
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

2-1-2023 1:00 PM

Look-Ahead Selective Plasticity for Continual Learning Look-Ahead Selective Plasticity for Continual Learning

Rouzbeh Meshkinnejad, The University of Western Ontario

Supervisor: Mohsenzadeh, Yalda, The University of Western Ontario

: Daniel, Lizotte, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Rouzbeh Meshkinnejad 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Recommended Citation Recommended Citation
Meshkinnejad, Rouzbeh, "Look-Ahead Selective Plasticity for Continual Learning" (2023). Electronic
Thesis and Dissertation Repository. 9128.
https://ir.lib.uwo.ca/etd/9128

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9128&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9128?utm_source=ir.lib.uwo.ca%2Fetd%2F9128&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Recent progress in contrastive representation learning has shown to yield robust representa-

tions that can avoid catastrophic forgetting in continual learning tasks. Most of these methods
avoid forgetting by limiting changes in components of the deep neural network (DNN) that
hold significant information about previously seen tasks. While these previous methods have
been successful in preserving aspects of learned parameters believed to be most relevant for
distinguishing previous classes, the retained parameters may be overfitted to seen data, leading
to poor generalization even though “forgetting” is avoided. Inspired by modulation of early
sensory neurons by top-down feedback projections of cortical neurons in perception and visual
processing, we propose a class-incremental continual learning algorithm that identifies and at-
tempts to preserve weights that contribute to the model performing well on new unseen classes
by assessing their generalizability on a small predictive batch of the next episode of data. With
experiments on popular image classification datasets, we demonstrate the effectiveness of the
proposed approach and explain how using the model’s first encounter with new data to simulate
a feedback signal for modulating plasticity of weights provides more information for training
compared to using the loss value alone, and how it can guide the model’s learning through new
experiences.

Keywords: Continual Learning, Representation Learning, Neuromodulation

ii

Summary for Lay Audience
Continual learning is the field of training a neural network on a sequence of tasks defined
by their corresponding datasets. A major issue that this field attempts to solve is catastrophic
forgetting, when a neural network’s performance on previous learned tasks rapidly decreases, in
contrast to how humans learn. Previous work has made significant progress in providing neural
networks that output representations (a vector) for each data sample (an image) that are robust
to forgetting. Most of these methods avoid forgetting by limiting changes in components of
the neural network that hold significant information about previously seen tasks. While these
previous methods have been successful in preserving aspects of learned parameters believed
to be most relevant for distinguishing previous classes of data, the retained parameters may
be working well on the data they were trained on but perform poorly on similar data that
they have not seen and lacking generalizability, even though “forgetting” is avoided. Inspired
by modulation of early sensory neurons (near eyes) by top-down feedback of higher level
neurons in the brain when processing visual stimuli, this thesis proposes a continual learning
algorithm that identifies and attempts to preserve neurons and connections that contribute to
the model performing well on new unseen classes by assessing their performance on a small
subset of the next episode of data. With experiments on popular image classification datasets,
the effectiveness of the proposed approach is demonstrated. It is also explained that how using
the model’s first encounter with new data to simulate a feedback signal for modulating the
allowance of change in neurons (plasticity) provides more information for training compared
to using the loss value (used for training of the network and is indicator of performance) alone,
and how it can guide the model’s learning through new experiences.

iii

Acknowledgements
I want to thank my supervisors, Drs. Yalda Mohsenzadeh and Dan Lizotte for their guidance,
support, and much needed patience throughout the completion of this thesis.

I would especially like to thank Dr. Jie Mei for her guidance and insight throughout this
thesis and other projects we did together during my studies. Dr. Mei inspired me and showed
me a way out whenever I found my self stuck in solving the research challenges. Working with
you was the highlight of my studies at Western. Thank you.

I would like to thank the wonderful group of people I met at Western and especially Mo-
hammad, Vahid Reza, and Anthony for their help and advice. We shared a lot of good, funny,
and enlightening moments together that I will remember for the years to come.

This thesis was funded in part by a generous scholarship from Vector Institute as well as
the Western Graduate Research Scholarship. I would like to thank both Western and Vector
Institute for supporting my research.

Finally, I want to express my deepest gratitude to my parents and my sister for providing me
with unconditional support and continuous encouragement to trust my self and believe in what
I am doing and my research. This thesis would not have been possible without your support.
Thank you for everything.

iv

To the loving memory of my grandmother

Contents

Abstract ii

Summary for Lay Audience iii

Acknowledgements iv

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Contributions . 3
1.4 Scope . 3
1.5 Organization . 3

2 Background 4
2.1 Supervised Machine Learning . 4
2.2 Neural Network Learning . 4
2.3 Convolutional Neural Networks . 5
2.4 Residual Networks . 5
2.5 Transfer Learning . 6
2.6 Multi-Task Learning . 7
2.7 Few-Shot Learning . 7
2.8 Meta-Learning . 7
2.9 Continual Learning . 8

2.9.1 Tasks . 8
2.9.2 Forgetting . 9
2.9.3 Experiences . 9

2.10 Evaluation Metrics . 9
2.11 Simplifying Assumptions Used in Continual Learning Research 11

2.11.1 Disjoint task formulation . 11
2.11.2 Task vs. Class vs. Domain Incremental 12
2.11.3 Online vs. Offline CL . 13
2.11.4 Memory Availability . 14

vi

2.12 Representation Learning . 14
2.12.1 Contrastive Learning . 15

2.13 Neuromodulation . 15
2.14 Neuroplasticity . 16
2.15 Top-Down Visual Feedback . 16

3 Literature Survey 17
3.1 Continual Learning Desiderata . 17
3.2 Continual Learning Datasets . 18

3.2.1 Split-MNIST . 18
3.2.2 Split-CIFAR10/100 . 19
3.2.3 Split-TinyImageNet . 19

3.3 Architectures . 20
3.4 Attribution . 20

3.4.1 Excitation Backpropagation . 21
3.5 Approaches to Continual Learning . 22

3.5.1 Knowledge Distillation . 22
Learning Without Forgetting (LwF) 23

3.5.2 Parameter Isolation and Regularization 24
Elastic Weight Consolidation (EWC) 24
Synaptic Intelligence (SI) . 25
PackNet . 27
Attention-based Selective Plasticity 28

3.5.3 Meta-Learning . 29
Online Meta Learning (OML) . 29
A Neuromodulated Meta-Learning Algorithm (ANML) 31

3.5.4 Representation Learning . 32
Incremental Classifier and Representation Learning (iCaRL) 32
Contrastive Learning of Visual Representations (SimCLR) 34
Supervised Contrastive Learning (SupCon) 36
Contrastive Continual Learning (Co2L) 37

3.6 Neural Similarity Learning . 39

4 Methods 41
4.1 Saliency Methods . 42

4.1.1 Salient Representative Selection . 42
4.1.2 Salient Excitation Backprop . 44

4.2 Knowledge Preservation Methods . 45
4.2.1 Selective Distillation . 45
4.2.2 Gradient Modulation . 46
4.2.3 Half-Network . 47
4.2.4 Baselines . 47

4.3 Training Procedure . 48
4.4 Experimental Settings . 50
4.5 Ablation Studies . 52

vii

4.5.1 Effect of the Using the Predictive Batch 52
4.5.2 Effect of Memory Size . 52

5 Results 53
5.1 Experimental Results on SplitMNIST . 54

5.1.1 Measured F1-Scores . 54
5.1.2 Confusion Matrices . 55
5.1.3 Metric Plots . 58

5.2 Experimental Results on SplitCIFAR10 . 63
5.2.1 Average Accuracy Evaluated After Each Task 63
5.2.2 Confusion Matrices . 64
5.2.3 Metric Plots . 67

5.3 Experimental Results on SplitTinyImageNet 73
5.3.1 Average Accuracy Evaluated After Each Task 73
5.3.2 Confusion Matrices . 74
5.3.3 Metric Plots . 78

5.4 Ablation Studies . 82
5.4.1 Effect of the Predictive Batch . 82

Experimental results on SplitMNIST 82
Experimental results on SplitTinyImageNet 83

5.4.2 Effect of Memory Size . 84
Experimental Results on SplitMNIST 84
Experimental Results on SplitTinyImageNet 91

5.5 Comparison of Proposed Methods to State-of-the-Art 95

6 Discussion and Conclusion 96

Bibliography 98

Curriculum Vitae 105

viii

List of Figures

4.1 The new proposed setting: Data comes in as a stream and access is defined by
a sliding window. 41

4.2 Salient Representative Selection: Identifying parts of the representations that
transfer well. 43

4.3 Selective Distillation: Knowledge Distillation only on parts found to be salient. 46
4.4 Architecture in training and evaluation time 49

5.1 SplitMNIST: Task 1 Confusion Matrix . 55
5.2 SplitMNIST: Task 2 Confusion Matrix . 56
5.3 SplitMNIST: Task 3 Confusion Matrix . 56
5.4 SplitMNIST: Task 4 Confusion Matrix . 57
5.5 SplitMNIST: Task 5 Confusion Matrix . 57
5.6 SplitMNIST: Precision, recall, and f1-score of class 0 across tasks for different

implemented methods. 58
5.7 SplitMNIST: Precision, recall, and f1-score of class 1 across tasks for different

implemented methods. 58
5.8 SplitMNIST: Precision, recall, and f1-score of class 2 across tasks for different

implemented methods. 59
5.9 SplitMNIST: Precision, recall, and f1-score of class 3 across tasks for different

implemented methods. 59
5.10 SplitMNIST: Precision, recall, and f1-score of class 4 across tasks for different

implemented methods. 60
5.11 SplitMNIST: Precision, recall, and f1-score of class 5 across tasks for different

implemented methods. 60
5.12 SplitMNIST: Precision, recall, and f1-score of class 6 across tasks for different

implemented methods. 61
5.13 SplitMNIST: Precision, recall, and f1-score of class 7 across tasks for different

implemented methods. 61
5.14 SplitMNIST: Precision, recall, and f1-score of class 8 across tasks for different

implemented methods. 62
5.15 SplitMNIST: Precision, recall, and f1-score of class 9 across tasks for different

implemented methods. 62
5.16 SplitCIFAR10: Task 1 Confusion Matrix . 64
5.17 SplitCIFAR10: Task 2 Confusion Matrix . 65
5.18 SplitCIFAR10: Task 3 Confusion Matrix . 65
5.19 SplitCIFAR10: Task 4 Confusion Matrix . 66

ix

5.20 SplitCIFAR10: Task 5 Confusion Matrix . 66
5.21 SplitCIFAR10: Precision, recall, and f1-score of class 0 across tasks for differ-

ent implemented methods. 67
5.22 SplitCIFAR10: Precision, recall, and f1-score of class 1 across tasks for differ-

ent implemented methods. 68
5.23 SplitCIFAR10: Precision, recall, and f1-score of class 2 across tasks for differ-

ent implemented methods. 68
5.24 SplitCIFAR10: Precision, recall, and f1-score of class 3 across tasks for differ-

ent implemented methods. 69
5.25 SplitCIFAR10: Precision, recall, and f1-score of class 4 across tasks for differ-

ent implemented methods. 69
5.26 SplitCIFAR10: Precision, recall, and f1-score of class 5 across tasks for differ-

ent implemented methods. 70
5.27 SplitCIFAR10: Precision, recall, and f1-score of class 6 across tasks for differ-

ent implemented methods. 70
5.28 SplitCIFAR10: Precision, recall, and f1-score of class 7 across tasks for differ-

ent implemented methods. 71
5.29 SplitCIFAR10: Precision, recall, and f1-score of class 8 across tasks for differ-

ent implemented methods. 71
5.30 SplitCIFAR10: Precision, recall, and f1-score of class 9 across tasks for differ-

ent implemented methods. 72
5.31 SplitTinyImageNet: Task 1 Confusion Matrix 75
5.32 SplitTinyImageNet: Task 2 Confusion Matrix 75
5.33 SplitTinyImageNet: Task 3 Confusion Matrix 76
5.34 SplitTinyImageNet: Task 4 Confusion Matrix 76
5.35 SplitTinyImageNet: Task 5 Confusion Matrix 77
5.36 SplitTinyImageNet: Simultaneous Training Confusion Matrix 78
5.37 SplitTinyImageNet: Precision, recall, and f1-score of task 1 across tasks for

different implemented methods. 79
5.38 SplitTinyImageNet: Precision, recall, and f1-score of task 2 across tasks for

different implemented methods. 79
5.39 SplitTinyImageNet: Precision, recall, and f1-score of task 3 across tasks for

different implemented methods. 80
5.40 SplitTinyImageNet: Precision, recall, and f1-score of task 4 across tasks for

different implemented methods. 80
5.41 SplitTinyImageNet: Precision, recall, and f1-score of task 5 across tasks for

different implemented methods. 81
5.42 SplitMNIST: Precision, recall, and f1-score of class 0 across tasks for different

implemented methods with a larger memory of size 100. 86
5.43 SplitMNIST: Precision, recall, and f1-score of class 1 across tasks for different

implemented methods with a larger memory of size 100. 86
5.44 SplitMNIST: Precision, recall, and f1-score of class 2 across tasks for different

implemented methods with a larger memory of size 100. 87
5.45 SplitMNIST: Precision, recall, and f1-score of class 3 across tasks for different

implemented methods with a larger memory of size 100. 87

x

5.46 SplitMNIST: Precision, recall, and f1-score of class 5 across tasks for different
implemented methods with a larger memory of size 100. 88

5.47 SplitMNIST: Precision, recall, and f1-score of class 5 across tasks for different
implemented methods with a larger memory of size 100. 88

5.48 SplitMNIST: Precision, recall, and f1-score of class 6 across classes for differ-
ent implemented methods with a larger memory of size 100. 89

5.49 SplitMNIST: Precision, recall, and f1-score of class 7 across tasks for different
implemented methods with a larger memory of size 100. 89

5.50 SplitMNIST: Precision, recall, and f1-score of class 8 across tasks for different
implemented methods with a larger memory of size 100. 90

5.51 SplitMNIST: Precision, recall, and f1-score of class 9 across tasks for different
implemented methods with a larger memory of size 100. 90

5.52 SplitTinyImageNet: Precision, recall, and f1-score of task 1 across tasks for
different implemented methods with a larger memory of 1000. 92

5.53 SplitTinyImageNet: Precision, recall, and f1-score of task 2 across tasks for
different implemented methods with a larger memory of 1000. 92

5.54 SplitTinyImageNet: Precision, recall, and f1-score of task 3 across tasks for
different implemented methods with a larger memory of 1000. 93

5.55 SplitTinyImageNet: Precision, recall, and f1-score of task 4 across tasks for
different implemented methods with a larger memory of 1000. 93

5.56 SplitTinyImageNet: Precision, recall, and f1-score of task 5 across tasks for
different implemented methods with a larger memory of 1000. 94

xi

List of Tables

4.1 Look-Ahead Selective Plasticity Hyperparameters 51

5.1 SplitMNIST: Mean (std) of class f1-score on the test set after each task 55
5.2 SplitCIFAR10: Task mean (std) accuracy on the test set 64
5.3 SplitTinyImageNet: Task mean (std) accuracy on the test set 74
5.4 SplitMNIST: Mean (std) of class f1-score on the test set after each task for

variants using and not using the predictive batch. Variants that do not use the
predictive batch are marked with *. 83

5.5 SplitTinyImageNet: Task mean (std) accuracy on the test set after each task for
variants using and not using the predictive batch. Variants that do not use the
predictive batch are marked with *. 84

5.6 SplitMNIST: Mean (std) of class f1-score on the test set after each task 85
5.7 SplitTinyImageNet: Task mean (std) accuracy on the test set for different mem-

ory sizes . 91
5.8 Comparison of proposed methods with previous state-of-the-art continual learn-

ing approaches: average (std) accuracy over all tasks are reported. State-of-the-
art results are measured over 10 independent trials. The best performance are
marked with bold. ’-’ denotes that results were not recorded because of incom-
patibility issues or intractable training time. 95

xii

Chapter 1

Introduction

1.1 Context

Deep Neural Networks (DNN) are known to be powerful function approximators. While show-
ing prominent success in tasks like Image Classification, Image Segmentation, and Natural
Language Understanding, they require a large and diverse dataset of training examples to ef-
fectively learn generalizable patterns and perform well on held-out datasets. Moreover, their
usecase typically consists of very specific tasks with a large dataset, while the most useful prob-
lems are known to be more general (for example a self-improving assembly line that detects
anomalies, assesses quality, receives feedback, and makes decisions regarding the production
line to make the end-product better) with relatively few training examples available. Mean-
while, biological organisms learn from experience and adapt continually over their lifetime.
Learning occurs using much less training data, and the biological system can generalize the
acquired knowledge to unseen data [45]. Researchers have therefore questioned whether a
DNN can learn and adapt continually to different tasks; however, early experiments showed
that when trained on new tasks, DNNs performance on previous tasks rapidly deteriorates,
prompting scientists to term this phenomenon catastrophic forgetting [61].

The field of Continual Learning (also known as Sequential, Incremental, or Lifelong Learn-
ing) studies how neural networks can keep learning new tasks sequentially, while previously
acquired knowledge is not forgotten. Forgetting in this context is defined as a decrease in per-
formance metrics on a previously learned task as the network is trained on subsequent tasks.
Continual learning is studied in various problem settings with varying assumptions about task
characteristics (with or without task identification numbers, classes in tasks, same classes but
new instances/domain) and varying assumptions about the available training data at different
points in the process (each data sample seen only once, vs. the option to train on a task’s data
multiple times). An example of a Continual Learning problem can be illustrated by defining
a sequence of tasks. Imagine a dataset of handwritten digit images including only the digits 0
and 1. A neural network can be trained on this dataset to distinguish images of digit 0 from 1
with high accuracy. Now imagine that a second dataset of handwritten digit images of digits 2
and 3 becomes available. The goal of Continual Learning is to train the neural network on this
dataset to not only discriminate images of 2 and 3, but also images of digits it has previously
seen, namely 0 and 1. While trying to reach this goal, a limitation should be considered: The

1

2 Chapter 1. Introduction

previous dataset, one that had digits 0 and 1, may not be available or the access to it may be-
come very limited. The field of Continual Learning studies algorithms that can train a model to
learn the new dataset while not forgetting previously learned dataset(s) even though the access
to previous dataset(s) is limited. Furthermore, subsequent tasks can also become available.
After training the network on images of 2 and 3, a new dataset of images of digits 4 and 5 can
become available while access to previous datasets becomes limited.

1.2 Motivation
Virtually all of the previous techniques introduced in Continual Learning fall into one or more
of the following categories:

• Model growing

• Rehearsal of samples stored in a memory

• Discrimination and conservation of learned knowledge via methods like

– Regularization of parameters deemed important,

– Parameter isolation, or

– knowledge distillation

• Meta-Learning

• Incremental Representation Learning.

Except for Meta-Learning approaches, the rest of the techniques use some form of regulariza-
tion to preserve knowledge from previous tasks in order to prevent forgetting. In order to do
so, these methods use either data samples from the previous tasks which are stored in memory,
or the model’s parameters, which are derived from previous tasks’ data. While successful to
some extent, these methods have a significant and inherent drawback: Focusing only on pre-
serving previously acquired knowledge neglects generalizability on new tasks that share some
underlying structure with previously learned tasks. In this thesis we aim to introduce a Con-
tinual Learning setting and framework that attempts to preserve knowledge not only based on
the acquired knowledge of previous tasks (and consequently the parameters that may hold this
knowledge), but also what parts of this knowledge and which parameters are likely to general-
ize to upcoming tasks. In doing so, we are going to define a metric that quantitatively measures
how important each network parameter is for a good performance on past tasks and the next
upcoming task.

In biological brains, a mechanism called Neuromodulation enables neurons to communicate
with each other via neurotransmitters in different spatial and temporal scales. Neuromodulation
is believed to play a significant role in mitigating catastrophic forgetting [45, 6, 22, 93, 63, 19,
59] by selectively modifying the connectivity of neurons, attention, and plasticity [41, 21].

Inspired from Neuromodulation and its role in behavioral adaptation, a main aim of this
thesis is to explore various methods to leverage Neuromodulation for continually learning vi-
sual tasks.

1.3. Contributions 3

1.3 Contributions
The main contributions of this thesis are as follows:

1. A new approach/setting for continual learning that uses a predictive batch of new up-
coming data as well as data from past tasks to identify salient parameters.

2. Two new saliency methods that combine to find salient parameters.

3. Three new methods that leverage saliency information with inspiration from neuromod-
ulation to reduce change in parameters that are performing well on past and a predictive
batch of new upcoming data.

Each novel setting and method has been implemented and evaluated on popular vision datasets
in order to analyze the benefits of Neuromodulation-Inspired mechanisms on adaptation to new
data and mitigating catastrophic forgetting.

1.4 Scope
This thesis focuses on continual learning in visual tasks (supervised image classification).
While continual learning is also studied in other areas such Reinforcement Learning, the meth-
ods review and analyses here are mostly focused on computer vision, and the contributions are
also in the field of computer vision and whether the proposed methods are applicable to other
areas was not investigated.

1.5 Organization
This thesis is organized as follows: First, in Chapter 2, preliminary terms and definitions
required to understand the subsequent chapters are explained. Next, in the Literature Sur-
vey chapter (Chapter 3), previous work in Continual Learning and Neuromodulation-Inspired
methods is explored and described. In the Methods section (Chapter 4), novel techniques for
identifying salient parameters and preserving them in the new setting are explained. Then, the
Results are presented in Chapter 5 followed by Discussion and Conclusion (Chapter 6).

Chapter 2

Background

In this chapter, terminology and preliminary definitions needed to understand the remaining
part of this thesis are laid out. First the general concepts of Supervised Machine Learning and
the training process of Neural Networks is explained. Then the focus is brought to a specific
type of neural networks called Convolutional Neural Networks (CNNs) that are used in Com-
puter Vision tasks, and a specific type of CNNs called Residual Networks which are employed
as one of the main architectures in this thesis. Moreover, in order to properly introduce Con-
tinual Learning, first Transfer Learning, Multi-Task Learning and Meta-Learning paradigms
are described. A definition of Continual Learning is then provided, followed by assumptions
used to simplify and more easily formulate the Continual Learning problem. Next, Represen-
tation Learning and a special form of it called Contrastive Learning are explained. Finally,
concepts of Neuromodulation, Neuroplasticity, and Top-Down visual feedback are introduced
as the main inspirations for the methods used in this thesis.

2.1 Supervised Machine Learning
Supervised machine learning methods are designed to solve a problem of predicting accurate
labels given a set of input features. Specifically, a labelled dataset is given, where each data
point is composed of a set of input features and a label. The goal is to train a model using the
given dataset that takes a set of input features (possibly from outside of the training dataset)
and predicts the label accurately.

2.2 Neural Network Learning
This thesis focuses on supervised learning of artificial neural networks. An artificial neural
network is essentially a set of interconnected artificial neurons. Each so called neuron computes
a non-linear function of its inputs. Since neurons are usually stacked into layers, the inputs to
a neuron are usually the output (called activations) of previous layer neurons or the input to the
network itself. Specifically, the ith neuron in layer l computes the following function:

a(l)
i = f (

∑
j

w(l)
i, ja

(l−1)
j + b) (2.1)

4

2.3. Convolutional Neural Networks 5

where f is a non-linear function and b is a constant named bias. wl
i, j is the weight of the

connection between the ith neuron in layer l and the jth neuron in the previous layer. a(l)
i is the

output (or activation) of the described neuron. When the number of stacked layers becomes
large, such a network will be called a deep neural network. Deep Neural Networks have shown
to be very powerful function approximators, presenting impressive results and performance on
a variety of tasks in Computer Vision and Natural Language Processing, among others.

Artificial neural networks are trained to find an optimal set of weights w and biases b, such
that a loss function is minimized. In order to asses a network’s performance on a dataset, a
loss function is defined. A function of network weights, this loss function will have a large
value if the network is making poor predictions, whereas its value will be low if the network
is making accurate predictions. The optimization of weights w can be done in different ways,
such as evolution algorithms or finding a closed-form solution analytically. A method that is
used more than the others, however, is called gradient descent, where the partial derivatives of
the loss function with respect to each weight wl

i, j are computed. Next, each weight is modified
in the opposite direction of the gradient, hence the term gradient descent. Each update of the
weights can generally be written as:

wl
i, j = wl

i, j − γ
∂ℓ(w, ...)
∂wl

i, j

(2.2)

where ℓ(w, ...) is the loss function and γ is a ”hyperparameter” known as the learning rate.
Hyperparamters are those that control certain aspects of the training algorithm and the opti-
mization process, but are not among the network weights.

The process in which partial derivatives are calculated layer by layer, top to bottom, is
called backpropagation [77]. There can be other update rules to the weights with different
optimizers. Improving optimizers and finding ones better suited for specific classes of problems
is still an active area of research. Overall, given a training dataset, a loss function, and an
optimizer (e.g. gradient descent), a network can be trained via the backpropagation algorithm.

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNN) [49] are a class of neural networks that are mostly used
for visual inputs. In the context of visual inputs, CNNs reorganize weights of a neural network
into filters or channels, and apply the same weight across different positions of the input, much
like the convolution operation. One or more of such filters will make up a convolutional layer,
and stacking one or more convolutional layers will result in a CNN. After training, each filter
or channel will learn to recognize a pattern, with the lower layers of CNN responding to simple
patterns like edges and higher layers reacting to more complex patterns (like certain features
in objects). As a result, each convolutional layer in a CNN is capable of combining the inputs
and recognizing more complex patterns.

2.4 Residual Networks
In the first few years of developing and training CNNs, two observations were made:

6 Chapter 2. Background

1. Deeper (more layers) CNNs perform better when trained on large datasets [84, 89].

2. Deep CNNs are hard to train, and the optimization process may diverge [29].

While tricks such as normalized initialization and intermediate normalizing layers added to
deep CNNs [51, 38] were successful in stabilizing training and addressing problems such
as vanishing gradients, a degradation problem still remained [35]: Increasing network depth
would cause the accuracy to get saturated and then rapidly degrade. The source of this prob-
lem was verified not to be over-fitting [35, 86, 34] as the training error also increased with the
addition of layers to a deep network, but rather an inherent issue with how the optimization
is performed. If a network is made deeper by adding some layers, one of the solutions to the
optimization problem would be the solution of the shallower network by simply setting the
new layers to be identity. As a result, a deeper network should demonstrate a performance
that is at least as good as its shallow version. Residual networks were designed to address the
degradation problem by replacing the optimization problem from approximating the function
H(x) to approximating a different function F(x) = H(x) − x. This is implemented as residual
connections in each layer, adding the input of a sub-network to its output and hence, making up
F(x) + x. Residual networks are known to be easier to train, can be designed to be deeper, and
perform better than ordinary deep neural networks. As will be seen later, Residual architectures
have been used both in previous Continual Learning work and this thesis.

2.5 Transfer Learning
To better introduce the concept of Continual Learning, it is good to describe how Continual
Learning is different to areas of Transfer Learning, Multi-Task Learning, and Meta-Learning.
First, Transfer Learning is a popular area of research in Machine Learning and involves two or
more domains, a source domain and a set of target domains. There is usually a large amount
of data and labels for the source domain, while data available for target domains is limited. It
is also possible that there are multiple source domains, a case which is termed multi-source
transfer learning. The goal is to train the network on the large data available in the source do-
main to help learning from the small amount of data in the target domains [102]. In contrast to
Continual Learning, Transfer Learning focuses only on the performance on the target domains
and does not make any attempt to preserve the performance of the model on the source do-
main(s). Continual Learning, however, aims to train a model on two or more datasets such that
the performance is good both on the current dataset and the datasets the model was previously
trained on.

Transfer Learning approaches in the context of DNNs can be categorized into four groups
[68]: Instance-based approaches reuse parts of the source data by either computing the loss
function with a weight assigned to each training instance or sampling training examples ac-
cording to a probability. Instance weighting and importance sampling are two main methods
used in these approaches. Feature-representation-transfer approaches try to learn a ”good”
representation using data from the source domain that results in good predictive performance
when used as the representation for the target domain. Parameter-transfer approaches sug-
gest a portion of model parameters trained on the source domain(s) can also be shared and
used for the target domain(s). It essentially assumes that the learned knowledge of the source

2.6. Multi-Task Learning 7

domain is captured in the shared parameters or the prior distribution of hyperparameters (e.g.
covariance matrix of a Gaussian Process) and it identifies/learns priors that transfer learned
knowledge from the source task(s) to target tasks. Relational-knowledge-transfer approaches
work towards transfer of knowledge in relational domains. Built upon the assumption in these
domains, that the relationship between the data has similarities in the source and target do-
mains (e.g. professor to student in an academic context could be similar to director to actor in
the Internet Movie Database (IMDb) [64]), it aims to learn and transfer the relationship among
the data in the source domain(s) to the target domain(s).

2.6 Multi-Task Learning
Multi-Task Learning is the problem of learning multiple tasks (defined by their respective
datasets) simultaneously, to essentially leverage the shared underlying structure between tasks
to learn generic feature representations and improve the generalization of the learned model on
all of the tasks [100].

While similar to Transfer Learning, Multi-Task Learning has a significant difference in the
way it prioritizes tasks. In Transfer Learning, the focus is on the performance on the target
domain(s), while Multi-Task Learning aims to improve performance on all tasks and treats
them equally. Compared to Continual Learning, Multi-Task Learning has access to all of the
tasks’ dataset at the same time for the duration of training. In Continual Learning, however,
when training the model on a task, access to previous tasks’ datasets is very limited or not
present at all.

2.7 Few-Shot Learning
A challenging problem within the machine learning community, few-shot learning is the prob-
lem of training a neural network using only a few training examples. While humans can learn
from few examples in a robust and efficient manner, deep neural networks usually require a
large dataset to learn and accurately approximate a function. A prominent area withing few-
shot learning is the K-shot N-way classification problem, in which using a large dataset of
examples from different classes, the goal is to train a classifier that can learn to distinguish
between N new classes, using K samples from each class. There have been a large body of
literature dedicated to solve the few-shot learning problem, a survey of which can be found in
[95].

2.8 Meta-Learning
Meta-Learning, also known as learning to learn, aims to learn better training strategies by
monitoring how different training approaches work to select aspects that are likely to lead to
better performance [92].

When humans learn new skills, they are likely to reuse learning approaches and strategies
that have worked well in past experiences, rather than starting from scratch [47]. Learning each
skill helps learning new skills faster and easier, using fewer samples and resorting to less trial

8 Chapter 2. Background

and error. Humans not only learn new skills, but they learn how to learn them. Meta-Learning
refers to any learning that is based on prior learning experiences.

The above-mentioned definition of Meta-Learning is fundamentally different to Continual
Learning. However, as will be seen in some of the previous work, Meta-Learning can be used
to train networks that show a good performance when learning tasks continually/sequentially.
There will not be any Meta-Learning in the methods used in this thesis but it is good to note
why such decision was made. A specific form of Meta-Learning will be explained here as a
concept and some related previous work will be reviewed later to explain the decision not to
use Meta-Learning.

While there are various approaches in the domain of Meta-Learning, such as meta-learning
the update function or learning rule of a learner [80, 7, 3, 70], in the context of this thesis, only
the Model-Agnostic Meta-Learning (MAML) [24] approach is considered. MAML approach
meta-learns initial network parameters of a neural network, the learner, such that the learner
can make accurate predictions subject to a few optimization steps. The learner’s prediction
would normally be evaluated using a loss function, with gradients backpropagated over the
optimization steps and back to the generated initial-weights, so that in the next iteration, the
initial weights work better subject to the optimization steps.

In the context of MAML, some Meta-Learning approaches divide the parameters of the
learner into two groups, namely slow weights and fast weights. There will be two types of
optimization loops corresponding to these two groups of weights, namely outer loop and inner
loop. Inner loop simply trains both the fast and slow weights of the learner on the dataset at
hand, based on a given learner-specific loss function. At the end of the inner loop, a ”meta loss”
function is computed, evaluating the performance of the trained learner given the fact that it
was supplied with the generated slow weights. In the outer loop, the so called ”meta loss” is
backpropagated across the optimization steps taken in the inner loop, back to the slow weights
(and possibly the network generating them) and an optimization step is taken to update these
slow weights. As a result, slow weights get updated after a whole running of the inner loop,
while the fast weights are updated in each iteration of the inner loop, hence the terms slow and
fast.

2.9 Continual Learning

Continual Learning (also referred to as Lifelong, Sequential, and Incremental Learning), is
a learning paradigm that learns continuously by accumulating knowledge from previous tasks
and using it to help future learning [17]. This paradigm is in contrast to the dominant learning
process in which a model is trained on a given dataset in isolation. In the isolated learning
paradigm, there is no attempt to preserve the learned knowledge and use it for future learning.

2.9.1 Tasks

In continual learning, the learner is sequentially trained on a sequence of N Tasks, T1,T2, ...,TN .
Each task is defined by a corresponding dataset. At each point in time, the task Ti on which the
model is being trained on is called the new or current task, while the task(s) T1,T2, ...,Ti−1

2.10. EvaluationMetrics 9

previously used to train the model are referred to as previous tasks. Similarly, the tasks
Ti+1,Ti+2, ...,TN that the model is yet to see are called future tasks.

2.9.2 Forgetting
When being trained on the current task, it has been observed that the model’s performance on
previous tasks can degrade significantly [61]. The decrease in a performance metric on a previ-
ous task is referred to as forgetting. The performance metric of choice for defining forgetting
is task accuracy, however, if a task only contains one class, then recall is usually chosen. In the
remaining part of this thesis, whenever forgetting is mentioned without specifying the metric,
the intended metric should be assumed to be recall.

2.9.3 Experiences
The training process on a task is called an Experience. Experiences describe the training
process by storing and providing attributes such as the number of training epochs and the
strategy used.

2.10 Evaluation Metrics
In machine learning, precision, recall, and F1-score are among the most popular metrics to
evaluate a model’s predictions. In order to define these metrics, we first need to define the
terms True Positive, True Negative, False Positive, and False Negative.

• True Positives (TP) are samples in which the condition is correctly predicted to be
present.

• False Positives (FP) are samples where the condition is falsely predicted as present.

• True Negatives (TN) are samples where the condition is correctly predicted to be absent.

• False Negatives (FN) are samples in which the prediction wrongly indicates that the
condition is absent.

These are defined in the context of binary classification. In multi-class classification, one of
the classes must be identified as the “positive” class and the rest as the “negative” class, for the
purposes of calculating these quantities. Once we choose a class to act as the positive class, the
model’s recall is the fraction of instances of that particular class that were correctly predicted
to be in that class, while precision is a fraction of instances predicted to belong to a particular
class that truly belonged to the predicted class. F1-score is the harmonic mean of precision and
recall. Given a dataset of examples to which the model is applied,

Precision =
#TP

#TP + #FP

Recall =
#TP

#TP + #FN

F1-Score = 2 ×
Precision.Recall

Precision + Recall

10 Chapter 2. Background

Another widely used metric is accuracy, which is formally defined as:

accuracy =
#TP + #TN

Number of Samples

In multiclass settings, the performance of a model is often reported as an average over the
performance achieved when each class is considered to be the positive class. This may be
weighted by the prevalence of instances of each class (micro-averaged) or performance on
each class may be given equal weight (macro-averaged.)

Alternatively, performance on all classes may be presented simultaneously using a confu-
sion matrix. Given a dataset for each task D1,D2, ...,Dn a Confusion Matrix (CM) can be
defined by setting CMi, j to be the number of samples belonging to class i that were predicted to
be in class j. A confusion matrix can be informative on which classes/tasks are being predicted
correctly, and which classes are being misunderstood for each other.

In continual learning literature, a term commonly encountered is Task Accuracy, which is
essentially the accuracy of the model on a task’s data. However, when the task only contains
one class, a better term to use would be recall.

While the above-mentioned metrics can help in measuring performance across tasks, it is
also desirable to measure the transfer of knowledge between tasks. The following metrics have
been defined to evaluate different kinds of transfer of knowledge [58]:

• Backward Transfer (BWT) measures how training on the current task influences per-
formance on previous tasks. Backward transfer is positive when training on the current
task results in performance improvement on previous tasks, while a negative backward
transfer happens when training on the current task degrades the model’s performance
on previous tasks (forgetting). Intuitively, a large negative backward transfer indicates
catastrophic forgetting.

• Forward Transfer (FWT) measures how training on the current task would influence
performance on future tasks. If training on the current task results in better performance
on future tasks, forward transfer is going to be positive. Conversely, if training on the
current task negatively impacts the performance on previous tasks, then forward transfer
is going to be negative.

In order to formally define performance measures commonplace in continual learning lit-
erature, we first need to construct an accuracy matrix [53][58]:
Assuming a sequence of tasks T1,T2, ...,TN and access to a test set for each of these tasks, after
training on each task Ti, the model can be evaluated on all of the tasks (previous, current, and
future tasks). The accuracy matrix RN×N is then constructed by setting Ri, j to be the model’s
test classification accuracy on task T j after being trained on task Ti.
Letting b denote the vector of task accuracy for a randomly-initialized model, the following
metrics can then be defined based on R and b:

2.11. Simplifying Assumptions Used in Continual Learning Research 11

Average Accuracy:

ACC =
1
N

N∑
i=1

RN,i [58] or

ACC =
1
N

N∑
i=1

Ri,i [53]

Backward Transfer:

BWT =
1

N − 1

N−1∑
i=1

RN,i − Ri,i [58] or

The average of lower triangular entries of R [53]

.

Forward Transfer:

FWT =
1

N − 1

N∑
i=2

Ri−1,i − bi [58] or

The average of upper triangular entries of R [53]

There is no widely accepted performance measure for all continual learning scenarios. In
this thesis, precision, recall, and f1-score after training on each task will be employed as the
main indicators of performance to compare different methods.

2.11 Simplifying Assumptions Used in Continual Learning
Research

A general definition of continual learning would assume a stream of data in the form of (xt, yt)
with t denoting the timestep of sample index. Letting Yt = ∪

t
i=1yi the set of samples seen until

time t, the goal is to provide a mapping fθ(x)t → y at any given time t that can accurately predict
the label y ∈ Yt∪ ỹ from the input x. ỹ is an indicator for when the input sample does not belong
to any of the seen labels.

This definition does not impose any constraints on the size of the label set (it can grow
arbitrarily), the structure and the order of seen inputs and labels, or the resources available.
As solving this general problem has proved to be extremely difficult, most of the work in the
continual learning space uses a simplified formulation by making some assumptions. In what
comes next, popular assumptions, along with their drawbacks, are explained.

2.11.1 Disjoint task formulation
This formulation assumes that the data stream can be split into certain intervals of time, during
each the data stream will bring samples belonging only to certain class(es), in a predefined or-
der of classes. In the general formulation, samples could come in any order and the distribution

12 Chapter 2. Background

of classes at any duration of time could be unknown. Here, however, the order of classes, and
the intervals that each class data is seen is predefined as a disjoint set of tasks. For example,
the popular MNIST dataset can be split into five disjoint sets, each containing two consecutive
digits {0, 1}, {2, 3}, ..., {8, 9}.
This assumption simplifies the general formulation, because the unknown growing nature of
possible labels is now known and constrained. The computation and space can also be more
easily allocated since each task and its dataset can be identified. Following the majority of
previous work, the methods in this thesis make this assumption.

2.11.2 Task vs. Class vs. Domain Incremental
The Task-Incremental formulation of continual learning builds upon the disjoint task assump-
tion and presumes that with each data sample, task information or id is also provided. As a
result, instead of only (x, y), a three-tuple of (x, y, tid) is given, with tid denoting the task in-
formation or id. This assumption greatly simplifies the general formulation as the label space
for each task becomes only a portion of the whole set of labels. If applied to the previous
MNIST example, for the first task each sample could only belong to class 0 or 1, resulting in
a null accuracy (i.e. accuracy when always predicting the class with most samples) of at least
50 percent, while the total number of classes is 10 and the null accuracy would generally be
10 percent (number of samples belonging to each class is approximately equal). The Class-
Incremental formulation makes no assumption on the availability of the task information and
proceeds assuming it is not provided. More concretely, in the Class-Incremental setting, the
learner makes predictions based on the input (x, y) only. The disjoint task assumption, however,
is usually considered and test scenarios consist of disjoint task datasets appearing in the data
stream sequentially.

An example can better illustrate the difference between task and class incremental settings.
The MNIST dataset can be split into 5 (sub)datasets, each holding two classes. The first dataset
will include images of digits 0 and 1, the second dataset will include images of digits 2 and
3, and so on. In the task incremental setting, during training and inference, the network will
be given the task id. For example, when training on the second dataset, the model also takes
tid = 2 as input. This will allow the model to process the inputs (x, y) differently according
to the tid, for example by using a task-specific set of parameters for making predictions. At
inference time, the same tid will be provided to the model, allowing to use the task-specific
set of parameters. Moreover, these task-specific sets of parameters can take the form of a
classification head, with a node for each label in the task. For example, for the first task, the
only possible labels are 0 and 1 and the classification head can include only these two labels.
Thus, when predicting inputs (x, y) that the model knows belong to tid = 1, the network has
less uncertainty and a higher null accuracy. In class incremental setting, the tid is not available
in either of training or inference times. Consequently, the algorithm can not process the inputs
differently based on which tasks they belong to. Inputs coming from the second dataset will
be used by model the same way the first task inputs were processed. In this thesis, the more
difficult class incremental setting is assumed.

It is also useful to know about a practical setting called Domain-Incremental. While the
distribution of each task’s dataset is assumed to stay the same as the training progresses in both
Task-Incremental and Class-Incremental scenarios, the Domain-Incremental setting makes no

2.11. Simplifying Assumptions Used in Continual Learning Research 13

such assumption. The set of labels in the Domain-Incremental formulation is usually prede-
fined and does not change, while data distribution for each class changes with time and new
tasks.

Table 2.11.2 shows a summary of different datasets used in Continual Learning and the
settings they can be used in.

Dataset Task/Class-
Incremental

Domain-
Incremental

Used in Construction Process

Permuted MNIST ! [43, 58,
98]

Each task is a random permutation
of the original dataset, with all the
classes

Rotated MNIST ! [58, 13] Each task is a random rotation of the
original dataset, with all the classes

SplitMNIST ! [98, 13] Each task is a subset of classes from
the original dataset

SplitCIFAR10/100 ! [58, 72,
98, 13]

Each task is a subset of classes from
the original dataset

SplitTinyImageNet ! [13] Each task is a subset of classes from
the original dataset

SplitOmniglot ! [39, 6] Each task is a subset of classes from
the original dataset

CORe50 [56] ! ! [56] Each task involves both new classes
and different perspectives of previous
classes

CLEAR [53] ! Each task involves a time-varied ver-
sion of the classes e.g. bus from 1990
and 2000s.

2.11.3 Online vs. Offline CL
In the general CL formulation, the learning is assumed to not have sufficient storage for all
of the data; however, the learner can store some samples based on its space budget. The
learner can then revisit samples and update its parameters. Nevertheless, there can be two
different settings when it comes to the time allowed to process the streaming data. In the
online setting, the learner is not allowed to use a data sample for parameter update twice,
unless it is stored in memory. In the offline setting, however, the learner has unconstrained
access to the entire current task dataset, as well as samples stored in memory. The learner can
revisit samples (current task and memory) as many times as it chooses and perform arbitrary
number of parameter updates. The online setting is considered to be closer to how biological
organisms function as real-life experiences are seldom repeated and learning occurs using only
a few examples. On the other hand, the offline setting is also practical in applications where the
learner can be updated in the background (by traversing data in more than one epoch), while
predictions are being made in real-time.

14 Chapter 2. Background

For technical reasons such as inability to train a large network using only a single pass on
the data, this thesis assumes training to be offline and traverses the current task dataset for a
dataset-specific number of epochs.

2.11.4 Memory Availability
The general CL formulation assumes access only to the current task data. With this assumption,
the class-incremental setting becomes very difficult as the learner should differentiate current
task samples from previous task samples, while having access only to the current task’s data.
Without access to previous task’s data, the learner usually catastrophically forgets about previ-
ous tasks. In contrast, a learner in the task-incremental setting observes very little forgetting as
it can use task ids to differentiate labels among tasks. A more practical and biological plausible
approach [31, 75, 76, 55] is to add a memory module to store a subset of previous tasks’ data
and revisit these samples while training on the current task. This memory module can simply
be an allocated space in memory, or it can be a Generative Adversarial Network (GAN) [30]
trained to produce samples similar to those of previously seen classes.

In this thesis, it is assumed that a small memory is available to store a subset of previous
task samples.

2.12 Representation Learning
Given the recent success of Contrastive Learning, the methods in this thesis also use Con-
trastive Learning. To properly introduce Contrastive Learning, first the concept of Representa-
tion Learning is explained, and then its specific form, Contrastive Learning, will be described.

Representation learning aims to learn useful representations, i.e. mappings from inputs x
to feature vectors, that can be transferred to downstream tasks. While the usefulness depends
on the domain and specification of the downstream task, it is commonly assumed that repre-
sentations should create latent features that represent various aspects of the input data on a
high level of abstraction. Deep neural networks combine linear and non-linear operations to
produce and learn suitable representations for the tasks they are trained to do. In this way, any
deep neural network used for a classification task can be thought as an encoder and a classifier.
The encoder transforms an input instance to its corresponding representation, while the clas-
sifier differentiates between representations that belong to different classes. In the context of
representation learning, however, the training process is different. In representation learning,
the encoder does not output class probabilities, but it rather maps input data to representations
that will be learned directly.

Representation Learning, similar to other fields in deep learning, can be achieved via su-
pervised, unsupervised (self-supervised), and semi-supervised learning. In supervised repre-
sentation learning, input data are annotated with labels, while in self-supervised representa-
tion learning, the labels are not available, and other approaches, often related to compres-
sion/reconstruction, are formulated to help the model capture the most out of the available
data. Moreover, in semi-supervised learning scenarios, the learner has access to a small set of
labelled samples, and a much larger set of unlabelled data. In semi-supervised learning, ap-
proaches in supervised and unsupervised learning are concurrently used to exploit the labelled

2.13. Neuromodulation 15

and unlabelled datasets.

Recently, in Computer Vision, contrastive learning has achieved state-of-the-art perfor-
mance for image classification tasks. In the next section, a high-level description of contrastive
learning is provided.

2.12.1 Contrastive Learning

Contrastive Learning is an approach that attempts to learn representations by (1) augmenting
each data sample and generating multiple views, (2) computing the representations correspond-
ing to these views, and (3) comparing and contrasting the representations via a contrastive loss.
Data augmentation for image data usually involves transformation of the image (e.g flipping,
rotations, and random cropping) such that the content/class does not change. The contrastive
loss encourages the representations of samples from the same class to be similar, while simul-
taneously pushing away the representations of samples from differing classes. This contrastive
loss can be self-supervised [16] or supervised [42]. There has been many variants and ap-
plications of contrastive learning in Computer Vision, as well as domains like audio, video,
language, and graphs, among others [48, 46].

2.13 Neuromodulation

In this and the following two sections, main inspirations for the methods presented in this thesis
are explored. It is good to note that the methods are by no means a replica of the processes
seen in the brain, but rather been loosely inspired by them.

Biological neurons are much more complex than the simple artificial neuron implemented
in artificial neural networks [28, 8], to the extent that each biological neuron requires a neural
network of 5-8 layers to be well approximated [8]. This does not come as a surprise, since
neuromodulatory neurons not only receive, perform computation, and output signals based on
the inputs, but they communicate on various spatio-temporal scales with other neurons using
neurotransmitters. Acting as chemical messengers, these neuromodulators play various roles
in behavioral adaptation. For example, in hippocampus, a brain area that plays a significant
role in learning and memory, a neuromodulator called acetylcholine (ACh) works with another
neuromodulator called serotonin (5-HT) in coordination to make way for important cognitive
and consciousness-related functioning [65, 78, 62]. Noradrenaline (NA) is another neuromod-
ulator that has been attributed to arousal and attention, as well as novelty and surprise [20].
Moreover, another neuromodulator called dopamine (DA) is believed to encode a reward pre-
diction error signal [82]. Overall, with the biological organisms performing well in adaptation
and continual learning, simulating the activity and functions of neuromodulators not inherently
accessible to artificial neural networks can guide research in mitigating catastrophic forgetting
and learning generalizable representations.

16 Chapter 2. Background

2.14 Neuroplasticity
Biological neuronal networks have the ability to rewire, reshape, and grow with new experi-
ences. Known as Neuroplasticity, this ability enables biological brains to learn new functions
by shaping new neuronal pathways [18]. In this thesis, this ability will be referred to as the
plasticity of biological neurons and will be viewed as one of the main biological functions that
may play a significant role in the continual learning of new skills.

2.15 Top-Down Visual Feedback
In everyday tasks, we look around and use our visual sensory inputs. These visual inputs
play a significant role in our behaviour and how we respond to different environments. There
has been a long standing debate on how we select the objects we attend to [90]. One view
suggests that this selection is based on how salient the objects are, in an automatic bottom-up
fashion starting from neurons encoding simple patterns and moving on to those responding to
more complex and abstract features ([11] for example), while a contrasting view claims that
the attention to select objects occurs voluntarily according to our behavioral goals, in a top-
down fashion [25]. There is evidence that a neuromodulatory top-down feedback based on
dopamine (DA) [87, 81, 85] and acetylcholine (ACh) [5, 79, 10, 103] exists, and a change in
activity of lower areas in the human visual system based on the top-down feedback has been
observed [23]. The so called top-down attention or selection signal can prove to be useful in
modulating an artificial neural network when it attempts to continually learn visual tasks. An
attention signal can help the learner identify which aspects of itself should be modulated to be
more plastic and which parts should be preserved. As a result, this neuromodulatory feedback
mechanism can help guide the learner in adapting to new experiences. A few novel approaches
for simulating this feedback mechanism are provided in the methods section of this thesis and
evaluated on popular Computer Vision datasets.

Chapter 3

Literature Survey

This chapter reviews the literature on continual learning in the context of visual tasks, identify-
ing established and state-of-the-art results relevant to this thesis. Section 3.3 reviews architec-
tures used in continual learning, and Section 3.2 reviews established datasets used to develop
and evaluate continual learning methods.

3.1 Continual Learning Desiderata

In the previous chapter, the general formulation and various settings for continual learning were
described. While the mentioned settings are meant to represent real-life continual learning
scenarios visited in practice, it is useful to always remember what the practical desiderata of
continual learning are, and what abilities a continual learning agent should showcase when
deployed in real-life scenarios. For example, Hadsell [31] imagines a hypothetical robot that
is tasked with performing any household chore in any home. The robot can not be simply pre-
programmed in the factory, since the house chores may change over time. Moreover, it should
be able to learn new skills (e.g. washing the dishes, tidying, doing laundry) and learn the
variations within each task. For example, in order to do the laundry task, it should first separate
different clothes, then wash according to each cloth type, then dry using appropriate settings
for each cloth type, and finally sort and maybe iron some of the clothes. In order to do all of
these tasks properly, the robot needs to adapt quickly to learn new tasks and their underlying
variations, while remembering previous tasks. Forgetting may be allowed only if it is limited
and recovery is fast. Moreover, the robot should perform better on future tasks after learning
each task (positive forward transfer) and also transfer the knowledge acquired by learning the
current task to previous tasks and perform better on them (positive backward transfer). It is also
practical to assume that the robot is limited in storing and accessing previous tasks’ memories,
increasing the model size, and time-available to perform each task (i.e. processing time).

If we put the expected features and requirements of a real-life continual learner together,
we can define the following desiderata [31]:

• Limited access to previous tasks’ data. The available storage is limited and only a por-
tion of previous experiences can be stored. As a result, the agent can not have unlimited
interaction (learning) with previous tasks.

17

18 Chapter 3. Literature Survey

• Limited increase in model size and compute. The available computation resources
are limited in a realistic agent. As a result, the continual learning approach should be
scalable: The computational resource demands can not increase linearly with the number
of tasks or dataset size.

• Minimal catastrophic forgetting and interference. Learning new tasks should not
significantly degrade performance on previous tasks.

• Fast adaptation and knowledge recovery. The model should be able to quickly adapt
to novel tasks and/or recover prior knowledge from previous tasks.

• Sustained learning ability and plasticity. The model’s ability to learn should be sus-
tained after training on some tasks. It should be capable of adapting to a new task at any
time.

• Maximized forward and backward transfer. The knowledge acquired by learning the
current task should transfer to both past and future tasks, to improve performance and
learning efficiency.

• Task-agnostic learning. There is no oracle helping with task labels in the real-world,
and the model should not rely on task labels to perform well.

As can be seen, a continual learning agent needs to make compromises between various
objectives as some objectives go against each other. For example, it is impossible for a fixed-
capacity model to learn an arbitrarily large number of tasks without forgetting. Making com-
promises when needed can take different forms. For example, one continual learner may choose
to forget previous tasks to some extent, adapt to the current task and when asked to perform
previous tasks again, demonstrate quick recovery and show good performance. Another con-
tinual learner may choose to adapt less to new tasks (decrease model capacity by fixing some
parameters which may result in worse performance in the current tasks) in an attempt to keep
performing well on previous tasks. Before describing each continual learning approach and
their compromises, the datasets commonly used to evaluate continual learning approaches are
described.

3.2 Continual Learning Datasets

3.2.1 Split-MNIST
MNIST [50] is a dataset of handwritten English digits, namely 0 to 9. It consists of a training set
of 60000 samples and a test set of 10000 samples. Each sample is a 28 × 28 gray-scale image
showcasing a handwritten digit. While this dataset has been used as a whole to benchmark
various image classification algorithms [71], for evaluation of continual learning approaches
this dataset gets broken into multiple chunks, with each one representing a task. The continual
learning approach is then trained on each task sequentially and the performance (using the
performance metric and protocol of choice) is evaluated. The splitting for task-incremental
and class-incremental continual learning scenarios is usually done by classes, i.e. each task

3.2. Continual Learning Datasets 19

will be discrimination of a subset of digits in {0, 1, ..., 9}. For example, the 10 digits present in
the dataset can be split into 5 tasks or chunks, with the first task to discriminate between 0 and 1,
the second task to discriminate between 2 and 3, and so on. For the domain-incremental setting
where the set of possible class labels remains the same across tasks while the distribution of
data changes, the split takes place across samples, i.e. the set of samples for each digit is split
into multiple chunks, and the first chunk of all digits is considered to be the first task, while the
second chunk of all digits is going to be the second task and so on.

3.2.2 Split-CIFAR10/100
CIFAR-10 and CIFAR-100 (also mentioned interchangeably as CIFAR10 and CIFAR100, or
CIFAR10/100 to refer to both) are labelled datasets of objects, scenes, animals, and people.
These datasets are subsets of the 80 million tiny images dataset (that was taken down). CI-
FAR10 has 10 classes namely airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck. It consists of a training set of 50000 samples and a test set of 10000 samples, with 5000
and 1000 samples for each class in the training and test sets respectively. Each sample is a
colored (RGB) 32 × 32 image belonging to one of the mentioned classes.

Similarly, CIFAR100 is a dataset of 100 classes and consists of training and tests sets that
comprise 50000 and 10000 samples respectively. The dataset is also balanced as there are 500
training and 100 test samples assigned to each class. Each sample is a 32 × 32 RGB image
belonging to one of the 100 classes. It is also useful to note the 100 classes in this dataset can
be grouped into 20 super-classes.

CIFAR10/100 has been used to benchmark a wide range computer vision tasks [71]. For
continual learning, however, it needs to be split into multiple tasks first to evaluate how a
continual learner performs when trained on a number of tasks sequentially. Similar to Split-
MNIST, the splitting process can take place across classes for task-incremental and class-
incremental scenarios and across samples for domain-incremental settings. For example, in
a class-incremental setting, the first task can be learning to discriminate the classes airplane
and frog, while the second task is learning to distinguish automobile and bird from each other
and from classes seen previously, with the rest of the tasks defined in a similar way. If the
considered setting was task-incremental, at each task the model needed only to distinguish be-
tween the given classes (e.g. automobile and bird) and it did not need to discriminate between
the classes in the task and classes seen in previous tasks. The domain-incremental setting can
also be applied to this dataset by splitting each class’s data into multiple chunks and assigning
each chunk of all classes to each task.

3.2.3 Split-TinyImageNet
TinyImageNet is a dataset used for image classification. It was first provided as part of the
cs231n course at Stanford. It consists of 200 classes, with 500 training, 50 validation, and 50
test images assigned to each class, summing up to 600 images per class, and 100000 train,
10000 validation, and 10000 test samples in total. Each sample is a 64 × 64 colored image.

The TinyImageNet dataset has been on of the popular computer vision benchmarks [27].
Similar to MNIST and CIFAR10/100, it can be used to evaluate continual learning approaches
by splitting the dataset into multiple tasks. The splitting can take place across classes (for

20 Chapter 3. Literature Survey

task-incremental and class-incremental settings) and across samples (for domain-incremental
settings).

3.3 Architectures
Since datasets used in continual learning are usually small (relatively low number of sam-
ples and resolution), the architectures used to train on these datasets are also relatively small.
Specifically, for the MNIST dataset, a simple Convolutional Neural Network (CNN) [49] or
a feed-forward neural network with 2 or 3 layers is used [58, 98, 74]. For CIFAR10/100 and
TinyImageNet datasets, however, a deeper CNN such as the ResNet-18 [35] or a reduced ver-
sion of it [58] is used.

3.4 Attribution
In order to preserve knowledge of past tasks that is both essential to maintain performance
on past tasks and likely to perform well on upcoming tasks, we need a means to attribute the
performance of a neural network to its parameters. A similar body of work to this problem falls
under the name of Attribution. In this section, the connection between the Attribution problem
and what comes later in methods (chapter 4) for identifying salient parameters is explained.

As DNNs were being employed more and more into operational workflows, it was impor-
tant to know why these networks make the predictions that they do, regardless of being correct
or wrong. The attribution problem attempts to attribute the output of a model to its input fea-
tures. For example, given an image and a classification prediction of “dog”, the attribution
problem wants to know which pixels were most decisive in the particular prediction of “dog”.
Attribution has useful applications, such as

• Debugging incorrect network predictions.

• Providing an explanation of why the network made that prediction.

• Analysis of how robust a network is.

• Deciding prediction confidence.

among others [88].
There has been a large body of literature addressing the attribution problem (see [1] for a

review). The purpose of using attribution in this thesis, however, is different. Here, we would
like to attribute the performance of a network to its parameters instead. While this problem
is different in essence to the attribution problem, the methods and techniques employed in the
original attribution problem can still work. For example, a nav̈e approach to the attribution
problem is to drop an input feature (set it to zero) and assess the change in the predictions.
This same naı̈ve approach can similarly be applied to the performance attribution problem:
Drop a parameter and measure the change in performance. It is useful to note that assessing
performance can be done simply by using any performance measure of choice, like accuracy,
recall, or f1-score.

3.4. Attribution 21

Among the popular attribution methods, Excitation Backpropagation[99] was chosen to
be used in this thesis for its biological plausibility and easier adaptation to the performance
attribution problem.

3.4.1 Excitation Backpropagation
Excitation backpropagation aims to attribute predictions to and measure contribution of all
neurons (not just the input) via a top-down neural attention process. In this method, a forward
bottom-up pass is first performed to compute unit activations. Then, using an attention vector
on the output layer as input, a top-down attention signal is computed layer-by-layer, iteratively.

Formally, a generic feedforward neural network model and a prior distribution P(A0) on
the output units is considered. Assuming N to be the set of all neurons, and Ai to denote the
selected neurons on ith layer from the top, the distribution over the activation of the neurons
in each layer is computed recursively based a conditional winning probability P(At|At−1) where
At, At−1 ∈ N. Formulating attribution of a neuron as the probability of being selected as a
winning neuron, a Marginal Winning Probability (MWP) P(a j) needs to be computed for each
neuron a j ∈ N. The MWP P(a j) can be written as:

P(a j) =
∑
ai∈P j

P(a j|ai)P(ai) (3.1)

withP j denoting the parent neuron set of a j in top-down order (layer closer to the output layer).
As a result, given MWPs for each layer, the probabilities for being selected as a winning neuron
can be computed iteratively.

Considering an input of ai, a weight of w ji, a bias of b j, and a non-linear activation function
of ϕ, the computation performed by a neuron can be written as âi = ϕ(

∑
j w jiâ j + b j). The

excitation backprop framework makes the following two assumptions:

1. The activation value of a neuron is non-negative.

2. A neuron responds to certain visual patterns, and its activation is positively correlated
with the confidence of detecting that pattern.

The first assumption is usually satisfied as neural networks mostly use the Rectified Linear
Unit (ReLU) activation function. The second assumption has also been verified empirically in
various computer vision works and literature ([101] for example beside many others). Given
these two assumptions, it follows that the negative weights in will only decrease activation
values:

âi = ϕ

 ∑
j,w ji≥0

w jiâ j +
∑

j,w ji<0

w jiâ j + b j


≤ ϕ

 ∑
j,w ji≥0

w jiâ j + b j

 if â j ≥ 0 (3.2)

The connections in the network can then be labelled as excitatory and inhibitory. Those con-
nections with positive weights can increase a neurons activation value and will be excitatory,

22 Chapter 3. Literature Survey

while those with negative weights will only decrease the activation values and thus will be
inhibitory. The excitation backprop works by sending a top-down signal only through the exci-
tatory connections. Setting Ci to be the child node set of ai in the top-down order (layer closer
to the input layer), for each a j ∈ Ci the MWP P(a j|ai) is defined as:

P(a j|ai) =

Ziâ jw ji if w ji ≥ 0,
0 otherwise.

(3.3)

Zi is just a normalization factor to make sure
∑

a j∈Ci
P(a j|ai) = 1, so

Zi =
1∑

j,w ji≥0 â jw ji
(3.4)

In the case of denominator in 3.4 being zero, Zi will be set to zero. With the MWP of each
layer defined in 3.3, the top-down attention or excitation signal can be propagated iteratively
by simply computing MWPs and using 3.1 to compute the selection or winning probability of
each neuron. As a result, given an input sample and a prior distribution over the output nodes,
this framework can attribute the prior distribution to the networks neurons. Note that there is
no assumption on what the prior distribution over the output layer neurons should be. It can be
used to denote a prediction’s confidence as seen usually in the computer vision literature, or,
as will be seen later in the methods section, the performance of the network.

Furthermore, a contrastive variant of excitation backpropagation (c-EB) is defined as well.
Normally, a single pass of excitation backprop can generate attention maps over the network
layers. The contrastive variant adds another pass, with the weights of the last layer of the
network negated this time. This second pass will identify the neurons contributing most for
inhibiting a certain output. For example, if the target label is ”elephant”, negating the last layer
weights and producing attention maps with excitation backprop will identify the neurons most
influential for predicting ”not elephant”. Subtracting the attention maps for ”not elephant”
from attention maps for ”elephant” will then better identify neurons used to predict ”elephant”,
as the neurons contributing to both ”elephant” and ”not elephant” will be cancelled out and
those that are most discriminative will be selected more prominently.

3.5 Approaches to Continual Learning
In this section, a representative subset of previous work that related to this thesis is described
and reviewed.

3.5.1 Knowledge Distillation
One of the main approaches to preserve knowledge from past tasks is called Knowledge Distil-
lation. In this method, a neural network’s output is regularized to be similar to a second neural
network’s output, enabling the network parameters to change as long as they are producing the
same output. In the context of Continual Learning, this first neural network is simply the neural
network that is being trained on the current task, while the second neural network is a snapshot
of the neural network at the end of training on previous task.

3.5. Approaches to Continual Learning 23

Learning Without Forgetting (LwF)

Learning without Forgetting (LwF) [52] attempts to solve the task-incremental continual learn-
ing setting by adding a new classification head for each task. Each classification head is essen-
tially a one layer neural network that projects to an output layer with number of nodes equal
to the number of target labels. In other words, LwF operates on a multi-head architecture. An
important assumption of LwF is that when training on a new task, there is no access to previous
tasks’ data.

LwF divides the network into 3 portions:

1. Feature extractor with parameters θs that are shared for all tasks.

2. Previous tasks’ classifications heads, with parameters θo.

3. New added classification head for the training of the current task, with parameters θn.

The output of each classification head is going to be a probability distribution over the potential
labels for each task.

Before starting training on a new task, LwF records the responses of all previous task heads
using all of the training data, resulting in a set of probability distributions for each previous
task for each training sample. Next, when training on a new task (x, y), LwF first trains the
network by freezing θs and θo as a warm-up stage. Then, the network is jointly trained (all
parameters) using a loss for the new tasks, and a distillation loss for previous tasks. The new
task loss is simply a multinomial logistic loss:

ℓnew(yyyn, ŷyyn) = −yyyn.log(ŷyyn) (3.5)

where ŷyyn is the network prediction using the new task classification head, and yyyn is the one-
hot ground truth label vector. The distillation loss is a modified cross-entropy with increased
weights for smaller probabilities:

ℓold(yyyo, ŷyyo) = −H(yyy′o, ŷyy
′
o)

= −

l∑
i=1

y′(i)o log(ŷ′(i)o) (3.6)

with l denoting the number of labels and y′(i)o and ŷ′(i)o representing the modified versions of
recorded and newly computed probabilities respectively:

y′(i)o =
(y(i)

o)1/T∑
j(y

(j)
o)1/T

, ŷo
′(i) =

(ŷ(i)
o)1/T∑

j(ŷ
(j)
o)1/T

(3.7)

The parameter T controls how much more weight is put towards smaller probabilities [37],
with T > 1 increasing the weight of smaller logits and encouraging the network to better
predict class similarities. The loss is then summed over all previous tasks and all labels.

LwF allows forward and backward transfer, does not store previous task examples in a
memory, and shows competitive performance when compared to other methods. There are,
however, some limitations:

24 Chapter 3. Literature Survey

1. LwF works on a task-incremental setting, and needs task descriptors at evaluation time.

2. LwF assumes access to all of a tasks’ data in the beginning of training on that task.

3. The performance of LwF generally depends on how similar the tasks are. If tasks are
dissimilar, the performance decreases.

An unexplained and inherent assumption with the usual knowledge distillation approach is that
all of the neurons in the output of the neural network are of equal importance. However, this is
generally not true, as some of the neurons may be more discriminative than others. Moreover,
it is assumed that all of the knowledge captured in the snapshot neural network and its output is
worth preserving, while parts of the output may be features that are overfitted to previous tasks
and should not be used for regularization. In this thesis, we will use knowledge distillation as
one of the knowledge preservation methods while trying to address the mentioned limitations.

3.5.2 Parameter Isolation and Regularization
While knowledge distillation attempts to preserve knowledge by regularizing the output of a
neural network and does not impose any restrictions on individual network parameters explic-
itly, a group of methods in Continual Learning identify parameters important to previous tasks
and either freeze them or regularize them. A representative part of the literature using these
methods will be explained in this section.

Elastic Weight Consolidation (EWC)

The Elastic Weight Consolidation (EWC) method [43] cites recent evidence that shows when
a mouse learns a new skill, some of the excitatory synapses are strengthened as the volume
of dendritic spines of these neurons increases. These dendritic spines remain enlarged even
after subsequent learning, and account for retained performance several months later [97].
Following this evidence in biological neurons, EWC tries to identify and retain parameters
important for each task when training on subsequent tasks.

Assuming θ represents a network’s parameters, due to what EWC identifies as a common
overparameterization of neural networks, it finds it likely that there exists θ⋆B, parameters opti-
mized for task B, that are close to θ⋆A , parameters optimized for task A, when training on task
B after task A. EWC attempts to keep the network parameters close to θ⋆A while training on
task B via quadratic regularization. The regularization weights for different parameters are,
however, not the same. The parameters that are identified to be more important for task A will
be regularized more with larger weights.

From a Bayesian view, optimizing network parameters θ is equivalent to maximizing their
probability given the input dataset D. Using the Bayes rule, this probability can be computed
from the prior probability of parameters and the probability of the dataset given the network
parameters:

logp(θ|D) = logp(D|θ) + logp(θ) − logp(D) (3.8)

The log probability of the dataset given network parameters (logp(D|θ)) is essentially the neg-
ative of the loss function regarding the current task −ℓ(θ). Considering a second task B and

3.5. Approaches to Continual Learning 25

naming the first task A, the dataset D can be split into two portions: Task A’s dataset DA and
task B’s datasetDB. Rewriting equation 3.8 then gives:

logp(θ|D) = logp(DB|θ) + logp(θ|DA) − logp(DB) (3.9)

where the probability of the dataset given the parameters (logp(D|θ)) is now turned into logp(DB|θ)
since only the new task’s data is available and the prior probability of parameters (p(θ)) has
now become p(θ|DA) as the parameters now have been trained on task A. Assuming there is
no access to previous tasks’ data, EWC notes that the posterior probability p(θ|DA) should
now contain all the information about task A and which parameters are more important. Since
this probability is intractable, EWC approximates this posterior as a Gaussian distribution with
mean θ⋆A and a diagonal precision given by the Fisher information matrix F. With this approx-
imation, the new loss function becomes:

ℓ(θ) = ℓB(θ) +
∑

i

λ

2
Fi(θi − θ⋆A,i)

2 (3.10)

where ℓB is the loss for task B, λ controls the importance of the previous task compared to the
new one, and i traverses the network parameters. The loss in 3.10 applies only when training
on a second task. When there are more tasks, EWC stores optimized parameters after training
on each task (for example θ⋆C for task C) and adds a similar quadratic penalty to the loss.

EWC has been one of the main benchmarks for task-incremental continual learning since
introduction. It works well to prevent forgetting, enables forward transfer, and it does not need
to store previous task examples. Nevertheless, there are a few drawbacks to how it works:

1. It is hard to scale to many tasks.

2. The required storage grows with the number of tasks as it stores the optimized parameters
and a Fisher information matrix for each task.

3. While backward transfer can happen, it is not directly encouraged, as the only direct
incentive is too keep parameters important for previous tasks from changing too much
and shaping new, better, and more generalizable features is not considered.

While there has been a prior work termed Online EWC [83] that addresses the second drawback
and computational scalability by keeping only the latest parameters and one Fisher information
matrix, the other two drawbacks, mainly the absence of backward transfer and scalability to
a large number of tasks, remain unsolved. It is also good to note that there is no attempt of
measuring the importance of parameters using an alias of how likely they are to transfer to
future tasks. Given the difficulty this method has to scale to many tasks, it shows that probably
a significant portion of parameters that end up being regularized are those that are overfitted to
previous tasks and do not generalize to next tasks.

Synaptic Intelligence (SI)

Similar to EWC, Synaptic Intelligence (SI) observes that biological synapses are involved in
complex molecular interactions that can modulate plasticity at different spatio-temporal scales

26 Chapter 3. Literature Survey

[73]. In an effort to increase the complexity of neurons and identify important parameters to
regularize, SI adds a local measure of importance to each neuron. Assuming θ represents the
network parameters, SI introduces an importance measure ωµk that tracks the importance of
parameter θk for task µ based on its contributions to decrease the task loss ℓµ.

SI characterises the training process of neural network as a trajectory θθθ(t) in the parameter
space. The change in loss when taking an optimization step δδδ(t) at time t can be written as:

ℓ(θθθ(t) + δδδ(t)) − ℓ(θθθ(t)) ≈
∑

k

gk(t)σk(t) (3.11)

which shows that a parameter change of δk(t) = θ′k(t) contributes gk(t)δk(t) to the change in the
loss. A path integral would then compute the total contributions to the loss over the training
trajectory from the start time t0 to the final time t1:∫

C
ggg(θθθ(t))dθθθ =

∫ t1

t0
ggg(θθθ(t)).θθθ′(t)dt (3.12)

Note that gradient is a conservative field, and the value of integral is going to be equal to the
change in loss from the start point to the end point: ℓ(θθθ(t1)) − ℓ(θθθ(t0)). Equation 3.12 can
be rewritten in terms of individual parameters, where the importance measure is going to be
defined: ∫ tµ

tµ−1
ggg(θθθ(t)).θθθ′(t)dt =

∑
k

∫ tµ

tµ−1
gk(θ(t))θ′k(t)dt

≡
∑

k

ω
µ
k (3.13)

The importance measure ωµk can in practice be approximated by computing the running sum of
the product of the gradient gk(t) = ∂ℓ

∂θk
and the change in parameter θ′k(t) =

∂θk
∂t .

With the importance measure for each parameter defined, SI introduces a regularization
term to the loss that penalises parameters that strain too far away from their initial value when
training on a task began. The new loss, augmented with regularization, is as follows:

ℓ̃µ = ℓµ + c
∑

k

Ω
µ
k

(
θ̃k − θk

)
(3.14)

where c is a strength parameter that controls how much regularization is introduced, θ̃k =
θk(tµ−1) is the value of a parameter at the end of the previous task’s training, and Ωµk is the
parameter-specific regularization weight:

Ω
µ
k =

∑
v<µ

ωv
k

(∆v
k)

2 + ξ
(3.15)

The parameter ∆v
k = θk(t

v) − θk(tv−1) measures the amount of total change in a parameter over
the course of training of a task, and the parameter ξ is for stability as ∆v

k may get very small.
Consequently, the regularization weight depends on:

1. The contribution of a parameter to the decrease in loss, and

3.5. Approaches to Continual Learning 27

2. The amount of change seen in that parameter.

Similar to EWC, SI works by regularizing parameters that it deems to be important for
the performance of the network on previous tasks. While providing performance that slightly
outperforms EWC, SI suffers from the same drawbacks of EWC:

1. It is hard to scale to a large number of tasks,

2. Requires the storage of importance parameters per task, which makes the storage re-
quirement to grow linearly with the number of tasks.

3. While backward transfer can happen, it is not directly encouraged.

PackNet

PackNet [60] is a parameter isolation method that draws from network pruning techniques
[33, 32] to propose a continual learning algorithm. The PackNet algorithm uses weight-based
pruning techniques to free up weights that are less important in the network for future learning,
while keeping the remaining weights frozen.

The pruning technique removes (set to zero) a fixed portion of weights in each convolutional
or fully-connected layer. The weights in a layer are sorted by their value, and the weights sitting
at the bottom with the smallest values are removed. Pruning is performed specific to a task,
meaning only those weights that were used for a task are considered, and weights frozen for
previous tasks are ignored.

Specifically, considering three tasks, PackNet works as follows:

1. Uses a pre-trained network or simply trains the network on task 1.

2. Runs the pruning process and removes a fixed portion of weights in each layer. The
pruned weights θ(p)

1 are frozen for now.

3. Trains the remaining weights θ(r)
1 on task 1 for fewer epochs to get a network with rela-

tively sparse weights. The trained weights θ(r)
1 are frozen hereafter and remembered for

use at inference time.

4. The pruned weights of previous task θ2 = θ
(p)
1 are unfrozen and trained on task 2.

5. Runs a pruning process on θ2 and freezes the pruned weights θ(p)
2 .

6. The remaining weights θ(r)
2 are retrained on task 2 for fewer epochs and then frozen

hereafter. These weights are also remembered for inference.

7. The pruned weights of previous task θ3 = θ
(p)
2 are unfrozen and trained on task 3.

8. Runs a pruning process on θ3 and freezes the pruned weights θ(p)
3 .

9. The remaining weights θ(r)
3 are retrained on task 3, frozen hereafter, and remembered for

inference.

28 Chapter 3. Literature Survey

The process then continues similarly for more tasks, until tasks end or there is no parameter left
to train the task on. At inference time, using remembered weights for each task (task descriptor
is needed to know which weights to use), predictions are computed. Each weight is going to
be used for the task it was trained for (for example task K) and subsequent tasks. As a result,
for each task only a binary mask needs to be stored, and the storage overhead is small.

PackNet was able to outperform methods like LwF [52], while enabling forward transfer,
avoiding catastrophic forgetting, and adding a small storage overhead. There are, however,
some drawbacks:

1. Can only be used for task-incremental continual learning settings (needs task id at infer-
ence time).

2. The number of tasks that can be trained on can be very limited depending on the network
capacity.

3. Prioritizes tasks that come first over tasks seen later.

4. Needs to keep binary masks for inference time.

This method can be thought of an extreme case of the regularization-based Continual Learning
approaches. Given the fact that parameters to isolate are identified based on their performance
on past tasks, the problem with regularization approaches still remains: The parameters deemed
to be important may be overfitted to previous tasks and are not likely to generalize to future
tasks.

Attention-based Selective Plasticity

Attention-based selective plasticity [44] is inspired by neuromodulatory mechanisms in the
brain, where bottom-up stimulus-driven and top-down goal-driven attention helps to put the
focus more on task-specific stimuli and less on distractions [4, 67]. Overall, it uses the con-
trastive Excitation Backpropagation (c-EB) framework to selectively modulate the plasticity
of network weights and regularize parameters it deems to be important for each task. Simi-
lar to [43, 98], synaptic importance parameters are computed for each network weight and a
quadratic regularization term is added to the loss to avoid important parameters from straying
too far from their initial values when training on a task started.

Assume f (l)
i denotes the ith neuron in the layer l of a neural network, Pc(f (

i l)) represents
parameter contributions measured by the c-EB framework, and γ(l)

ji denotes the synaptic impor-
tance parameter for the weight between f (l−1)

j and f (l)
i . While an optimization step for a neural

network would typically involve a forward pass to make predictions and a backward pass to
compute gradients, in this work the forward pass is followed by a backward pass that computes
parameter contributions using the c-EB framework. After the c-EB pass, synaptic importance
parameters are updated using Hebbian learning [36] and Oja’s rule [66]:

γ(l)
ji = γ

(l)
ji + ϵ

(
Pc(f l−1

j)Pc(f (l)
i) − Pc(f (l)

i)2γ(l)
ji

)
(3.16)

where ϵ is the rate of Oja’s learning rule. Note that synaptic importance parameters are task-
specific, and a new γ(l)

ji is computed and stored for each task. The synaptic importance param-
eters are initialized to zero at the beginning of training on each task. Next, using the computed

3.5. Approaches to Continual Learning 29

synaptic importance parameters, the loss is updated to incorporate at a regularization term for
parameters that are important for previous tasks. The loss is the same as the one used EWC
[43] 3.10, with the regularization weights now set to the computed task-specific synaptic im-
portance parameters. Specifically, in the case of two tasks, the loss when training on task B can
be written as:

ℓ̃(θ) = ℓ(θ) + λ
∑

k

γA,k(θk − θ⋆A,k)
2 (3.17)

where θ represents the network parameters, k iterates over individual network parameters, γA,k

is synaptic importance for the kth parameter specific to task A, and θ⋆A,k denotes the network
parameters after being optimized on task A. For subsequent tasks, a similar regularization term
can be added to the loss. After the modification to the loss, a backward pass for computation
of gradients is performed and an optimization step is taken.

The proposed neuromodulation-inspired approach performs on par with EWC [43] and
Synaptic Intelligence (SI) [98] without extensive hyperparameter tuning. It is similar to SI
as synaptic importance parameters are computed in an online manner, in contrast to EWC
where they are computed after the training on each task. Nevertheless, it suffers from a few
drawbacks:

1. Difficult to scale to many tasks.

2. During training, it needs to store synaptic importance parameters for each task.

3. While backward transfer can happen, it is not directly encouraged.

While this method can be thought to be a regularization-based Continual Learning approach
similar to EWC and SI having the same limitations, it proves a notable point: Identifying
important parameters using Excitation Backprop is possible and demonstrates competitive per-
formance. As a result, this method fits nicely with our goal of identifying important parameters
using Attribution methods and encourages us to follow a similar approach.

3.5.3 Meta-Learning

Here we will briefly review a few Meta-Learning approaches used to solve the Continual Learn-
ing problem and explain why we chose not to adopt this approach.

Online Meta Learning (OML)

The Online Meta Learning (OML) [39] algorithm suggests a meta-learning approach to contin-
ual learning that trains two neural networks, namely a feature extractor that takes in the input
and produces representations, and a predictor that takes in the representations and makes the
final predictions. Leveraging meta-learning, OML meta-learns the feature extractor to pro-
duce representations for a predictor that gets trained on each task, while the feature extractor is
frozen. The goal is for the feature extractor to produce representations that are robust such that
using them, the predictor can be trained on any task quickly (in a few optimization steps) and
show good performance in the end.

30 Chapter 3. Literature Survey

OML considers each task to be defined by a stream of samplesT = (x1, y1), (x2, y2), ...(xt, yt), ...
with x being the input and y the labels, sampled from sets X and Y. Assuming a marginal dis-
tribution µ : X → [0,∞] that describes the observation frequency of each input, individual xts
can potentially depend on previous samples xt−1 and xt−2. Labels yt, on the other hand, depend
only on their respective xt. OML defines trajectory S k of length k to be a random sequence
of samples (x j+1, y j+1), (x j+2, y j+2), ..., (x j+k, y j+k) from task T , with p(S k|T) representing the
distribution of all length-k trajectories the can be sampled for task T . OML aims to learn a
function fW,θ predicting yt from xt that optimizes the following objective for each task T :

ℓT (W, θ) = E
(
ℓ(fW,θ(X),Y)

)
=

∫ [∫
ℓ(fW,θ(x), y)p(y|x)dy

]
µ(x)dx (3.18)

where W and θ represent the network weights, and ℓ is a chosen loss function (e.g. Cross
Entropy). Each training session involves only a trajectory S k sampled from p(S k|T), and the
network should be able to optimize 3.18 from this trajectory alone.

OML proposes two networks, a feature extractor with slow weights θ, and a predictor net-
work with fast weights W. The slow weights θ are trained using the meta-objective of 3.18
and fixed during inference time, whereas the fast weights W are trained for each task using a
single trajectory S with the chosen loss function. Assuming a distribution over tasks of p(T),
the overall OML objective can then be written as:

minW,θ

∑
Ti∼p(T)

OML(W, θ) =
∑
Ti∼p(T)

∑
S j

k∼p(S k |Ti)

ℓTi

(
U(W, θ, S j

k)
)

(3.19)

where S j
k is a trajectory of length k sampled from the jth task’s dataset, and U(Wt, θ, S

j
k) =

(Wt+k, θ) is the inner-loop optimization function with Wt+k representing the weights after k op-
timization steps. Specifically, the jth optimization step updates weights Wt+ j−1 using (xt+ j, yt+ j)
of the corresponding task to get Wt+ j. The OML algorithm is described in algorithm 1. Since
it will be computationally expensive to evaluate the learned weights on all tasks’ data from
p(T), OML approximates the objective in 3.19 by evaluating the network on a trajectory of the
same task it was trained on, as well as a random sample of the available tasks. Essentially, this
encourages the network to learn a new task rapidly, while still performing well on previously
learned tasks. Also note that in the algorithm 1, it is impractical to randomly reinitialize all of
the weights W, as the predictor will lose the knowledge acquired from previous tasks, and will
not be able to perform well on previous tasks when trained only on the current tasks. Only the
weights leading to nodes essential for prediction of the current task (the classes being trained
on, or regression output nodes) are reinitialized with random values, and the remaining weights
are left untouched.

In evaluation time, the slow weights θ are frozen and the fast weights W are trained and
fine-tuned on the each incoming task. OML not only provides a feature extractor with repre-
sentations that could be used for any task from p(T), it also provides an algorithm that can
adapt quickly to a given task, with few available training examples. The training procedure
explained acts as a pre-training stage to OML, building a good feature extractor applicable to
an arbitrary (in-distribution) task. OML does not provide forward or backward transfer (as the
slow weights remain unchanged in meta test/inference time), but it makes up for it by being
able to quickly learn a predictor network. It does not need a memory to revisit old samples and

3.5. Approaches to Continual Learning 31

Algorithm 1 OML Meta-Learning Algorithm
Require: p(T), the distribution of task datasets
Require: α and β, step size hyperparameters

Initialize the slow weights θ randomly
while not done do

Initialize the fast weights W randomly
Sample a task Ti ∼ p(T)
Sample a trajectory S i from p(S k|Ti)
Set W0 ← W
for j = 1, 2, . . . , k do

(x j, y j)← S i[j]
W j ← W j−1 − α∇W j−1ℓi

(
fθ,W j−1(x j), y j

)
end for
Sample a test trajectory S i,test ∼ p(S k,Ti)
θ ← θ − β∇θℓi

(
fθ,Wk(S

x
i,test), S

y
i,test

)
end while

the computational requirements do not grow. While OML offers interesting features, it has a
few drawbacks:

1. Does not provide forward transfer.

2. Does not provide backward transfer.

3. Needs a dataset of tasks for pre-training.

4. Computationally expensive to train on large datasets.

It is also good to note that the objective of OML (to quickly adapt to a new task with robust
representations), while useful and effective, differs from the objective of continual learning.
While fast adaptations is one of the key aspects of biological brains, the ability to accumulate
knowledge to improve performance on past and future tasks is also essential. Since the slow
weights θ are frozen at inference time, if a task that is slightly out of the distribution of p(T)
is encountered, the trained network will not be able to adapt, as it relies on representations
given by the fixed feature extractor. A continual learner agent should, however, be able to find
similarities between the tasks it was trained on and the new (slightly) out of the distribution
task, to learn generic features that are effective for both tasks, as if the network was trained on
them jointly.

A Neuromodulated Meta-Learning Algorithm (ANML)

A Neuromodulated Meta-Learning Algorithm (ANML) introduced in the paper ”learning to
continually learn” [6], leverages the objective introduced in OML [39] with a novel neuromodulation-
inspired architecture. While OML uses a feature extractor with slow meta-learned weights
followed by predictor network with fast weights, ANML utilizes a neuromodulatory network

32 Chapter 3. Literature Survey

with slow meta-learned weights that gates the last layer activations of a predictor neural net-
work (with fast weights). The two networks have the same architecture, except for the last
layer of the predictor, which includes a linear map for classification/regression.

The last layer activations of the predictor network are multiplied (scalar) by the output of
the neuromodulatory network. With this operation, the neuromodulatory network can control
what kind of information is passed through in the last layer, and as a result, gradients are mod-
ulated as well. Consequently, the neuromodulatory network can in theory guide the activations
and (indirectly) gradients to avoid catastrophic forgetting. This assembly of two networks is
optimized using the OML objective 3.19 with the same algorithm as in 1.

At inference time, all the network parameters (neuromodulatory and predictor network) are
frozen, with the exception of the last layer of the predictor network. The last layer is fine-tuned
on each task encountered.

The architecture change in ANML improves the performance of OML, as it can learn more
than 600 tasks in sequence, using a few samples for each task, without catastrophic forget-
ting. It is not clear, however, that which aspects of the new architecture can the improved
performance be attributed to. Compared to OML [39], ANML uses CNNs for both the neuro-
modulatory and predictor networks, whereas OML uses 6 convolutional layers for the feature
extractor and 2 fully-connected layers for the predictor. While the number of parameters used
is comparable, whether this architecture difference is the source of improved performance is
not ruled out.

All in all, ANML illustrates how simple neurmodulation-inspired design can achieve high
performance in continual learning. The drawbacks in meta-learning approaches like OML,
however, remain:

1. Does not provide forward transfer.

2. Does not provide backward transfer.

3. Needs a dataset of tasks for pre-training.

4. Computationally expensive to train on large datasets.

5. Problem with learning and accumulating knowledge from out of distribution tasks.

3.5.4 Representation Learning
In this section, a class of Continual Learning approaches that learn and update representations
as the training on new tasks progresses is explained. As will be seen, Representation Learn-
ing allows us to build upon high performing previous work. Moreover, the recently popular
contrastive loss can be employed when working in the context of Representation Learning.

Incremental Classifier and Representation Learning (iCaRL)

Incremental Classifier and Representation Learning or iCaRL [72], is one of the relatively
early works in continual learning. iCarL is based on rehearsal of past samples, representation
learning, and regularization using a distillation loss. It leverages representation learning and
a nearest class mean classifier (NCMC) to learn tasks in the class-incremental setting. iCaRL

3.5. Approaches to Continual Learning 33

has three components: The feature extractor network ϕ with parameters θ, the NCMC, and an
exemplar management system.

Training of the network is essentially fine-tuning on the current task with two additions.
First, each batch is augmented with a number of past task exemplars to help prevent forgetting.
Second, a distillation loss is added to ensure that the produced representations do not stray to
far away from their initial values.

The exemplar management system, stores new samples from the current task and discards
samples from previous tasks to ensure the number of exemplars stored does not exceed a pre-
defined limit. As a result, two routines are provided to control the storing and deletion of
exemplars. The storing routine iterative selects and adds an exemplar to the memory until the
limit for a class’s memory is reached. At each step, a sample of the current class training set
that makes the average representation of samples in the memory best approximate the average
of all class samples’ representation is added to the memory. The storing routine enables the
second routine, namely the deletion of memory samples, to become relatively easy. In order
to remove k samples for a class’s memory, it simply removes the last k samples that were
added, as the addition of samples to the memory has been done in a sorted manner, with the
most representative samples added first. The algorithms for storing and discarding samples are
illustrated in 2 and 3 respectively.

Algorithm 2 iCaRL: ConstructExemplarSet
Require: Exemplar set X = {x1, x2, . . . , xn} belonging to class y
Require: m the limit for number of samples of class y in memory
Require: ϕ the feature extractor function
µ← 1

n

∑
x∈X ϕ(x) ▷ True class mean of all samples

for k = 1, 2, . . . ,m do
protok ← argmin

x∈X

∥∥∥µ − 1
k [ϕ(x) +

∑k−1
j=1 ϕ(proto j)]

∥∥∥
end for
P← (proto1, proto2, . . . , protom)
return P

Algorithm 3 iCaRL: ReduceExemplarSet
Require: Current exemplar memory P = (proto1, proto2, . . . , proto|P|)
Require: m the limit for number of samples

return P = (proto1, proto2, . . . , protom)

The NCMC works by computing class means from samples in the memory. Specifically,
samples for each class are fed into the feature extractor to get representations, which then are
averaged to become class prototypes. For evaluation and classification of a sample x, the class
label with the most similar prototype is returned:

y⋆ = argmin
y=1,...,t

∥ϕ(x) − µy∥ (3.20)

where t denotes the number of classes seen so far. The network output (for training and defining

34 Chapter 3. Literature Survey

the loss) are produced by a function g and a set of vectors w1,w2, . . . ,wt:

gy(x) =
1

1 + exp(−ay(x))
where ayx = wT

y ϕ(x) (3.21)

In order to train a task and update the feature extractor, first a dataset D is constructed by
augmenting current task data (of classes s to t, Xs, . . . , Xt) with exemplar sets P = (P1, P2, ..., Ps−1)
from memory:

D = ∪
y=s,...,t

{(x, y) : x ∈ Xy} ∪ ∪
y=1,...,s−1

{(x, y) : x ∈ Py} (3.22)

For distillation, before the start of training on the current task, the network outputs are stored.
Specifically, the network output of the ith sample from class y is recorded in qy

i . The loss can
then be defined as:

ℓ(θ) = −
∑

(xi,yi)∈D

 t∑
y=s

δy=yilog(gy(xi)) + δy,yilog(1 − gy(xi))

+

s−1∑
y=1

qy
i log(gy(xi)) + (1 − qy

i)log(1 − gy(xi))

 (3.23)

After updating the feature extractor using the loss function of 3.23, the memory is updated
by first discarding samples to make room for new class samples according to algorithm 3, such
that the memory is divided equally between classes. New samples are then added to memory
according the storing procedure in algorithm 2.

iCaRL, while working in the class-incremental setting, was able to outperform methods
such as Learning without Forgetting (LwF) [52] that were designed to solve the easier problem
of task-incremental continual learning. Leveraging representation learning, iCaRL is able to
update class representations as it encounters new classes and tasks, allows forward and back-
ward transfer, and does not put any limits on the number of classes it can learn. Nevertheless,
iCaRL has a few drawbacks:

1. It needs to store samples for each class, and the performance relies on the size of the
memory.

2. The performance on large scale datasets can be better.

Due to flexibility and good performance of iCaRL, we will adopt a similar Representa-
tion Learning approach towards solving the Continual Learning problem. However, the loss
function will be set similar to Contrastive Learning as described in subsequent sections.

Contrastive Learning of Visual Representations (SimCLR)

SimCLR [16] introduces a framework for self-supervised learning of visual representations, by
simplifying the previously proposed contrastive self-supervised algorithms. SimCLR explores
various design choices systematically, and provides settings where self-supervising representa-
tion would lead to then state-of-the-art performance on large scale image classification datasets.
Specifically, SimCLR shows

3.5. Approaches to Continual Learning 35

1. Combining image data augmentation variants is essential to defining contrastive predic-
tion tasks, with stronger augmentations needed compared to supervised methods.

2. Adding a projection network for a non-linear transformation of representations to em-
beddings in a space where the loss is defined considerably improves performance.

3. Contrastive loss defined on normalized embeddings (the output of the projection net-
work) enhances representation learning.

4. Larger batch sizes and longer training times help contrastive learning more than super-
vised learning, while deeper and wider (with more channels in each layer) networks
similarly benefit both contrastive and supervised learning algorithms.

For a complete analysis of what role each of the described components play in the performance
of SimCLR, see [16]. Here we only describe how the components in the SimCLR framework
work.

The are four modules at the core of SimCLR. A data augmentation module takes each
sample x in the mini-batch and generates two augmented samples x̃i and x̃ j using a stochastic
image augmentation operation. Each of the augmented images are called to be views of the
original image. The augmentation operations typically involve

• A random crop of the image that is then resized to the original image size.

• A random color jitter that distorts colors of the original image.

• Adding Gaussian noise to the image.

• Turning an image to grayscale.

• Flipping the image horizontally or vertically, if suitable.

• Rotation by a random degree, if suitable.

The second module is a neural network termed base encoder and denoted by f (.). The base
encoder takes in the input images and generates representation vectors. The encoder used
in SimCLR is simply a ResNet [35]. The representation of augmented images can then be
computed by taking the output of the average pooling layer: hi = f (x̃i) = ResNet(x̃i).

The third module is called the projection head, a neural network denoted by g(.) that
transforms the representations h to embeddings z in a space where the contrastive loss is ap-
plied. In SimCLR, a simple Multi-Layer Perceptron (MLP) is used as the projection head:
zi = g(hi) = W (2)σ(W (1)hi) where σ is an activation function (ReLU was used).

The fourth and final module is the contrastive loss. For each mini-batch of size N, each
image is augmented twice to get two views and each view is fed to the encoder and projection
networks. This will result in 2N embeddings, two for each image. For each image, the two
views generated from it are considered positive samples and the remaining 2(N −1) images are
defined to be negative samples. The similarity of two samples can be defined as the dot product
of their ℓ2 normalized embeddings u and v:

sim(u, v) =
uT v
∥u∥∥v∥

(3.24)

36 Chapter 3. Literature Survey

The contrastive loss for a positive pair (i, j) can then be defined as:

ℓi, j = −log
exp(sim(zi, z j)/τ)∑2N

k=1 1[k,i]exp(sim(zi, zk)/τ)
(3.25)

where 1[k,i] ∈ {0, 1} is equal to 1 iff k = i, and 0 otherwise. The τ parameter is known as
the temperature, controlling the sharpness of exp(sim(i, j)). The overall contrastive loss is
computed by summing up ℓi, j for all positive pairs (i, j) (as well as (j, i)) in the mini-batch. The
training then proceeds with computing and backpropagating the contrastive loss and taking an
optimization step.

Intuitively, the loss in 3.25 encourages representations of different views of the same image
to be as similar as possible (with a chosen definition of similarity, here the dot product of
their embeddings), while pushing away embeddings extracted from views of different images.
Overall, it will end up training the encoder and projection networks to assign representations
that will be similar for similar images, effectively learning and encoding visual representations.

Learning representations in a self-supervised manner, SimCLR has demonstrated state-of-
the-art performance in self-supervised image classification tasks. Its impressive performance
raised the question of whether the SimCLR framework can be applied to supervised learning
settings, and whether it was possible to leverage available labels as well.

Supervised Contrastive Learning (SupCon)

In a work called ”Supervised Contrastive Learning” [42], inspired by the appealing perfor-
mance gains of SimCLR, a similar contrastive loss for supervised learning scenarios was intro-
duced. The proposed loss is essentially an extension of the contrastive loss used in SimCLR.
The authors examined two versions of the supervised contrastive loss (SupCon) and reported
back the version that performed better. Here, the proposed loss is reviewed without in-depth
analysis, and the reader is referred to [42] for a more complete analysis of the SupCon loss.

Assuming the same modules of SimCLR [16], namely the data augmentation module, the
base encoder f (.), and the projection network g(.), the only different component in Supervised
Contrastive Learning is the loss. Augmenting each image in a mini-batch twice to get corre-
sponding views, a set of size 2N can be constructed. Let I = {1, 2, ..., 2N} denote the index of
this multi-viewed mini-batch. Also let A(i) represent I minus the ith sample, namely the view
x̃i. The set P(i) = {p ∈ A(i) : yp = yi} is used to denote the set of positive samples, i.e. samples
other than i sharing the same label yi. With zi = g(f (x̃i)) representing the embedding resulted
from passing the view x̃i to the encoder and projection networks, the SupCon loss is defined
as:

ℓSupCon = −
∑
i∈I

1
∥P(i)∥

∑
p∈P(i)

log
exp(sim(zi, zp)/τ)∑

a∈A(i) exp(sim(zi, za)/τ)
(3.26)

where τ is the temperature parameter similar to SimCLR [16].
Intuitively, the loss in 3.26 encourages positive samples, those in the same class or sharing

the same label, to have similar representations, while simultaneously pushing away negative
samples, those with a different class or label. The difference to SimCLR loss in 3.25 is on how
the positive and negative view are defined. In SimCLR, positive views were those originating
from the same image, while in SupCon, positive samples are defined as samples with the same
label.

3.5. Approaches to Continual Learning 37

SupCon has the following features:

1. It results in representations that are more robust to noise than then cross-entropy loss,

2. Encourages learning from hard positive and negative samples,

3. Is less sensitive to the choice of hyperparameters and optimizers, compared to the cross-
entropy loss.

Networks trained using SupCon were able to achieve state-of-the-art performance on a
variety of supervised image classification datasets. In practice, however, training a network
using SupCon can be tricky as the training process is dependent on the batch size, and in case
of using a large batch size (batch size ≥ 512), a warmup procedure (i.e. starting out with a
small learning rate and gradually increasing it, for the first few epochs of training) should be
used.

Contrastive Continual Learning (Co2L)

Inspired from recent advances in contrastive representation learning, Co2L [13] asks whether
contrastively learned representation would also help learning tasks sequentially. In the paper
”Contrastive Continual Learning” authors note that forgetting does not only come from re-
stricted access to past examples, but it rises from limited access to future tasks as well, since
learning features and representations that transfer to future tasks is as important as preserv-
ing knowledge acquired from previous tasks. In order to learn representations that transfer to
future tasks better, Co2L uses the Supervised Contrastive Learning (SupCon) framework [42]
and makes an important observation: Representations learned by the SupCon framework suffer
considerably less forgetting compared to those learned using cross-entropy loss.

Co2L proposes a modified version of the SupCon loss and a new distillation loss to contin-
ually learn representations and preserve them. It uses a decoupled encoder-classifier architec-
ture: An encoder f (.) and a projection network g(.) are used for training, while at evaluation
time, a linear classifier w(.) is trained, taking in representations produced by the encoder f (.)
and predicting class probabilities.

Co2L uses rehearsal via a memory buffer to help mitigate forgetting, as every mini-batch of
the current task samples is augmented with some samples from a memory. Co2L calls its pro-
posed loss ”Asynchronous SupCon”. While in SupCon the loss is summed across all samples
in the mini-batch, in the proposed Asynch SupCon the loss is only summed up for current task
samples. Using the same terminology as described for SupCon, let S ⊂ {1, 2, . . . , 2N} denote
the index of samples for the current task (excluding memory samples). The modified loss can
then be written as:

ℓ
SupCon
Asynch = −

∑
i∈S

1
∥P(i)∥

∑
p∈P(i)

log
exp(sim(zi, zp)/τ)∑

a∈A(i) exp(sim(zi, za)/τ)
(3.27)

The purpose of this modification is to prevent the network from overfitting to a sample subset
of previous task samples from memory. In the experiments, it is empirically shown that this
actually is the case, and the modified loss improves performance.

38 Chapter 3. Literature Survey

For distillation and preserving learned representations, Co2L introduces the Instance-wise
Relation Distillation (IRD) loss. Commonly used for distillation, before training of the current
task, the weights of the encoder network at the end of the training of the previous task are stored
(θ⋆). At training, for each multi-viewed mini-batch, two sets of representations are computed,
one with the stored weights θ⋆, denoted as zpast

i and the other with current weights θ, denoted
as zi. For each view xi in the mini-batch of representation, a vector p, termed the instance-wise
similarity vector is computed:

p(xi) = [pi,1, pi,2, ..., pi,i−1, pi,i+1, ..., pi,2N] (3.28)

where pi, j is the normalized instance-wise similarity:

pi, j =
exp(sim(zi, z j)/κ)∑2N

k,i exp(sim(zi, zk)/κ)
(3.29)

κ is yet another temperature parameter. The IRD loss can then be defined as:

ℓIRD =

2N∑
i=1

−p(zpast).log(p(z)) (3.30)

The overall training loss can then be written as:

ℓ = ℓ
SupCon
Asynch + λ ℓIRD (3.31)

with λ controlling the weight of distillation.
For managing the samples in the memory, whenever the memory becomes full and space

needs to be freed, a sample is randomly pushed out to make way for new class samples. This
will keep the memory divided (approximately) equally between classes.

Co2L demonstrates state-of-the-art performance for various computer vision datasets, and
in all of the task-incremental, class-incremental, and domain-incremental settings. It offers
forward and backward transfer as the encoder can learn new features by contrasting new task
data against previous tasks, is successful in mitigating forgetting, and uses fixed computational
resources and memory. The only drawback to this method is that the adaptation power of the
network decreases over time. While the network can achieve near perfect accuracy on the first
task, by the time it gets trained on the fifth task, there seems to be a limit on the accuracy on
the new task that the network is unable to go beyond. While the contrastive loss (SupCon)
can partially be responsible for this effect, it is more likely that it arises from the distillation
loss, as it introduces a regularization to the entirety of the representation vectors, while parts
of the representation vectors may not be contributing to preserving the previously acquired
knowledge. While Co2L enjoys performance gains resulting from Contrastive Learning, it still
suffers from drawbacks seen in previous Continual Learning approaches such as EWC [43], SI
[98], and LwF [52]. Regularization of representations is done via distillation loss and accord-
ing to previous tasks only, with no measure of how likely these representation are to transfer
to next upcoming tasks. Although representations learned via Contrastive Learning may be
more transferable, contribution from different parts of the representations towards generaliz-
ability performance may not be equal. The distillation loss in Co2L implicitly assumes equal
contribution and regularizes the whole representations, even parts that may be overfitted.

3.6. Neural Similarity Learning 39

3.6 Neural Similarity Learning

Finally, in this section, a work that acts as building block in this thesis towards identifying
important parts of representations in the Representation Learning context is reviewed.

In Convolutional Neural Networks (CNN), each convolution operation takes in inputs X̃
and multiplies them by a set of kernels with weights W̃, where each kernel is multiplied to the
input in different positions, similar to a sliding window. Assuming a kernel of size C × H × V
with C denoting channels, H height, and V the width, and assuming a portion of the inputs
with same size as the kernel (getting multiplied by it), one can flatten the inputs to get X and
the kernel to get W. As a result, X and W will be 1-D vectors holding inputs and the kernel
weights respectively. The convolution operation can then be thought as a dot product between
these two 1-D vectors (WT X), similar to what a simple neuron computes in feed-forward neural
networks. In a work named ”Neural Similarity Learning” [54], authors propose to generalize
the dot product formulation by adding a bilinear similarity matrix:

fM(W, X) = WT MX (3.32)

where f is the convolution operation parameterized by M, the bilinear similarity matrix. While
it is not necessary to constrain M, in order to be more parameter efficient and avoid imposing
a large computational overhead, the authors suggest to let M be a block-diagonal matrix with
C shared blocks:

fM(W, X) = WT


Ms

. . .

Ms

 X (3.33)

where M = diag(Ms, . . . ,Ms) and Ms is of size HV ×HV . Ms can be constrained to be a diago-
nal matrix (diagonal neural similarity or DNS), effectively computing a weighted dot product,
or left unconstrained to be more flexible at the cost of more parameters to train (unconstrained
neural similarity or UNS).

There can be two variants to neural similarity learning, namely static and dynamic. In
static neural similarity learning, the matrix Ms is learned jointly with the rest of the network
parameters using backpropagation in an end-to-end fashion. At inference time, the bilinear
similarity matrix can be incorporated into weights W and there is no need to store additional
parameters. Static neural similarity learning is quite similar to matrix factorization, as the
weights in dot product WT X can now be seen as a factorized MT W.

While the static variant of neural similarity learning can generalize the convolution opera-
tion, the bilinear similarity matrix will be learned during training time and maintain its effect
regardless of the inputs. Dynamic neural similarity learning, on the other hand, attempts to
learn a small network that generates M, rather than learning it directly. Specifically, the matrix
M will be constructed by blocks Ms that are generated with a neural network Mθ(.), parame-
terized by θ. Similar to static neural similarity learning, both the network parameters W and θ
can be learned jointly using backpropagation.

Moreover, the bilinear similarity matrix M can be regularized, either via imposing a certain
structure (e.g. block-diagonal with shared blocks), or by encouraging it to be sparse (with ℓ1
norm penalty).

40 Chapter 3. Literature Survey

Neural similarity networks (NSN) can be constructed by changing each convolutional layer
with one equipped with neural similarity learning (bilinear similarity matrix). In order to re-
duce the number of additional parameters, authors suggest all convolutional kernels in the
same convolution layer to share the bilinear similarity matrix. If all convolution operations are
changed with the static (dynamic) variant of neural similarity learning, the resulting network
will be a static (dynamic) NSN.

Results in this work showed that the dynamic variant generally outperforms the static vari-
ants of NSNs. Additionally, both variants outperform a baseline CNN with the same number of
parameters and normal unchanged convolutions. Using unconstrained neural similarity (UNS)
matrices, however, performed on par with the diagonal neural similarity (DNS) matrices, show-
ing that DNS matrices are flexible enough for performance gains in image recognition tasks.
Overall, neural similarity learning can improve a network’s performance by making the convo-
lution (or feed-forward) operations more flexible and enabling adaptation of kernels to inputs.

Chapter 4

Methods

As seen in the Literature Survey chapter, a common approach to continual learning is to find
a way to identify parameters that are playing a crucial role in the performance of the DNN
on previous tasks. There is, however, a very limiting assumption in both task-incremental and
class-incremental settings about the transition to a new task. For task-incremental learning, it is
assumed when training on a new task starts, there is no access to previous tasks data, unless it
is a few samples stored in the memory. Similarly, in the class-incremental setting, it is assumed
that when new classes of data are coming in as a new task, the access to all but a few samples of
previous tasks’ data in the memory are lost. The same limiting assumption applies to the next
tasks’ data as well. When training on the current task, it is assumed that no data from the next
task is available. This strict assumption limits a learner’s ability to contrast new data against
previous tasks’ data. While moving on from a task A to learn task B, there is limited access
either to task A, or B, since at any time, either A is considered a previous task, or B is considered
a next task. A more appropriate and practical setting considers a stream of incoming samples
{(x1, y1), ..., (xt, yt), ...}. Assuming a limited (hardware) memory to store samples from this data
stream, the data available to the learner can be seen as a sliding window on this stream. For
example, at time t, the learner has access to samples (xt, yt), ..., (xt+w, yt+w) where w is the length
of the window. In this setting and with the disjoint task assumption, when task A’s data ends
and is succeeded by task B’s data, the window will see not only task A’s data, but some of task
B’s data samples as well.

Sliding Window

Task 1 Task 2 Task n

Figure 4.1: The new proposed setting: Data comes in as a stream and access is defined by a
sliding window.

Inspired by this observation and the role of neuromodulatory processes in the brain for
learning, here we propose a new setting for continual learning that more closely mimics the
data access patterns we have in practice, along with three novel methods for knowledge preser-
vation in this new setting: Selective Distillation, Gradient Modulation, and Half-Network. As

41

42 Chapter 4. Methods

stepping stones to create the three new methods, we also introduce two methods to compute
and use saliency information to improve continual learning performance. These are Salient
Representative Selection, and Salient Excitation Backprop.

The new setting has a more practical view towards access to next task’s upcoming data.
Normally, it is assumed that when training on a task begins, the data comes in as batches, rather
than being available in its entirety. Given the sliding window formulation, this assumption is
too limiting. At a point in time when training on a task begins (named current task), there
is very limited access to previous tasks’ data, as well as current task data, which is not usual
in practice. In this work, we take a small step towards this new setting. It is now assumed
when training on a task begins, we have access to a number of samples from the current task (a
predictive batch). These samples are a subset of the first batch of new task data, so there is no
need to have additional access to current task data, although the new setting allows it. Using
the network that has been trained on previous tasks and has not seen the current task data yet,
this predictive batch allows us to define the importance of network parameters based on how
generalizable and transferable they are, as well as how much they contribute to previous tasks.
By evaluating a network on a small sample of current task’s data before training on it begins,
it is possible to attribute performance on past data and the predictive batch of current task data
to each individual network parameter, and try to retain the transferable knowledge acquired
by the network. To achieve this goal, we first define and compute on the last layer neurons
a measure of generalizability using previous tasks’ data in memory and the predictive batch
of the new upcoming data. Further, we extend the Excitation Backprop (EB) framework [99]
to work with our choice of representation learning and to attribute the computed performance
measure, rather than a specific output neuron’s activation, to every network parameter. We
call our approach ”Look-Ahead Selective Plasticity”, as it leverages a predictive batch of new
upcoming data to selectively modulate the plasticity of network weights.

This work can be seen as a motivation towards adopting the proposed setting. Here, we
will show that using a small subset of new task’s data as the predictive batch can improve
continual learning performance, which will in turn suggest that using a larger subset of current
task’s data can improve performance further. Access to a larger number of samples from a task
before training on it begins, however, is not granted in the typical continual learning setting,
emphasizing on the plausibility of the proposed setting.

4.1 Saliency Methods
Here we introduce two new methods for computing and using saliency.

4.1.1 Salient Representative Selection
While the previous work used a form of regularization on the entirety of the output of the net-
work to preserve knowledge of past tasks, here we aim to find certain parts of the output that are
essential to performing well on previous tasks and are likely to perform well on future tasks.
After this process, one can either regularize the parts of the output that are found to be impor-
tant, or find a way to attribute performance of those parts to individual network parameters. In
subsequent sections, we will propose methods for both.

4.1. SaliencyMethods 43

Similar to an interesting previous work called Neural Similarity Learning [54], taking in the
feature extractor fθ, we learn a minimal selection mask that identifies a portion of the produced
representation (e.g. first half: representation[:middle]) that works equally well or better than
the complete representations. Assessing “working well” here is done by calculating accuracy.

Representation mask

no
rm

al
iz
e

lo
ss

Figure 4.2: Salient Representative Selection: Identifying parts of the representations that trans-
fer well.

First a datasetD is formed by combining past samples in the memory and a predictive batch
of new upcoming data. The number of samples taken from memory is 100, unless the memory
size is less than 100, in which case all of the memory samples will be added to this dataset.
The number of samples in the predictive batch is also 100. Assuming r[d] ∈ Rd denotes a d-
dimensional representation produced by the feature extractor, we aim to learn a d-dimensional
mask m[d] ∈ {0, 1}d that selects a minimal part of r[d] that classifies representations well. The
selection process takes out a portion of the original representations and thus, the selected rep-
resentations are going to have lower dimensions. Both the original and new representations are
divided by their ℓ2 norm to lie on a unit hypersphere. Letting s[k] to denote the selected repre-
sentation where k is the number of new dimensions, the selected representation can formally
be computed as:

s[k] =
r[d][m = 1]
∥r[d][m = 1]∥2

(4.1)

In order to define a loss, class means need to be computed first. The mean of class c can be
written as:

ac =

∑
i:yi=c s[k]

i

|{s[k]
i : yi = c}|

(4.2)

where yi is the ith sample’s label, ac is the mean of class c selected representations, and s[k]
i is

the k-dimensional selected representation of sample i (produced by fθ(xi)). The similarity of a
selected representation s[k]

i to a class mean ac is defined as their normalized dot product (cosine
distance):

sim(s[k]
i , ac) =

s[k]
i · ac

∥s[k]
i ∥ ∥ac∥

(4.3)

44 Chapter 4. Methods

For a sample (xi, yi), the cross entropy loss can be defined as:

ℓi = −log
exp(sim(s[k]

i , ayi))∑C
c=1 sim(s[k]

i , ac))
(4.4)

where C is total number of classes. The total cross entropy loss can either be the sum or the
mean of the cross entropy loss for each sample. A simplified nearest class mean (NCM) loss
can also be defined:

ℓi = −sim(s[k]
i , ayi) (4.5)

which tries to maximize the similarity of each sample with its corresponding class mean. The
total NCM loss is then calculated as the sum of the loss for each sample.

While keeping the computed representations R = {r[d]
i = f (xi)∀xi ∈ D} frozen and treating

the mask m[d] as the only trainable vector, one of the above mentioned losses can be optimized
to find a mask that selects a portion of the representation that classifies the samples best. More-
over, in order to encourage the selecting mask m[d] to be sparse and minimal (i.e. minimize k
in s[k]

i), an ℓ1 norm loss is added. The total loss will be:

ℓtotal = ℓclassification + λ∥m[d]∥1 (4.6)

where λ controls the trade-off between classification performance and the sparsity of the mask.
Optimizing for m[d], a portion of the original representation will be selected. We will call

the selected output neurons to be the salient ones. However, there needs to be a quantitative
measure of salience. If the original representations were not classifying the samples well in
the first place, there is little chance that this selected portion outperforms the original represen-
tations by a large margin. To define the salience more quantitatively, the salience of selected
neurons will be set to be their nearest class mean accuracy on dataset D. As a result, the
salience of the ith output neuron can be defined as:

ŝi =

0 m[i] = 0
NCM accuracy m[i] = 1

(4.7)

ŝ will be the output of this Salient Representative Selection process, where salient output
nodes that are representative of the original representations are selected. ŝ will be used as an
input to the extended EB framework to compute the salience of all network weights.

4.1.2 Salient Excitation Backprop
Given a prior distribution on the output neurons of a neural network, the EB framework is
able to attribute that prior distribution to all of the neurons in the network, but not the weights
between them (recall that in the EB a neuron is defined as âi = ϕ(

∑
j w jiâ j + b j), and the

prior distribution is attributed to ais). Moreover, the EB framework backpropagates the top-
down attention signal only through the positive weights [99]. In the feature extractor, the
EB framework will attribute the given prior distribution to neurons with the ReLU activation
function properly, as expected. However, for the last fully-connected layer in a ResNet [35] this
does not hold, since representation learning via a contrastive loss objective is being performed,

4.2. Knowledge PreservationMethods 45

and neurons in the second to last layer can play a significant role even if they are connected
to the output layer with a negative weight, as long as the output node is salient. Formally,
assuming a j to be a neuron in the second to last layer, ai to be a salient neuron in the last (output)
layer (according to the Salient Representative Selection), and w ji the weight connecting these
two neurons, we propose to modify the Marginal Wining Probability (MWP) calculation in the
EB framework only for the last year as follows:

P(a j|ai) = Zi â j abs(w ji) (4.8)

where Zi is just a normalization factor Zi =
1∑

j â jabs(w ji)
. The MWP calculation will remain the

same for all other network layers, where a j is in the child node set Ci of ai in top-down order:

P(a j|ai) =

Ziâ jw ji ifw ji ≥ 0,
0 otherwise.

(4.9)

As a result, a neuron in the second to last layer can be salient even if it is connected to a salient
node with a negative weight.

Furthermore, to attribute salience to network weights, similar to Oja’s rule [66], we set the
salience of a weight (i.e. connection) to be the geometric mean of the salience of neurons on
its two ends. Formally, considering w ji as the weight between neuron ai and a j, and denoting
the salience of these two neurons with P(ai) and P(a j), the salience of the weight w ji can be
defined as:

P(w ji) =
√

P(ai)P(a j) (4.10)

With this extension of the EB framework, given the salient neurons ŝ in the output layer, the
importance (salience) of each weight can be computed using an additional backward pass. Us-
ing these computed salience values, three novel techniques to retain a network’s (transferable)
knowledge of past tasks are introduced.

4.2 Knowledge Preservation Methods
Based on the two saliency methods described above, we introduce three different methods for
knowledge preservation which we will evaluate and compare.

4.2.1 Selective Distillation
This method does not require the extended EB framework to compute weight salience. It only
needs the salience map on the output layer of the feature extractor (representations). While
works such as Co2L [13] and LWF [52] use knowledge distillation on the entirety of the output
of the network, here we propose to distill only the part of the representation that is identified
to be salient. This method aims to allow the network more freedom in learning new tasks
while ensuring at minimal yet salient part of the representation is regularized to work well on
previous tasks as well. Compared to previous work, there are two main contributions:

• The distillation loss is defined on a portion of the produced representations, in contrast
to all of it, allowing more learning freedom.

46 Chapter 4. Methods

• The criteria for choosing this portion is the portion’s performance on previous tasks, as
well as a predictive batch of the upcoming new task, encouraging the network to preserve
representations that transfer.

Representation mask

no
rm

al
iz
e

Feature
Extractor
(current)

Representation mask

no
rm

al
iz
e

Feature
Extractor
(snapshot)

Euclidean
Distance
Loss

Figure 4.3: Selective Distillation: Knowledge Distillation only on parts found to be salient.

To add this distillation loss, before the start of training on a new task, feature extractor
weights θ⋆ are saved. Next, at training time, assuming the network weights to be denoted by θ,
the following distillation loss is added to the SupCon loss:

ℓdistill =

 ∑
xi∈minibatch

(
fθ(xi) ⊙ ŝ
∥ fθ(xi) ⊙ ŝ∥2

−
fθ⋆(xi) ⊙ ŝ
∥ fθ⋆(xi) ⊙ ŝ∥2

)2
 /|minibatch| (4.11)

where ⊙ denotes element-wise product.
This loss ensures that the selected salient parts of the representations are preserved when

new representations are being learned. The total loss will then become:

ℓtotal = ℓSupCon + λ ℓdistill (4.12)

4.2.2 Gradient Modulation
For this method, before the start of training on a task, using the Salient Representative Selection
process, the salient output nodes performing well on the previous tasks and the predictive batch

4.2. Knowledge PreservationMethods 47

of new upcoming data are identified. Next, EEB is employed to compute the salience of each
feature extractor parameter/weight. This method is then applied in each iteration of the current
task’s training.

Specifically, after backpropagating the loss back to the feature extractor weights θ, the
gradients are modified according to each weight’s salience. Assuming gw ji to be the gradient
with respect to weight w ji and P(w ji) to be the weight’s importance, the gradient is modulated
as follows:

gw ji = gw ji × (1 −min(1, P(w ji))) (4.13)

As a result, the more salient a weight is, the smaller the gradients become. In the extreme case
that a weight’s importance is P(w ji) ≥ 1, the weight will not change for the duration of training
on a task. In the other extreme, if a weight’s importance is near zero, it will be trained by the
loss with no limitation/regularization. Similar to how neuromodulator processes in the brain
can modulate the plasticity of a neuron, this process attempts to retain the important network
weights by limiting change (plasticity) while allowing the less important weights to be learned
via the loss and the normal training process.

4.2.3 Half-Network
In addition to previous methods, a half-network approach is introduced. While the gradient
modulation method can retain important weights, there is concern for the case that the gradi-
ent modulation method deems a large portion of network weights to be important and limits
the network too much. In order to examine this scenario, the half-network approach regular-
izes half of the network weights in each layer, leaving the other half to be trained normally.
Specifically, in each convolutional layer, weights are averaged in each channel to get an overall
channel importance. Assuming P(c(l)

i) to denote the importance of the ith channel (kernel) in
the lth layer, for each layer the channels are sorted according to their salience. The weights
residing in the top-half channels with the largest importance are then regularized based on their
initial value before training on the current task started.

Specifically, before the training on a task begins, a snapshot θ⋆ of the feature extractor
weights are taken. A set I of the index of the important weights is then formed by identifying
the weights residing in the important channels. By definition, the size of I will be at most half
of the network parameters (|I| ≤ |θ|/2). At each training iteration, a regularization loss is added
to the SupCon loss:

ℓhn−reg =

∑
i∈I(wi − w⋆i)2

|I|
(4.14)

where w⋆i is the weight stored in θ⋆ corresponding to the current weight wi ∈ θ. The total loss
then becomes:

ℓtotal = ℓSupCon + λ ℓhn−reg (4.15)

where λ controls the degree of regularization.

4.2.4 Baselines
To evaluate how each method performs, experiments with a baseline setting were also con-
ducted. The baseline setting simply uses the SupCon loss and a memory module without any

48 Chapter 4. Methods

other additions (no supplementary method). As a result, this setting will enable the comparison
and evaluation of each method with the baseline setting where it was not present. Additionally,
a second baseline named simultaneous training is added to show the result when training was
performed on the entire dataset (MNIST, CIFAR10, or TinyImageNet) on all classes simulta-
neously. The simultaneous training baseline usually shows an upperbound on the performance
of the continual learner, as it had access to the entirety of each the dataset during training, and
was trained on all classes at the same time.

4.3 Training Procedure
We have chosen to work on the class-incremental setting, as it is more challenging and more
useful in practice, and the task ids/descriptions are not usually available. To learn and evaluate
in this setting, we divide each dataset (MNIST, CIFAR10, and TinyImageNet) into 5 tasks,
with equal number of classes in each task. For example, the dataset for the first task of MNIST
involves digits 0 and 1, while for SplitTinyImageNet, the first task’s dataset includes the first
forty classes.

Most of the training process is based on Co2L [13]. The architecture, similar to Co2L is
a decoupled encoder-classifier. The term feature extractor will also be used to refer to the
encoder. For larger datasets of SplitCIFAR10 and SplitTinyImageNet, a reduced version of
ResNet-18 as in [58] is used for the feature extractor to produce representations (extracted
from the output of the fully-connected layer), followed by a single hidden-layer MLP to pro-
duce embeddings. For MNIST, a simple 3-layer CNN (16 channels in each convolutional
layer, 32 neurons in the fully-connected layer, and a representation size of 32) is used without
any projection head, hence the representations and embeddings are in the same space. The
Supervised Contrastive loss (SupCon) [42] is then defined on embeddings, and gradients are
computed and backpropagated for the training to proceed.

4.3. Training Procedure 49

MLP (single hidden layer,
ReLU activation)

Projection Network

EmbeddingTraining Time

Evaluation Time

Feature Extractor / Encoder

Input Image representation

Supervised

Contrastive

Loss
(SupCon)

Linear Transformation

Classification Head

Figure 4.4: Architecture in training and evaluation time

A memory is used to retain a small sample of previous tasks. In each training iteration,
the current task mini-batch is augmented with the same number of samples from memory.
The memory management is identical to iCaRL [72], with modules for adding and removing
examples from the memory, such that the number of samples stored from each class is nearly
equal.

The performance measures of precision, recall, and f1-score are computed on each task
and observed class after training on each task. While focus will be on f1-score for SplitMNIST
as it is slightly unbalanced, for SplitCIFAR10 and SplitTinyImageNet, average accuracy will
be used to compared methods with each other and previous work. In order to get predictions,
similar to Co2L [13], after training is finished on a task, a separate classification head with
output units the same as the number of classes is jointly trained on the task’s dataset and
the samples in the memory. During training of the classification head, the projection head is
not present and the feature extractor weights are frozen. This classification head is trained
with cross entropy loss. After training of the classification head, it can be used to transform
representations to class probabilities and compute the mentioned metrics.

The described methods (selective distillation, gradient modulation, and half-network) will
be applied after training on the current task finishes and before moving on to the training of the
next task.

For easier comparison and accumulation of results, each performance metric (measured
and reported after training on each task was finished) was computed and averaged over seen
classes (for precision, recall, and f1-score) and seen tasks (for average accuracy). It is good
to note that NaN values were discarded for computing the average. Specifically, precision for
a class can be undefined/NaN if there were no samples that were predicted to be in that class.
Moreover, if precision and recall on a class are zero, then the f1-score will be undefined. The
average operator (as well as standard deviation computation) did not consider NaN values, and

50 Chapter 4. Methods

reported the results using only the valid measurements.

4.4 Experimental Settings
Most of the hyperparameters are set according to Co2L [13]. There are, however, some differ-
ences. First and foremost, the loss used here is the normal supervised contrastive SupCon loss,
not the asynchronous version used in Co2L [13]. Moreover, a smaller batch size is used for
the training of the network on MNIST and CIFAR10, while a large batch size is employed for
SplitTinyImageNet. For implementation of the mentioned approaches, the PyTorch (1.12.1)
[69] and Avalanche (0.2.1) libraries [57] were employed. All architectures are implemented
and trained from scratch. The extension of the excitation backprop was implemented based
on the TorchRay library (2.0.01) [26]. Visualizations were made using the seaborn [96] and
matplotlib libraries.

Each experiment on SplitMNIST and SplitCIFAR10 was repeated independently 10 times
with random seeds, while each experiment on SplitTinyImageNet was repeated 5 times, due to
time constraints. Each experiment (one repetition) took 5 minutes on SplitMNIST, 5 hours on
SplitCIFAR10, and 20 hours on SplitTinyImageNet using an Nvidia RTX 3090 GPU. Over the
course of this thesis, more than 170 experiments were conducted, verified and clear results of
which will be presented in the next chapter.

A list of the hyperparameters are provided in table 4.1:

4.4. Experimental Settings 51

SplitTinyImageNet

Learning Rate 0.5
Batch Size 512
Memory size 200
Projection head embedding size 128
SupCon loss temperature 0.07
λ 1
Start epochs (first task) 300
epochs (except first task) 250

Augmentations

TorchVision transforms:
RandomResizedCrop(scale=0.2),
RandomHorizontalFlip(p=0.5),
RandomColorJitter(0.4, 0.4, 0.1) with p=0.8,
RandomGrayScale(p=0.2)

SplitCIFAR10

Learning Rate 0.01
Batch Size 32
Memory size 200
Projection head embedding size 128
SupCon loss temperature 0.07
λ 1
Start epochs (first task) 40
epochs (except first task) 30

Augmentations

TorchVision transforms:
RandomResizedCrop(scale=0.2),
RandomHorizontalFlip(p=0.5),
RandomColorJitter(0.4, 0.4, 0.1) with p=0.8,
RandomGrayScale(p=0.2)

SplitMNIST

Learning Rate 0.5
Batch Size 16
Memory size 50
Projection head embedding size N/A
SupCon loss temperature 0.07
λ 1
Start epochs (first task) 1
epochs (except first task) 1

Augmentations
TorchVision transforms:
RandomResizedCrop(scale=0.7)
RandomPerspective(distort scale=0.3, p=0.2)

Table 4.1: Look-Ahead Selective Plasticity Hyperparameters

52 Chapter 4. Methods

4.5 Ablation Studies
To better illustrate the effectiveness of proposed ideas and approaches, the following ablations
studies were conducted:

4.5.1 Effect of the Using the Predictive Batch
Here the effect of the predictive batch is studied. In order to see whether the network’s perfor-
mance benefits from a predictive batch of upcoming new data, additional experiments with the
methods of selective distillation, half-network, and gradient modulation were performed. In
these experiments, the salient parts of the representation and salient parameters are identified
based on 200 samples (or memory size, whichever is less) from memory alone, instead of the
original setting were 100 samples from memory and 100 samples from upcoming data (the
predictive batch) were used. By comparing the network’s performance for each method with
its corresponding variant where predictive batch was not realized, the improvements that are
a direct result of the predictive batch can be measured. The results of this ablation study are
provided in the results chapter 5.

4.5.2 Effect of Memory Size
Continual Learning methods that leverage a rehearsal memory show varying performance when
the size of the memory changes ([13] for example). To examine the effect of memory size,
additional experiments with a larger memory were conducted. Specifically, for each method
of selective distillation, half-network, and gradient modulation, a corresponding variant with a
larger memory of size 100 was trained on SplitMNIST, as well as a corresponding variant with
a larger memory of size 1000 for SplitTinyImageNet. All other hyperparameters and settings
were kept the same. Comparing performance metrics resulting from these additional variants,
it is possible to examine how much a larger memory can benefit a network’s performance, and
how this improvement varies in different methods. The results of these additional variants are
also provided in the results chapter 5.

Chapter 5

Results

In this chapter, the results of experiments using each introduced method (selective distillation,
gradient modulation, half-network, and the baseline) are presented. As described in Chapter4,
the baseline is essentially sequential training of a network (that is chosen according to the
dataset) using rehearsal of memory samples and supervised contrastive loss, without any ad-
ditional components. The simultaneous training baseline is the training of the network on the
entirety of a dataset (no splitting) and all of the classes simultaneously. Selective distillation
adds a distillation loss on a portion of representations that are computed to be most important.
The half-network method regularizes the top half of the most important parameters in each
layer. Finally, gradient modulation multiplies the gradient of each weight by an importance
measure to ensure important network parameters see less change.

The architectures used in experiments are a reduced version of ResNet-18 and a simple 3-
layer CNN. The ResNet-18 network is used for SplitCIFAR10 and SplitTinyImageNet datasets,
while the simple CNN network is used for the SplitMNIST dataset. Each original dataset
(MNIST, CIFAR10, TinyImageNet) is divided across classes to 5 equal groups to make up
SplitMNIST, SplitCIFAR10, and SplitTinyImageNet respectively. The training procedure in-
volves training the corresponding network on each task of the dataset sequentially: The net-
work is trained on the first task, then the performance metrics on seen classes are evaluated,
then it is trained on the second task and performance metrics on all seen classes are computed,
and so on.

Moreover, the results for the two ablation studies mentioned in Chapter 4 are described
here. These two ablation studies investigate the effect of rehearsal memory size and the predic-
tive batch.

In order to obtain the results, each of the introduced methods is tested on each dataset
using the architecture corresponding to that dataset. For each of the mentioned approaches, the
metrics precision, recall, and f1-score of the network are evaluated after the training on each
task finishes. For brevity and clearer assessment of an approach’s performance, the reported
measures are averaged across classes. For example, the reported recall metric after training
on the first task of SplitMNIST that includes classes 0 and 1 is essentially the average of
recalls of classes 0 and 1. Moreover, these metrics are accompanied by confusion matrices
computed after the training of each task. These confusion matrices grow in the sense that a
confusion matrix for a task seen after another contains more classes (rows and columns) as
the network has seen and been trained on more classes. It is good to note the metrics reported

53

54 Chapter 5. Results

at the end of training on all tasks hold more value, as they assess the end result of a model
trained sequentially on a set of tasks. For comparison to previous work, the metric of average
accuracy will be reported to compared different methods when testing on SplitCIFAR10 and
SplitTinyImageNet.

Furthermore, for a better comparison of different methods against each other, each of the
metrics of precision, recall, and f1-score are plotted across tasks. These plots will capture the
change in metric values across tasks better, and compare this change across proposed methods.
This will also illustrate different forgetting trends for different methods and tasks/classes.

5.1 Experimental Results on SplitMNIST

Here the performance metrics of a three layer CNN trained on a splitted MNIST dataset are
presented. The performance metrics are reported on a held out test set. There are a total of 5
tasks for SplitMNIST, with the first task including classes 0 and 1, the second task including
classes 2 and 3, and so on. Since SplitMNIST is slightly unbalanced, F1-score will be used to
compared methods.

5.1.1 Measured F1-Scores

The mean and std of f1-scores after training the network on each task can be seen in table
5.1. For the first task, there is no difference between the methods since the regularization and
distillation methods are only introduced from the second task onwards and during the training
of the first task there is no prior knowledge to preserve. As expected, performance metrics are
similar for different methods. Task 2 is trained immediately after task 1, and there has not been
much time for the network to forget task 1. Moreover, all of the samples in the memory are
from task 1 when network is being trained on task 2, leading to revisiting of past samples with a
higher diversity (more samples). Nevertheless, the two methods that work better on this dataset,
namely gradient modulation and selective distillation show slight improvement compared to
the baseline. The half-network method, however, has slightly decreased the performance of the
baseline method. For the third task, all of the proposed methods, gradient modulation, selective
distillation, and half-network improve the performance over the baseline on the f1-score metric.
Gradient modulation and selective distillation, however, provide a more significant increase
compared to the half-network approach. In the fourth task, the network has had reasonable
time to forgo changes that result in forgetting about previous tasks. But even the baseline still
performs well. This can be attributed to the use of a memory module (although small), and
the SupCon [42] loss’s robustness against forgetting in small networks. Similar to previous
task results, all the proposed methods outperform the baseline, where selective distillation
demonstrates the best performance, the gradient-modulation method a close second, and the
half-network approach providing the least amount of improvement among these three methods.
The performance metrics for the fifth and final task are shown in last column of table 5.1. The
selective distillation method shows to be the most effective in preventing forgetting and has
the best overall performance in terms of the f1-score. The gradient modulation method also
benefits the network with a better performance but the gain in performance metrics is less than

5.1. Experimental Results on SplitMNIST 55

selective distillation. Lastly, the half-network method fails to improve upon the baseline and
degrades performance.

Table 5.1: SplitMNIST: Mean (std) of class f1-score on the test set after each task
Task 1 f1-score Task 2 f1-score Task 3 f1-score Task 4 f1-score Task 5 f1-score

method

simultaneous training 0.9908 (0.0051) 0.9869 (0.0092) 0.9845 (0.0145) 0.9843 (0.0135) 0.9823 (0.0161)
baseline 0.9988 (0.0011) 0.983 (0.0102) 0.9596 (0.0219) 0.9338 (0.0232) 0.8837 (0.0198)
gradient-modulation 0.999 (0.0007) 0.9879 (0.0039) 0.9621 (0.0097) 0.9404 (0.0147) 0.8905 (0.021)
half-network 0.9993 (0.0007) 0.9739 (0.02) 0.9604 (0.0163) 0.9383 (0.022) 0.8799 (0.0269)
selective distillation 0.9994 (0.0005) 0.9829 (0.0133) 0.962 (0.0156) 0.9497 (0.0038) 0.9073 (0.0155)

5.1.2 Confusion Matrices
In what follows (figures 5.1 to 5.5), mean and std of confusion matrices for each run is de-
picted. These figures generally help to identify which classes are being miss classified with
each other and provide insight for further enhancing the proposed methods. For SplitMNIST,
these matrices generally are diagonal which is near ideal.

0 1

0
1

9.8e+02 0.5

2.1 1.1e+03

baseline CM Mean

0 1

0
1

9.8e+02 0.2

1.1 1.1e+03

selective distillation CM Mean

0 1

0
1

9.8e+02 0.1

1.3 1.1e+03

half-network CM Mean

0 1

0
1

9.8e+02 0.2

1.9 1.1e+03

gradient-modulation CM Mean

200

400

600

800

1000

0 1

0
1

1.5 1.5

1.4 1.4

baseline CM STD

0 1

0
1

0.4 0.4

1 1

selective distillation CM STD

0 1

0
1

0.3 0.3

1.4 1.4

half-network CM STD

0 1

0
1

0.4 0.4

1.5 1.5

gradient-modulation CM STD

0.4

0.6

0.8

1.0

1.2

1.4

Figure 5.1: SplitMNIST: Task 1 Confusion Matrix

56 Chapter 5. Results

0 1 2 3

0
1

2
3

9.7e+02 0.2 14 0.1

3.2 1.1e+03 8.4 6.4

5.1 1.7 1e+03 20

0.1 0.4 11 1e+03

baseline CM Mean

0 1 2 3

0
1

2
3

9.6e+02 2.9 12 0.3

6.4 1.1e+03 18 6.8

3.4 8.5 1e+03 8.3

0 0 5 1e+03

selective distillation CM Mean

0 1 2 3

0
1

2
3

9.7e+02 2.3 11 1.3

6.8 1.1e+03 7.2 16

6.4 2.2 9.8e+02 42

0.7 0.1 12 1e+03

half-network CM Mean

0 1 2 3

0
1

2
3

9.7e+02 0.4 13 0.5

4.8 1.1e+03 9.4 5.3

3.4 1.3 1e+03 7.2

0 0 4.5 1e+03

gradient-modulation CM Mean

0

200

400

600

800

1000

0 1 2 3

0
1

2
3

12 0.6 12 0.3

3.1 5.2 3.8 4.8

6.1 2.1 19 18

0.3 1.2 17 18

baseline CM STD

0 1 2 3

0
1

2
3

8 4.7 7 0.46

6.4 26 22 2.7

3.7 24 23 5

0 0 5.5 5.5

selective distillation CM STD

0 1 2 3

0
1

2
3

9.3 4.2 7.3 2.4

13 20 5.7 20

6.1 2.7 56 54

2.1 0.3 13 14

half-network CM STD

0 1 2 3

0
1

2
3

9.8 0.66 9.9 0.67

5.5 11 7.3 1.9

1.6 1.3 6.5 5.9

0 0 2.4 2.4

gradient-modulation CM STD

0

10

20

30

40

50

Figure 5.2: SplitMNIST: Task 2 Confusion Matrix

0 1 2 3 4 5

0
1

2
3

4
5

9.4e+02 0.1 9.9 1.3 5.5 20

25 1.1e+03 20 3.9 28 6.4

4.7 1.2 9.7e+02 35 12 11

0.1 0.2 8 9.6e+02 0.5 42

0.7 0.1 1 0 9.8e+02 0.5

0.9 0.2 0.5 4.7 0.1 8.9e+02

baseline CM Mean

0 1 2 3 4 5

0
1

2
3

4
5

9.3e+02 2.7 26 1.3 7.2 10

4.3 1.1e+03 12 3.9 30 1.7

6.5 2.9 9.6e+02 48 11 6.2

0.1 0 11 9.6e+02 1 36

0.5 0.4 0.7 0.2 9.8e+02 0.6

0.3 0.1 0.3 3.6 0.4 8.9e+02

selective distillation CM Mean

0 1 2 3 4 5

0
1

2
3

4
5

9.3e+02 0.4 16 7.5 11 9.7

4.2 1.1e+03 9.2 5.6 17 1.5

12 4 9.7e+02 36 8.1 5.6

0.3 0.1 26 9.4e+02 1.3 41

1.7 1.3 1.2 0 9.8e+02 1.3

0.3 0.6 0.2 12 2.1 8.8e+02

half-network CM Mean

0 1 2 3 4 5

0
1

2
3

4
5

9.3e+02 0.8 10 2.1 6.7 26

11 1.1e+03 13 4.3 11 1.2

8.6 14 9.6e+02 32 13 7.2

0 0.4 10 9.5e+02 0.8 44

0.7 0.9 0.6 0.2 9.8e+02 0.3

0.6 0.3 0 6.7 0.7 8.8e+02

gradient-modulation CM Mean

0

200

400

600

800

1000

0 1 2 3 4 5

0
1

2
3

4
5

25 0.3 12 2 4.2 19

63 94 20 1.4 48 16

4.1 3.3 32 37 8.8 7.5

0.3 0.4 7.1 28 0.92 28

1.3 0.3 1.6 0 3.3 1.5

1.3 0.6 0.92 3.8 0.3 4.4

baseline CM STD

0 1 2 3 4 5

0
1

2
3

4
5

35 6.2 28 1.6 5.6 6.7

5.7 42 11 2.4 40 2.1

8.7 3.7 38 34 6.5 5.6

0.3 0 16 27 1.4 13

0.81 0.66 0.9 0.6 2.4 0.8

0.46 0.3 0.46 1.7 0.66 1.9

selective distillation CM STD

0 1 2 3 4 5

0
1

2
3

4
5

25 0.8 21 22 6.9 7.8

7.2 22 5.6 3.8 14 2

13 4 29 27 7.4 5.2

0.9 0.3 34 38 2.3 9.3

3.2 1.7 1.5 0 3.7 2.4

0.64 1.2 0.4 17 2.6 19

half-network CM STD

0 1 2 3 4 5

0
1

2
3

4
5

41 1.2 10 1.4 4.9 37

15 15 10 5.3 5.9 1.2

9.3 30 35 28 7.2 9.2

0 0.92 5.4 17 0.75 18

1.2 0.7 0.92 0.4 2 0.64

0.92 0.64 0 4.6 0.78 4

gradient-modulation CM STD

0

20

40

60

80

Figure 5.3: SplitMNIST: Task 3 Confusion Matrix

5.1. Experimental Results on SplitMNIST 57

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

9e+02 0.9 26 1.1 5.7 3.9 37 2.9

4.8 1.1e+03 14 4 26 5.1 7 11

8 4.8 8.6e+02 47 12 0.4 4.8 95

0.1 0.2 15 9.3e+02 0.1 33 0.3 34

1.7 2.7 5.3 0.2 9.5e+02 0 7.1 20

1.1 0.7 6.9 28 1.8 8.2e+02 22 7.6

2.6 1 2.1 0.3 4.9 2.7 9.4e+02 0

0 1.5 3.2 1.2 1.5 0.3 0 1e+03

baseline CM Mean

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

9.2e+02 0.3 19 2 1.9 1.3 31 3

6 1.1e+03 12 4 26 2.8 10 11

1.5 1 9.2e+02 60 1.9 2.3 3.5 44

0.1 0 10 9.6e+02 0 29 0.2 12

1.6 9.2 4.1 0 9.4e+02 0.7 9.6 22

1.4 0.8 2.6 22 1.2 8.5e+02 12 3.2

2 1 1.2 0.3 2.8 4.9 9.5e+02 0

0 0.2 3.2 1.1 1.2 0.2 0 1e+03

selective distillation CM Mean

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

9.1e+02 0.4 17 8.6 1.5 2 40 1.2

7.2 1.1e+03 13 2.6 16 6.1 6.9 9.7

13 2 9.1e+02 52 1.7 2.5 4.2 45

0.8 0.1 55 8.9e+02 0.1 41 0 26

3.2 7.6 1.8 0.4 9.4e+02 2.3 20 11

0.8 0.7 1.6 21 1.8 8.6e+02 5.9 3.3

3 1.1 1.6 0.6 3.3 6.1 9.4e+02 0

0.2 4.7 7.8 1.6 1.8 0.3 0 1e+03

half-network CM Mean

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

9.3e+02 0.3 10 3.2 0.8 2.4 36 2.2

15 1.1e+03 7.8 3.6 14 4.6 21 7.3

8.7 0.5 9.1e+02 29 1.1 0.7 4.6 74

0.5 0.8 21 9.2e+02 0.2 43 0.1 27

4.7 1.5 4.4 1.1 9.1e+02 0.2 17 42

1.3 1.2 2.3 18 2.3 8.4e+02 24 5.2

1.5 1.5 1.3 0.1 1 1.7 9.5e+02 0

0.1 1.2 3.4 0.5 0.6 0.1 0 1e+03

gradient-modulation CM Mean

0

200

400

600

800

1000

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

33 2.4 22 1.6 11 4.9 16 3

7.8 53 9.3 4.3 54 7 5.4 6.1

4.9 11 92 35 25 0.92 3.4 84

0.3 0.4 17 51 0.3 24 0.64 24

2.5 3.4 5.5 0.6 13 0 4.9 12

1.6 1.2 13 36 1.9 42 26 7.3

2.9 0.89 1.7 0.64 3.7 1.3 5 0

0 2 2.3 2 1.9 0.46 0 4.6

baseline CM STD

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

29 0.9 12 4.2 1.8 2.4 26 1.9

4.3 27 8.3 4.3 18 1.5 9.3 8.3

1 1.9 42 38 1.5 3.4 3.4 19

0.3 0 11 23 0 18 0.4 6.2

2.3 19 3.3 0 20 1.5 8.8 14

2.2 1.2 3.1 16 0.98 20 6.2 2.5

1.3 1 1.5 0.46 2.3 2.9 5.2 0

0 0.4 1.8 1.3 0.98 0.4 0 3.4

selective distillation CM STD

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

17 0.92 15 19 2.9 3.5 14 0.98

8.1 26 14 2 9.7 7.9 6.9 8.8

21 4.1 77 34 2 5.6 4 39

2.4 0.3 1.1e+02 1.3e+02 0.3 23 0 21

3.4 9.8 1.7 0.92 23 4 18 9.4

1.8 1.8 1.9 17 1.8 22 4.6 3.8

2 1.4 2.2 0.49 1.7 3.6 4.5 0

0.4 4.6 5.1 1.4 1.7 0.46 0 8.2

half-network CM STD

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

27 0.64 11 4.4 0.6 2.8 19 2

26 71 6.4 2.7 16 7.2 38 4.1

15 0.92 64 29 1.1 1.5 3.2 72

1.5 2.1 18 44 0.4 24 0.3 20

8.3 1.8 4.8 2.1 52 0.4 9.4 55

2.2 1.9 6.2 16 3.1 34 17 4.8

1.5 0.92 1.6 0.3 0.77 1.1 2.4 0

0.3 1.2 2.2 1 0.66 0.3 0 3.6

gradient-modulation CM STD

0

20

40

60

80

100

120

Figure 5.4: SplitMNIST: Task 4 Confusion Matrix

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

8.1e+02 0.5 11 0.7 1.1 2.4 55 1 70 27

12 1.1e+03 17 4.3 6.9 6.3 9.1 12 7.9 6.8

16 9.7 7.6e+02 1e+02 0.2 0.2 8.2 50 70 12

0.6 0.2 7.1 9.1e+02 0 36 0.6 16 25 14

2.4 1.7 3.4 0.1 8.1e+02 0 9.4 6.2 9.6 1.4e+02

0.4 0.1 0.5 19 0 7.7e+02 2.5 1.5 67 31

17 1.8 9.7 0.8 3.7 1.9 8.6e+02 0.1 62 2

0.1 3.7 18 4.8 0.8 0.3 0 9.1e+02 3.2 84

0.9 0 1.5 0.4 0.3 0.3 1.8 0.1 9.6e+02 5.9

0.2 0 0.4 1.5 1.5 0.8 0 1.3 8.6 9.9e+02

baseline CM Mean

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

9.1e+02 0.2 8 0.3 1.3 0.1 16 1.3 32 9.6

12 1e+03 14 1.8 28 1.7 12 12 7.1 9.5

5.4 1.6 9.1e+02 45 0.8 0.4 2.4 14 50 4

0 0 15 9e+02 0 53 0.5 11 27 7.3

2.1 4.2 1.5 0 8.1e+02 0.2 6.8 3.6 7.7 1.4e+02

0.1 0.2 0.4 11 0.7 7.6e+02 3.7 0.6 91 22

18 1.3 3.2 1.1 7.6 1.4 8.8e+02 0.3 47 0.5

1.3 4.6 21 3.9 2.2 0.2 0 9.2e+02 2.8 75

0.8 0.1 1.4 0.7 0.3 0.7 2 0.2 9.6e+02 3.4

0.5 0.4 0.9 0.1 2.5 1.9 0.1 3.9 12 9.9e+02

selective distillation CM Mean

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

8.4e+02 0.7 12 15 3 1.5 46 1.6 39 23

7.9 1e+03 23 5.9 29 3.5 16 15 16 15

33 6.4 8.1e+02 48 0.6 15 8.9 69 36 8.4

0.3 1.3 34 8.2e+02 0.4 85 0.4 44 18 8.5

2.1 12 3.1 0.5 7.9e+02 0.7 11 17 11 1.3e+02

0.5 0.5 0.8 24 4 7.9e+02 6 0.9 50 16

4.9 3.4 2.6 2.2 8.1 4.4 8.9e+02 0.1 40 1.7

1.3 6.2 17 8.1 3.2 1.3 0 9.4e+02 1 50

1.5 0.2 3.4 0.9 0.8 2 6.1 1 9.5e+02 6.8

1 1 0.5 4.6 9.5 2.8 0.3 5.1 12 9.7e+02

half-network CM Mean

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

8.8e+02 1.6 8.5 4.4 2.1 1.1 14 1.7 38 30

13 1e+03 5.5 2.8 31 3.2 30 5.8 3.1 16

2.7 4.7 8.1e+02 53 0.5 0.5 9.4 89 53 11

0.1 0.6 14 8.8e+02 0 59 1.7 15 22 17

1 2.3 1.3 0.3 8.2e+02 0.2 6.7 21 4.2 1.3e+02

0.5 1 0.8 20 0.5 7.8e+02 4.9 2.2 56 28

11 4.5 4.3 1.2 11 2.3 8.7e+02 0.4 50 2.2

0 8.6 11 12 2.5 0.2 0 8.9e+02 1.4 1e+02

1.2 0 1.7 1.9 0.3 0.7 2.1 0.9 9.6e+02 6.5

0.3 0.5 0.5 1.3 2.7 0.7 0 3.1 4.7 1e+03

gradient-modulation CM Mean

0

200

400

600

800

1000

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.3e+02 0.92 11 1.2 2.4 3.7 98 1.2 65 27

15 40 18 5 7.9 12 9.2 15 10 3

33 23 1.3e+02 1.1e+02 0.4 0.4 18 69 48 9.1

1.3 0.6 11 35 0 31 1.5 14 19 17

2.1 3.2 2.9 0.3 56 0 6.8 8.7 6.7 48

0.92 0.3 0.67 8.5 0 41 1.6 2.1 44 25

22 1.6 14 1.2 2.3 2.7 47 0.3 25 2

0.3 3.7 13 2.9 1.4 0.64 0 65 2 55

0.83 0 1.4 0.92 0.64 0.46 2.7 0.3 5.7 2.9

0.4 0 0.66 1.9 1.4 1.5 0 0.78 4.8 4.3

baseline CM STD

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

22 0.4 7.3 0.46 1.4 0.3 16 0.9 14 8

9.1 43 14 1.4 23 2.1 10 14 5.9 8.7

10 3.9 58 38 0.6 0.92 2.5 14 21 3.7

0 0 16 65 0 65 1.2 5.5 13 6

3.1 6.7 1.4 0 98 0.4 8.4 6.8 5.6 95

0.3 0.4 0.49 9.3 1.3 52 3.6 0.49 55 20

19 1.1 3.3 0.94 8.9 1.3 40 0.64 39 0.5

3.9 8.2 14 3.9 2.6 0.4 0 53 1.3 38

0.75 0.3 1 1.8 0.46 0.9 2.2 0.4 4.3 2.2

0.67 0.92 2.4 0.3 2 2.2 0.3 1.8 6.2 9.2

selective distillation CM STD

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

75 0.78 11 37 5 2.6 50 1.8 30 24

8.7 57 42 5.6 31 4.9 15 22 36 20

52 13 1.3e+02 18 0.8 45 17 90 21 6.9

0.64 3.6 57 83 0.92 50 0.49 52 18 9.7

2.6 9.8 6.2 1.5 68 1.2 11 34 8.2 66

1.2 0.81 1.4 22 8.1 38 5.2 1.4 30 15

4.9 3.5 2.6 2.5 7.7 7.7 36 0.3 33 1.6

1.5 7.1 7.7 6 3.5 1.6 0 21 1.5 24

1.4 0.6 4.7 1.6 0.87 1.3 3.4 1.8 12 3.5

0.89 1.3 1 10 7.9 3.6 0.64 2.1 5.1 11

half-network CM STD

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

42 4.5 10 6.5 6 1.8 7.9 1.7 24 23

9.8 75 3.9 1.8 53 4.5 54 3.6 3.3 14

2.8 5.8 1.2e+02 55 0.67 0.81 21 74 61 16

0.3 0.92 21 67 0 47 4.2 12 19 17

1.5 2.4 1 0.64 64 0.4 6.6 47 2.7 52

1.2 1.8 0.98 25 0.67 27 4.5 2.8 21 18

7 2.5 4.1 1.5 11 1.7 28 0.66 31 3.1

0 11 15 13 2.9 0.6 0 71 0.8 67

1.1 0 1.6 1.3 0.46 0.78 3.3 1.2 6.7 3.4

0.64 0.92 1 2.9 2.4 0.64 0 2.4 4.1 5.9

gradient-modulation CM STD

0

20

40

60

80

100

120

Figure 5.5: SplitMNIST: Task 5 Confusion Matrix

58 Chapter 5. Results

5.1.3 Metric Plots
In this section, for each class the metrics of precision, recall, and f1-score are plotted against
the tasks (experiences). These figures show more specifically how each method performed in
comparison to other methods. Note that the selective distillation method usually has higher or
equal performance measures compared to other methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 0

Figure 5.6: SplitMNIST: Precision, recall, and f1-score of class 0 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 1

Figure 5.7: SplitMNIST: Precision, recall, and f1-score of class 1 across tasks for different
implemented methods.

5.1. Experimental Results on SplitMNIST 59

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 2

Figure 5.8: SplitMNIST: Precision, recall, and f1-score of class 2 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 3

Figure 5.9: SplitMNIST: Precision, recall, and f1-score of class 3 across tasks for different
implemented methods.

60 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 4

Figure 5.10: SplitMNIST: Precision, recall, and f1-score of class 4 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 5

Figure 5.11: SplitMNIST: Precision, recall, and f1-score of class 5 across tasks for different
implemented methods.

5.1. Experimental Results on SplitMNIST 61

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 6

Figure 5.12: SplitMNIST: Precision, recall, and f1-score of class 6 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 7

Figure 5.13: SplitMNIST: Precision, recall, and f1-score of class 7 across tasks for different
implemented methods.

62 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 8

Figure 5.14: SplitMNIST: Precision, recall, and f1-score of class 8 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 9

Figure 5.15: SplitMNIST: Precision, recall, and f1-score of class 9 across tasks for different
implemented methods.

5.2. Experimental Results on SplitCIFAR10 63

5.2 Experimental Results on SplitCIFAR10
The results for experiments on SplitCIFAR10 are presented in this section. SplitCIFAR10 is
formed by splitting the dataset by classes into 5 equal groups, with the first group comprising
the first two classes, the second group comprising the second two classes, and so on. A reduced
ResNet-18 was used as the feature extractor, with a single hidden layer MLP as the projector.
The network is then trained on each task sequentially, and performance metrics are evaluated
as training on each task finishes.

5.2.1 Average Accuracy Evaluated After Each Task
Average accuracy over seen classes after training on the first task of the SplitCIFAR10 dataset
is captured the first column of table 5.2 for each method. There is no difference among methods
during the training of the first task, and the resulting recorded accuracy are similar, as expected.
Note that the simultaneous training method achieves lower performance metrics for classes in
the first task. The reason is that in simultanous training the network is trained on all classes to
solve more difficult problem of discriminating between 10 classes, while other methods solve
an easier problem of discriminating between two classes. Average accuracy after training on
task 2 are provided in the second column of table 5.2. There is a considerable amount of for-
getting observed across various methods. This decrease in performance, however, is not equal.
While of the proposed methods outperform the baseline, the gradient modulation suffers less
from forgetting and shows the highest accuracy.Moving on to performance metrics measured
after task 3, more forgetting is observed. The third column of table 5.2 shows the perfor-
mance measures after task 3. Gradient modulation and half-network methods outperform the
baseline, while selective distillation achieves similar performance. The gradient modulation
method achieves highest average accuracy compared to other methods. Column 4 of table 5.2
shows average accuracy of seen classes after training on task 4. While all methods suffer more
from forgetting, the gradient modulation and half-network methods remain to be outperforming
the baseline, while selective-distillation has a lower average accuracy than the baseline. Similar
to previous tasks, gradient modulation method achieves highest average accuracy compared to
other methods. Column 5 of table 5.2 shows the measured average accuracy of different meth-
ods after training on the fifth and final task. None of the methods manage to outperform the
baseline in terms of the average accuracy. The gradient modulation and half-network methods,
however, achieve a very close average accuracy while selective distillation shows the lowest
performance among the methods.

Overall, the gradient modulation method shows the best performance over the course of
training and competitive accuracy after training in the last task. Compared to the half-network
method, gradient modulation shows better performance after all tasks, indicating that the orig-
inal hypothesis where gradient-modulation could be regularizing too many parameters can be
rejected.

64 Chapter 5. Results

Table 5.2: SplitCIFAR10: Task mean (std) accuracy on the test set
Task 1 Avg. Task 2 Avg. Task 3 Avg. Task 4 Avg. Task 5 Avg.

method Accuracy Accuracy Accuracy Accuracy Accuracy

simultaneous training 0.9174 (0.0103) 0.7964 (0.0149) 0.7867 (0.0105) 0.8194 (0.0074) 0.8394 (0.0059)
baseline 0.9802 (0.0015) 0.773 (0.0116) 0.5657 (0.0176) 0.4757 (0.0096) 0.4735 (0.0133)
gradient-modulation 0.9814 (0.0029) 0.7953 (0.008) 0.591 (0.0096) 0.4904 (0.01) 0.4639 (0.0127)
half-network 0.9804 (0.002) 0.7869 (0.0075) 0.5865 (0.011) 0.4795 (0.01) 0.4638 (0.0124)
selective distillation 0.9811 (0.002) 0.78 (0.0113) 0.5654 (0.0119) 0.4503 (0.0102) 0.4335 (0.012)

5.2.2 Confusion Matrices
The confusion matrices for the classes seen up until each task are shown in what follows (fig-
ures 5.16-5.20). As can be seen, classes are usually misclassified for classes that were present
in the most recent task, resulting in higher values in rightmost columns compared to the left-
most ones. This forgetting is observed across all methods, but it is difficult to see which classes
observe more forgetting for each method. The plots in the next section show precision, recall,
and f1-score of each class over the course of training and allow the comparison of the amount
of forgetting in each method for each class.

0 1

0
1

9.8e+02 17

23 9.8e+02

baseline CM Mean

0 1

0
1

9.8e+02 17

20 9.8e+02

selective distillation CM Mean

0 1

0
1

9.8e+02 21

19 9.8e+02

half-network CM Mean

0 1

0
1

9.8e+02 19

19 9.8e+02

gradient-modulation CM Mean

200

400

600

800

0 1

0
1

2.9 2.9

4.6 4.6

baseline CM STD

0 1

0
1

3.3 3.3

5 5

selective distillation CM STD

0 1

0
1

6.8 6.8

5.9 5.9

half-network CM STD

0 1

0
1

6.5 6.5

6 6

gradient-modulation CM STD

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Figure 5.16: SplitCIFAR10: Task 1 Confusion Matrix

5.2. Experimental Results on SplitCIFAR10 65

0 1 2 3

0
1

2
3

4.9e+02 14 3.9e+02 1e+02

22 8.4e+02 65 74

3.7 1.2 9.2e+02 79

2.1 2.3 1.5e+02 8.5e+02

baseline CM Mean

0 1 2 3

0
1

2
3

5.2e+02 20 3.5e+02 1.1e+02

16 8.7e+02 42 71

6.2 1.3 8.9e+02 1e+02

2.9 2.3 1.5e+02 8.4e+02

selective distillation CM Mean

0 1 2 3

0
1

2
3

5.8e+02 18 3.1e+02 95

16 8.9e+02 32 60

12 2.5 8.5e+02 1.4e+02

6.1 4.1 1.6e+02 8.3e+02

half-network CM Mean

0 1 2 3

0
1

2
3

7e+02 16 2.2e+02 69

14 9.4e+02 15 30

44 7.3 7.3e+02 2.1e+02

23 10 1.6e+02 8.1e+02

gradient-modulation CM Mean

200

400

600

800

0 1 2 3

0
1

2
3

36 4.8 37 21

7.4 23 10 21

2 0.66 19 19

1.2 1 29 29

baseline CM STD

0 1 2 3

0
1

2
3

38 6.4 31 16

5.1 15 11 13

2.2 1.1 15 15

2 1.7 20 21

selective distillation CM STD

0 1 2 3

0
1

2
3

27 5.2 29 11

3.3 23 8.4 16

3.2 1.5 14 13

1.9 2 18 19

half-network CM STD

0 1 2 3

0
1

2
3

43 4.2 40 10

4.7 8.9 4.7 6.2

15 3.8 28 18

9.3 3.8 21 23

gradient-modulation CM STD

5

10

15

20

25

30

35

40

Figure 5.17: SplitCIFAR10: Task 2 Confusion Matrix

0 1 2 3 4 5

0
1

2
3

4
5

5e+02 23 55 8.5 3e+02 1.1e+02

27 7.8e+02 4.8 4.7 95 93

31 4.3 2.1e+02 7.7 4.6e+02 2.8e+02

4.1 4.1 8 66 2.9e+02 6.3e+02

1.1 0.53 2.3 1.8 9.6e+02 34

1.3 1.1 1.7 4.1 1.1e+02 8.9e+02

baseline CM Mean

0 1 2 3 4 5

0
1

2
3

4
5

4.8e+02 26 38 7 3.2e+02 1.3e+02

19 8.2e+02 1.7 2.9 75 80

24 4.2 1.9e+02 6.7 4.7e+02 3.1e+02

3.6 4.9 6.3 70 2.8e+02 6.3e+02

1.9 1.5 2.3 2.2 9.5e+02 43

1.5 1.1 2.6 3.9 1.1e+02 8.8e+02

selective distillation CM Mean

0 1 2 3 4 5

0
1

2
3

4
5

5.5e+02 26 56 11 2.6e+02 98

20 8.6e+02 1.9 4.9 54 64

35 5.3 2.3e+02 12 4.3e+02 2.9e+02

8.3 7.5 14 1e+02 2.8e+02 5.9e+02

3.3 2.5 5.5 3.9 9.3e+02 54

2.4 2.5 6 9.6 1.3e+02 8.5e+02

half-network CM Mean

0 1 2 3 4 5

0
1

2
3

4
5

6.4e+02 20 67 16 1.7e+02 87

12 9.1e+02 3.7 2.9 31 40

68 11 2e+02 22 4.1e+02 2.8e+02

15 13 24 84 2.8e+02 5.8e+02

11 3 8.4 7.9 9.1e+02 64

5.1 4 10 14 1.6e+02 8e+02

gradient-modulation CM Mean

200

400

600

800

0 1 2 3 4 5

0
1

2
3

4
5

40 6.6 13 3.8 48 15

15 62 3.2 3.7 38 21

9.2 2.7 28 3.5 24 22

2.4 2.6 3.3 16 21 27

0.68 0.72 1.8 1.4 5.6 4.8

0.85 1.2 1.3 2.8 13 14

baseline CM STD

0 1 2 3 4 5

0
1

2
3

4
5

40 9.1 12 2.7 37 23

9.1 39 1.7 3.7 17 19

10 2.5 30 3.7 28 20

2.3 2.6 3.3 18 22 31

1.2 1 1.4 1.7 6.4 6.6

1.4 1.7 1.5 2.5 10 9.6

selective distillation CM STD

0 1 2 3 4 5

0
1

2
3

4
5

43 6.7 23 6.4 27 25

7.6 23 1.2 2.6 13 18

9.6 2.6 29 7 22 28

3.7 2.3 3.6 18 16 26

1.6 0.82 2.2 2.3 8.1 6.8

1.8 1.6 2.3 2.6 9.2 10

half-network CM STD

0 1 2 3 4 5

0
1

2
3

4
5

37 6.6 21 6 17 20

3.3 19 2.5 2.3 8.7 12

15 4.6 40 5.8 28 23

5.6 4.3 9.7 20 30 39

4.4 2.6 3.2 4.4 16 12

2.9 1.3 4.3 5.9 20 24

gradient-modulation CM STD

10

20

30

40

50

60

Figure 5.18: SplitCIFAR10: Task 3 Confusion Matrix

66 Chapter 5. Results

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

5.3e+02 24 51 6.6 22 3.9 1.6e+02 2e+02

22 7.3e+02 1.4 2.1 3.1 2.8 1.5e+02 90

38 5 1.7e+02 7.7 27 15 4.4e+02 2.9e+02

7.3 9.4 11 63 14 54 5.3e+02 3.1e+02

7.8 2.7 8.9 5.5 1.4e+02 4 4.3e+02 3.9e+02

2.1 3.4 7.5 11 9.5 2.3e+02 3.2e+02 4.1e+02

1.2 0.6 2.2 1.7 1.6 1.5 9.7e+02 19

0.87 0.27 0.4 1.2 1.7 1.3 33 9.6e+02

baseline CM Mean

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

4.7e+02 16 33 4.4 16 4.4 2.1e+02 2.4e+02

19 6.9e+02 1 1.2 1.4 1.2 2e+02 89

27 2.9 1.3e+02 4.2 18 9.9 4.9e+02 3.2e+02

6.7 5.4 4.5 56 12 29 5.4e+02 3.5e+02

6.3 3 8.8 2.9 1.2e+02 5.1 4e+02 4.5e+02

2.3 1.9 3.2 9.3 8 2e+02 3.4e+02 4.3e+02

0.8 0.33 1.7 1.3 1.3 1.3 9.7e+02 21

0.8 0.53 0.73 0.47 1.1 1.3 33 9.6e+02

selective distillation CM Mean

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

5.3e+02 23 45 9.9 20 6.3 1.6e+02 2.1e+02

15 7.7e+02 1.5 2.1 2 2.4 1.4e+02 62

38 5.1 1.6e+02 8 35 25 4.4e+02 2.9e+02

11 8.2 14 72 23 48 5.1e+02 3.1e+02

9.9 4.7 9.4 6.1 1.5e+02 9.2 4.1e+02 4e+02

4.4 5.1 12 18 17 2.5e+02 3.2e+02 3.8e+02

2.1 1 4 2.2 2.3 2.7 9.6e+02 23

2.6 1.4 2.2 1.1 3.6 4.1 43 9.4e+02

half-network CM Mean

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

6.4e+02 21 48 11 23 9.7 89 1.6e+02

12 8.7e+02 2.2 2.6 1.6 2.5 75 38

78 10 1.5e+02 18 44 32 3.9e+02 2.7e+02

23 14 20 75 29 58 4.5e+02 3.3e+02

21 6.6 16 16 1.4e+02 14 4.1e+02 3.8e+02

8.1 8.7 19 28 25 1.9e+02 3e+02 4.2e+02

6.1 2.4 6.6 4.8 4.5 5.4 9.4e+02 30

6.8 1.1 2.8 3.3 6.1 6 47 9.3e+02

gradient-modulation CM Mean

200

400

600

800

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

34 10 19 3 11 2.6 25 31

12 40 1.7 2.2 1.9 2 34 24

9.7 3.4 30 3.9 10 4.8 27 28

2 4.1 3.4 20 5.6 13 34 31

4.3 1.5 5 3.5 16 1.6 30 23

1.3 2.1 3.7 5 4.2 35 28 34

1 0.88 1.6 1.5 1.3 1.1 7.6 5.3

0.96 0.44 0.61 1.6 1.9 1.6 7 7.4

baseline CM STD

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

45 5.3 23 3 7.2 5.8 25 37

8.7 41 1.4 2 1 0.91 33 16

7.2 1.7 33 2.6 6.1 3.4 30 26

3.3 3.1 3 14 5.1 8.4 18 26

3.3 1.5 7.8 1.9 30 4.4 28 28

1.8 1.2 2 6.3 3.3 34 23 30

0.75 0.47 1.5 0.93 1.4 1.1 2.9 3.2

0.54 0.62 0.68 1 0.88 0.94 4.7 5.2

selective distillation CM STD

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

42 9.1 21 10 11 4.1 29 24

5.9 47 1.5 2.4 1.8 1.9 39 14

12 2.3 36 3.8 11 7.1 22 25

3.6 3.2 3.6 19 5.6 7.8 17 13

3.3 2.1 4.6 5.6 28 4 24 26

3 2.6 6 8.9 7.9 33 22 28

0.91 1.2 1.8 2.1 1.4 1.5 6 4.9

1.8 1.1 2.5 1.5 2.7 1.6 4.9 8.9

half-network CM STD

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

40 5.1 16 4.8 12 4.1 11 32

3.2 25 1.7 1.9 1.5 2 21 12

21 3.9 25 6.5 13 7.8 29 30

7.3 4.6 7.4 17 9.1 13 46 46

6.3 2.4 8.6 8 26 4.5 33 32

2.4 3.3 4.5 10 9.4 23 27 39

2.6 1.7 3.5 2.2 2.1 2.3 9.3 5.9

2.9 1.1 2.1 1.9 2.5 2.2 7 12

gradient-modulation CM STD

10

20

30

40

Figure 5.19: SplitCIFAR10: Task 4 Confusion Matrix

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2.1e+02 2.4 31 5.9 16 6.9 24 20 5.1e+02 1.7e+02

0.93 3.2e+02 1.7 1.3 1.3 1.3 7.1 1.8 1.3e+02 5.3e+02

30 3.7 2.1e+02 21 63 37 2.1e+02 73 2e+02 1.5e+02

5.9 4.2 18 1.1e+02 32 85 2e+02 62 2.1e+02 2.7e+02

5.7 1.2 24 16 2.8e+02 15 2.1e+02 1.3e+02 1.8e+02 1.4e+02

2.7 2.5 14 34 30 3.2e+02 1.2e+02 1.1e+02 1.4e+02 2.3e+02

3.2 1.6 12 12 16 13 7.5e+02 13 1.1e+02 67

2.1 0.93 5.3 8.4 19 14 26 6.1e+02 88 2.2e+02

1.7 0.8 0.53 0.67 0.47 0.53 4.9 1.5 9.6e+02 30

0.67 3 0.53 0.4 0.27 0 1.5 0.6 24 9.7e+02

baseline CM Mean

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

1.7e+02 1.4 15 3.2 15 2.9 23 13 5.8e+02 1.8e+02

1.1 2.6e+02 0.36 0.43 0.36 0.5 5.4 0.86 1.2e+02 6.1e+02

21 3.1 1.5e+02 12 53 29 1.9e+02 62 3.1e+02 1.6e+02

5.9 3.4 12 84 30 48 1.6e+02 51 2.9e+02 3.1e+02

5.9 1.6 15 10 2.3e+02 16 1.9e+02 1.3e+02 2.4e+02 1.6e+02

2.9 2.4 12 17 25 2.8e+02 1e+02 88 2.2e+02 2.5e+02

1.6 0.93 5 9.3 15 7.6 6.9e+02 8.6 1.6e+02 1e+02

3.6 0.79 3.3 3.6 19 9.5 24 5.4e+02 1.6e+02 2.4e+02

1.6 0.29 0.64 0.29 0.36 0.071 3.4 0.71 9.6e+02 32

0.36 1.3 0.29 0.14 0.29 0 1.1 0.5 25 9.7e+02

selective distillation CM Mean

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

2.3e+02 2.2 27 8.5 12 6.4 30 18 5e+02 1.6e+02

0.93 3.4e+02 0.71 0.64 1.1 1 10 1.9 1.2e+02 5.2e+02

34 4.4 1.8e+02 23 62 42 2.2e+02 79 2.2e+02 1.4e+02

9.5 4.1 19 1e+02 36 62 2.2e+02 71 2.3e+02 2.6e+02

9.3 2.1 17 18 2.3e+02 23 2.4e+02 1.5e+02 1.6e+02 1.4e+02

4.3 3.8 22 37 33 2.8e+02 1.3e+02 1.1e+02 1.6e+02 2.1e+02

3.4 0.79 10 12 15 12 7.5e+02 11 1.1e+02 73

5.1 1.2 5.7 7.9 22 16 32 6.1e+02 1e+02 2e+02

4 1.4 1 0.43 0.64 0.86 5.2 2.2 9.5e+02 38

0.79 4.6 0.71 0.5 0.57 0.29 1.9 1.4 29 9.6e+02

half-network CM Mean

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

3.3e+02 5.3 50 11 19 10 27 34 3.8e+02 1.3e+02

2.7 4.4e+02 1.6 1.5 2.8 2.7 12 4.1 1e+02 4.3e+02

67 11 1.9e+02 29 73 49 2e+02 84 1.4e+02 1.6e+02

22 13 34 1.1e+02 45 77 1.8e+02 94 1.5e+02 2.8e+02

19 6.1 36 27 2.4e+02 29 2.3e+02 1.4e+02 1.2e+02 1.6e+02

12 8.3 34 51 48 2.4e+02 1.2e+02 1.4e+02 1.1e+02 2.4e+02

12 5.9 21 20 32 24 6.8e+02 20 77 1.1e+02

13 2.8 12 14 31 26 35 5.5e+02 68 2.4e+02

9.6 3.4 2.5 1.3 2 1 5.8 3.6 9.2e+02 48

3.4 8.8 0.93 0.79 1.4 0.79 4.3 3.3 32 9.4e+02

gradient-modulation CM Mean

0

200

400

600

800

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

41 1.5 13 4.2 8.4 3.2 9 9 34 19

0.77 47 2 1.4 1.1 1.3 5 1.7 26 46

12 2.5 19 9 16 15 34 18 39 24

3.4 3.2 9.4 26 8.5 23 36 18 36 37

2.8 1.1 13 10 50 7.4 43 37 30 28

1.6 1.9 6.6 13 6 53 32 29 35 29

2.4 1.5 5.5 8.1 7 6.4 44 5.1 33 16

2.2 1 3.6 5.8 5.2 5.5 6.5 55 23 44

1.1 0.75 0.96 0.87 0.5 0.72 1.7 1.1 4.8 4.7

0.87 1.9 0.62 0.61 0.57 0 1.1 0.8 4.1 5.6

baseline CM STD

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

32 1.7 9.8 2.6 7.7 1.6 9.6 5 41 25

1.1 50 0.48 0.9 0.61 0.73 2.7 0.74 13 43

8.8 2 20 6.5 15 10 31 15 31 21

2.9 2.5 4.6 23 9.3 14 25 11 25 27

3.7 2.6 8.6 7.7 52 17 43 44 34 30

1.8 1.3 4.3 8.9 9.7 40 33 23 24 28

1.5 1.5 2.2 3.7 6.6 3.3 37 4.7 23 27

4.3 0.94 2.1 2.6 12 6.1 8.5 61 32 41

1.2 0.59 0.72 0.45 0.61 0.26 1.7 0.8 6.6 5.6

0.61 1.3 0.45 0.35 0.59 0 1.4 0.82 4.9 5.5

selective distillation CM STD

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

55 1.8 14 4.4 7.7 3.9 9.3 7.5 48 29

1.3 79 0.7 0.81 0.83 0.85 3.2 1.2 21 80

18 2.1 42 11 16 9.9 35 20 24 19

4.7 1.9 3.6 33 12 14 38 13 30 25

5.4 2.6 5.7 11 50 10 60 33 28 29

2.5 4.2 12 15 11 41 33 25 26 33

3 0.67 5.4 7.4 6.3 3.7 39 5.1 20 25

2.5 0.86 3.2 5.7 13 4.8 11 50 18 31

2.6 1.2 0.76 0.62 0.81 0.99 1.6 1.9 9.7 6.8

0.94 3.2 0.88 0.91 0.73 0.45 1.2 0.81 4.4 4.7

half-network CM STD

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

53 2.5 22 4.1 9.5 5.2 6.8 16 45 19

1.5 62 1.3 1.6 1.9 2.3 7 2.5 19 53

18 4.5 33 5.5 19 15 17 17 23 20

9.5 7 9.3 23 17 13 27 14 19 29

5.2 4.4 14 11 36 12 39 28 21 26

4.9 5 13 15 14 35 24 34 24 34

4.5 3.6 7.2 8.2 10 11 42 6.9 13 25

5.8 1.4 5 5.7 15 12 8.6 39 14 31

4.7 2.1 1.4 1.2 1.6 0.85 2.4 3.1 9.9 6.3

1.2 3.9 1.5 0.77 0.97 0.77 2 2.1 7.4 7.8

gradient-modulation CM STD

0

10

20

30

40

50

60

70

Figure 5.20: SplitCIFAR10: Task 5 Confusion Matrix

5.2. Experimental Results on SplitCIFAR10 67

5.2.3 Metric Plots
For each class in CIFAR10, each metric of precision, recall, and f1-score was evaluated across
tasks. The following plots (figures 5.21 - 5.30) show how each method performs compared to
the baseline, simultaneous training, and other methods, grouped by each class. For the first two
classes, the gradient modulation method clearly outperforms other approaches in terms of the
f1-score. For the remaining classes, however, the baseline method seems to be generally supe-
rior in terms of the f1-score, while the gradient-modulation method follows closely. Moreover,
the forgetting measure for any metric of choice varies for different classes. While the decrease
in performance is more gradual for the first two classes (present in the first task), there is more
sudden and abrupt loss of performance measure for the remaining classes. It is also good to
note some recovery of performance takes place after training on the fifth task. The f1-score
of classes 2 to 9 generally increases from task task 4 to task 5, while the decrease of f1-score
continues in the final task for the first two classes. This recovery can be attributed to the use
of supervised contrastive loss and the memory module. While most of the samples given to
the network are from the current task, the rehearsal of previous task data allows the supervised
contrastive loss to separate previous class representations from the current ones, even when the
number of training samples is very limited.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 0

Figure 5.21: SplitCIFAR10: Precision, recall, and f1-score of class 0 across tasks for different
implemented methods.

68 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 1

Figure 5.22: SplitCIFAR10: Precision, recall, and f1-score of class 1 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 2

Figure 5.23: SplitCIFAR10: Precision, recall, and f1-score of class 2 across tasks for different
implemented methods.

5.2. Experimental Results on SplitCIFAR10 69

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 3

Figure 5.24: SplitCIFAR10: Precision, recall, and f1-score of class 3 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 4

Figure 5.25: SplitCIFAR10: Precision, recall, and f1-score of class 4 across tasks for different
implemented methods.

70 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 5

Figure 5.26: SplitCIFAR10: Precision, recall, and f1-score of class 5 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 6

Figure 5.27: SplitCIFAR10: Precision, recall, and f1-score of class 6 across tasks for different
implemented methods.

5.2. Experimental Results on SplitCIFAR10 71

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 7

Figure 5.28: SplitCIFAR10: Precision, recall, and f1-score of class 7 across tasks for different
implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 8

Figure 5.29: SplitCIFAR10: Precision, recall, and f1-score of class 8 across tasks for different
implemented methods.

72 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 9

Figure 5.30: SplitCIFAR10: Precision, recall, and f1-score of class 9 across tasks for different
implemented methods.

5.3. Experimental Results on SplitTinyImageNet 73

5.3 Experimental Results on SplitTinyImageNet
The TinyImageNet dataset was splitted into 5 groups, each including 40 classes (out of 200).
The first task will be discriminating between the first 40 classes, the second task will be discrim-
inating the second 40 classes and so on. Similar to experiments on the SplitCIFAR10 dataset,
the feature extractor was a reduced ResNet-18, while the projector network was a single hid-
den layer MLP. Each performance metric of precision, recall, and f1-score was computed after
training of each task finished. Each performance metric was averaged across seen classes, and
provided in the following section. The main metric for comparing methods, however, is aver-
age accuracy. For the results in this section, each method was trained in 5 independent runs,
compared to SplitCIFAR10 and SplitMNIST’s 10.

5.3.1 Average Accuracy Evaluated After Each Task
The average accuracy measured after training on the first task are shown in the first column of
table 5.3. None of the methods of gradient modulation, half-network, or selective distillation
have taken effect in the first task, and results should be similar (note the high std of gradient
modulation method). Training using a larger batch size on SplitTinyImageNet generally led to
high variance for results. Also note the relatively low accuracy of the simultaneous training on
the first task, showing the difficulty of this dataset. Average accuracy on the first two tasks after
training of the second task are recorded in the second column of table 5.3. While the gradient
modulation method resulted in lowest average accuracy among different methods and the base-
line after task 1, it achieved the highest average accuracy after task 2, showing how promising
the use of gradient modulation can be in order to prevent forgetting and preserve knowledge.
The methods of half-network and selective-distillation, however, did not surpass the baseline’s
average accuracy. Overall, significant forgetting is observed for all methods when compared
to the first task’s accuracy. The average accuracy evaluated after task 3 are provided in the
third column of table 5.3. None of the proposed methods manage to outperform the baseline
in terms of average accuracy after this task. The forgetting trend continues and around 10
percent loss of accuracy is seen across the methods. Among the proposed methods, gradient
modulation shows competitive performance compared to the baseline while significantly out-
performing half-network and selective distillation methods. After training on Task 4, average
accuracy was recorded and provided in the fourth column of table 5.3. Similar to the third
task, none of the proposed methods manage to outperform the baseline in terms of average
accuracy. Gradient modulation method follows the baseline closely while half-network and
selective-distillation remain to be show lower accuracy. Significant forgetting is observed in
general and the recorded average accuracy are very low. Finally, average accuracy after training
on the fifth task are provided in last column of table 5.3. The performance measure after this
task is very informative as all 200 classes in the dataset have now been observed and trained on.
The gradient modulation method outperforms the baseline and other methods while achieving
state of the art average accuracy (see [13]). While the results on the SplitTinyImageNet were
promising, the variation was large, and there is still a large gap between the proposed meth-
ods and the simultaneous training benchmark. Interestingly, while after task 5 there are more
classes to predict and the expectation for the average accuracy is to continue the trend and
decrease, the network’s average accuracy sees an increase for all methods. Since this effect is

74 Chapter 5. Results

seen in all of the methods, it probably results from the use of supervised contrastive loss and
a memory module to rehearse past task samples. Moreover, there is a chance the fourth task
included difficult classes to learn from, and the network needed more time and training epochs
to learn them.

Comparison with state-of-the-art method in continual learning will be provided later in this
chapter, after the ablation studies are described.

Table 5.3: SplitTinyImageNet: Task mean (std) accuracy on the test set
Task 1 Avg. Task 2 Avg. Task 3 Avg. Task 4 Avg. Task 5 Avg.

method Accuracy Accuracy Accuracy Accuracy Accuracy

simultaneous training 0.3832 (0.038) 0.4114 (0.0429) 0.3944 (0.0395) 0.3852 (0.0398) 0.3802 (0.0377)
baseline 0.6234 (0.0051) 0.369 (0.0036) 0.2691 (0.0066) 0.0955 (0.0031) 0.1423 (0.0081)
gradient-modulation 0.5865 (0.086) 0.3697 (0.0237) 0.2655 (0.019) 0.0922 (0.013) 0.1427 (0.0082)
half-network 0.6171 (0.0135) 0.2941 (0.0045) 0.2089 (0.0064) 0.0833 (0.0074) 0.1163 (0.0051)
selective distillation 0.6101 (0.0377) 0.3392 (0.0087) 0.2385 (0.0164) 0.086 (0.0095) 0.1356 (0.0027)

5.3.2 Confusion Matrices
The confusion matrices for the classes seen up until each task are shown in what follows (fig-
ures 5.31 - 5.35). Similar to experiments on SplitCIFAR10, previous task classes get misclas-
sified mostly with classes present in the most recent task. Notably, the confusion matrices are
diagonal near the last 40 classes (last task the model was trained on) while being scrambled
and less diagonal for classes of the past tasks. This shows that forgetting is not specific to some
of the classes in previous tasks, but affects all of them significantly.

5.3. Experimental Results on SplitTinyImageNet 75
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

baseline CM Mean

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

selective distillation CM Mean

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

half-network CM Mean

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

gradient-modulation CM Mean

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

baseline CM STD

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

selective distillation CM STD

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

half-network CM STD

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

gradient-modulation CM STD

0

1

2

3

4

5

6

7

8

Figure 5.31: SplitTinyImageNet: Task 1 Confusion Matrix

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76

baseline CM Mean

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76

selective distillation CM Mean

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76

half-network CM Mean

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76

gradient-modulation CM Mean

0

10

20

30

40

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76

baseline CM STD

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76

selective distillation CM STD

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76

half-network CM STD

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76
0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76

gradient-modulation CM STD

0

1

2

3

4

5

6

7

8

Figure 5.32: SplitTinyImageNet: Task 2 Confusion Matrix

76 Chapter 5. Results
0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

baseline CM Mean

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

selective distillation CM Mean

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

half-network CM Mean

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

gradient-modulation CM Mean

0

10

20

30

40

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

baseline CM STD

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

selective distillation CM STD

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

half-network CM STD

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100
105
110
115

gradient-modulation CM STD

0

2

4

6

8

Figure 5.33: SplitTinyImageNet: Task 3 Confusion Matrix

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

baseline CM Mean

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

selective distillation CM Mean

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

half-network CM Mean
0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

gradient-modulation CM Mean

0

10

20

30

40

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

baseline CM STD

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

selective distillation CM STD

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

half-network CM STD

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98 10
5

11
2

11
9

12
6

13
3

14
0

14
7

15
4

0
7

14
21
28
35
42
49
56
63
70
77
84
91
98

105
112
119
126
133
140
147
154

gradient-modulation CM STD

0

2

4

6

8

Figure 5.34: SplitTinyImageNet: Task 4 Confusion Matrix

5.3. Experimental Results on SplitTinyImageNet 77
0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198

baseline CM Mean

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198

selective distillation CM Mean

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198

half-network CM Mean

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198

gradient-modulation CM Mean

0

5

10

15

20

25

30

35

40

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198

baseline CM STD

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198

selective distillation CM STD

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198

half-network CM STD

0 9 18 27 36 45 54 63 72 81 90 99 10
8

11
7

12
6

13
5

14
4

15
3

16
2

17
1

18
0

18
9

19
8

0
9

18
27
36
45
54
63
72
81
90
99

108
117
126
135
144
153
162
171
180
189
198

gradient-modulation CM STD

0

2

4

6

8

10

Figure 5.35: SplitTinyImageNet: Task 5 Confusion Matrix

78 Chapter 5. Results

Furthermore, the confusion matrix resulting from training on the entire dataset (all classes
at once, simultaneously) is shown in figure 5.36. As can be seen, when training on all classes
the confusion matrix is near diagonal, in contrast to continually learning tasks that results
in earlier classes being misclassified as classes in the last seen task. This confusion matrix,
however, is not perfectly diagonal because of the difficulty of this classification of this dataset.

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

17
4

18
0

18
6

19
2

19
8

0
6

12
18
24
30
36
42
48
54
60
66
72
78
84
90
96

102
108
114
120
126
132
138
144
150
156
162
168
174
180
186
192
198

Simultaneous All Classes CM Mean

0

5

10

15

20

25

30

35

40

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 10
2

10
8

11
4

12
0

12
6

13
2

13
8

14
4

15
0

15
6

16
2

16
8

17
4

18
0

18
6

19
2

19
8

0
6

12
18
24
30
36
42
48
54
60
66
72
78
84
90
96

102
108
114
120
126
132
138
144
150
156
162
168
174
180
186
192
198

Simultaneous All Classes CM STD

0

1

2

3

4

5

6

7

8

Figure 5.36: SplitTinyImageNet: Simultaneous Training Confusion Matrix

5.3.3 Metric Plots
Each of the following figures (5.37 - 5.41) plots each of performance metrics computed on a
task across tasks that model was trained after. Interestingly, the gradient modulation method
generally (and marginally) performs better than the baseline in multiple metrics, and in multiple
tasks. One can identify the reason why overall average accuracy reported in 5.3 increased from
task 4 to task 5. Apparently, the network found it difficult to learn classes in the fourth task
while showing better performance on the classes in task 5, and there is no performance recovery
similar to those seen in SplitCIFAR10 results. Compared to performance on SplitCIFAR10,
however, the decrease in performance metrics is more gradual.

5.3. Experimental Results on SplitTinyImageNet 79

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 1: Classes 0 to 39

Figure 5.37: SplitTinyImageNet: Precision, recall, and f1-score of task 1 across tasks for
different implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 2: Classes 40 to 79

Figure 5.38: SplitTinyImageNet: Precision, recall, and f1-score of task 2 across tasks for
different implemented methods.

80 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 3: Classes 80 to 119

Figure 5.39: SplitTinyImageNet: Precision, recall, and f1-score of task 3 across tasks for
different implemented methods.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 4: Classes 120 to 159

Figure 5.40: SplitTinyImageNet: Precision, recall, and f1-score of task 4 across tasks for
different implemented methods.

5.3. Experimental Results on SplitTinyImageNet 81

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 5: Classes 160 to 199

Figure 5.41: SplitTinyImageNet: Precision, recall, and f1-score of task 5 across tasks for
different implemented methods.

82 Chapter 5. Results

5.4 Ablation Studies
In order to study the effect of the predictive batch and investigate how the size of rehearsal
memory affects performance, additional experiments with SplitMNIST (representative of a
small and relatively easy to learn dataset) and SplitTinyImageNet (representative of a larger
and harder to learn dataset) datasets were conducted. In these experiments, the size of memory
and the use of the predictive batch were manipulated and the resulting performance metrics
were calculated. The results are described in the following sections.

5.4.1 Effect of the Predictive Batch
In an effort to examine whether identifying salient network parameters using the predictive
batch provides improvements in performance, for each method (selective distillation, half-
network, and gradient modulation) and the SplitMNIST and the SplitTinyImageNet datasets,
an additional experiment where the salient parameters and parts of representations were chosen
only based on the performance on a memory of previous tasks was conducted. The f1-score
of each variant is shown in table 5.4 for SplitMNIST. For SplitTinyImageNet, the average
accuracy of each variant is shown in table 5.5.

Experimental results on SplitMNIST

Table 5.4 summarizes each method’s performance compared to its corresponding variant where
the predictive batch was not used. There is, however, only one baseline (no salience computa-
tion in general, so not using the predictive batch is irrelevant for the baseline).

Comparing each method to its no-predictive-batch variant, gradient modulation achieves
higher accuracy without using the predictive batch, while the half-network and selective distil-
lation methods generally perform better when the predictive batch is leveraged for computing
the salience of parameters/representations.

Comparing methods with each other, gradient modulation outperforms without using the
predictive batch other methods after training on task 2 and 3, while selective distillation shows
the highest f1-score after training on task 4 and 5 when using the predictive batch.

5.4. Ablation Studies 83

Table 5.4: SplitMNIST: Mean (std) of class f1-score on the test set after each task for variants
using and not using the predictive batch. Variants that do not use the predictive batch are
marked with *.

Task 1 f1-score Task 2 f1-score Task 3 f1-score Task 4 f1-score Task 5 f1-score
method

baseline 0.9988 (0.0011) 0.983 (0.0102) 0.9596 (0.0219) 0.9338 (0.0232) 0.8837 (0.0198)
gradient-modulation 0.999 (0.0007) 0.9879 (0.0039) 0.9621 (0.0097) 0.9404 (0.0147) 0.8905 (0.021)
gradient-modulation* 0.999 (0.001) 0.9893 (0.0036) 0.9637 (0.0123) 0.945 (0.0111) 0.8945 (0.0193)
half-network 0.9993 (0.0007) 0.9739 (0.02) 0.9604 (0.0163) 0.9383 (0.022) 0.8799 (0.0269)
half-network* 0.9996 (0.0004) 0.9717 (0.0115) 0.9556 (0.0203) 0.9335 (0.0208) 0.8817 (0.0287)
selective distillation 0.9994 (0.0005) 0.9829 (0.0133) 0.962 (0.0156) 0.9497 (0.0038) 0.9073 (0.0155)
selective distillation* 0.9993 (0.0005) 0.9826 (0.0059) 0.9587 (0.0184) 0.9436 (0.0182) 0.8751 (0.0336)
simultaneous training 0.9908 (0.0051) 0.9869 (0.0092) 0.9845 (0.0145) 0.9843 (0.0135) 0.9823 (0.0161)

Experimental results on SplitTinyImageNet

Table 5.5 summarizes each method’s performance compared to its corresponding variant where
the predictive batch was not used. There is, however, only one baseline (no variant where
the predictive batch is not used), as it does not originally compute salience for any parame-
ters/representations and using/not using the predictive batch is irrelevant.

The variant of each method that uses the predictive batch generally outperforms the variant
that not uses the predictive batch in all tasks (with the exception of gradient modulation method
in the final task). This, alongside results from SplitMNIST, shows that the using the predictive
batch to compute salience of parameters/representations generally provides gains for knowl-
edge preservation, both in small experiments (small architecture and datasets) and larger-scale
experiments (with deeper architectures and larger datasets).

Comparing each method and variant with each other, both variants of the gradient mod-
ulation method outperform the selective distillation and half-network methods. The gradient
modulation method also outperforms the baseline after task 2 and task 5, while no method
manages to achieve a higher accuracy than the baseline after tasks 3 and 4.

84 Chapter 5. Results

Table 5.5: SplitTinyImageNet: Task mean (std) accuracy on the test set after each task for
variants using and not using the predictive batch. Variants that do not use the predictive batch
are marked with *.

Task 1 Avg. Task 2 Avg. Task 3 Avg. Task 4 Avg. Task 5 Avg.
method Accuracy Accuracy Accuracy Accuracy Accuracy

baseline 0.6234 (0.0051) 0.369 (0.0036) 0.2691 (0.0066) 0.0955 (0.0031) 0.1423 (0.0081)
gradient-modulation 0.5865 (0.086) 0.3697 (0.0237) 0.2655 (0.019) 0.0922 (0.013) 0.1427 (0.0082)
gradient-modulation* 0.5962 (0.055) 0.3638 (0.0132) 0.2622 (0.0125) 0.0918 (0.0128) 0.1452 (0.0058)
half-network 0.6171 (0.0135) 0.2941 (0.0045) 0.2089 (0.0064) 0.0833 (0.0074) 0.1163 (0.0051)
half-network* 0.5769 (0.0996) 0.2546 (0.0846) 0.1827 (0.0555) 0.0716 (0.0331) 0.1043 (0.0302)
selective distillation 0.6101 (0.0377) 0.3392 (0.0087) 0.2385 (0.0164) 0.086 (0.0095) 0.1356 (0.0027)
selective distillation* 0.5618 (0.1187) 0.3311 (0.0099) 0.234 (0.0141) 0.0784 (0.015) 0.1321 (0.0069)
simultaneous training 0.3832 (0.038) 0.4114 (0.0429) 0.3944 (0.0395) 0.3852 (0.0398) 0.3802 (0.0377)

5.4.2 Effect of Memory Size
In this ablation study, the effect of memory size is investigated. To this end, for each in-
troduced method (selective distillation, half-network, and gradient modulation), an additional
experiment was conducted with a larger memory to see the effect on performance. Specifically,
while the memory size for training on the SplitMNIST dataset was originally 50, in the new
experiments the memory size was set to 100. Similarly, for training on SplitTinyImageNet,
memory size was set to 1000, in contrast to the original memory size of 200. The network
architecture is also chosen according to the dataset, with a simple three layer CNN used for
SplitMNIST while a reduced ResNet-18 was used for SplitTinyImageNet. In what follows the
experimental results with a larger memory are compared to results with a small memory:

Experimental Results on SplitMNIST

Same as before, f1-score of seen classes after training on each task concludes are averaged and
reported, for both the small and larger memory. These results are provided in the table 5.6.
Generally, a larger memory leads to better performance (higher f1-score) for each method. The
difference is going to be in how methods with a larger memory compare to each other.

When using a small memory of size 50, the gradient modulation and selective distillation
methods outperform the baseline and manage to get the highest f1-score at different points in
time. Using a larger memory of size 100, however, none of the methods achieve a higher f1-
score than the baseline in the last two tasks. The gradient modulation and selective distillation
methods outperform the baseline after task 2 with the former showing the highest f1-score.
Measuring f1-score after task 3, only selective distillation achieves a higher f1-score compared
to the baseline.

5.4. Ablation Studies 85

Table 5.6: SplitMNIST: Mean (std) of class f1-score on the test set after each task
Mem Task 1 f1-score Task 2 f1-score Task 3 f1-score Task 4 f1-score Task 5 f1-score
Size method

simultaneous
training 0.9908 (0.0051) 0.9869 (0.0092) 0.9845 (0.0145) 0.9843 (0.0135) 0.9823 (0.0161)

50

baseline 0.9988 (0.0011) 0.983 (0.0102) 0.9596 (0.0219) 0.9338 (0.0232) 0.8837 (0.0198)
gradient-
modulation 0.999 (0.0007) 0.9879 (0.0039) 0.9621 (0.0097) 0.9404 (0.0147) 0.8905 (0.021)
half-
network 0.9993 (0.0007) 0.9739 (0.02) 0.9604 (0.0163) 0.9383 (0.022) 0.8799 (0.0269)
selective
distillation 0.9994 (0.0005) 0.9829 (0.0133) 0.962 (0.0156) 0.9497 (0.0038) 0.9073 (0.0155)

100

baseline 0.999 (0.0014) 0.9859 (0.0128) 0.9768 (0.011) 0.9683 (0.0077) 0.9421 (0.0073)
gradient-
modulation 0.9995 (0.0004) 0.9904 (0.003) 0.9764 (0.0091) 0.9671 (0.0068) 0.9385 (0.0066)
half-
network 0.9993 (0.0015) 0.9146 (0.1062) 0.937 (0.0404) 0.9302 (0.0453) 0.9075 (0.0358)
selective
distillation 0.9993 (0.0005) 0.9889 (0.0031) 0.9805 (0.0039) 0.9648 (0.0071) 0.9361 (0.0134)

Assessing performance for two different memory sizes provides an important insight: The
proposed methods’ effects are more significant when access to previous task samples is very
limited (smaller memory). Overall, supervised contrastive learning with a larger memory ap-
pears to very robust and difficult to outperform.

The following figures (5.42-5.51) describe how each task’s performance metrics change
over time as the network gets trained on new tasks and allow comparison of each introduced
method with other methods provided. While the baseline manages to provide better perfor-
mance (precision, recall, and f1-score), it can be seen in the plots that the gradient modulation
and selective distillation methods follow very closely.

86 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 0

Figure 5.42: SplitMNIST: Precision, recall, and f1-score of class 0 across tasks for different
implemented methods with a larger memory of size 100.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 1

Figure 5.43: SplitMNIST: Precision, recall, and f1-score of class 1 across tasks for different
implemented methods with a larger memory of size 100.

5.4. Ablation Studies 87

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 2

Figure 5.44: SplitMNIST: Precision, recall, and f1-score of class 2 across tasks for different
implemented methods with a larger memory of size 100.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 3

Figure 5.45: SplitMNIST: Precision, recall, and f1-score of class 3 across tasks for different
implemented methods with a larger memory of size 100.

88 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 4

Figure 5.46: SplitMNIST: Precision, recall, and f1-score of class 5 across tasks for different
implemented methods with a larger memory of size 100.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score

run
baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 5

Figure 5.47: SplitMNIST: Precision, recall, and f1-score of class 5 across tasks for different
implemented methods with a larger memory of size 100.

5.4. Ablation Studies 89

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 6

Figure 5.48: SplitMNIST: Precision, recall, and f1-score of class 6 across classes for different
implemented methods with a larger memory of size 100.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 7

Figure 5.49: SplitMNIST: Precision, recall, and f1-score of class 7 across tasks for different
implemented methods with a larger memory of size 100.

90 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 8

Figure 5.50: SplitMNIST: Precision, recall, and f1-score of class 8 across tasks for different
implemented methods with a larger memory of size 100.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Class 9

Figure 5.51: SplitMNIST: Precision, recall, and f1-score of class 9 across tasks for different
implemented methods with a larger memory of size 100.

5.4. Ablation Studies 91

Experimental Results on SplitTinyImageNet

The accuracy on seen tasks is averaged after training on each task concludes. Table 5.7 de-
scribes the results evaluated after each task. The larger memory variant of each method natu-
rally observes higher accuracy, in all of the tasks. It is good to note that the selective distillation
method sees less improvement than the baseline, gradient modulation, and half-network meth-
ods, when comparing each method to its large memory variant. Moreover, comparing methods
with each other when a larger memory is employed describes how performance of methods
changes when the memory size is altered. While using a small memory, the baseline and gra-
dient modulation methods generally outperformed the half-network and selective-distillation
methods, with the gradient modulation method achieving a higher average accuracy after tasks
2 and 5. Similar to when a smaller memory was being used, using a larger memory, the base-
line and gradient modulation methods show close performance metrics while outperforming
selective distillation and half-network methods. However, when a larger memory is employed,
the baseline achieves highest average accuracy after tasks 3, 4, and 5 while gradient modulation
outperforms the baseline only after the second task. This follows the results on SplitMNIST:
the effects of proposed methods are more significant when access to previous task samples is
very limited and the size of the memory is small.

Table 5.7: SplitTinyImageNet: Task mean (std) accuracy on the test set for different memory
sizes

Mem Task 1 Avg. Task 2 Avg. Task 3 Avg. Task 4 Avg. Task 5 Avg.
Size method Accuracy Accuracy Accuracy Accuracy Accuracy

simultaneous
Training 0.3832 (0.038) 0.4114 (0.0429) 0.3944 (0.0395) 0.3852 (0.0398) 0.3802 (0.0377)

200

baseline 0.6234 (0.0051) 0.369 (0.0036) 0.2691 (0.0066) 0.0955 (0.0031) 0.1423 (0.0081)
gradient-
modulation 0.5865 (0.086) 0.3697 (0.0237) 0.2655 (0.019) 0.0922 (0.013) 0.1427 (0.0082)
half-
network 0.6171 (0.0135) 0.2941 (0.0045) 0.2089 (0.0064) 0.0833 (0.0074) 0.1163 (0.0051)
selective
distillation 0.6101 (0.0377) 0.3392 (0.0087) 0.2385 (0.0164) 0.086 (0.0095) 0.1356 (0.0027)

1000

baseline 0.6157 (0.0239) 0.4239 (0.0077) 0.3193 (0.0052) 0.1478 (0.0049) 0.1626 (0.0054)
gradient-
modulation 0.6222 (0.011) 0.428 (0.0047) 0.314 (0.0095) 0.1448 (0.0073) 0.16 (0.0062)
half-
network 0.6163 (0.027) 0.3545 (0.0182) 0.262 (0.0157) 0.1399 (0.0073) 0.1458 (0.0095)
selective
distillation 0.5249 (0.1717) 0.3441 (0.071) 0.2613 (0.0392) 0.1188 (0.0289) 0.1398 (0.0195)

Lastly, in what follows plots of performance metrics on a task across current and next tasks
are illustrated (figures 5.52-5.56). Similar to before, these plots show how each performance
metric on a task changes over time as the network gets trained on new tasks. These plots show
how closely the gradient modulation method follows the baseline in different metrics.

92 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 1: Classes 0 to 39

Figure 5.52: SplitTinyImageNet: Precision, recall, and f1-score of task 1 across tasks for
different implemented methods with a larger memory of 1000.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 2: Classes 40 to 79

Figure 5.53: SplitTinyImageNet: Precision, recall, and f1-score of task 2 across tasks for
different implemented methods with a larger memory of 1000.

5.4. Ablation Studies 93

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 3: Classes 80 to 119

Figure 5.54: SplitTinyImageNet: Precision, recall, and f1-score of task 3 across tasks for
different implemented methods with a larger memory of 1000.

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 4: Classes 120 to 159

Figure 5.55: SplitTinyImageNet: Precision, recall, and f1-score of task 4 across tasks for
different implemented methods with a larger memory of 1000.

94 Chapter 5. Results

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

re
ca

ll

recall
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

precision
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

1 2 3 4 5
experience

0.0

0.2

0.4

0.6

0.8

1.0

f1
-s

co
re

f1-score
run

baseline
selective distillation
half-network
gradient-modulation
simultaneous training

Task 5: Classes 160 to 199

Figure 5.56: SplitTinyImageNet: Precision, recall, and f1-score of task 5 across tasks for
different implemented methods with a larger memory of 1000.

5.5. Comparison of ProposedMethods to State-of-the-Art 95

5.5 Comparison of Proposed Methods to State-of-the-Art
While experiments on SplitMNIST were to show preliminary results on small scale datasets,
it is good to compared the performance of proposed methods with previous state-of-the-art.
However, doing so requires experimenting in identical or very similar settings. Here, we chose
to experiment with SplitCIFAR10 and SplitTinyImageNet datasets in the class-incremental
setting only. Moreover, only a memory size of 200 was tested, while previous work also exper-
imented with a larger memory size of 500. It should also be noted that the network architecture
being used for the proposed methods is a reduced version of ResNet-18, while previous work
employed the original full-size ResNet-18. Table 5.8 shows the average accuracy of proposed
methods accompanied by results of previous state-of-the-art continual learning approaches.
The results of previous state-of-the-art are extracted from [13] and [12].

Table 5.8: Comparison of proposed methods with previous state-of-the-art continual learning
approaches: average (std) accuracy over all tasks are reported. State-of-the-art results are
measured over 10 independent trials. The best performance are marked with bold. ’-’ denotes
that results were not recorded because of incompatibility issues or intractable training time.

dataset SplitCIFAR10 SplitTinyImageNet
method

ER [74] 44.79 (1.86) 8.49 (0.16)
GEM [58] 25.54 (0.76) -
A-GEM [15] 20.04 (0.34) 8.07 (0.08)
iCaRL [72] 49.02 (3.20) 7.53 (0.79)
FDR [9] 30.91 (2.74) 8.70 (0.19)
GSS [2] 39.07 (5.59) -
HAL [14] 32.36 (2.70) -
DER [12] 61.93 (1.79) 11.87 (0.78)
DER++ [12] 64.88 (1.17) 10.96 (1.17)
Co2L[13] 65.57 (1.37) 13.88 (0.40)
LASP: gradient-modulation (ours) 46.39 (1.27) 14.27 (0.82)
LASP: half-network (ours) 46.38 (1.24) 11.63 (0.51)
LASP: selective distillation (ours) 43.35 (1.20) 13.56 (0.27)
baseline (ours) 47.35 (1.33) 14.23 (0.81)
simultaneous training (upper bound) 83.94 (0.59) 38.02 (3.77)

The proposed gradient modulation method achieves state-of-the-art average accuracy on
the SplitTinyImageNet dataset (class-incremental, memory size of 200) while using a smaller
architecture and fewer number of parameters. For SplitCIFAR10, however, none of the pro-
posed methods achieve a higher accuracy than previous state-of-the-art. This can be in part
attributed to unstable training when using larger batch sizes like Co2L for SplitCIFAR10 and
inability to reproduce results close to Co2L with our implementation.

Chapter 6

Discussion and Conclusion

In this thesis, the general continual learning problem and its different settings was described.
A representative set of previous work in the field was also explained and their limitations were
identified. Marking the limitations by previous work, a new continual learning setting was
proposed. In the new setting, it is possible to access a part of the upcoming dataset at once,
allowing the network to be evaluated on new unseen data. Moreover, inspired by the neuro-
modulatory processes in the brain, two main and novel approaches were presented that assess
which parts of a representation generated by a feature extractor are more salient and backprop-
agate the computed salience to each network parameter. Consequently, network parameters
that hold the knowledge of past tasks and are likely to transfer to future tasks were identified.
Three novel methods were also introduced to preserve the knowledge acquired by the network
using the computed salience values for network parameters and representations.

The results presented in chapter 5 show that each of the proposed methods can be helpful
in different circumstances. For example, selective distillation was able to achieve highest f1-
score among others for SplitMNIST, while not being able to outperform the baseline for Split-
CIFAR10. While the results explain in which conditions (memory size, with/without using the
predictive batch, dataset) each proposed method appears to work best, additional experiments
are required to understand why some of the proposed methods are unable to outperform the
baseline.

For SplitCIFAR10, the decrease in recall over the course of training on tasks is large. After
the steep decrease to around 0.2, however, there is no more decrease, and in some of the classes
(2, 3, 4, and 5) there is an increase in recall after training on the fifth and final task. This shows
that the network can recover some of the lost performance and knowledge by revisiting a small
sample of each task’s data and training the subsequent tasks. While this backward transfer
effect is not very large, it is promising as in the longer sequence of tasks, this may provide a
solution to the catastrophic forgetting problem by slowly recovering performance.

The training process on the SplitTinyImageNet and SplitCIFAR10 datasets was unstable
when a large batch size was being used: The network had issues converging in some runs.
There was no reported instability or convergence problems in [42]. However, a collapse (and
a dimensional collapse) problem has been identified as one of the main issues with contrastive
loss [40], where the network outputs a constant embedding for all inputs, or outputs embed-
dings lying in a lower dimensional space compared to the actual dimensions of the embedding
vector. Training with the right learning rate scheduling and warm up strategies could mitigate

96

97

this problem (see [91]). Making the supervised contrastive loss more stable and finding bet-
ter training strategies (including for this thesis) remains an open problem and a valid future
direction of work.

The effect of memory and the predictive batch was also studied. The proposed methods
generally perform better (according to precision, recall, f1-score, and average accuracy) when
equipped with a larger memory. However, methods perform differently compared to each other
given the size of the memory: While the proposed methods demonstrate a better performance
compared to the baseline when a small memory is used, they are unable to outperform the
baseline when a larger memory is incorporated. The employed memory strategy can be play-
ing a significant part in these behaviour changes. While in this thesis iCaRL’s [72] herding
strategy was used for managing the memory, other memory strategies like reservoir sampling
[74, 94] could lead to better performance when a large memory is being used. The resulting
behaviours of the proposed methods could also get affected by this choice of memory man-
agement strategy. The use of the predictive batch also proved to be useful in many instances,
showing how measuring a network’s performance on new unseen data and attributing it to the
network parameters can help evaluate whether they would generally transfer or not. An spe-
cific and detailed answer to whether the network would generate representations that transfer
to downstream tasks, however, depends on the specific properties of downstream tasks and
requires further examination.

The implementation used for this study is different from the one used for Co2L [13], al-
though extra care was taken to replicate all of its details. While Co2l achieves much better
accuracy for CIFAR10, the implementation here was not able to replicate the results of Co2L
with the same hyperparameters and model details. Further experiments using the available
implementation for Co2L is required to test the methods proposed in this thesis.

While the methods introduced in this study have the following advantages,

1. They allow and encourage forward and backward transfer, via selecting and preserving
neurons that perform well on past, current, and (a predictive batch of) future task.

2. They require limited computational resources.

3. They work in the class-incremental continual learning setting, and there is no theoretical
limit to the number of classes they can learn.

they have a few drawbacks:

1. The performance on preventing catastrophic forgetting could be better.

2. For larger datasets like SplitCIFAR10 and SplitTinyImageNet, they require multiple
passes through the data to perform well. On the SplitMNIST, however, they can be
trained with only two passes (nearly online).

Given the promising results presented in this thesis, there is room for significant improvement
with a more stable training process and a more detailed identification (and possibly guidance)
of salient network parameters in the future.

Bibliography

[1] Kumar Abhishek and Deeksha Kamath. Attribution-based xai methods in computer
vision: A review. arXiv preprint arXiv:2211.14736, 2022.

[2] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sam-
ple selection for online continual learning. Advances in neural information processing
systems, 32, 2019.

[3] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient
descent by gradient descent. Advances in neural information processing systems, 29,
2016.

[4] Michael C Avery, Nikil Dutt, and Jeffrey L Krichmar. Mechanisms underlying the basal
forebrain enhancement of top-down and bottom-up attention. European Journal of Neu-
roscience, 39(5):852–865, 2014.

[5] Markus Bauer, Christian Kluge, Dominik Bach, David Bradbury, Hans Jochen Heinze,
Raymond J Dolan, and Jon Driver. Cholinergic enhancement of visual attention and
neural oscillations in the human brain. Current Biology, 22(5):397–402, 2012.

[6] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley,
Jeff Clune, and Nick Cheney. Learning to continually learn. arXiv preprint
arXiv:2002.09571, 2020.

[7] Samy Bengio, Yoshua Bengio, Jocelyn Cloutier, and Jan Gescei. On the optimization
of a synaptic learning rule. In Optimality in Biological and Artificial Networks?, pages
281–303. Routledge, 2013.

[8] David Beniaguev, Idan Segev, and Michael London. Single cortical neurons as deep
artificial neural networks. Neuron, 109(17):2727–2739, 2021.

[9] Ari S Benjamin, David Rolnick, and Konrad Kording. Measuring and regularizing net-
works in function space. arXiv preprint arXiv:1805.08289, 2018.

[10] Paul Bentley, Jon Driver, and Raymond J Dolan. Cholinergic modulation of cognition:
insights from human pharmacological functional neuroimaging. Progress in neurobiol-
ogy, 94(4):360–388, 2011.

98

BIBLIOGRAPHY 99

[11] Bryan R Burnham. Displaywide visual features associated with a search display’s ap-
pearance can mediate attentional capture. Psychonomic Bulletin & Review, 14(3):392–
422, 2007.

[12] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calder-
ara. Dark experience for general continual learning: a strong, simple baseline. Advances
in neural information processing systems, 33:15920–15930, 2020.

[13] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pages 9516–
9525, 2021.

[14] Arslan Chaudhry, Albert Gordo, Puneet Dokania, Philip Torr, and David Lopez-Paz.
Using hindsight to anchor past knowledge in continual learning. In Proceedings of the
AAAI conference on artificial intelligence, volume 35, pages 6993–7001, 2021.

[15] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
Efficient lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

[16] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International conference
on machine learning, pages 1597–1607. PMLR, 2020.

[17] Z Chen and B Liu. Lifelong machine learning: Synthesis lectures on artificial intelli-
gence and machine learning. San Rafael, CA, USA: Morgan and Claypool Publishers,
pages 1–127, 2016.

[18] Moheb Costandi. Neuroplasticity. MIt Press, 2016.

[19] Anurag Daram, Angel Yanguas-Gil, and Dhireesha Kudithipudi. Exploring neuromod-
ulation for dynamic learning. Frontiers in Neuroscience, 14:928, 2020.

[20] Peter Dayan and Angela J Yu. Phasic norepinephrine: a neural interrupt signal for
unexpected events. Network: Computation in Neural Systems, 17(4):335–350, 2006.

[21] Kenji Doya. Metalearning and neuromodulation. Neural networks, 15(4-6):495–506,
2002.

[22] Kai Olav Ellefsen, Jean-Baptiste Mouret, and Jeff Clune. Neural modularity helps or-
ganisms evolve to learn new skills without forgetting old skills. PLoS computational
biology, 11(4):e1004128, 2015.

[23] Xiaoxu Fan, Fan Wang, Hanyu Shao, Peng Zhang, and Sheng He. The bottom-up and
top-down processing of faces in the human occipitotemporal cortex. Elife, 9:e48764,
2020.

[24] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast
adaptation of deep networks. In International conference on machine learning, pages
1126–1135. PMLR, 2017.

100 BIBLIOGRAPHY

[25] Charles L Folk, Roger W Remington, and James C Johnston. Involuntary covert orient-
ing is contingent on attentional control settings. Journal of Experimental Psychology:
Human perception and performance, 18(4):1030, 1992.

[26] Ruth Fong, Mandela Patrick, and Andrea Vedaldi. Understanding deep networks via ex-
tremal perturbations and smooth masks. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 2950–2958, 2019.

[27] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set
recognition: A survey. IEEE transactions on pattern analysis and machine intelligence,
43(10):3614–3631, 2020.

[28] Albert Gidon, Timothy Adam Zolnik, Pawel Fidzinski, Felix Bolduan, Athanasia Pa-
poutsi, Panayiota Poirazi, Martin Holtkamp, Imre Vida, and Matthew Evan Larkum.
Dendritic action potentials and computation in human layer 2/3 cortical neurons. Sci-
ence, 367(6473):83–87, 2020.

[29] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256. JMLR Workshop and Conference
Proceedings, 2010.

[30] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[31] Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change:
Continual learning in deep neural networks. Trends in cognitive sciences, 24(12):1028–
1040, 2020.

[32] Song Han, Jeff Pool, Sharan Narang, Huizi Mao, Enhao Gong, Shijian Tang, Erich
Elsen, Peter Vajda, Manohar Paluri, John Tran, et al. Dsd: Dense-sparse-dense training
for deep neural networks. arXiv preprint arXiv:1607.04381, 2016.

[33] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. Advances in neural information processing systems,
28, 2015.

[34] Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
5353–5360, 2015.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[36] Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psy-
chology Press, 2005.

BIBLIOGRAPHY 101

[37] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7), 2015.

[38] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on machine
learning, pages 448–456. PMLR, 2015.

[39] Khurram Javed and Martha White. Meta-learning representations for continual learning.
Advances in Neural Information Processing Systems, 32, 2019.

[40] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional
collapse in contrastive self-supervised learning. arXiv preprint arXiv:2110.09348, 2021.

[41] Paul Katz and DH Edwards. Beyond neurotransmission. Oxford University Press New
York, 1999.

[42] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Ad-
vances in Neural Information Processing Systems, 33:18661–18673, 2020.

[43] J Kirkpatrick, R Pascanu, N Rabinowitz, J Veness, G Desjardins, AA Rusu, K Milan,
J Quan, T Ramalho, A Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences of the United States
of America, 114(13):3521–3526, 2017.

[44] Soheil Kolouri, Nicholas Ketz, Xinyun Zou, Jeffrey Krichmar, and Praveen Pilly.
Attention-based structural-plasticity. arXiv preprint arXiv:1903.06070, 2019.

[45] Dhireesha Kudithipudi, Mario Aguilar-Simon, Jonathan Babb, Maxim Bazhenov, Dou-
glas Blackiston, Josh Bongard, Andrew P Brna, Suraj Chakravarthi Raja, Nick Cheney,
Jeff Clune, et al. Biological underpinnings for lifelong learning machines. Nature Ma-
chine Intelligence, 4(3):196–210, 2022.

[46] Pranjal Kumar, Piyush Rawat, and Siddhartha Chauhan. Contrastive self-supervised
learning: review, progress, challenges and future research directions. International Jour-
nal of Multimedia Information Retrieval, pages 1–28, 2022.

[47] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman.
Building machines that learn and think like people. Behavioral and brain sciences, 40,
2017.

[48] Phuc H Le-Khac, Graham Healy, and Alan F Smeaton. Contrastive representation learn-
ing: A framework and review. IEEE Access, 8:193907–193934, 2020.

[49] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and
time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[50] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

102 BIBLIOGRAPHY

[51] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient
BackProp, pages 9–48. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[52] Zhizhong Li and Derek Hoiem. Learning without forgetting. In European Conference
on Computer Vision, pages 614–629. Springer, 2016.

[53] Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The clear benchmark: Con-
tinual learning on real-world imagery. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[54] Weiyang Liu, Zhen Liu, James M Rehg, and Le Song. Neural similarity learning. Ad-
vances in Neural Information Processing Systems, 32, 2019.

[55] Yunzhe Liu, Raymond J Dolan, Zeb Kurth-Nelson, and Timothy EJ Behrens. Human
replay spontaneously reorganizes experience. Cell, 178(3):640–652, 2019.

[56] Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for
continuous object recognition. In Conference on Robot Learning, pages 17–26. PMLR,
2017.

[57] Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graf-
fieti, Tyler L Hayes, Matthias De Lange, Marc Masana, Jary Pomponi, Gido M Van de
Ven, et al. Avalanche: an end-to-end library for continual learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3600–3610,
2021.

[58] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
learning. Advances in neural information processing systems, 30, 2017.

[59] Sandeep Madireddy, Angel Yanguas-Gil, and Prasanna Balaprakash. Neuromodulated
neural architectures with local error signals for memory-constrained online continual
learning. arXiv preprint arXiv:2007.08159, 2020.

[60] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network
by iterative pruning. In Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pages 7765–7773, 2018.

[61] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist net-
works: The sequential learning problem. In Psychology of learning and motivation,
volume 24, pages 109–165. Elsevier, 1989.

[62] Jie Mei, Eilif Muller, and Srikanth Ramaswamy. Informing deep neural networks by
multiscale principles of neuromodulatory systems. Trends in Neurosciences, 2022.

[63] Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O Stanley. Backpropamine:
training self-modifying neural networks with differentiable neuromodulated plasticity.
arXiv preprint arXiv:2002.10585, 2020.

BIBLIOGRAPHY 103

[64] Lilyana Mihalkova, Tuyen Huynh, and Raymond J Mooney. Mapping and revising
markov logic networks for transfer learning. In Aaai, volume 7, pages 608–614, 2007.

[65] Victor Minces, Lucas Pinto, Yang Dan, and Andrea A Chiba. Cholinergic shaping of
neural correlations. Proceedings of the National Academy of Sciences, 114(22):5725–
5730, 2017.

[66] Erkki Oja. Simplified neuron model as a principal component analyzer. Journal of
mathematical biology, 15(3):267–273, 1982.

[67] Nicolas Oros, Andrea A Chiba, Douglas A Nitz, and Jeffrey L Krichmar. Learning to
ignore: a modeling study of a decremental cholinergic pathway and its influence on
attention and learning. Learning & Memory, 21(2):105–118, 2014.

[68] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 22(10):1345–1359, 2010.

[69] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural infor-
mation processing systems, 32, 2019.

[70] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. 2016.

[71] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image
classification: A comprehensive review. Neural computation, 29(9):2352–2449, 2017.

[72] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lam-
pert. icarl: Incremental classifier and representation learning. In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[73] Roger L Redondo and Richard GM Morris. Making memories last: the synaptic tagging
and capture hypothesis. Nature Reviews Neuroscience, 12(1):17–30, 2011.

[74] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and
Gerald Tesauro. Learning to learn without forgetting by maximizing transfer and mini-
mizing interference. arXiv preprint arXiv:1810.11910, 2018.

[75] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science, 7(2):123–146, 1995.

[76] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne.
Experience replay for continual learning. Advances in Neural Information Processing
Systems, 32, 2019.

[77] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representa-
tions by back-propagating errors. nature, 323(6088):533–536, 1986.

104 BIBLIOGRAPHY

[78] Martin Sarter, Cindy Lustig, Anne S Berry, Howard Gritton, William M Howe, and
Vinay Parikh. What do phasic cholinergic signals do? Neurobiology of Learning and
Memory, 130:135–141, 2016.

[79] H Sato, Y Hata, H Masui, and T Tsumoto. A functional role of cholinergic innervation
to neurons in the cat visual cortex. Journal of neurophysiology, 58(4):765–780, 1987.

[80] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning
how to learn: the meta-meta-... hook. PhD thesis, Technische Universität München,
1987.

[81] Wolfram Schultz, Paul Apicella, and Tomas Ljungberg. Responses of monkey dopamine
neurons to reward and conditioned stimuli during successive steps of learning a delayed
response task. Journal of neuroscience, 13(3):900–913, 1993.

[82] Wolfram Schultz, Peter Dayan, and P Read Montague. A neural substrate of prediction
and reward. Science, 275(5306):1593–1599, 1997.

[83] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress:
A scalable framework for continual learning. In International Conference on Machine
Learning, pages 4528–4537. PMLR, 2018.

[84] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[85] Luisa Speranza, Umberto di Porzio, Davide Viggiano, Antonio de Donato, and Floriana
Volpicelli. Dopamine: The neuromodulator of long-term synaptic plasticity, reward and
movement control. Cells, 10(4):735, 2021.

[86] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks.
arXiv preprint arXiv:1505.00387, 2015.

[87] Elizabeth E Steinberg, Ronald Keiflin, Josiah R Boivin, Ilana B Witten, Karl Deisseroth,
and Patricia H Janak. A causal link between prediction errors, dopamine neurons and
learning. Nature neuroscience, 16(7):966–973, 2013.

[88] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep net-
works. In International conference on machine learning, pages 3319–3328. PMLR,
2017.

[89] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1–9, 2015.

[90] Jan Theeuwes. Top–down and bottom–up control of visual selection. Acta psychologica,
135(2):77–99, 2010.

BIBLIOGRAPHY 105

[91] Yonglong Tian. Github repository issues · hobbitlong/supcontrast.

[92] Joaquin Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

[93] Roby Velez and Jeff Clune. Diffusion-based neuromodulation can eliminate catastrophic
forgetting in simple neural networks. PloS one, 12(11):e0187736, 2017.

[94] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37–57, 1985.

[95] Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a
few examples: A survey on few-shot learning. ACM computing surveys (csur), 53(3):1–
34, 2020.

[96] Michael L Waskom. Seaborn: statistical data visualization. Journal of Open Source
Software, 6(60):3021, 2021.

[97] Guang Yang, Feng Pan, and Wen-Biao Gan. Stably maintained dendritic spines are
associated with lifelong memories. Nature, 462(7275):920–924, 2009.

[98] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synap-
tic intelligence. In International Conference on Machine Learning, pages 3987–3995.
PMLR, 2017.

[99] Jianming Zhang, Sarah Adel Bargal, Zhe Lin, Jonathan Brandt, Xiaohui Shen, and Stan
Sclaroff. Top-down neural attention by excitation backprop. International Journal of
Computer Vision, 126(10):1084–1102, 2018.

[100] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on
Knowledge and Data Engineering, 2021.

[101] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object
detectors emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

[102] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu,
Hui Xiong, and Qing He. A comprehensive survey on transfer learning. Proceedings of
the IEEE, 109(1):43–76, 2020.

[103] W Zinke, MJ Roberts, K Guo, JS McDonald, R Robertson, and A Thiele. Cholin-
ergic modulation of response properties and orientation tuning of neurons in primary
visual cortex of anaesthetized marmoset monkeys. European Journal of Neuroscience,
24(1):314–328, 2006.

Curriculum Vitae

Name: Rouzbeh Meshkinnejad

Post-Secondary 2013 - 2017
Allameh Helli High School
Tehran, Iran

Education and 2017 - 2021
B.Sc. Computer Engineering, Sharif University of Technology
Tehran, Iran

Degrees: 2021 - current
M.Sc. Computer Science, University of Western Ontario
London, ON

Honours and 2021
Vector Scholarship Recipient

Awards: Gold Division in USA Computing Olympiad
2017 - current
Member of National Iranian Elites Foundation

Related Work Teaching Assistant
C Programming (1 term)
AI (3 terms)
Probability and Statistics (1 term)

Experience: 2022 - current
Data Scientist at ALS Goldspot Discoveries
2021 - current
Graduate Fellow at University of Western Ontario

Publications:

106

BIBLIOGRAPHY 107

Mei, J., Meshkinnejad, R., & Mohsenzadeh, Y. Effects of Neuromodulation-
Inspired Mechanisms on the Performance of Deep Neural Networks in a Spa-
tial Learning Task.

iScience 2023

Shamsipour, P., Kourkounakis, T., Aghaee, A., Meshkinnejad, R., Zaveri,
M., & Hood, S. (2022). Beyond Stationary Simulation; Modern Approaches
to Stochastic Modelling. arXiv preprint arXiv:2208.02875.

Under Review 2022

Meshkinnejad, R., Karimi, A., & Soleymani Baghshah, M., DoubleA: Flex-
ible and Controllable Embedding Augmentation for Large PreTrained Lan-
guage Models

Unpublished 2020

	Look-Ahead Selective Plasticity for Continual Learning
	Recommended Citation

	tmp.1677276130.pdf.7bfcW

