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Abstract 

Combining multiple data types can help researchers gain deeper insight into the 

subject of the study compared to analyzing only one dataset in many cases. Biological 

researchers can also benefit from these methods of integration. For instance, GWAS 

data that gives information about variations in the DNA cannot provide us with much 

information about the specific biological components that are significant in the trait of 

interest. However, when combined with sequencing data such as chromatin 

accessibility data or gene expression data, they can help us find the significant 

biological elements in the trait of interest. In this study, I perform multiple statistical 

and machine learning-based integration methods on GWAS and sequencing data and 

find the relevant tissues and cell types in schizophrenia and specific regulatory 

elements affected by this complex mental disease. 

 

 

 

 

Keywords: schizophrenia, scRNA-seq, scATAC-seq, GWAS, data integration, 
supervised learning, machine learning, data science 
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Summary for Lay Audience 

 
As the technology progresses, new datasets are generated at a faster speed constantly 

in all of the fields. Although each of these datasets gives researchers further 

information about the subject of their studies, when combined together they may give 

them insights that would have been missed without the integration of multiple 

datasets. Data integration methods try to develop ways to leverage fusing datasets 

together to get a better insight into their subject of interest. 

Biological studies can benefit from data integration too. In this thesis, I apply three 

data integration methods to multiple biological datasets in order to obtain a deeper 

understanding of a complex mental disease called Schizophrenia.  

Some biological data like data from variations in the DNA sequences cannot give 

much information about the functional elements that play a role in the disease of 

interest like schizophrenia. However, when combined with other biological data types 

like datasets that get generated by mapping small parts of DNA to the whole DNA 

sequence (sequencing data), they enable us to find the specific biological components 

important in schizophrenia. 

I apply the integration methods to mouse and human datasets to find the cell types that 

are important in schizophrenia, as well as biological components affected by this 

disease. Finally, I propose suggestions to help researchers develop further integration 

frameworks in the future. 
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Chapter 1 

Introduction 

1.1 Field Domain and Background 

Schizophrenia is a complex disorder that affects around 24 million people in the 

world. This disease is recognizable by its mental symptoms, such as delusions, 

hallucinations, cognitive dysfunction, and disorganized speech or behavior. The origin 

and biological mechanisms of schizophrenia are not still fully uncovered, and 

researchers believe that multiple factors such as genetic, epigenetic, and 

environmental factors play an important role in it1. In recent years, there has been an 

interest in uncovering the underlying mechanisms of schizophrenia by using the 

integration of multiple data types, such as genetic, epigenetic, and gene expression 

data. By integrating these data types, a more comprehensive understanding of the 

disease can be obtained. 

 

1.2 Current Knowledge and Remaining Gap 

Numerous Genome-Wide Association Studies (GWAS) have been performed on 

schizophrenia, identifying multiple genetic variants significantly associated with the 

disorder2. However, GWAS data alone cannot provide information about the specific 

biological components or underlying mechanisms of schizophrenia. Therefore, 

integrating GWAS data with other biological data types, such as chromatin 

accessibility and gene expression data, is essential to gain a comprehensive 
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understanding of the disease. Using these integration methods, multiple tissues, cell 

types and biological elements like genes and transcription factors have been 

associated with schizophrenia. 

 

Despite recent advancements in data integration pipelines for identifying biological 

mechanisms in complex diseases like schizophrenia, there remains a need to analyze 

new datasets as they become available, and to develop novel pipelines for uncovering 

new candidate elements that may play a crucial role in the disease. The current state 

of knowledge emphasizes the importance of integrating multiple data types to uncover 

the underlying biological mechanisms of schizophrenia. However, there is still a 

significant gap in understanding how to develop and apply effective computational 

methods for integrating these diverse data types to achieve this goal. 

 

1.3 My Approach 

In this study, I aim to address this gap by developing and applying data science 

approaches to integrate multiple data types effectively and understand the biological 

mechanisms of schizophrenia. My approach includes the following key steps: 

 

1- Applying previously developed data integration methods to integrate GWAS 

data with chromatin accessibility and gene expression data. I use both mice 

and human data to prioritize cell types and predict biological elements relevant 

to schizophrenia. 

2- Developing a new integration method to find schizophrenia-relevant genes, 

using a deep learning approach. 
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3- Providing a data integration approach that can be applied to a wide range of 

subjects that leverage computational methods, including big data applications, 

sensor imaging, biology, and others. 

 

1.4 Results of This Study 

Through the application of these approaches, I have achieved the following results: 

The prioritization of cell types that are likely to be relevant to schizophrenia, 

providing valuable insights into the disease's cellular context. 

The identification of specific biological elements, such as regulatory sites, genes, and 

transcription factors, that are relevant to schizophrenia, furthering the understanding 

of the disorder's molecular mechanisms. 

The development of a versatile data integration approach that can be applied to other 

scientific fields that require computational methods, broadening the potential impact 

of this work beyond schizophrenia research. 

 

1.5 Contents of This Thesis 

The remainder of this thesis is organized as follows: 

In Chapter 2, I provide the necessary background to understand the main content of 

this study. In Chapter 3, I explain the data integration approaches and pipelines used 

in this thesis, the challenges typically faced in data integration methods, and how I 

propose to address them. Chapter 4 will explain the methods used in this study and is 

focused on a data integration approach used to prioritize cell types likely to be 

relevant to schizophrenia and two other data integration pipelines that can be used to 

identify specific elements relevant to schizophrenia, such as regulatory sites, genes, 
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and transcription factors. The first pipeline is a general pipeline that was originally 

developed by one of my colleagues in Shooshtari Lab (Mr. Nader Hosseiny Naghavi) 

and can be applied to several common complex traits. For this thesis, I have used and 

slightly modified it to integrate the datasets relevant to schizophrenia. The other data 

integration pipeline is developed by myself and finds the differentially expressed 

genes based on the schizophrenia-affected peaks with the help of a deep-learning 

model called BABEL3. Chapter 5 is focused on explaining the results of the pipelines 

described in chapter 4 and a discussion regarding those results. Finally, in Chapter 6, I 

provide a summary and conclusion of this study and discuss future works. 
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Chapter 2 

Literature Review 

New advancements in biotechnologies have enabled us to have access to various types 

of biological data. As technologies improve, we become more and more equipped 

with important biological information with higher resolutions and better accuracies. 

Although our technologies and data qualities have advanced rapidly, a single data type 

is usually not sufficient to capture all the information that exist complex biological 

mechanisms, such as those related to cancer4 or early-stage developments in 

mammals5. Therefore, combining multiple data types - that each provides information 

on a specific aspect of a mechanism - is now considered a crucial step toward 

understanding of complex biological mechanisms. Most relevant to my study, 

integrating multiple data types can be used to provide a comprehensive insight into 

the mechanisms related to gene regulations in schizophrenia, and can help us identify 

the genes and the regulatory elements relevant to the disease. 

As different large-scale data types get generated, we need to develop effective 

computational methods to analyze and integrate them. Handling such large-scale 

datasets and the process of their integration require high-performance computational 

resources. The large datasets that are being generated require storage, cleaning and 

computational power to get processed. If these tasks would not be performed 

effectively, they can put a huge burden on computational resources and may waste 

huge amounts of time and money. Therefore, the issue of developing efficient 

methods for handling new modalities should be addressed thoroughly 6,7,8,9.  
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In this chapter, I provide an explanation of the computational, statistical, and 

biological concepts used in my study that are crucial for understanding the other 

chapters of my thesis. Here, I first provide a brief background on schizophrenia, 

followed by describing the data types that I use in my study, including data from 

genome-wide association studies (GWAS), bulk and single-cell chromatin 

accessibility data, and single-cell transcriptomic data. Then I provide a review of 

existing methods for the integration of GWAS and sequencing data, followed by 

methods of integration of two different modalities of sequencing data. I finish this 

chapter by describing a machine learning model that I use to infer one sequencing 

data type from another data type. 

2.1 Schizophrenia 

Schizophrenia is a mental illness recognizable by its mental related symptoms. The 

most common symptoms include delusions and hallucinations. These symptoms are 

the common symptoms that cause the patient to visit a doctor about their condition 

and are considered positive symptoms. However, there are also negative symptoms 

associated with Schizophrenia such as lack of motivation, social withdrawal, 

problems in memory, and speed of processing. Currently, American Psychiatric 

Association’s Diagnostic and Statistical Manual of Mental Disorders Fifth Edition 

(DSM-5) criteria for schizophrenia1  consists of having two or more of the following 

symptoms for at least one month and one of them has to be one of the first three 

symptoms: delusions, hallucinations, disorganized speech, grossly disorganized or 

catatonic behaviour, and negative symptoms, such as diminished emotional 

expression. 

The disease usually occurs in early adulthood and decreases life expectancy. It also 

increases the risk of suicide in one's lifetime. Alongside its mental difficulties, 
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schizophrenia costs substantially for the patients and the health system. Although the 

probability of occurrence of schizophrenia in a lifetime is one percent, it has been 

estimated that the disease costs about 150 billion dollars a year for US citizens. In 

Canada, according to the data gathered in 2016-2017, one out of hundred of 

Canadians were diagnosed with schizophrenia10. Also, Goeree et al. concluded that 

schizophrenia costed around 2.02 billion dollars in 2004 for direct healthcare and not-

healthcare costs in Canada11. 

It is already known that both genetic and environmental factors contribute to the risk 

of developing schizophrenia. A heritability of around 80% is estimated by using twin 

and other studies1. 

Recent advancements in genome-wide sequencing technologies and genetic 

association studies have made it possible to generate genetic data that can be explored 

to better understand the genetic causes of schizophrenia. In particular, genome-wide 

association studies (GWAS) have been successful in identifying hundreds of loci 

associated with schizophrenia.1 

Many tissues and broad cell types have been identified as relevant to schizophrenia. 

For instance, the prefrontal cortex, which is involved in functions such as decision-

making and attention, has been linked to schizophrenia and the cognitive issues 

associated with the disorder12. Also, hippocampus, which is important for learning 

and memory functions and has been associated with schizophrenia and the memory 

problems experienced by schizophrenia patients13. The thalamus is involved in the 

integration and processing of sensory and motor information in the brain. 

Abnormalities in its structure have been observed in schizophrenia, which could 

contribute to disruptions in information processing in schizophrenia patients14. Other 

tissues, such as the striatum15, cerebellum16, etc., have also been linked to 
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schizophrenia. It is important to search for new candidates or confirm previous results 

to have a more comprehensive view of this complex disorder. 

 

In addition to tissues and broad cell types, multiple central nervous system cell types 

have been associated with schizophrenia. Excitatory neurons are important in 

neuronal connection, and abnormalities in their functions have been observed in 

schizophrenia patients17. Inhibitory neurons have also been linked to schizophrenia. 

These neurons play an important role in modulating neural activity, and their 

dysregulation has been reported in schizophrenia18. Oligodendrocytes are another 

example of affected cell types in schizophrenia. They are important in the 

transmission of signals in the brain, and altered expression of oligodendrocyte-related 

genes has been reported in schizophrenia19. Other cell types, such as microglia20 and 

astrocytes21, have also been reported to be relevant to schizophrenia. As new datasets 

are generated regularly, it is important to analyze them to either confirm previous 

results of cell types relevant to schizophrenia or propose new candidates. 

Several genetic factors and biological mechanisms play an important role in 

schizophrenia. Genes contribute to biological mechanisms by affecting the level of 

protein generation. Multiple genes have previously been found to be affected in 

schizophrenia. For instance, DISC1 is considered relevant to schizophrenia22 because 

it is involved in neuronal migration and neurodevelopment, and changes in the 

expression of this gene can affect the development of the brain, further contributing to 

schizophrenia. 

In another study, the C4 gene has been identified as contributing to schizophrenia23. 

Overexpression of this gene has been linked to synaptic pruning in the developmental 

stages of the brain, which can cause schizophrenia's neural symptoms. Dysregulation 
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of the dopamine system has also been associated with schizophrenia, and genetic 

variations in DRD2 have been linked to an increased risk of developing the disorder24, 

as DRD2 encodes a subtype of dopamine receptor. 

NRG125 is another gene which is considered to be relevant to schizophrenia because 

of its role in neurodevelopment. GABRB226 is also playing an important role in 

schizophrenia by being involved in the primary inhibitory system of the brain, and 

variations in this gene affects the risk of schizophrenia. Other genes, such as COMT27, 

DTNBP128, RGS429, GRM330, and several others, have also been linked to 

schizophrenia. Although multiple genes have been associated with schizophrenia, the 

exact gene regulatory mechanisms underlying this complex disorder are still 

unknown. Hence, there is a need to identify cell-type specific gene regulatory 

mechanisms in the disease. 

Genetic risk variants can change the binding probability of transcription factors, 

which can affect the level of expression of the genes that those transcription factors 

regulate. Many transcription factors have been identified as affected in schizophrenia 

in this manner. For instance, TCF4 has been linked to schizophrenia based on this 

criterion31. TCF4 is involved in neurodevelopment and neuronal differentiation, and 

genetic variations that change the binding affinity of this transcription factor can 

increase the risk of schizophrenia. NPAS3 is another transcription factor that regulates 

genes that are important in schizophrenia32. Risk genetic variants can also change the 

binding probability of this transcription factor and increase the chance of 

schizophrenia. MEF2 is a transcription factor that is a key activator in synapse 

development. It has been discovered that genetic variations can affect the binding 

affinity of this transcription factor and drive the risk of schizophrenia33. Other 

transcription factors, such as FOXP234, NEUROG135, CLOCK36, and many others, 
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have also been linked to schizophrenia. However, they cannot capture the full picture 

of schizophrenia, and the experiments needed for them are costly. 

2.2 Description of Data Types 

2.2.1 Genome-Wide Association Studies (GWAS) Data 

Single nucleotide polymorphism (SNP) is a genetic variation and happens by 

substitution of one nucleotide in the genome. This substitution can cause changes in 

biological mechanisms and play an important role in developing diseases in the 

organism37. In GWAS, millions of genetic variants are examined to find out which 

ones are significantly associated with a trait of interest 38. The bigger the sample size 

of a GWAS study, the higher statistical power to find the variants (i.e. SNPs) 

associated with a disease. Although GWAS alone cannot fully uncover the biological 

mechanisms of a disease, GWAS data can be integrated with other data types to reveal 

the biological mechanism of the disease. 

 

A Manhattan plot showing the significance of associations of the SNPs tested in the 

Ripke et al. study is shown in figure 2.1. In the X axis chromosome numbers are 

written and in the Y axis minus log10 of p-values calculated for the SNPs in the study 

are shown. When this value is higher than a threshold for a SNP, it is considered as a 

significantly associated SNP with the trait. The trait of interest in Ripke et al.39 study 

is schizophrenia and is one of the three GWAS data that I used in this study. They 

found 128 SNPs that can pass the threshold (the straight line in figure 2.1) in their 

study. 
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Figure 2.1: The Manhattan plot used in the Ripke et al.39 GWAS study to show the 
SNPs in a chromosome number vs -log10(p-value of association significance). The 
SNPs that pass the threshold line are considered as significantly associated with 
schizophrenia 

 

GWAS data can be obtained by performing case-control studies where cases are the 

samples that have the trait of interest in them, and controls are the samples that do not 

have the trait in them. Then, researchers can compare the genomes between these two 

groups to find the SNPs that probably contribute to the trait of interest. The result of 

such a GWAS study are SNPs that are significantly associated with the desired trait. 

The schizophrenia Working Group of the Psychiatric Genomics Consortium generated 

one of the largest GWAS studies in 201439. The authors of this study used 113,075 

controls and 36,989 schizophrenia cases and performed a case-control study which 

resulted in identifying 83 novel loci that were associated with schizophrenia. 

In another study, Li et al. tested 36180 samples and found 30 novel schizophrenia loci 

in 201740. 

Another widely-used schizophrenia GWAS dataset has been generated in 2018 by 

Pardinas et al where they found 50 novel schizophrenia-associated loci41. 
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In a recent large-scale genome-wide association study (GWAS) conducted in 2022, 

researchers investigated the genetic basis of schizophrenia42. The study comprised a 

two-stage analysis that included up to 76,755 individuals with schizophrenia and 

243,649 control individuals. The authors identified 287 distinct genomic loci 

associated with schizophrenia, with associations concentrated in genes expressed in 

excitatory and inhibitory neurons of the central nervous system. At the time I began 

this study, the specific GWAS dataset was not yet available. Consequently, I utilized 

other widely used schizophrenia GWAS datasets that were accessible at that time. 

Future work on this study could involve applying the pipelines proposed in this thesis 

to the new GWAS dataset and comparing the results with those presented in this 

thesis. 

2.2.2 Open Chromatin Data 

According to Fang et al.43, the active cis-regulatory elements on the genome can be 

identified with hypersensitivity to nucleases or transposases. This has been the 

foundation behind the development of sequencing technologies such as Assay for 

Transposase Accessible Chromatin (ATAC-seq)44 and DNase-I Hypersensitive Sites 

Sequencing45. Chromatin is a level of packaging in the eukaryotes including human’s 

genome. This packaging levels exists so the genome can get folded and fit inside the 

nucleus. Chromatin is consisted of another packaging level called nucleosome. Some 

parts of chromatin are left open during the packaging. Macromolecules can attach to 

them and interact with the DNA46,47. These open chromatin sites are cell type specific 

and open chromatin sites of one cell type is different from the other ones. There are 

multiple sequencing technologies that are able to identify open chromatin sites and 

generate datasets based on these sites. DNase-seq45 and ATAC-seq44 are two of the 

standard technologies that are able to generate such data. 
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2.2.3 DNase-I Hypersensitive Sequencing Data 

DNase-I Hypersensitive sequencing is a technology that can be used to identify 

regions of open chromatin for various cell types45. DNase I hypersensitive sites 

(DHSs) are the regions of the genome that show hypersensitivity by the DNase-I 

enzyme. They were first introduced by Wu et al.48 Basically, the more open the 

chromatin region is, the more it is sensitive to this enzyme. This phenomenon has led 

scientists to further conclusions, such as the regions that have active genes are usually 

more open and are more sensitive to this enzyme. More specifically, these studies 

suggest that the regions with active genes are 100 times more sensitive to the DNase-I 

enzyme compared to the genomic regions that do not contain active genes48,49. Also, it 

is well-known that the transcription factors (TFs) that bind to the genome cover the 

open genomic region and will reduce the sensitivity to the DNase-I enzyme. TFs are 

the proteins that bind to DNA at the open chromatin site, and interplay with DNA to 

regulate the target genes. When a TF binds to DNA, it covers a portion of the open 

chromatin region. Therefore, that part of the DNA becomes less sensitive to DNase-I 

enzyme, as it is protected against digestion by the enzyme as a result of being covered 

by the TF.50,51 It should be noted that this only happens when a TF binds to the 

genome at open chromatin sites. When the TF is not bound to DNA, the DHS region 

is still open and sensitive to the enzyme, as the TF is not there to cover it50. 

DNase-I sequencing is based on next-generation sequencing technology. Here I 

briefly describe DNase-I sequencing pipeline. In the first step of this method, nuclei 

get separated from the cells to ensure that the enzyme reaches the DNA. Multiple 

factors can play a role in effectiveness of DNase-I sequencing, including the efficacy 

of the DNase-I enzyme, and how cells respond to the enzyme. Hence, in order to 

reach the optimal activity level of the enzyme, researchers should adjust the amount 
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of enzyme and the number of cells in each experiment. After digestion of the DNA, 

the remaining parts will go through the process of purification. Shorter fragments, 

usually between 50 to 100 base pairs are more likely to be enriched of transcription 

factor binding sites because they cannot cover around the nucleosome, as the number 

of nucleotide pairs needed to cover the whole nucleosome is 147 base pairs52. After 

these steps, the reads are sequenced, and then short reads are aligned to the genome. 

The regions of the genome that are enriched for the number of reads mapped to them 

are considered as peaks of DHS. Peak calling algorithms are used to identify DHS 

peaks53. 

Using DNase-I sequencing, researchers have been able to generate a large amount of 

open chromatin data and analyze them to build large-scale DHS datasets, including 

those available through ENCODE Project54, NHGRI Genomics of Gene Regulation  

(GGR)45, Blueprint Epigenome55, and NIH Roadmap Epigenomics Mapping 

Consortium  (REMC)56. Shooshtari Lab has generated a comprehensive databases of 

open chromatin sites called OCHROdb by integrating > 800 DHS samples collected 

through above large-scale projects57,58. OCHROdb contains 1455046 DHS peaks 

across 194 cell types, tissues and cell lines. In my study, I have integrated open 

chromatin data from OCHROdb database and genetics association data from 

schizophrenia GWAS in order to identify schizophrenia-relevant cell types. 

2.2.4 ATAC Sequencing Data 

Assay of Transposase Accessible Chromatin sequencing or ATAC-seq is one of the 

widely-used technologies for identifying open chromatin sites. In this technology Tn5 

transposase is used to identify chromatin regions that are open. The output of such 

technology can be a matrix regarding bulk data which shows the average accessibility 

within cell types in each open chromatin peak(regions that have a high number of 
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DNA reads mapped to them) or a cell by peak count matrix showing accessibility of 

each cell in each identified open chromatin peak59. 

2.2.5 Single Cell Open Chromatin Data 

Methods of measuring chromatin accessibility (e.g. Dnase-I-seq and ATAC-seq) were 

originally developed for generating bulk open chromatin data, where tens of 

thousands of cells were sequenced together and therefore, the output of sequencing 

provide an average chromatin accessibility across those cells. However, bulk 

sequencing does not provide a resolution at the single-cell level. This motivated the 

generation of newer technologies, which measure the chromatin accessibility at the 

single-cell level. Single-cell ATAC-seq (scATAC-seq) is the most commonly used 

technique for measuring single-cell chromatin accessibility. 

In summary, ATAC-seq benefits from using a genetically engineered hyperactive Tn5 

transposase that is able to cut the open chromatin regions of DNA. During this process 

replicated of these regions are also created and in the end multiple reads of these sites 

will be ready to get sequenced. Then, sequencing technologies use these reads and 

map them to the genome which helps them to identify the locations of these reads in 

the genome. Further, these locations are considered as open chromatin regions59.  

2.3 Methods of Integration of Sequencing Data and GWAS 

Data 

GWAS data gives us information about the associated genomic variants to the trait. 

However, they cannot help us identify significant cell types and specific regulatory 

elements of the trait of interest alone. By integrating GWAS with sequencing data 

researchers are able to get such insights into their traits of interest. 



 

 16 

Multiple studies have used the integration of GWAS and sequencing data to identify 

cell types relevant to complex traits including schizophrenia60–62. These include 

linkage disequilibrium score regression (LDSC)63, genome-based restricted maximum 

likelihood (GREML)64, LDAK65, and regression-based polygenic model (RolyPoly)66.  

According to Zhu et al.67, the methods of GWAS and sequencing data integration can 

be divided into four major categories.  

The first category of methods use cell-type specific annotations that come from 

epigenetic or expression data. They estimate the contribution of the annotations to 

SNP heritability of the GWAS. A group of these methods use epigenetic annotations 

including LDSC68  or Scalable Multiple Annotation integration for trait-Relevant 

Tissue identification and usage (SMART)69. In both methods, genomic regions 

identified by as sequencing experiment (such as ATAC-seq, DNase-I hypersensitive 

sites or chromatin marks) are combined with GWAS data to prioritize related cell 

types. 

Other methods of this category use gene expression (e.g. RNA-seq) data and integrate 

them with GWAS. Examples of such methods include LDSC-SEG70 and RolyPoly66. 

LDSC-SEG uses bulk gene expression data, while RolyPoly can be run on single-cell 

data. 

The second category of methods combine GWAS data with expression quantitative 

trait loci (eQTL) data to prioritize cell types relevant to a trait of interest. eQTL is the 

study of relating variants to gene expression. Methods in this category include 

normalized tissue causality score (NTCS)71 and eQTLEnrich72. 

The third category of methods integrate genetically regulated expression levels data 

(Grex) with GWAS data to find cell types relevant to a trait. Impact of genetically 
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regulated expression (IGREX)73 and RhoGE74 are two well-known examples of such 

methods. 

The fourth group of methods are the ones that use networks between genes inferred 

from their expression and integrate them with GWAS data to find the cell types 

relevant to a trait. Composite likelihood-based covariance regression network model 

(CoCoNet)75 falls into this category. 

In my study, I used LDSC (from category 1) for the integration of GWAS and ATAC-

seq data, and LDSC-SEG (from category 2) for the integration of GWAS and RNA-

seq data. Hence, I provide a detailed description of the methods in categories 1 and 2. 

2.3.1 LDSC 

Linkage disequilibrium score regression (LDSC) is a method of integration of 

genomic annotations and GWAS data. It will calculate the enrichment of genomic 

variants or SNPs presented in the trait’s GWAS data on the regulatory regions of 

multiple cell types and prioritizes the significant cell types based on the enrichment 

level. Genomic regions can be epigenetic sites, open chromatin sites, histone marks, 

or other regions. In this study, I have been interested in open chromatin sites. 

Understanding the statistical model behind LDSC helps us to find out what do the 

LDSC outputs mean, so we can interpret the results better. Considering the peaks of 

open chromatin regions, LDSC divides the SNPs into C categories, where C is the 

number of cell types. It then overlaps open chromatin sites of each cell type with the 

SNPs and identifies SNPs that are present in each cell type based on this criterion. In 

the next step, LDSC uses marginal χ! statistic for association of SNPs with the trait, r2 

statistic between the SNPs of the GWAS data, and GWAS study sample size that all 

can be obtained from GWAS data to estimate GWAS trait heritability by a regression 

model for each cell type. Furthermore, LDSC will calculate a z-score and a p-value 
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for trait heritability estimation models in each cell type. In this manner, we are able to 

find out which cell types have lower p-value and whether or not they can pass a 

threshold that one can choose for significance in his study. 

2.3.2 RolyPoly 

RolyPoly integrated GWAS and RNA-seq data to prioritize trait-relevant cell types. 

The main difference between RolyPoly and LDSC-SEG which is the version of LDSC 

that uses gene expression as an input instead of chromatin accessibility data is that 

LDSC-SEG focuses on SNPs but RolyPoly takes advantage of focusing on genes. 

Authors of RolyPoly developed their method based on this hypothesis that in the 

causal cell types, SNPs that have higher effect sizes in GWAS data should be close to 

the genes that are highly expressed in those cell types. Hence, in this way they are 

able to detect the significant cell types by analyzing the enrichment of SNPs in the 

highly expressed genes of each cell type and comparing them with each other. Since 

RolyPoly does not have a version that can integrate GWAS data with epigenetic data, 

I did not use it for this study. 

2.3.3 SMART 

Scalable Multiple Annotation integration for trait-Relevant Tissue identification 

(SMART) is another method of data integration that benefits from using multiple 

annotations for SNPs. In the first step, phenotype (i.e. disease) is related to the 

genotype using a multiple linear regression model: 

𝑦 = 𝑋𝛽 + 𝜖, 𝜖" ∼ 𝑁(0, 𝜎#!) 

where y denotes the vector of phenotype for samples; X is the matrix of genotypes 

consisting of n samples versus m SNPs; Beta is a vector indicating the effect sizes of 

the SNPs and ϵ is a symbol of residual errors. Each 𝜖 is assumed to have a normal 
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distribution with the mean (0) and variance (σ#!) shown in the formula. In the next 

step, the effect sizes are related to the annotations. To do so, a vector of annotation 

values for each of the SNPs is considered. This is shown by Aj = (1, Cj1, Cj2, …, Cjc)T  . 

Each value of this vector can be discrete or continuous depending on the annotation 

type. 

Here, the effect sizes are assumed to have a normal distribution with mean of zero and 

a variance that is a function of annotations:  

𝛽 ∼ 𝑁10, 𝜎$!/𝑚4,   𝜎$! = 𝐴$𝛼∗  

Here we have 𝛼∗ = 1&!& 4	and a is a vector with the size of c (number of annotations) 

indicating annotation coefficients. SMART uses generalized estimating equation 

(GEE) to estimate a and its variance. By calculating these terms, one can calculate the 

multivariate Wald statistic  which is used to measure the relevance between 

a cell type and the trait of interest. 

 

2.3.4 LDSC: A Method of Choice for My Study 

As LDSC is one of the most commonly-used standard approaches for prioritizing cell 

types by integrating GWAS and sequencing data, and since it can integrate GWAS 

data with both ATAC-seq and RNA-seq data, I choose to use LDSC in the GWAS 

integration with the sequencing data. Previously, researchers have used LDSC in 

various studies. This includes, the integration of Bulk DHS data and GWAS in 

Meuleman et. al76 to partition heritability estimates according to the sets of genome-

wide annotations consisting the DHS data. In addition, LDSC was previously used for 

the integration of single-cell ATAC-seq and GWAS to link brain cell types to a group 

of brain-related traits such as Schizophrenia 77 . As a part of this study, I confirm their 
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findings by using the same GWAS data that they used along with another GWAS data 

and confirmed the consistency of the results across multiple GWAS datasets. In 

addition to epigenomic data (e.g. scATAC-seq), the single-cell RNA-seq data have 

also been integrated with GWAS data using LDSC approach 70. The aforementioned 

studies focused on human data; however, LDSC is general and can be applied to other 

organisms. Hook et. al62 applied LDSC to integrate 64 GWAS data with multiple 

mouse datasets.  

In my study, I implemented a pipeline that uses LDSC to integrate three 

Schizophrenia GWAS datasets with (a) bulk chromatin accessibility from human data, 

(b) scATAC-seq from both mice and human data, and (c) scRNA-seq from mice data. 

This resulted in the identification of multiple cell types in humans and mice that are 

likely to be relevant to Schizophrenia. My results not only confirmed the findings 

from previous studies, but also expanded on them and identified schizophrenia-

relevant cell types at different time points of brain development. My study has 

therefore, contributed to the better understanding of molecular and cellular 

mechanisms of schizophrenia. 

 

2.4 Converting Genome Annotations 

For the integration of multiple data types, such as integration of GWAS data and 

sequencing data or the integration of sequencing data from two different modalities, I 

should make sure that the genome build of the two datasets are the same; otherwise, 

the analysis and results will be incorrect. However, it may happen that the GWAS 

data is generated based on a certain human genome build, while the sequencing data 

(e.g. scATAC-seq) is aligned to a different human genome build. Even sometimes, we 

have the sequencing data from a different organisms, such as mouse. To address this 



 

 21 

problem, we need to convert the genome annotation from one reference genome build 

to another one.  

The two most recent human genome builds are GRCh37 and GRCh38. Although 

GRCh38 is more recent, some of the GWAS or sequencing datasets may have been 

published based on GRCh37 coordinates. The same thing applies to mouse data where 

mm9 and mm10 are the most recent annotations. The position of genes and SNPs are 

changed from one annotation to another one and clearly, this has to be addressed 

when integrating data coming from multiple modalities. 

One standard method that has been developed to convert annotations to each other is 

called LiftOver78. LiftOver has both an online tool and a command line-based 

application and one can use them based on their needs. LiftOver has the ability to 

convert annotations from one organism to another one, and also across different 

genome builds of the same organism. LiftOver gets a set of genomic regions in 

standard BED format79 as the input, and outputs two files. The first file contains a set 

of new genomic ranges that have been successfully converted from the previous 

coordinates based on a threshold. The threshold shows what percentage of the base 

pairs should be successfully converted in order to consider the conversion successful. 

The second output file contains a set of genomic ranges that failed to convert. As the 

conversion of annotations between two different organisms is generally more 

complicated, it is recommended to use a less stringent threshold for conversion 

between different organisms compared to the one between two different genome 

builds of the same organism. For instance, when converting from human GRCh37 to 

human GRCh38, it is recommended to use a threshold of 0.95, while a threshold of 

0.7 is recommended for converting from mouse mm10 to human GRCh38. 
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2.5 Methods of Integration of Two Different Modalities of 

Sequencing Data 

According to Argelaguet et al.80 in order to integrate different two modalities of 

single-cell sequencing data, we first need to define anchors or links between the data 

types. To do so, we should explore the similarities between the data types and choose 

them wisely in order to proceed with the data integration. Depending on how we 

choose the anchors we can have three different types of integration. 

Type 1 -  Vertical or Cell-Based: This method of integration can be used when the 

technology that we use generates multiple modalities from the same sets of cells. For 

example, some of the recent technologies are profiling ATAC-seq and RNA-seq from 

the same sets of cells where we can have both epigenetic and transcriptomic 

information simultaneously. Example of such technologies include droplet-based 

single-nucleus chromatin accessibility and mRNA expression sequencing (SNARE-

seq)81 and simultaneous high-throughput ATAC and RNA expression with sequencing 

(SHARE-seq)82, which measures transcriptome and chromatin accessibility data 

simultaneously, and CITE-Seq83, which measures epitome and transcriptome data 

simultaneously. In these examples, the modalities share the same cells, so it is 

plausible to use the cells as anchors. 

Type 2 - Horizontal or Genomic Features-Based: In some cases, we have independent 

datasets that have been generated from the same modality. For example, we can have 

several samples from single-cell RNA-seq and we want to integrate them in order to 

have a wider perspective and more reliable analysis by increasing the sample size. In 

these cases, genomic features (such as genes in the case of  RNA-seq), can be used as 

anchors. 
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Type 3 - Diagonal Integration: In some cases, both genomic features and sets of cells 

are different between the datasets. In this case we cannot simply choose the anchors 

from obvious choices such as cells, shared genes or shared open chromatin regions. In 

contrast, we have to use more complex methods to find a suitable anchor. For 

instance, we may have several datasets from the same tissue, and have both scRNA-

seq and scATAC-seq modalities available for them. However, the cells between these 

two types are different in the scRNA and scATAC datasets. In this scenario, other 

methods such as Seurat anchoring 84 can be used to find the links between the two 

datasets. 

In addition to the above categorization of data integration methods, data integration 

methods can be categorized in a different way which is based on the stage where data 

integration happens85. 

The early integration technique in data analysis involves the transformation of 

multiple datasets into a single table or representation, which serves as input for 

computational algorithms. This method allows for consideration of any type of 

dependence between the features. To achieve this, automatic feature learning 

techniques like dimensionality reduction and representation learning are employed to 

reduce the high-dimensional datasets into a low-dimensional vector space that is 

subsequently combined through simple aggregation techniques. Despite its ease of 

application, this technique may be limited by the heterogeneity of features across 

datasets, and proper normalization must be implemented to prevent bias. 

The second category of methods are those methods that use intermediate data 

integration. When employing intermediate integration in data analysis, a model is 

utilized to learn a joint representation of multiple datasets, such as deep neural 

networks. This approach relies on algorithms that explicitly address the multiplicity of 
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datasets and fuse them through inference of a joint model. Unlike early integration, an 

intermediate data integration method preserves the structure of data and only merges 

them during the analysis stage. It does not combine input data or develop a separate 

model for each dataset. While this approach can lead to superior performance, it often 

requires development of a new algorithm and cannot be utilized with simple software 

tools. 

Late integration involves building a model independently for each dataset or data 

type. These models are then combined by training a second-level model that either 

utilizes the predictions of the first-level models as features or employs a predictor that 

takes a majority vote or combines prediction weights of the first-level models. This 

technique allows for the incorporation of diverse models and algorithms for each 

dataset but may be limited by the need for comparable prediction outputs and the 

potential loss of information through model combination. 

2.6 Converting Sequencing Data Modalities Using Machine 

Learning 

Biological experiments, and in particular, generation of multiple data types (e.g. 

epigenomic and transcriptomic), can be quite time-consuming and costly. Hence, 

researchers have attempted to develop computational methods that can infer one data 

type from another one, whenever possible. Computational methods and predictive 

models can help scientists to reach the results much faster and avoid the expenses that 

a biological experiment needs. Most relevant to my study, I would hugely benefit 

from both epigenomic (i.e. scATAC-seq) and transcriptomic (i.e. scRNA-seq) data for 

individual cells, as each of these data types can give insights into a particular aspect of 

a biological process related to schizophrenia. In the past years, several single-cell 
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sequencing datasets have been generated and have become available publicly. 

However, majority of these datasets have only one data modality for the individual 

cells. Since the experiments were completed already, it is not feasible and/or cost 

effective to obtain multiple data modalities for those cells using multi-omics 

sequencing technologies. Alternatively, we can develop and apply computational 

methods that can infer transcriptomic data (i.e. scRNA-seq) from epigenomic data 

(i.e. scATAC-seq), and vice versa. 

Machine learning based methods and specially supervised learning approaches 

provide appropriate means to infer one data modality from another one using single-

cells. These methods use multiple modality biological datasets (i.e. multi-omics data) 

to train a machine learning model for predicting one data modality from another one. 

Then they use that model to predict the missing modality in their test dataset. BABEL 

3 is recently developed deep-learning method that can convert scRNA-seq to 

scATAC-seq data (and vice versa) using a pre-trained model based on multi-omics 

datasets. Here, I briefly explain how BABEL works. 

The first step in the BABEL pipeline is to pre-process the input data. For 

transcriptome data, the cells with a very low or very high number of expressed genes 

are filtered out. Also, the genes that are on sex chromosomes are filtered. Then the 

dataset is normalized, and the outliers are removed. For the ATAC-seq data, the data 

is considered as binary data, because a peak is either accessible or not accessible for 

each cell. The peaks with too many cells or a few number of accessible cells are 

removed. Also, the peaks on sex chromosome are removed, and finally, the 

overlapping peaks are merged to obtain the pre-processed data. 

In some cases, when one wants to test a new data on the pre-trained model to predict 

the transcriptome data from epigenetic data, the peaks in the new data may not match 
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the peaks that were used to train the model. To address this, the test data peaks are 

mapped to the training data peaks. To achieve this, the test data peaks are renamed to 

the training data peak names that they overlap with. After this step, the trained model 

is used to predict transcriptomic data from ATAC-seq.    

The authors of BABEL split their data into three parts of training, validation, and 

testing using a cluster-based approach and used cross-validation to improve the 

generalization of their model. 

One of the most important parts of the BABEL pipeline is its architecture. BABEL 

benefits from a certain type of neural networks called autoencoder. They modified this 

popular architecture so it can serve the purpose of their study, which is converting one 

biological data modality into another one. In this architecture, first layers map the 

input data into a shared latent space that summarizes the features in the data. The set 

of these layers is called Encoder. The second set of layers maps the latent shared 

space into output. This set is called a Decoder. Here, the goal is to minimize a specific 

loss function which is defined as the difference between the output and the input. 

More specifically, the autoencoder tries to learn the best features of the data and 

summarize them in the shared latent space and use this space to predict the new data. 

Because BABEL converts ATAC-seq and RNA-seq to each other, it uses two 

encoders (one for each modality). It also uses wo decoders one for each data modality. 

The RNA decoder outputs the mean and dispersion for each gene, while the ATAC 

decoder outputs a value between 0 and 1. These values can be binarized by assigning 

1 to the values that are greater than the average of both rows and columns in the cell-

by-peak matrix. The RNA encoder projects the input to a 64-dimension space and 

then to a 16-dimension latent space. In all of these layers, the Parametric rectified 

linear unit (PReLU) activation function is used86. The decoder is the mirror of the 
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encoder and projects the 16-dimension latent space into a 64-dimension space and 

then projects it to a vector with the size of the RNA input. In the decoder part, similar 

to the encoder all the layers use PReLU as the activation function. 

In the ATAC encoder and decoder, BABEL uses an intrachromosomal approach. For 

the encoder, first each chromosome’s peaks are mapped into a 32-dimensional space 

and then to a 16-dimensional space. Then the 16-dimensional spaces from all the 

chromosomes are concatenated. For example, for humans it would be 22 

chromosomes and the result of the concatenation will be a 22x16 dimensional space. 

Afterward, they will project this space into a shared 16-dimensional latent space. The 

decoder is the encoder’s mirror and projects the 16-dimensional space into a (16 times 

the number of chromosomes) dimensional space. It is then split into 22 parts 

responsible for each chromosome. For each part, it is projected into a 32-dimensional 

space and after that to a space with the dimension equal to the number of peaks for 

each chromosome. In all these layers, they use the PReLU activation function. Figure 

2.2 summarizes BABEL’s architecture. In chapter 4 of this thesis, I used BABEL to 

convert open chromatin data into transcriptomic data and used this information to find 

the differentially expressed genes based on schizophrenia affected chromatin 

accessibility peaks. 
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Figure 2.2: BABEL’s encoder-decoder architecture. The RNA encoder maps the 
input RNA data into the shared latent space, and RNA decoder maps the shared latent 
space into the RNA output. Also, the ATAC encoder maps the input ATAC data into 
the shared latent space, and ATAC decoder maps the shared latent space into the 
ATAC output. 
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Chapter 3 

Using Computational Methods to 

Address Challenges of Data Integration 

In this chapter, I explain some of the key challenges and concepts in data integration 

and demonstrate how I addressed them in my study. The related concepts include: 

● Challenges in data collection and consistency between the pipelines’ inputs 

● Selecting the suitable programming language and packages to handle the 

large-scale datasets used in biological data integration methods 

● Inferring missing modalities of datasets required by the integration methods  

● Multiple testing in the integrative data analysis and adjusting for the 

significance threshold 

3.1 Data Integration  

In the scope of my work, data integration means combining different data modalities 

or different instances of one data modality to get more insight into the problem that I 

am investigating. Biology is not the only area that requires data integration. In fact, 

data integration has several areas of application, and a standard way of handling this 

important problem is by developing and applying appropriate computational methods. 

For instance, in multitemporal data analysis methods, data integration is used to 

combine images generated by the sensors. In this case, computational methods are 

used to find the differences between the images in various time points87. 



 

 30 

In many cases, the datasets that are used as input for data integration methods are big 

(or are numerous and summing together will become large) and the developing 

integration method should be optimized to handle the required memory and space. 

Examples of such cases happens in big data88, and biological applications89. Handling 

the space required by the datasets and running the method efficiently in terms of 

memory and time needs a good understanding of the computational methods. Hence, 

computer scientists try to facilitate this process by their knowledge of computer 

systems and programming languages. 

As biotechnologies advance, new types of data get generated. Each of these new data 

types provide researchers with new important information related to the biology of 

complex systems. However, if we want to obtain a deeper understanding of biological 

concepts, we should be able to integrate these different data types. This is because 

each data type gives us information from a new perspective, and if we do not 

investigate them, we will miss a huge amount of information that we could have 

obtained otherwise. 

Machine learning and deep learning methods provide valuable means to help 

researchers with the integration of multiple data types. For instance, to predict 

whether two proteins interact with each other or not, Zhang et al. developed an 

ensemble deep neural network (EnsDNN)90 that leverages data integration by using 

multiple representation of protein sequences. EnsDNN trains multiple networks based 

on 3 different representations and aggregates the results of these DNNs at last. The 

integration method used in this study helps them to build a protein-protein interaction 

prediction pipeline that beats many of state-of-the-art models.   

Another example is related to the prediction of transcription factor binding sites. 

Transcription factors are proteins that bind to the DNA and affect the expression of 
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their target genes. Finding the binding sites of transcription factors is important if we 

want to understand mechanisms of gene regulation. One of the widely-used 

technologies to identify transcription factor binding sites is chromatin 

immunoprecipitation sequencing (CHIP-seq)91. However, CHIP-seq experiments 

require specific antibodies for each transcription factor, that are not necessarily 

available for some of the transcription factors. Also, ChIP-seq can be time-consuming 

and costly depending on the number of samples to be generated. Computational 

methods including machine learning approaches can help researchers to predict 

transcription factors binding sites without requiring them to generate new biological 

samples. These computational methods benefit from the integration of multiple data 

types to predict the binding sites of transcription factors. For example, 

CENTIPEDE92is a data integration model that integrates transcription factors position 

weight matrices (PWM) that are publicly available with the existing open chromatin 

datasets to predict transcription factor binding sites in specific cell types. Another 

method is Hmm-based identification of transcription factor footprints (HINT)93, 

which uses a combination of DNase-I hypersensitivity and histone modifications to 

predict transcription factor binding sites.85 Hence, it is clear that statistical and 

computation methods play an important role in the integration of biological data. 

Specifically, machine learning methods have started to get a lot of interest in this area, 

and new methods of data integration based on machine learning are being developed. 

My study has hugely benefited from computational and statistical methods of data 

integration in biology. In Chapter 4, I use a regression-based method called Linkage 

Disequilibrium Score (LDSC) estimation to integrate GWAS data with the human and 

mouse single-cell ATAC-seq data and mouse RNA-seq data. In the second part of 

Chapter 4, I apply a pipeline based on a package which has been recently developed 
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in Shooshtari Lab. This method integrates GWAS data, single-cell ATAC-seq and 

transcription factor datasets to identify the cell-type specific regulatory sites, 

transcription factors and genes underlying common complex diseases. In my study I 

apply this pipeline to the data from schizophrenia to identify cell-type specific 

mechanisms of this disease. Finally, in the third part of Chapter 4, I have developed a 

new approach that builds on the results obtained from the second method of 

integration (the package that was developed by my colleague) and identifies the 

differentially expressed genes based on the accessibility patterns of the risk-

medicating single-cell ATAC-seq peaks. In this method, I employ a deep learning-

based model called BABEL3 to convert the mouse and human scATAC-seq data to 

scRNA-seq data. Then I use the predicted scRNA-seq data to identify the genes that 

are differentially expressed between two groups of cells with accessible and not 

accessible peaks from scATAC-seq data. 

In conclusion, I have used the power of statistical and machine learning based 

integration methods to develop effective data analysis pipelines and used these 

methods to study biological mechanisms of schizophrenia. 

3.2 Data Collection 

The first step in applying a standard data integration pipeline is to generate or find 

appropriate datasets to use as inputs of the pipeline.  

For the data about variants in the genome, I used three schizophrenia GWAS data. 

GWAS data generated by Ripke et al.39, Pardinas et al.41, and Li et al.40 are three of 

the widely-used schizophrenia GWAS data that I chose as an input for the data 

integration methods performed in this study. 

For the bulk chromatin accessibility data, I used OCHROdb. OCHROdb is one of the 

largest DHS dataset available publicly, and it is consisting of multiple processed and 
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cleansed datasets from consortium-based projects including ENCODE project54, NIH 

roadmap epigenomics mapping consortium (REMC)56, Blueprint epigenome55, and 

NHGRI Genomics of Gene Regulation (GGR)45.  

To proceed with my study using single-cell sequencing data, I used scATAC-

explorer94 , which is a database and search tool developed in Shooshtari Lab 

(https://github.com/shooshtarilab/scATAC.Explorer). scATAC-explorer contains > 30 

scATAC-seq datasets from multiple organisms (e.g. mice and humans), and are 

collected from public resources and analysed in a consistent format. ). ScATAC-

explorer offers a metadata table and search tool that can be used to select the datasets 

of interest matching different criteria. Since my study is focused on schizophrenia, I 

selected brain-related datasets from scATAC-explorer both for mice and humans. 

The mouse ATAC-seq data generated by Di bella et al. that was obtained from 

scATAC-explorer, also provided scRNA-seq data for 11 embryonic days and 2 

postnatal days. I used this scRNA-seq data as an input of one of my integration 

methods in this study that is described in chapter 4. 

3.3 Data Consistency 

In order to generate reliable results, the datasets used as the inputs of a pipelines 

should be compatible with the requirement of the pipeline, and different data inputs 

should be consistent. For instance, LDSC pipeline requires multiple inputs including 

GWAS summary statistics, annotations from ATAC-seq data, and the baseline model 

that LDSC compares the ATAC-seq annotation data against. These data types should 

all be compatible with each other in terms of the type of organism and the annotation 

version. For instance, when we want to run the pipeline for an ATAC-seq data from 

mouse and a GWAS data from human, then we should convert the genome annotation 

of one data type, such that both datasets follow the same genome reference. In order 
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to do this, I have written a script that uses a package called LiftOver78 to convert the 

mouse’s ATAC-seq annotation from mouse mm10 coordinates to human GRChg8 

reference. Also, I choose the other inputs of LDSC in a way that all of them have the 

same annotation version and organism type. 

This method of handling consistency between data types has been applied to all the 

three annotation methods that I used in this study.  

The data consistency is not only important for the genomic data; and in fact, in other 

applications of data integration, researchers should pay attention to the data 

consistency across multiple data types. For instance, in the multitemporal data 

analysis, one should make sure that the locations of sensor are fixed, and the qualities 

of the images are the same. Otherwise, the images are not comparable because they 

are showing different locations or are capturing details that another image cannot 

capture due to its different quality. 

3.4 Choosing Suitable Programming Languages and 

Packages 

A lot of biological datasets contain huge amounts of information, and when analyzed 

by a computational integration method, their large size may cause memory and time 

problems. For instance, in my study, the human ATAC-seq datasets that I used in all 

three pipelines are about 3 Gigabytes in a sparse format. A sparse format is a way of 

saving massive datasets that benefits from saving only the non-zero entries of the 

matrices. In this way, the size of datasets will drastically reduce, and downstream 

analysis will be less memory-consuming. One challenge, however, is that when 

integrating these datasets during developing the integration pipeline, I should try to 

keep the sparse format in all the calculations to keep the memory efficient, while 
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some of the computational packages require the users to provide the input data in a 

dense matrix format. In the case of huge datasets, such as mine, this is not simply 

possible, because keeping the data in a dense format will need huge computational 

and memory resources. Hence, I tried to handle this challenge by developing new 

and/or modifying the existing integration methods that use the benefits of sparse data 

to make the computations more efficient. 

Another challenge that should be addressed in data integration is to use suitable 

programming languages and libraries for the method of choice. For biological data, 

mostly R used for the data analysis, because of its unique features that facilitate 

working with matrices, its visualization capacities, and the availability of many 

statistical packages in R. However, R can be quite slow for some computations and 

renders data slower compared to Python. For instance, using a loop is much slower in 

R compared to several other programming languages, such as Python or C++. To 

address this, I used both Python and R for my analysis to benefit from R’s useful 

libraries and the time efficiency of Python. For instance, in my third method of 

integration, I leveraged Python and specifically NumPy library to read BABEL’s 

results and calculate the Mann-Whitney test to find the differentially expressed genes 

for each peak-cell type tuple, while I used R for creating the list of accessible cells for 

each peak in each cell type, and also for the visualization purposes.  

3.5 Inferring Missing Data for Data Integration 

Data integration methods require multiple data types as their inputs; however, there 

could be cases that we do not have access to all the modalities of one dataset. For 

instance, for the third method of data integration, I did not have the RNA-seq data for 

the cells of ATAC-seq datasets. This was because the in one of the studies that I 

obtain the datasets from, the authors did not conduct a multi-omics experiment, but 
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instead they had generated the ATAC-seq data only. This situation can happen in 

other data integration studies. In my study, I addressed this challenge by taking 

advantage of the computational capability of a deep learning model called BABEL3, 

which is able to infer one data modality from another one. BABLE uses an auto-

encoder-based model to generate pseudo transcriptomic data (i.e. scRNA-seq) from 

scATAC-seq for each cell in the datasets. Further details of this model and how I used 

it for my data integration pipeline are explained in Chapter 4. This is an example of 

how machine learning-based models can help researchers to infer the missing data in 

their data integration methods. Similar machine-learning based approaches could be 

applied to other data integration applications. 

 

3.6 Adjusting for Multiple Testing 

While using a data integration method, we may have to perform multiple statistical 

testing to find significant results. However, as the number of statistical tests increases, 

the possibility of finding false positives will increase too95. This means that there is a 

higher possibility that some of the significant results are considered significant by a 

random chance. To address this issue, several statistical methods are frequently used 

by researchers, two of which are Bonferroni correction96 and False Discovery Rate 

(FDR) correction97. For Bonferroni correction, a more stringent significance threshold 

is obtained by dividing the original threshold of 0.05 or 0.01 by the number of 

statistical tests performed. In comparison, FDR correction methods such as 

Benjamini-Hochberg try to avoid false positives by decreasing the false discovery rate 

using the Benjamini-Hochberg critical value. Generally, FDR is a less stringent 

method compared to Bonferroni98, yet some may decide to use either of these two 

approaches based on the characteristics of their study. 
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In various parts of my study, I performed multiple statistical tests, and therefore, I had 

to adjust the p values for multiple testing at different stages of my integration 

pipelines accordingly. As an example, when I applied (LDSC) methods to multiple 

cell types in Chapter 4, I had to adjust the p values for the number of cell types tested 

for significance. Also, in my second method of integration, I adjusted the p-values for 

the number of genes and transcription factors in the study. Another example is the 

third method of integration, where I adjusted for the p-values with respect to the 

number of peaks x number of cell types x number of genes for each genomic locus. 

Correcting the p-values in my study is just an example of how adjusting for multiple 

testing can be crucial in various data analyses, and particularly, for the integration of 

multiple data types. 
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Chapter 4 

Methods 

4.1 Introduction 

Although it is known that brain cells are related to schizophrenia, the brain cell types 

are very heterogenous and the exact subsets of which that are relevant to 

schizophrenia are still unknown. By finding the relevant cell types in schizophrenia, 

one can open the road for other studies to focus on the significant cell types to find 

other biological components related to this disease. Data integration methods can help 

us find the specific cell types that are significant in schizophrenia. 

Using gene expression (like RNA-seq) or open chromatin (like ATAC-seq) data 

alongside GWAS data is considered an effective integration method for investigating 

the underlying mechanisms of the traits including schizophrenia.  

RNA-seq is a standard method of measuring gene expression levels and the methods 

that leverage the integration of RNA-seq and GWAS use the location of differentially 

expressed genes in each cell type to measure the relevancy of the cell type to the trait. 

On the other hand, ATAC-seq identifies open chromatin regions, which are the sites 

in DNA strands that are accessible, and macromolecules can attach to them. Methods 

that benefit from integrating ATAC-seq and GWAS together use the location of these 

open chromatin sites and the location of the variants in the GWAS data to gain better 

insights about the phenotype of interest.  
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Linkage disequilibrium score regression (LDSC)68,70 is one of the standard integration 

methods that benefits from combining biology information coming from variants of a 

trait and transcriptome or epigenetic data. LDSC can be used to integrate GWAS with 

bulk or single cell ATAC-seq or RNA-seq. To conduct a comprehensive study, I 

decided to apply LDSC to all of these data types. First, I used LDSC to determine 

Schizophrenia-relevant tissues and cell types based on a bulk epigenetic dataset. 

Afterward, I moved to single cell resolution and applied LDSC on 2 human single cell 

ATAC-seq datasets and 1 mouse single cell ATAC-seq dataset in three different 

timepoints of embryonic stages. Also, to fully use the capacities of LDSC I applied it 

on mouse scRNA-Seq data in 11 different stages of mouse brain development and two 

after birth time-points. Schizophrenia’s causes and effects on the genomic level can be 

different in various organisms. Hence, for capturing the whole story behind this 

disease I should investigate it in other organisms too, specially, the organisms like 

mice that researchers use for running experiments and testing possible drugs on them 

before human trial. Therefore, I tried to apply LDSC on mouse data too and compared 

the results of applying LDSC on humans and mice.  

The first section is focused on identifying cell types relevant to schizophrenia. In the 

next section, I am expanding on this work to identify the specific elements that may 

play a role in driving risk to disease in a cell-type specific manner.  There are three 

main elements or factors that I am investigating in this part: (1) risk-mediating 

regulatory sites; (2) disease-relevant transcription factors; and (3) disease genes. 

Identifying these elements helps us better understand molecular and cellular 

mechanisms underlying gene dysregulation in schizophrenia in a cell-type specific 

manner. 
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Regulatory sites of the genome are the DNA sequences that can affect the expression 

of the genes. These sites include multiple types of genomic sequences such as 

promoters and enhancers. Enhancers are the genomic sequences that when 

transcription factors bind to them, can enhance the expression of the genes that they 

are linked to99. On the other hand, promoters are the sequences that define the location 

where the transcription of a gene will start100. Identifying these regulatory sites are 

crucial for understanding the biological mechanisms underlying complex diseases 

such as schizophrenia  

Genes are sequences located on DNA that contribute to functions or phenotypes in 

cells. Genes are categorized into two broad categories of coding and non-coding. The 

coding genes are responsible for the transcription of proteins and non-coding genes 

are the ones with no direct transcription of proteins assigned to them. 

Transcription factors are proteins that bind to DNA and interplay with DNA to 

regulate the transcription of genes.101 

My colleague at Shooshtrai Lab, Mr. Nader Hosseini Naghavi, has recently developed 

a data integration pipeline that combines GWAS summary statistics data with single-

cell ATAC-seq data to identify specific regulatory sites, genes and transcription 

factors that drive risk to common complex diseases. This computational pipeline is 

general and can be applied to multiple diseases. In my study, I used this pipeline and 

modified it to be applicable to schizophrenia. In addition, I implemented a new 

approach based on BABEL deep learning model to first infer RNA-seq of individual 

cells from scATAC-seq data, and then predict the target genes of risk-mediating 

regulatory sites through correlating peak accessibilities and expression of genes across 

several cells. Finally, I compared the results of disease gene predications obtained 
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from these two independent approaches, and provided a discussion of their similarities 

and differences. 

 

4.2 Datasets 

In my data integration approach, I have integrated GWAS and chromatin accessibility 

data. Here, I have used three GWAS datasets of schizophrenia, one bulk and three 

single-cell chromatin accessibility data. In addition, I integrated the GWAS data with 

single-cell RNA-seq data. A description of the datasets is provided here. 

 

Schizophrenia GWAS Data: 

GWAS studies identify and associate traits (e.g. diseases) to variations (e.g. SNPs) in 

the genome. In these studies, millions of SNPs are tested in thousands of samples to 

identify the variants that are associated with the trait of interest. The samples of these 

studies are usually consisted of two groups of positive and negative based on 

existence of the trait in them. Researchers use the differences between these two 

groups to identify the GWAS SNPs. 

Multiple GWAS studies have been applied to schizophrenia, and they have been 

successful in identifying hundreds of genomic loci associated to this disease2. In this 

study, I use three largest GWAS data that are available publicly for schizophrenia 

(Table 4.1). Two of these datasets are collected from individuals with European 

ancestry39,41 and one from individuals with Chinese ancestry40.  
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Paper Number of Samples Ancestry 

Ripke et al(2014) 70100 European 

Li et al(2017) 36180 Chinese 

Pardinas et al(2018) 35802 European 

Table 4.1: Summary of GWAS data used in this study 

 

Bulk Chromatin Accessibility Data: 

I selected a bulk chromatin accessibility data that broadly scan over several human 

tissue and cell types and is not focused on the brain cells only. This is mostly because 

I first wanted to examine whether only brain related cells are significant, or rather I 

observe significant associations for non-brain related cells too. Shooshtari Lab has 

previously built a bulk chromatin accessibility data called OCHROdb 

(https://dhs.ccm.sickkids.ca/)57,58. OCHROdb is one of the largest bulk chromatin 

accessibility databases available publicly that contains a diverse range of cell types 

and tissues. Originally, 828 sequencing-based open chromatin samples generated by 

four international consortia (ENCODE, Roadmap, Blueprint, and NIH GGR) were 

integrated, and the samples were uniformly processed, and quality checked to ensure 

the open chromatin sites pass the replication test. OCHROdb database comprises of 

1,460,986 open chromatin peaks across 194 cell types, tissues and cell lines. 57 out of 

194 cell types/cell lines were not from normal, healthy cells, and therefore I excluded 

them from the analysis.  
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Single-Cell Chromatin Accessibility Data: 

For the scATAC-seq data, I chose three datasets; two of which are from human77,102 

and one from mouse103. I selected these datasets to cover a relatively wide range in 

terms of the brain development, including embryonic and adult human brains, as well 

as mouse embryonic brain at three different time points. 

Single-cell ATAC-seq Data from Human: 

In this study, I used two human scATAC-seq datasets. Corces dataset77 is obtained 

from adult human brains in 10 samples from the isocortex (n = 3), striatum (n = 3), 

hippocampus (n = 2) and substantia nigra (n = 2)  In the original study, the data was 

pre-processed to obtain a count matrix, containing  444,747 open chromatin sites (i.e. 

peaks) from 70631 cells.  After clustering and annotations,  6 cell types were 

identified. They include excitatory neurons, inhibitory neurons, microglia, 

oligodendrocytes, astrocytes and oligodendrocyte progenitor cells (OPCs). To identify 

the cell types, they used ArchR104 to generate gene activity matrix and used the 

following marker genes to assign cell type labels to cells. Microglia were detected 

based on accessibility near the IBA1, CD14, CD11C, PTGS1 and PTGS2 genes. 

Astrocytes were detected based on accessibility near the GFAP and FGFR3 genes. 

Excitatory neurons were detected based on accessibility near 

the SLC17A6and SLC17A7 genes. Inhibitory neurons were detected based on 

accessibility near the GAD2 and SLC32A1 genes. Oligodendrocytes were detected 

based on accessibility near the MAG and SOX10 genes. OPCs were detected based on 

accessibility near the PDGFRA gene 

The second dataset, Ziffra et. al.102 was obtained from embryonic human brain of six 

individuals that were generated from dorsolateral prefrontal cortex (PFC), primary 

visual cortex (V1), primary motor cortex (M1), primary somatosensory cortex, 
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dorsolateral parietal cortex, temporal cortex, insular cortex, and the medial ganglionic 

eminence (MGE) in gestation weeks 17, 18, 20, and 21. This data consisted of 

459,953 open chromatin peaks and 77354 cells. The data was processed to obtain 12 

cell types, including new-born excitatory neurons, radial glia (RGs), intermediate 

progenitor cells (IPCs), deep layer (cortical layers V–VI) excitatory neurons (dlENs), 

upper layer (cortical layers II–IV) excitatory neurons (ulENs), MGE-derived cortical 

interneurons (IN-MGE), CGE-derived cortical interneurons (IN-CGE), insular 

neurons, progenitors from the MGE, microglia, oligodendrocyte progenitor cells 

(OPCs), endothelial and mural cells. To find the cell type labels they first clustered 

their data using Leiden algorithm and then generated a gene activity matrix by 

aggregating the fragments from gene body and promoter regions. Then they used 

marker genes to assign cell types to the cells. All the scATAC-seq data were obtained 

from scATAC-explorer105 and cell type labels were downloaded from the links 

provided in the papers. Cell types of Corces were downloaded from supplementary 

data 2 of their paper and cell types of Ziffra were downloaded from 

https://cells.ucsc.edu/cortex-atac/genes/meta.tsv. 

Single-cell ATAC-seq Data from Mouse: 

Identifying the schizophrenia-relevant cell types in the mouse developing brain and 

comparing the results to the human developing brain can provide insights into the 

disease mechanisms. Here, I used one embryonic mouse scATAC-seq dataset that was 

generated from three time points (13.5, 15.5, 18.5) during the embryonic brain 

development 103. The number of cells from the embryonic days 13.5, 15.5, and 18.5 

were 12964, 16549, and 11088, respectively. Also, the number of open chromatin 

peaks for the embryonic days 13.5, 15.5, and 18.5 were 152179, 186038, and 147473, 

respectively. For each time point cortical tissue from 4 mice were pooled together to 



 

 45 

create the dataset of that time point. They found these cell types in the three 

timepoints: Interneurons, Cajal-Retzius Cells, Microglia, Endothelial Cells, 

Oligodendrocytes, Deep Layer Callosal Projection Neurons, Layer6b Neurons, Upper 

Layer Callosal Projection Neurons, Near Projecting, Subcerebral Projection Neurons, 

Corticothalamic Projection Neurons, Layer4 Neurons, Immature Neurons, Migrating 

Neurons, Intermediate Progenitors, Astrocytes, Apical Progenitors.  

Single-Cell Transcriptomic Data: 

From the aforementioned datasets, the transcriptomic data was available only for the 

mouse embryonic dataset103. The Bella et al. data contains transcriptomic data at the 

single-cell level (i.e. scRNA-seq) at 11 different embryonic days, including 10.5, 

11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5 , and two postnatal days including 1 and 

4. The number of cells vary across different time points and is 2989, 4221, 9348, 

8907, 5249, 11670, 5761, 9381, 20275, 13072, and 7174 respectively but the number 

of genes is 19712 across all of them.  Both scATAC-seq and scRNA-seq data are 

available only for the embryonic days 13.5, 15.5, and 18.5. The cell types detected in 

the transcriptomic data are Cycling Glial Cells, Pericytes, Vascular and 

Leptomeningeal Cells, Red Blood Cells, Interneurons, Cajal-Retzius Cells, Microglia, 

Endothelial Cells, Oligodendrocytes, Deep Layer Callosal Projection Neurons1, Deep 

Layer Callosal Projection Neurons2, Deep Layer Callosal Projection Neurons, 

Layer6bNeurons, Upper Layer Callosal Projection Neurons, Near Projecting, 

Subcerebral Projection Neurons, Corticothalamic Projection Neurons, Layer4 

Neurons, Immature Neurons, Migrating Neurons, Intermediate Progenitors, 

Ependymocytes, Astrocytes, Apical progenitors 
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4.3 Prioritizing Cell Types Using Linkage Disequilibrium 

Score (LDSC) Regression Analysis61 

The schizophrenia GWAS data can be integrated with chromatin accessibility and/or 

transcriptomic data to prioritize the disease-relevant cell types. However, there are a 

few outstanding complications with these associations that must be considered before 

moving forward with the data integration. Linkage disequilibrium (LD) is one of the 

major complications with downstream analysis using GWAS data 106. There is an 

existing correlation between alleles in the genome for many reasons, including allele 

proximity on the chromosome, mutation, genetic drift, and other confounding factors 

106. One of the main reasons is due to crossing over during meiosis. During this 

process, some regions of the genome are more likely to stay together than others. 

Therefore, for a sample disease phenotype, the causal variant may be present firmly in 

a large population. Still, it would be difficult to isolate and identify it as non-causal 

variants linked to the causal variant would also be simultaneously present in many 

positive cases and absent in many controls. In other words, non-causal SNPs in LD 

with a causal SNP will have inflated levels of association with a potential disease or 

the trait of interest. 

I used a tool called LDSC (version 1.0.1) to account for this complication, by 

distinguishing between inflated test statistics from LD and other confounding biases 

found in statistical genetics63,70. The LDSC utilizes a stratified LD score regression 

and estimates the variance explained by all the SNPs on a chromosome when testing 

the association of a particular SNP to a phenotype. LDSC analysis is specifically 

designed for finding out how partitioned heritability can be explained by the risk 

variants that are located in specific genomic regions, which in this case, refers to open 
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chromatin regions. It ultimately employs a powerful and accurate correction factor, 

refining association data to show a true, unconfounded polygenic signal. 

I integrated the GWAS of schizophrenia with the chromatin accessibility data (both 

bulk and single-cell) using LDSC-based partitioning heritability analysis, and 

identified specific cell types with the significant enrichment of schizophrenia-relevant 

variants (e.g., SNPs) on their chromatin accessibility sites. In addition, I integrated 

schizophrenia GWAS data with the scRNA-seq data from mouse103 to identify the 

schizophrenia-relevant. My core partitioning heritability analysis workflow can be 

summarized in the following steps and is also shown in Figure 4.1: 

• Step 1: Preparation of peak data from chromatin accessibility datasets, and 

gene expressions from scRNA-seq datasets  

• Step 2: LD score regression calculation 

• Step 3: GWAS integration  
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Figure 4.1: Partitioning heritability workflow. The workflow used in this study 
consists of four main sections each responsible for applying LDSC on a different data 
type including Bulk chromatin accessibility data (Figure 4.1A), scATAC-seq for 
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human data (Figure 4.1B), scATAC-seq for mouse data (Figure 4.1C), and scRNA-
seq for mouse data (Figure 4.1D) 

 

Step 1: Preparation of Peak Data from Chromatin Accessibility Datasets, and 

Gene Expressions from scRNA-seq Datasets 

In my study, I used chromatin accessibility datasets both at the bulk and single-cell 

level, and prepared their peaks (i.e., accessible chromatin sites) information across 

various cell types and tissues in the BED file format, which contains data on the start 

and end positions of open chromatin regions along with the chromosome number. 

Here further details of peak data preparation unique to each dataset are provided. 

Also, data pre-processing steps for the scRNA-seq data is explained. 

 

Preparation of Peak Data for Bulk Chromatin Accessibility Data 

For each of the 194 cell types, I prepared the peak files in the BED format. This 

contains data on the start and end positions of open chromatin sites along with the 

chromosome number. I   to each side of the peaks to accommodate for the flanking 

regions. Since both GWAS datasets and the bulk chromatin accessible data are in 

hg38 genome build, I did not need to lift the genome build. 

 

Preparation of Peak Data for Human scATAC-seq 

Similar to the bulk data I created BED files as an input for LDSC. For each peak, I 

calculated the percentage of cells in which the peak of interest was accessible, and 

removed the peaks with < 1% of cells being accessible in that site. Since both GWAS 

datasets and the bulk chromatin accessible data are in hg38 genome build, I did not 

need to lift the genome build. 
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Preparation of Peak Data for Mouse scATAC-seq 

The genome build of the mouse data is mm10. I first used LiftOver78 to lift the peaks 

of mouse scATAC-seq data from mm10 to hg38 build. I set the overlap parameter of 

LiftOver package as 0.7 as recommended by the package. I then removed the peaks 

with < 1% of cells that are accessible in that site.   

 

Preparation of Gene Expressions Data for Mouse scRNA-seq 

The data preparation step for scRNA-seq data is different from that of scATAC-seq 

data. I used a standard procedure for preparing scRNA-seq data for LDSC analysis70  I 

first identified the equivalent mouse genes in the set of human genes by using the 

gene sets of human and  mouse from Gencode107 and filtered the gene by cell matrix 

of the mouse data based on these new sets of genes. Then for each cell type I fit a 

linear model for each gene: expression = a*I + b where “I” denotes whether the cell’s 

cell type is the same as the cell type under investigation or not, expression is the 

expression level of each cell in the desired gene, ‘a’ is the slope of regression line, and 

‘b’ is the intercept of the regression line. ‘I’ and expression are available for each cell 

based on the transcriptomic data. However, ‘a’ and ‘b’ calculated from finding the 

regression line that minimizes the sum of squares error for all the entries in the 

problem and calculate t-statistic for each of these lines. T-statistic can be calculated 

by dividing ‘a’ by the standard error of the coefficient estimate. The top ten percent 

genes based on t-statistic were chosen for each cell type. Then I extracted the 

transcription start site location of these genes from GENECODE107 and added 100kbp 

on each side of those locations. I then combined all of these new locations with 

“reduce” function in R which resulted in a set of genomic locations for each cell type. 
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Reduce function merges two genomic regions by creating a new genomic region that 

has both of the previous genomic regions inside it. These genomic locations 

(chromosome number, start and end) were prepared in a BED format to be used for 

the LDSC analysis.  

 

Step 2: LD Score Regression Calculation 

The next step in the partitioned heritability workflow was to calculate the LD scores 

for each SNP found within the open chromatin regions. I first create “.bed” files 

(containing chromosome number, and start and end position of the peaks) for each 

cell type. Here I kept the peaks that were accessible in the cell type of interest. In 

another word, a peak was added to the bed file of a cell type if and only if it had a 

score greater than zero in the peak-by-cell type matrix. for each of the cell types, I 

then used the “.bed” file along with “.bim” PLINK files, containing information on 

known SNPs, to generate binary annotation files for each cell type and chromosomes 

1–22.  This 

was done through the “make_annot.py” script provided by the LDSC toolkit from the 

LDSC github page (https://github.com/bulik/ldsc). At this stage, for every cell type, 

SNPs that are found within the inputted open chromatin regions were listed in the 

binary annotation files as 1s and the ones that are absent, as 0s. Then the “ldsc.py” 

script from the LDSC github page was used to calculate the LD scores for each SNP 

found within the open chromatin regions. This required the input of the binary 

annotation files, as well as the “.bim” PLINK file. I used the HapMap3 SNP data as a 

checklist of qualifying SNPs to include in the LD calculation. The resulting output 

files contained LD score information for every qualifying SNP. Here I provide a 

detailed description of the aforementioned steps. 
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First, I created annotation files for each bed file by using make_annot.py script from 

the LDSC package. The parameters set to --bed-file $path_to_our_bedfiles --bimfile 

$path_to_PLINK_bimfiles —annot-file $path_to_annotation_output_folder. This 

generates files to indicate whether a SNP in human genome is within the range of 

selected peaks for each cell type or not. The output of this step is a set of annotation 

files. For each cell type 22 annotation files are generated, each of which corresponds 

to one chromosome. This provided a list of 0s for the SNPs that were not overlapping 

peaks and 1s for the SNPs that were overlapping peaks. I obtained “.bim”  PLINK 

files for hg38, which contained SNPs information for the human data with hg38 

genome build through the Broad Institute website at 

https://alkesgroup.broadinstitute.org/LDSCORE/. 

Second, I used the outputs of previous steps and calculated linkage disequilibrium (ld) 

scores using LDSC.py script from the LDSC package. The parameters were set to --l2 

--bfile $path_to_PLINK_files --ld-wind-cm 1 --annot 

$path_to_annotation_output_folder --thin-annot --out 

$path_to_annotation_output_folder --print-snps $path_to_HapMap3_SNPs. ld score 

is defined as the sum of adjusted r2 which is an approximately unbiased estimator of 

the squared Pearson correlation. Hence, the output of this step is LD score files which 

contain LD scores of SNPs which are present in each cell type and are filtered based 

on HapMap3108. 

Step 3: GWAS Integration 

The next step was the integration of the schizophrenia GWAS data with the chromatin 

accessibility data using the “ldsc.py” script from the LDSC github page 

(https://github.com/bulik/ldsc). I used the GWAS summary statistic files in 

conjunction with the generated LD files to create links between cell types and 
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schizophrenia SNPs using the LDSC toolkit.  Here I set the parameters to --h2-cts 

$path_to_GWAS --ref-ld-chr $path_to_baseline --out $path_to_output --ref-ld-chr-cts 

$path_to_ldct_file --w-ld-chr $path_to_weights. 

For each association between schizophrenia and cell types, a coefficient p-value was 

calculated, signifying the potential relevance of each cell type to the disease. Thus, a 

significant p-value represented a significant contribution of the open chromatin sites 

of a cell type to SNP heritability for the disease. To correct for multiple testing, a 

Bonferroni with a threshold of ≤ 0.05 was used to adjust the p-values within each cell 

type batch, that is, bulk, adult single-cell, and fetal single-cell109. 

This pipeline is an example of diagonal data integration because there are no shared 

cells or features between the datasets that I am integrating. Also, this pipeline falls 

into the category of intermediate integration because it does not involve combining 

input data (as in early integration) or building separate models for each dataset and 

combining their predictions (as in late integration). Instead, it explicitly addresses the 

multiplicity of datasets (schizophrenia GWAS and sequencing data) and fuses them 

through the inference of a joint model which is LDSC. 

4.4 Fine-mapping Schizophrenia SNPs 

GWAS summary statistics data for each disease provides a set of genotyped single 

nucleotide polymorphisms (SNPs), their P value of associations to the disease and 

their effect sizes. This may contain millions of SNPs. In order to identify a set of 

SNPs that are highly likely to be casual, fine-mapping approaches are used like 

Probabilistic Annotation INTegratOR (PAINTOR)110, FGWAS111, and  Probabilistic 

Identification of Causal SNPs (PICS)112  . In my study, I used a commonly used fine-

mapping approach called Fgwas 111. Fgwas takes a set of GWAS SNPs alongside 

other characteristics of the GWAS as its input. These include number of samples, Z-
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score of each SNP (that can be calculated from p-values presented in the GWAS 

dataset), chromosome number, the position of the SNP on the chromosome, and minor 

allele frequency of the SNPs. Then Fgwas calculates the prior probability of 

association for each of the SNPs. For each association locus (i.e. a region in the 

genome with high association to the disease), I chose the smallest set of SNPs that 

together explain 0.95 of posterior probability of associations. This forms the 95% 

credible interval (CI) SNPs for each locus. This means that the causal SNP in the 

association locus is 95% likely to be found in CI SNPs set, if it is genotyped in the 

experiment. 

4.5 Effect of Disease risk SNPs on Open Chromatin Sites 

I investigate the effects of SNPs on open chromatin sites using the pipeline developed 

by my colleague Mr. Nader Hosseini Naghavi. This pipeline113 investigates the effects 

of SNPs on bindings of transcription factors on open chromatin sites, and outputs the 

disease-relevant peaks, transcription factors, and genes for each cell type in the 

datasets.  

This pipeline consists of three main steps: 

Step 1: In the first step of the pipeline a set of SNPs that are highly likely to mediate 

risk to a complex disease are identified. First, I obtain a list of most associated SNPs 

(called lead SNPs) from a GWAS study (here schizophrenia GWAS39). Then I define 

a window of 2 Mbp centred around each of the most associated SNPs, and call it a 

disease locus. This forms multiple disease-associated loci, each of which have a 

length of 2 Mbp. Then GWAS summary statistics data along with information about 

each disease locus are fed to Fgwas fine-mapping algorithm114. For each locus, Fgwas 

outputs the smallest set of SNPs that together explain 95% or more of posterior 

probability of associations (PPAs). These are called credible interval (CI) SNPs. The 
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CI SNPs are a set of SNPs that are likely to contain the causal SNPs with a posterior 

probability of 95% or higher, if the causal SNP is genotyped or at least imputed. From 

the list of CI-SNPs, I select those SNPs that are highly likely to change the binding 

affinity of transcription factors. I therefore, use a package called atSNP115 that uses 

JASPAR116 database to identify a subset of CI-SNPs that can significantly change the 

binding affinity of transcription factors’ motifs presented in this database. Fine-

mapping by Fgwas followed by SNPs prioritization using atSNP method results in a 

set of SNPs that are highly likely to be functional and drive risk to the disease. 

Step 2: In the second step of the pipeline, the risk-mediating peaks and transcription 

factors in each locus are identified. Here, the prioritized SNPs from Step 1 are 

overlapped with the peaks from scATAC-seq data to identify the cell type specific 

peaks that are likely to drive risk to the disease. For each cell cluster of scATAC-seq 

data (representing a cell type population), only those peaks that were accessible in at 

least 10% of cells of that cluster were kept. Risk-mediating transcription factors 

overlap accessible peaks of scATAC-seq data. Since atSNP identifies both (a) SNPs 

that are likely to change the binding affinity of a transcription factor; and (b) the 

affected transcription factors, simultaneously, the Step 2 of the pipeline outputs a list 

of disease-relevant transcription factors and their motif sites in each cell type (i.e. cell 

cluster of scATAC-seq data). 

Step 3: In the third step of the pipeline a set of genes that are likely to be dysregulated 

in the disease will be identified. I use Cicero117 to assess co-accessibility patterns 

between the risk-medicating peaks (obtained from Step 2) and peaks overlapping 

promoters of all genes in the 2Mbp locus. Here I define a gene promoter as a region 

located up to 2,000 bp upstream of the gene transcription start site (TSS). The genes 
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that their promoters are significantly co-accessible with the risk-mediating peaks 

(obtained in Step 2) are considered target genes. 

I modified this pipeline as needed. For instance, the original pipeline was developed 

for the human ATAC-seq data. However, for using mouse ATAC-seq data, I 

converted the coordinates of mouse data to human coordinates so it can be used as an 

input for the pipeline. In another modification, I added a section to filter the indels 

from schizophrenia GWAS, so that it contains SNPs only. These modifications are 

mostly related to changing some parts of the package as described above, so that it 

can be compatible with the datasets that I have used in my study. 

This pipeline is an example of diagonal data integration because there are no shared 

cells or features between the datasets that I am integrating. The pipeline consists of 

multiple steps and involves the utilization of various computational tools and 

algorithms to analyze the datasets. It does not combine the input data into a single 

table or representation (early integration), nor does it build separate models for each 

dataset and combine their predictions (late integration). Hence, it is an example of 

intermediate data integration. 

4.6 Differentially Expressed Genes 

Last step of the pipeline described in the previous section predicts disease relevant 

genes through assessing co-accessibility patterns between risk-mediating peaks and 

promoters of genes. In my study, I have developed a new pipeline for predicting 

disease genes. This analysis pipeline investigates the effects of risk-mediating peaks 

on the expression of genes in each disease locus.  It is critical to acknowledge that the 

pipeline utilized in this section is a pilot study and a work in progress, and its 

limitations will be discussed later in this section. The primary objective of this 

pipeline is to identify a collection of genes that are impacted in individuals with 
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schizophrenia. Nevertheless, it is noteworthy that the detection of genes that are 

affected in schizophrenia is more reliant on the results of the previous pipeline. Here, 

I explain how this new pipeline works. 

First, similar to the previous pipeline, I define disease association loci as 1 Mbp 

regions centred around lead SNPs of schizophrenia GWAS39. Then, for each disease 

locus, I identify all the genes that their promoters overlap the 1 Mbp locus. A 

promoter region is also defined as a 2,000 base pairs upstream of the gene 

transcription start sites (TSS). I considered all pairs of genes and risk-mediating peaks 

in the locus, where risk-mediating peaks are defined by Steps 1 and 2 of the previous 

pipeline, and genes are those that their promoters overlap the disease locus. 

I then performed the following process for each cluster of cells, representing a cell 

type in the scATAC-seq data. For each risk-mediating peak, I divided cells of a cell 

type into two groups: (1) those cells in which the peak is accessible (called them 

"open" group); and (2) those cells in which the peak is not accessible (called them 

"close" group). For each peak-gene pair, I used Mann Whitney Wilcoxon test to 

assess the correlation between the accessibility patterns (open vs. close) of the peaks 

and the expression of the gene across matched cells of the cell type. This test 

identifies those pairs of risk-mediating peaks and gene that are significantly correlated 

(adjusted p value < 0.1); and hence, the gene is likely to be regulated by the risk-

mediating peak. 

Here, I faced a computational challenge. In order to assess the correlations between 

the accessibility patterns (open vs. close) of the peaks and the expression of the gene 

across matched cells, I needed to have gene expression data across cells (i.e. scRNA-

seq). However, scRNA-seq data was not available for the datasets of this study. 

Therefore, I employed a deep-learning model called BABEL3  to infer gene 
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expression data of individual cells from single-cell ATAC-seq data. BABEL gets a 

scATAC-seq data input in h5ad format and generates a sudo RNA-seq data for the 

same set of cells.  I used BABEL with its pre trained model, and applied it to all the 

scATAC-seq datasets. Once pseudo-RNA-seq data was generated for all individual 

cells of each scATAC-seq data, I assessed the correlations between the accessibility 

patterns (open vs. close) of the peaks and the expression of the gene across matched 

cells for each cell type as described above. This resulted in the predication of the 

genes likely to be regulated by each risk-mediating ATAC-seq peaks, along with the 

cell types in which the correlation was significant.  

Finally, I compared the genes predicated by the two approaches (i.e. co-accessibility 

patterns vs. direct ATAC-seq and RNA-seq correlations), and report those genes that 

are commonly detected by the two approaches and those that are unique to each 

approach. An illustration of this pipeline can be seen in figure 4.2. 

This pipeline is an example of vertical data integration because I use different 

modalities of data for the same set of cells in order to develop my pipeline. The 

pipeline does not combine the input data into a single table or representation, nor does 

it build separate models for each dataset and combine their predictions. Hence, this 

pipeline is an intermediate data integration pipeline. 
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Figure 2.2: An illustration of the third method of integration. Cells are divided into 
two groups of open and close based on their accessibility in each peak. Using 
BABEL’s output, gene expression of these two groups are compared using Mann-
Whitney test to determine which genes are expressed significantly between these two 
groups of cells. 
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Chapter 5 

Results & Discussion 

In this chapter I present the results and discussions of the three integration methods 
explained in this study including prioritizing tissues and cell types relevant to 
schizophrenia using GWAS enrichment (first method of integration), prioritizing 
genes and transcription factors relevant to schizophrenia using a method developed in 
our lab (second method of integration), and prioritizing genes relevant to 
schizophrenia using BABEL (third method of integration) 

5.1 Integrating GWAS data with bulk chromatin 

accessibility Data from Human 
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Figure 5.1: Bar plots of top 50 LDSC results for bulk chromatin accessibility data 
using three different GWAS data.including A.Ripke et al. GWAS, B.Pardinas et al. 
GWAS, and C. Li et al. GWAS. X axis shows the -log10(p-value) of significance of 
tissue/cell type in schizophrenia and Y axis shows the cell type/tissues. In all three 
analysis Only brain related cell type/tissues can pass the Bonferroni corrected 
threshold of 0.05 

 

I analyzed the whole OCHROdb dataset and tested all of the tissues for enrichment of 

the Schizophrenia GWAS data in all three GWAS data that I tested.  

Figure 5.1 shows that those tissues that pass the adjusted p value of 0.05 after 

Bonferroni correction for multiple testing are all from the central nervous system 

(CNS) and this is replicated using three GWAS datasets (Figure 5.1A, 5.1B, and 

5.1C). Particularly, in the GWAS with the highest number of samples (Ripke et al39), 

where I have the highest power to detect significant cells, I found out that superior 

temporal gyrus, middle frontal gyrus, inferior parietal cortex, caudate nucleus, 



 

 62 

putamen, and brain and spinal cord tissues are significant in terms of enrichment of 

schizophrenia risk variants on their open chromatin sites. Figure 5.1B and 5.1C show 

that the top cell types and tissues of two other GWAS datasets with smaller sample 

sizes are in the same order. In fact, the first seven most significant cell types and 

tissues are the top most significant cell types in all of the three GWAS datasets, and 

the only difference is in their level of significance (i.e., p values).  Also, using the 

Ripke et al GWAS data39, all of these seven cell types passed the Bonferroni corrected 

threshold of 0.05. In comparison, 6 and 5 cell types and tissues passed the threshold 

for Li et al GWAS data40, and Pardinas et al GWAS data41, respectively. Generally, 

these results are consistent with previous research in schizophrenia, where the brain 

and central nervous system tissues are shown to play an important role in developing 

risk to schizophrenia118. 

 

5.2 Integrating GWAS Data with Single-cell ATAC-seq Data 

from Human 

The OCHROdb database contain chromatin accessibility data for different brain 

regions, where thousands of cells were sequenced. As described before, through the 

integration of GWAS data and bulk chromatin accessibility data, I have been able to 

identify brain-related tissues from different part of the brain and spinal cord that could 

be relevant to schizophrenia. The limitation here is that bulk chromatin accessibility 

data does not have a resolution at the single-cell level, and therefore, I may miss 

detecting specific cell types of brain that could be relevant to risk of developing 

schizophrenia. 

To address this problem, I assessed the enrichment of schizophrenia GWAS risk 

variants on the open chromatin data at the single cell resolution. I first applied LDSC 
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regression analysis to integrate schizophrenia GWAS data39–41 with an adult human 

post mortem scATAC-seq dataset77 that I call Corces dataset. Knowing that 

schizophrenia risk can be developed during brain development, I also studied 

schizophrenia risk at the earlier stages of the brain development using an embryonic 

human scATAC-seq dataset102 that I call Ziffra dataset. To assess reproducibility of 

the results and identifying the cell types are consistently enriched for schizophrenia 

risk variants, I applied my analysis pipeline to 3 different schizophrenia GWAS 

datasets. 
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Figure 5.2: Results of applying LDSC on two human datasets and 3 different GWAS 
data. Including A. Ripke et al. GWAS, B. Li et al. GWAS, and C. Pardinas et al. 
GWAS. X axis shows the names of human datasets and Y axis shows the cell types. 
The intensity of squares shows the level of significance of the cell type to 
schizophrenia based on -log10(p-value) of LDSC analysis. The stars indicate the 
entries that pass the Bonferroni-corrected threshold of 0.05. 
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Figure 5.3: Comparison between the results of LDSC on multiple GWAS data. X axis 
shows the human datasets and Y axis shows the cell types. Intensity of the green color 
shows the number of GWAS datasets that the cell types are significant based on them. 

 

The results of applying LDSC on the two human ATAC-seq datasets (called Ziffra 

and Corces) are presented in Figure 5.2. The cell types that did not exist in the dataset 

are presented with white blocks and the ones that pass the Bonferroni corrected 

threshold of 0.05 are marked with a star. Intensity of the color in each entry 

corresponds to the  -log10 of P-Value assigned to that entry by LDSC. The greater this 

number, the more enriched that cell type is for schizophrenia. I found that cell types 

like Microglia, which exist in all the datasets, are not enriched in any of the GWAS 

datasets. Excitatory neurons are found to be enriched for schizophrenia in both Ziffra 

and Corces datasets except for Newborn Excitatory neurons. It is important to note 

that these results are the consistent across different GWAS datasets. Although Ripke 

et al GWAS data is the schizophrenia GWAS data with the largest sample size among 

all three GWASs, consistency between the results of these three GWAS in most of the 
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cell types is promising and can make us more confident about the signals that we are 

seeing due to their repetitive results. As one inconsistency in these results, I found that 

MGE-Derived Cortical Interneurons are marked significant in Pardinas et al and 

Ripke et al, but not for the other GWAS dataset.  

 

5.3 Integrating GWAS Data with Single-cell ATAC-ceq Data 

from Mouse 

Access to human brain data is challenging. In comparison, mouse datasets are more 

accessible and cane be generated in the wet labs. I therefore chose to apply LDSC 

regression analysis to a mouse single-cell sequencing dataset103, and compared the 

results from human data to mouse data. I call the mouse dataset Bella. Bella mouse 

scATAC-seq datasets contains the data for embryonic days 13.5 and 15.5 and 18.5. 

Bella also contains scRNA-seq data for the embryonic days 10.5, 11.5, 12.5, 13.5, 

14.5, 15.5, 16.5, 17.5, and 18.5 and postnatal days 1 and 4.  
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Figure 5.4: Results of applying LDSC on mouse ATAC-seq and RNA-seq datasets 
and 3 different GWAS data. including A. Ripke et al. GWAS, B. Li et al. GWAS, and 
C. Pardinas et al. GWAS. X axis shows the developmental stage of the mouse data for 
both ATAC-seq and RNA-seq and Y axis shows the cell types. The intensity of 
squares shows the level of significance of the cell type to schizophrenia based on -
log10(p-value) of LDSC analysis. The stars indicate the entries that pass the 
Bonferroni-corrected threshold of 0.05. 
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Figure 5.5: Comparison between the results of LDSC on multiple GWAS data. X axis 
shows the different mouse developmental stages in both ATAC-seq and RNA-seq and 
Y axis shows the cell types. Intensity of the green color shows the number of GWAS 
datasets that the cell types are significant based on them. 

 

Results of applying LDSC on the Bella dataset in all scRNA-seq embryonic days and 

all scATAC-Seq embryonic days are shown in Figure 5.4. The cell types which are 

not present in a day are colored with white and the ones that pass the Bonferroni 

corrected threshold of 0.05 for each day are marked with a star. Intensity of the color 

in each entry is related to the value of -log10 of p value assigned to that entry by 

LDSC analysis. The greater this number, the more enriched that cell type is for 

schizophrenia. I found that some of the cell types such as Corticothalamic Projection 

Neurons are consistently enriched for schizophrenia in various GWAS datasets. Also. 

some other cell types such as Pericytes are consistently not enriched for schizophrenia 

in various GWAS data, which is plausible because Pericytes are blood cells and I 

expected to see significance enrichments in brain related cell types. Also, as expected, 

scATAC-seq data were more frequently significant than scRNA-Seq data in many 

cases. This might be due to the fact that changes occur at the epigenetic level, before 

they become apparent at the transcriptomic level. 
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As it is shown in Figure 5.5 the number of dark green color entries which is a symbol 

of consistency across three GWAS datasets is still abundant; however, inconsistencies 

in the mouse data are more than human data. 

My analysis shows that enrichment of schizophrenia disease risk on brain cells starts 

at the early stages of the brain development. I noticed an enrichment at the embryonic 

day of 11.5 using scRNA-seq data, which is also consistent across the three GWAS 

datasets. This significance continues to exist all the way through Embryonic day 15.5, 

where most of the immature neurons have been differentiated into other brain cell 

types. 

I also observed that cell types such as Microglia, Apical progenitors, Endothelial 

Cells, Intermediate progenitors, Cajal-Retzius Cells, Astrocytes and Oligodendrocytes 

are only significant in scATAC-seq data and not in scRNA-seq data. 

Also, some of the cell types do not have a steady significance in the embryonic days. 

For example, Subcerebral Projection Neurons Appear in embryonic day 14.5 and 

show significance until E15.5 in both scATAC-seq and scRNA-seq data, then they 

lose their significance in E16.5 and E17.5 and then start showing significance again in 

E18.5. 
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5.4 Affected Transcription Factors of Human Datasets 

 

Figure 5.6: Results of applying the second method of integration on two human 
datasets including A. Ziffra and B. Corces to find the disease-affected transcription 
factors. X axis shows the cell types and Y axis shows the transcription factors. The 
affected entries are marked with red. 

 

Figure 5.6 shows the results of applying the pipeline to identify the specific 

transcription factors in two human datasets (Ziffra102 and Corces119). Fig. 5.6A shows 

that in the Ziffra et al. dataset (which has embryonic human brain cells), most of the 

affected transcription factors are found in MGE Progenitor cells. Also, some of the 

transcription factors could be affected in Glial cells such as Radial Glia and 

Microglia. In addition to these cell types, SOX9 is also affected in MGE-derived 

cortical interneuron cells. I did not find shared affected TFs in different cell types of 

Ziffra, and each affected TF was present in only one of the cell types. 

As it can be seen in Fig. 5.6B, in the Corces dataset, Inhibitory and Excitatory neurons 

have the most affected transcription factors in them. They also share most of their 

affected transcription factors with each other. ZNF24, TFAP2A, SPIC, EWSR1-FLI1, 

ELF1, EGR3, ATF4, and E2F6 are the shared TFs between these cell types. 

A B 
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Alongside Excitatory and Inhibitory neurons, Astrocytes are the only other cell type in 

Corces that has significantly affected transcription factors. 

 

5.5 Affected Transcription Factors of the Mouse Dataset 

 

 

Figure 5.7: Results of applying the second method of integration on the mouse 
dataset in three different developmental stages including days 13.5 (A), 15.5 (B), and 
18.5 (C) to find the disease-affected transcription factors. X axis shows the cell types 
and Y axis shows the transcription factors. The affected entries are marked with red. 

   

Figure 5.7 shows the results of applying the pipeline to identify the schizophrenia-

relevant transcription factors in three timepoints of the mouse dataset (Di Bella et 

A B C 
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al.120). In this dataset, most of the cell type in all the timesteps has at least one affected 

transcription factor. However, there is one exception in the time point 15.5 (Fig. 

5.7B), where Deep Layer Callosal Projection Neurons do not have any affected 

transcription factor. Interestingly, in the next developments timepoint (i.e. the 

embryonic day 18.5 (Fig. 5.7C)), this cell type is one of the cell types with the most 

number of affected transcription factors. The other exceptions occur in the embryonic 

day 18.5 and for the Cajal-Retzius and Microglia cells, where no affected 

transcription factors were found in these two cell types at this specific time point. 

However, both of these cell types had affected TFs in the previous time points, in 

embryonic days 13.5 (Fig. 5.7A) and 15.5 (Fig. 5.7B). Transcription factors that are 

affected in multiple cell types can be good candidates of the group of transcription 

factors that are important in schizophrenia since they are affected in a wide range of 

cells. Furthermore, the affected transcription factors with the highest number of 

shared cell types that occur in the embryonic day 13.5 are KLF14 and OLIG2 with 3 

shared cell types. For embryonic day 15.5, EGR3, OLIG2, KLF14, and NFIC::TLX1 

are found significant in 3 cell types. For embryonic day 18.5, the most shared affected 

transcription factors are ASCL1, TP73, TP63, NHLH1, TBX4, OLIG2, JDP2, 

PROP1, DLX6, SP4, NFKB2, PAX9, LX1A, MTF1, ZNF24, TFAP2A(variant 3), 

ATF4, SPIC, SMAD2::SMAD3::SMAD4, NFIC::TLX1, TCF4, MYC that are 

affected in 3 or more cell types. An interesting observation in the embryonic day 18.5 

is that I can see an almost complete block of affected TFs between the first 6 TFs and 

these cell types: Deep Layer Callosal Projection Neurons, Layer4 Neurons, Upper 

Layer Callosal Projection Neurons, Near Projecting, Corticothalamic Projection 

Neurons, Migrating Neurons and Subcerebral Projection Neurons. 
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5.6 Affected Genes of Human Datasets 

 

 

Figure 5.8: Results of applying the second method of integration on two human 
datasets including B. Ziffra and B. Corces to find the disease-affected genes. X axis 
shows the cell types and Y axis shows the transcription factors. The affected entries 
are marked with blue. 

 

The next step of the pipeline identifies the specific genes. The results for the two 

human scATAC-seq (Ziffra and Corces) are shown in Figure 5.8. It can be seen that in 
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the Ziffra scATAC-seq dataset (Fig. 5.8A), which include cells from the embryonic 

brain, all of the affected genes are significant in the Radial Glia and MGE Progenitor 

cells, and none of these genes are shared between these two cell types. However, in 

Corces scATAC-seq dataset (Fig. 5.8B) that contains adult human brain, there are 

several significant genes shared between Inhibitory and Excitatory Neurons. These 

two cell types alongside Astrocytes form the set of cell types that affected genes of 

Corces are found in them. I found that many of the affected genes in Excitatory and 

Inhibitory neurons are the same and there is a complete block of affected genes shared 

between these two cell types. 
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5.7 Affected Genes of the Mouse Dataset 

 

 

Figure 5.9: Results of applying the second method of integration on the mouse 
dataset in three different developmental stages including days 13.5 (A), 15.5 (B), and 
18.5 (C) to find the disease-affected genes. X axis shows the cell types and Y axis 
shows the genes. The affected entries are marked with blue. 

The results of applying the pipeline to find the specific genes in the mouse dataset at 

three different time points are shown in Figure 5.9. I found 35 affected genes in 7 cell 

types on the embryonic day 13.5 (Fig. 5.9A). In this time point MIR212, HIC1, 

MIR132, and MIR4677 are the most shared genes among the cell types with each of 

them being found in at least 3 cell types. I also found out that between all of these 7 

cell types Apical Progenitors have the most affected genes in them. In embryonic day 

15.5 (Fig. 5.9B), I found 48 affected genes in 8 cell types. There are no genes that are 

significant in more than 2 common cell types. Here, the cell type with the most 

affected genes is Apical Progenitors. I found that between the cell types that had at 

least one affected gene in the previous time point (i.e. day 13.5), all of them except 

immature neurons still have at least one affected gene in embryonic day 15.5. 
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For the embryonic day 18.5 (Fig. 5.9C), I found 33 affected genes across 12 cell 

types. Besides the last 8 genes shown in the bottom of Fig. 5.9C, all of the other ones 

are found in more than 2 cell types. In this timepoint, SDCCAG8, CEP170, MIR4677, 

and ENSG00000232085 have the highest number of common cell types. The first two 

genes (SDCCAG8 and CEP170) have 8 common cell types and the others have 7 

common cell types. At this time point, Oligodendrocytes and Astrocytes have the 

highest number of affected genes. Compared to the previous time-point, Apical 

Progenitors and Microglia are not present in the list of cell types that have at least one 

affected gene. An interesting observation in these plots is the near complete blocks of 

affected genes versus cell types that happen in some parts of each plot. This can tell us 

that there may be a pattern of affected genes between those cell types or a pattern of 

shared cell types between those genes. For instance, between Microglia, Interneurons, 

and Cajal-Retzius cells in the embryonic day 13.5, Apical progenitors and Endothelial 

cells in embryonic day 15.5, Deep Layer Callosal Projection Neurons, 

Corticothalamic Projection Neurons, Layer6b Neurons, Layer 4 neurons, Subcerebral 

Projection neurons, Near Projecting and Migrating Neurons and Deep Layer Callosal 

Projection Neurons in embryonic day 18.5 and Oligodendrocytes, Astrocytes and 

Intermediate Progenitors also in embryonic day 18.5. 
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5.8 Affected Genes Based on the Third Method of 

Integration in Human Datasets 

 

Figure 5.10: Results of applying the third method of integration to identify the 
differentially expressed genes based on the disease affected scATAC-seq peaks in two 
human datasets including A. Ziffra and B. Corces. The Y axis shows the genes and X 
axis shows the cell types. Affected genes found by the second method of integration 
are marked with a square and the ones found by the third method of integration are 
marked with a star.  
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As it was mentioned before, I used two data integration methods to predict disease-

relevant genes. The combined results of the two approaches for the human datasets 

are shown in Figure 5.10. It can be seen that in the embryonic human dataset (Ziffra) 

(Fig. 5.10A)), 9 of the gene/cell-types pairs in the results are matching between the 

two gene prediction approaches. In the adult human dataset (Corces) (Fig. 5.10B) 4 of 

them match together. In Ziffra I found 4 cell types that have at least one significant 

gene. These cell types include Radial Glia, Microglia, MGE Derived Cortical 

Interneurons and MGE Progenitors. Between them, Radial Glia has the highest 

number of significant genes based on my pipeline, and the MGE progenitors cell type 

shows the most consistent results between the two gene prediction approaches with 6 

gene/cell-types pair matches. 
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5.9 Affected Genes Based on the Third Method of 

Integration in the Mouse Dataset 

 

 

 

Figure 5.11: Results of applying the third method of integration to identify the 
differentially expressed genes based on the disease affected scATAC-seq peaks in the 
mouse dataset in three different developmental stages including days A. 13.5 and B. 
15.5, and C.18.5. The X axis shows the genes and Y axis shows the cell types. 
Affected genes found by the second method of integration are marked with a square 
and the ones found by the third method of integration are marked with a star. 

 

As it was mentioned before, I used two data integration methods to predict disease-

relevant genes. The combined results of the two approaches for the mouse datasets are 

A 

B 

C 
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shown in Figure 5.11. It can be seen that between all of the embryonic days only 

embryonic day 15.5 (Fig. 5.11B) has a gene-cell type pair that is considered 

significant in both gene prediction methods. This significant result is in the 

Intermediate progenitors and FTCDNL1. In the embryonic day 13.5 (Fig. 5.11A) 

Cajal-Retzius cells have the highest number of significant genes based on my method 

of data integration. Respectively, the top cell types are Corticothalamic Projection 

neurons and Layer6b neurons for the embryonic days 15.5 and 18.5, respectively (Fig. 

5.11C). 

In the embryonic day 13.5 two of the genes including CREB3L2-AS1 and UBE2L6 

are significant in more than one cell type. Also, in embryonic day 15.5 five genes 

including C1orf54, CCDC39, FTCDNL1, PAFAH1B1, and SPATS2L have been 

found to be significant in more than one cell type. In comparison, none of the 

significant genes in embryonic day 18.5 have been found to be significant in more 

than one cell type. 

 

5.10 BABEL’s Performance 

AUROC (Area Under the Receiver Operating Characteristics) is a measure of the 

performance of binary classification tasks, where the area under the receiver operator 

graph is calculated. The larger the area, the better the prediction is. Because BABEL 

has two encoders and two decoders, one for each data modality (RNA-seq and 

ATAC-seq), when generating pseudo gene expression from ATAC-seq data, it will 

also regenerate ATAC-seq from the input ATAC-seq using the ATAC decoder and 

generating pseudo ATAC-seq data from the shared latent space. Since single-cell 

ATAC-seq data has a binary nature, meaning a cell in a peak can be accessible (1) or 

not accessible (0), AUROC can be used to assess how well the model was able to 
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capture the input information in the shared latent space and how well it is performing 

on generating pseudo-data. The AUROC for Corces was 0.732, and for Ziffra was 

0.724. The AUROC for Bella at embryonic day 13.5 was 0.694, at embryonic day 

15.5 was 0.692, and at embryonic day 18.5 was 0.713. 

The third method of integration heavily relies on BABEL's performance in predicting 

gene expression from chromatin accessibility data for the datasets. The AUROC 

results shows that there is still room for improvement of the BABEL predictions. One 

way to improve this would be to train BABEL on more relevant datasets to my use-

case by collecting more multi-omics datasets related to the brain and retraining 

BABEL. 

BABEL is trained on human data, which is why I lifted the mouse dataset coordinates 

from mm10 to hg38. However, when converting the coordinates of one organism to 

another, I lose some information from the input dataset. For instance, when lifting the 

ATAC-seq peaks of mouse to the human coordinates, some of the peaks do not pass 

the LiftOver threshold and will not be mapped to human coordinates and  the 

information about the accessibility of these peaks will be lost in the downstream 

analysis. This, coupled with the fact that BABEL is trained on human datasets and 

may not capture all the information from the mouse datasets, may lower its prediction 

performance. One suggestion would be to train a separate model for mouse data and 

then predict gene expression in the Bella dataset using that model. 

In conclusion, it is clear that there are many areas for improving the results of 

BABEL, which will directly impact the genes linked to schizophrenia using the 

pipeline. We are still working on this pilot study to generate more reliable results. 
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5.11 Discussion 

Each of biology data types reveal a particular side of biological mechanisms. For 

instance, GWAS data reveals the significant variants associated to a disease, and 

chromatin accessibility data shows the open chromatin sites in individual cells (in the 

case of single cell data) or an average of thousands cells (in the case of bulk data). 

However, each of these data types cannot reveal the whole biological process behind 

complex biological mechanisms, such as a disease. Computational and statistical 

methods help us to integrate numerous biological data types to get better insights into 

the complex traits. Because technology improves constantly and also new researchers 

enter the research laboratories, new biology datasets are generated regularly and 

rapidly. All these new datasets have to be analyzed and put into different pipelines so I 

can get insights from them, as each of them is giving a unique kind of information about 

the biological processes. Even if two datasets come from the same modality or even 

from the same sample, they have their differences due to unstable natural features of 

organisms which are always changing, and I cannot get the same exact result from 

applying a pipeline on the same sample. To address this subject, in this study I try to 

apply multiple integration methods on multiple datasets. 

Research attempts in this area usually focus on one integration of one modality with 

GWAS for instance GWAS and ATAC-Seq61 or GWAS and RNA-Seq121. Also, the 

ones that have generated a dataset usually focus on their own dataset102. Therefore, it 

can be seen that most of the attempts focus on one dataset or one method and miss the 

insights that I can get by looking at different methods being applied on different 

datasets. Also, lots of researchers focus on one organism62,102 but here I analyze both 
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human and mouse datasets and try to compare the results to see the differences or find 

the similarities. 

During the study I have reached several conclusions about significance of cell types or 

tissues in schizophrenia. Here I point out the key findings in my investigations. 

1- Schizophrenia GWAS risk variants are enriched in open chromatin sites of brain 

related cell types and tissues based on bulk epigenetic data. 

The details of applying LDSC on bulk chromatin accessibility data is noted in the 

materials and the full results are shown in the results section. In conclusion, I confirm 

the idea about significance of brain related tissues and cell types in schizophrenia. As 

it can be seen in the results section all of the cell types and regions that pass the 

Bonferroni corrected threshold of 0.05 are brain related. I strongly confirm this finding 

by applying LDSC on 3 different GWAS datasets and comparing the results. These 

results indicate that I should focus on brain cells to unroll the biological mechanisms of 

schizophrenia. 

2- GWAS sample size and ancestry affects LDSC results.  

For each trait there are usually more than one GWAS study and each of them have their 

own characteristics. These features are different between studies and will probably 

result in different sets of variants being prioritized by the studies. Two of the most 

important features in GWAS datasets are the ancestry of samples (e.g. European vs. 

Asian) and also the number of cases and controls in the study. These differences will 

affect the results of analyzing GWAS data. In this analysis I used three different 

Schizophrenia GWAS data and noted differences and similarities across multiple 

GWAS datasets. The level of consistency between the results are different between the 
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datasets but mostly they have at least one difference. Hence, I found that choosing the 

right GWAS data is a crucial step in these kinds of analyzes, as it can affect the set of 

significant cell types. However, the cell types that are considered significant in all of 

the three GWAS data gives us more confidence about the importance of them since they 

are significant even based on different GWAS datasets. 

3- It is already know that epigenetic changes usually occur before than changes in gene 

expressions can be detected 122. Hence, before starting this investigation I predicted to 

see more signals in the ATAC-seq data of the mouse dataset compared to its scRNA-

seq data. I confirm this by the results that I got from applying LDSC on mouse brain 

embryonic ATAC-seq and RNA-seq data in three different stages of the brain 

development. As it can be seen in the results section in all of these three timepoints that 

I have both RNA-seq and ATAC-seq data, significant enrichments are more abundant 

in scATAC-seq data compared to scRNA-seq. Although the list of cell types existing 

in these two modalities slightly differ in the three timepoints, but the cell types that are 

considered significant in ATAC-seq are always found significant in RNA-seq data. 

Also, there are other cell types that are significant in scATAC-seq data that have not 

been found significant in the scRNA-seq data. This finding is also confirmed between 

all three GWAS data. 

4- Significant cell types 

After carefully reviewing the results, I saw that excitatory and inhibitory neurons in 

human neurons are consistently significant across three GWAS datasets. Also, in mouse 

data I found out that these cell types are most significant on most of the time-points and 

consistent in 3 GWAS data: 

• Layer6b Neurons that can be found from the Embryonic day 18.5 
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• Layer4 Neurons in the last stages of development 

• Subcerebral projection neurons at first stages of development 

• Corticothalamic projection neurons which can be found starting from 

embryonic day 14.5 and are significant in all other timepoints 

• Interneurons at first stages of development 

• Migrating neurons at first stages of development 

• Immature Neurons that are only present until embryonic 15.5. 

In the first pipeline, I ran LDSC on 3 publicly available datasets in order to find the 

significant cell types in schizophrenia. LDSC finds the most significantly associated 

cell types by integrating GWAS data with the annotations obtained from ATAC-seq 

or RNA-seq data. However, LDCS does not identify the genes and transcription 

factors that play an important role in schizophrenia. To identify these elements, I 

applied a previously developed pipeline in the lab on the same 5 datasets and 

developed a new pipeline to study this problem from a different perspective. 

In my developed pipeline I benefit from the abilities of a deep learning model called 

BABEL that has been published by Wu et al. BABEL’s ability to generalize between 

different cell types and organisms convinced me to use it as a part of the pipeline and 

expand on it to develop another method to predict the significant genes in 

schizophrenia. 

The results that I capture by applying one method of integration on the selected 

datasets only focus on one aspect of integration and I can rely on them based on that 

specific method. However, if I look at the problem from a different view, I might 

capture information that one single method is not able to achieve. Hence, if I rely on 

only one method, I might miss some important results. For instance, by looking at the 

combined results of the previously developed method in Shooshtari Lab and my 
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recently developed method, it can be seen that there are multiple significant genes that 

are not shared between the results of the two methods and if I only would have relied 

on one method, I could have missed some of the important genes in schizophrenia. 

An advantage of this work is that one can look at the results of multiple methods and 

overlap them with each other. The results that overlap between the two methods can 

give us more confidence about the significant entries. For instance, in the mouse 

dataset, I saw that FTCDNL1 in the Intermediate progenitors cell type is considered a 

significant gene based on both methods. This will make us more confident about the 

finding since this gene has been confirmed to be significant based on two different 

methods of integration. However, I cannot conclude that the results that do not match 

are not important since these methods look at the problem from different perspectives, 

therefore, one approach may be able to capture some results that the other one misses. 

Some of the genes that I found significant based on my pipeline have been previously 

found to be causal in schizophrenia. Legge et al.123,124 have done a review on the 

causal genes of schizophrenia based on transcriptome-wide association studies. They 

mention three main studies on this subject120,125–127. By looking into the results of 

these studies I found that VPS45, RPRD2, XRCC3, ZFYVE21, PPP1R13B, NOSIP, 

SREBF1, TOM1L2, GID4, FXR1, FAM53C, ETF1, and HSPA9 in Corces and Ziffra 

human datasets and MIR4677, LINC02774, UBE2L6, YPEL4, TOM1L2, ALKBH5, 

MIR130A, and BOLA1 in the mouse dataset (Bella) have been previously found 

causal in at least one of these studies. 

From the transcription factors that I found to be significantly affected in 

schizophrenia, many of them have been considered relevant to schizophrenia in the 

previous studies. For instance, between the transcription factors that I found in the 

human study,  SOX9128, SP4128,129, ATF4130, EGR3130,131, OTX2132, TCF7L2133, and 
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TFAP2A123 have connections with schizophrenia. Also, from the transcription factors 

that were identified using mouse data, EGR3130,131, LMX1A134, MZF1134,135, 

NEUROG2134–136, TCF4137, TBR1138, SREBF1138,139, POU4F2140, NRF1141, and 

NR3C2141,142 were previously found to be causal in schizophrenia. 

To summarize, in my study I have been able to predict transcription factors, genes, 

regulatory sites and cell types that are likely to be relevant to schizophrenia. Some of 

these findings have been already uncovered by previous studies, and some others are 

novel findings that can be experimentally validated in a wet lab setting. 
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Chapter 6 

Conclusions and Future Work 

In this thesis, I applied three different data integration pipelines that use statistical and 

machine-learning-based methods on human and mice data in order to prioritize 

significant cell types and biological elements in schizophrenia. The results presented 

in this thesis can be used to further investigate the underlying mechanisms of gene 

regulation in schizophrenia that may eventually results in better treatment options for 

schizophrenia patients. Most of the previous works in this area only focus on one 

dataset, one organism, or one method of integration. However, in this study, I applied 

three data integration methods on two organisms and multiple datasets, creating a 

more comprehensive study of data integration on schizophrenia. 

In chapter 4, I presented a new integration pipeline that has been developed by me. 

This pipeline right now is in R script files and Jupyter notebooks. An improvement to 

this work could be making a single package that gets the inputs needed for the 

pipeline in a standard format and outputs the significant results in the format of 

figures and tables. This can help the pipeline to be more accessible to the researchers 

since they would be able to use it easily without going through the R and python 

codes and it can be applied in the investigation of other complex traits, as my pipeline 

is generalizable and the researchers would only need to provide the input files for 

their trait of interest in a standard format. 

The data integration approach applied here in a computational biology application can 

be used in other computer science subjects or other field that uses computational 
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methods in their investigations. As discussed in the previous chapters, data integration 

methods are applicable to a wide range of scientific areas and although these areas are 

exploring different problems, they may benefit from the data integration methods used 

in this study and the way I handled the challenges that arose while developing and 

applying multiple integration methods. 

Although applying computational methods to biological data can give us valuable 

information about the significance of biological components in schizophrenia, these 

methods have their own limitations. For instance, in the third method of integration, I 

use a deep learning model to find differentially expressed genes based on the 

chromatin accessibility sites that are likely to drive risk to schizophrenia. This deep 

learning model helps me to predict gene expression levels in each cell based on the 

accessibility patterns of open chromatin sites. However, predictions based on deep 

learning models are predication, and may not provide us with the exact gene 

expression values. These are statistical models and their accuracy even on the data 

that they are trained on is not 100 percent. 

Statistical and machine-learning-based methods are updating constantly, and 

researchers try to improve previous methods to produce more accurate results. The 

methods used in this study are not exempt from such phenomena. Hence, using the 

future’s state-of-the-art models that beat the current methods in performance, can lead 

us to more accurate results. For instance, the deep learning method used in this study 

can improve in many aspects like enhancing the architecture of the auto-encoder used 

in it or improving the loss function that it uses for the training process. By applying 

these enhancements to the model used in this study, one can get a better prediction of 

expression data from the chromatin accessibility data and would ultimately help 
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prioritizing schizophrenia-relevant genes affected by chromatin accessibility patterns 

in a more precise way. 

Genes can affect each other, and studying the interactions between genes can give 

more insights into the disease under investigation. Pathway analysis is a standard way 

to find the relations between genes and their roles in biological mechanisms. In this 

study, I have identified schizophrenia-relevant chromatin accessibility sites. By using 

this data as input for packages like GREAT143 I can further study disease-affected 

genes and the biological pathways that they are enriched in. 

In conclusion, I have developed a standard data integration pipeline to prioritize 

biological elements in schizophrenia which help further investigations toward 

understanding this complex disease and providing better treatment options for it 

ultimately. The results in this study and ideas for the future developments will 

improve the data integration methods and also our understanding of mechanisms of 

schizophrenia. 
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