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Abstract

We consider the permutation group in n+1 letters, Sn+1, which corresponds to

the finite Weyl group of type An. Sn+1 is generated by the set of simple reflections

which corresponds to the set S of transpositions s1 = (12) · · · , sn = (n n + 1). Let

J ⊂ S. Using the theory of reductive algebraic monoids and representation theory of

semisimple algebraic groups we associate to J a projective toric variety denoted by

X(J). We are interested in computing the Betti numbers of the projective variety

X(J) when it is a rationally smooth variety i.e., X(J) has sufficiently mild singular-

ities. Betti numbers are an important topological invariant of a space which help us

measure the number of holes or cuts present in that space and classify spaces with

the same topological structure. Moreover we define the Poincaré polynomial of a

topological space as the generating function of its Betti numbers, via the polynomial

whose coefficients are the Betti numbers.

We associate to X(J) a simple polytope Pλ obtained as the convex hull of the

Sn+1-orbit of a weight λ fixed by only the simple reflections J = {sn, sn−1, · · · , sn−k+1}

for some k with respect to the An root lattice. The Betti numbers of the variety

X(J) can be computed using the h-polynomial associated to the polytope Pλ. It

is well-known that the Eulerian polynomials, which count permutations in Sn+1 by

their number of descents, give the h-polynomial of the simple polytopes known as

permutohedra. Therefore the Eulerian polynomials give the Betti numbers for certain

smooth toric varieties associated with the permutohedra.

In this thesis we derive a recurrence formula for the h-polynomials of a family

of polytopes generalizing this. When J = {sn+k+1, sn−k+2, · · · , sn}, 1 ≤ k ≤ n and

(W,S) is Weyl group of type An, we obtain a formula for the Poincaré polynomial

of X(J), in terms of Eulerian polynomials. Furthermore, we compute explicitly the

Poincaré polynomial of X(J) using the method of descent systems, in the case of a

(W,S) finite Weyl group of type An, and J being a combinatorially smooth of the

following forms: (1) J = {s1, s4, s5, · · · , sn} ⊂ S and (2) J = {s4, s5, · · · , sn} ⊂ S.

v
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Introduction

Toric varieties and their cohomology have played an increasingly important role in

studying the combinatorics of convex polytopes. They started around 1980 with

Stanley’s spectacular proof of the necessity of McMullen’s conditions (characterizing

the face numbers of a simple polytope) using the cohomology of rationally smooth

projective toric varieties. This connection between the topology of toric varieties and

the combinatorial geometry of convex polytopes is of interest to us.

Let (W,S) be a finite Weyl group of type An. Let J be any proper subset of

S. Associated with J is a certain projective toric variety X(J). We would like to

calculate the Betti numbers of X(J) when J is combinatorially smooth, i.e., X(J) is a

rationally smooth variety using the h–polynomial of a simple polytope Pλ associated

to an irreducible representation of a semisimple algebraic group.

The most basic combinatorial data of a d-dimensional convex polytope are the

numbers fi of i-dimensional faces encoded in the face polynomial f(t) :=
∑d

i=0 fit
i.

For simple polytopes, i.e., where each vertex lies on exactly d edges, the possible f -

polynomials are expressed in terms of the h-polynomials h(t) = f(t − 1) =
∑d

i=0 hit
i

where hi are strictly positive and satisfy the symmetry relation hi = hd−i. When a

polytope P is rational, i.e., all its vertices have rational coordinates with respect to

some lattice, we associate to it a toric variety XP using the normal fan construction.

It turns out that the Poincaré polynomial of XP coincides h(t2).

Let X be a complex algebraic variety of dimension n. Then X is rationally smooth

at x if there is a neighbourhood U of x in the complex topology such that, for any

1
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y ∈ U , Hm(X,X \ {y}) = 0, m 6= 2n and H2n(X,X \ {y}) = Q. Here H∗ denotes

the cohomology of X with rational coefficients.

Danilov [11] proved that XP is rationally smooth if and only if the polytope P

is simple. We refer to J as combinatorially smooth if X(J) is rationally smooth.

Consider a semisimple algebraic group G0 with maximal torus T0 and an irre-

ducible representation ρλ of G0 with the highest weight λ ∈ X(T0) ⊗ Q. Consider

the action of W on the vector space spanned by the simple roots of G0 and take

the convex hull of the W -orbit of λ, Pλ = Conv(W.λ) ⊂ X(T0) ⊗ Q. Using the

inner normal fan construction associated to the polytope Pλ [15], we obtain a pro-

jective toric variety X(J). The terminology is justified since X(J) depends only on

J = {s ∈ S | s(λ) = λ}.

In [32] Renner finds necessary and sufficient conditions for the polytope Pλ to

be simple using the theory of algebraic monoids that he developed along with Putcha

since 1980. For each Weyl group (W,S), Renner gives a classification of all J ⊆ S,

such that X(J) is rationally smooth. See Corollary 3.5 in [32].

When (W,S) is a finite Weyl group of type An and J = ∅, the polytope Pλ is a

permutahedron. The Betti numbers of X(∅) are given by the Eulerian numbers. In

[4], Brenti studies the descent polynomials (i.e., the Poincaré polynomials of X(∅)) as

analogues of the Eulerian polynomials. When J 6= ∅, the weight λ is allowed to lie on

certain reflecting hyperplanes. Of course, the orbit of a point in the complement of the

arrangement is just the ordinary permutahedron. Whether the Poincare polynomial of

X(J) can be expressed in terms of the Eulerian numbers in this case, is an interesting

question. we answer this question by computing the Poincaré polynomial of X(J)

when (W,S) is a finite Weyl group of type An and J = {sn−k+1, · · · , sn} ⊆ S is

combinatorially smooth, where sk = (k, k + 1) ∈ Sn, 1 ≤ k ≤ n.

According to Renner’s classification, the subset J ⊂ S is combinatorially smooth

of type An if it has one of the following forms:

1. J = ∅,
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2. J = {s1, · · · , si} where 1 ≤ i ≤ n,

3. J = {sj, · · · , sn} where 1 < j ≤ n,

4. J = {s1, · · · , si, sj, · · · , sn} where 1 ≤ i, j ≤ n and j − i ≥ 3.

One needs to investigate further to see whether our new technique can provide

answer for all types of combinatorially smooth sets J .

Our first result deals with the case when the highest weight λ is fixed only by

the reflection sn = (n, n + 1) ∈ Sn. We obtain the following characterization of the

h-polynomial of X(J) in terms of the Eulerian polynomials.

[Theorem 17, page 91] Let J = {sn} ⊂ S. Then J is combinatorially smooth

of type An and the h-polynomial of X(J) is given by

h(t) = En+1(t) −



n + 1

2



 tEn−1(t).

Then we generalize the computations to the case of J = {sn−k+1, · · · , sn} ⊆ S

for 1 ≤ k ≤ n. Our main result is a recursive relation for the Poincaré polynomial of

X(J) in terms of the (n − k)-Eulerian polynomials.

The following result has been accepted for publication in Communication

in Algebra journal, March 2011.

[Theorem 19, page 100] Let J(k, n) = {sn−k+1, sn−k+2, · · · , sn} ⊆ S, 1 ≤

k ≤ n and let hk(t) denote the h-polynomial of the n–dimensional variety X(J(k, n)).

Then J(k, n) is combinatorially smooth and the following recurrence relation holds:

hk(t) = hk−1(t) −



n + 1

k + 1



 (tk + tk−1 + · · · + t)En−k(t).

where J(0, n) = ∅ and h0 = En+1 the (n + 1)–Eulerian polynomial.

Finally, the recurrence relation is illustrated for J(n−1, n) = {s2, s3, s4, · · · , sn}

and J(n − 2, n) = {s3, s4, · · · , sn} where the h-polynomial of X(J(n − 2, n)) and
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X(J(n − 1, n)) are computed in [32] and [33].

An interesting investigation has been done for computing explicitly the Poincaré

polynomial of X(J). Renner describes the Poincare polynomial of X(J) when X(J)

is rationally smooth in terms of the poset (W J ,≤, {νs}) [33]. He computes explicitly

the coefficients of the Poincare polynomial of X(J) for the following types of J ⊂ S:

1. (W,S) is Weyl group of type An and J = {s2, s3, · · · , sn} ⊂ S = {s1, s2, · · · , sn}

where si = (i i + 1) ∈ Sn+1.

2. (W,S) is Weyl group of type An and J = {s3, s4, · · · , sn} ⊂ S

3. (W,S) is Weyl group of type Bl and J = {s1, s2, · · · , sl−1} ⊂ S

Inspired by these results we are interested in computing explicitly the Poincaré

polynomial of X(J) in two interesting cases of J ⊆ S combinatorially smooth. We

obtained the following results:

[Theorem 13, page 45] Let (W,S) be the Weyl group of type An and J =

{s1, s4, s5, · · · , sn}, J ⊂ S such that X(J) is rationally smooth. Then the Poincaré

polynomial of X(J) is given by the following formula:

P (X(J), t) =
∑

w

tν(w) = 1 + c(n, 1)t2 + · · · + c(n, n − 1)t2(n−1) + t2n,

where c(n, 1) = c(n, n − 1) = n + 2 and for 2 ≤ i ≤ n − 2 we have c(n, i) =

n + 2 +



n + 1

2



.

[Theorem 14, page 63] Let (W,S) be of type An and J = {s4, s5, · · · , sn} ⊂

S = {s1, · · · sn} such that X(J) is rationally smooth. The Poincaré polynomial of

X(J) is:

P (X(J), t) = 1 + d(n, 1)t2 + · · · + d(n, n − 1)t2(n−1) + t2n. (1)

where d(n, 1) = d(n, n − 1) = n + 2 +



n + 1

2



 and d(n, i) = n + 2 + n(n + 1) for

2 ≤ i ≤ n − 2.
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This thesis is structured as follows. In Chapter 1 we introduce the J-irreducible

monoids of type J and the cross section lattice associated to them. In Chapter 2 we

explain how to construct the projective toric variety X(J) associated to a reductive

monoid of type J . We discuss about its BB-cell decomposition and introduce the h-

polynomial associated to a simple polytope. In Proposition 6 we give a formula for the

number of i-dimensional faces of the polytope Pλ corresponding to the variety X(J).

This gives us a good handle of the h-polynomial of X(J), which can be expressed in

terms of the subsets of S. An interesting interplay between the geometry of X(J)

and the combinatorics of finite sets isillustrated in Proposition 7. In Chapter 3 we

discuss about Descent systems, introduced by Renner in [36]. Moreover, using descent

systems, Renner gives in Theorem 12 a formula for the Poincaré polynomial of X(J).

He then computes explicitly the Poincaré polynomial of X(J) in two cases of type

An and one case of type Bn. Chapter 3 culminates with our first new results. We

compute explicitly the Poincaré polynomial of X(J) when (W,S) is Weyl group of

type An in the following two cases: J = {s1, s4, s5, · · · , sn} and J = {s4, s5, · · · , sn}.

Chapter 4 contains the main results of the thesis. We introduce Eulerian polynomials

and prove our main result in Theorem 19.

We conclude this section with an example that illustrates the recurrence for-

mula obtained in Theorem 19. Chapter 5 is a survey based on paper [36], on Betti

numbers of irreducible representations, with the purpose of showing the reader how

the h–polynomial from toric geometry and the length polynomial from the theory of

projective homogeneous spaces fit together in a more general. These results can be

found in details in the work of Renner [31], [36] and [37].



Chapter 1

Algebraic monoids

1.1 Cross section lattice

In this chapter, we introduce the terminology and the basic results (without proofs)

related to the cross section lattice associated to a toric variety using the theory of

algebraic monoids developed by Renner and Putcha. For references, we cite the texts

[24], [30], [32], [33].

A linear algebraic monoid is an affine algebraic variety together with an asso-

ciative morphism and an identity element.

Let M be a reductive algebraic monoid which is an irreducible (as variety)

monoid with a reductive unit group G. Consider B ⊂ G a Borel subgroup of G and

T ⊂ B a maximal torus of G. We denote T the Zariski closure of T in M . Since

GM ⊂ M and MG ⊂ G, the group G×G acts on M by (g, h).a = gah−1 for g, h ∈ G

and a ∈ M . Let G�M�G denote the set of orbits O = GaG for this action.

Example 1. Let M = Mn then G = GLn. If a, b ∈ M then GaG = GbG if and only

if rank(a) = rank(b). Thus there is a bijection between the set of G × G orbits and

the set {0, 1, · · · , n} given by GaG → rank(a). In particular the number of G × G

orbits is finite.

6
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Example 2. Let M ⊂ Mn+1 consist of all matrices

X =





x x1 x2 · · · xn

0 x 0 · · · 0

0 0 x · · · 0
...

...
...

...

0 0 0 · · · x





where x, x1, · · ·xn ∈ k. For simplicity we write a = (x, x1, · · · xn). The group G

consists of those a with x 6= 0. The G × G orbits are G, {0 = (0, 0 · · · 0)} and orbits

which contain matrices (0, x1, · · · , xn) with xi not all zero.

Observe that {(0, x1, · · · , xn)} and {(0, y1, y2, · · · , yn)} are in the same orbit if

and only if there exists c ∈ k∗ with yi = cxi for all i. Thus these orbits are in one

to one correspondence with points in the projective space Pn−1(k). In this case the

number of G × G orbits is infinite and M has no idempotents except 0 and 1.

The next results wer first observed by Putcha in [24]. For more details consult

Theorem 4.5 in [30] as well.

Theorem 1. [24] Let M be a reductive monoid with zero. Let G be its unit group.

Then the set of G × G orbits of M is finite and every G × G orbit contains an

idempotent of M .

In the theory of reductive groups, a main guiding principle is to reduce problems,

as far as possible, to a study of the Weyl group and its action on E(T ) where T is a

maximal torus.

The Weyl group of G relative to T is by definition

W (G, T ) =
NG(T )

T

where NG(T ) is the normalizer of T in G.
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Theorem 2. [38] Let G be a reductive group and let T be a maximal torus. Let

φ = φ(G, T ) be the set of roots. If α ∈ φ then −α ∈ φ and there exists a reflection

sα ∈ W such that sαα = −α. The finite Weyl group

W = 〈sα | α ∈ φ〉,

is generated by the reflections sα corresponding to the simple roots α ∈ φ. Further-

more, if α, β ∈ φ then there exists nβ,α ∈ Z such that

sα(β) = β − nβ,αα.

Denote by S the set of reflections that correspond to the simple roots, S = {sα},

α ∈ φ(G, T ) simple roots such that S it generates the Weyl group.

Proposition 1. Let I ⊂ S. Define W I = {w ∈ W | l(ws) > l(w) for all s ∈ I}.

Given w ∈ W there is a unique u ∈ W I and a unique v ∈ WI such that w = uv.

Moreover, u is the unique element of smallest length in the coset wWI .

According to the preceding proposition, the set W I contains all the coset rep-

resentatives of minimal length in W/WI ,

W I = {t ∈ W | t has minimal length in tWI}

Definition 1. Let (W,S) be a Coxeter group. Each element w ∈ W can be written

as a product of generators

w = s1s2 · · · sk, si ∈ S.

If k is minimal among all such expressions for w, then k is called the length of w.

Consider the case of (W,S) finite Weyl group of type An. Then the following

characterization of the set W I with I ⊂ S, turn out to be extremely useful in our
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computations.

W I = {t ∈ W | t has minimal length in tWI}

= {w ∈ W | l(ws) = l(w) + 1 for any s ∈ I}

= {w ∈ Sn+1 | w(i) < w(i + 1) for any (i i + 1) ∈ I}

(1.1)

Next we introduce the notion of cross section lattice asssociated to a reductive

monoid.

Definition 2. The cross section lattice of M relative to T and B is defined by the

following rule:

Λ = {e ∈ T | e2 = e, eB = eBe},

The map λ : Λ → 2S given by: λ : Λ → 2S, where λ(e) = {s ∈ S | se = es} is called

the type map. Moreover λ(e) ⊂ S is the unique subset such that P (e) = Pλ(e) where

P (e) = {x ∈ G | xe = exe} and Pλ(e) is a parabolic subgroup of G.

The type map is the most important combinatorial invariant in the structure

theory of reductive monoids. It is in some sense the monoid analogue of the Coxeter-

Dynkin graph. It shows which G × G-orbits are involved in the monoid, as well as

how the monoid structure is built up from these orbits [25].

Example 3. The type map of Mn+1(k). Let M = Mn+1(k), B = Tn(k), T = Dn(k)

and S = {s1, · · · sn} where si = (i i + 1). Then the cross section lattice is given by:

Λ = {0, e1, · · · , en+1}

where ek is the rank k matrix for k = 1, · · · , n:



 Ik 0

0 0




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where Ik is the k × k identity matrix Let i ≥ 2, then the type map λ is given by:

λ(ei) = {s1, s2, · · · si−1} ∪ {si+1, · · · , sn}.

The G×G-orbits of M turn out to be particularly important for the structure

of the monoid M .

Proposition 2. [24] The following holds:

M =
⊔

e∈Λ

GeG.

where GeG ⊂ GfG if and only if ef = e.

There is a partial ordering on the G × G-orbits described as follows: GeG ≺ GfG

if and only if GeG ⊂ GfG if and only if ef = e.

Definition 3. A reductive monoid M with 0 ∈ M is called J–irreducible if M − {0}

has exactly one minimal G×G-orbit. See section 7.3 of [30] for a systematic discussion

of the important class of reductive monoids and for a proof of the following result.

In order to understand the action of the Weyl group on the set E(T ) we consider

the following: let N = NG(T ), if w ∈ N and e ∈ E(T ) then wew−1 ∈ T . If

w = wT ∈ W then wew−1 depends only on w so we may define wew−1 = wew−1.

Thus W acts by conjugation on E(T ) and the cross section lattice Λ turn out to be

the set of W -orbit representatives for this action.

Theorem 3. ([30]) Let M be a reductive monoid. The following are equivalent:

1. M is J-irreducible.

2. There is an irreducible rational representation ρ : M → End(V ) which is finite

as a morphism of algebraic varieties.
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3. If T ⊂ M is the Zariski closure in M of a maximal torus T ⊂ G then the Weyl

group W of T acts transitively on the set of minimal nonzero idempotents of T .

We notice that we can construct, up to finite morphisms, all J-irreducible

monoids from irreducible representations of a semisimple group. For details of the

following construction see [32].

Let G0 be semisimple and ρ : G0 → GL(V ) be an irreducible representation.

Define M1 ⊂ End(V ) as the Zariski closure of C∗ρ(G0). Finally let M(ρ) be the

normalization of M1. According to the previous theorem M(ρ) is J-irreducible.

By the results of [26] if M is J-irreducible, there is a unique, minimal nonzero

idempotent e1 ∈ E(T ) such that e1B = e1Be1, where B is the given Borel subgroup

containing T .

Definition 4. If M is J-irreducible we say that M is J-irreducible of type J if

J = {s ∈ S | se1 = e1s},

where S is the set of reflections relative to T and B and e1 minimal idempotent such

that e1B = e1Be1.

The set J can be determined in terms of any irreducible representation satisfying

condition 2 of the previous theorem. Indeed, let λ ∈ X(T ) be any highest weight such

that {s ∈ S | s(λ) = λ} = J . Then M(ρλ) is J–irreducible of type J where ρλ is

the irreducible representation of G0 with highest weight λ. The representation ρλ

determines a representation of M(ρλ) on V .

Next, we describe the G × G–orbit structure of a J–irreducible monoid of type

J ⊂ S. The following result was first recorded in [26].
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Theorem 4. ([26]) Let M be a J– irreducible monoid of type J ⊂ S.

1. There is a canonical one-to-one order preserving correspondence between the set

of G×G– orbits acting on M and the set of W -orbits of the set of idempotents

of T . This set can be canonically identified with Λ = {e ∈ E(T ) | eB = eBe}.

2. Λ−{0} ∼= {I ⊂ S | no connected component of I is contained entirely in J} in

such a way that e corresponds to I(e) ⊂ S if I(e) = {s ∈ S | se = es 6= e}.

3. If e ∈ Λ − {0} corresponds to I(e), as in 2 above, then CW (e) = {w ∈

W | wew−1 = e} = WI∗(e) the parabolic subgroup generated by the set I∗(e)

where I∗(e) = I ∪ {s ∈ J | st = ts for all t ∈ I(e)}

We observe that the cross section lattice Λ is related to the Coxeter-Dynkin diagram

as follows: under the type map λ, to each e ∈ Λ \ {0} it corresponds a subset in S,

namely I(e), such that no connected component of I(e) is entirely contained in J .

Example 4. Consider (W,S) = (S5, {s1, s2, s3, s4}) of type A4 and J = {s1, s2, s4} ⊂

S. Describe the cross section lattice Λ − {0} ⊂ 2S.

Consider the graph structure on S:

s and t are joined by an edge if st 6= ts

The edges of the graph of S are: {s1, s2}, {s2, s3}, {s3, s4}. Then the cross section

lattice is given by:

Λ − {0} ∼= {{∅}, {s3}, {s3, s4}, {s2, s3}, {s1, s2, s3}, {s2, s3, s4}, {s1, s2, s3, s4}}.



Chapter 2

The toric variety X(J)

2.1 Construction of X(J)

Let (W,S) be a finite Weyl group and let W ⊂ GL(V ) acting as a reflection group on

the rational vector space V . Associated to λ ∈ V , there is a certain projective toric

variety X(J). In this chapter we analyze the T -orbit structure of X(J), the BB-cell

decomposition of X(J) and then give a characterization of the h-polynomial of X(J)

in terms of the cross section lattice associated to X(J).

Consider k an algebraically closed field, k = k̄. An algebraic torus is an algebraic

group T isomorphic to (k∗)m = k∗ × k∗ × · · · × k∗.

Kempf, Mumford(1973) were among the first who studied varieties X containing

T as an affine open dense subset such that the translations on T extend to an action

of T on X.

Definition 5. A toric variety of dimension n is a normal variety X which contains

a torus T = (k∗)n as a Zariski open subset in such a way that the natural action of

T on itself given by the group structure extend to an action of T on X.

The following examples of toric varieties are among the most natural examples

of toric varieties one can come up with.

13
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1) T = (C∗)n ⊂ Cn under the natural inclusion.

2) T = (C∗)n ⊂ P n under the map

(t1, · · · , tn) → [t1 : · · · tn : 1]

3) X = V (xy − zw) ⊂ C4 contains the Zariski open set X ∩ (C∗)4. The map

(r, s, t) → (r, s, t, rs/t)

induces a bijection (C∗)3 ≃ X∩(C∗)4. Thus X contains a copy of the torus T = (C∗)3

as a Zariski open subset.

For the next results we consider an algebraically closed field k = k̄. We define the

character group as follows:

M = {χ : T → k∗ | χ is a morphism and a group homomorphism}

And the group of 1-parameter subgroups

N = {λ : k∗ → T | λ is a morphism and a group homomorphism}

Note that M ≃ Zn where m = (m1, · · ·mn) ∈ Zn gives

χm(t1, · · · , tn) = tm1

1 · · · tmn

n

and N ≃ Zn where u = (u1, · · · un) ∈ Zn gives λu(t) = (tu1 , · · · , tun).

A rational polyhedral cone σ ⊂ NR = N × R is a cone generated by finitely

many elements of N :

σ = {λ1p1 + · · · + λsps ∈ NR | λ1, · · · , λs ≥ 0}
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where p1, · · · , ps ∈ N .

If σ ∈ NR is a rational polyhedral cone its dual cone σ′ ∈ MR = M ⊗ R is

defined by

σ′ = {m ∈ MR | 〈m,u〉 ≥ 0 for all u ∈ σ}.

Then consider the finitely generated semigroup algebra k[σ′ ∩ M ] consisting of

linear combinations of characters χm, with multiplication given by χmχm′

= χm+m′

.

Theorem 5. [10] Let σ ∈ NR ≃ Rn be a rational polyhedral cone. Then the irre-

ducible affine variety

Spec(k[σ′ ∩ M ]) = Xσ

is a normal toric variety of dimension n associated to σ.

The next theorem describes all normal affine varieties that are toric.

Theorem 6. [10] Let X be an affine variety that is also toric variety. Then X is

isomorphic to Xσ for some rational polyhedral cone σ if and only if X is normal.

Definition 6. [7] Let X be a complex algebraic variety of dimension n. Then X

is rationally smooth at x ∈ X if there is a neighbourhood U of x in the complex

topology such that, for any y ∈ U ,

Hm(X,X − {y}) = (0), m 6= 2n,

H2n(X,X − {y}) = Q.

Here H∗ denotes the singular cohomology of X with rational coefficients.

Example 5. The curve {(x, y, z) ∈ k3 | xz = y2} is rationally smooth at {(0, 0, 0}

and k is an algebraically closed field.

Consider the ring homomorphism f : k[x, y, z] → k[u, v] given by f(x) = u2,
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f(y) = uv, f(z) = v2 whsoe kernel is the ideal (xz − y2). Hence

k[x, y, z]

(xz − y2)
∼= k[u2, uv, v2]

Let G = 〈g〉 be the finite group generated by the matrix

g =



 −1 0

0 −1





The action of g on k[u, v] is g.u = −u, g.v = −v. Thus the invariant ring is

k[u, v]G = k[u2, uv, v2] and we obtain the isomorphism of varieties

{(x, y, z) ∈ k3 | xz = y2} ∼= k2/G,

where k2/G is locally rationally smooth at origin.

For more details and proofs of the following results see [28]. Throughout this

section we consider M a J-irreducible monoid of type J and ρ : M → End(V ) an

irreducible representation which is finite as a morphism. M has a reductive unit

group G. Let B ⊂ G be a Borel subgroup of G and T ⊂ B a maximal torus of G.

We let T denote the Zariski closure of T in M . The T–orbit of the unit element is

open in its closure hence T is open in T .

By theorem 5.4 of [30], T is a normal variety. Hence T is an affine toric variety.

Let E(T ) = {e ∈ T | e = e2}. There is exactly one idempotent in each T -orbit on T .

For the proof of the following result see [24]

T =
⊔

e∈E(T )

T.e

We call the rank of an idempotent e ∈ T the dimension of the T–orbit corresponding

to e i .e., rank(e) = dimTe.
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Because T is an affine toric variety there is a rational polyhedral cone σ ⊂

X(T ) ⊗ Q such that X(T ) = σ ∩ X(T ) [20]. σ is the rational convex hull of a finite

number of rays Ri ⊂ σ, i = 1, · · · s, and for each i there is a unique character

χi ∈ Ri ∩ X(T ) with minimal distance from origin.

Let E1(T ) = {e ∈ T | e2 = e, dim(eT ) = 1}. We consider the following set of

characters {χe}e∈E1
⊂ X(T ), where

χe : T → k ≃ eT , given by x → χe(x) = ex 6= 0

for any e ∈ E1(T ).

On each ray of the cone σ there is a unique character χe ∈ X(T ), e ∈ E1(T ),

of minimal distance from the origin.

Proposition 3. [28] {χe}e∈E1(T ) satisfy the following properties:

1. For all χ ∈ X(T ), χm =
∏

χme
e for some m, me ≥ 0.

2. χe ∈ I \ I2, where I = {f ∈ k[T ] | f(0) = 0}.

3. Let s be the cardinal of the set {e : me > 0}. Then s is minimal with properties

(1) and (2). Furthermore, {χe : me > 0} is unique and is called the set of

fundamental generators.

Thus on each ray of the cone σ there is a unique character χe ∈ X(T ), e ∈

E1(T ), of minimal distance from the origin.

This canonical relationship between E1(T ) and the one dimensional faces of σ

can be extended to yield a canonical bijection of lattices

F(σ) ↔ E(T ) (2.1)

where F(σ) denotes the set of faces of σ and T is the affine toric variety associated
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to the dual cone of σ, namely

T = Spec([σ′ ∩ Zn]).

For the rest of the section we consider k = C. Next, we construct the projective

toric variety associated to the graded ring C[T ]), namely

[T − {0}]/C∗ = Proj(C[T ])

The ring C[T ] is a graded ring: we consider the action of C∗ on C[T ]) given by:

C∗ × C[T ]) → C[T ])

(λ, f) → (λ.f)(t) = f(λt)

The d graded component is defined as follows: C([T ])d = {f ∈ C[T ]) | λ.f = λdf}

and C[T ])0 = C.

As a projective toric variety it corresponds to a polytope. We describe its

associated polytope in the following way: let G0 be the semisimple part of G (G0 is the

commutator subgroup G0 = (G,G)), with maximal torus T0 = T ∩ G0 and ρλ = ρ|G0

be the representation of G0 that corresponds to the the highest weight λ ∈ X(T0). Let

the Weyl group W act on the finite dimensional vector space X(T0)⊗Q by reflctions.

Take the W -orbit of λ and consider its convex hull in X(T0) ⊗ Q.

We obtain the polytope Pλ = Conv(W.λ) ⊂ X(T0) ⊗ Q. The face lattice

Fλ depends only on Wλ = {w ∈ W | w(λ) = λ} = WJ = 〈s | s ∈ J〉 where

J = {s ∈ S | s(λ) = λ}. Renner proved [28] that the highest weight λ is a rational

multiple of any nonzero point on one of the rays of the cone σ = 〈χe〉e∈E1(T ) ⊗ Q+.

We obtain the polytope Pλ is in bijection with the convex hull of {χe}e∈E1(T ).

From (2.1) we have the following lattice isomorphism between E(T ) and the
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face lattice of the polytope Pλ:

e ∈ E(T ) ↔ Fe,

such that

rank(e) = dim(Fe) + 1, (2.2)

where Fe is a face of the polytope Pλ.

Next we present several examples of various polytopes Pλ when W is finite Weyl

group of type A2 and of type A3.

Example 6. A2, (W,S) = (S3, S = {s1, s2}) and J = {s2} .

s1λ

Example 7. A2, (W,S) = (S3, {s1 = (12), s2 = (23)}), J = ∅.

s1λ
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Example 8. A3, (W,S) = (S4, {s1 = (12), s2 = (23), s3 = (34)}), J = {s2, s3}

s1λ

Example 9. A3, J = {s3} ⊂ S = {s1, s2, s3}.

The next corollary recorded without a proof in [32] is a key result in our com-

putations of the h–polynomial of the polytope Pλ.

Corollary 1 (21, Corollary 1.3). Let W be a Weyl group and let r : W → GL(V ) be

the usual reflection representation of W . Let C ⊂ V be the rational Weyl chamber

and let λ ∈ C. Assume that J = {s ∈ S | s(λ) = λ}. Then the set of orbits of

W acting on the face lattice Fλ of Pλ is in one-to-one correspondence with the set

{I ⊆ S | no connected component of I is contained entirely in J}.
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We conclude the W–orbit contains a representative face whose W–stabilizer/isotropy

subgroup is the parabolic subgroup WI∗
J
, generated by the set

I∗
J = {I} ∪ {s ∈ J | st = ts for all t ∈ I}.

Next, let S(J) = {I ⊂ S | no connected component of I is contained entirely in J},

S(J) ⊆ P(S), the power set of S. The following examples turn out to be extremely

helpful for a better understanding of Corollary 1.

Example 10. Let G = SL4 and W = S4 where S = {s1, s2, s3}.

For J = {s2, s3} we have S(J) = {∅, I1, I2, S} where I1 = {s1}, I2 = {s1, s2}. The

subset I ⊆ S corresponds to the unique face F of the polytope Pλ with I = {s ∈

S | s(F ) = F and s|F 6= id} whose relative interior F 0 has nonempty intersection with

the Weyl chamber C. To I1 it corresponds an edge labeled I1 and to I2 it corresponds

a triangle labeled I2, both faces drawn in Figure 2.1.

s1λ

Figure 2.1: Tetrahedron

For J = {s3} we have S(J) = {∅, I1, I2, I3, I4, S}, where I1 = {s1}, I2 = {s2},

I3 = {s1, s2} and I4 = {s2, s3}. The corresponding faces to Ii, 1 ≤ i ≤ 4 are drawn

in Figure 2.2.
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Figure 2.2: Truncated Tetrahedron

Next, we know that T is a Zariski open subset of T . Hence the torus T/C∗ is

an open subset of [T − {0}]/C∗.

Our interest is in the projective toric variety denoted by X(J), terminology

justified since it depends only on J = {s ∈ S | s(λ) = λ} and not on λ or M :

X(J) =
T − {0}

C∗
= Proj[C[T ]],

The T–orbit structure of X(J) can be described as follows: for e ∈ T denote

[e] ∈ X(J). We have that the T–orbit of [e] is of dimension rank(e) − 1. Hence from

(2.2) we associate uniquely to every k–dimensional T–orbit of X(J) a k–dimensional

face of the polytope Pλ.

The set of T–fixed points of X(J), denoted by X(J)T , corresponds to vertices

of the polytope Pλ as X(J)T is in one-to-one correspondence with the set of one-

dimensional T -orbits on T . In order to see this consider [x] ∈ X(J) for x ∈ T . Then

[x] is a T -fixed point if and only if [tx] = [x] for all t ∈ T . Hence tx = αx for α ∈ C∗

and for all t ∈ T . We conclude that Tx = C∗x. We know that x = te where t ∈ T

and e ∈ E(T ) such that Tx = Te = k∗te and so e ∈ E1(T ).

Remark 1. In general in order to obtain the variety X(J) given a set J ⊆ S we do
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the following: we choose a weight in the fundamental Weyl chamber corresponding

to (W,S) such that J = {s ∈ S | s(λ) = λ}. Then consider the representation ρ of

G0 of highest weight λ, where Go is a semimsimple algebraic group. Take the Zariski

closure of G = k∗ρ(G0). A maximal torus inside G is T = k∗ρ(T0) where T0 is a

maximal torus of G0. We considered k any algebraically closed field.

Define X(J) = T \ {0}/k∗. It can be shown that X(J) depends only on J and

not on M or λ using the theory of algebraic monoids of type J . See [26] for more

details.

Remark 2. Using the inner normal fan construction associated to the polytope Pλ

(i.e., the fan is obtained by taking cones over faces of the dual polytope of Pλ and

they satisfy a natural notion of ′′gluing” affine varieties) we get the projective toric

variety X(J).

Next, we illustrate the construction of X(J) in the following examples.

Proposition 4. Let G = SL4(C) with S = {s1, s2, s3} and J = {s1, s2}. The

polytope Pλ is a tetrahedron and X(J) = P3.

Proof. In this case the simple roots are given by α1 = ǫ1−ǫ2, α2 = ǫ2−ǫ3, α3 = ǫ3−ǫ4

where ǫi ∈ X(T4) and ǫi(A) = ti for A = diag(t1, t2, t3, t4).

We have the relation ǫ1 + ǫ2 + ǫ3 + ǫ4 = 0.

Next, consider the three dimensional vector space V , whose basis is given by ǫ1, ǫ2,

ǫ3. Let sα, sβ, sγ be reflections into planes orthogonal to α, β, γ in V such that the

following holds:

1. sα(λ) = λ − 2 (λ,α)
(γ,γ)

α.

2. s1(λ) = λ. Hence (λ, α1) = 0.

3. s2(λ) = λ. Hence (λ, α2) = 0.

4. (ǫi, ǫj) = δij.
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5. si(αj) = αj − nαi,αj
αj.

Using the above properties we can compute nαi,αj
which corresponds to the

(i, j) entry of the Cartan matrix of A3 given by

X =





2 −1 0

−1 2 −1

0 −1 2





The convex hull of W.λ in V , when W = 〈s1, s2, s3〉 is a tetrahedron with

vertices given by: λ, s3(λ), s2s3(λ), s1s2s3(λ).

First note that the following computations hold: s3(λ) = λ − α3, s2s3(λ) =

λ − α2 − α3 and s1s2s3(λ) = λ − α1 − α2 − α3.

Next λ, s3(λ), s2s3(λ), s1s2s3(λ) are affine independent ⇐⇒ s3(λ)−λ, s2s3(λ)−

λ, s1s2s3(λ) − λ are linearly independent.

Using the inner normal fan construction associated to the tetrahedron Pλ we

obtain the toric variety X(J) = P3.

2.) For G = SLn, S = {s1, s2, · · · , sn} and J = {s2, · · · , sn} we obtain the

polytope Pλ as a (n − 1)–simplex and X(J) = Pn using similar computations as in

the previous example.

3.) For G any reductive algebraic group with ρ an irreducible representation of

G then its highest weight λ belongs to the interior of the fundamental Weyl chamber

if J = ∅ and the toric variety obtained is the toric variety associated to the Weyl

chamber decomposition (the fan in this case is a family of cones given by the Weyl

chambers) studied by Processi in [22]

2.2 Cell structure of X(J)

The BB-cell decomposition discovered by Bialynicki-Birula is the most commonly

studied cell decomposition in algebraic geometry. If k∗ acts on a smooth complete
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variety X, with finite fixed point set F ⊂ X, then X = ⊔α∈F Xα, where each BB–cell

is defined as Xα = {x | limt→0 tx = α} and it turn out that Xα is isomorphic to an

affine space. The BB–cells make sense even if X is not smooth but in that case they

don’t behave so well.

In the case of the projective rationally smooth toric variety X(J) Renner quan-

tifies the BB–cells in terms of idempotents, B × B-orbits and other monoid notions.

In [33] Renner describes the BB-decomposition for an appropriate one-parameter sub-

group of T in terms of the idempotents of T . For proofs of the following results see

[33].

Definition 7. Let e, e′ ∈ E1(T ). We say that e < e′ if eBe′ 6= 0 and e 6= e′.

By the results of [32] the poset (E1(T ),≤) is anti-isomorphic to the poset (W J ,≤).

Theorem 7. [33] Let M be a J-irreducible reductive monoid of type J ⊂ S with unit

group G and connected center Z ⊂ G. Let Bu ⊂ B be the subgroup of unipotent

elements of B and E1 = E1(T ). Choose a one-parameter subgroup λ : k∗ → T such

that

1. limt→0(tut) = 1 for all u ∈ Bu

2. {x ∈ T \ {0} | λ(t)x ∈ Zx for all t ∈ k} =
⋃

e∈E1(T ) eT.

Let

X(J) = ⊔e∈E1
X(J)(e)

be the BB-decomposition of X(J) relative to λ. Then X(J)(e) = ⊔f∈ρe
T [f ] where

ρe = {f ∈ E(T ) | ef = e and e′f = 0 for all e′ > e}

Theorem 8. [33] The following are equivalent:

1. [f ] ∈ X(J)(e)

2. fe′ = 0 for all e′ > e and fe = e.
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In the same paper Renner studies the case when X(J) is rationally smooth

toric variety and recovers the dimension of the BB-cells {X(J)(e) ⊂ X(J) | e ∈ E1}

from the Bruhat poset (W J ,≤, {νs}). Here νs(w) is the cardinal of the ascent set

associated with s ∈ S \ J and w ∈ W J .

Assume now that Y is a rationally smooth projective toric variety with the

torus action T × Y → Y . Let F ⊂ Y be the set of T -fixed points. Choose a 1-psg

λ : k∗ → T so that Y has BB-decomposition

Y =
⊔

α∈F

Yα

Proposition 5. [33] Let Uα = {x ∈ Y | α ∈ Tx}. Then Yα is the closure in Uα of a

T-orbit. In particular Yα is irreducible.

Proof. T acts on Uα and α ∈ Uα is the unique fixed point of this action. Uα ⊂ Y is

rationally smooth as Y is rationally smooth. Thus there exists a finite dominant flat

T -equivariant morphism

pα : Uα → kn

where n = dim(Y ) and kn has the usual structure of an affine toric variety for the n-

torus. Thus we may write pα(x) = (x1, · · · xn) and λ(t)(x1, . . . xn) = (ta1x1, · · · , t
anxn).

Thus by definition of the BB-cell,

Yα = {x ∈ Uα | xi = 0 if ai < 0} = p−1
α ({(x1, · · · xn) ∈ kn | xi = 0 if ai < 0})

This is the closure of a T -orbit in Uα since pα induces a bijection on T -orbits.

We return to the situation where X(J) comes from a Weyl group (W,S). We

assume also that X(J) is rationally smooth.

Let

X̂(J)(e) = {y ∈ T | [y] ∈ X(J)(e)}.
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Consider X to be the cone on X(J), and if e ∈ E1(X) let Ue = {x ∈ X | ex 6= 0} and

E2(Ue) = E2(X) ∩ E(Ue), wherfe E2(X) is the set of two-dimensional T -orbits of X.

Notice that X̂(J)(e) ⊂ Ue.

Proposition 5 turn out to be extremely useful in obtaining the following result.

Theorem 9. [33] Let e ∈ E1 and let U = ∪e′>eUe′ .

Then

X̂(J)(e) = Ue \ U = fUe

where f ∈ E(X) is the unique smallest idempotent with fh = h for all h ∈ E2(Ue)−A.

In particular, dim(X̂(J)(e)) = |E2(Ue) − A| + 1 = |S| − |A| + 1. In this case,

A = {g ∈ E2(X) | ge = e and ge′ = e′ for some e′ > e}.

The next formula calculates the dimension of the BB-cells corresponding to the

BB-decomposition of X(J).

For e ∈ E1(X), let

Γ(e) = {g ∈ E2(X) | ge = e, and ge′ = e′ for some e′ < e}

Notice that

Γ(e) = E2(Ue) \ A

where A is defined as in Theorem 9.

Theorem 10. [33] Assume X(J) is rationally smooth. For e ∈ E1 recall that

X(J)(e) = {[x] ∈ X(J) such that ex 6= 0 and e′x = 0 for all e′ > e}

and as above let X̂(J)(e) = {y ∈ X | [y] ∈ X(J)(e)}. Then

X̂(J)(e) = Ue \ U = fUe

as in Theorem 9 and dim(X(J)(e) = |Γ(e)|.
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From the previous theorem we can recover the dimensions of the BB-cells

{X(J)(e) ⊂ X(J) | e ∈ E1} from (W J ,≤, {νs}). If ν(w) =
∑

s ν(s) then from part 3

of Theorem 2.23 in [32] we obtain that ν(w) = |Γ(e)|

Remark 3. The following table was taken from [33] and it provides the reader with

a summary-translation between X(J) and the Bruhat poset jargon. Let

Λ× = {I ⊂ S | no component of I is contained in J}

and for I ∈ Λ× let I∗ = I ∪ {t ∈ J | ts = st forall s ∈ I }.

For each w ∈ W J the BB-cell Cw is defined as:

Cw =
⊔

A∈A∈O(w)

A

where O(w) = {A ⊂ X(J) | A = Tx for some x ∈ X(J), w(x0) ∈ Ā and v(x0) /∈

Ā if v < w} A T -orbit A ⊆ X(J) is in Cw if and only if any one-dimensional T -orbit

of Ā has w(x0) in its closure.

Renner showed in [32] that (W J ,≤) is isomorphic to the poset (E1(T ),≤).

If w ∈ W and x0 ∈ X(J)T is the element corresponding to e0 ∈ Λ1 then wx0 is

the element of X(J)T corresponding to wx0w
−1. We have that W J is canonically

identified with the set of fixed points X(J)T of T acting on X(J).

The set of one-dimensional T -orbits O1(X(J)) of X(J) is identified with {(u, v) ∈

W J × W J | u < v and u−1v ∈ SJWJ}. If (u, v) ∈ W J × W J and u−1v ∈ SJWJ then

either v < u or else u < v. The question of whether v < w or w < v, is coded in the

“descent system” (W J , SJ).
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X(J) jargon W J jargon

x0 ∈ X(J)T 1 ∈ W J

x = w(x0) ∈ X(J)T w ∈ W J

The T -orbit A ⊂ X with A ∩ XT = WIx0 I ∈ Λ×

{(u, v) ∈ W J × W J such that

The set of T -orbits (on X(J)) of dim = 1 u < v and u−1v ∈ SJWJ}

The set of T -orbits of dim = 1 with x0 ∈ A SJ = (WJ(S \ J)WJ) ∩ W J

The set of T -orbits of dim = 1 in Cw AJ(w) = {r ∈ SJ | w < wr}

The set of T -orbits on X(T ) {(w, I) | I ∈ Λ×, w < ws if s ∈ I∗}

2.3 h-polynomial of X(J)

This section is a brief discussion of the h-polynomial associated to a simple poly-

tope. For details and proofs of the following statements consult [42]. A convex

n-dimensional polytope P is called simple if exactly n − 1- codimension-one faces

meet at each vertex.

Definition 8. Let P be a simple n-polytope. Denote by fi the number of codimension

(i + 1)–faces of P where i = −1, 0, · · · , n − 1. The integer vector (f0, f1, · · · , fn−1) is

called the f–vector of P . We also put f1 = 1 as P itself is a face of codimension zero.

The h–vector of P is the integer vector (h0, h1, · · · , hn) defined from the equation

n∑

i=0

hit
n−i =

n−1∑

i=−1

fi(t − 1)n−i−1. (2.3)

The f–vector and h–vector carry the same information about the polytope and

determine each other by means of linear relations, namely

hk =
k∑

i=0

(−1)k−i



n − i

k − i



 fi−1, for k = 0, · · · , n,
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and

fj =

j∑

i=0



j

i



 hi, for j = 0, · · · , n.

Proposition 6. (Dehn-Sommerville Equations). If P is a simple n-polytope then

i∑

j=0

(−1)j



n − j

n − i



 fj = fi, for i = 0, · · · , n.

Equivalentely,

hi = hn−i for 0 ≤ i ≤ n.

Furthermore, the equation h0 = hn is equivalent to the Euler-Poincaré formula,

n∑

i=0

(−1)ifi = 1.

Moreover when Pλ is a simple integral polytope, the cohomology ring of the

toric variety X(J) over Q has the form:

[?] H∗(X(J); Q) = H0(X(J); Q) ⊕ H2(X(J); Q) ⊕ · · · ⊕ H2d−1(X(J); Q),

where dimH2i(X(J); Q) = hi that is, the 2i-th Betti numbers of X(J) are the same

as hi while the (2i + 1)-th Betti numbers of X(J) are zero.

Hence the Poincaré polynomial of X(J) is expressed in terms of the h-polynomial:

P (X(J), t) =
∑

i

(−1)ibit
i =

∑

i

(−1)2ib2it
2i =

∑

i

hit
2i = h(t2)

The Poincaré duality holds when X(J) is rationally smooth:

dimHq(X(J); Q) = dimH2d−q(X(J); Q).

Next, using the theory of algebraic monoids and cross section lattice associ-
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ated to an algebraic monoid we present a formula for calculating the number of

i-dimensional faces of the polytope Pλ. This formula appeared in [17] and it turns

out to be extremely useful for our computations.

Proposition 7. [17] Let n = dim(Pλ). The number of i-dimensional faces of Pλ is:

fi =
∑

e∈Λi

|W |

|WI∗(e)|

where Λi = {e ∈ Λ | rank(e) = dim(Te) = i + 1} and 0 ≤ i ≤ n.

Proof. Let Fi be the set of all i–dimensional faces of the polytope Pλ. We know that

W.Fi = Fi as the Weyl group permutes the i dimensional faces of Pλ.

We use the lattice isomorphism between E(T ) and the face lattice of the poly-

tope Pλ obtained in (2.2) where the action of Weyl group W is on E(T ) is given by

conjugation. Then for any e ∈ E(T ), the isotropy group of e is the centralizer of e in

W , namely WI∗(e) according to Theorem 4. Hence we get:

fi = |Fi| = |W.Fi| =
∑

e∈Λi

W.e =
∑

e∈Λi

|W |

|WI∗(e)|

Let S(J) = {I ⊂ S | no connected component of I is contained entirely in J}.

From Theorem 8 we have that Λ \ {0} ∼= S(J). Define for any I ∈ S(J),

I∗
J = I ∪ {s ∈ J | st = ts for all t ∈ I}.

Proposition 8. The h–polynomial of X(J) can be expressed in terms of the cross

section lattice Λ as follows:

h(t) =
∑

I∈S(J)

|W |

|WI∗
J
|
(t − 1)|I|.
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Proof. According to Theorem 8, to each element e ∈ Λ \ {0} corresponds uniquely

to a subset of S, denoted by I(e) such that I(e) = {s ∈ S | se = es 6= e} and

rank(e) = |I(e)| + 1. We associate to I(e) the following set

I∗
J(e) = I(e) ∪ {s ∈ J | st = ts for all t ∈ I(e)}.

Under the correspondence 2.2 we have that rank(e) = dimFe +1 where Fe is the face

of the polytope Pλ that corresponds uniquely to e ∈ E(T )\{0}. We know that the h–

polynomial of X(J) is defined in terms of the f -polynomial, i.e., h(t) =
∑n

i=0 fi(t−1)i,

where fi is the number of i-dimensional faces of the polytope Pλ. Using the preceding

proposition and the fact that

Λ =
n⊔

i=0

Λi,

we conclude that the h-polynomial is given by the following formula:

h(t) =
n∑

i=0

fi(t − 1)i =
n∑

i=0

∑

e∈Λi

|W |

|WI∗(e)|
(t − 1)i

=
n∑

i=0

∑

e∈Λi

|W |

|WI∗(e)|
(t − 1)rank(e)−1

=
n∑

i=0

∑

e∈Λi

|W |

|WI∗(e)|
(t − 1)|I(e)|

=
∑

e∈Λ\{0}

|W |

|WI∗
J
(e)|

(t − 1)|I(e)|

To simplify the notation in the preceding formula we replace for every e ∈ Λ \ {0}

the corresponding set I(e) ∈ S(J) by I ∈ S(J). We know from Theorem 8 that

Λ \ {0} ∼= S(J) hence, this yields the desired formula.



Chapter 3

Betti numbers of X(J) in terms of

Descent Systems

3.1 Descent systems

The notion of descent systems for algebraic monoids was introduced by Renner. For

a systematic discussion on descent systems see [32].

I would refer to (1.1) for the definition of W J , when J ⊂ S.

Definition 9. Let (W,S) be a Weyl group and let J ⊂ S be a proper subset. Define

the descent system associated with J ⊂ S as:

SJ = (WJ(S \ J)WJ) ∩ W J

We refer to (W J , SJ) as the descent system associated with J ⊂ S. We say J is

combinatorially smooth if Pλ is a simple polytope.

An important result was obtained by Danilov in [11], namely Pλ is a simple

polytope if and only if X(J) is rationally smooth. Renner showed the following

holds:

33
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w

Figure 3.1: Descent system

Proposition 9. [32] Let (W J , SJ) be the descent system associated with J ⊂ S. The

following are equivalent:

1. J is combinatorially smooth.

2. |SJ | = |S|.

3. X(J) is rationally smooth.

Definition 10. Let w ∈ W J and SJ
s = WJsWJ ∩ W J . Define

DJ
s (w) = {r ∈ SJ

s | wrc < w in the Bruhat order for some c ∈ WJ}.

AJ
s (w) = {r ∈ SJ

s | w < wr in the Bruhat order}.

We refer to DJ(w) =
⊔

s∈S\J DJ
s (w) as the descent set of w relative to J , and

AJ(w) =
⊔

s∈S\J AJ
s (w) as the ascent set of w relative to J . We have for w ∈ W J

that SJ = DJ(w) ⊔ AJ(w).

Remark 4. Notice that wrc < w for some c ∈ WJ if and only if (wr)0 < w, where

(wr)0 ∈ wrWJ is the element of minimal length in wrWJ .

Notice that at every vertex w of the polytope Pλ there are SJ - number of edges.

And some edges are ascent edges, they correspond to the ascent set associated to that

vertex and some other edges correspond to the descent set associated to that vertex

as in Figure 3.1.

Proposition 10. [32] Let u, v ∈ W J be such that u−1v ∈ SJWJ . In particular u 6= v.

Then either u < v or v > u in the Bruhat order < on W J .
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Theorem 11. [32] Assume J ⊂ S is combinatorially smooth. Then:

1. SJ =
⊔

SJ
s .

2. Let s ∈ S \ J . In case st = ts for all t ∈ J , SJ
s = {s}. Otherwise,

SJ
s = {s, t1s, t2t1s, · · · , tm · · · t1s}

where Cs = {t1, t2 · · · , tm} is the connected component of J attached to s,

st1 6= t1s and titi+1 6= ti+1t1 for i = 1, · · · ,m − 1.

The following remark, which summarizes how J –irreducible monoids are in-

volved here, is taken from [32]. See Remark 2.24 of [32].

Remark 5. Let E = E(T ) be the set of idempotents of T and let Ei = {f ∈

E | dim(fT ) = i} ⊂ E. We have e1 ∈ E1 = E1(T ) the unique element such that

e1B = e1Be1. For e ∈ E1 let v ∈ W J be the unique element such that e = ve1v
−1. We

write e = ev. For e, f ∈ E we write e ∼ f if there exists w ∈ W such that wew−1 = f .

If s ∈ S \ J , let gs ∈ E2 be the unique idempotent such that gss = sgs 6= gs and

gsB = gsBgs. Let Λ× = {I ⊂ S | no component of I is contained in J} and for

I ∈ Λ× let I∗ = I ∪ {t ∈ J | ts = st for all s ∈ I }.

In the following table Renner provides a summary-translation between the

monoid jargon and the Bruhat poset jargon.

The picture here is this: The subset W J ⊂ W is canonically identified with the

subset of vertices of the rational polytope Pλ. Evidently (E1,≤) and (W J ,≤) are

anti-isomorphic as posets. Furthermore the set of edges Edj(Pλ of Pλ is canonically

identified with E2 = E2(T ). If g(v, w) = g(w, v) ∈ Edj(Pλ is the edge of Pλ joining

the distinct vertices v, w ∈ W J then either v < w or else w < v. Given v ∈ W J , with

edges edj(v) = {g ∈ E2 | g = g(v, w) for some w ∈ W J}, the question whether v < w

or w < v is coded in the descent system (W J , SJ).
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Reductive Monoid Jargon Bruhat Order Jargon

e1 ∈ Λ1 = {e1} 1 ∈ W J

e = ev ∈ E1 v ∈ W J with e = ve1v
−1

ev ≤ ew in E1, i.e. evBew 6= 0 w ≤ v in W J

{(u, v) ∈ W J × W J}
E2 = {g ∈ E | dim(gT ) = 2} u < v and u−1v ∈ SJWJ}
{g ∈ E2 | gB = gBg} S \ J
{g ∈ E2 | ge1 = e1 } SJ = (WJ(S \ J)WJ) ∩ W J

{g ∈ E2 | ge1 = e1, g ∼ gs} SJ
s = (WJsWJ) ∩ W J

E2(ew) = {g ∈ E2 | gew = ew} {v ∈ W J | w−1v ∈ SJWJ}
Γ(ew) = {g ∈ E2(ew) | ge′ = e′ for some e′ < ew} AJ(w) = {r ∈ SJ | w < wr}
Γs(ew) = Γ(ew) ∩ {g ∈ E2 | g ∼ gs } AJ

s (w) = {r ∈ SJ
s | w < wr}

E(T ) \ {0} {(w, I) | I ∈ Λ×, w < ws if s ∈ I∗}

3.2 Betti numbers of X(J). Known examples

In the previous chapter we have seen how the structure and the dimensions of the

BB-cells of X(J) ca be described in terms of the descent system (W S, SJ). The

notion of the descent system turn out to be extremely useful in the study of the

variety X(J) and the main theorem of this chapter is Renner’s description of the

Poincare polynomial of X(J) in terms of the augmented poset (W J ,≤, {νs}). By

definition, (W J ,≤) is the usual Bruhat poset (which is canonically isomorphic to the

poset (E1,≤)) and νs(w) = |AJ
s (w)|, where AJ

s (w) is the ascent set associated with

s ∈ S \ J . Renner illustrates his new method with several examples: two are of type

An where J = {s2, · · · , sn} and J = {s3, · · · , sn}. A third example is (W,S) of type

Bl, where J = {s1, · · · , sl−1}.

Theorem 12. [33] Assume X(J) is rationally smooth. Then the Poincare polynomial

of X(J) is

P (X(J), t) =
∑

w∈W J

t2ν(w).

Proof. From Proposition 5 the map pα induces a bijection on T -orbits so that the

T -orbit structure on the BB-cell of dimension d is the same as the Td-orbit structure

on kd. Here Td is the set of invertible diagonal d × d- matrices and the action of Td
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on kd is given by multiplication. In order to determine the h-polynomial of a BB-cell

of dimension d we need to find the number of codimension (i+1) Td-orbits of kd. A

codimension (i + 1) Td-orbit is of the following form: {α1, α2, · · ·αn−i−1, 0, 0, · · · 0)}.

The number of all such Td -orbits is



 d

i + 1



.

Hence the h-polynomial of a d-dimensional BB-cell is given by:

h(e) = (t − 1)d +



d

1



 (t − 1)d−1 + · · · + 1 = td

By Theorem 10 there is a BB-cell X(J)(e) for each e ∈ E1 whose dimension

turn out to be equal to d = dimX(J)(e) = |Γ(e)| = |AJ(w)| = ν(w) where w ∈ W J .

We proved that h(e) = tν(w), where w ∈ W J corresponds uniquely to e ∈ E1.

But X(J) = ⊔e∈E1
X(J)(e), and so the h-polynomial of X(J) is given by

h(t) =
∑

e∈E1

h(e) =
∑

w∈W J

tν(w).

Next, we illustrate the previous theorem with several examples studied by Ren-

ner in [33].

Example 11. [33] Assume that J = ∅ and let X = X(∅). We want to compute

P (X, t) =
∑

e∈E1

t2ν(e)

In this case W J = W and SJ = S. In this case W ≃ E1 via w → ew if

ew = we1w
−1 where e1 ∈ E1(T ) is the unique element such that e1B = e1Be1.

By the results of [33] we have:

Γ(ew) ≃ {s ∈ S | l(w) < l(ws)}
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Thus ν(ew) = |{s ∈ S | l(w) < l(ws)}| = |S| − |D(w)| where

D(w) = {s ∈ S | l(w) > l(ws)}.

We let d(w) = |D(w)|. By Poincaré duality
∑

w∈W tν(w) =
∑

w∈W t2d(w).

By theorem 7.2.1 of [3] we have (taking into account the doubling of degrees)

that

P (X, t) =
∑

I⊂S

t2|S\I|(t2 − 1)|I||W I |

where W I = {w ∈ W | D(w) ⊂ S \ I}. This sum is called the Eulerian polynomial

of W .

Next, in the case when (W,S) is the Coxeter group of type An−1, define the

Eulerian numbers to be E(n, k) = |{w ∈ Sn | D(w) = k+1}|. Thus, for the associated

variety X,

P (X, t) =
n−2∑

k=−1

E(n, k)t2(k+1)

Similar formulas can be derived for the Coxeter groups of type B and D.

Example 12. [33] In this example we list the Poincaré polynomials associated with

combinatorially smooth polyhedra of type A3. Here S = {s1, s2, s3} with s1s2 6= s2s1

and s2s3 6= s3s2.

J Associated Polyhedron Poincaré Polynomial of X(J)

{s1, s2} tetrahedron 1 + t2 + t4 + t6

{s1} truncated tetrahedron 1 + 5t2 + 5t4 + t6

{s2, s3} tetrahedron 1 + t2 + t4 + t6

{s3} truncated tetrahedron 1 + 5t2 + 5t4 + t6

φ permutahedron 1 + 11t2 + 11t4 + t6

Example 13. In this example we list the Poincaré polynomials associated with com-

binatorially smooth polyhedra of type C3. Here S = {s1, s2, s3} with s1s2 6= s2s1 and
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s2s3 6= s3s2. ∆ = {α1, α2, α3} and α3 is the long simple root.

J Associated Polyhedron Poincaré Polynomial of X(J)

{s1, s2} cube 1 + 3t2 + 3t4 + t6

{s1} truncated cube 1 + 11t2 + 11t4 + t6

{s3} truncated octahedron 1 + 11t2 + 11t4 + t6

φ rhombitruncated cuboctahedron 1 + 23t2 + 23t4 + t6

Example 14. [33] In this example we discuss the Poincaré polynomial of X(J) where

(W,S) = (Sn+1, {s1, s2, · · · , sn}) is the Weyl group of type An (n ≥ 2) and J =

{s3, s4, · · · sn}. Renner illustrates in [33] the computation of P (X(J), t) using the

structure of (W J , SJ).

First we need to determine the set W J . We know that |W J | = |Sn+1|
|Sn−1|

= n(n+1).

The following relations are true:

Sn+1 =
n⊔

i=1

(si · · · s1)Sn ∪ id Sn

Sn =
n⊔

j=2

(sj · · · s2)Sn−1 ∪ id Sn−1

Hence

Sn+1 =
⊔n

i=1

⊔n

j=2 (si · · · s1)(sj · · · s2)Sn−1 ∪
⊔n

i=1 (si · · · s1)Sn−1 ∪
⊔n

j=2 (sj · · · s2)Sn−1 ∪ id Sn−1.

The above calculation shows that

W J = {(sp · · · s1)(sq · · · s2)} ∪ {sp · · · s1} ∪ {sq · · · s2}

where 1 ≤ p ≤ n and 2 ≤ q ≤ n. Furthermore, by Theorem 4.2 of [32] we have

SJ
n = {s1, s2, s3s2, s4s3s2, · · · snsn−1 · · · s3s2} = SJ

n−1 ∪ {snsn−1 · · · s3s2}
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Notice also that

W J
n = W J

n−1 ∪ {(sn · · · s1)(sp · · · s2)} ∪ {sn · · · s1)} ∪ {sq · · · s1)(sn · · · s2)} ∪ {sn · · · s2},

(3.1)

where 2 ≤ p ≤ n.

The following proposition records the computation of the ascent sets of w ∈ W J ,

AJ(w) = {r ∈ SJ | w < wr}.

Proposition 11. [33] Let (W,S) and J ⊂ S be as above.

1. If w ∈ W J
n−1 then sn · · · s1 ∈ AJ

n(w). Thus

AJ
n(w) = AJ

n−1(w) ∪ {sn · · · s2}.

2. AJ
n(sn · · · s1) = {s2, s3s2, ..., snsn−1 · · · s2}

AJ
n(sn · · · s1s2) = {s3s2, s4s3s2, ..., snsn−1 · · · s2}

AJ
n(sn · · · s1s3s2) = {s4s3s2, s5s4s3s2, ..., snsn−1 · · · s2}

...

AJ
n((sn · · · s1)(sn−1sn−2 · · · s2)) = {snsn−1 · · · s2}

AJ
n((sn · · · s1)(snsn−1 · · · s2)) = φ.

3. AJ
n((sp · · · s1)(sn · · · s2)) = {s1} if 1 ≤ p < n.

AJ
n(sn · · · s2) = {s1}.

We omit the proof as it can be found in great details in [33]. Now we have

all the necessary information to determine the Poincaré polynomial of X(J) using

Theorem 16.

Corollary 2. [33] Let (Wn, Sn) =< s1, s2, ..., sn > (n ≥ 2), where Sn = {s1, s2, ..., sn}.

As above, we also let J = {s3, s4, ..., sn} ⊂ Sn and Xn(J) the associated torus em-

bedding. Then

P (Xn(J), t) = t2n + (n + 2)t2(n−1) + (n + 2)t2(n−2) + ... + (n + 2)t4 + (n + 2)t2 + 1.
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Proof. We use induction on n. When S = {s1, s2, · · · , sn} we denote the variety X(J)

by Xn(J) and Xn−1(J) when S = {s1, s2, · · · , sn−1}.

Assume

P (Xn−1(J), t) = t2(n−1) + (n + 1)t2(n−2) + · · · + (n + 1)t2 + 1.

Using the relation 3.2 we can prove the following:

P (Xn(J), t) =
∑

w∈W J
n

t2νn(w) =
∑

w∈W J
n−1

t2νn(w) +
∑

w∈W J
n \W J

n−1

t2νn(w).

From Proposition 11 the following relations hold:

νn(w) = νn−1(w) + 1.

|AJ
n(sn · · · s1)| = n − 1.

AJ
n(sn · · · s1s2)| = n − 2.

AJ
n(sn · · · s1)(sn−1 · · · s2)| = 1.

AJ
n(sn · · · s1)(sn · · · s2)| = 0.

AJ
n(sq · · · s1)(sn · · · s2)| = 1 for1 ≤ q < n.

AJ
n(sn · · · s2)| = 1.

Hence we have

P (Xn(J), t) =
∑

w∈W J
n−1

t2(νn−1(w)+1) +
n∑

p=2

t2νn((sn···s1)(sp···s2)) + t2(νn(sn···s1).

+ t2νn(sn···s2) +
n−1∑

q=1

t2νn(sq ···s1)(sn···s2).

= t2P (Xn−1(J), t) + t2(n−2) + · · · + t2 + t2(n−1) + · · · t2(n−1) + 1
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= t2(t2(n−1) + (n + 1)t2(n−2) + · · · + (n + 1)t2 + 1)

+ (t2(n−1) + · · · + t2 + 1) + nt2.

= t2n + (n + 2)t2(n−1) + · · · + (n + 2)t4 + (n + 2)t2 + 1.

Example 15. [33] In this example we consider the root system of type Bl. Let E be

a real vector space with orthonormal basis {ǫ1, ..., ǫl}. Then

Φ+ = {ǫi − ǫj | i < j} ∪ {ǫi + ǫj | i 6= j} ∪ {ǫi}, and

∆ = {ǫ1 − ǫ2, ..., ǫl−1 − ǫl, ǫl} = {α1, ..., αl}.

Let S = {s1, s2, · · · sl−1, sl} be the corresponding set of simple reflections. Here

we consider the case J = {s1, · · · , sl−1}.

We first calculate W J = {w ∈ W | w(αi) ∈ Φ+ for all 1 ≤ i ≤ l−1}. We obtain

the following:

W J ≃ {1 ≤ i1 < i2 < · · · < ik ≤ l},

via

w(ǫv) = ǫiv for 1 ≤ v ≤ k

and

w(ǫk+v = −ǫjv
for 1 ≤ v ≤ l − k

where l ≥ j1 > j2 > · · · > jl−k ≥ 1 (so that {1, ..., l} = {i1, i2, ..., ik}⊔{j1, j2, ..., jl−k})

After a more rigorous computation we obtain the ascent sets for each w ∈ W J

of the following form:

AJ(w) = {sk · · · sl, · · · , s1 · · · sl} = {r ∈ SJ | w < wr}.

Thus we obtain

ν(w) = |{j | w(ǫv) = ǫj for some v}|.
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We can use this information to calculate the Poincaré polynomial of X(J). We

obtain that:

P (X(J), t) =
∑

w∈W J

t2ν(w) =
∑

A⊂{1,...,l}

t2|A| = (1 + t2)l.

Example 16. [32] Let (W,S) be the Weyl group of type An and let J = {s2, · · · , sn} ⊂

S combinatorially smooth. One checks that

W J = {1, s1, s2s1, s3s2s1, · · · , snsn−1 · · · s2s1},

and SJ = W J \ {1}. Notice that

1 < s1 < s2s1 < · · · snsn−1 · · · s1.

We compute the ascent sets corresponding to each w ∈ W J using the following

calculation:

(sj · · · s1)(s1) = [sj · · · s2],

(sj · · · s1)(si · · · s1) = (si−1 · · · s1)[sj · · · s2] if 1 < i ≤ j, and

(sj · · · s1)(si · · · s1) = (si · · · s1)[sj+1 · · · s2] if i > j ≥ 1

We conclude from this that

AJ(sj · · · s1) = {sm · · · s1 | m > j}

and the corresponding Poincaré polynomial of X(J) is given by the following formula:

P (X(J), t) =
∑

w∈W J

tν(w) =
n∑

i=1

ti.
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3.3 Two new examples

Renner describes the Poincaré polynomial of X(J) when X(J) is rationally smooth

in terms of the poset (W J ,≤, {νs}). In Examples 9, 10 and 11, he computes the

coefficients of the Poincaré polynomial of X(J) using the method of descent sys-

tems (SJ ,W J). Inspired by these results we are interested in computing explicitly

the Poincaré polynomial of X(J) in two interesting cases of J ⊆ S combinatorially

smooth. Let (W,S) be Weyl group of type An, with W = Sn+1, S = {s1, s2, · · · sn},

si = (i i + 1) and consider J ⊂ S of the following forms:

1. J = {s1, s4, s5, · · · sn} ⊂ S = {s1, s2, · · · sn}.

2. J = {s4, s5, · · · , sn} ⊂ S = {s1, s2, · · · , sn}.

In order to compute the Poincaré polynomial of X(J), we could follow two

approaches: one using Li’s method of computing the h-polynomial of X(J) from the

f -vector and another one using Renner’s method of descent systems.

In both cases listed above we compute the Poincaré polynomial of X(J) using

Theorem 12, which relies on determining all elements of W J and computing their

corresponding ascent sets. We introduce a new method for finding all elements of

W J , different then the method used in the previous examples.

Then using Remark 4 we compute for each w ∈ W J its corresponding ascent

set A(w) by considering the products wr where r ∈ SJ and then writing wr = (wr)0c

where (wr)0 ∈ W J and c ∈ WJ . According to Proposition 10, if (wr)−1
0 w ∈ SJWJ

then w > (wr)0 or w < (wr)0 and this amounts to comparing their corresponding

lengths, l(w) and l(wr)0.

Nicole Lemire suggested me a different method in proving our main results of

this section. I have included a second proof for each result, proves given by Nicole

Lemire.

The first main result of this section is given in the following theorem.
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Theorem 13. Let (W,S) be the Weyl group of type An and J = {s1, s4, s5, · · · , sn},

J ⊂ S such that X(J) is rationally smooth. Then the Poincaré polynomial of X(J)

is given by the following formula:

P (X(J), t) =
∑

w

tν(w) = 1 + c(n, 1)t2 + · · · + c(n, n − 1)t2(n−1) + t2n,

where c(n, 1) = c(n, n − 1) = n + 2 and for 2 ≤ i ≤ n − 2 we have c(n, i) =

n + 2 +



n + 1

2



.

Proof. Let

ai = sisi−1 · · · s1 = (i + 1 i · · · 1) ∈ Sn+1 for 0 ≤ i ≤ n

bj = sjsj−1 · · · s2 = (j + 1 j · · · 2) ∈ Sn+1 for 1 ≤ j ≤ n

ck = sksk−1 · · · s3 = (k + 1 k · · · 3) ∈ Sn+1 for 2 ≤ k ≤ n

where a0 = b1 = c2 = id ∈ Sn+1.

Let S3 = {id, a2b2, a1, a2, b2, a1b2} ⊂ Sn+1, X = {id, a1b2, b2} ⊂ Sn+1 and

Y = {id, a2, a1} ⊂ Sn+1.

Lemma 1. Then

W J = {σbi−1 | σ ∈ S3}4≤i≤n+1∪{σci−1 | σ ∈ X}4≤i≤n+1∪{σbi−1cj−1 | σ ∈ Y }4≤i<j≤n+1

∪{σbi−1cj | σ ∈ Y }4≤j<i≤n+1∪{σbi−1cj−1 | σ ∈ Y }4≤i<j≤n+1∪{σai−1bj−1 | σ ∈ Y }4≤i<j≤n+1

∪{ai−1bj−1ck−1}4≤i<j<k≤n+1 ∪ {ai−1bj−1ck+1}4≤k<i<j≤n+1 ∪ {ai−1bj−1ck}4≤i<k<j≤n+1

Proof. We know that

W J ∼=
W

WJ

=
Sn+1

〈s1, s4, s5 · · · , sn〉
=

Sn+1

〈s4, s5 · · · , sn〉 × 〈s1〉
.
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Hence,

|W J | =
(n + 1)!

2(n − 2)!
=

(n − 1)n(n + 1)

2
.

From 3.2 we have

W J = {w ∈ W | w(4) < w(5) < · · · < w(n) and w(1) < w(2)}.

Next, we fix w ∈ W J and define the set Ew as follows:

Ew = {i : 4 ≤ i ≤ n + 1 | w(i) ∈ {1, 2, 3}}.

The following are the only possible values for the cardinality of Ew.

1. |Ew| = 0. In this case there is no element in the set {4, 5, · · · , n + 1} whose

image in the permutation w belongs to the set {1, 2, 3}. We have 4 ≤ w(i) <

w(i+1) ≤ n+1 for 4 ≤ i ≤ n+1 as w ∈ W J . Hence w(i) = i for 4 ≤ i ≤ n+1

and w(1), w(2), w(3) ∈ {1, 2, 3} with w(1) < w(2).

Therefore, w has one of the following forms that correspond to the cases:

(a) w = id.

(b) w = s1s2 = a1b2.

(c) w = s2 = b2.

2. |Ew| = 1. In this case there exists a unique element t ∈ {4, · · · , n + 1} such

that w(t) ∈ {1, 2, 3}. We know that w(l) < w(l + 1) for l ∈ {4, · · · , n}. Hence

t = 4. Then there exists i such that for 5 ≤ j ≤ i, w(j) = j − 1 and for j > i,

w(j) = j. We either have w(1) = i, or w(2) = i or w(3) = i. The following

cases hold:
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(a) w(2) = i and w is represented by the following matrix:

w =



 1 2 3 4 5 . . . i i + 1 . . . n + 1

w(1) i w(3) w(4) 4 . . . i − 1 i + 1 . . . n + 1





The effect of multiplying w ∈ Sn+1 on the right by the transposition si is

that of interchanging the places w(i) and w(i + 1) in the permutation w.

Our goal is to find si ∈ S such that w
∏

i si = id.

Consider

σ = ws2s3 · · · si−1,

with σ(i) ∈ {1, 2, 3} for i ∈ {1, 2, 3} and σ(i) = i for i ∈ {4, · · · , n + 1}.

This corresponds to the following six cases:

i. σs2s1 = id =⇒ w = s1s2si−1si−2 · · · s3s2 = a1b2bi−1.

ii. σs2 = id =⇒ w = s2si−1si−2 · · · s3s2 = b2bi−1.

iii. σ = id =⇒ w = si−1 · · · s3s2 = bi−1.

iv. σs1s2 = id =⇒ w = s2s1si−1 · · · s2 = a2bi−1.

v. σs1 = id =⇒ w = s1si−1 · · · s2 = a1bi−1.

vi. σs2s1s2 = id =⇒ w = s2s1s2si−1 · · · s2 = a2b2bi−1

(b) w(3) = i and w is represented by the following matrix:

w =



 1 2 3 4 5 . . . i i + 1 . . . n + 1

w(1) w(2) i w(4) 4 . . . i − 1 i + 1 . . . n + 1





Consider

σ = ws3s4 · · · si−1.

We have σ(1) = w(1), σ(2) = w(2) and σ(3) = w(4) ∈ {1, 2, 3}, with

w(1) < w(2). Therefore w has one of the following forms that correspond

to the cases:



48

i. σs2s1 = id =⇒ w = s1s2si−1si−2 · · · s3 = a1b2ci−1

ii. σs2 = id =⇒ w = s2si−1si−2 · · · s3 = b2ci−1.

iii. σ = id =⇒ w = si−1si−2 · · · s3 = ci−1.

3. |Ew| = 2. In this case there exist two elements, t1, t2 ∈ {4, 5 · · · , s + 1} such

that their images in the permutation w is an element of the set {1, 2, 3}. We

know w(l) < w(l + 1) for l ∈ {4, 5, · · · , n}. Hence t1 = 4, t2 = 5. Then there

exists i, j, 6 ≤ i, j ≤ n + 1 such that for 6 ≤ l ≤ i + 1 we have w(l) = l + 2, for

i + 2 ≤ l ≤ j we have w(l) = l + 1 and for j < l ≤ n + 1 we have w(l) = l. This

corresponds to the following cases:

(a) w(2) = i, w(3) = j for some 4 ≤ i < j ≤ n + 1 and w is represented by

the following matrix:

w =



 1 2 3 4 5 6 . . . i + 1 i + 2 . . .

w(1) i j w(4) w(5) 4 . . . i − 1 i + 1 . . .





. . . j j + 1 . . . n + 1

. . . j − 1 j + 1 . . . n + 1





Consider

σ = ws3s4 · · · sj−1s2s3 · · · si−1.

We have σ(1) = w(1), σ(2) = w(4) and σ(3) = w(5) ∈ {1, 2, 3} with

w(4) < w(5). Hence w has one of the following forms that correspond to

the cases:

i. σ = id =⇒ w = si−1si−2 · · · s2sj−1sj−2 · · · s4s3 = bi−1cj−1.

ii. σs1 = id =⇒ w = s1si−1si−2 · · · s2sj−1sj−2 · · · s4s3 = a1bi−1cj−1.

iii. σs1s2 = id =⇒ w = s2s1si−1si−2 · · · s2sj−1sj−2 · · · s4s3 = a2bi−1cj−1.

(b) w(2) = i, w(3) = j for some 4 ≤ j < i ≤ n + 1 and w is represented by
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the following matrix:

w =



 1 2 3 4 5 6 . . . j + 1 j + 2 . . .

w(1) i j w(4) w(5) 4 . . . j − 1 j + 1 . . .





. . . i i + 1 . . . n + 1

. . . i − 1 i + 1 . . . n + 1





Consider

σ = ws3 · · · sj+1s2s3 · · · si−1.

We have σ(1) = w(1), σ(2) = w(4) and σ(3) = w(5) ∈ {1, 2, 3} with

w(4) < w(5). Hence w has one of the following forms that correspond to

the cases:

i. σ = id =⇒ w = si−1 · · · s2sj+1 · · · s3 = bi−1cj+1.

ii. σs1 = id =⇒ w = s1si−1 · · · s2sj+1 · · · s3 = a1bi−1cj+1

iii. σs1s2 = id =⇒ w = s2s1si−1 · · · s2sj+1 · · · s3 = a2bi−1cj+1

(c) w(1) = i, w(2) = j for some 4 ≤ i < j ≤ n + 1 and w is represented by

the following matrix:

w =



 1 2 3 4 5 6 . . . i + 1 i + 2 . . .

i j w(3) w(4) w(5) 4 . . . j − 1 j + 1 . . .





. . . j j + 1 . . . n + 1

. . . j − 1 j + 1 . . . n + 1





Consider

σ = ws2s3 · · · sj−1s1s2 · · · si−1.

We have σ(1) = w(3), σ(2) = w(4) and σ(3) = w(5) ∈ {1, 2, 3} with
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w(4) < w(5). Hence w has one of the following forms that correspond to

the cases:

i. σ = id =⇒ w = si−1 · · · s1sj−1 · · · s2 = ai−1bj−1.

ii. σs1 = id =⇒ w = s1si−1 · · · s1sj−1 · · · s2 = a1ai−1bj−1.

iii. σs1s2 = id =⇒ w = s2s1si−1 · · · s1sj−1 · · · s2 = a2ai−1bj−1.

4. |Ew| = 3. In this case there exist t1, t2, t3 ∈ {4, 5, · · · , n + 1} such that

w(t1), w(t2) ∈ {1, 2, 3}. We can assume without loss of generality, w(t1) <

w(t2) < w(t3). We know w(l) < w(l + 1) for l ∈ {4, 5, · · · , n}. Hence t1 = 4,

t2 = 5, t3 = 6. Then there exist i, j, k ∈ {4, 5, · · · , n + 1} such that w(1) = i,

w(2) = j and w(3) = k. This corresponds to the following cases:

(a) 4 ≤ i < j < k ≤ n + 1 and w is represented by the following matrix:

w =



 1 2 3 4 5 . . . i i + 1 i + 2 i + 3 . . .

i j k 1 2 . . . i − 3 i − 2 i − 1 i + 1 . . .

. . . j j + 1 j + 2 . . . k k + 1 . . . n + 1

. . . j − 2 j − 1 j + 1 . . . k − 1 k + 1 . . . n + 1





Direct computation shows that ws3s4 · · · sk−1s2s3 · · · sj−1s1s2 · · · si−1 = id.

Hence w = si−1 · · · s1sj−1 · · · s2sk−1 · · · s3 = ai−1bj−1ck−1

(b) 4 ≤ k < i < j ≤ n + 1 and w is represented by the following matrix:

w =



 1 2 3 4 5 . . . k k + 1 k + 2 k + 3 . . .

i j k 1 2 . . . k − 3 k − 2 k − 1 k + 1 . . .

. . . i i + 1 i + 2 . . . j j + 1 . . . n + 1

. . . i − 2 i − 1 i + 1 . . . j − 1 j + 1 . . . n + 1




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Direct computation shows that ws3 · · · sk+1s2 · · · sj−1s1s2 · · · si−1 = id,

Hence w = si−1 · · · s1sj−1 · · · s2sk+1 · · · s3 = ai−1bj−1ck+1

(c) 4 ≤ i < k < j ≤ n + 1 where w is represented by the following matrix:

w =



 1 2 3 4 5 . . . i i + 1 i + 2 i + 3 . . .

i j k 1 2 . . . i − 3 i − 2 i − 1 i + 1 . . .

. . . k k + 1 k + 2 . . . j j + 1 . . . n + 1

. . . k − 2 k − 1 k + 1 . . . j − 1 j + 1 . . . n + 1





Direct computation shows that ws3 · · · sks2 · · · sj−1s1 · · · si−1 = id.

Hence w = si−1 · · · s1sj−1 · · · s2sk · · · s3 = ai−1bj−1ck

Let F be the set of all products in s1, s2 · · · sn obtained above. Hence F ⊆ W J . The

cardinal of F can be computed as follows:

|{si−1 · · · s2 : 4 ≤ i ≤ n + 1}| = n − 2.

|{si−1 · · · s2sj−1 · · · s3 : 4 ≤ i < j ≤ n + 1}| =



n − 2

2



 .

|{si−1 · · · s1sj−1 · · · s2sk−1 · · · s3 : 4 ≤ i < j < k ≤ n + 1}| =



n − 2

3



 .

Thus:

|F| = 3 + 9(n − 2) + 9



n − 2

2



 + 3



n − 2

3



 =
(n − 1)n(n + 1)

2
= |W J |.

We conclude that F = W J .
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Proposition 12. 1. We calculate the ascent sets for each w ∈ W J as follows:

(a) A(id) = SJ .

(b) A(a1b2) = A(a1bi−1) = A(a2bi−1) = A(as−1bt−1) = {c3, c4, · · · , cn}, where

4 ≤ s < t ≤ n + 1, 4 ≤ i ≤ n + 1.

(c) A(b2) = A(bi−1) = {a1b2, c3, · · · , cn}, 4 ≤ i ≤ n + 1.

(d) A(a1b2bi−1) = A(b2bi−1) = {a1b2, c4, · · · , cn}, 4 ≤ i ≤ n + 1.

(e) A(a2b2bi−1) = A(a1as−1bt−1) = {c4, · · · , cn}, 4 ≤ s < t ≤ n + 1, 4 ≤ i ≤

n + 1.

(f) A(ci−1) = A(a1b2ci−1) = A(b2ci−1) = {a1b2, b2, cp | p ≥ i}, 4 ≤ i ≤ n + 1.

(g) A(bi−1cj−1) = A(a2bi−1cj−1) = A(a1bi−1cj−1) = {a1b2, b2, cp | p ≥ j}, where

4 ≤ i < j ≤ n + 1.

(h) A(bi−1cj) = A(a1bi−1cj) = A(a2bi−1cj) = {a1b2, cp | p ≥ j + 1}, where

4 ≤ j < i ≤ n + 1.

(i) A(a2ai−1bj−1) = {c5, · · · , cn}, 4 ≤ i < j ≤ n + 1.

(j) A(ai−1bj−1ck−1) = {a1b2, b2, cp | p ≥ k}, 4 ≤ k ≤ n.

(k) A(ai−1bj−1ck+1) = {cp | p ≥ k + 2}, 4 ≤ k ≤ n − 2.

(l) A(ai−1bj−1ck) = {b2, cp | p ≥ k + 2}, 4 ≤ k ≤ n − 1

2. Let ν(w) = |A(w)|. Then for each w ∈ W J we determine the component

polynomial in the Poincaré polynomial as follows:

(a) Let w = id then tν(w) = tn.

(b) Let w = a1b2 then tν(w) = tn−2.

(c) Let X = {a1bi−1, a2bi−1 : 4 ≤ i ≤ n + 1} then
∑

w∈X tν(w) = 2(n − 2)tn−2.

(d) Let X = {as−1bt−1 : 4 ≤ s < t ≤ n + 1}, then

∑
w∈X tν(w) =



n − 2

2



 tn−2.
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(e) Let w = b2 then tν(w) = tn−1.

(f) Let X = {bi−1 : 4 ≤ i ≤ n + 1}, then
∑

w∈X tν(w) = (n − 2)tn−1.

(g) Let X = {a1b2bi−1, b2bi−1 : 4 ≤ i ≤ n+1}, then
∑

w∈X tν(w) = 2(n−2)tn−2.

(h) Let X = {a2b2bi−1 4 ≤ i ≤ n + 1} then
∑

w∈X tν(w) = (n − 2)tn−3.

(i) Let X = {a1as−1bt−1 : 4 ≤ s < t ≤ n+1} then
∑

w∈X tν(w) =



n − 2

2



 tn−3.

(j) Let X = {ci−1, a1b2ci−1, b2ci−1}, 4 ≤ i ≤ n + 1, then

∑

w∈X

tν(w) = 3
n−2∑

s=1

ts+1.

(k) Let X = {bi−1cj−1, a2bi−1cj−1, a1bi−1cj−1 : 4 ≤ i < j ≤ n + 1} then

∑

w∈X

tν(w) = 3(
n−3∑

s=1

(n − s − 2)ts+1).

(l) Let X = {bi−1cj, a2bi−1cj, a1bi−1cj : 4 ≤ j < i ≤ n + 1} then

∑

w∈X

tν(w) = 3(
n−3∑

s=1

sts).

(m) Let X = {a2ai−1bj−1 : 4 ≤ i < j ≤ n+1} then
∑

w∈X tν(w) =



n − 2

2



 tn−4.

(n) Let X = {ai−1bj−1ck−1 : 4 ≤ i < j < k ≤ n + 1}, then

∑

w∈X

tν(w) =
n−4∑

s=1



n − s − 2

2



 ts+1.
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(o) Let X = {ai−1bj−1ck+1 : 4 ≤ k < i < j ≤ n + 1} then

∑

w∈X

tν(w) =
n−4∑

s=1



s + 1

2



 ts−1.

(p) Let X = {ai−1bj−1ck : 4 ≤ i < k < j} then

∑

w∈X

tν(w) =
n−4∑

s=1

s(n − s − 3)ts.

We explain the computation in details for only some representative types of

elements w ∈ W J . For the rest of the elements the computation is similar.

Consider S \ J = {s2, s3} hence using Theorem 11 we obtain

SJ = {s2, s1s2, s3, s4s3, · · · sn · · · s3}.

1. For w = id, we have A(w) = SJ and the corresponding component polynomial

is tν(w) = tn.

Proof. For any r ∈ SJ we have wr = r ∈ W J , hence w = id < wr = r in the

Bruhat order on W J and in this case A(w) = SJ . Then ν(w) = |A(w)| = n and

tν(w) = tn.

2. For w = s1s2 = a1b2 we have A(w) = {s3, s4s3, · · · , sn · · · s3} and the corre-

sponding component polynomial is tν(w) = tn−2.

Proof. Let r = s2 ∈ SJ then wr = s1s2s2 = s1 /∈ W J and wrWJ = s1WJ = WJ .

Therefore (wr)0 = id and (wr)−1
0 w = s2 ∈ sJWJ . We have that l((wr)0) < l(w),

hence r /∈ A(w).

Let r = s1s2 ∈ SJ then wr = s1s2s1s2 = s2s1 /∈ W J and wrWJ = s2s1WJ =

s2WJ . Therefore (wr)0 = s2 and (wr)−1
0 w = s2s1s2 = s1s2s1 ∈ SJWJ . We have

that l(wr)0)) = 1 < l(w) = 2, hence r /∈ A(w).
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Let r = si−1 · · · s3 ∈ SJ for 4 ≤ i ≤ n and wr = s1s2si−1 · · · s3 ∈ W J . Therefore

(wr)0 = wr. We have that l(w) < l(wr), hence r ∈ A(w).

We obtain that the ascent set corresponding to w is of the following form:

A(w) = {s3, s4s3, · · · , sn · · · s3}, and ν(w) = |A(w)| = n − 2. The component

polynomial is given by tν(w) = tn−2.

3. For w = b2 = s2 we have A(w) = {s1s2, s3, s4s3, · · · , sn · · · s3} and the corre-

sponding component polynomial is tν(w) = tn−1.

Proof. Let r = s2 ∈ SJ then wr = id ∈ W J and wr < w in the Bruhat order

on W J , hence r /∈ A(w).

Let r = s1s2 ∈ SJ then wr = s1s2s1 /∈ W J and wrWJ = s1s2WJ . Therefore

(wr)0 = s1s2 and (wr)−1
0 w = s2s1s2 = s1s2s1 ∈ SJWJ . We have that l(w) =

1 < l((wr)0) = 2, hence r ∈ A(w).

Let r = si−1 · · · s3 for 4 ≤ i ≤ n and wr = s2si−1 · · · s3 ∈ W J . Therefore

(wr)0 = wr. We have that l(wr)0 > l(w), hence r ∈ A(w).

We obtain the ascent set corresponding to w is of the following form:

A(w) = {s1s2, s3, s4s3, · · · , sn · · · s3},

and ν(w) = |A(w)| = n − 1. Then the component polynomial is given by

tν(w) = tn−1.

4. For w = bi−2 = si−1 · · · s2 : 4 ≤ i ≤ n+1 we have A(w) = {s1s2, s3, s4s3, · · · , sn · · · s3}

and for all w = si−1 · · · s2 : 4 ≤ i ≤ n + 1 the corresponding component

polynomial is tν(w) = (n − 2)tn−1.

Proof. Let r = s2 ∈ SJ then wr = si−1 · · · s3 ∈ W J and (wr)0 = wr. We

have that (wr)−1
0 wr = s2 ∈ SJWJ and l(wr) = i − 3 and l(w) = i − 2, hence

r /∈ A(w).
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Let r = s1s2 ∈ SJ then wr = si−1 · · · s3s1s2s1 /∈ W J . In order to deter-

mine (wr)0 we do the following computation: wrWJ = si−1 · · · s3s1s2WJ =

s1si−1 · · · s3s2WJ , hence (wr)0 = s1si−1 · · · s2. Using the braid relations, we ob-

tain that (wr)−1
0 (wr) = s1s2s1 ∈ SJWJ . We have that l((wr)0) = i − 1 and

l(w) = i − 2, hence r ∈ A(w).

Let r = s3 ∈ SJ then wr = si−1 · · · s3s2s3 = s2si−1 · · · s2 ∈ W J . We have that

l(wr) = i − 1 > l(w), hence r ∈ A(w).

Let r = sp · · · s3 ∈ SJ for p < i then wr = si−1 · · · s2sp · · · s3 ∈ W J . Therefore

(wr)0 = wr. We have that l(wr) = i + p − 4 > l(w) = i − 2, hence r ∈ A(w).

Let r = sp · · · s3 ∈ SJ for i ≤ p then wr = si−1 · · · s2sp · · · s3 ∈ W J . Therefore

(wr)0 = wr. We have that l(wr) = i + p − 4 > l(w) = i − 2, hence r ∈ A(w).

We obtain the ascent set of corresponding to w is of the following form

A(w) = {s1s2, s3, s4s3, · · · , sn · · · s3},

and ν(w) = |A(w)| = n − 1. Then the component polynomial is given by

tw =
n+1∑

i=4

tn−1 = (n − 2)tn−1.

5. For w = ci−1 = si−1 · · · s3 : 4 ≤ i ≤ n + 1 we have A(w) = {s1s2, s2, sp · · · s3 :

p ≥ i} and the corresponding component polynomial is

tν(w) = tn−1 + tn−2 + · · · + t3 + t2.

Proof. Let r = s2 ∈ SJ then wr = si−1 · · · s3s2 ∈ W J . We have that l(wr) =

i − 2 > l(w) = i − 3, hence r ∈ A(w).

Let r = s1s2 ∈ SJ then wr = si−1 · · · s3s1s2 = s1si−1 · · · s2 ∈ W J . We have that

l(wr) = i − 1 > i − 3 = l(w), hence r ∈ A(w).

Let r = sp · · · s3 ∈ SJ for p ≥ i then using braid relations we have wr =
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si−1 · · · s3sp · · · s3 = sp · · · s3(si · · · s4). Therefore (wr)0 = sp · · · s3 ∈ W J for 4 ≤

i ≤ n. We have that l(wr)0 > l(w), hence r ∈ A(w). Let r = sp · · · s3 ∈ SJ for

p < i then using braid relations we have wr = sp−1 · · · s3(si−1 · · · s4). Therefore

(wr)0 = sp−1 · · · s3 ∈ W J . We have that l(wr)0) < l(w), hence r /∈ A(w).

We obtain the ascent set corresponding to w is of the following form:

A(w) = {s1s2, s2, sp · · · s3 : p ≥ i},

and ν(w) = |A(w)| = n− i+3. Then the corresponding component polynomial

is given by
n+1∑

i=4

tn−i+3 = tn−1 + tn−2 + · · · + t3 + t2.

6. For w = bi−2cj−1 = si−1 · · · s2sj−1 · · · s3 : 4 ≤ i < j ≤ n + 1 we have A(w) =

{s2, s1s2, sp · · · s3 : p ≥ j} and the corresponding component polynomial is

tν(w) = tn−2 + 2tn−3 + 3tn−4 + · · · + (n − 3)t2.

Proof. Let r = s1s2 ∈ SJ then wr = si−1 · · · s2sj−1 · · · s3s1s2 = si−1 · · · s1sj−1 · · · s2,

wr ∈ W J . Therefore (wr)0 = wr. We have l(wr) = i+ j − 3 > l(w) = i+ j − 5,

hence r ∈ A(w).

Let r = s2 ∈ SJ then wr = sj−1 · · · s3s2(si · · · s3) ∈ W J .

Therefore (wr)0 = wr. We have l(wr) = i + j − 4 > l(w) = i + j − 5, hence

r ∈ A(w).

Let r = sp · · · s3 ∈ SJ for p ≥ j then using braid relations we obtain wr =

si−1 · · · s2sp · · · s3(sj · · · s4) and wrWJ = si−1 · · · s2sp · · · s3WJ .

Therefore (wr)0 = si−1 · · · s2sp · · · s3 ∈ W J . We have that l(wr)0 > l(w), hence

r ∈ A(w).

Let r = sp · · · s3 ∈ SJ for i < p < j then using braid relations we have wr =

si−1 · · · s2sp−1 · · · s3(sj−1 · · · s4) and wrWJ = si−1 · · · s2sp−1 · · · s3WJ .
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Therefore (wr)0 = si−1 · · · s2sp−1 · · · s3 ∈ W J . We have that l(wr)0) < l(w),

hence r /∈ A(w).

Let r = sp · · · s3 ∈ SJ for p ≤ i < j then using braid relations we have wr =

si−1 · · · s2sp−1 · · · s3(sj−1 · · · s4) and wrWJ = si−1 · · · s2sp−1 · · · s3WJ .

Therefore (wr)0 = si−1 · · · s2sp−1 · · · s3 ∈ W J . We have that l(wr)0 = i+p−5 <

l(w) = i + j − 5, hence r /∈ A(w). We obtain the ascent set corresponding to w

is of the following form:

A(w) = {s2, s1s2, sp · · · s3 : p ≥ j}

and ν(w) = |A(w)| = n + 3 − j. The component polynomial is given by

tν(w) =
n∑

i=4

∑

j≥i+1

tn+3−j = tn−2 + 2tn−3 + · · · + (n − 3)t2.

7. For w = ai−1bj−1 = si−1 · · · s1sj−1 · · · s2 : 4 ≤ i < j ≤ n + 1, we have

A(w) = {s3, s4s3, · · · , sn · · · s3}

and the corresponding component polynomial is given by

tν(w) =



n − 2

2



 tn−2.

Proof. Let r = s2 ∈ SJ , then wr = si−1 · · · s1sj−1 · · · s3 = si−1 · · · s2sj−1 · · · s3s1.

We have wrWJ = si−1 · · · s2sj−1 · · · s3s1WJ . Hence (wr)0 = si−1 · · · s2sj−1 · · · s3 ∈

W J . We know (wr)−1
0 w = s1s2 ∈ SJWJ and l(wr)0 < l(w), hence r /∈ A(w).
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Let r = s1s2 ∈ SJ , then using braid relations we obtain

wr = si−1 · · · s1sj−1 · · · s2s1s2

= si−1 · · · s2sj−1 · · · s2s1

= sj−1 · · · s2si · · · s3s1

and wrWJ = sj−1 · · · s2si · · · s3WJ .

Therefore (wr)0 = sj−1 · · · s2si · · · s3 ∈ W J and (wr)−1
0 w = s1s2s1 ∈ SJWJ . We

have that l(wr)0 = i + j − 4 < l(w) = i + j − 3, hence r /∈ A(w).

Let r = sp · · · s3 ∈ SJ for i < j ≤ p then wr = si−1 · · · s1sj−1 · · · s2sp · · · s3 ∈

W J . Therefore (wr)0 = wr. We have that l(wr) > l(w), hence r ∈ A(w).

Let r = sp · · · s3 for i < p < j then wr = si−1 · · · s1sj−1 · · · s2sp · · · s3 ∈ W J .

Therefore (wr)0 = wr. We have that l(wr) > l(w), hence r ∈ A(w).

Let r = sp · · · s3 for p ≤ i < j then wr = si−1 · · · s1sj−1 · · · s2sp · · · s3 ∈ W J .

Therefore (wr)0 = wr. We have that l(wr) > l(w), hence r ∈ A(w).

We obtain the ascent set corresponding to w is of the following form:

A(w) = {s3, s4s3, · · · , sn · · · s3} and ν(w) = |A(w)| = n − 2. Then the compo-

nent polynomial is of the following form:

tν(w) =
∑

4≤i<j≤n

tn−2 =



n − 2

2



 tn−2.

8. For w = ai−1bj−1ck−1 = si−1 · · · s1sj−1 · · · s2sk−1 · · · s3 : 4 ≤ i < j < k ≤ n + 1,

we have

A(w) = {s1s2, s2, sp · · · s3 : p ≥ k}.

When k = n + 1, w = si−1 · · · s1sj−1 · · · s2sn · · · s3, A(w) = {s1s2, s2} and the
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corresponding component polynomial is given by

tν(w) = tn−3 +



3

2



 tn−4 + · · · +



n − 4

2



 t3 +



n − 3

2



 t2.

Proof. Let r = s1s2 ∈ SJ then using braid relations we obtain

wr = si−1 · · · s1sj−1 · · · s2sk−1 · · · s3s1s2

= si−1 · · · s1sj−1 · · · s1sk−1 · · · s2

= sj−1 · · · s1si · · · s2sk−1 · · · s2

= sj−1 · · · s1sk−1 · · · s2si+1 · · · s3.

Hence wr ∈ W J and (wr)0 = wr. We know that l(wr) > l(w), hence r ∈ A(w).

Let r = s2 ∈ SJ then using braid relations we have

wr = si−1 · · · s1sj−1 · · · s2sk−1 · · · s3s2

= si−1 · · · s1sk−1 · · · s2sj · · · s3.

Hence wr ∈ W J and (wr)0 = wr. We know that l(wr) > l(w), therefore

r ∈ A(w). Let r = sp · · · s3 ∈ SJ for i < j < k ≤ p then using braid relations

we obtain

wr = si−1 · · · s1sj−1 · · · s2sk−1 · · · s3sp · · · s3

= si−1 · · · s1sj−1 · · · s2sp · · · s3(sk · · · s4)

and (wr)0 = si−1 · · · s1sj−1 · · · s2sp · · · s3 ∈ W J .

We know (wr)−1
0 w = sk−1 · · · s3(s4 · · · sp+1) ∈ SJWJ and l((wr)0) = p+i+j−5 >

l(w) = k + i + j − 6, hence r ∈ A(w).

Let r = sp · · · s3 ∈ SJ for i < j < p < k then using braid relations we obtain

wr = si−1 · · · s1sj−1 · · · s2sk−1 · · · s3sp · · · s3

= si−1 · · · s1sj−1 · · · s2sp−1 · · · s3(sk−1 · · · s4)
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and (wr)0 = si−1 · · · s1sj−1 · · · s2sp−1 · · · s3 ∈ W J .

We know (wr)−1w = sk−1 · · · s3s4 · · · sp ∈ SJWJ and l((wr)0) = i + j + p − 7 <

i + j + k − 6 = l(w), hence r /∈ A(w). Let r = sp · · · s3 ∈ SJ for i < p ≤ j < k

then using braid relations we obtain

wr = si−1 · · · s1sj−1 · · · s2sk−1 · · · s3sp · · · s3

= si−1 · · · s1sj−1 · · · s2sp−1 · · · s3(sk−1 · · · s4)

and (wr)0 = si−1 · · · s1sj−1 · · · s2sp−1 · · · s3 ∈ W J . We have that (wr)−1w =

sk−1 · · · s3s4 · · · sp ∈ SJWJ and l((wr)0) = i + j + p − 7 < i + j + k − 6 = l(w),

hence r /∈ A(w).

Let r = sp · · · s3 ∈ SJ for p ≤ i < j < k then using braid relations we have wr =

si−1 · · · s1sj−1 · · · s2sk−1 · · · s3sp · · · s3 = si−1 · · · s1sj−1 · · · s2sp−1 · · · s3(sk−1 · · · s4)

and (wr)0 = si−1 · · · s1sj−1 · · · s2sp−1 · · · s3 ∈ W J .

We know (wr)−1w = sk−1 · · · s3s4 · · · sp ∈ SJWJ and l((wr)0) = i + j + p − 7 <

i + j + k − 6 = l(w). Hence r /∈ A(w).

We obtain the ascent set corresponding to w of the following form: A(w) =

{s1s2, s2, sp · · · s3 : n ≥ p ≥ k}, and ν(w) = n − k + 3. Next, we determine the

component polynomial corresponding to w:

tν(w) =
∑

4<i<j<k≤n+1

tn−k+1 =
n−2∑

i=4

n−1∑

j=i+1

n∑

k=j+1

tn−k+1

=
n−2∑

i=4

(
n∑

k=i+2

tn−k+3 +
n∑

k=i+3

tn−k+3 + · · · +
n∑

k=n−1

tn−k+3 + t3)

=
n−2∑

i=4

(tn−i+1 + 2tn−i + 3tn−i−1 + · · · + (n − i + 1)t3)

= tn−3 + (1 + 2)tn−4 + (1 + 2 + 3)tn−5 + · · · + (1 + 2 + · · · + n − 5)t3
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tν(w) =
n−2∑

l=4



l − 2

2



 tn−l+1.

For k = n+1, w = si−1 · · · sj−1 · · · s2sn · · · s3, A(w) = {s1s2, s2} hence ν(w) = 2

and the corresponding component polynomial is given by



n − 3

2



 t2. (3.2)

From 3.2 and 3.3, the corresponding component polynomial of w is:

tν(w) =
n−1∑

l=4



l − 2

2



 tn−l+1.

Using the computations done in the previous proposition we obtain the coeffi-

cients of the Poincaré polynomial denoted by c(n, i) as follows:

For i = 1 we have c(n, 1) = 1 + n − 2 + 3 = n + 2.

For i = 2 we have

c(n, 2) = 1 + 4(n − 2) + 6 +



n − 2

2



 = n + 2 +



n + 1

2



 .

For i = 3 we have

c(n, 3) = n + 8 + 3(n − 3) +



n − 2

2



 = n + 2 +



n + 1

2



 .

For i = 4 we have

c(n, 4) = 15 + 4(n − 4) +



n − 2

2



 = n + 2 +



n + 1

2



 .
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For i ≥ 5

c(n, i) = 3 + 3(i − 1) + 3(n − i) +



n − i + 2

2



 +



i − 1

2



 + (i − 3)(n − i))

= n + 2 +



n + 1

2



 .

Similarly we can compute explicitely the Betti numbers of X(J) in the case of

(W,S) Weyl group of type An and J = {s4, s5, · · · , sn}.

Theorem 14. Let (W,S) be of type An and J = {s4, s5, · · · , sn} ⊂ S = {s1, · · · sn}

such that X(J) is rationally smooth. The Poincaré polynomial of X(J) is:

P (X(J), t) = 1 + d(n, 1)t2 + · · · + d(n, n − 1)t2(n−1) + t2n. (3.3)

where d(n, 1) = d(n, n − 1) = n + 2 +



n + 1

2



 and d(n, i) = n + 2 + n(n + 1) for

2 ≤ i ≤ n − 2.

Recall the previous notation: Let

ai = sisi−1 · · · s1 = (i + 1 i · · · 1) ∈ Sn+1 for 0 ≤ i ≤ n

bj = sjsj−1 · · · s2 = (j + 1 j · · · 2) ∈ Sn+1 for 1 ≤ j ≤ n

ck = sksk−1 · · · s3 = (k + 1 k · · · 3) ∈ Sn+1 for 2 ≤ k ≤ n

where a0 = b1 = c2 = id ∈ Sn+1.

Let S3 = {id, a1, b2, a1b2, a2, a2b2} and Y = {id, a2, a1} ⊂ Sn+1.
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Lemma 2. Then

W J = {σ ∈ S3} ∪ {σbi−1 | σ ∈ S3}4≤i≤n ∪ {σci−1 | σ ∈ S3}4≤i≤n+1∪

∪{σai−1 |σ ∈ S3}4≤i≤n+1∪{σbi−1cj−1 | σ ∈ Y }4≤i<j≤n+1∪{σbj−1ci | σ ∈ Y }4≤i<j≤n+1∪

∪{σai−1bj−1 σ ∈ Y }4≤i<j≤n+1∪{σaj−1ci | σ ∈ Y }4≤i<j≤n+1∪{σaj−1ci | σ ∈ S3}4≤i<j≤n+1∪

∪{σai−1cj−1 | σ ∈ S3}4≤i<j≤n+1∪{ai−1bj−1ck−1}4≤i<j<k≤n+1∪{ai−1bj−1ck+1}4≤k<i<j≤n+1∪

∪{ai−1bjck−1}4≤j<i<k≤n+1 ∪ {ai−1bjck}4≤j<k<i≤n+1 ∪ {ai−1bj−1ck}4≤i<k<j≤n+1

∪{ai−1bjck+1}4≤k<j<i≤n+1

Proof. We have W J ∼= W
WJ

= Sn+1

〈s4,s5···,sn〉
= Sn+1

Sn−2
. Hence

|W J | =
(n + 1)!

2(n − 2)!
=

(n − 1)n(n + 1)

2
.

From 3.2 we obtain:

W J = {w ∈ W | w(4) < w(5) < · · · < w(n)}.

Next, we fix w ∈ W J and define the set Ew as follows:

Ew = w−1({1, 2, 3}) ∩ {4, 5, · · · , n + 1} = {i : 4 ≤ i ≤ n + 1 | w(i) ∈ {1, 2, 3}}.

The following are the only possible values for the cardinality of Ew.

1. |Ew| = 0. In this case there is no element in the set {4, 5, · · · , n + 1} whose

image in the permutation w belongs to the set {1, 2, 3}. We have 4 ≤ w(i) <

w(l +1) ≤ n+1 for 4 ≤ i ≤ n+1 as w ∈ W J . Hence w(i) = i for 4 ≤ i ≤ n+1

and w(1), w(2), w(3) ∈ {1, 2, 3}. This corresponds to the following six cases:

(a) w = id.



65

(b) w = s1s2.

(c) w = s2.

(d) w = s2s1.

(e) w = s1.

(f) w = s2s1s2.

2. |Ew| = 1. In this case there exists a unique element t ∈ {4, · · · , n + 1} such

that w(t) ∈ {1, 2, 3}. We know that w(l) < w(l + 1) for l ∈ {4, · · · , n}. Hence

t = 4. Then there exists i such that for 5 ≤ l ≤ i, w(j) = j − 1 and for j > i,

w(j) = j. For 5 ≤ i ≤ n + 1 we have either w(1) = i, or w(2) = i or w(3) = i.

The following cases hold:

(a) w(2) = i and w(1), w(3), w(4) ∈ {1, 2, 3}, so that w is represented by the

following matrix:

w =



 1 2 3 4 5 . . . i i + 1 . . . n + 1

w(1) i w(3) w(4) 4 . . . i − 1 i + 1 . . . n + 1





Consider

σ = ws2s3 · · · si−1

where σ(1) = w(1), σ(2) = w(3), and σ(3) = w(4) ∈ {1, 2, 3}. This

corresponds to the following six cases:

i. σs2s1 = id =⇒ w = s1s2si−1 · · · s2.

ii. σs2 = id =⇒ w = s2si−1 · · · s2.

iii. σ = id =⇒ w = si−1 · · · s2.

iv. σs1s2 = id =⇒ w = s2s1si−1 · · · s2.

v. σs1 = id =⇒ w = s1si−1 · · · s2.

vi. σs2s1s2 = id =⇒ w = s2s1s2si−1 · · · s2.
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(b) w(3) = i and w(1), w(2), w(4) ∈ {1, 2, 3}, so that w is represented by the

following matrix:

w =



 1 2 3 4 5 . . . i i + 1 . . . n + 1

w(1) w(2) i w(4) 4 . . . i − 1 i + 1 . . . n + 1





Consider

σ = ws3s4 · · · si−1,

where σ(1) = w(1), σ(2) = w(2), and σ(3) = w(4) ∈ {1, 2, 3}. Therefore

w has one of the following forms that correspond to the cases:

i. σs2s1 = id =⇒ w = s1s2si−1 · · · s3.

ii. σs2 = id =⇒ w = s2si−1 · · · s3.

iii. σ = id =⇒ w = si−1 · · · s3.

iv. σs1 = id =⇒ w = s1si−1 · · · s3.

v. σs1s2 = id =⇒ w = s2s1si−1 · · · s3.

vi. σs2s1s2 = id =⇒ w = s2s1s2si−1 · · · s3.

(c) w(1) = i for some 4 ≤ i ≤ n + 1, and w(2), w(3), w(4) ∈ {1, 2, 3} so that

w is represented by the following matrix:

w =



 1 2 3 4 5 . . . i i + 1 . . . n + 1

i w(2) w(3) w(4) 4 . . . i − 1 i + 1 . . . n + 1





Consider

σ = ws1s2 · · · si−1,

where σ(1) = w(2), σ(2) = w(3), and σ(3) = w(4) ∈ {1, 2, 3}. Therefore

w has one of the following forms that correspond to the cases:

i. σs2s1 = id =⇒ w = s1s2si−1 · · · s1.

ii. σs2 = id =⇒ w = s2si−1 · · · s1.
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iii. σ = id =⇒ w = si−1 · · · s1

iv. σs1 = id =⇒ w = s1si−1 · · · s1.

v. σs1s2 = id =⇒ w = s2s1si−1 · · · s1.

vi. σs2s1s2 = id =⇒ w = s2s1s2si−1 · · · s1.

3. |Ew| = 2. In this case there exist two elements, t1, t2 ∈ {4, 5 · · · , n+1} such that

their images in the permutation w is any element in the set {1, 2, 3}. We know

w(l) < w(l + 1) for l ∈ {4, 5, · · · , n}. Hence t1 = 4, t2 = 5. Then there exists

i, j, 6 ≤ i, j ≤ n + 1 such that for 6 ≤ j ≤ i + 1, w(l) = l + 2, for i + 2 ≤ l ≤ j,

w(l) = l + 1 and for j < l ≤ n + 1, w(l) = l. This corresponds to the following

cases:

(a) w(2) = i, w(3) = j and w(1), w(4), w(5) ∈ {1, 2, 3}. We have w is

represented by the following matrix:

w =



 1 2 3 4 5 6 . . . i + 1 i + 2 . . .

w(1) i j w(4) w(5) 4 . . . i − 1 i + 1 . . .





. . . j j + 1 . . . n + 1

. . . j − 1 j + 1 . . . n + 1





Consider

σ = ws3 · · · sj−1s2 · · · si−1,

where σ(1) = w(1), σ(2) = w(4), σ(3) = w(5) and w(4) < w(5). This

corresponds to the following cases:

i. σ = id =⇒ w = si−1 · · · s2sj−1 · · · s3.

ii. σs1 = id =⇒ w = s1si−1 · · · s2sj−1 · · · s3.

iii. σs1s2 = id =⇒ w = s2s1si−1 · · · s2sj−1 · · · s3.
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(b) w(2) = j, w(3) = i, so that w is represented by the following matrix:

w =



 1 2 3 4 5 6 . . . i + 1 i + 2 . . .

w(1) j i w(4) w(5) 4 . . . i − 1 i + 1 . . .





. . . j j + 1 . . . n + 1

. . . j − 1 j + 1 . . . n + 1





Consider

σ = ws3 · · · sis2 · · · sj−1,

where σ(1) = w(1), σ(2) = w(4), σ(3) = w(5) and w(4) < w(5). This

corresponds to the following cases:

i. σ = id =⇒ w = sj−1 · · · s2si · · · s3.

ii. σs1 = id =⇒ w = s1sj−1 · · · s2si · · · s3.

iii. σs1s2 = id =⇒ w = s2s1sj−1 · · · s2si · · · s3.

(c) w(1) = i, w(2) = j and w(3), w(4), w(5) ∈ {1, 2, 3}, so that w is repre-

sented by the following matrix:

w =



 1 2 3 4 5 6 . . . i + 1 i + 2 . . .

i j w(3) w(4) w(5) 4 . . . i − 1 i + 1 . . .





. . . j j + 1 . . . n + 1

. . . j − 1 j + 1 . . . n + 1





Consider

σ = ws2 · · · sj−1s1 · · · si−1,

where σ(1) = w(3), σ(2) = w(4), σ(3) = w(5) and w(4) < w(5). This

corresponds to the following cases:



69

i. σ = id =⇒ w = si−1 · · · s1sj−1 · · · s2.

ii. σs1 = id =⇒ w = s1si−1 · · · s1sj−1 · · · s2.

iii. σs1s2 = id =⇒ w = s2s1si−1 · · · s1sj−1 · · · s2.

(d) w(1) = i, w(3) = j and w(2), w(4), w(5) ∈ {1, 2, 3}, so that w is repre-

sented by the following matrix:

w =



 1 2 3 4 5 6 . . . i + 1 i + 2 . . .

i w(2) j w(4) w(5) 4 . . . i − 1 i + 1 . . .





. . . j j + 1 . . . n + 1

. . . j − 1 j + 1 . . . n + 1





Consider

σ = ws3 · · · sj−1s1 · · · si−1,

where σ(1) = w(2), σ(2) = w(4), σ(3) = w(5) and w(4) < w(5). This

corresponds to the following cases:

i. σ = id =⇒ w = si−1 · · · s1sj−1 · · · s3.

ii. σs1 = id =⇒ w = s1si−1 · · · s1sj−1 · · · s3.

iii. σs1s2 = id =⇒ w = s2s1si−1 · · · s1sj−1 · · · s3.

(e) w(1) = j, w(2) = i and w(3), w(4), w(5) ∈ {1, 2, 3}, so that w is repre-

sented by the following matrix:

w =



 1 2 3 4 5 6 . . . i + 1 i + 2 . . .

j i w(3) w(4) w(5) 4 . . . i − 1 i + 1 . . .





. . . j j + 1 . . . n + 1

. . . j − 1 j + 1 . . . n + 1




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Consider

σ = ws2 · · · sis1 · · · sj−1,

where σ(1) = w(3), σ(2) = w(4), σ(3) = w(5) and w(4) < w(5). This

corresponds to the following cases:

i. σ = id =⇒ w = sj−1 · · · s1si · · · s2.

ii. σs1 = id =⇒ w = s1sj−1 · · · s1si · · · s2.

iii. σs1s2 = id =⇒ w = s2s1sj−1 · · · s1si · · · s2.

(f) w(1) = j, w(3) = i and w(2), w(4), w(5) ∈ {1, 2, 3}, so that w is repre-

sented by the following matrix:

w =



 1 2 3 4 5 6 . . . i + 1 i + 2 . . .

j w(2) i w(4) w(5) 4 . . . i − 1 i + 1 . . .





. . . j j + 1 . . . n + 1

. . . j − 1 j + 1 . . . n + 1





Consider

σ = ws3 · · · sis1 · · · sj−1,

where σ(1) = w(3), σ(2) = w(4), σ(3) = w(5) and w(4) < w(5). This

corresponds to the following cases:

i. σ = id =⇒ w = sj−1 · · · s1si · · · s3.

ii. σs1 = id =⇒ w = s1sj−1 · · · s1si · · · s3.

iii. σs1s2 = id =⇒ w = s2s1sj−1 · · · s1si · · · s3.

4. |Ew| = 3. In this case there exist t1, t2, t3 ∈ {4, 5, · · · , n + 1} such that

w(t1), w(t2) ∈ {1, 2, 3}. We can assume without loss of generality, w(t1) <

w(t2) < w(t3). We know w(l) < w(l + 1) for l ∈ {4, 5, · · · , n}. Hence t1 = 4,

t2 = 5, t3 = 6. Then there exist i, j, k ∈ {4, 5, · · · , n + 1} such that w(1) = i,
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w(2) = j and w(3) = k. This corresponds to the following cases:

(a) 4 ≤ i < j < k ≤ n + 1 and w is represented by the following matrix:

w =



 1 2 3 4 5 . . . i i + 1 i + 2 i + 3 . . .

i j k 1 2 . . . i − 3 i − 2 i − 1 i + 1 . . .

. . . j j + 1 j + 2 . . . k k + 1 . . . n + 1

. . . j − 2 j − 1 j + 1 . . . k − 1 k + 1 . . . n + 1





Direct computation shows that ws3s4 · · · sk−1s2s3 · · · sj−1s1s2 · · · si−1 = id.

Hence w = si−1 · · · s1sj−1 · · · s2sk−1 · · · s3.

(b) 4 ≤ k < i < j ≤ n + 1 and w is represented by:

w =



 1 2 3 4 5 . . . k k + 1 k + 2 k + 3 . . .

i j k 1 2 . . . k − 3 k − 2 k − 1 k + 1 . . .

. . . i i + 1 i + 2 . . . j j + 1 . . . n + 1

. . . i − 2 i − 1 i + 1 . . . j − 1 j + 1 . . . n + 1





Direct computation shows ws3 · · · sk+1s2 · · · sj−1s1s2 · · · si−1 = id.

Hence w = si−1 · · · s1sj−1 · · · s2sk+1 · · · s3.

(c) 4 ≤ j < i < k ≤ n + 1 where w is represented by:

w =



 1 2 3 4 5 . . . j j + 1 j + 2 j + 3 . . .

i j k 1 2 . . . j − 3 j − 2 j − 1 j + 1 . . .

. . . i i + 1 i + 2 . . . k k + 1 . . . n + 1

. . . i − 2 i − 1 i + 1 . . . k − 1 k + 1 . . . n + 1





Direct computation shows ws3 · · · sk−1s2 · · · sj+1s1 · · · si−1 = id.



72

Hence w = si−1 · · · s1sj · · · s2sk−1 · · · s3.

(d) 4 ≤ j < k < i ≤ n + 1 where w is represented by the following matrix:

w =



 1 2 3 4 5 . . . j j + 1 j + 2 j + 3 . . .

i j k 1 2 . . . j − 3 j − 2 j − 1 j + 1 . . .

. . . k k + 1 k + 2 . . . i i + 1 . . . n + 1

. . . k − 2 k − 1 k + 1 . . . i − 1 i + 1 . . . n + 1





Direct computation shows ws3 · · · sks2 · · · sjs1 · · · si−1 = id.

Hence w = si−1 · · · s1sj+1 · · · s2sk · · · s3.

(e) 4 ≤ i < k < j ≤ n + 1 where w is represented by the following matrix:

w =



 1 2 3 4 5 . . . i i + 1 i + 2 i + 3 . . .

i j k 1 2 . . . i − 3 i − 2 i − 1 i + 1 . . .

. . . k k + 1 k + 2 . . . j j + 1 . . . n + 1

. . . k − 2 k − 1 k + 1 . . . j − 1 j + 1 . . . n + 1





Direct computation shows ws3 · · · sks2 · · · sj−1s1 · · · si−1 = id.

Hence w = si−1 · · · s1sj−1 · · · s2sk · · · s3.

(f) 4 ≤ k < j < i ≤ n + 1 where w is represented by:

w =



 1 2 3 4 5 . . . k k + 1 k + 2 k + 3 . . .

i j k 1 2 . . . k − 3 k − 2 k − 1 k + 1 . . .

. . . j j + 1 j + 2 . . . i i + 1 . . . n + 1

. . . j − 2 j − 1 j + 1 . . . i − 1 i + 1 . . . n + 1





Direct computation shows ws3 · · · sk+1s2 · · · sjs1 · · · si−1 = id.
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Hence w = si−1 · · · s1sj · · · s2sk+1 · · · s3.

Next, we compute for each element w ∈ W J its corresponding ascent set A(w)

in a similar fashion as in Theorem 13. We summarize the computation in the following

proposition and we omit its proof because it does not carry anything new other then

repeating the previous sort of computations.

Proposition 13. 1. We calculate the ascent sets for each w ∈ W J as follows:

(a) A(id) = SJ .

(b) A(id) = SJ , A(a1) = A(a2) = {b2, c3, c4, · · · , sn}.

(c) A(b2) = A(a1b2) = A(bi−1) = A(a1bi−2) = A(a2bi−1) = {a1, c3, c4, · · · , sn}.

(d) A(a2b2) = {c3, c4, · · · , cn}.

(e) A(a1b2bi−1) = A(a2b2bi−1) = A(b2bi−1) = {a1, c4, · · · , cn}.

(f) A(ci−1) = A(b2ci−3) = A(a1b2ci−1) = {a1, b2, cp : p ≥ i}.

(g) A(a1ci−1) = A(a2ci−1) = A(a2b2ci−1) = {b2, cp : p ≥ i}.

(h) A(ai−1) = {b2, c3, · · · , cn}.

(i) A(a1bi−1) = A(a2ai−1) = {c3, c4, · · · , cn}.

(j) Aa1b2ai−1) = A(b2ai−1) = {b2, c4, · · · , cn}.

(k) A(a2b2ai−1) = {c4, c5, · · · , cn}.

(l) A(bi−1cj−1) = A(a2ai−1cj−1) = A(a1ai−2cj−1) = {a1, b2, cp : p ≥ j}

(m) A(bj−1ci) = A(a2bj−1ci) = A(a1bj−1ci) = {a1, cp : p ≥ i + 1}.

(n) A(ai−1bj−1) = {a1, c3, c4, · · · , cn}.

(o) A(a2ai−1bj−1) = {a1, c5, · · · , cn}.

(p) A(a1ai−1bj−1) = {a1, c4, c5, · · · , cn}.



74

(q) A(a2aj−1bi) = {c5, c4, · · · , cn}, A(a1aj−1bi) = {c4, c5, · · · , cn}.

(r) A(aj−1bi) = {c3, c4, · · · , cn}.

(s) A(aj−1ci) = A(a2aj−1ci) = A(a1aj−1ci) = {b2, cp : p ≥ i + 1}.

(t) A(ai−1cj−1) = A(a2ai−1cj−1) = A(a1ai−1cj−1) = {b2, cp : p ≥ j}.

(u) A(ai−1bj−1ck−1) = {a1, b2, cp : p ≥ k}, 4 ≤ i < j < k}.

(v) A(ai−1bj−1ck+1) = {a1, cp : p ≥ k + 2}, 4k < i < j ≤ n + 1.

(w) A(ai−1bjck−1) = {b2, cp : p ≥ k}, 4 ≤ j < i < k ≤ n + 1.

(x) A(ai−1bj−1ck) = {a1, cp : p ≥ k + 1}, 4 ≤ i < k < j ≤ n + 1.

(y) A(ai−1bjck+1) = {cp : p ≥ k + 2}, 4 ≤ k < j < i ≤ n + 1.

(z) A(ai−1bjck) = {b2, cp : p ≥ k + 1}, 4 ≤ j < k < i ≤ n + 1}.

2. Let ν(w) = |A(w)|. then for each w ∈ W J we determine the component poly-

nomial in the Poincaré polynomial as follows:

(a) Let w = id then tν(w) = tn.

(b) Let X = {a1, b2, a1a2, a2} then
∑

w∈X tν(w) = 3tn−1.

(c) Let w = a2b2 then tν(w) = tn−2.

(d) Let X = {bi−1, a1bi−1, a2bi−1, ai−1} then tν(w) = 4(n − 2)tn−1.

(e) X = {a1b2bi−1, a2b2bi−1, b2ai−1, a1ai−1, b2ai−1, a2ai−1, a1b2ai−1, 4 ≤ i ≤ n +

1} then tν(w) = 7(n − 2)tn−2.

(f) Let X = {ci−1, b2ci−1, a1b2ci−1, 4 ≤ i ≤ n + 1} then tν(w) = 3
∑n−2

s=1 ts+1.

(g) Let X = {a1ci−1, a2ci−1a2b2ci−1, 4 ≤ i ≤ n + 1} then tν(w) = 3
∑n−2

s=1 ts.

(h) Let w = {a2b2ai−1, 4 ≤ i ≤ n + 1} then tν(w) = (n − 2)tn−3.

(i) Let X = {bi−1cj−1, a2bi−1cj−1, a1bi−1cj−1 4 ≤ i < j ≤ n + 1} then

∑

w∈X

tν(w) = 3
n−3∑

s=1

(n − s − 2)ts+1.
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(j) Let X = {bj−1ci, a2bj−1ci, a1bj−1ci, aj−1ci, a2aj−1ci, a1aj−1ci : 4 ≤ i < j ≤

n + 1} then
∑

w∈W

tν(w) = 6
n−3∑

s=1

sts.

(k) Let w = ai−1bj−1, 4 ≤ i < j ≤ n + 1 then tν(w) =



n − 2

2



 tn−1.

(l) Let X = {a2ai−1bj−1, a1aj−1bi, 4 ≤ i < j ≤ n+1 then tν(w) =



n − 2

2



 tn−3

(m) Let w = a1ai−1bj−1, aj−1ci, 4 ≤ i < j ≤ n + 1 then tν(w) =



n − 2

2



 tn−2.

(n) Let w = a2aj−1bi, 4 ≤ i < j ≤ n + 1 then tν(w) =



n − 2

2



 tn−4.

(o) Let X = {ai−1cj−1, a2ai−1cj−1, a1ai−1cj−1}, 4 ≤ i < j ≤ n + 1 then

∑

w∈X

tν(w) = 3
n−3∑

s=1

(n − s − 2)ts.

(p) Let w = ai−1bj−1ck−1, 4 ≤ i < j < k ≤ n + 1 then

tν(w) =
n−4∑

s=1



n − s − 2

2



 ts+1.

(q) Let w = ai−1bj−1ck+1, 4 ≤ k < i < j ≤ n + 1 then

tν(w) =
n−4∑

s=1



s + 1

2



 ts.
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(r) Let w = ai−1bjck−1, 4 ≤ j < i < k ≤ n + 1 then

tν(w) =
n−4∑

s=1



n − s − 2

2



 ts.

(s) Let w = ai−1bj−1ck, 4 ≤ i < k < j ≤ n + 1 then

tν(w) =
n−4∑

s=1

(n − s − 3)sts.

(t) Let w = ai−1bj−1ck−1, 4 ≤ k < j < i ≤ n + 1 then

tν(w) =
n−4∑

s=0



s + 2

2



 ts.

(u) let w = ai−1bjck, 4 ≤ j < k < i ≤ n + 1 then

tν(w) =
n−4∑

s=1



n − s − 2

2



 ts+1.

We can easily identify the coefficients of the Poincaré polynomial denoted by

d(n, i), in the expression
∑

w∈W J tν(w) using the computations done in the previous

proposition. The following holds:

For i = 1 we have d(n, 1) = 7 + 4(n − 2) +



n − 2

2



 = n + 2 +



n + 1

2



.

For i = 2 we have d(n, 2) = 7(n − 2) + 10 + (n − 2)(n − 3) = n + 2 + n(n + 1)

For i = 3 we have d(n, 3) = 16 + n− 2 + 6(n− 3) + (n− 2)(n− 3) = n + 2 + n(n + 1).
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For i = 4 we have

d(n, 4) = 22 + 8(n − 4) +



n − 2

2



 +



n − 3

2





= n + 2 + n(n + 1).

For i = 5 we have

d(n, 5) = 24 + 10(n − 5) +



4

2



 +



n − 4

2



 +



3

2



 +



n − 3

2



 .

= n + 2 + n(n + 1).

For 6 ≤ i ≤ n − 2 we have

d(n, i) = 2(i − 3)(n − i) + 6(i − 2) + 6(n − i) + 3(i − 1) + 6

+



n − i + 2

2



 +



i − 2

2



 +



n − i + 1

2



 +



i − 1

2



 .

= n2 + 2n + 2 = n + 2 + n(n + 1).

For i = n − 1 we have

d(n, n − 1) = 7 + 4(n − 2) +



n − 2

2



 = n + 2 +



n + 1

2



 .

Therefore the Poincaré polynomial is obtained as follows:

P (X(J), t) =
∑

w

tν(w) = 1 + d(n, 1)t2 + · · · + d(n, n − 1)t2n−2 + t2n,
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where d(n, 1) = d(n, n − 1) = n + 2 +



n + 1

2



 and d(n, i) = n + 2 + n(n + 1) for

i = 2, · · · , n − 2.

Another approach was suggested to me by Nicole Lemire and with her permis-

sion I would like to include it in this document.

second proof of Theorem 14 given by NicoleLemire

We have

W J ∼=
W

WJ

=
Sn+1

Sn−2

=
〈s1, s2, · · · , sn〉

〈s4, s5 · · · , sn〉
=

〈s1, s2, · · · , sn〉/〈s2, s3, · · · , sn〉

〈s2, s3, · · · , sn〉/〈s3, s4, · · · , sn〉

A set of coset representatives for Sn in Sn+1 is given by {id, s1, s2s1, · · · , snsn−1 · · · s1}.

Let ai = (1 2 · · · i i + 1) ∈ Sn+1 for 0 ≤ i ≤ n, then

Sn+1 =
n⊔

i=0

aiSn. (3.4)

A set of coset representatives for Sn−1 in Sn is given by {id, s2, s3s2, · · · , snsn−1 · · · s2}.

Let bj = (2 3 · · · j j + 1) ∈ Sn+1 for 1 ≤ j ≤ n − 1, then

Sn =
n⊔

j=1

bjSn−1. (3.5)

A set of coset representatives for Sn−2 in Sn−1 is given by {id, s3, s4s3, · · · , snsn−1 · · · s3}.

Let ck = (3 4 · · · j j + 1) ∈ Sn+1 for 2 ≤ j ≤ n, then

Sn−1 =
n⊔

j=2

ckSn−2. (3.6)
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From (3.5), (3.6), (3.7) we obtain a list of coset representatives for Sn−2 in Sn+1

given by {aibjck}i=0, j=1, k=2 where

Sn+1 =
n⊔

i=0, j=1 k=2

aibjckSn−2 (3.7)

Recall the definition of W J = {w ∈ Sn+1 | w(r) < w(r + 1), 4 ≤ r ≤ n}

Next we want to show that {aibjck}i=0, j=1, k=2 is a set of coset representatives

of Sn−2 in Sn+1 of minimal length hence W J = {aibjck}i,j,k.

We consider the case of i ≥ j ≥ k (the other cases are treated similarly) and

obtain that aibjck(r) = r − 3 if 4 ≤ r ≤ k + 1, aibjck(r) = r − 2 if k + 1 < r ≤ j + 1,

aibjck(r) = r − 1 if j + 1 < r ≤ i + 1 and aibjck(r) = r if i + 1 < r ≤ n + 1.

Hence aibjck(r) < aibjck(r + 1) for 4 ≤ r ≤ n. We obtain {aibjck}i,j,k ⊆ W J

and |{aibjck}i,j,k| = (n − 1)n(n + 1) therefore W J = {aibjck}i=0, j=1, k=2.

Next, notice that SJ = {s1, s2, s3, · · · , sn · · · s3} = {a1, b2, c3, · · · cn}.

Let dl = (l + 1 l · · · 4), 3 ≤ l ≤ n. Then using braid relations we obtain that

cicj = cj−1di, 3 ≤ j ≤ i ≤ n

cicj = cjdi+1, 3 ≤ i < j ≤ n, c2cj = cj

and similarly

bibj = bj−1ci, 2 ≤ j ≤ i ≤ n

bibj = bjci+1, 2 ≤ i < j ≤ n, b1bj = bj

aiaj = aj−1bi, 1 ≤ j ≤ i ≤ n

aiaj = ajbi+1, 1 ≤ i < j ≤ n, a0bj = aj

Next we prove that cl ∈ AJ
n(aibjck) if and only if k < l.
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Here we use Proposition 10 to compare two elements in the Bruhat ordering

on W J . Notice that for w = aibjck ∈ W J and r = cl ∈ SJ , if (wr)−1w ∈ SJWJ

then w < wr in the Bruhat ordering on W J if and only if l(w) < l(wr) according to

Proposition 10.

Let w = aibjck then wr = aibjckcl = aibjcl−1dk for l ≤ k and wr = aibjcldk+1

for k < l. Let w0 be the minimal coset representative corresponding to wrWJ .

Hence wrWJ = aibjcl−1WJ = w0WJ for l ≤ k and wrWJ = aibjclWJ = w0Wj

for k < l. Using braid relations we obtain:

w−1w0 = sl−1 · · · s3(s4 · · · sk) ∈ SJWJ for l ≤ k

w−1w0 = sl · · · s3(s4 · · · sk) ∈ SJWJ for k < l.

Next we compare in Bruhat ordering w and w0 according to Proposition 10

knowing that l(w) = l(aibjck) > l(w0) = l(aibjcl−1) for l ≤ k and l(w) = l(aibjck) <

l(w0) = l(aibjcl) for k < l.

Since aibjcks2 = aibjck, and aibjcks1 = aibjs1ck = aiajck similarly it can be

proved that s1 ∈ AJ
n(aibjck) if and only if i < j and s2 ∈ AJ

n(aibjck) if and only if

j < k. So

Case I: 0 ≤ i < j < k ≤ n

AJ
n(aibjck) = {s1, s2, ck+1, · · · , cn}

then νJ
n (aibjck) = n − k + 2 and for fixed 2 ≤ k ≤ n we have

|{aibjck : 0 ≤ i < j < k}| =



k

2



 .
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Case II: 2 ≤ k ≤ j ≤ i ≤ n

AJ
n(aibjck) = {ck+1, · · · , cn}.

Then νJ
n (aibjck) = n − k and for fixed 2 ≤ k ≤ n we have

|{aibjck : k ≤ j ≤ i ≤ n}| =
(n − k + 1)(n − k + 2)

2

Case III: 0 ≤ i < j ≤ n and 2 ≤ k ≤ j ≤ n

AJ
n(aibjck) = {s1, ck+1, · · · , cn}

Then νJ
n (aibjck) = n − k + 1 and for a fixed 2 ≤ k ≤ n

|{aibjck : 0 ≤ i < j, k ≤ j ≤ n}| =
n∑

r=k

r =
n(n + 1)

2
−

k(k − 1)

2

Case IV: 1 ≤ j ≤ i ≤ n and 1 ≤ j < k ≤ n

AJ
n(aibjck) = {s2, ck+1, · · · , cn}

then νJ
n (aibjck) = n − k + 1 and for fixed 2 ≤ k ≤ n

|{aibjck : 1 ≤ j ≤ i ≤ n, j < k}| =
n∑

r=n−k+2

r =
n(n + 1)

2
−

(n − k + 1)(n − k + 2)

2

To find
∑

w∈W J t2νJ
n (w) we only need to find cr = |{w ∈ W J : νn(w) = r}| for

each 0 ≤ r ≤ n.

Let r = 0. Then νn(aibjck) = 0 is only possible in Case II. In this case, k = n

and k ≤ j ≤ i ≤ n implies that anbncn is the only such element and c0 = 1.

Let r = n. Then νn(aibjck) = n is only possible in Case I. In this case, k = 2

and 0 ≤ i < j < 2 implies that a0b1c2 = is the only such element and cn = 1.
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Let r = 1. Then νn(aibjck) = 1 is only possible in Cases II, III and IV. For

Case II, k = n − 1 and for Cases II and III, k = n. So

c1 =
2(3)

2
+

n(n + 1)

2
−

1(2)

2
+

n(n + 1)

2
−

n(n − 1)

2
=

n(n + 1)

2
+ n + 2.

Let r = n − 1. Then νn(aibjck) = 1 is only possible in Cases I, III and IV. For

Case I, k = 3 and for Case II and III, k = 2. So

cn−1 =
2(3)

2
+

n(n + 1)

2
−

1(2)

2
+

n(n + 1)

2
−

n(n − 1)

2
−

r(r − 1)

2
=

n(n + 1)

2
+

n + 2.

Let 2 ≤ r ≤ n − 2. Then νn(aibjck) = r is possible in all cases. For Case I,

n− k + 2 = r implies k = n− r + 2, for Case II, n− k = r implies k = n− r and for

Case III and IV, n − k + 1 = r implies k = n − r + 1. So

cr =
(n − r + 2)(n − r + 1)

2
+

(r + 1)(r + 2)

2
+

n(n + 1)

2
−

(n − r + 1)(n − r)

2
+

n(n + 1)

2
= n(n + 1) + (r + 1) + (n − r + 1) = n(n + 1) + n + 2.

We have obtained that

P (X(J), t) = t2n + 1 + (
n(n + 1)

2
+ n + 2)(t2(n−1) + 1) + (n(n + 1) + n + 2)(

n−2∑

k=2

t2k).

Lemire’s method turn out to be efficient for proving Theorem 13 as well. Next, I

would like to present a second proof of Theorem 13, suggested to me by Nicole Lemire.

second proof of Theorem 13 given by Nicole Lemire

Let J = {s1, s4, s5, · · · , sn}. Then

W J ∼=
Sn+1

〈s1〉 × 〈s4, s5, · · · , sn〉
∼=

Sn+1

S2 × Sn−1

.

Consider the set Y = {yij + yji : 1 ≤ i < j ≤ n + 1} is an Sn+1–set with the

Sn+1-action given by: σ(yij + yji) = yσ(i),σ(j) + yσ(j),σ(i), σ ∈ Sn+1. The action of

Sn+1 on the set Y is a tranzitive action and the stabiliser subgroup of y12 + y21 is
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Sn−1 × S2 = 〈s1, s3, · · · , sn〉. The cardinal of Y is given by n(n + 1)/2 and note that

yij + yji = aibj(y12 + y21).

Hence Y is a set of coset representatives of S2 × Sn−1 in Sn+1.

Sn+1 =
⊔

0≤i<j≤n

aibj(Sn−1 × S2) (3.8)

We have

Sn−1 × S2 =
n⊔

k=2

ck(Sn−2 × S2 (3.9)

Then from (3.9) and (3.10) we obtain that {aibjck : 0 ≤ i < j ≤ n, 2 ≤ k ≤ n}

is a set of coset representatives of Sn−2 × S2 in Sn+1.

Sn+1 =
⊔

0≤i<j≤n,2≤k≤n

aibjck(Sn−2 × S2).

We need to check that {aibjck}0≤i<j≤n,2≤k≤n is a set of coset representatives of minimal

length, therefore we need to check that aibjck(r) < aibjck(r + 1) for 4 ≤ r ≤ n. We

already checked above that aibjck(r) < aibjck(r + 1) for 4 ≤ r ≤ n and for all

0 ≤ i ≤ n, 1 ≤ j ≤ n, 2 ≤ k ≤ n so it is certainly true for our subset. We only need

aibjck(1) < aibjck(2) which is true since for i < j, aibjck(1) = i and aibjck(2) = j. So

W J = {aibjck : 0 ≤ i < j ≤ n, 2 ≤ k ≤ n}

Now SJ = {s1s2, s2, s3, · · · , sn · · · s3} = {a1b2, b2, c3, · · · , sn}. As above, cl ∈

AJ
n(aibjck) if and only if k < l (using Proposition 10) and s2 ∈ AJ

n(aibjck) if and only

if j < k.

We only have to figure out when s1s2 ∈ AJ
n(aibjck) if 0 ≤ i < j ≤ n and

2 ≤ k ≤ n.

aibjcks1s2 = aibjcks2 = aiajbk = ajbi+1bk
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So if i + 1 < k, aibjcks1s2 = ajbkci+2 and if i + 1 ≤ k, aibjcks1s2 = ajbk−1ci+1. This

means that the length goes up if i + 1 < k and stays constant if i + 1 ≥ k. So

s1s2 ∈ AJ
n(aibjck) if and only if i + 1 < k.

Note that i < j implies that j < k and i + 1 < k. So it is not possible to have

s2 in an ascent set but not to have s1s2.

Case I: 0 ≤ i < j < k ≤ n

AJ
n(aibjck) = {s1s2, s2, ck+1, · · · , sn}.

Then νJ
n (aibjck) = n − k + 2 and for fixed 2 ≤ k ≤ n

|{aibjck : 0 ≤ i < j < k}| =



k

2





Case II: 2 ≤ k ≤ i + 1 ≤ j ≤ n

AJ
n(aibjck) = {ck+1, · · · sn}

Then νJ
n (aibjck) = n − k and for a fixed 2 ≤ k ≤ n

|{aibjck : k ≤ i + 1 ≤ n}| =
(n − k + 2)(n − k + 1)

2

Case III: 1 ≤ i + 1 < k ≤ j ≤ n

AJ
n(aibjck) = {s1s2, ck+1, · · · , cn}

then νJ
n (aibjck) = n − k + 1 and for a fixed 2 ≤ k ≤ n

|{aibjck : 1 ≤ i + 1 < k ≤ j ≤ n}| = (k − 1)(n − k + 1)
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To find
∑

w∈W J t2νJ
n (w) we need only to find cr = |{w ∈ W J : νn(w) = r}| for each

0 ≤ r ≤ n.

Let r = 0. then νn(aibjck) = 0 is only possible in Case II. In this case, k = n

and k ≤ i + 1 ≤ j ≤ n implies that an−1bncn is the only such element and c0 = 1.

Let r = n. Then νn(aibjck) = n is only possible in Case I. In this case, k = 2

and 0 ≤ i < j < 2 implies that a0b1c2 is the only such element and cn = 1.

Let r = 1. then νn(aibjck) = 1 is only possible in Case II and III. For Case II,

k = n − 1 and for Case III, k = n. So c1 = 2(3)
2

+ n − 1 = n + 2.

Let r = n− 1. Then νn(aibjck) = 1 is only possible in Case I and III. For Case

I, k = 3 and for Case III, k = 2. So cn−1 = 2(3)
2

+ (2 − 1)(n − 2 + 1) = n + 2.

Let 2 ≤ r ≤ n − 2. Then νn(aibjck) = r is possible in all cases. For Case I,

n− k + 2 = r implies k = n− r + 2, for Case II, n− k = r implies k = n− r and for

Case III, n − k + 1 = r implies k = n − r + 1.

Therefore

cr =
(n − r + 2)(n − r + 1)

2
+

(r + 1)(r + 2)

2
+ r(n − r) =

(n(n + 1)

2
+ n + 2.

and the Poincaré polynomial is given by

P (X(J), t) = t2n + 1 + (n + 2)(t2(n−1) + t2) + (
n(n + 1)

2
+ n + 2)(

n−2∑

k=2

t2k).



Chapter 4

Betti numbers of X(J) in terms of

Eulerian polynomials

4.1 Eulerian polynomials

In this section we introduce Eulerian polynomials and discuss the unifying ideas

between the cross section lattice, Eulerian polynomials and h-polynomials.

The Eulerian polynomial of a finite Weyl group (W,S) of type An records, for

each k ∈ {1, · · · , n}, the number of elements w ∈ Sn+1 with an ascent set of size k.

More results on this topic can be found in [16] and [3].

Let σ ∈ Sn+1, σ(i) = pi, i = 1, · · · , n + 1. Define the ascent set of σ

A(σ) = {i | 1 ≤ i < n : pi < pi+1}.

It turns out that

i ∈ A(σ) ⇐⇒ l(σsi) = l(σ) + 1,

for si = (i i + 1) ∈ Sn+1. We define Eulerian polynomials when (W,S) is finite Weyl

86
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group of type An as follows: Let

E(n, i) = |{σ ∈ Sn+1 | |A(σ) = i}|

be the Eulerian numbers. Define the (n + 1)–Eulerian polynomials to be:

En+1(t) =
n∑

i=0

E(n + 1, i)ti =
∑

σ∈Sn+1

t|a(σ)|, with a(σ) = |A(σ)|.

An important property of the Eulerian polynomials is that these polynomials

are palindromic polynomials, namely:

E(n, i) = E(n, n − 1 − i), for any i = 0, · · · , n − 1.

It follows that the Eulerian numbers can be generated by the well-known recurrence:

E(m + 1, n) = (n + 1)E(m,n) + (m − n + 1)E(m,n − 1), m, n ≥ 1

Remark 6. An alternative definition of the Eulerian polynomials is using the geo-

metric series:
∑

k≥1

xk =
x

1 − x

Differentiating repeatedly and multiplying by x, we obtain:

∑

k≥1

kxk =
x

(1 − x)2
(1)

∑

k≥1

k2xk =
x

(1 − x)3
(1 + x)

∑

k≥1

k3xk =
x

(1 − x)4
(1 + 4x + x2)

· · ·
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∑

k≥1

kmxk =
x

(1 − x)m+1
(
m−1∑

n=o

E(m,n)xn)

It turn out that

Em(t) =
m−1∑

n=0

E(m,n)tn

is the m–Eulerian polynomial. One can see why the two definitions are the same by

checking both polynomials satisfy the same recurrence relation.

We list the first few Eulerian polynomials:

m Em(t)

1 1

2 1 + t

3 1 + 4t + t2

4 1 + 11t + 11t2 + t3

5 1 + 26t + 66t2 + 26t3 + t4

6 1 + 57t + 302t2 + 302t3 + 57t4 + t5

7 1 + 120t + 1191t2 + 2416t3 + 1191t4 + 120t5 + t6

8 1 + 247t + 4293t2 + 15619t3 + 15619t4 + 4293t5 + 247t6 + t7

9 1 + 502t + 14608t2 + 88234t3 + 156190t4 + 88234t5 + 14608t6 + 502t7 + t8

Definition 11. A permutahedron Pn−1 ∈ Rn is the convex hull in Rn of the set

{(p1, p2, · · · , pn) ∈ Rn | σ(i) = pi, σ ∈ Sn}.

It is a known fact that the Betti numbers of the toric variety X(∅) associated

to a permutahedron are the Eulerian numbers. See Example 11.

For the next result we present a proof due to Renner.

Theorem 15. Let En(t) be the n–th Eulerian polynomial, let hn−1(t) be the h-
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polynomial of the permutahedron Pn−1. Then

En(t) = hn−1(t).

Proof. We first study the structure of the (n − 1)–permutahedron:

1. The vertices of Pn−1 correspond uniquely to the permutation group Sn.

2. The edges of Pn−1 correspond uniquely to pairs (w,ws) with w ∈ Sn and s ∈ S

such that l(ws) = l(w) + 1.

3. For any face F ⊂ Pn−1 of the permutahedron there is a unique vertex σ ∈ F

such that all edges of F are ascent of σ. (We say F likes σ).

4. From 3, the set of faces F of Pn−1 is identified with

{(σ, I) | I ⊂ A(σ), σ ∈ Sn}.

5. Given σ ∈ Sn there is a largest face F that likes σ. Furthermore,

dim(F ) = |A(σ)|.

6. The number of faces of dimension i that like σ is



k

i



 where k = |A(σ)|.

Indeed, each one correspond to a subset of A(σ) with i elements.

By definition,

hn(t) =
n−1∑

i=0

fi(t − 1)i.

=
∑

σ∈Sn

(
∑

F likes σ

(t − 1)dimF .

=
∑

σ∈Sn

(1 + k(t − 1) +



k

2



 (t − 1)2 + · · · + (t − 1)n).
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=
∑

σ∈Sn

(1 + (t − 1)a(σ).

=
∑

σ∈Sn

ta(σ).

= En+1.

As a consequence of Proposition 8 and Theorem 19 we obtain a characterization

of the (n+1)–Eulerian polynomial in terms of the subsets I ⊆ S. Recall that S is the

minimal set of reflections that generate the permutation group Sn+1, S = {s1, · · · sn}

with si = (i i + 1) ∈ Sn+1.

Theorem 16. Let En+1 be the (n + 1)-Eulerian polynomial. The following identity

holds:

En+1(t) =
∑

I⊆S

(n + 1)!

|WI |
(t − 1)|I|.

Proof. Consider (W,S) = (Sn+1, S) finite Weyl group of type An and let J = ∅. In

this case, the highest weight λ is in the interior of the fundamental Weyl chamber.

By applying reflections si = (i, i + 1) ∈ Sn+1 about the hyperplanes orthogonal to

the simple roots we permute i and i + 1 coordinates of λ. The polytope Pλ given by

the convex hull of the W -orbit of λ turns out to be an n permutahedron (see [21]).

From Theorem 19 and Proposition 7 we have that

h(t) = En+1 =
∑

I∈S(J)

|W |

|WI∗
J
|
(t − 1)|I|.

where I∗
J = I, S(J) = P(S) the power set of S, when J = ∅.
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4.2 New results

Our aim in this section is to obtain a recursive formula for the Betti numbers of the

rationally smooth toric variety X(J) in terms of the Eulerian numbers when (W,S)

is finite Weyl group of type An and J = {sn−k+1, · · · , sn} ⊆ S, for 1 ≤ k ≤ n − 1.

In section 2.4 we computed the Poincaré polynomial of X(J) using the method of

descent system (W J , SJ) in the case of J = {s4, s5, · · · , sn}, and (W,S) of type An.

In this section we consider the general case of J(k, n) = {sn−k+1, · · · , sn},

1 ≤ k ≤ n and instead of calculating the Poincaré polynomial of X(J(k, n)) using

descent systems we use the combinatorics of simple polytopes together with the the-

ory of algebraic monoids to obtain a recurrence in terms of the (n − k)–Eulerian

polynomials.

Finally, the recurrence is illustrated for k = n − 2. For the remainder of this

section we specialize the discussion to the case only of type An, where W = Sn+1,

S = {s1, · · · , sn}, and si = (i i + 1) ∈ Sn+1. We choose J ⊆ S such that J is

combinatorially smooth.

Theorem 17. Let J = {sn}. Then J is combinatorially smooth of type An and the

h-polynomial of X(J) is given by

h(t) = En+1(t) −



n + 1

2



 tEn−1(t).

Proof. From Corollary 3.5 [32] we obtain that J = {sn} is combinatorially smooth.

Let M be a J-irreducible monoid of type J = {sn}. We associate to M the cross sec-

tion lattice denoted by Λ(1). From Theorem 4 we have that Λ(1) \ {0} ∼= S(J(1, n)),

where S(J(1, n)) = {I ⊆ S | no connected component of I is contained entirely in J}.

Notice that

S(J(1, n)) ⊆ P(S)

where P(S) denotes the power set of S.
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One of the main ideas in proving this result is to partition S(J(1, n)) into

disjoint sets according to the following rule:

S(J(1, n)) = {A ⊆ S | sn−1 ∈ A} ⊔ {A ⊂ S | sn−1 /∈ A, sn /∈ A}.

We observe for A ∈ S(J(1, n)) such that sn−1 /∈ A we must have sn /∈ A, since

{sn} is a connected component of A contained entirely in J , and this contradicts the

definition of S(J(1, n)). We are now in a position to introduce notation for the two

disjoint subsets of S(J(1, n)). Let

M0 = {A ⊆ S | sn−1 ∈ A} ⊆ P(S),

and let

M1 = {A ⊆ S | sn−1 /∈ A, sn /∈ A} = P(S \ {sn−1, sn}).

Then the h-polynomial of X(J) is computed using Proposition 7:

h(t) =
∑

A∈M0

(n + 1)!

|WA∗|
(t − 1)|A| +

∑

A∈M1

(n + 1)!

|WA∗|
(t − 1)|A|.

Next, we determine A∗ = A ∪ {s ∈ J | st = ts for any t ∈ A} for any A ∈ S(J(1, n).

For A ∈ M0 we have A∗ = A and WA∗ = WA. For A ∈ M1 we have A∗ = A∪{sn}

and WA∗ is the subgroup generated by A ∪ {sn} namely, WA∗ = WA × S2. It follows

that the h-polynomial of X(J) is given by:

h(t) =
∑

A∈M0

(n + 1)!

|WA|
(t − 1)|A| +

∑

A∈M1

(n + 1)!

|WA × S2|
(t − 1)|A|

=
∑

A∈M0

(n + 1)!

|WA|
(t − 1)|A| +

n(n + 1)

2

∑

A∈M1

(n − 1)!

|WA|
(t − 1)|A|.

(4.1)

Using Theorem 16 we are able to express the (n − 1)–Eulerian polynomial in
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terms of the elements of M1. We obtain the following:

En−1(t) =
∑

A∈M1

(n − 1)!

|WA|
(t − 1)|A|.

By 4.1, this implies that the h-polynomial of X(J) equals:

h(t) =
∑

A∈M0

(n + 1)!

|WA|
(t − 1)|A| +

n(n + 1)

2
En−1(t). (4.2)

Next, we let N0 = {A ⊆ S | sn−1 /∈ A} and apply Theorem 16 to the (n+1)–Eulerian

polynomial. The following identity is obtained:

En+1(t) =
∑

A⊆S

(n + 1)!

|WA|
(t − 1)|A|

=
∑

A∈M0

(n + 1)!

|WA|
(t − 1)|A| +

∑

A∈N0

(n + 1)!

|WA|
(t − 1)|A|.

(4.3)

Next we expand the set N0 in the following way:

N0 = {A ⊆ S | sn−1 /∈ A, sn /∈ A} ⊔ {A ⊂ S | sn−1 /∈ A, sn ∈ A} ⊆ P(S)

Let N1 = {A ⊆ S | sn−1 /∈ A, sn ∈ A} = {A′ ∪ {sn} | A′ ⊆ {s1, s2, · · · , sn−2}}, such

that N0 = M1 ⊔ N1. Direct computation shows that the subgroup generated by any

A ∈ N1 can be expressed as follows: for A ∈ N1 then there exists A′ ∈ M1 such that

A = A′ ∪ {sn} and WA = WA′ × S2. Therefore we evaluate the following summand of

En+1(t) as follows:

∑

A∈N0

(n + 1)!

|WA|
(t − 1)|A| =

∑

A∈M1

(n + 1)!

|WA|
(t − 1)|A| +

∑

A∈N1

(n + 1)!

|WA|
(t − 1)|A|.

=
∑

A∈M1

(n + 1)!

|WA|
(t − 1)|A| +

∑

A′∈M1

(n + 1)!

|WA′ ||S2|
(t − 1)|A

′|+1.
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=
∑

A∈M1

(n + 1)!

|WA|
(t − 1)|A|

+
n(n + 1)

2
(t − 1)

∑

A′∈M1

(n − 1)!

|WA′|
(t − 1)|A

′|.

= n(n + 1)En−1(t) +
n(n + 1)

2
(t − 1)En−1(t).

=
n(n + 1)

2
(t + 1)En−1(t).

(4.4)

From 4.3 and 4.4 we obtain the first summand of the h-polynomial:

∑

A∈M0

(n + 1)!

|WA|
(t − 1)|A| = En+1(t) −

n(n + 1)

2
(t + 1)En−1(t). (4.5)

This by 4.2 and 4.5 implies the following relation holds:

h(t) = En+1(t) −
n(n + 1)

2
(t + 1)En−1(t) +

n(n + 1)

2
En−1(t)

= En+1(t) −



n + 1

2



 tEn−1(t).

Corollary 3. The Poincaré polynomial of X(J) with J = {sn} is given by:

P (t) = En+1(t
2) −



n + 1

2



 t2En−1(t
2). (4.6)

Proof. We use the relation between the h-polynomial and the Poincaré polynomial

recorded in [41], namely h(t2) = P (t).
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Theorem 18. Let J(2, n) = {sn−1, sn} and J(1, n) = {sn}. Denote the h-polynomial

of X(J(2, n)) by h2(t) and of X(J(1, n)) by h1(t). Then the following recurrence

relation holds:

h2(t) = h1(t) −



n + 1

3



 (t2 + t)En−2(t).

Proof. Let M be a J-irreducible monoid of type J(2, n). We associate to M the cross

section lattice denoted by Λ(2). From Theorem 4 we have Λ(2) \ {0} ∼= S(J(2, n)),

where S(J(2, n)) = {I ⊆ S | no connected component of I is contained entirely in J}.

We obtain a good handle on the set S(J(2, n)) by partitioning it into disjoint sets

according to the following rule:

S(J(2, n)) = {A ⊆ S | sn−2 ∈ A, sn−1 ∈ A, sn ∈ A}⊔

{A ⊆ S | sn−2 ∈ A, sn−1 ∈ A, sn /∈ A}⊔

{A ⊆ S | sn−2 ∈ A, sn−1 /∈ A, sn /∈ A}⊔

{A ⊆ S | sn−2 /∈ A, sn−1 /∈ A, sn /∈ A}.

We are now in a position to introduce notation for the disjoint subsets of S(J(2, n)).

Let

M0 = {A ⊆ S | sn−2 ∈ A, sn−1 ∈ A, sn ∈ A} ⊆ P(S).

M1 = {A ⊆ S | sn−2 ∈ A, sn−1 ∈ A, sn /∈ A} ⊆ P(S).

M2 = {A ⊆ S | sn−2 ∈ A, sn−1 /∈ A, sn /∈ A} ⊆ P(S).

M3 = {A ⊆ S | sn−2 /∈ A, sn−1 /∈ A, sn /∈ A} ⊆ P(S).

Then we have

S(J(2, n)) =
3⊔

i=0

Mi.
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Using Corollary 8 the h-polynomial of X(J(2, n)) is given by:

h2(t) =
3∑

i=0

∑

A∈Mi

(n + 1)!

|WA∗|
(t − 1)|A|.

Next, we compute for each A ∈ S(J(2, n)), the corresponding A∗ defined by

A∗ = A ∪ {s ∈ J(2, n) | st = ts for any t ∈ A}.

Let A ∈ M0 ∪ M1 then we have A∗ = A and WA∗ = WA.

Let A ∈ M2 then we have A∗ = A ∪ {sn} and WA∗ = WA × S2.

Let A ∈ M3 then we have A∗ = A ∪ {sn−1, sn} and WA∗ = WA × S3.

Thus the h-polynomial of X(J(2, n)) is given by:

h2(t) =
3∑

i=0

∑

A∈Mi

(n + 1)!

i! × |WA|
(t − 1)|A|. (4.7)

Consider J(1, n) = {sn} then Λ(1) \ {0} ∼= S(J(1, n)). We partition S(J(1, n)) into

disjoint sets whose elements may contain sn−1 or not contain sn−1, and obtain:

S(J(1, n)) = {A ⊆ S | sn−1 ∈ A, sn ∈ A} ⊔ {A ⊆ S | sn−1 ∈ A, sn /∈ A}⊔

{A ⊆ S | sn−1 /∈ A, sn /∈ A}.

An important step towards proving our result is finding a relation between S(J(1, n))

and S(J(2, n)). In order to achieve this we use a rather elementary idea which turns

out to be extremely efficient for our computations. We expand S(J(1, n)) in the
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following way:

S(J(1, n)) = {A ⊆ S | sn−2 ∈ A, sn−1 ∈ A, sn ∈ A}⊔

{A ⊆ S | sn−2 /∈ A, sn−1 ∈ A, sn ∈ A}⊔

{A ⊆ S | sn−2 ∈ A, sn−1 ∈ A, sn /∈ A}⊔

{A ⊆ S | sn−2 /∈ A, sn−1 ∈ A, sn /∈ A}⊔

{A ⊆ S | sn−2 /∈ A, sn−1 /∈ A, sn /∈ A}⊔

{A ⊆ S | sn−2 ∈ A, sn−1 /∈ A, sn /∈ A}.

We introduce the following notations:

N0 = {A ⊆ S | sn−2 /∈ A, sn−1 ∈ A, sn ∈ A} ⊆ P(S).

N1 = {A ⊆ S | sn−2 /∈ A, sn−1 ∈ A, sn /∈ A} ⊆ P(S).

Hence the desired relation is:

S(J(1, n)) = S(J(2, n)) ⊔ N0 ⊔ N1. (4.8)

Next, we compute A∗ = A ∪ {s ∈ J(1, n) | st = ts for any t ∈ A} for A ∈ Mi, where

i = 0, 1, 2, 3 and A ∈ Ni : i = 0, 1.

For A ∈ M0 ∪ M1 : A∗ = A and WA∗ = WA. For A ∈ M2 ∪ M3 : A∗ = A ∪ {sn} and

WA∗ = WA × S2. For A ∈ Ni : A∗ = A where i = 0, 1, and WA∗ = WA.

Furthermore the h-polynomial of X(J(1, n)) is given by:

h1(t) =
2∑

i=0

∑

A∈Mi

(n + 1)!

i! × |WA|
(t − 1)|A| +

1∑

i=0

∑

A∈Ni

(n + 1)!

|WA|
(t − 1)|A|

+
∑

A∈M3

(n + 1)!

2!|WA|
(t − 1)|A|.

(4.9)
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By 4.7 and 4.9, this implies:

h1(t) − h2(t) =
1∑

i=0

∑

A∈Ni

(n + 1)!

|WA|
(t − 1)|A| + (

1

2!
−

1

3!
)

∑

A∈M3

(n + 1)!

|WA|
(t − 1)|A|.

(4.10)

In order to compute the subgroups generated by A ∈ N0 ∪ N1, we observe that the

following relations hold:

N0 = {A ⊆ S | sn−2 /∈ A, sn−1 ∈ A, sn ∈ A}

= {A′ ∪ {sn−1, sn} | A′ ⊆ {s1, s2, · · · , sn−3}}.

Thus for A ∈ N0 there exists A′ ⊆ {s1, s2, · · · sn−3} such that A = A′∪{sn−1, sn} and

WA = WA′ × S3. (4.11)

Similarly, we have:

N1 = {A ⊆ S | sn−2 /∈ A, sn−1 ∈ A, sn /∈ A}

= {A′ ∪ {sn−1} | A′ ⊂ {s1, s2, · · · , sn−3}}
.

Thus for A ∈ N1 there exists A′ ⊆ {s1, s2, · · · sn} such that A = A′ ∪ {sn} and

WA = WA′ × S2. (4.12)

From 4.10, 4.11, 4.12 we obtain the following relation:

h1(t) − h2(t) =
∑

A′∈M3

(n + 1)!

3!|WA′ |
(t − 1)|A

′|+2 +
∑

A′∈M3

(n + 1)!

2!|WA′ |
(t − 1)|A

′|+1

+
∑

A∈M3

(
1

2!
−

1

3!
)
(n + 1)!

|WA|
(t − 1)|A|

=
(n − 1)n(n + 1)

3!
(t − 1)2

∑

A′∈M3

(n − 2)!

|WA′ |
(t − 1)|A

′|
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+
(n − 1)n(n + 1)

2!
(t − 1)

∑

A′∈M3

(n − 2)!

|WA′ |
(t − 1)|A

′|

+
(n − 1)n(n + 1)

3

∑

A∈M3

(n + 1)!

|WA|
(t − 1)|A|.

By definition M3 = P(S \ {sn, sn−1, sn−2}) and using Theorem 16 we are able to

express the (n − 2)–Eulerian polynomial in terms of the elements of M3. We obtain

the following identity:

En−2(t) =
∑

A∈M3

(n − 2)!

|WA|
(t − 1)|A|. (4.13)

By 4.13, this implies the following recurrence relation:

h1(t) − h2(t) =



n + 1

3



 (t − 1)2En−2(t) +
(n − 1)n(n + 1)

2!
(t − 1)En−2(t)

+
(n − 1)n(n + 1)

3
En−2(t).

=



n + 1

3



 (t2 + t)En−2(t).

This concludes our proof and obtain the following recurrence formula:

h2(t) = h1(t) −



n + 1

3



 (t2 + t)En−2(t).

Corollary 4. Let P2(t) be the Poincaré polynomial of X(J(2, n)). Then the following

formula holds:

P2(t) = En+1(t
2) −



n + 1

2



 t2En−1(t
2) −



n + 1

3



 (t4 + t2)En−2(t
2). (4.14)
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Proof. From Theorem 18 we have the relation

P2(t) = P1(t) −



n + 1

3



 (t4 + t2)En−2(t
2),

where P1(t) denotes the Poincaré polynomial of X(J(1, n)). Using Corollary 3 we

obtained the desired relation.

Next, we generalize the computation to the case of J(k, n) = {sn−k+1, · · · , sn},

for 1 ≤ k ≤ n. The main result of this section is a recurrence relation for the Poincaré

polynomial of X(J(k, n)) in terms of the (n − k)– Eulerian polynomials.

Theorem 19. [14] Let J(k, n) = {sn−k+1, sn−k+2, · · · , sn} ⊆ S, 1 ≤ k ≤ n and let

hk(t) denote the h-polynomial of the n–dimensional variety X(J(k, n)). Then J(k, n)

is combinatorially smooth and the following recurrence relation holds:

hk(t) = hk−1(t) −



n + 1

k + 1



 (tk + tk−1 + · · · + t)En−k(t).

where J(0, n) = ∅ and h0 = En+1 the (n + 1)–Eulerian polynomial.

Proof. From Corollary 3.5 [32] we obtain that J(k, n) is combinatorially smooth.

Let M be a J-irreducible monoid of type J(k, n) and let Λ(k) be the cross section

lattice associated to M . From Theorem 4 we have that Λ(k)\{0} ∼= S(J(k, n)), where

S(J(k, n)) = {I ⊆ S | no connected component of I is contained entirely in J(k, n)}.

Next, consider for 0 ≤ i ≤ k + 1,

Mi = {A ⊆ S | J(k + 1, n) \ J(i, n) ⊆ A ⊆ S \ J(i, n)} ⊆ P(S).

So, in particular, M0 = {A ⊆ S | J(k + 1, n) ⊆ A} ⊆ P(S), and
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Mk+1 = {A ⊆ S | A ⊆ S \ J(k + 1, n)} ⊆ P(S). Hence, we obtain

S(J(k, n)) =
k+1⊔

i=0

Mi, 0 ≤ i ≤ k + 1.

We associate to each A ∈ S(J(k, n)), A∗
k = A ∪ {s ∈ J(k, n) | st = ts for any t ∈ A}.

We compute the h-polynomial of X(J(k, n) using Proposition 7 and obtain:

hk(t) =
k+1∑

i=0

∑

A∈Mi

(n + 1)!

|WA∗

k
|

(t − 1)|A|. (4.15)

Then for A ∈ M0 ∪ M1 we have A∗
k = A and WA∗

k
= WA. For A ∈ Mi, 2 ≤ i ≤ k + 1

we have A∗
k = A∪J(i−1) and WA∗

k
= WA×Si. Thus, the h-polynomial of X(J(k, n))

is given by:

hk(t) =
k+1∑

i=0

∑

A∈Mi

(n + 1)!

i! × |WA|
(t − 1)|A|. (4.16)

Consider J(k − 1, n) = {sn−k+2, · · · , sn} ⊂ J(k, n). From Theorem 4 we obtain that

Λ(k − 1) \ {0} ∼= S(J(k − 1, n)). Let

Si = {A ⊆ S | J(k, n) \ J(i, n) ⊆ A ⊆ S \ J(i, n)} ⊆ P(S)

for 0 ≤ i ≤ k. So, in particular, S0 = {A ⊆ S | J(k, n) ⊆ A} ⊆ P(S) and

Sk = {A ⊂ S | A ⊆ S \ J(k, n)} ⊆ P(S). Note that for each 0 ≤ i ≤ k, we have

Si ∩ {A ⊆ S | sn−k ∈ A} = Mi and

Si ∩ {A ⊆ S | sn−k /∈ A} = {A ⊆ S | J(k, n) \ J(i, n) ⊆ A ⊆ (S \ (J(i, n)) ∪ {sn−k}).

Let

Ni = {A ⊆ S | J(k, n) \ J(i, n) ⊆ A ⊆ S \ (J(i, n) ∪ {sn−k})}

= {A′ ∪ (J(k, n) \ J(i, n)) |A′ ⊆ S \ J(k + 1, n)}.
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Notice also that Nk = Mk+1. Then the following relation holds:

S(J(k − 1, n)) = S(J(k, n)) ⊔
k−1⊔

i=0

Ni.

Next we compute A∗
k−1 = A∗

J(k−1,n) for all A ∈ S(J(k − 1, n). For A ∈ M0 and

A ∈ M1, we have

A∗
k−1 = A and WA∗

k−1
= WA.

For A ∈ Mi : i = 2, · · · , k, we have

A∗
k−1 = A ∪ J(k − 1, n) and WA∗ = WA × Si.

We know that Mk+1 = P(S \ J(k + 1, n)). Hence for A ∈ Mk+1, we have

A∗
k−1 = A ∪ J(k − 1, n) and WA∗ = WA × Sk.

For A ∈ N0 and A ∈ N1, we have A∗
k−1 = A and WA∗

k−1
= WA. For A ∈ Ni where

i = 1, · · · , k − 1, we have A∗
k−1 = A∪ J(i− 1, n) and WA∗

k−1
= WA ×Si. Furthermore,

the h-polynomial of X(J(k − 1, n)) is given by:

hk−1(t) =
k∑

i=0

∑

A∈Mi

(n + 1)!

i! × |WA|
(t − 1)|A| +

k−1∑

i=0

∑

A∈Ni

(n + 1)!

|WA| × i!
(t − 1)|A|

+
∑

A∈Mk+1

|W |

k! × |WA|
(t − 1)|A|.

(4.17)

By 4.17 and 4.18, this implies that

hk−1(t)−hk(t) =
k−1∑

i=0

∑

A∈Ni

(n + 1)!

i! × |WA|
(t−1)|A|+(

1

k!
−

1

(k + 1)!
)

∑

A∈Mk+1

(n + 1)!

|WA|
. (4.18)
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The following relations hold: for A ∈ Ni there exists A′ ∈ Mk+1 such that

A = A′ ∪ (J(k, n) \ J(i, n)) and WA = WA′ × Sk−i+1.

We use these relations in 4.19 and obtain the following:

hk−1(t) − hk(t) =
k−1∑

i=0

∑

A′∈Mk+1

(n + 1)!

i!(k − i + 1)!|WA′ |
(t − 1)|A

′|+k−i

+
(n + 1)!

(n − k)!
(
1

k!
−

1

(k + 1)!
)

∑

A∈Mk+1

(n − k)!

|WA|
(t − 1)|A|

=
k−1∑

i=0

(n + 1)!

(n − k)!(k − i + 1)!i!
(t − 1)k−i

∑

A′∈Mk+1

(n − k)!

|WA′|
(t − 1)|A

′|

+
(n + 1)!

(n − k)!(k + 1)!
k

∑

A∈Mk+1

(n − k)!

|WA|
(t − 1)A|.

Theorem 16 allows us to express the (n − k)-Eulerian polynomial in terms of the

elements of Mk+1:

En−k(t) =
∑

A∈Mk+1

(n − k)!

|WA|
(t − 1)|A|.

In the next formula we replace (k − i + 1)! × i! by
1

(k + 1)!



k + 1

i



 and obtain:

hk(t) − hk−1(t) =
k−1∑

i=0

(n + 1)!

(n − k)!(k − i + 1)! × i!
(t − 1)k−iEn−k(t)

+
(n + 1)!

(n − k)!(k + 1)!
kEn−k(t)

(4.19)
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=




k−1∑

i=0

(n + 1)!

(n − k)!(k + 1)!



k + 1

i



 (t − 1)k−i +

(n + 1)!

(n − k)!(k + 1)!
k

]
En−k(t)

=



n + 1

k + 1








k−1∑

i=0



k + 1

i



 (t − 1)k−i + k



En−k(t).

(4.20)

We need now to show that

k−1∑

i=0







k + 1

i



 (t − 1)k−i + k



 =
k∑

i=1

ti. (4.21)

Let f(t) =
k−1∑

i=0



k + 1

i



 (t − 1)k−i. Observe that

k+1∑

i=0



k + 1

i



 (t − 1)k+1−i = (t − 1)f(t) +



k + 1

k



 (t − 1) +



k + 1

k + 1



 (t − 1)0

By the binomial theorem we have

k+1∑

i=0



k + 1

i



 (t − 1)k+1−i = tk+1 = ((t − 1) + 1)k+1.

So

f(t) + k =
tk+1 − (k + 1)(t − 1) − 1

t − 1
+ k =

tk+1 − t

t − 1
=

k∑

i=1

ti.

The theorem now follows from 4.20 and 4.21.
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Corollary 5. Let J(k, n) = {sn−k+1, · · · , sn} ⊆ S, for 1 ≤ k ≤ n. Then the Poincaré

polynomial of X(J(k, n)) is given by the formula:

P (X(J(k, n), t) = En+1(t
2) −

k∑

i=1



n + 1

i + 1



 (t2i + · · · + t2)En−i(t
2)

Proof. We obtain from Theorem 17 that

hk(t) = h0 +
k∑

i=1

(hi(t) − hi−1(t)).

Hence

hk(t) = En+1(t) −
k∑

i=1



n + 1

i + 1



 (t2i + · · · + t2)En−i(t).

Using the fact that P (X(J), t) = h(t2) we obtain the desired formula.

We can exemplify the previous corollary with the following example.

Example 17. Let (W,S) Weyl group of type A3 and let J = {s2, s3}. We have shown

in Chapter 2 that X(J) = CP3.

According to previous corollary we have the following formula for the Poincaré

polynomial of CP3:

P (CP3, t) = E4(t
2) −



4

2



 t2E2(t
2) −



4

3



 (t4 + t2)E1(t
2)

= 1 + 11t2 + 11t4 + t6 − 6t2 − 6t4 − 4t4 − 4t2 = t6 + t4 + t2 + 1.

Next, we verify the recurrence formula obtained in Theorem 19 in some partic-

ular cases of k.

Example 18. Let k = n − 1. Then J(n − 1, n) = {s2, s3, · · · , sn} is combinatorially

smooth and the h-polynomial of X(J(n − 1, n)) is computed in Example 4.3 [32]. It
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is given by the formula:

hn−1(t) = 1 + t + t2 + · · · + tn.

The recurrence formula obtained in Theorem 19 is equivalent to

hn−1 = hn−2(t) −



n + 1

n



 (tn−1 + · · · + t)E1(t).

The h-polynomial of X(J(n− 2, n)) is computed in Example 4.6 [33] and is given by

the following formula:

hn−2(t) = 1 + (n + 2)t + (n + 2)t2 + .. + (n + 2)tn−1 + tn.

Hence

hn−2(t) − hn−1(t) = n(tn−1 + · · · + t)

yields the desired relation.

Example 19. Let k = n − 3. then J(n − 3, n) = {s4, · · · , sn} is combinatorially

smooth and the h polynomial of X(J(n − 3, n) is computed in Theorem 14. It is

given by the following formula:

hn−3 = 1 + (n + 2 +
n(n + 1)

2
)t + (n + 2 + n(n + 1))t2 + · · ·

+ (n + 2 + n(n + 1))tn−2 + (n + 2 +
n(n + 1)

2
)tn−1 + tn.

The h-polynomial of X(J(n − 2, n) is computed in Example 4.6 [33]. It is given by

the formula:

hn−2(t) = 1 + (n + 2)t + (n + 2)t2 + .. + (n + 2)tn−1 + tn.
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The recurrence formula obtained in Theorem 19 is equivalent to:

hn−2(t) = hn−3(t) −



n + 1

n − 1



 (tn−2 + tn−3 + · · · + t)E2(t)

= hn−3(t) −
n(n + 1)

2
(tn−2 + · · · + t)(t + 1)

= hn−3(t) −
n(n + 1)

2
(tn−1 + 2tn−2 + 2tn−3 + · · · + 2t2 + t)

= 1 + (n + 2)t + (n + 2)t2 + · · · + (n + 2)tn−1 + tn.

Next let (W,S) be the Weyl group of type Am−1. Recall the definition of the

Eulerian polynomials in terms of a power series given in Remark 5. Let

Sm(x) =
∑

k≥1

kmxk =
x

(1 − x)m+1
(
m−1∑

n=0

E(m,n)xn) =
x

(1 − x)m+1
Em(x).

where Em(x) is the h-polynomial of the case J = ∅ and |S| = m − 1.

Corollary 6. Then

Sm(x) −
k∑

i=1



 m

i + 1



 Sm−i−1(x)Si(x) =
x

(1 − x)m+1
hk(t)

where hk(x) is the h-polynomial of X(J(k, n)).

Proof. Let

h1(x) = Em(x) −
m(m − 1)

2
xEm−2(x)

be the h-polynomial for the case J = {sm−1} and |S| = m − 1. Consider

B(x) =
x

(1 − x)m+1
h1(x).
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Then, we obtain

B(x) = Sm(x) −
m(m − 1)

2
S1(x)Sm−2(x).

Next, when J = {sm−2, sm−1, sm} and |S| = m − 1 we get

h2(x) = Em(x) −
(m − 1)m

2
xEm−2 −

(m − 2)(m − 1)m

3!
(x2 + x)Em−3(x)

and

B(x) =
x

(1 − x)m+1
h2(x) =

= Sm(x) −
m(m − 1)

2!
Sm−2(x)S1(x) −

(m − 2)(m − 1)m

3!
Sm−3(x)S2(x).

In general when J = {sm−k, · · · sm−1} and |S| = m − 1 using the recurrence relation

between the hk(x) and hk−1(x) polynomials we obtain the following formula:

B(x) =
x

(1 − x)m+1
hk(x) = Sm(x) −

k∑

i=1



 m

i + 1



 Sm−i−1(x)Si(x)



Chapter 5

Betti Numbers of an Irreducible

Representation: an overview

The goal of this chapter is to explain to the reader how the h–polynomial of X(J) is

needed to calculate the H–polynomial of certain embeddings of a semisimple group

arising from irreducible representations. It is meant to be a survey based on several

papers by Renner. We don’t include proofs for the results we discuss here but rather

try to unify ideas used in previous chapters in order to create a more general context

where lots of interesting questions can be asked. For technical results I refer to [31],

[36], [37].

Renner introduces the H–polynomial (Definition 12 bellow) of a reductive monoid

M in terms of the set B×B–orbits of M . Let M be a reductive monoid. We consider

the B × B–action on M as follows: B × B × M → M , (g, h, x) → gxh−1. It turns

out that there are a finite number of B × B–orbits.

Any reductive group G has a Bruhat decomposition

G =
⊔

w∈W

BwB,

where W = NG(T )/T is the Weyl group. By the results of [27] there is a perfect
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analogue for reductive monoids. Instead of W we use the Renner monoid

R = NG(T )/T,

where NG(T ) ⊆ M is the Zariski closure of NG(T ) in M . Since xT = Tx for each

x ∈ NG(T ), R is a monoid and for reductive monoids the corresponding Bruhat

decomposition into B × B–orbits is controlled by the Renner monoid:

M =
⊔

r∈R

BrB.

The Renner monoid can be written as a disjoint union of W ×W–orbits, parametrized

by the cross section lattice:

R =
⊔

e∈Λ

WeW.

A reductive monoid M is called semisimple if it has a zero element and its unit

group G has a one-dimensional center.

Definition 12. Let M be a semisimple monoid with monoid R of B × B–orbits.

Define H(R), the H–polynomial of R, as follows:

H(R) =
∑

x∈R

(t − 1)r(x)tl(x)−r(x)

where r(x) = dim(Tx) is the rank of x and l(x) = dim(BxB) is its length. We then

let

H(M) = (t − 1)−1(H(R) − 1).

H(M) is called the H–polynomial of M .

The H–polynomial is a synthesis of the h–polynomial of a toric variety [39] and

the Poincaré polynomial of a Schubert variety [1]. In the former case one collects

summands of the form (t − 1)a while in the later case one collects summands of the
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form tb.

When M is semisimple we consider the induced action of G×G on the projective

variety

P(M) = [M \ {0}]/k∗

Remark 7. This H–polynomial is not the correct tool for investigating varieties with

singularities that are not rationally smooth. In the case of Schubert varieties, and

Kazhdan-Lusztig theory, the correct formulation incorporates a correction factor (via

the KL-polynomial) that takes into account local intersection cohomology groups. In

case the singularities of P(M) are rationally smooth, the polynomial IPX(t) of [5]

agrees with the polynomial H(M). However, in the absence of rationally smooth

singularities, these local intersection cohomology groups may not be so well adapted

to cellular decompositions.

5.1 Betti numbers and cellular decomposition

Clearly one can define a Poincaré polynomial for any reasonable cohomology theory.

In [5] the authors compute the intersection cohomology polynomial Poincaré polyno-

mial for a large class of G × G–embeddings X of G. However it is known [13] that

IPX(t) = PX(t) in case X has rationally smooth singularities.

Theorem 20. [36] Let M be a semisimple algebraic monoid such that M \ {0} is

rationally smooth. Then

H(M)(t2) = PX(t)

where X = [M \ {0}]/k∗.

Next we describe how R decomposes naturally into a disjoint union of cells Cr,

r ∈ R1, where R1 is the set of rank-one elements of R.
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Definition 13. Define for r ∈ R1,

Cr =
⊔

x∈Cr

BxB.

We refer to Cr as the monoid cell associated with r ∈ R1.

It turns out that the following holds:

M \ {0} =
⊔

r∈R1

Cr.

5.2 The H-polynomial of a semisimple monoid

Next, suppose that M is a J–irreducible of type J ⊂ S, and such that M \ {0} is

rationally smooth. There is a combinatorial object associated with this situation

called the augmented poset (E1,≤, {νs}). It turns out that this augmented poset

encodes all the relevant information about the H–polynomial of M . The main result

answers the following question posed in [34]. Let r = (u, v) ∈ R1
∼= W J × W J , and

let Cr ⊂ P(M) be the corresponding cell. To calculate the H–polynomial of M one

first need to answer the following technical question.

What is dim(Cr) in terms of (u, v), J, and (W, S)?

Renner quantifies the dimension of Cr in terms of r and the descent system (W J , SJ).

This allows him to write the H–polynomial of M entirely in terms of (W J , SJ).

The set up is the following. Let J ⊂ S be combinatorially smooth and let

s ∈ S \ J , w ∈ W J . Then let

a) δ(s) = |Cs| + 1, where Cs is the connected component of J attached to s.

b) νs(w) = |{r ∈ SJ
s | w < wr}| = |AJ

s (w)|.

c) wo ∈ W J be the longest element.
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Theorem 21. [36] The H–polynomial H(M) of M is given by

H(M) = (
∑

w∈W J

tl(w0)−l(w)+m(w))(
∑

v∈W J

tl(v))

where m(w) =
∑

s∈S\J δ(s)νs(w) and H(J) =
∑

v∈W J tl(v) is the H–polynomial of

G/PJ .

The descent system is necessary to obtain a precise description of the quantity

m(v) in the above formula for H(M).

Next, we illustrate the previous theorem with the following examples taken from

[36].

Example 20. Let M = Mn+1(k). Then M is J–irreducible of type J ⊂ S, where

J = {s2, s3, · · · , sn} and (W,S) is of type An. In this examples

SJ = {s1, s2s1, · · · , sn · · · s1}, W J = SJ ⊔ {1}.

Write ai = si · · · s1 if i > 1, and a0 = 1. An elementary calculation yields S\J = {s1},

l(ai) = i,

w0 = sn · · · s1,

δ(s1) = n,

νs1
(ai) = n − i,

P (J) =
∑n

i=0 t2i, and XM = P(n+1)2−1(k).

We obtain the following formula for the H–polynomial:

H(Mn+1(k)) = (
n∑

i=0

t(n−i)(n+1))(
n∑

i=0

ti) =

(n+1)2−1∑

i=0

ti

Example 21. In this example we consider M a J–irreducible of type J ⊂ S, where

(W,S) is of type An and J = {s3, s4, · · · , sn}.

If w ∈ W J
n we write w = apbq where ap = sp · · · s1 (1 ≤ p ≤ n) and bq = sq · · · s2
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(2 ≤ q ≤ n). Thus

W J
n = {apbq | 0 ≤ p ≤ n and 1 ≤ q ≤ n}.

Now S \ J = {s1, s2} so that Cs1
= ∅ and Cs2

= {s3, · · · , sn}. Thus,

1) δ(s1) = 1, and

2) δ(s2) = n − 2 + 1 = n − 1.

3)νs1
(apbq) = 1 if p < q and νs1

(apbq) = 0 if p ≤ q.

4)νs2
(apbq) = n − q.

Thus, by definition,

1) m(apbq) = (n − 1)(n − q) + 1 if p < q and

2) m(apbq) = (n − 1)(n − q) if p ≤ q.

Finally, l(apbq) = p + q − 1, and anbn ∈ W J is the longest element.

Thus, for w = apbq ∈ W J , we obtain

l(w0) − l(w) + m(w) = n − p + n(n − q) + ǫ

where ǫ = 1 if 0 ≤ p < q ≤ n, and ǫ = 0 if n ≥ p ≥ q ≥ 1. Thus

∑

w∈W J

tl(w0)−l(w)+m(w) =
∑

0≤p<q≤n

tn−p+n(n−q)+1 +
∑

n≥p≥q≥1

tn−p+n(n−q)

The other factor is

H(J) =
∑

w∈W J

tl(w) =
n∑

i=1

i(ti−1 + t2n−i)

Finally we obtain

H(M) =
∑

0≤p<q≤n

tn−p+n(n−q)+1 +
∑

n≥p≥q≥1

tn−p+n(n−q) +
n∑

i=1

i(ti−1 + t2n−i).
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In the last example we consider the root system of type Bl.

Example 22. Here we consider the case of J–irreducible monoid of type J = {s1, · · · , sl−1}.

For related computations and a description of W J see [35, Example 6.10]

We omit the relevant details of the computations made in this case. For a

complete proof see [36]. The H–polynomial is given by the following formula:

H(M) = (
l∏

k=1

(1 + tk+l))(
l∏

k=1

(1 + tk))

where the factor
∏l

k=1(1+tk+l) is H(G/PJ) =
∑

v∈W J tl(v) and the factor
∏l

k=1(1+tk)

is
∑

w∈W J tl(w0)−l(w)+m(w)
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