, ..., ik}⊔{j1, j2, ..., jl−k})

After a more rigorous computation we obtain the ascent sets for each w ∈ W J

of the following form:

AJ(w) = {sk · · · sl, · · · , s1 · · · sl} = {r ∈ SJ | w < wr}.

Thus we obtain

ν(w) = |{j | w(ǫv) = ǫj for some v}|.
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We can use this information to calculate the Poincaré polynomial of X(J). We

obtain that:

P (X(J), t) =
∑

w∈W J

t2ν(w) =
∑

A⊂{1,...,l}

t2|A| = (1 + t2)l.

Example 16. [32] Let (W,S) be the Weyl group of type An and let J = {s2, · · · , sn} ⊂

S combinatorially smooth. One checks that

W J = {1, s1, s2s1, s3s2s1, · · · , snsn−1 · · · s2s1},

and SJ = W J \ {1}. Notice that

1 < s1 < s2s1 < · · · snsn−1 · · · s1.

We compute the ascent sets corresponding to each w ∈ W J using the following

calculation:

(sj · · · s1)(s1) = [sj · · · s2],

(sj · · · s1)(si · · · s1) = (si−1 · · · s1)[sj · · · s2] if 1 < i ≤ j, and

(sj · · · s1)(si · · · s1) = (si · · · s1)[sj+1 · · · s2] if i > j ≥ 1

We conclude from this that

AJ(sj · · · s1) = {sm · · · s1 | m > j}

and the corresponding Poincaré polynomial of X(J) is given by the following formula:

P (X(J), t) =
∑

w∈W J

tν(w) =
n∑

i=1

ti.
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3.3 Two new examples

Renner describes the Poincaré polynomial of X(J) when X(J) is rationally smooth

in terms of the poset (W J ,≤, {νs}). In Examples 9, 10 and 11, he computes the

coefficients of the Poincaré polynomial of X(J) using the method of descent sys-

tems (SJ ,W J). Inspired by these results we are interested in computing explicitly

the Poincaré polynomial of X(J) in two interesting cases of J ⊆ S combinatorially

smooth. Let (W,S) be Weyl group of type An, with W = Sn+1, S = {s1, s2, · · · sn},

si = (i i + 1) and consider J ⊂ S of the following forms:

1. J = {s1, s4, s5, · · · sn} ⊂ S = {s1, s2, · · · sn}.

2. J = {s4, s5, · · · , sn} ⊂ S = {s1, s2, · · · , sn}.

In order to compute the Poincaré polynomial of X(J), we could follow two

approaches: one using Li’s method of computing the h-polynomial of X(J) from the

f -vector and another one using Renner’s method of descent systems.

In both cases listed above we compute the Poincaré polynomial of X(J) using

Theorem 12, which relies on determining all elements of W J and computing their

corresponding ascent sets. We introduce a new method for finding all elements of

W J , different then the method used in the previous examples.

Then using Remark 4 we compute for each w ∈ W J its corresponding ascent

set A(w) by considering the products wr where r ∈ SJ and then writing wr = (wr)0c

where (wr)0 ∈ W J and c ∈ WJ . According to Proposition 10, if (wr)−1
0 w ∈ SJWJ

then w > (wr)0 or w < (wr)0 and this amounts to comparing their corresponding

lengths, l(w) and l(wr)0.

Nicole Lemire suggested me a different method in proving our main results of

this section. I have included a second proof for each result, proves given by Nicole

Lemire.

The first main result of this section is given in the following theorem.


