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Abstract

In recent years, technological developments have enabled the comprehensive transcrip-

tional profiling of thousands of single cells in a single experiment. However, there is still

much to be gained from the integration of datasets from different donors, studies, and

technological platforms. One major challenge in this regard is the technical variability

introduced by handling different batches, known as batch effects, which can obscure bio-

logical variations. Assessing batch effects within a dataset has been the focus of various

studies seeking to establish reliable criteria for selecting a batch effect removal method.

However, these methods do not always perform reliably.

This study provides a comprehensive review of both batch effect removal and assessment

methods and introduces a novel method for batch effect removal assessment.

The performance of the proposed method is evaluated by comparing it to four other batch

effect assessment methods using eleven test datasets. The results showed that the proposed

method consistently outperformed the other methods, successfully passing all challenges

while the other methods failed at least one test. The proposed method was applied to three

biological integrated datasets to evaluate its performance on real-world data. The results of

the evaluation showed that the proposed method demonstrated the highest correlation with

the expert’s assessment of the datasets, indicating that it was able to accurately identify

batch effects in the data.
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Summary of Lay Audience

In recent years, scientists have been able to study the genetic activity of individual cells in

unprecedented detail. However, when combining data from different studies, researchers

often encounter a problem known as ”batch effects.” These are differences in the way that

samples were processed or analyzed that can obscure real biological differences between

cells. In this thesis, we review existing methods for identifying and removing batch ef-

fects and propose a new method for assessing the effectiveness of batch effect removal

techniques.

To test our new method, we applied it to twelve different synthetic datasets and com-

pared its performance to four other methods. Our method consistently outperformed the

others, successfully identifying and removing batch effects in all cases. We also applied

our method to three real-world datasets and found that it accurately identified batch effects

that were missed by other methods.

Overall, our research provides a promising solution for addressing batch effects in

large-scale studies of genetic activity. By improving our ability to combine data from

different sources, we can gain a more comprehensive understanding of how genes are reg-

ulated in different cell types and under different conditions. This could ultimately lead to

new insights into the causes of diseases and the development of more effective treatments.
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Chapter 1

Introduction

1.1 RNA sequencing

RNA sequencing, also known as RNA-seq, is a powerful technique for studying gene

expression at the molecular level. Gene expression is the process by which the information

in DNA is used to synthesize proteins and other molecules that carry out the functions of

the cell. RNA sequencing allows researchers to identify the specific genes that are being

expressed in a particular cell or tissue, and to quantify the relative abundance of each gene.

By analyzing the RNA content of a cell, researchers can gain insight into the functions and

activities of the genes in that cell and how they are regulated [1, 2].

RNA sequencing involves several steps, including the isolation and purification of

1
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RNA from a sample, the conversion of RNA to complementary DNA (cDNA), and the

sequencing of the cDNA using high-throughput DNA sequencing technology. To obtain

a count matrix from the raw sequencing data (FASTQ format), one must first align the

sequenced reads to a reference genome or transcriptome. This alignment process allows

for the identification of the genomic locations of the reads. Next, the aligned reads are

counted and assigned to their corresponding genes, generating a table that contains the

number of reads that map to each gene in the sample. This table is the count matrix. The

dimensions of this matrix are equal to the number of cells in the sample and the number of

genes that are included in the study. This matrix can be sparse, which means that a large

proportion of its elements have the value of zero, reflecting the fact that not all genes are

expressed in every cell or that many genes have low or no expression in a given sample.

RNA sequencing can be performed on a variety of sample types, including tissues, cells,

and even individual cells. [3, 4, 5].

RNA sequencing has a wide range of applications in basic research, drug discovery,

and clinical medicine. In basic research, RNA sequencing can be used to study gene

expression patterns in different cell types or tissues, to understand how genes are regulated,

and to identify genes that are associated with specific diseases or conditions. In drug

discovery, RNA sequencing can be used to identify potential targets for new drugs, to

understand how drugs work at the molecular level, and to identify biomarkers for drug
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efficacy and toxicity. In clinical medicine, RNA sequencing can be used to diagnose and

monitor diseases, identify potential therapeutic targets, and guide personalized medicine

approaches [6].

1.1.1 Single cell RNA sequencing

Single-cell RNA sequencing (scRNA-Seq) is a variation of RNA sequencing that allows

researchers to analyze the gene expression of individual cells within a sample [7]. Tradi-

tional RNA sequencing methods analyze the RNA content of a sample as a whole, which

can mask the differences in gene expression between different cell types or even between

individual cells within the same cell type. scRNA-Seq overcomes this limitation by al-

lowing researchers to isolate and analyze the RNA content of individual cells. This is

typically done by physically separating the cells using techniques such as microfluidics

or laser-capture microdissection, and then performing RNA-Seq on each individual cell

[8]. The resulting data is used to identify and quantify the gene expression of each cell,

providing a detailed picture of the gene expression landscape of the sample.

ScRNA-Seq has a wide range of applications in basic research, drug discovery, and

clinical medicine. In basic research, scRNA-Seq can be used to study the gene expression

patterns of different cell types or tissues at the single cell level, to understand the hetero-

geneity within a cell population, and to identify rare cell types or subpopulations. In drug
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discovery, scRNA-Seq can be used to identify potential targets for new drugs, to under-

stand how drugs work at the molecular level, and to identify biomarkers for drug efficacy

and toxicity. In clinical medicine, scRNA-Seq can be used to diagnose and monitor dis-

eases, identify potential therapeutic targets, and guide personalized medicine approaches

[9, 10]. Overall, scRNA-Seq provides a powerful tool for studying gene expression at the

single-cell level and can provide valuable insights into the underlying biology of a sample.

1.2 Data integration

Data integration refers to the process of combining data from multiple sources into a

single, unified view. It is a key aspect of data management and is often used to sup-

port a variety of business and research objectives, such as improving decision-making,

identifying trends and patterns, and enabling data-driven insights. For example, in social

sciences, data integration can involve merging datasets from different countries to study

cross-national trends. In the field of genomics, data integration can involve combining

single-cell RNA sequencing (scRNA-seq) data from multiple experiments or studies to

create a more comprehensive atlas of cell types and gene expression patterns, such as the

Human Cell Atlas project. Data integration is important in scRNA-seq because it allows

researchers to gain a more comprehensive and accurate understanding of the cells and gene

expression patterns within a tissue or organism. By integrating data from multiple sources,
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researchers can identify trends, patterns, and relationships that would otherwise be missed

if the data were analyzed in isolation [11, 12].

1.3 Batch effect

In general, batch effect refers to systematic variations in data that are caused by factors

unrelated to the variables being studied. Batch effects can occur in a variety of contexts,

including experiments, observational studies, and data analyses. They can be caused by

a variety of factors, such as differences in the equipment or conditions used to collect the

data, differences in the batch of reagents or samples used, or differences in the processing

or analysis of the data [13].

Batch effects can have a significant impact on the validity and reliability of scientific

research, as they can introduce false patterns and differences in the data. They can also

make it difficult to compare results across studies or experiments, as any observed differ-

ences may be due to batch effects rather than the variables being studied.

In single-cell RNA sequencing (scRNA-Seq), batch effects can arise from a variety

of sources. For example, batch effects can be introduced by differences in the sample

preparation or library construction protocols used, differences in the sequencing platform

or chemistry used, or differences in the data analysis methods applied [14].

To address batch effects in scRNA-Seq data, it is important to carefully control for
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any potential sources of unwanted variability. This may involve standardizing the sample

preparation and library construction protocols, using the same sequencing platform and

chemistry for all samples, and using consistent data analysis methods. It is also important

to carefully consider the design of the experiment and to ensure that any observed dif-

ferences between samples or conditions are due to the variables being studied rather than

batch effects.

1.4 Content of thesis

The goal of this thesis is to develop and evaluate a new method for assessing batch effect

in single-cell RNA sequencing (scRNA-seq) data. To solve this problem, we propose a

novel method for assessing batch effect in scRNA-seq data. We first tested our method

using simulated datasets and compared it to several popular assessment methods. We then

applied our method to three real-world datasets that showed evidence of batch effect and

used it to evaluate the performance of seven different batch effect removal methods. Our

results demonstrate that our method is more accurate and reliable than existing approaches

and has the potential to improve the quality of scRNA-seq data.

By addressing the issue of batch effect, we can improve the reliability of scRNA-seq

data, leading to more robust scientific conclusions and potentially advancing our under-

standing of gene expression and its role in health and disease. This thesis is organized as
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follows:

• In Chapter 2, we provide a background on single-cell RNA sequencing, the problem

of batch effect, batch effect removal methods, batch assessment methods, and the R

programming language.

• In Chapter 3, we demonstrate that batch effect is not limited to biology but is also

a problem in other fields such as biological imaging, molecular biology, and social

sciences.

• In Chapter 4, we describe our novel method for assessing batch effect in single-cell

RNA sequencing data and provide the results of our method applied to simulated

test cases.

• In Chapter 5, we present the results of our method applied to real-world datasets and

compare them with other batch effect assessment methods.

• In Chapter 6, we discuss the implications of our study and suggest directions for

future research.



Chapter 2

Background

In this chapter, we will introduce the programming tools that were used and then discuss

dimension reduction techniques for single-cell RNA-sequencing (scRNA-seq) data, which

are essential tools for visualizing and analyzing this high-dimensional, noisy, and sparse

type of data. We will also discuss the importance of addressing batch effects in scRNA-

seq data and introduce various batch effect removal methods that can be used to ensure

unbiased and accurate data analysis.

2.1 R programming language

R is a programming language and software environment for statistical computing and

graphics. It was developed in the early 1990s by statisticians Ross Ihaka and Robert

8
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Gentleman at the University of Auckland, New Zealand, as an open-source alternative

to proprietary statistical software packages [15]. R is an interpreted, dynamically typ-

ing, and vector based language that enables distributed computing with strong graphical

capabilities. R has become a popular choice for data analysis and statistical computing,

particularly in the fields of statistics, economics, and computer science. It is widely used in

research, education, and industry, and has a large and active user community that has con-

tributed a wealth of libraries and packages for a wide range of applications. In the field of

bioinformatics, R is widely used for the analysis of biological data, particularly in the ar-

eas of genomics, proteomics, and transcriptomics. It is particularly useful for the analysis

of RNA-seq data, as it has a number of specialized packages and functions for analyzing

RNA-seq data. R is also used for the visualization and exploration of biological data, in-

cluding the creation of plots and graphs to visualize gene expression patterns, pathways,

and networks. It is also used for the development of statistical models and algorithms to

identify patterns and relationships in biological data. Overall, R is a powerful and widely

used programming language that has become an essential tool for bioinformaticians and

researchers working with RNA data and other types of biological data [16].
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2.1.1 Seurat Package

Seurat is an R package for single-cell data analysis and visualization, developed by the

Satija Lab1 at the New York Genome Center. It is a widely used tool for the analysis of

single-cell RNA-seq data and includes a range of functions and features for tasks such as

data preprocessing, quality control, normalization, clustering, and visualization.

Seurat is designed to be flexible and user-friendly and includes functions for a wide range

of single-cell analysis tasks, including:

• Quality control: Seurat includes functions for filtering and removing low-quality

cells and features, as well as for identifying and correcting batch effects and other

technical biases.

• Normalization: Seurat includes functions for normalizing and scaling the data to

correct for differences in library size and sequencing depth.

• Clustering: Seurat includes functions for clustering cells into groups based on their

gene expression patterns, using techniques such as k-means clustering, spectral clus-

tering, and density-based clustering. The default method for finding clusters in Seu-

rat package is the Louvain algorithm. This algorithm iteratively groups cells into

clusters by optimizing a modularity score, which measures the density of connec-

tions within clusters compared to the density of connections between clusters in a

1https://satijalab.org/
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shared nearest neighbor (SNN) graph constructed from the scRNA-seq data [17].

• Differential expression analysis: Seurat includes functions for identifying differen-

tially expressed genes between different groups of cells. The default method for

differential expression analysis is the non-parametric Wilcoxon rank-sum test (also

known as the Mann-Whitney U test). This test is used to compare gene expression

levels between two groups of cells (e.g., different clusters) and identify differentially

expressed genes.

• Visualization: Seurat includes functions for visualizing the data, including t-SNE

plots, heatmaps, and violin plots, as well as functions for integrating data from mul-

tiple sources, such as gene ontology and pathway information.

Overall, Seurat is a powerful and widely used tool for the analysis and visualization of

single-cell RNA-seq data and is an essential tool for many researchers working in this

field [18].

2.2 High-Performance Computing Resources

High-Performance Computing (HPC) refers to the use of supercomputers, clusters, and

other specialized hardware and software systems to perform computationally intensive

tasks. HPC systems are designed to provide high levels of performance and scalability and
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are often used to solve complex problems that require large amounts of computing power

and resources, such as simulations, data analysis, and machine learning. HPC systems are

typically characterized by their high-speed processors, large amounts of memory, as high

as 256 GB per node, and adequate temporary storage, which allow them to perform a large

number of calculations in parallel [19].

2.2.1 Compute Canada

Compute Canada2 is a national organization that provides high-performance computing

(HPC) resources and services to researchers and scientists in Canada. Its mission is to

enable Canadian researchers to perform advanced computing research and development,

leading to new scientific discoveries, innovations, and economic benefits for Canada.

Compute Canada operates a network of HPC centers across the country, providing access

to a range of computing resources, including supercomputers, cloud computing platforms,

and storage systems. Researchers and scientists can apply for access to these resources

through Compute Canada’s allocation process. Compute Canada also provides support

and training to help researchers and scientists effectively use its HPC resources.

2https://ccdb.computecanada.ca
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2.3 scRNA-seq data dimension reduction

Single-cell RNA sequencing (scRNA-seq) is a technique used to analyze gene expres-

sion at the single-cell level. scRNA-seq data is characterized by having a high number of

dimensions, noise, and sparsity. In scRNA-seq data, in order to represent the gene expres-

sion levels of cells, a matrix is provided that is known as the count matrix. this matrix

contains the counts for all samples, with the genes in rows and the samples in columns. In

the count matrix, each cell is represented by a high number of dimensions or genes, and

the expression levels of these genes can be noisy and sparse and comprised of mostly zero

values. In order to better understand and analyze this type of data, it is often necessary

to reduce its dimensionality. This is because scRNA-seq data is typically too complex

for most modelling algorithms to process directly, and because many biological systems

have lower intrinsic dimensionality. For example, a differentiating hematopoietic cell can

be represented by just two or more dimensions, its progress in differentiation towards a

particular cell type and its current cell cycle stage. This means that although the dimen-

sion reduction methods don’t necessarily find new features that have biological meanings,

it is a valid effort to reduce the dimension without losing information. Dimensionality

reduction techniques can be used to project the high-dimensional scRNA-seq data into a

lower-dimensional space, enabling the visualization of cluster structures and the inference

of development trajectories [20]. There are many dimension reduction methods that can
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be applied to scRNA-seq datasets but only PCA [21], UMAP [22], and t-SNE [23] are

used in this thesis and we only explain them in this section.

2.3.1 PCA

Principal component analysis (PCA) that was introduced in 1901 by Karl Pearson, is a

widely used technique for dimensionality reduction in scRNA-seq data. It transforms a

large set of variables into a smaller one that still contains most of the information in the

large set[21]. It works by identifying the patterns in the data that account for the highest

variances and projecting the data onto a lower-dimensional space using these patterns.

The first principal component is the pattern that accounts for the highest variance in the

data, the second principal component is the pattern that accounts for the second highest

variance, and so on.

PCA is calculated in several steps. The first step is standardization, where the range of

the continuous initial variables is standardized. The second step is the computation of

the covariance matrix to understand how the variables of the input data set are related to

each other. The third step involves computing the eigenvectors and eigenvalues of the

covariance matrix[24]. PCA is a useful tool for scRNA-seq data because it can help to

identify the most important patterns in the data and reduce the complexity of the data,

making it easier to visualize and analyze. However, PCA has some limitations, such as
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its reliance on linear relationships between variables, which can make it less effective for

data that is highly non-linear or has a complex structure.

2.3.2 t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is another popular dimensionality

reduction technique for scRNA-seq data [23]. It was developed by Laurens van der Maaten

and Geoffrey Hinton in 2008 and has become a widely used tool for visualizing high-

dimensional data. This method works by constructing a low-dimensional representation

of the data in which similar points are close together and dissimilar points are farther

apart. It does this by constructing a probability distribution over pairs of points in the high-

dimensional space. These probabilites represent similarities between neighbours. Then the

algorithm minimizes the Kullback-Leibler divergence between the distribution and a low-

dimensional version of the distribution. K-L divergance is a type of statistical distance that

measures how one probability distribution is different from a second. t-SNE is particularly

effective at preserving local structure in the data and can be used to identify patterns and

clusters in the data. However, it can be sensitive to the choice of hyperparameters and can

be slow for large datasets.
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2.3.3 UMAP

Uniform Manifold Approximation and Projection (UMAP) is a dimensionality reduction

technique that is specifically designed for scRNA-seq data. It was developed by Leland

McInnes and John Healy in 2018 as an alternative to t-SNE. UMAP works by constructing

a low-dimensional representation of the data that preserves the global structure of the data

as well as the local structure. It does this by constructing a graph of the data and then using

this graph to identify the underlying structure of the data. In this graph, the nodes represent

the data points and the edges represent the connections between them. These connections

are established based on the degree of similarity or proximity between the data points. The

more similar or proximal two data points are in the high-dimensional space, the higher the

weight of the edge between them. UMAP has been shown to be more effective than t-SNE

at preserving the global structure, and it is also faster and more scalable, making it a good

choice for large datasets [22].

2.4 Batch effect removal methods

As explained in section 1.3, a batch effect is a systematic difference between two or more

groups of samples that are not due to the biological variables being studied and effective

batch-effect removal is essential for unbiased and accurate data analysis. To convey the
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idea of the batch effect, we generated a mock dataset and plotted it in figure 2.1. This

figure illustrates the presence of systematic differences between two groups of samples

that are not due to the variables of interest, but rather to some other source of variation.

Batch effect removal methods aim to adjust for batch effects while batch effects can be

complex and nonlinear, making it challenging to accurately align different datasets while

maintaining the biological variations within the sample. To address this challenge, several

tools have been proposed. In the following, some of these tools that were used throughout

my thesis, are briefly explained.

2.4.1 Harmony

Harmony is one of the previously suggested methods for removing batch effects in single-

cell sequencing data [25]. The harmony algorithm requires a PCA embedding of cells and

their batch assignment. Using these two inputs, their designed algorithm clusters the cells

with maximum diversity. More specifically, the clustering algorithm tries to adjust the cell

population of each cluster. To achieve this goal, first, the algorithm tries to put similar cells

in the same cluster and simultaneously tries to increase the diversity of each batch in each

cluster as well so that each cluster is comprised of similar cells while having cells from

every batch possible. This algorithm returns a clustering assignment and this assignment

is used by the correction algorithm to remove batch effects. This algorithm calculates a
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Figure 2.1: The data for this plot is generated just to demonstrate the concept of batch

effect. The data comes from two different batches of samples, collected at different times

and processed using different methods and a measure of interest has been obtained. The

plot shows that the measure of interest is significantly higher in Batch 1 than in Batch 2,

indicating the presence of a batch effect.
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factor indicating the batch effect correction needed to be applied to each cell and passes

that corrected space to the clustering algorithm. This process repeats until the output of

the clustering algorithm is the same as the previous step and the algorithm converges. The

equation 2.1 demonstrates the recurring steps of the Harmony algorithm while Z is the

input embedding, to be corrected in Harmony, Ẑ is the integrated embedding, output by

Harmony, R is the soft cluster assignment matrix of cells to clusters, and ϕ is the assgn-

ment matrix of cells to batches.

R← CLUS T ER(Ẑ, ϕ)

Ẑ ← CORRECT (Z,R, ϕ)

(2.1)

2.4.2 Limma

The Limma method was originally developed to analyze microarray data [26]. It is based

on linear modelling and uses empirical Bayes methods to shrink the standard errors of

the estimated coefficients, which can improve the accuracy of the estimates. By using

emprical Bayes procedure, the prior probability distribution is estimated from data. The

algorithm of this method starts with normalizing data to unify the mean and variance of

expressions. Then a linear model is fit to the data. The linear model has a blocking term to

estimate the batch effects in the data. Blocking term is used to account for known sources

of variability in the data and by including a blocking term in the model, we can control for
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the effect of these sources of variability on the response variable. This estimation is used

to correct the batch effect in the data.

2.4.3 MNN

Matching Mutual Nearest Neighbor (MNN) for batch correction is based on the idea that

cells of similar types should have almost the same neighbours [27]. In the MNN method,

the definition of neighbors is based on the distance metric used to compare cells. Typi-

cally, the Euclidean distance or cosine distance is used to calculate the distance between

cells. Cells that are close in the high-dimensional space are considered neighbors. Mutual

nearest neighbors are defined as pairs of cells from different samples that are each other’s

nearest neighbors. For example, if cell A from sample 1 is the nearest neighbor of cell B

from sample 2, and cell B is the nearest neighbor of cell A from sample 1, then cells A

and B are mutual nearest neighbors. Each neighbour is weighted by distance from the cur-

rent cell. This idea is implemented by trying to put cells with similar mutual neighbours

near each other [28]. This method first calculates the mutual nearest neighbours for each

sample and then matches the samples based on their mutual nearest neighbours. After the

samples have been matched, the data is adjusted to remove the batch effects.
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FastMNN

Fast Mutual Nearest Neighbor (FastMNN) is a variant of the MNN method for correct-

ing batch effects in high-dimensional data, such as gene expression data. Like the MNN

method, FastMNN is based on the idea of matching samples based on their mutual nearest

neighbours, which are samples that are most similarity in their mutual neighbours to each

other in terms of their gene expression levels. The main difference between MNN and

FastMNN is that FastMNN is designed to be faster and more efficient than MNN. It uses a

fast nearest neighbour search algorithm and an efficient optimization method to speed up

the calculation of the mutual nearest neighbours and the matching of the samples [29].

2.4.4 Liger

Linked Inference of Genomic Experimental Relationships (Liger) is a method for cor-

recting batch effects in gene expression data [30]. It is based on the idea of using latent

variables to capture the sources of batch effects and remove them from the data. This

method first obtains lower dimensional space of the data using integrative non-negative

matrix factorization (iNMF). This factorization is based on generating non-negative ma-

trices to improve the inspection of factors [31]. Then shared factor space is used to create

a shared factor neighbourhood graph instead of just finding the maximum factor in the

space. The factor space provides a general coordinate system to describe the data from
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different perspectives. With community detection performed on the graph, joint clusters

are identified. Then one of the datasets, usually the biggest one, is chosen and the clusters

of other datasets according to the joint clusters found by the community detection, would

be joined to the bigger dataset.

2.4.5 Seurat 3 CCA

Seurat 3 is an updated version of Seurat 2 for integrating datasets that also uses canonical

correlation analysis (CCA) for dimensionality reduction [32].Canonical-correlation analy-

sis (CCA) is a statistical method used to find relationships between two sets of variables (X

and Y) by identifying linear combinations of these variables that have the highest correla-

tion with each other. It is commonly used when there are correlations among the variables

and can be helpful in identifying underlying patterns and relationships [33]. It does this

by identifying ”anchors” that represent similar cell states across different batches. These

anchors are identified using mutual nearest neighbours in the normalized CCA subspace.

To ensure that the anchors accurately represent similar cell states, Seurat 3 uses shared

nearest neighbour graphs to assess the similarity between cell types. Once the anchors

have been identified, Seurat 3 computes a correction vector using the difference in expres-

sion profiles between cells and uses this vector to transform the data in order to remove

the batch effects.
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2.4.6 Conos

The Clustering On Network Of Samples (Conos) is a method that tries to connect large

scRNA-seq datasets together. This method in the first step, filters and normalizes each

dataset individually. Then compares all pairs of datasets and creates an error-prone map-

ping between the cells from different datasets. Finally, it creates a joint graph and uses that

graph for community detection and propagating labels [34].

2.4.7 ComBat

The ComBat method was also originally designed for microarray gene expression data

[35], but its usage is extendable to RNA-seq data as well [36]. It was developed by John-

son, Li, and Rabinovic in 2007. ComBat uses the following steps to remove batch effects

from gene expression data. It first standardizes the expression data by ensuring that all

genes have similar means and variances. Then it uses a Bayesian approach to fit the stan-

dardized data to Gaussian distributions in order to estimate the batch effects present in the

data. This method parameterizes the expression with background level, changes caused by

biological condition and mean and variance batch effect. These parameters are estimated,

and used for adjusting batch effect. Lastly, it utilizes batch effect estimators to correct the

original expression matrix. This involves adjusting the data to remove the batch effects,

resulting in a batch effect corrected dataset [36].
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In this section, we have discussed various methods for batch effect removal and data inte-

gration in scRNA-seq analysis. Some methods, such as ComBat and Limma, correct the

underlying gene expression, while others, including Conos, Seurat CCA, FastMNN, Liger,

and Harmony, correct the PCA space or other low-dimensional spaces. Table 2.1 shows

the summary of batch effect removal and data integration methods in scRNA-seq analysis

based on their correction types.

Method Correction Type

ComBat Gene Expression

Limma Gene Expression

Conos PCA/low-dimensional space

Seurat CCA PCA/low-dimensional space

FastMNN PCA/low-dimensional space

Liger PCA/low-dimensional space

Harmony PCA/low-dimensional space

Table 2.1: Summary of batch effect removal and data integration methods in scRNA-seq

analysis
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2.5 Batch effect assessment methods

Batch effect assessment methods are tools that allow researchers to identify and quantify

the extent of batch effects in their scRNA-seq data. Silhouette [37], Mixing metric [18],

K-nearest neighbour batch effect test (kBET) [38], and adjusted Rand index (ARI) [39] are

methods that are used in this thesis. In the following, brief explanations of these methods

are provided.

2.5.1 Silhouette

The silhouette method is a technique used to evaluate the quality of clustering in a dataset

[37]. It is based on the idea that points within a cluster should be similar to each other,

while points in different clusters should be dissimilar. The silhouette value of a point is

a measure of how well it is assigned to its cluster, with higher values indicating a better

fit. To calculate the silhouette value of a point, the average distance between that point

and all other points in the same cluster is first calculated. This is known as the intra-

cluster distance. Then, the average distance between the point and all points in the nearest

cluster is calculated. This is known as the nearest-cluster distance. The silhouette value of

the point is then calculated as the difference between the nearest-cluster distance and the

intra-cluster distance, divided by the maximum of the two distances. The formulation for
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silhouette value is as follows:

si =
dnearest − dintra

max(dnearest, dintra)

Where:

• si is the silhouette value of point i.

• dnearest is the average distance between point i and all points in the nearest cluster.

• dintra is the average distance between point i and all other points in the same cluster.

The silhouette value is a measure of how well point i is assigned to its cluster, with higher

values indicating a better fit. It is calculated by taking the difference between the nearest-

cluster distance and the intra-cluster distance and dividing it by the maximum of the two

distances. This normalizes the silhouette value to a range of -1 to 1, with values closer to

1 indicating a better fit and values closer to -1 indicating a poor fit.

In the context of assessing batch effects in scRNA-seq data, the Silhouette Index can be

used to evaluate the impact of batch effect correction on clustering quality. If batch ef-

fects are present, cells from different batches but of the same cell type may form separate

clusters, leading to a lower average silhouette value. After batch effect correction, these

cells should be more similar to each other and form a single cluster, resulting in a higher

average silhouette value. Thus, an improvement in the silhouette values after batch effect

correction could be an indication of successful removal of batch effects.
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2.5.2 kBET

K-nearest neighbour batch effect test (kBET) is a method for assessing the effectiveness

of batch correction in scRNA-seq data [38]. To use kBET, the full gene expression dataset

(D) is first preprocessed to remove low-quality or uninformative cells. Then, the k-NN

distance is calculated for pairs of cells in the dataset. The k-NN distance is calculated

using the cover-tree algorithm, which is a data structure that efficiently computes near-

est neighbors in high-dimensional spaces by hierarchically partitioning the data points

into nested sets. This algorithm allows for faster k-NN distance calculations compared to

traditional methods [40]. To perform dimensionality reduction, the first 50 eigenvectors

corresponding to the largest eigenvalues are calculated using the singular value decompo-

sition (SVD) function. SVD is a linear algebra technique that decomposes a matrix into

three matrices, where the middle matrix contains the singular values in descending order.

The eigenvectors and eigenvalues are derived from the SVD, with the eigenvectors repre-

senting the principal components of the data and the eigenvalues indicating the amount of

variance explained by each principal component. Next, the k-NN distances are compared

between cells from the same batch and cells from different batches, and the distribution of

the number of cells in each batch is compared to the distribution under the null hypothesis

(i.e., the absence of a batch effect). The comparison is performed using the chi-squared

test, a non-parametric test used to determine if there is a significant difference between
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the observed frequencies in a categorical dataset and the expected frequencies under the

null hypothesis [41]. The results of this comparison are then summarized by computing

the average rejection rate (S) over all tests, which is a test statistic for the whole dataset.

If S exceeds the chosen significance level (alpha), the null hypothesis can be rejected for

the whole dataset, indicating the presence of a batch effect. Commonly used significance

levels are 0.05 (5%) or 0.01 (1%), but the choice of the significance level should be made

based on the specific research context and the desired balance between the risk of false

positives (Type I error) and false negatives (Type II error).

2.5.3 ARI

The Adjusted Rand Index (ARI) is a measure of the similarity between two clustering re-

sults [39]. It was introduced by Hubert and Arabie in 1985 as a way to evaluate the quality

of clustering algorithms and assess the similarity between different clustering results. The

ARI measures the proportion of pairs of elements that are either assigned to the same clus-

ter or to different clusters in both clusterings. It takes into account both the number of pairs

that are assigned to the same cluster in both clusterings (true positives) and the number of

pairs that are assigned to different clusters in both clusterings (true negatives). The ARI is

calculated as follows:

ARI =
true positives + true negatives − expected value

maximum value − expected value
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where the expected value is calculated as:

expected value =
(true positives + f alse positives) ∗ (true positives + f alse negatives)

total pairs

and the maximum value is calculated as:

maximum value =
total pairs − 1

2

So the ARI value increases as there are more cells that were assigned to the same clusters

and belonged to the same cluster (Ture positive) or the cells that don’t belong to the same

clustering and weren’t assigned to the same cluster correctly (True negatives).

The ARI can be used to evaluate the impact of batch effect correction on the similarity

between clustering results. If batch effects are present, clustering results based on the

original data and the batch-corrected data may be quite different, leading to a low ARI

value. After successful batch effect correction, the clustering results should be more simi-

lar, resulting in a higher ARI value. In this case, a ground truth clustering (e.g., based on

known cell types) is needed to compare the original and batch-corrected data, allowing for

the assessment of batch effect removal.

2.5.4 Mixing Metric

The Mixing Metric is a feature of the Seurat package, as explained in 2.1.1, for analyzing

scRNA-seq data. The Mixing Metric is a measure of the degree of batch effect correction
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in a Seurat object, which is a data structure used to store and manipulate scRNA-seq

data in Seurat. This metric is calculated by examining the local neighborhood of each

cell in the dataset, looking at a maximum of k nearest neighbors for each cell. In this

context, a ”group” refers to a set of cells originating from a specific batch. The Seurat

mixing metric determines the k nearest neighbors of each cell within its own group (i.e.,

within the same batch) and the rank of those neighbors in the overall neighborhood, which

includes cells from different batches. The median of these values is then calculated across

all groups (batches), resulting in a mixing metric value for each cell in the dataset. A

lower value in the output of this algorithm indicates better mixing and, therefore, more

effective batch effect correction. In order to make this algorithm consistant with other

assessment methods, the output is subtracted from a constant value. This constant value

by the suggestion of the authors of the Seurat package, is chosen as the max number of

clusters.

This section demonstrates that each method is founded on robust mathematical and

biological principles. When applied to a dataset, these methods can yield quantifiable

results regarding the presence of batch effects. However, the true value of these methods

becomes evident when they are used to compare the performance of different batch effect

removal techniques. By doing so, scientists can make informed decisions about which

method to use for the remainder of their research.
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Examining the Role of Batch Effect in

Other Fields

ScRNA-seq studies are particularly prone to batch effects because these studies often in-

volve the use of multiple samples, which may be collected and processed at different times

or in different locations. This can make it more difficult to control potential sources of

batch effects. However, batch effects can occur in any field of research or study where

samples or measurements are taken over time or from multiple sources. Some examples

of fields where batch effects may be a concern are discussed in the rest of this chapter.

31
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3.1 Biological imaging

In biological imaging, batch effects can occur when images are acquired or processed at

different times or in different locations; for example, no two MRI machines capture the

same image even if they scan the exact same person. One common source of batch effects

in biological imaging is the use of different imaging instruments or software to acquire

or process images. For example, if images are acquired using different microscopes or

cameras, differences in the sensitivity or resolution of these instruments could introduce

batch effects in the data. Similarly, if images are processed using different software or

settings, variations in the algorithms or parameters used could also introduce batch effects

[42].

3.2 Molecular biology

In molecular biology, batch effects can be introduced through variations in the quality or

stability of reagents or other materials used in the experimental process. For example, if

different batches of a particular enzyme are used to digest DNA samples, variations in the

activity of the enzyme could introduce batch effects in the data. Similarly, variations in the

conditions under which samples are stored or handled, such as temperature or humidity,

can also introduce batch effects. To minimize batch effects in molecular biology studies,
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it is important to carefully control and standardize all aspects of the experimental process,

including the use of reagents and materials, and the handling and storage of samples [43].

3.3 Social sciences

Batch effects can occur in social science studies when there are variations in the way

that data is collected or processed, or when there are differences in the characteristics of

the study population. To address these issues, researchers can carefully standardize the

data collection process, using consistent methods and instruments across all study sites.

Statistical methods can also be used to identify and adjust for batch effects in the data

analysis. Here are a few examples of how batch effects have been identified and addressed

in social science research:

• Survey data: In survey research, batch effects can occur when data is collected by

different teams of researchers at different times, using different methods or instru-

ments. Standardizing the data collection process and using consistent methods and

instruments can help minimize these effects [44].

• Longitudinal studies: In longitudinal studies, batch effects can occur when there are

variations in the way that data is collected or processed over time. Ensuring the use

of consistent methods and instruments across all study sites and time points can help
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minimize these effects [45].

• Meta-analyses: In meta-analyses, batch effects can occur when there are variations

in the way that data is collected or processed in the studies being analyzed. Stan-

dardizing the data collection process and using consistent methods and instruments

across all studies can help address these issues [46].

3.4 Impact of batch effect on results

According to [47], batch effects can have significant impacts on the results of experiments,

particularly when data from multiple studies or batches is combined. Batch effects are

systematic differences in measurements that are introduced by the batch or sample prepa-

ration rather than by the natural variability being studied. They can occur when samples

are processed in different batches over time or under different external conditions and can

introduce significant variability into the data, making it difficult to accurately compare

measurements between samples or to draw meaningful conclusions from the data. It is

important to carefully control for batch effects in experimental design and analysis to en-

sure that the results of the study are reliable and accurate. In situations where data from

multiple studies or batches must be combined, it is important to consider the potential for

batch effects and take steps to minimize their impact on the results of the analysis. This
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can be done through careful experimental design and the use of statistical methods to cor-

rect batch effects. Failing to adequately control for batch effects can lead to incorrect or

biased results, which can compromise the validity and usefulness of the study.
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Batch Finder

4.1 Introduction

Technological advances in recent years have enabled the generation of single-cell tran-

scriptional profiling of thousands of cells in one experiment [48], yet there is much more

to reveal by the integration of datasets across donors, studies, and technological platforms.

The technical variation that originates from handling different batches, which is known as

the batch effect, is an obstacle in the way of recognizing biological variations. In [13],

Tung et al. have shown that there can be a substantial variation between technical repli-

cates. By decreasing the cost and time of sequencing and increasing the number of re-

searches done on scRNA-seq data, it is also becoming more of a problem in the age of

36
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big data [49]. Figure 4.1 hypothetically demonstrates the batch effect in the integration

of biological or technical replicates of a sample. In part a, the same sample has been

through two different procedures to generate data and in part b, there are two samples that

are biological replicates but processed simultaneously. Biological replicates are samples

that are taken in the same biological situation; For example, a sample of a mouse brain

taken on the same day. Removing batch effect from integrated data is a crucial step in the

pre-processing workflow of data analysis [50].

4.1.1 Batch Effect Removal Methods

Various studies have proposed methods to reduce or remove the batch effects [25, 26, 29,

30, 32, 34, 36]. Although it seems simple to remove the batch effect, it becomes chal-

lenging when the biological variability, which is valuable information within the datasets,

must be preserved and not removed. These studies utilize different techniques and models

to perform this task. The batch effect removal methods vary from newer methods like the

projection of mutual nearest neighbours (MNNs) [27] to the ones that have been available

for longer such as ComBat [35], which is a linear regression-based method. Some recent

studies [51, 52, 53] focus on benchmarking batch effect removal methods. In [54], an in-

depth benchmark study has been conducted on several batch effect removal methods, in

order to find the best method in terms of their computational runtime, the ability to handle
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Figure 4.1: Batch effect in sc-RNA seq data. a Technical replicates, The batch effect is

caused because the same cells have gone through the same technical setup but not simulta-

neously and through two processes. b Biological replicates, The batch effect is caused due

to having biological replicates and going through the same process and technical setup.
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large datasets, and effectiveness.

4.1.2 Batch Effect Assessment Methods

One of the most common ways of finding the best batch effect removal method in terms of

their effectiveness is by employing UMAP and t-SNE visualizations. As these methods are

explained in 2.3.2 and 2.3.3, they construct a low-dimensional representation of the data

in which similar points are close together and dissimilar points are farther apart. While

these low-dimensional embeddings play a crucial role in providing insight into the data,

they cannot represent the full information within the dataset and the results are subjective.

Also, as the dataset grows in the number of cells, it gets more complicated to determine

the best batch removal method. The effort to find a quantitative parameter representing

the batch effect within the dataset resulted in different assessment methods for the batch

effect. Some methods are common procedures for evaluating clustering algorithms, such

as Silhouette [55] and ARI [39] and some, like kBET [38], only focus on single-cell RNA-

seq batch effect assessment. While these methods have been proven effective, they can’t be

trusted completely, One of the reasons is that these methods do not incorporate biological

insight into their assessment.
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4.1.3 Scope of Research

In this study, a new batch assessment method is proposed, proper simulation data is de-

signed and tested, and the performance of this new method is benchmarked against the

performance of 3 previously developed batch assessment methods, which are kBET[38],

Silhouette [37], and ARI [39]. Then mixing metric assessment [18] is added to these

methods to be tested on 3 public single-cell RNA-seq datasets as this method is a built-in

Seurat function and only tested on biological datasets. These datasets are chosen so that

each demonstrates a different challenge in batch effect assessment. Afterwards, all 5 batch

effect assessment methods’ results including the suggested method are calculated and the

expert opinion on the performance of each batch effect removal method using visualization

methods is provided. Finally, the quantitative results are compared with the expert batch

effect assessment.

4.2 Proposed Batch Effect Assessment Method

I propose Batch Finder as a method to produce a quantitative measure for representing

batch effect within scRNA-seq data. In the following the intuitive idea behind Batch Finder

is explained, then the algorithm and workflow are explained, and finally, the implementa-

tion and challenges are expounded.
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4.2.1 Concept

As explained in section 1.3, the batch effect is due to the biased emplacement of cells in

the multi-dimensional space of gene expressions or the acquired dimension reduction after

combining two or more different sets of data. As the cells from the same cell type have

similar functions, it is expected that in general, they are in closer proximity in the feature

space than those from other cell types. This basic rule is the core that Batch Finder has

been shaped around.

After mixing multiple datasets, it is most desirable to have the same cell types well mixed

and close to each other and have different cell types apart from each other. It is the pro-

cess that happens when an expert is trying to determine batch effect presence in lower-

dimension visualizations. If the same cell types from different datasets are well mixed and

simultaneously away from the other cell types, it’s a good and acceptable mix for contin-

uing the data analysis.

Batch Finder is a method that extracts the relationship between cell types in the dataset.

Although the main purpose of this method is for batch effect recognition, it also provides

valuable information about the dataset as well. In Batch Finder, batch effect measurement

is based on a normalized Euclidean distance between the cells of the same cell types and

different cell types. As it is shown in figure 4.2, the distance between cells of the same type

is correlated with an increase in batch effect, while the distance between cells of different
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types is correlated with a decrease in batch effect. One advantage of using this method

to measure batch effect is that it can be applied to datasets whose cell types don’t have

complete overlap and there are cell types that are only available in one dataset, even if the

datasets do not have any cell types in common. This allows for accurate measurement of

a batch effect in a mixture of two datasets, even if in the worst case, the datasets do not

have any cell types in common. Batch Finder is designed specifically so that it considers

biological concepts and the direct thought process of experts in the field during the math-

ematical calculations of batch effect.

4.2.2 Algorithm and Implementation

The algorithm for implementing the concept explained in section 4.2.1 is demonstrated in

the flowchart in figure 4.3 and figure 4.5.

First, a data frame containing all distances between pairs of cells is generated. It uses

Euclidean distance as it is mentioned in section 4.2.1. So for each cell, we have their

distance calculated as in formula 4.1. In equation 4.1, C is the set of all cells and for each

cell c, Posc is the vector of all assigned values in the input data to that cell. This data can

be a count matrix or a dimension reduction matrix. I is the length of the Pos vector, which
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Figure 4.2: Demonstration of distances between different cell types. The distance between

cell type 1 in batch 1 and batch 2 is desired to be less and the distance between cell type

1 and cell type 2 in batch 1 needs to increase so that cell type 1 and cell type 2 remain

separable.
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has the same length for all cells.

∀c1,∀c2 ∈ C,

dist1,2 = ||
−−−−−−−−−−−−→
Posc1 − Posc2 || =

√√
I∑

i=1

|Posc1,i − Posc2,i|
2

(4.1)

Now that the distance is obtained, each cell type should be analyzed solely. A loop

iterates over all cell types, performing a series of calculations that collectively generate

the final result. First, the distances between all cells of a specified cell type and all other

cell types are normalized. These normalized distances are then summarized by calculat-

ing the mean and variance for each combination of batch and cell type. Additionally, the

number of values used in each summary calculation is recorded for future reference. This

number of values is equal to the product of the number of samples for each cell type. It is

important to note that cells from different batches are treated differently, as this is the pri-

mary source of the batch effect. Ignoring this distinction would compromise the integrity

of the analysis. For this step’s implementation, we first normalize and then calculate the

variables.

This step of normalization occurs at the level of distances between cells of a specific cell

type and all other cells. Equation 4.2 formulates this step, where T is the set of all cell

types and dist1,2 is the result value in 4.1. I is the number of cells in t1 and J is the number
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of cells in C. d1,2 is the normalized distance.

∀t1 ∈ T,

∀c1 ∈ t1,∀c2 ∈ C,

d1,2 =
dist1,2 × I × J∑∑I,J

i=1, j=1 disti, j

(4.2)

Equation 4.3 demonstrates the formulation of finding the variables of the second step after

normalizing distances. In this equation, B is the set of all batches present in the datasets.

I1,1 is the number of cells that fits in the conditions for c1 which is the cell type t1 and batch

b1 and J2,2 is the same number for c2.

∀t1 ∈ T,∀t2 ∈ T,∀b1 ∈ B,∀b2 ∈ B,

∀c1s.t.c1 ∈ t1 ∧ c1 ∈ b1,

∀c2s.t.c2 ∈ t2 ∧ c2 ∈ b2,

m1,1−2,2 =

∑∑I1,1,J2,2
i=1, j=1 di, j

I1,1 × J2,2

(4.3)

To clarify the notation for m1,1−2,2, it’s the mean of normalized distances from cell type 1

of batch 1 to cell type 2 of batch 2. Also, let’s define a new variable derived from equation

4.3 as the number of samples as in equation 4.4.

s1,1−2,2 = I1,1 × J2,2 (4.4)

The other parameters such as variance and standard deviation can be obtained in the same
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step but as for the current implementation of the method it’s not needed, it has been ne-

glected. Note that after this step the dimension of distances is reduced from the square of

the number of cells in the dataset to the square of the summation of the number of cell

types within each batch. This means that if there is a cell type A both in batch 1 and batch

2, that cell type must be counted twice.

In the following step, another normalization is performed at the level of cell types. This

normalization aims to make the distance results comparable across cell types. To achieve

this, the distance between cells of the same type within the same batch is used as a refer-

ence to normalize the distances for that cell type. Equation 4.5 shows the mathematical

procedure for calculating the normalization term, where m1,1−1,1 is obtained from equation

4.3, s1,1−1,1 from equation 4.4, I is number of batches in B

∀t1 ∈ T,

n1 =

∑I
i=1 m1,i−1,i × s1,i−1,i∑I

i=1 s1,i−1,i

(4.5)

And now all mean distances can be normalized as in equation 4.6

∀t1 ∈ T,∀t2 ∈ T,∀b1 ∈ B,∀b2 ∈ B,

norm mean1,1−2,2 =
m1,1−2,2

n1

(4.6)

The term ”distance between cell types,” as used in Section 4.2.1, refers to the normalized

mean distance calculated in equation 4.6. This normalized mean distance is used as a

measure of the distance between cell types.
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In order to help experts to have a better understanding of the relation between different

components of the dataset, this result is also provided in the final output of the suggested

method. There are several reasons why this information may be useful for experts:

• The relation between cell types is a key metric in determining the batch effect. This

method successfully summarizes all the information in the count matrix or dimen-

sion reduction matrix into much smaller yet informative new data.

• Since datasets may contain outliers, calculating means can be a useful method for

mitigating the impact of these outliers without completely discarding their influence.

As such, this data not only provides valuable insights but also filters out unnecessary

information, making it more reliable and robust.

• The size of each cell type is taken into account, eliminating the need for additional

processing. As a result of this approach, cell types with a small number of cells do

not have as much influence as cell types with a large number of cells. This ensures

that the analysis is balanced and fair and that the results are not unduly influenced

by cell types with a disproportionate number of cells.

• This method generates the final data from the original dimensions of the dataset,

ensuring that all of the information present in the original data is retained. As a

result, the final data is a complete and comprehensive representation of the original
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dataset.

• As mentioned, although this method is designed for batch effect detection, it is also

a cell-type-based summarization. Using its descriptive abilities, it helps the best for

finding unidentified cell types based on their relationship with other cell types; For

example, if an unidentified cell type has the closest relation with immune cell types,

it most probably has the same functionality.

As the final goal of the method is to provide a final quantitative measure for batch effect,

cell type distances need more steps to take so that a final decision about batch effect inside

the dataset would be achieved. In order to do that we need two more parameters which are

two weights.

• Same cell type weight: It is a weight for showing how important is to have the same

cell types closer to each other.

• Different cell type weight: This weight is for the importance of having cells with

different cell types apart.

It is usually that the same cell types being close together have more value than different cell

types. In fact, it is the ratio of these weights that matters, but having two values prevents

extra complications. These weights can be adjusted and determined by the scientist using

the method but they have a recommended method as the default value. The default ratio
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is one to two for same cell types to different cell types which means that not mixing

different cell types is twice as important as getting the same cell types together. It is

because preserving the biological variation is more important than removing batch effect

as the research can not proceed after removing biological variation.

Equation 4.7 shows how the final batch number is created. batch number is a batch effect

acceptance measure for the dataset, that shows how acceptable is the dataset in terms

of batch effect. norm mean1,1−2,2 is obtained from equation 4.6 and is initially 0. This

equation decreases batch number as the distance between the same cell types among all

batches increases.

∀t1 ∈ T,∀b1 ∈ B,∀b2 ∈ B,

batch number = batch number − wsame × norm mean1,1−1,2

(4.7)

And then n value gets updated by the distance between different cell types, from the same

batch, so that no batch is squeezed to make the same cell types close. Equation 4.8 demon-

strates this update step.

∀t1 ∈ T,∀t2 ∈ T,∀b1 ∈ B,

batch number = batch number + wdi f f erent × norm mean1,1−2,1

(4.8)
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Parameter Description

c Lowercase letter c is used to refer to a cell within the dataset

C Uppercase letter C is the set of all cells available in the dataset

−−−→
Posc Vector for cell c that has the gene expression values or dimension reduction values

dist1,2 Euclidean distance between c1 and c2

t Lowercase letter t is used to refer to a cell type within the dataset

T Uppercase letter T is the set of all cell types available in the dataset

d1,2 normalized distance between c1 and c2

b Lowercase letter b is used to refer to a batch within the dataset

B Uppercase letter B is the set of all batches available in the dataset

I1,2 or J1,2 number of cells that are from cell type t1 and batch b2

m1,2−3,4 Mean of normalized distances between cells that are from cell type t1 and batch b2 to cells from cell type t3

and batch b4

s1,2−3,4 number of pairs that can be made between cells that are from cell type t1 and batch b2 to cells from cell type

t3 and batch b4

n1 normalization coefficient for cell type 1

norm mean1,2−3,4 normalized value of m1,2−3,4 by normalization coefficient of first cell type ,n1

batch number Final batch indicator for the dataset

wsame Determined weight for the normalized mean distance between same cell types

wdi f f erent Determined weight for the normalized mean distance between different cell types

Table 4.1: A list of parameters that were used during section 4.2.2 with a brief description.

4.2.3 Explaining Decisions in Algorithm

Here we discuss the reason behind certain steps and calculations in the algorithm and show

how they are useful and meaningful for the batch effect assessment.
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Figure 4.3: Flowchart of batch finder, the main function for implementing Batch Finder

method. The algorithm starts by getting the input and performing the explained algorithm

step by step. In the first step, the function all distances pairs is called. The algorithm

of this function is provided in figure 4.5 a. Then the unique cell types are detected and

By selecting the first cell type the Batch finder one celltype function is called. This al-

gorithm flowchart is available in figure 4.5 b. The output of this algorithm is saved into a

data frame and this process repeats until all cell types are analyzed and then the function

Batch number which is explained in figure 4.4, is called and the final output is generated.
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Figure 4.4: Flow chart of batch number function. This function is called in the final

step and calculates a metric for batch effect by the given weights and the mean distances.

This algorithm strictly follows the logic behind calculating batch effect. It increases the

batch acceptance if different cell types from the same dataset are distant and decrease the

acceptance if the same cell types are distant.
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Figure 4.5: a, Flowchart of all distances pairs function. This function simply calculates

distances between all cells in the dataset.b, Flowchart of Batch finder one celltype func-

tion. This function generates the normalized distance data frame for each cell type.
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• Normalization in equation 4.2: This step normalizes all distances from all cells in

cell type to all other cells by its mean. In other words, it’s balancing the distance

from cells from a cell type to all other cells. This means that the distance from cell

type a to b is relative to the proximity of the other cell types to cell type a while the

value for the distance from cell type b to is is relative to the proximity of the other

cell types to cell type b.

• Normalization term in equation 4.5: Here the normalization term is used for the

mean distance between every pair of cell types and in order to make them compa-

rable to each other, every mean distance is divided by the weighted mean of mean

distances from the first cell type to all other cell types. This weighted mean indi-

cates the mean distance of that cell type to all others and using this normalization if

a normalized mean is more than one, it indicates that it is further than the majority

of other cell types. Figure 4.6 demonstrates this concept.

• Using cell types from the same batch in equation 4.8: As in data integration, only

a relation between the same cell types can be assumed and the relation between

different cell types can’t be expected in any way. The reason that distance between

the same cell types is important to be considered is that cell types in the same batch

shouldn’t be compressed because the decrease between the same cell types is just a

cause of compression not actually removing batch effect.
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4.3 Test data

After designing the algorithm, a set of data has been simulated in order to test the perfor-

mance of my batch effect assessment method alongside other assessment methods. The

goal of designing these test cases is to minimize the number of unknown parameters and

simplify the comparison of different test cases, in order to increase confidence in the re-

sults. This is done by reducing the number of variables. This series of test data is designed

in lower dimensions so the data can be visualized without losing information and the as-

sumption of batch effect is accurate. Having defined the test cases, five major tests are

subsequently proposed that utilize these test cases to illustrate their respective arguments

and evaluate the difficulty of assessing batch effects using various methods.

4.3.1 Defined test cases

I designed 12 test cases to evaluate the performance of batch effect assessment methods.

In each test case, we constructed 2 or 3 hypothetical cell types, with each cell type being

defined by two dimensions. The limits of these dimensions were set to constrain the cells

belonging to a specific type. Subsequently, a number of cells were generated for each cell

type, such that all the cells in a cell type are restricted to a desired area, and the locations of

cells are randomly selected in that specific area using a uniform distribution. The number

of cells in each cell type was fixed as 500, but only in the cases tat mentions an increase in
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Figure 4.6: Necessity of normalizing distances between cell types in a data set. The dis-

tance between cell type 1 and cell type 5 is a determined value but in cell type 1 perspec-

tive, it is a relatively high distance as it has the greatest value among the distances of cell

type 1 to other cell types, but it is a relatively low distance from cell type 5 point of view

because it is the lowest among all distances between cell type 5 and all other cell types.
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the cell frequency, the number of cells in each cell type was increased to 1000. Here I first

explain all of the test cases and my purposes for using each test case.

Test case 1

Figure 4.7 demonstrates a sample distribution for Test case 1. This test case has well-

separated different cell types inside a batch and well-mixed the same cell types. This case

is designed to show a very good case data integration. All cell types are well apart and

also batches are completely mixed.

Test case 2

Figure 4.8 demonstrates the sample distribution of Test Case 2. Test case 2 is very similar

to test case 1. However, it has a big and challenging difference. Although as shown in

figure 4.8-a, the same cell types a and b, both are close to each other, while by looking

at figure 4.8-b, it can be seen that batches 1 and 2 are not well mixed and they are just

side by side. In terms of clustering, it’s considered a good cluster but from a biological

perspective, these cells need to be mixed a little bit more.

Test case 3

Figure 4.9 shows how cells are distributed in 2-dimensional space for Test Case 3. In case

3, cell type b is almost separated from its equivalent in the other batch but is still closer to
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(a) (b)

Figure 4.7: Test Case 1: a, Dataset visualization based on their cell type. Here cell types

a and b are completely separated b, Dataset visualization based on their original batch.

Batches 1 and 2 are very well mixed.
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(a) (b)

Figure 4.8: Test Case 2: a, Dataset visualization based on their cell type. b, Dataset

visualization based on their original batch.
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(a) (b)

Figure 4.9: Test Case 3: a, Dataset visualization based on their cell type. Cells in cell type

a are close to each other while cells in cell type b are separated.b, Dataset visualization

based on their original batch. It can be seen that batch 2 is getting further away from batch

1.

the same cell type than the others. This case is a mid-step between cases 2 and 4 to check

if the batch effect metric changes accordingly or not.

Test case 4

The purpose of this case is to smoothly change from case one to case seven. Here cell type

a in batch 2 is completely apart from cell type a in batch 1 but cells in cell type b are still
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(a) (b)

Figure 4.10: Test Case 4: a, Dataset visualization based on their cell type. Cells in cell

type a are very close while cells in cell type b are apart.b, Dataset visualization based on

their original batch. The batches are partly apart while and partly close to eachother.

together. Figure 4.10 illustrates this case.

Test case 5

Figure 4.11 represents test case 5. Case 5 represents a border between two main scenarios.

In the first scenario, cells of the same type are closer to each other than cells from different

batches, while in the second scenario, cells within the same batch are closer to each other

than cells of the same type but from different batches.
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(a) (b)

Figure 4.11: Test Case 5: a, Dataset visualization based on their cell type. Here call types

are completely apart from each other. b, Dataset visualization based on their original

batch. The batches in this case are also apart and also divided into two parts.
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(a) (b)

Figure 4.12: Test Case 6: a, Dataset visualization based on their cell type. cell types a and

b are very close to each other in this case.b, Dataset visualization based on their original

batch. Batches 1 and 2 are completely separated and indicate a high amount of batch

effect.

Test case 6

Case 6 has a very high amount of batch effect, where two cell types in the same batch are

close to each other and batches are completely apart. Figure 4.12 shows sample distribu-

tion in test case 6.
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Test case 7

Case 7 has the most batch effect among all the cases. As shown in figure4.13-a two cell

types are not separable at all while figure 4.13-b shows that batches 1 and 2 are completely

apart. This is a naturally uncommon case. However, this situation can arise as a result of

using a batch regression method, and it is important to investigate the performance of batch

effect assessment methods in this case. This is because the inability to determine cell types

can have significant consequences for the accuracy of the batch effect assessment.

Test case 8

Figure 4.14 shows sample distribution in test case 8. As in this test case, the number of

samples is doubled without changing the data distribution of test case 1. This evaluates

the sensitivity of the assessment method to the number of cells.

Test case 9

Case 9 has the same positioning as case 3, but the population of cell type ”a” has been

increased. It is because cell type ”a” is the cell type that has a good distribution in terms

of batch effect. Figure 4.15 shows sample distribution in test case 9.
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(a) (b)

Figure 4.13: Test Case 7: a, Dataset visualization based on their cell type. Cell types are

completely mixed here. b, Dataset visualization based on their original batch. batches 1

and 2 are completely separated from each other.
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(a) (b)

Figure 4.14: Test Case 8: a, Dataset visualization based on their cell type. b, Dataset

visualization based on their original batch.
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(a) (b)

Figure 4.15: Test Case 9: a, Dataset visualization based on their cell type. The population

of cell type a is more than cell type b. b, Dataset visualization based on their original

batch. These batches are not well mixed but in the part where they are closer, there are

more cells concentrated.
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(a) (b)

Figure 4.16: Test Case 10: a, Dataset visualization based on their cell type. It is visible

that the population of cell type b is more than cell type a. b, Dataset visualization based

on their original batch. These batches are not well mixed and in the part where they are

further, there are more cells concentrated.

Test case 10

Case 10 also has the same positioning as case 3, but the population of cell type b has been

increased. It is because cell type b is the cell type that has a bad distribution in terms of

batch effect. Figure 4.16 shows sample distribution in test case 10.
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(a) (b)

Figure 4.17: Test Case 11: a, Dataset visualization based on their cell type. All cell types

are completely mixed and inseparable. b, Dataset visualization based on their original

batch. Batches 1 and 2 are also completely mixed.

Test case 11

Case 11 is the case that all data is mixed together. This can be a result of the batch effect

removal method that has moved the same cell types close but it also moved the different

cell types close too. Figure 4.17 shows sample distribution in test case 11.
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(a) (b)

Figure 4.18: Test Case 12: a, Dataset visualization based on their cell type. Cell type c is

new in this case. This cell type is separated from types a and b. b, Dataset visualization

based on their original batch. This plot shows that cell type c only is available in batch 1

and batch 2 only has cell types a and b.

Test case 12

This case tries to demonstrate the performance of cell types when a new cell type is added

to case 2. Figure 4.18 shows sample distribution in test case 12. In this test, the new cell

type is only available in batch two and it is distant from other cell types to only evaluate

the presence of this cell type on the results.
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4.3.2 Results on Batch Finder

In this section, the batch effect within test cases has been evaluated by the proposed

method, batch finder. The results have been explained from two perspectives:

• An expert who wants to look at the detailed results of cell type relationships. The

detailed output of the method is used to satisfy this need.

• An expert who wants to use data for further process and needs to choose one of the

test cases for their study. The final batch number is used to respond to this need.

The results are explained in groups that cases have a meaningful connection.

Test 1: Cases 1 to 7

For cases from 1 to 7, all of them have the same number of cell types and samples. Also

in terms of batch effect, case 1 is the best case and cases gradually get worse until case

7 which is the worst case. As table 4.2 shows, as the cases are getting worst, the batch

number is also reducing which means that cases are becoming less acceptable and the

proposed method passes this test. Figure 4.19 shows the detailed result of the Batch finder.

To demonstrate how this data should be studied, some of the cells are analyzed. For

example, the distance from cell type a from batch 1 to cell type b in the same batch, a1-b1,

is 1.9 in case 1 and 0.1 in case 7. It means that a and b have a proper distance in case 1.
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Case Batch Finder number

Case 1 4.565

Case 2 4.076

Case 3 1.897

Case 4 0.638

Case 5 -4.592

Case 6 -8.837

Case 7 -9.070

Table 4.2: Batch finder result on cases from 1 - 7

Also, the same relation for case 5 has a value of 1.16 while their positions are the same in

the two cases. It is because from the perspective of cell type a batch 1 in case 1, other cell

types are closer so this distance is considered as a higher value rather than in case 5 other

cell types are also far apart from cell type a batch 1.

Test 2: Cases 1 and 8

Comparing cases 1 and 8 is a test for analyzing the effectiveness of the number of cells in

the dataset. It is expected that a well-normalized method calculates almost the same value

for both cases 1 and 8.
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Figure 4.19: Detailed result of running Batch finder on cases 1-7: each row shows the

distances between two cell types, either ”a” or ”b”, and two batches, either ”1” or ”2”.

Each column shows all mean distances in each case.
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The Batch number for case 1 is 4.565 and for case 8 it is 4.596. As the cells are not exactly

the same, this variance is an acceptable value and this test is also passed.

Test 3: Cases 3, 9, and 10

Cases 9 and 10 are designed to confirm that the Batch finder method handles a change

in the number of cells properly. compared to case 3, case 9 has more cells in type ”a”,

which are close in batch ”1” and ”2”, and must have a higher acceptance value. On the

other hand, case 10 has more cells in cell type ”b”, which are obviously separated by their

batch. The batch number for these cases is presented in table 4.3 and it shows that case 9

is better than 3 and case 3 is better than case 10. So this test is also passed by the Batch

finder.

Case Batch Finder number

Case 3 1.897

Case 9 2.631

Case 10 -0.483

Table 4.3: batch finder result on cases 3, 9, and 10
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Test 4: Case 11

This case is a special case just to measure to make sure that by just randomly putting all the

cells together it won’t result in a high acceptance rate. The result for this case is -0.0009,

which is between case 4 and case 5. As case 5 is a very well-separated case, this value is

acceptable and this test is passed.

Test 5: Cases 2, 12

This test aims to evaluate the effect of non-common cell types on the results. As another

cell type is added to batch ”1” in case 12, it is expected to have a higher value as this

cell type is not mixed with the other two cell types. The result value for case 12 is 6.134,

compared to 4.076 for case 2. It means that this test is passed and the method can correctly

take non-common cell types into consideration.

4.3.3 Results on other assessments

kBET, Silhouette, and ARI are other assessment methods that can be used here to evaluate

test cases. Mixing metric is not used in this section because it is a built-in method in Seu-

ratv4 [18] and can only run on the Seurat objects.

Figure 4.20 shows the results. In order to show results better, the Silhouette method results

have been negated and biased, because the Silhouette method returns an average dissimi-
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larity and not an acceptance measure.

kBET

kBET method seems to be oversensitive. The results only in cases 1 and 8 are acceptable

and it doesn’t accept cases 5, 6, and 7. So in test 1, it doesn’t fail although some bad cases

are considered equal.

kBET passes test 2 as cases 8 and 1 have almost the same value.

In test 3, the value for case 9 is more than case 10 but it is less than case 3, which is a fail.

kBET fails test 4 completely and it considers case 11 as one of the best cases.

For test 5 also kBET results in the wrong direction and ranks case 2 higher than 12.

Silhouette

Silhouette method passes test 1 as all the values gradually decay from case 1 to 7. It passes

tests 2 and 3 as well. This method fails in test 4 as it has completely accepted case 11. In

test 5, it is not a complete fail but as the value for case 12 is less than case 2, it’s considered

a fail.

ARI

ARI resulted in the same value for many cases. It is because the ARI algorithm decides

based on k-mean clustering and until case 4, all cell types are clustered completely cor-
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Figure 4.20: Result of batch assessment with 4 assessment methods. Every column is

scaled as the results of different methods are not on the same scale.
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rectly. The results are not contradictory with any expected result and test 4 passes as well.

As powerful as ARI is, it may result in some misleading results in complex datasets.

4.3.4 Discussion

As the table 4.4 summarizes the test results with these methods, Batch finder passes all

tests, kBET fails in the last three, Silhouette fails in the last two, and ARI fails in one

test but as it doesn’t differentiate the cases well enough, it may face problems in intricate

datasets.

Test Batch Finder kBET Silhouette ARI

Test 1 Pass Pass Pass Pass

Test 2 Pass Pass Pass Pass

Test 3 Pass Fail Pass Fail

Test 4 Pass Fail Fail Pass

Test 5 Pass Fail Fail Pass

Table 4.4: Summary of performance of batch assessment method on simulation data
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4.4 Conclusion

In this chapter, Batch finder was introduced as a new method for batch effect assessment.

Then 12 test datasets were defined and 5 different scenarios were evaluated by this simu-

lation data. Batch Finder was compared to three other methods using these tests, and the

results were analyzed and discussed. The results demonstrated that Batch Finder consis-

tently outperforms the other methods and provides a reliable estimation of batch effects

for each dataset. Overall, this research suggests that Batch Finder is a valuable tool for

accurately assessing batch effects in a variety of contexts.



Chapter 5

Results on Biological Datasets

Batch finder was introduced in 4.2 and simulation data has been defined and tested. In this

chapter, 3 biological datasets are going to be introduced and after preprocessing, 7 batch

removal methods will be applied to them. The performance of these methods is going

to be evaluated with batch finder and 4 other methods. Finally using an expert opinion

on the batch effect within the datasets, all assessment methods are compared together. In

order to evaluate batch assessment methods, proper datasets with specific characteristics

are chosen. These datasets must have a systematic batch effect so that the effort to remove

them is valid. Each dataset needed to be standardized to be coherent with other datasets

and mix easily. To do that all gene IDs where converted to Ensembl IDs. Each cell type

annotation has also been manually checked to be consistent with the other datasets. Then

80
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ddatasets would be ready to merge together.

Before generating other assessment results, an expert opinion, also referred to as manual

assessment, was carried out by the author. This assessment utilized all three visualization

methods: PCA, UMAP, and t-SNE. Although the removal method labels were eliminated,

the assessment cannot be considered entirely blinded, as the author initially generated

these labels. The objective of the manual assessment was to apply the same criteria as

those established for the algorithm, which aimed to estimate batch effect in the dataset.

This process was considered the thought process for estimating batch effect and served as

a foundation for the development and validation of the proposed algorithm

5.1 dataset1: Pancreas

The pancreas dataset consists of four different datasets for different experiments. These

datasets are:

• Dataset 1: This dataset is available at GSE81076. In this research, CelSeq protocol

was used on Illumina platform[56]. This dataset has 1004 cells.

• Dataset 2: This data is available at GSE85241 and uses CelSeq2 protocol on Illu-

mina platform [57]. There are 2285 cells in this dataset.

• Dataset 3: This dataset which uses the Fluidigm C1 system, is available at GSE86469



82 Chapter 5. Results on Biological Datasets

[58]. This dataset contains 638 cells.

• Dataset 4: The last dataset is obtained using the SMART-Seq2 protocol and is avail-

able at E-MTAB-5061 [59]. This dataset has 2394 cells.

Integration of these datasets will create a dataset with 6321 cells and 34363 genes and 13

unique cell types. Although all these datasets are obtained from Illumina devices, they

used different technologies to produce count matrices and their ”tech” is the origin of the

batch effect. But before showing the presence of a batch effect, we need to pre-process

every dataset and then merge these datasets together.

5.1.1 Pre-processing

After loading each dataset, they went through the standard steps of normalization, finding

variable features, and scaling. Figure 5.2 shows these steps. In order to make a successful

integration, all gene names should be from the same standard naming system so that the

same genes have the same symbol in all datasets. It can be Ensembl, HUGO id, or any

other standard. After Converting all gene names to a unified system , count matrices can

be merged. As shown in figure 5.1, gene names are merged together and cells are binded

together. The cell type information is provided in the original datasets.
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Figure 5.1: Preprocess of each dataset before merging together. Count matrices values of

two datasets are subject to this step.

Figure 5.2: Merging two datasets.
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5.1.2 Dataset Visualization

After mixing 4 datasets as explained in 5.1.1, for a better understanding of the dataset,

UMAP has been plotted in figure 5.3. Also, the t-SNE visualization of the dataset is

available in Appendix A. As it is visible in 5.3-b, batches are isolated and 5.3-a shows

that the same cell types are apart, indicating batch effect is present within the integrated

dataset.

5.1.3 Performing Batch Effect Removal Methods

As shown in 5.1.2, a substantial batch effect exists in the integrated data. Here 7 batch

effect removal methods, mentioned in 2.4, will be applied to the integrated dataset. These

7 methods are Harmony, Liger, Limma, Seurat CCA, FastMNN, Conos, and Combat.

Although these methods use different techniques, finally all of them provide either a new

count matrix or a new dimension reduction for the dataset as the result of their attempt to

correct the batch effect.

Harmony

After running the standard workflow on the raw integrated dataset including normalization,

finding variable features, scaling the data, and running PCA, the built-in function RunHar-

mony in the Seurat object is used to generate harmony dimension reduction data. Figure
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(a)

(b)

Figure 5.3: UMAP visualization of the pancreas integrated data before batch effect re-

moval. Each point represents a cell in the dataset. aEach colour shows a different cell type

in this figure. b, This figure specifies batches with different colours.
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5.4 demonstrates the UMAP dimension reductions of the harmony batch effect removal

method.

Limma

The Limma method uses the count matrix and batch factors to create a new count matrix.

By generating a new Seurat object with this new count matrix and the original metadata

from the dataset, the standard preparation workflow is applied to the corrected dataset.

Figure 5.5 shows UMAP visualization on the dataset corrected with the limma batch effect

removal method.

Liger

In order to implement the Liger method, first, the standard workflow must be run on the

dataset and then RunOptimizeALS and RunQuantileNorm from the SeuratWrappers pack-

age which is provided for Seurat object [18] to generate a new dimension reduction named

”iNMF”. The UMAP of this batch effect correction method is provided in fig 5.6.

Seurat Canonical Correlation Analysi

After implementing Seurat CCA and finding the integration anchors, we obtained the in-

tegrated assay visualized in Figure 5.7.
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(a)

(b)

Figure 5.4: UMAP of the pancreas integrated data after harmony method. a, cell types. b,

batches.
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(a)

(b)

Figure 5.5: UMAP of the pancreas integrated data after limma method. a, cell types. b,

batches.
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(a)

(b)

Figure 5.6: UMAP of the pancreas integrated data after liger method. a, cell types. b,

batches.
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(a)

(b)

Figure 5.7: UMAP of the pancreas integrated data after Seurat CCA method. a, cell types.

b, batches.
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FastMNN

Using the built-in function in Seurat, we generated the UMAP visualization of the ”mnn”

dimension reduction, as shown in Figure 5.8.

Conos

In the Conos package after building a graph and finding communities, a 2-D visualization

for data is generated. This visualization is named ”largeVis” and is shown in figure 5.9.

Combat

The Combat method performs its algorithm on the count matrix and generates a new count

matrix that after normalization and finding variable features, has a UMAP visualization

that is shown in figure 5.10.

5.1.4 Manual assessment of batch effect removal on pancreas dataset

In order to evaluate the performance of batch effect assessment methods, an expert opinion

is needed to be used as a reference. In this section, a thorough analysis is performed on

UMAP visualization data. The evaluation of batch effect removal methods is listed in

order from the best batch effect removal method to the worst method:

1. CCA: In the UMAP of CCA demonstrated in figure 5.7, batches are well mixed.
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(a)

(b)

Figure 5.8: UMAP of the pancreas integrated data after FastMNN method. a, cell types.

b, batches.
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(a)

(b)

Figure 5.9: largeVis visualization of the pancreas integrated data after Conos method. a,

cell types. b, batches.
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(a)

(b)

Figure 5.10: UMAP visualization of the pancreas integrated data after Combat method. a,

cell types. b, batches.
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The same cell types are also well mixed except for a few alpha cells and a few

ductal cells. Epsilon and gamma cells are too close but as it is the same in each

batch, they can be ignored. There is also a very small number of cells that are in

the wrong cell types. In total, this is the best batch effect removal attempt among all

others.

2. Conos: Referring to largeVis shown in figure 5.9, it’s obvious that parts of batches

around alpha and beta cell types are not well mixed. The number of miss placed

cells is also small.

3. Harmony: In the harmony method, alpha cell types from the fluidigm c1 batch are

separated by a distance from other alpha cells. Some misplacement of ductal cells

in acinar cells is also visible.

4. FastMNN: Referring to figure 5.8, batches are well mixed except for some parts in

alpha cell type and gamma cell type. In terms of organizing cell types, although they

are separable, epsilon, endothelial, microphage, and mast cell types are too close to

each other and ductal cell types while in each batch these cell types are not very

close to each other. There are some alpha cells near delta cells and some cells can

be seen around cells from different cell types.

5. Combat: This method result is almost the same as the raw data i.e. before batch
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effect removal, provided in figure 5.10. Most parts of batches are still separable and

the same cell types from different batches are apart. There have been only a few

improvements on the batch mixture in acinar and ductal cell types.

6. Raw data: This is the original positioning of cells in the dataset after mixing batches

together shown in figure 5.3. Fluidigm c1 is completely separated, but other batches

are better mixed. yet in each cell type batches are not mixed at all.

7. Liger: The result of the liger method shown in figure 5.6is worse than the raw data.

The reason is that here even separating cell types is more difficult and the fluidigm

c1 batch is still away from the others.

8. Limma: In the UMAP of this method demonstrated in figure 5.5, batches are still

unmixed and even cell types are not separable at all. They are just shuffled and

mixed together and that is why this is the worst attempt in this dataset.

5.1.5 Batch assessment methods results

Each batch effect removal method has been evaluated by 5 batch assessment methods.

These methods are Batch Finder, ARI, kBET, Silhouette, and Mixing metric. Figure 5.11

provides the result of these methods. Each value is an acceptance value and a higher

value means better batch effect removal performance. The heatmap is coloured based on
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each column’s values and not the whole table. As these numbers are in different ranges,

for a better understanding of the results and to make them comparable, the rank of each

batch effect removal method is calculated according to every assessment method. Figure

5.12 shows the rank table for the pancreas dataset. Also, the expert’s opinion is also

added to the table as ”Manual” assessment. To understand the correlation results better,

a boxplot is provided in figure 5.13, the ranks for each batch effect removal method are

summarized in a boxplot and the colour of each point determines which method has given

this rank to the removal method. The goal is to find out which assessment method is

closer to the expert’s opinion. Finding the correlation between rank table values can reveal

the similarity between all assessment methods. Figure 5.14 demonstrates the correlation

between all assessment methods. A higher value of correlation shows the similarity of

assessment methods.
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Figure 5.11: Batch effect assessment values on pancreas dataset. Each column of this

figure is for one batch effect assessment method. Heatmap colours are based on each

column’s values.



5.1. dataset1: Pancreas 99

Figure 5.12: Batch effect assessment ranks on pancreas dataset. Each column of this figure

is for one batch effect assessment method. The manual column is according to the expert’s

opinion.
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Figure 5.13: Batch effect assessment ranks boxplot on pancreas dataset. Each box shows

the ranks given to each batch effect removal method.
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Figure 5.14: Batch effect assessment ranks correlation on pancreas dataset.
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5.2 dataset2: Mouse brain

The mouse brain dataset includes 2 of 11 separate samples from research done on mouse

cerebral cortex [60]. These samples are:

• Sample 1: This sample is from a mouse brain and belongs to the 18th embryonic

day. It has 7137 cells.

• Sample 2: This data is also a sample on embryonic day 18. It has 13138 cells in it.

Integration of these samples created a dataset with 20275 cells and 19712 genes and 19

unique cell types. Although all these datasets are obtained by the same procedure and from

the same lab, they used different technologies to produce count matrices and their ”donor”

is the origin of the batch effect. These two samples have been chosen because both belong

to the same embryonic day and almost similar brain development is expected.

5.2.1 Pre-processing

To merge two datasets together, a shorter set of steps needs to be taken because both

experiments were done by the same lab so gene names and metadata available for them are

coherent. Two datasets just need to be binded and then go through the standard workflow.
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5.2.2 Dataset Visualization

After creating the integrated dataset, the UMAP visualization of the dataset is in figure

5.15. Batches are completely apart while in each batch cell types pattern is analogous,

indicating batch effect is present within the integrated dataset.

5.2.3 Performing Batch Effect Removal Methods

As a substantial batch effect exists in the integrated data, 7 batch effect removal methods,

mentioned in 2.4, were applied to the integrated dataset. These methods are Harmony,

Liger, Limma, Seurat CCA, FastMNN, Conos, and Combat. Although these methods

use different techniques, finally all of them provide either a new count matrix or a new

dimension reduction for the dataset as the result of their attempt to correct the batch effect.

Harmony

To process the integrated dataset, the standard workflow was followed, which included

normalization, identifying variable features, scaling the data, and running PCA. After

these steps, the RunHarmony function in the Seurat object was used to generate harmony

dimension reduction data. Figure 5.16 demonstrates the UMAP dimension reductions of

the harmony batch effect removal method.
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(a)

(b)

Figure 5.15: UMAP of the brain integrated data before batch effect removal. a, cell types.

b, batches.
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(a)

(b)

Figure 5.16: UMAP of the brain integrated data after harmony method. a, cell types. b,

batches.
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Limma

The Limma method uses the count matrix and batch factors to create a new count matrix.

By generating a new Seurat object with this new count matrix and the original metadata

from the dataset, the standard preparation workflow would be applied to the corrected

dataset. Figure 5.17 shows UMAP visualization on the dataset corrected with the limma

batch effect removal method.

Liger

To implement the Liger method, the standard workflow must first be applied to the dataset.

Then, the RunOptimizeALS and RunQuantileNorm functions from the SeuratWrappers

package can be used to generate a new dimension reduction called ”iNMF”. The UMAP

of this batch effect correction method is provided in fig 5.18.

Seurat CCA

After implementing Seurat CCA on the brain dataset by finding the integration anchors,

the new integrated assay has been visualized by UMAP in figure 5.19.
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(a)

(b)

Figure 5.17: UMAP of the brain integrated data after limma method. a, cell types. b,

batches.
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(a)

(b)

Figure 5.18: UMAP of the brain integrated data after liger method. a, cell types. b,

batches.



5.2. dataset2: Mouse brain 109

(a)

(b)

Figure 5.19: UMAP of the brain integrated data after Seurat CCA method. a, cell types.

b, batches.
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FastMNN

The FastMNN method has a built-in function in Seurat, and the UMAP visualization of

the ”mnn” dimension reduction produced by FastMNN is shown in figure 5.20.

Conos

After building a graph and identifying communities using the Conos package, a 2-dimensional

visualization of the data is generated. This visualization is named ”largeVis” and is shown

in figure 5.21.

Combat

The Combat method applies its algorithm to the count matrix and produces a new count

matrix. After normalizing the data and identifying variable features, a UMAP visualization

of the data is generated, as shown in Figure 5.22.

5.2.4 Manual assessment on batch effect removal on mouse brain dataset

To evaluate the performance of batch effect assessment methods, we need to use expert

opinion as a reference. In this section, we perform a thorough analysis of UMAP visu-

alization data. The evaluation of batch effect removal methods is listed in order from the

best method to the worst.
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(a)

(b)

Figure 5.20: UMAP of the brain integrated data after FastMNN method. a, cell types. b,

batches.
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(a)

(b)

Figure 5.21: largeVis visualization of the brain integrated data after Conos method. a, cell

types. b, batches.
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(a)

(b)

Figure 5.22: UMAP visualization of the brain integrated data after Combat method. a, cell

types. b, batches.
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1. Conos: In the largeVis dimension reduction demonstrated in figure 5.21, batches are

well mixed. The same cell types are also well mixed except for a few interneuron

cells that are not mixed with other cells but they are a little apart from the core of

this cell type.

2. CCA: Here in the UMAP shown in figure 5.19, the batches are also well mixed and

cell types are apart but some interneuron cells are apart and the difference with the

Conos method is that they are far from the core of the cell type.

3. Liger: In the liger method shown in figure 5.18, some interneuron cells are apart and

there are several cells that are misplaced.

4. Harmony: As it is visible in figure 5.16, although cell types are apart and separable

but batches are not well mixed. As the number of cells in the first dataset is almost

half of the second dataset, the second batch cells should circumvent the first batch

cells.

5. Combat: In this method, batches are closer than raw data but it couldn’t mix them

well enough.

6. Raw data: This is the original positioning of cells in the dataset after mixing batches

together shown in figure 5.15. Two batches are completely separated but in each

batch cell types are recognizable.
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7. Limma: The results are almost like raw data visualized in figure 5.17. Batches are

not mixed and cell types are separable, but interneurons are more spread than the

raw data.

8. FastMNN: The UMAP of the fastMNN method is shown in figure 5.20. Although

the batches seem well mixed, there is a critical problem that makes it even worst

than the raw dataset. Some cell types that were more separable are now not as good

as before. Layer 4 dataset is more merged into the UL CPN and from the other side

more engaged with DL CPN. This happened for migrating neurons and UL CPN.

Misplacement of cells has also happened in multiple parts. This is overcorrecting

the batch effect that mixes cell types that should not be mixed.

5.2.5 Batch assessment methods results

Five batch assessment methods have been used to evaluate the performance of different

batch effect removal methods. These methods are Batch Finder, ARI, kBET, Silhouette,

and the Mixing metric. The results of the batch effect removal methods are shown in Figure

5.23. The acceptance values for each method are displayed, with higher values indicating

better performance in removing batch effects. The heatmap is coloured based on the values

in each column, rather than the overall table. To facilitate comparison and improve the

interpretability of the results, the ranks of the batch effect removal methods are calculated
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Figure 5.23: Batch effect assessment values on brain dataset. Each column of this figure

is for one batch effect assessment method. Heatmap colours are based on each column’s

values.
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for each assessment method. This allows for a better understanding of the performance of

the different methods, despite the fact that the raw values are in different ranges. Figure

5.24 shows the rank table for the pancreas dataset. Also, the expert’s opinion is also

added to the table as ”Manual” assessment. To better understand the correlation results,

a boxplot is provided in Figure 5.25. The ranks of each batch effect removal method are

summarized in the boxplot, and the colour of each point indicates which method assigned

the rank to the removal method. The goal is to find out which assessment method is

closer to the expert’s opinion. Finding the correlation between rank table values can reveal

the similarity between all assessment methods. Figure 5.26 demonstrates the correlation

between all assessment methods. A higher value of correlation shows the similarity of

assessment methods.
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Figure 5.24: Batch effect assessment ranks on brain dataset. Each column of this figure is

for one batch effect assessment method. The manual column is according to the expert’s

opinion.
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Figure 5.25: Batch effect assessment ranks boxplot on brain dataset. Each box shows the

ranks given to each batch effect removal method.
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Figure 5.26: Batch effect assessment ranks correlation on brain dataset.
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5.3 dataset3: PBMC

The Seurat PBMC dataset is a publicly available dataset of peripheral blood mononuclear

cells (PBMCs) that has been widely used in the field of single-cell genomics. The data

includes gene expression levels, cell type annotations, and other metadata for each cell[61].

In this dataset, 9 different methods have been gathered together during two experiments.

These datasets are as below:

• Sample 1: 526 cells obtained from Smart-seq2 method.

• Sample 2: 526 cells obtained from CEL-Seq2 method.

• Sample 3: 3222 cells obtained from 10x Chromium (v2) A method.

• Sample 4: 3222 cells obtained from 10x Chromium (v2) B method.

• Sample 5: 3222 cells obtained from 10x Chromium (v3) method.

• Sample 6: 6584 cells obtained from Drop-seq method.

• Sample 7: 3773 cells obtained from Seq-Well method.

• Sample 8: 6584 cells obtained from inDrops method.

• Sample 9: 3362 cells obtained from 10x Chromium (v2) method.

Integration of these samples created a dataset with 31021 cells and 33694 genes and 10

unique cell types. The origin of the batch effect is considered the experimental method
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that each dataset is generated with. This data has been gathered with two experiments, the

first experiment has 19838 cells and the second experiment has 11183 cells.

5.3.1 Pre-processing

This dataset has been already processed through Seurat standard workflow and all samples

are mixed in a single object.

5.3.2 Dataset Visualization

The UMAP visualization of the dataset is in figure 5.27. batches are completely apart

while each batch cell type pattern is analogous, indicating batch effect is present within

the integrated dataset.

5.3.3 Performing Batch Effect Removal Methods

As batch effect exists in the integrated data between two experiments, 7 batch effect re-

moval methods, mentioned in 2.4, were applied to the integrated dataset. These methods

are Harmony, Liger, Limma, Seurat CCA, FastMNN, Conos, and Combat. Although these

methods use different techniques, finally all of them provide either a new count matrix or

a new dimension reduction for the dataset as the result of their attempt to correct the batch

effect.
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(a)

(b)

Figure 5.27: UMAP of the PBMC integrated data before batch effect removal. a, cell

types. b, batches.
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Harmony

To process the integrated dataset, the standard workflow was followed, which included

normalization, identifying variable features, scaling the data, and running PCA. After

these steps, the RunHarmony function in the Seurat object was used to generate harmony

dimension reduction data. Figure 5.28 demonstrates the UMAP dimension reductions of

the harmony batch effect removal method.

Limma

The Limma method uses the count matrix and batch factors to create a new count matrix.

By generating a new Seurat object with this new count matrix and the original metadata

from the dataset, the standard preparation workflow would be applied to the corrected

dataset. Figure 5.29 shows UMAP visualization on the dataset corrected with the limma

batch effect removal method.

Liger

To implement the Liger method, the standard workflow must first be applied to the dataset.

Then, the RunOptimizeALS and RunQuantileNorm functions from the SeuratWrappers

package can be used to generate a new dimension reduction called ”iNMF”. The UMAP

of this batch effect correction method is provided in fig 5.30.
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(a)

(b)

Figure 5.28: UMAP of the PBMC integrated data after harmony method. a, cell types. b,

batches.
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(a)

(b)

Figure 5.29: UMAP of the PBMC integrated data after limma method. a, cell types. b,

batches.
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(a)

(b)

Figure 5.30: UMAP of the PBMC integrated data after liger method. a, cell types. b,

batches.
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Seurat CCA

After implementing Seurat CCA on the PBMC dataset by finding the integration anchors,

the new integrated assay has been visualized by UMAP in figure 5.31.

FastMNN

The FastMNN method has a built-in function in Seurat, and the UMAP visualization of

the ”mnn” dimension reduction produced by FastMNN is shown in figure 5.32.

Conos

After building a graph and identifying communities using the Conos package, a 2-dimensional

visualization of the data is generated. This visualization is named ”largeVis” and is shown

in figure 5.33.

Combat

The Combat method applies its algorithm to the count matrix and produces a new count

matrix. After normalizing the data and identifying variable features, a UMAP visualization

of the data is generated, as shown in Figure 5.34.
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(a)

(b)

Figure 5.31: UMAP of the PBMC integrated data after Seurat CCA method. a, cell types.

b, batches.
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(a)

(b)

Figure 5.32: UMAP of the PBMC integrated data after FastMNN method. a, cell types.

b, batches.
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(a)

(b)

Figure 5.33: largeVis visualization of the PBMC integrated data after Conos method. a,

cell types. b, batches.
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(a)

(b)

Figure 5.34: UMAP visualization of the PBMC integrated data after Combat method. a,

cell types. b, batches.
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5.3.4 Manual assessment on batch effect removal on PBMC dataset

To evaluate the performance of batch effect assessment methods, we use expert opinion as

a reference. In this section, we conduct a thorough analysis of UMAP visualization data.

The evaluation of batch effect removal methods is listed in order from the best method to

the worst based on this analysis. According to the dataset size, providing an expert opinion

was harder and less accurate.

1. CCA: In this method shown in figure 5.31, cell types are separated and batches are

well mixed.

2. Harmony: Here the batches are also well mixed and cell types are apart but CD4+

T cells are more mixed with Cytotoxic T cells as shown in figure 5.28.

3. Conos: In the visualization of this method provided in figure 5.33, although batches

are mixed better, some cells are scattered in the middle of the visualization.

4. Liger: The batches are well mixed but CD4+ T cells are not all together demon-

strated in figure 5.30.

5. Raw data: This is the original positioning of cells in the dataset shown in figure

5.27. Batches are not well mixed, but cell types are almost apart. Some cell types

are overlapping.
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6. Combat: In this method batches are more separated than raw data while the cell

types still overlap visualized in figure 5.34.

7. FastMNN: The results are almost like the Combat method shown in figure 5.32.

batches are separated, but cell types are unnecessarily closer.

8. Limma: With the parameters used in the experiment, the Limma method failed to

perform a good batch effect removal on the dataset. The reason that the UMAP

shown in figure 5.29 looks like lines rather than the more typical, continuous spread

of points that is expected, is the Limma result is not well-suited for UMAP and

doesn’t have a clear, continuous structure, such as a smooth, low-dimensional man-

ifold.

5.3.5 Batch assessment methods results

Five batch assessment methods were applied to evaluate the effectiveness of various batch

effect removal techniques: Batch Finder, ARI, kBET, Silhouette, and the Mixing metric.

The results of these techniques are illustrated in Figure 5.35, where higher values indi-

cate better performance in removing batch effects. The heatmap is colour-coded based on

the values in each column, rather than the overall table. To facilitate comparison and im-

prove the interpretability of the results, the ranks of the batch effect removal methods are

calculated for each assessment method. This allows for a better understanding of the per-
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Figure 5.35: Batch effect assessment values on pbmc dataset. Each column of this figure

is for one batch effect assessment method. Heatmap colours are based on each column’s

values.



136 Chapter 5. Results on Biological Datasets

formance of the different methods, even though the raw values are in different ranges. The

rank table for the pancreas dataset is shown in Figure 5.36, and includes the expert’s opin-

ion as the ”Manual” assessment. To better understand the correlation results, a boxplot is

provided in Figure 5.37. The ranks of each batch effect removal method are summarized

in the boxplot, and the colour of each point indicates which method assigned the rank to

the removal method. The goal is to find out which assessment method is closer to the

expert’s opinion. Finding the correlation between rank table values can reveal the simi-

larity between all assessment methods. Figure 5.38 demonstrates the correlation between

all assessment methods. A higher value of correlation shows the similarity of assessment

methods.

5.4 Time and Memory Consumption analysis

The time taken for running each assessment method on each batch effect removal method

of the datasets has been measured and recorded. Also, the memory used by each method is

also recorded. To measure memory, the garbage collector has been used and the summa-

tion of all memory used by each method is calculated and it’s not the maximum memory

that the system should have. It’s a measure that shows how efficiently a method uses

system memory. Also to effectively process the large datasets obtained from integrating

multiple sources, it was necessary to utilize resources beyond the capacity of personal
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Figure 5.36: Batch effect assessment ranks on PBMC dataset. Each column of this figure

is for one batch effect assessment method. The manual column is according to the expert’s

opinion.
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Figure 5.37: Batch effect assessment ranks boxplot on PBMC dataset. Each box shows

the ranks given to each batch effect removal method.
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Figure 5.38: Batch effect assessment ranks correlation on PBMC dataset.
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computers and laptops. As such, all computer programs for this research were run using

Compute Canada resources and all these results are based on single CPU usage.

5.4.1 Time measurements

Figures 5.39, 5.40, and 5.41 Show the duration of each assessment method on a logarith-

mic scale.

5.4.2 Memory Consumption measurement

Figures 5.42, 5.43, and 5.44 Show the memory consumption of each assessment method

in megabytes on a logarithmic scale.

5.5 Discussion

5.5.1 Datasets

Datasets used in this chapter are chosen in order to represent different sources of batch

effect and propose different challenges to the study. Table 5.1 shows a summary of these

datasets. The pancreas dataset is used to demonstrate the technical batch effect in data

integration. The size of batches is not big so the expert analysis is more accurate. Also,

there are some cell types that are only available in one dataset to propose more challenges
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Figure 5.39: The time taken for running batch effect assessment methods on Pancreas

dataset.



142 Chapter 5. Results on Biological Datasets

Figure 5.40: The time taken for running batch effect assessment methods on Brain dataset.
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Figure 5.41: The time taken for running batch effect assessment methods on PBMC

dataset.
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Figure 5.42: The memory usage for running batch effect assessment methods on Pancreas

dataset.
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Figure 5.43: The memory usage for running batch effect assessment methods on Brain

dataset.
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Figure 5.44: The memory usage for running batch effect assessment methods on PBMC

dataset.
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for batch effect assessment methods. The mouse brain dataset shows the batch effect

originated from biological bases. The number of cells is more than in the pancreas dataset

and the number of cell types is more but the cell types are all common between the two

samples. Finally, the PBMC dataset is the biggest dataset in terms of the number of cell

types. The batch effect in this dataset is also originated from technical variation. There are

also cell types that are not common between all samples.

Dataset Dataset 1 Dataset 2 Dataset 3

Organism Human Mouse Human

Organ Pancreas Brain PBMC

Number of samples 4 2 9

Number of cells 6321 20275 31021

Number of cell types 13 19 10

Number of genes 34363 19712 33694

Batch effect origin Technology Donor Method

Year of publish 2016-2017 2019 2019

Table 5.1: Summary of datasets



148 Chapter 5. Results on Biological Datasets

5.5.2 Results analysis

According to figure 5.14, Batch Finder has the most correlation with the manual assess-

ment with the value of 0.95, Mixing metric also has provided a good assessment with a

correlation of 0.85 with the manual method. By looking at the ranks figure 5.12, it’s re-

vealed that No method failed to recognize Limma as the worst method and they gave the

CCA almost the best ranking. boxplot in figure 5.13 provides a better insight into under-

standing the variety of choices for each method. Decisions on CCA, Limma, Harmony,

and Conos methods have almost been consistent resulting in smaller boxes. For Conos,

Liger method, and Raw data the manual result is on the border of the box or even out of

it, which means most of the assessment methods failed to assess the batch effect correctly

in those cases. For the mouse brain dataset also the Btach Finder has the most similar

performance according to manual batch effect assessment shown in figure 5.26. ARI and

kBET are the second-best methods with a correlation of 0.6 which is not an acceptable

value. In figure 5.25, boxes are mostly big and there hasn’t been any consensus on any

removal method. As in the PBMC dataset, figure 5.38 demonstrates that Batch Finder is

the most correlated with the manual assessment with the value of 0.93 and then ARI has

an acceptable correlation of 0.86. In figure 5.37 boxes are mostly big, but almost all meth-

ods agree that the limma removal method performed the worst and they all categorized the

CCA as one of the best.
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In order to analyze the performance of all methods together, the correlations between man-

ual assessment and all other assessments in all datasets have been gathered in figure 5.45.

As is shown, The Batch Finder is the most correlated with the manual method in all three

datasets. The ARI also had a good performance and kBET was around 0.60 in all datasets.

The silhouette method seems to have problems with the brain dataset. It may be because

of a specific structure in the dataset or cells’ positions. As a matter of runtime, shown in

figures 5.39, 5.40, and 5.41, The ARI method is the fastest overall and then mixing metric

is the fastest method. While kBET is the slowest method and Batch finder is the second

slow assessment method. As Batch Finder attempts to consider every cell distance and

also uses the cell types to increase the accuracy, it has become slower than methods that

perform acceptably but not as well as Batch Finder.

The memory usage by Batch Finder demonstrated in figures 5.42, 5.43, and 5.44, is the

highest amount and it should be considered that it is in a logarithmic scale.

By observing the performance of Batch Finder in all datasets, it seems biased towards

the batch effect removals with lower dimension output. This problem originates from the

calculation of euclidean distance and the more dimensions mean the higher distance. To

handle this problem a proper normalization should be done on euclidean distances so that

they become irrelevant of the dimension of data.
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Figure 5.45: Correlation of all assessment methods with manual assessment for all 3

datasets.
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5.5.3 Conclusion

In this chapter the proposed batch effect assessment method, Batch Finder, has been tested

on 3 real biological datasets. These three datasets are integrated from multiple datasets to

provide a sufficient amount of batch effect. Then 7 batch effect removal methods were im-

plemented on each of them and the result accompanying the raw data have been evaluated

by 5 batch assessment methods. The results of these assessments have been compared in

terms of performance, runtime, and memory usage. It has been shown that the proposed

method strictly outperforms the other tested batch effect assessment methods in terms of

performance but its time and memory efficiency needs to be improved.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this study, we developed a novel batch effect assessment method, Batch Finder, to ad-

dress the challenges posed by large and complex datasets. Our method helps to improve

the precision of detecting batch effects and assists in selecting the most appropriate method

for removing them, making it particularly useful for datasets that have been merged from

multiple sources. Through a thorough evaluation using both synthetic and real-world data,

we demonstrated that Batch Finder consistently outperforms existing methods in detecting

batch effects and has a strong foundation in mathematical and logical principles. Addition-

ally, Batch Finder provides a summarized view of the dataset that is more manageable and
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less overwhelming, enabling experts to gain a deeper understanding of the relationships

between cell types.

In chapter 4, we introduced and formulated Batch Finder. We then conducted a thor-

ough evaluation of Batch Finder by comparing it to four other batch effect assessment

methods using eleven test datasets. The results showed that Batch Finder consistently out-

performed the other methods, successfully passing all challenges while the other methods

failed at least one test.

In chapter 5, we applied Batch Finder, our novel batch effect assessment method, to

three biological integrated datasets to evaluate its performance on real-world data. These

datasets were selected to present at least one challenge for batch assessment methods and

were chosen for their relevance to our research question. These datasets have been sub-

ject to seven batch effect removal methods. The results of our evaluation showed that

Batch Finder demonstrated the highest correlation with the expert’s assessment of the

datasets, indicating that it was able to accurately identify batch effects in the data.

As technology continues to advance and the size and complexity of datasets grow, it

is becoming increasingly important to develop computational tools that can help to under-

stand and analyze these datasets. Batch Finder represents a significant contribution to this

effort, offering a reliable and effective method for detecting and addressing batch effects

in large and complex datasets. While it may not be as memory- and time-efficient as some
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existing methods, we believe that Batch Finder represents a valuable tool for researchers

working with large datasets, and we hope that it will contribute to the advancement of

research in the field.

6.2 Future work

While Batch Finder has shown promising results in our evaluations, there is still room for

improvement in terms of memory efficiency and runtime. We plan to address these issues

in future work to make Batch Finder more practical for use in real-world applications.

Additionally, we plan to make Batch Finder available as an R package to facilitate its use

by other researchers.

In terms of the algorithm itself, we have identified a potential issue with the normal-

ization of the euclidean distance in cases where the input data has a smaller dimension.

We believe that implementing a proper normalization procedure in these cases could im-

prove the accuracy of the algorithm. We plan to explore this issue in future work to further

optimize the performance of Batch Finder.

As mentioned before, defined test cases are acurate, but they are simplifications of the

real world data while the real world data can not be classified with certainty, we need

to design a test that has both high accuracy and similarity to real world data. There are

some alternatives such as running a standardized clustring pipeline on the integrated data
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to see if it recapitulates the known cell-types rather than the batches. We can also work on

generating synthetic batch effect in real world data to test the effectiveness of Batch Finder.

Overall, we believe that Batch Finder has the potential to make a significant impact

in the field of batch effect assessment and we look forward to exploring its capabilities

further in future research.
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[43] Jelena Čuklina, Chloe H Lee, Evan G Williams, Tatjana Sajic, Ben C Collins, Marı́a

Rodrı́guez Martı́nez, Varun S Sharma, Fabian Wendt, Sandra Goetze, Gregory R

Keele, et al. Diagnostics and correction of batch effects in large-scale proteomic

studies: a tutorial. Molecular systems biology, 17(8):e10240, 2021.

[44] Robert M Groves and Lars Lyberg. Total survey error: Past, present, and future.

Public opinion quarterly, 74(5):849–879, 2010.

[45] Scott Menard. Longitudinal research, volume 76. Sage, 2002.

[46] Michael Borenstein, Larry V Hedges, Julian PT Higgins, and Hannah R Rothstein.

Introduction to meta-analysis. John Wiley & Sons, 2021.



164 BIBLIOGRAPHY

[47] Charlotte Soneson, Samuel Gerster, and Manuel Delorenzi. Batch effect confounding

leads to strong bias in performance estimates obtained by cross-validation. PLoS

ONE, 9(6):e100335, 2014.

[48] Valentine Svensson, Roser Vento-Tormo, and Sarah A Teichmann. Exponential scal-

ing of single-cell rna-seq in the past decade. Nature protocols, 13(4):599–604, 2018.

[49] Wilson Wen Bin Goh, Chern Han Yong, and Limsoon Wong. Are batch effects still

relevant in the age of big data? Trends in Biotechnology, 40(9):1029–1040, 2022.

[50] Aaron TL Lun, Davis J McCarthy, and John C Marioni. A step-by-step workflow for

low-level analysis of single-cell rna-seq data with bioconductor. F1000Research, 5,

2016.

[51] Luyi Tian, Xueyi Dong, Saskia Freytag, Kim-Anh Le Cao, Shian Su, Abolfazl Jalal-

Abadi, Daniela Amann-Zalcenstein, Tom S Weber, Azadeh Seidi, Jafar S Jabbari,

et al. scrna-seq mixology: towards better benchmarking of single cell rna-seq analy-

sis methods. BioRxiv, page 433102, 2019.

[52] Jiaqi Li, Chengxuan Yu, Lifeng Ma, Jingjing Wang, and Guoji Guo. Comparison

of scanpy-based algorithms to remove the batch effect from single-cell rna-seq data.

Cell Regeneration, 9(1):1–8, 2020.



BIBLIOGRAPHY 165
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Alexandra-Chloé Villani, Aviv Regev, and Joshua Z Levin. Systematic comparative

analysis of single cell rna-sequencing methods. bioRxiv, 2019.



Appendix A

Extra Visualization of datasets

In this appendix, additional visualization techniques are presented for further analysis and

investigation. These techniques provide additional insights and perspectives on the data

and can help to deepen our understanding of the relationships and patterns present in the

data. By examining the data using a variety of visualization methods, we can gain a

more comprehensive and nuanced understanding of the data and the underlying trends and

patterns. This can be especially useful when working with complex or high-dimensional

data, as it allows us to identify and highlight important features and relationships that may

not be immediately apparent using a single visualization method.
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(a) (b)

Figure A.1: PCA of the pancreas integrated data before batch removal. a, cell types. b,

batches.
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(a) (b)

Figure A.2: t-SNE of the pancreas integrated data after harmony method. a, cell types. b,

batches.
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(a) (b)

Figure A.3: PCA of the pancreas integrated data after harmony method. a, cell types. b,

batches.
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(a) (b)

Figure A.4: t-SNE of the pancreas integrated data after limma method. a, cell types. b,

batches.
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(a) (b)

Figure A.5: PCA of the pancreas integrated data after limma method. a, cell types. b,

batches.
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(a) (b)

Figure A.6: t-SNE of the pancreas integrated data after liger method. a, cell types. b,

batches.
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(a) (b)

Figure A.7: PCA of the pancreas integrated data after liger method. a, cell types. b,

batches.
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(a) (b)

Figure A.8: t-SNE of the pancreas integrated data after CCA method. a, cell types. b,

batches.
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(a) (b)

Figure A.9: PCA of the pancreas integrated data after CCA method. a, cell types. b,

batches.
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(a) (b)

Figure A.10: t-SNE of the pancreas integrated data after fastMNN method. a, cell types.

b, batches.
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(a) (b)

Figure A.11: PCA of the pancreas integrated data after fastMNN method. a, cell types. b,

batches.
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(a) (b)

Figure A.12: t-SNE of the pancreas integrated data after conos method. a, cell types. b,

batches.
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(a) (b)

Figure A.13: UMAP of the pancreas integrated data after conos method. a, cell types. b,

batches.
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(a) (b)

Figure A.14: t-SNE of the pancreas integrated data after combat method. a, cell types. b,

batches.
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(a) (b)

Figure A.15: PCA of the pancreas integrated data after combat method. a, cell types. b,

batches.
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(a) (b)

Figure A.16: t-SNE of the brain integrated data before batch removal. a, cell types. b,

batches.
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(a) (b)

Figure A.17: PCA of the brain integrated data before batch removal. a, cell types. b,

batches.
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(a) (b)

Figure A.18: t-SNE of the brain integrated data after harmony method. a, cell types. b,

batches.



187

(a) (b)

Figure A.19: PCA of the brain integrated data after harmony method. a, cell types. b,

batches.



188 Chapter A. Extra Visualization of datasets

(a) (b)

Figure A.20: t-SNE of the brain integrated data after limma method. a, cell types. b,

batches.
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(a) (b)

Figure A.21: PCA of the brain integrated data after limma method. a, cell types. b,

batches.
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(a) (b)

Figure A.22: t-SNE of the brain integrated data after liger method. a, cell types. b,

batches.
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(a) (b)

Figure A.23: PCA of the brain integrated data after liger method. a, cell types. b, batches.
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(a) (b)

Figure A.24: t-SNE of the brain integrated data after CCA method. a, cell types. b,

batches.
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(a) (b)

Figure A.25: PCA of the brain integrated data after CCA method. a, cell types. b, batches.
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(a) (b)

Figure A.26: t-SNE of the brain integrated data after fastMNN method. a, cell types. b,

batches.
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(a) (b)

Figure A.27: PCA of the brain integrated data after fastMNN method. a, cell types. b,

batches.
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(a) (b)

Figure A.28: t-SNE of the brain integrated data after conos method. a, cell types. b,

batches.
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(a) (b)

Figure A.29: UMAP of the brain integrated data after conos method. a, cell types. b,

batches.
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(a) (b)

Figure A.30: t-SNE of the brain integrated data after combat method. a, cell types. b,

batches.
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(a) (b)

Figure A.31: PCA of the brain integrated data after combat method. a, cell types. b,

batches.
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(a) (b)

Figure A.32: t-SNE of the PBMC integrated data before batch removal. a, cell types. b,

batches.
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(a) (b)

Figure A.33: PCA of the PBMC integrated data before batch removal. a, cell types. b,

batches.
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(a) (b)

Figure A.34: t-SNE of the PBMC integrated data after harmony method. a, cell types. b,

batches.
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(a) (b)

Figure A.35: PCA of the PBMC integrated data after harmony method. a, cell types. b,

batches.
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(a) (b)

Figure A.36: t-SNE of the PBMC integrated data after limma method. a, cell types. b,

batches.
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(a) (b)

Figure A.37: PCA of the PBMC integrated data after limma method. a, cell types. b,

batches.
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(a) (b)

Figure A.38: t-SNE of the PBMC integrated data after liger method. a, cell types. b,

batches.
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(a) (b)

Figure A.39: PCA of the PBMC integrated data after liger method. a, cell types. b,

batches.
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(a) (b)

Figure A.40: t-SNE of the PBMC integrated data after CCA method. a, cell types. b,

batches.
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(a) (b)

Figure A.41: PCA of the PBMC integrated data after CCA method. a, cell types. b,

batches.
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(a) (b)

Figure A.42: t-SNE of the PBMC integrated data after fastMNN method. a, cell types. b,

batches.
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(a) (b)

Figure A.43: PCA of the PBMC integrated data after fastMNN method. a, cell types. b,

batches.
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(a) (b)

Figure A.44: t-SNE of the PBMC integrated data after conos method. a, cell types. b,

batches.
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(a) (b)

Figure A.45: UMAP of the PBMC integrated data after conos method. a, cell types. b,

batches.
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(a) (b)

Figure A.46: t-SNE of the PBMC integrated data after combat method. a, cell types. b,

batches.
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(a) (b)

Figure A.47: PCA of the PBMC integrated data after combat method. a, cell types. b,

batches.
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