1986

Laissez Faire Banking and Circulating Media of Exchange

Stephen D. Williamson

Follow this and additional works at: https://ir.lib.uwo.ca/economicscsier_wp

Part of the Economics Commons

Citation of this paper:
THE CENTRE FOR THE STUDY OF INTERNATIONAL ECONOMIC RELATIONS

WORKING PAPER NO. 8624C

LAISSEZ FAIRE BANKING AND
CIRCULATING MEDIA OF EXCHANGE

Stephen D. Williamson

This paper contains preliminary findings from research work
still in progress and should not be quoted without prior
approval of the author.

DEPARTMENT OF ECONOMICS
THE UNIVERSITY OF WESTERN ONTARIO
LONDON, CANADA
N6A 5C2
Laissez Faire Banking and
Circulating Media of Exchange

Stephen D. Williamson*
University of Western Ontario
Department of Economics
London, Ontario N6A 5C2
Canada

Revised October, 1986

* Thanks are due to seminar participants at the Federal Reserve Bank of
Minneapolis and the University of Western Ontario. The comments and
suggestions of John Boyd, Peter Howitt, and Neil Wallace were especially
helpful. Financial support from the Social Sciences and Humanities Research
Council of Canada is gratefully acknowledged. Any remaining errors are my own.
ABSTRACT

A model with asymmetric information and decentralized exchange is constructed, which supports conventional arguments for a government monopoly in supplying circulating media of exchange. Laissez faire banking is inherently 'unstable' and inefficient in the absence of government-supplied fiat currency. A Pareto superior outcome is possible with the introduction of fiat currency, but laissez faire is still unstable; a legal prohibition on the issue of private circulating bearer notes induces stability. The model has predictions (including rate of return dominance of circulating media of exchange) which are consistent with observations from fiat currency regimes and 'laissez faire' regimes.
I. INTRODUCTION

The view that there is a legitimate basis for a government monopoly in supplying circulating media of exchange has long been a part of conventional wisdom in monetary economics. Friedman (1960), who probably provides the most coherent reasoning to support this view, argued that (Friedman, 1960, p. 6):

"...the [private] contracts in question are precariously difficult to enforce and fraud particularly difficult to prevent. The very performance of its central function requires money to be generally acceptable and to pass from hand to hand...in fraud as in other activities, opportunities for profit are not likely to go unexploited."

According to Friedman, this implies that regimes with unrestricted financial intermediation are likely to be inefficient and inherently unstable, due to information externalities.

Recently, this conventional wisdom has been challenged, on both empirical and theoretical grounds. White (1984) and Rolnick and Weber (1985), in studying 19th century free banking regimes in Scotland and the U.S., argue that the evidence is inconsistent with inherent instability in laissez faire banking regimes. Rolnick and Weber (1984) and King (1983) also observe that very few bank failures during the U.S. free banking era (1837-63) were due to 'wildcat banking' (i.e. fraudulent banking practices). Hayek (1978) argues that efficiency gains would result from a move from current regimes with restricted financial intermediation to unfettered financial arrangements. In Sargent and Wallace (1982), a Pareto optimal equilibrium allocation can be achieved in a regime without restrictions on intermediation. In their model restrictions which effectively prohibit private intermediaries from issuing substitutes for fiat money imply that an equilibrium is not Pareto optimal, since different agents face different rates of return. Perhaps the best-known
recent defence of laissez faire banking is Fama (1980), where it is argued that (Fama, 1980, p. 47): "...there is nothing in the economics of this [the banking] sector that makes it a special candidate for government control".

The purpose of this paper is to construct a model in which Friedman's argument for a government monopoly in the supply of circulating media of exchange is essentially correct. We consider regimes with and without valued fiat money and with and without restrictions on private financial intermediation. The predictions of the model are consistent with what is observed in the real world counterparts of these regimes. In particular, 1) circulating media of exchange are dominated in rate of return by other assets; 2) in a laissez faire equilibrium without government-issued fiat currency, 'fraudulent' banking is nonexistent, in spite of the fact that there is a potential for such practices; 3) liabilities which can be interpreted as bank deposits coexist in equilibrium with valued fiat money or with circulating bank notes; 4) Assets yielding relatively high (low) rates of return have relatively low (high) transactions velocities.

The model we construct is one of spatially-separated 'islands' populated by overlapping generations of consumers. As in Diamond and Dybvig (1983), agents have uncertain lifetimes and preferences, features which generate a demand for liquid assets. The primitive assets in the economy are pieces of capital which can be produced only in large, indivisible, immobile quantities which are intermediated by 'banks'. Individual agents' endowments are too small for them to be able to manufacture capital on their own, and agents travel from island to island in such a way that it is physically impossible to trade primitive assets. The liabilities issued by banks under laissez faire are transferable circulating notes, and non-transferable non-circulating notes
(deposits).

In the model, capital may be either 'good' or 'bad'. Bad capital is cheaper to produce than is good capital, but it yields an inferior return. Due to environmental restrictions on the flow of information across islands, buyers and sellers of circulating bank notes are asymmetrically informed concerning the quality of capital backing a particular bank note, with the seller having better information. As a result, there is an incentive for the production of bad capital and for the issue by banks of circulating notes backed by this capital, when such an incentive would not exist without informational asymmetries.

In a regime without government-issued currency and with unrestricted private intermediation, a version of Gresham's law holds; the only stationary equilibrium which can exist is one where the only notes which circulate are those backed by bad capital. In equilibrium there is no misrepresentation of the quality of circulating bank notes. These notes coexist with non-transferable deposit liabilities backed by good capital, which dominate circulating notes in rate of return. Laissez faire banking is inherently unstable, in that a stationary equilibrium may not exist.

With the introduction of government-issued fiat currency, a stationary equilibrium with valued fiat money (monetary equilibria) may exist in which all agents are better off than in the laissez faire regime without fiat money. This occurs in spite of the fact that there exist assets which dominate fiat money in rate of return in equilibrium. These higher-yielding assets (units of good capital) are held in equilibrium as backing for bank deposits. A government monopoly in the supply of circulating media of exchange is self-enforcing if the stationary monetary equilibrium exists,
in that there is then no incentive to issue private circulating bearer notes. However, the introduction of fiat money does not make laissez faire more stable; the necessary and sufficient conditions for the non-existence of stationary equilibria are the same, whether or not fiat money is valued.

A legal prohibition on the private issue of circulating bearer notes eliminates instability. Here, a stationary monetary equilibrium always exists in which agents hold fiat money and deposit liabilities backed by assets which dominate fiat money in rate of return. No agents are worse off than with laissez faire since, if a stationary monetary equilibrium exists under laissez faire, the legal restriction is not binding.

As is consistent with Friedman (1960), legal restrictions on private financial intermediation are necessary to induce stability in our model and, in the absence of government-issued fiat currency, private banking generates an inefficient outcome. Our results differ from Friedman's reasoning in that legal restrictions are not always necessary to make a government monopoly in the supply of circulating media of exchange self-enforcing. This difference is due to the fact that Friedman treated unbacked government money and privately-issued 'money' identically, while we do not.

The remainder of the paper is organized as follows. In Section II, the model is constructed, and equilibrium under laissez faire is discussed in Section III. Section IV contains an examination of a regime with a legal prohibition on privately issued circulating notes, and the final section is a conclusion.
II. **THE MODEL**

This is a model of spatially-separated 'islands' populated by overlapping generations of consumers. Each period $t = 1, 2, 3, \ldots, \infty$, is divided into two segments, where consumption in segment one and in segment two of a given period are perfect substitutes for all agents. At the beginning of segment one of each period, n agents are born on each of m islands, and each of these agents is endowed with y units of a good which can either be consumed or used to manufacture capital. Otherwise, the good is perishable between the first and second segments of the period.

Agents in their second period of life at the beginning of segment one of a given period learn their type, $i = 1, 2$, which is private information. If an agent is type 1, she will live for two periods, with utility given by $u(c_1, c_2)$, where c_i is consumption in the ith period of life. Type 2 agents live for 3 periods, with utility given by $v(c_1, c_3)$. The functions $u(\cdot, \cdot)$ and $v(\cdot, \cdot)$ are twice continuously differentiable, increasing in both arguments, and strictly concave. Let u_i and v_j denote the partial derivatives with respect to the ith and jth arguments of u and v, respectively. Then,

\[
\begin{align*}
\lim_{c_1, c_2 \to 0} \frac{u}{u_{1,2}} &= \infty, \\
\lim_{c_1, c_2 \to \infty} \frac{u}{u_{1,2}} &= 0, \\
\lim_{c_1, c_3 \to 0} \frac{v}{v_{1,2}} &= \infty, \text{ and} \\
\lim_{c_1, c_3 \to \infty} \frac{v}{v_{1,2}} &= 0.
\end{align*}
\]
At the beginning of segment one of each period, agents in their second and third periods of life are reallocated among islands. This reallocation occurs in such a way that no two agents receive the same island assignment more than once, and so that during segment one of each period there are \(n \) young agents, \(\lambda n \) middle-aged agents of type 1, \((1-\lambda)n \) middle-aged agents of type 2, and \((1-\lambda)n \) old agents on each island. Here, \(\lambda \) is the fraction of type 1 agents in each generation, where \(0 < \lambda < 1 \) and \(\lambda n \) is an integer. From each agent's point of view, at birth the probability that she is type 1 is \(\lambda \). We assume that \(n \) is large, to permit competitive markets on each island, and we assume that \(m/n \) is large, so that it is feasible for any two agents not to meet more than once.

Agents are confined to their assigned island during segment one of a period, but may visit any islands during segment two of a period. We assume that particular agents are impossible to locate during segment two of any period. That is, an agent is unable at this time to locate any agent with whom a transaction was made in a previous period.

Capital manufactured in segment one of period \(t \) produces a given quantity of a non-storable consumption good in segment two of period \(t+2 \), at which time full depreciation occurs. Capital may be manufactured only in quantities greater than \(x \), where \(x > y \), and \(x << ny \), and it may be of two types: 'good' and 'bad'. It requires \(z(\beta z) \) units of the endowment good to manufacture \(z \) units of good ('bad') capital, where \(\beta < 1 \). Good (bad) capital yields a return of \(\alpha_1(\alpha_2) \) units of the consumption good, where \(\alpha_1 > 1 \) and \(\alpha_2/\beta < 1 \). Thus, bad capital is less costly to manufacture but yields an inferior return.
Capital is immobile, and its type is known only to the agents who were alive in the period when it was manufactured, on the island where it was manufactured. An agent can at any time verify the existence of any capital in the economy, but cannot verify its type.

In segment one of period 1, there are λn middle-aged type 1 agents, $(1-\lambda)n$ middle-aged type 2 agents, and $(1-\lambda)n$ old agents on each island, each of whom is endowed with H units of fiat money, i.e. unbacked, perfectly divisible, non-counterfeitable notes issued by the government. Middle-aged type 1 agents and old agents supply fiat money inelastically at time 1 so as to maximize period 1 consumption, while middle-aged type 2 agents maximize period 2 consumption by selling their money endowment at that date.

In this environment, intermediation in some form is necessary for capital formation, due to the fact that capital is immobile and cannot be manufactured by any one agent. The spatial separation of agents on different islands through their lifetimes serves to make some types of trades impossible, but this friction matters for different reasons than in some of Townsend's models (for example, see Townsend, 1980, 1983). Here, spatial separation implies that a given agent on a given island cannot trade with any other agent who knows the type of capital which backs the securities she holds. Thus, there is potentially an adverse selection problem in this environment. Trading can only occur during segment one of a period, when agents are confined to a single assigned island. However, since agents can visit any island in segment two of a period, it will be possible for a particular agent to collect the payoffs on any securities which she might acquire.

As in Diamond and Dybvig (1983), agents' random preferences imply that each agent's future requirement for 'liquid' assets is uncertain. This
permits a richer array of potential equilibria and phenomena of interest than if agents were all three-period-lived as, for example, in Freeman (1985).

Trading

So that capital formation can take place, 'banks' arise which issue securities in exchange for the endowment good, manufacture capital, and redeem securities two periods in the future. Banks are owned by shareholders who each receive a fraction of a bank's profits equal to the fraction of shares held. This environment generates the same equilibrium outcomes as one where 'firms' borrow from banks to manufacture capital and banks act only as intermediaries. 'Good' ('bad') banks use the pooled endowment good to manufacture good (bad) capital, and issue good (bad) bank notes. Agents will be able to verify whether there is capital backing a given note and to verify its age, but they will not know the type of this capital unless they were at the bank's location when the capital was manufactured.

All notes are perfectly divisible, and there are four types of notes; good and bad bearer notes which may circulate, and good and bad non-transferable notes which do not circulate.² To normalize, we let one newly-issued good bearer note trade at time \(t \) for one unit of the endowment good. Competition among banks and free entry into banking then implies that this note can be redeemed at time \(t+2 \) for \(\alpha_1 \) units of the consumption good. One newly-issued bad bearer note can be acquired for \(\beta \) units of the endowment good at time \(t \), and redeemed for \(\alpha_2 \) units of the consumption good at time \(t+2 \). Agents who learn they are type 1 will not be able to redeem their non-transferable notes. Since \(\lambda n \) of the young agents on each island will be type 1, and since \(n \) is large, each bank can issue non-transferable notes to
large numbers of noteholders and guarantee an essentially certain redemption value. Since bad non-transferable notes offer an inferior return, only good non-transferable notes will be issued in equilibrium, with a guaranteed two-period gross rate of return of \(\alpha_1/(1-\lambda) \). With banks earning zero profits in equilibrium, the price of bank shares will be zero, and bank shares can be dropped from the analysis.

Non-transferable notes can be interpreted as bank deposits. As is the case for real world bank deposits, they are non-circulating claims which cannot finance some types of consumption. Circulating bearer notes can be used to finance consumption at redemption or in the preceding period, provided other agents will accept these notes. Thus, unlike non-transferable notes, they have the potential for financing second period consumption for a type 1 agent. Fiat money may be acquired at any date to finance consumption at any later date, provided that it is valued.

III. EQUILIBRIUM

We confine attention to equilibria where prices are identical across islands, so that we need to examine only the behavior of individuals of each type on a representative island. Let \(p_t \) denote the price of fiat money in terms of the consumption good at time \(t \), and let \(q_t \) denote the price of bearer notes issued in period \(t-1 \) (secondhand bearer notes). Also, let \(\gamma_t \) be the fraction of secondhand bearer notes traded in period \(t \) which are good. Note that good and bad secondhand bearer notes will be indistinguishable to the buyers of these notes where they are traded. If an agent chooses to acquire secondhand notes at any time, due to risk aversion she will diversify over notes issued by a large number of banks, thus receiving the mean
return on secondhand notes.

The one-period gross rates of return to holding newly-issued good bearer notes, newly-issued bad bearer notes, secondhand bearer notes, and fiat money are, respectively, \(q_{t+1} \), \(q_{t+1}/\beta \), \([\gamma_t^{a_1} + (1-\gamma_t)^{a_2}]/q_t \), and \(p_{t+1}/p_t \). Therefore, if \(q_{t+1} > 0 \), the one-period holding return at time \(t \) for a newly-issued bad bearer note is greater than for a newly-issued good bearer note. Newly-issued good bearer notes will then not be acquired by type 2 agents in their second period of life in equilibrium, and secondhand good bearer notes will not be sold by type 2 agents in their second period of life.

The gross rates of return to holding a non-transferable note, a newly-issued good bearer note, and a newly-issued bad bearer note from period \(t \) to period \(t+2 \) are, respectively, \(\alpha_1/(1-\lambda) \), \(\alpha_1 \), and \(\alpha_2/\beta \). Therefore, if \(q_{t+1} = 0 \), then bearer notes will not be issued at time \(t \), since \(\alpha_1/(1-\lambda) > \alpha_1 > \alpha_2/\beta \). If \(q_{t+1} > 0 \), then all newly-issued bad bearer notes acquired at time \(t \) will be sold at time \(t+1 \), since the gross rate of return to acquiring newly-issued bad bearer notes at time \(t \), selling them at time \(t+1 \), and acquiring secondhand bearer notes is \([\gamma_{t+1}^{a_1} + (1-\gamma_{t+1})^{a_2}]/\beta \geq \alpha_2 \).

An agent who is young at time \(t \) then chooses nominal fiat money balances, \(m_t \) and \(m_{t+1} \), non-transferable notes \(f_t \), secondhand bearer notes \(s_t \) and \(s_{t+1} \), newly-issued good bearer notes, \(g_t \), and newly-issued bad bearer notes \(b_t \) and \(b_{t+1} \) to solve the following, where subscripts on asset quantities refer to the time assets are acquired, and superscripts denote the date at which the agent was born.

\[
\max \lambda u(c_t^t, c_{t+1}^t) + (1-\lambda)v(c_t^t, c_{t+2}^t) \quad (1)
\]
subject to:

\[c_t = y_t - p_t m_t - f_t - q_t s_{t+1} - g_t - \beta b_{t+1} \] \hspace{1cm} (2)

\[c_{t+1} = p_{t+1} m_{t+1} + [\gamma \alpha + (1-\gamma)\alpha] s_t + q_{t+1} (g_{t+1} + b_{t+1}) \] \hspace{1cm} (3)

\[c_{t+2} = p_{t+2} m_{t+2} + \alpha f_{t+2} / (1-\lambda) + [\gamma \alpha + (1-\gamma)\alpha] s_{t+1} + q_{t+1} b_{t+1} \] \hspace{1cm} (4)

\[p_t m_t + q_t s_t + \beta b_t = p_{t+1} m_{t+1} + [\gamma \alpha + (1-\gamma)\alpha] s_t + q_{t+1} b_{t+1} \] \hspace{1cm} (5)

\[c_t, c_{t+1}, c_{t+2}, m_t, m_{t+1}, s_t, s_{t+1}, g_t, f_t, b_t, b_{t+1} \geq 0. \] \hspace{1cm} (6)

In (1) - (6), \(z_t \) denotes consumption at time \(t \) of an agent born at time \(z \).

Middle-aged type 1 agents sell all assets acquired in the first period of life, in order to maximize \(c^t_{t+1} \), while middle-aged type 2 agents retain the newly-issued good bearer notes and non-transferable notes acquired in the first period of life, selling all other assets to acquire new assets to carry into period \(t+2 \), when all assets are sold to finance old age consumption.

Definition 1. An equilibrium is a nonnegative infinite sequence of prices \(\{p_t, q_t\} \), a sequence of asset quantities \(\{a_t\} = \{m_t, m_{t+1}, s_t, s_{t+1}, b_t, b_{t+1}\} \), a sequence of consumption quantities \(\{c_t\} = \{c_t, c_{t+1}\} \), and a sequence of \(\gamma \)'s, \(\{\gamma_t\} \), such that

(i) \(\{c_t\} \) and \(\{a_t\} \) are chosen to solve (1) subject to (2) - (6),
given \(\{p_t, q_t\} = \{p_t, q_t\} \) and \(\{\gamma_t\} = \{\gamma_t\} \).

(ii) The money market clears.

\[
-p_t \left[m_t + (1-\lambda)m_{t-1} \right] = p_t (2-\lambda)H, \quad t=2,3,\ldots,\infty
\]

(7)

\[
-p_{t-1} = p_{t-1} H
\]

(8)

(iii) The market for secondhand bearer notes clears.

\[
-s_t + (1-\lambda)s_{t-1} = \lambda g_{t-1} + b_{t-1} + (1-\lambda)b_{t-1}, \quad t=3,4,\ldots,\infty
\]

(9)

\[
-s_{t-1} = \lambda g_{t-1} + b_{t-1}
\]

(10)

\[
s_{t-1} = 0
\]

(11)

(iv) The sequence of \(\gamma \)'s is correctly anticipated. That is, if any

one of \(g_t \), \(b_t \) or \(b_{t-1} \) is positive, then

\[
-\gamma_t = \lambda g_{t-1}/(\lambda g_{t-1} + b_{t-1} + (1-\lambda)b_{t-1}), \quad t=3,4,5,\ldots,\infty
\]

(12)

and

\[
-\gamma_{t-1} = \lambda g_{t-1}/(\lambda g_{t-1} + b_{t-1}), \quad t=2.
\]

(13)

Otherwise

\[
\gamma_t = \min\{(\beta p_{t+1}/p_{t-1} - \alpha_2)/(\alpha_1 - \alpha_2), 1\}.
\]

(14)

This is a perfect foresight equilibrium where agents correctly anticipate prices and the fraction of good bearer notes sold on the secondhand market in each period. However, matters are not entirely straightforward if no secondhand notes are traded in any period, \(t \). Then, the characteristics
of an equilibrium depend in part on the conjectures agents make concerning \(\gamma_t \). Equation (14) states that, if no private bearer notes are issued at time \(t - 1 \) (implying a supply of zero secondhand notes at time \(t \)), then the conjecture agents make concerning \(\gamma_t \) must be consistent with what is observed in equilibrium. To see why (14) makes sense, note first that any equilibrium where secondhand bearer notes are not traded at some time \(t \) is a monetary equilibrium (i.e. \(p_t > 0 \) for all \(t \)) with \(p_{t+2}/p_t \geq \alpha_2/\beta \) for all \(t \). If secondhand bearer notes are not traded at time \(t \), then agents anticipate that if these notes were traded, they would be perfect substitutes for fiat money. As will be shown, if any bearer notes are issued in equilibrium at time \(t \), then bad bearer notes are issued at time \(t \). We therefore have

\[
q_t = \frac{\beta p_t}{p_{t-1}} \quad (15)
\]

and

\[
[\gamma_t \alpha_1 + (1-\gamma_t) \alpha_2]/q_t = p_{t+1}/p_t. \quad (16)
\]

Provided that \(p_{t+1}/p_{t-1} \leq \alpha_1/\beta \), and given that \(p_{t+1}/p_{t-1} \geq \alpha_2/\beta \), the value of \(\gamma_t \) which solves (15) and (16) is in the interval \([0,1]\). In the case where \(p_{t+1}/p_{t-1} > \alpha_1/\beta \), agents conjecture that \(\gamma_t = 1 \), and we obtain (14).

Define \(r_t \), the maximum one-period gross rate of return at time \(t \), by

\[
r_t \equiv \max\{p_{t+1}/p_t, q_{t+1}/\beta, [\gamma_t \alpha_1 + (1-\gamma_t) \alpha_2]/q_t\}. \quad (17)
\]

Then, from (1) - (5) and the Kuhn-Tucker conditions, we have

\[
-\lambda u_1 - (1-\lambda) v_1 + \lambda q_{t+1} u_2 + (1-\lambda) \alpha_1 v_2 \leq 0 \quad (18)
\]
\[-\lambda u_1 - (1 - \lambda)v_1 + \lambda r_t u_2 + (1 - \lambda)r_{t+1} v_2 \leq 0 \] \hspace{1cm} (19)

\[-\lambda u_1 - (1 - \lambda)v_1 + \alpha_1 v_2 \leq 0. \] \hspace{1cm} (20)

To rule out certain types of equilibria, we make the following three assumptions:

\[
\begin{align*}
\begin{array}{c|c}
\text{i} & \text{2} \\
\hline
\text{1} & \text{2} \\
\hline
\alpha_1 u & \frac{\alpha_1 v}{22} \geq 0, \\
\end{array}
\end{align*}
\hspace{1cm} (21)

\begin{align*}
\begin{array}{c|c}
\text{i} & \text{2} \\
\hline
\text{1} & \text{2} \\
\hline
\alpha_1 v & \frac{\alpha_1 v}{22} \geq 0, \\
\end{array}
\end{align*}
\hspace{1cm} (22)

and

\[
\begin{align*}
\begin{array}{c|c}
\text{i} & \text{2} \\
\hline
\text{1} & \text{2} \\
\hline
\alpha_1 u & \frac{\alpha_1 v}{22} \geq \frac{\alpha_1 v}{2}, \\
\end{array}
\end{align*}
\hspace{1cm} (23)

for all \(x, y > 0 \).

If utility is additively time-separable, then (21) and (22) imply that the coefficient of relative risk aversion of the period utility function is less than or equal to unity. If \(u(c_1, c_2) = c_1^a + \delta c_2^a \) and \(v(c_1, c_3) = c_1^a + \delta c_3^a \), with \(0 < a < 1 \) and \(0 < \delta < 1 \), then (20) implies that \(\alpha_1^{a/2} \geq 1/\delta \).

Before studying the properties of particular equilibria in the model, we can state the following.

Proposition 1: If good bearer notes are issued in any period \(t \) in equilibrium, then bad bearer notes are also issued at time \(t \).

Proof: Suppose that good bearer notes are issued in equilibrium at time \(t \), but bad bearer notes are not. Then, the two-period gross rate of return to
acquiring newly-issued bad bearer notes at time t, selling them at time $t+1$, and using the proceeds to acquire secondhand notes which are redeemed at time $t+2$, is $\alpha_1/\beta > \alpha_1$. Also, the one-period return to acquiring newly-issued bad bearer notes at time t is $q_{t+1}/\beta > q_{t+1}$, the one-period return to acquiring newly-issued good bearer notes. There are then unexploited profit opportunities in equilibrium, a contradiction. Q.E.D.

We restrict attention in the remainder of the paper to stationary equilibria, defined as follows.

Definition 2: A stationary equilibrium is an equilibrium in which $(c_t^t, c_{t+1}^t, c_{t+2}^t) = (c_1, c_2, c_3)$, $q_t = q$, and $p_t = p$ for all t, where c_i, p and q are nonnegative constants.

Non-Monetary Equilibrium

In this section, we examine stationary equilibria where fiat money is not valued; i.e. $p_t = 0$ for all t. Equivalently, the initial old and middle-aged receive endowments of zero units of fiat money (fiat money is absent).

We first need some notation for characterizing equilibria. Let A denote the set of assets which are held in a stationary equilibrium, where $A \subset \{G, B, F\}$. If $G \in A$, then good bearer notes are held in equilibrium; if $B \in A$, then bad bearer notes are held; if $F \in A$, then non-transferable notes are held. Given proposition 1, the only possibilities in a stationary non-monetary equilibrium are the following.

Case 1. $A = \{G, B, F\}$
Case 2. \(A = \{B\} \)

Case 3. \(A = \{F\} \)

Case 4. \(A = \{G,B\} \)

Case 5. \(A = \{B,F\} \)

We will proceed to show that case 5 is the only possibility.

First, we cannot have case 3 in equilibrium, since this implies that \(q = 0 \). If this were the case, then for any \(\gamma \in [0,1] \), the one-period return from holding secondhand bearer notes would be infinite, and therefore this cannot be an equilibrium. If we have case 1, then (18) – (20) must each hold with equality, but this is only possible if

\[
-\alpha_1 q_{t+1} + (1-\lambda) r_t r_{t+1} q_{t+1} + \lambda \gamma_1 r_t = 0
\]

(24)

for all \(t \). If (24) holds, then it must be the case that either no good bearer notes are held, no bad bearer notes are held, or no non-transferable notes are held. But this is a contradiction, so case 1 is not a possibility. For the remaining cases, 2, 4, and 5, bad bearer notes are held. Therefore, we must have

\[
r_t = q/\beta
\]

(25)

for all \(t \). If good bearer notes are held, as in case 4, then we must have

\[
r_t r_{t+1} < \alpha_1 \]
or, given (25),
\(q < \beta \alpha_1^{\frac{1}{2}}. \)

(26)

Case 4 also implies, given that (18) and (19) must hold with equality, and (20) with a weak inequality, that

\[-\frac{\alpha_1^2}{1} + (1-\lambda)q^2 + \lambda \alpha_1^2 \beta \leq 0. \]

(27)

But (26), (27) and (18) – (23) then imply that (18) and (19) cannot both hold with equality. Therefore, we can rule out case 4. Case 2 can be eliminated from consideration, as this implies that (19) holds with equality and (18) and (20) are weak inequalities. But then, (21) – (23) imply that (20) does not hold. This leaves case 5, where

\[q = (\alpha_2 \beta)^{\frac{1}{2}} \]

(28)

Proposition 2. A unique stationary non-monetary equilibrium exists if and only if

\[\alpha_1 (\beta - \gamma) - \alpha_2 (1-\lambda) \leq 0 \]

(29)

Proof: Necessity. In a case 5 equilibrium, (19) and (20) must hold with equality. But (24) and (28) then imply that (18) holds if and only if (29) holds.

Sufficiency. Suppose that (29) holds. Then, since \(u(\cdot, \cdot) \) and \(v(\cdot, \cdot) \) are concave, there is a unique \(w > 0 \) and a unique \(f > 0 \) such that, with

\[c_1 = y - f - w, \quad c_2 = w(\alpha_2 / \beta)^{\frac{1}{2}}, \quad c_3 = \alpha_1 f / (1-\lambda) + (\alpha_2 / \beta) w, \]

agents facing
prices \(p_t = 0 \) and \(q_t = (\alpha_2 \beta)^{1/2} \) for all \(t \) choose: \(c_t^t = c_1, c_{t+1}^t = c_2, c_{t+2}^t = c_3 \) and \(f_t = f \) for all \(t \). Here, \(w \) is the quantity of savings by each young agent in the form of newly-issued bad bearer notes and secondhand bearer notes. The number of bad bearer notes issued in period \(t \) (per capita) is \(k_t \), where

\[
k_t = \beta w
\]

and

\[
k_t = \beta w [1 - \lambda \sum_{i=2}^{t} \theta^i (1-\lambda)^i], \quad t=2,3,\ldots,\infty,
\]

with \(\theta = (\alpha_2 / \beta) < 1 \). Therefore, \(k_t > 0 \) for all \(t \), and

\[
\lim_{t \to \infty} k_t = \beta w [1 - \lambda \theta/(1-\theta)].
\]

Therefore, this is a stationary nonmonetary equilibrium and, given the uniqueness of \(f \) and \(w \), it is unique.

Q.E.D.

Note, in spite of the fact that consumption allocations and prices are stationary in the stationary non-monetary equilibrium, that the number of bearer notes issued in each period, \(k_t \), is not a constant. However, \(k_t \) converges over time to a steady state.

In the absence of fiat money, or if fiat money is not valued, the only stationary equilibrium which exists is one where a version of Gresham's law holds; the private bearer notes which circulate are those backed by bad capital, in spite of the fact that higher-yielding assets are available. Bank deposits (non-transferable notes) are also held in equilibrium, and the assets backing these notes dominate the assets backing circulating notes in rate
of return. The transactions velocity of circulating notes is higher than for bank deposits, since the entire stock of circulating notes turns over each period.

Note, in spite of the fact that the potential for 'fraudulent' banking exists in this environment and is important for generating the results, that there is no fraud in a non-monetary equilibrium. All circulating bearer notes are recognized as being backed by bad capital, and neither banks or noteholders can credibly claim otherwise. This is consistent with Rolnick and Weber's (1984, 1985) interpretation of the evidence from the U.S. free banking era, that banking fraud was insignificant. However, note that the potential for fraud is an important feature of our model and that this results in an inefficiency, at least relative to an environment with full information. That is, if capital type were publicly observable, then no bad capital would be produced. Since bad capital is produced in a stationary non-monetary equilibrium, the equilibrium allocation is inefficient.

Private banking is 'unstable' under laissez faire in that a stationary non-monetary equilibrium does not exist if (29) does not hold. This instability is a direct result of the incentive which exists for banks to issue bad bank notes. Our interpretation of instability is similar to that of Smith (1984), who constructs a model of deposit banking where the instability of an unregulated banking system is reflected in the non-existence of equilibrium under some circumstances.

MONETARY EQUILIBRIUM

In this section we will restrict attention to stationary monetary equilibria, where $p_t = p > 0$ for all t. We therefore have
\[
 r_t = 1 \tag{30}
\]

for all \(t \). The following proposition is useful in further confining the search for monetary equilibria.

Proposition 3: In a stationary monetary equilibrium, if it exists, either good bearer notes are issued or no bearer notes are issued.

Proof: Suppose that bad bearer notes are issued in a stationary monetary equilibrium, but good bearer notes are not. Then, given (30), the one-period return to acquiring a secondhand bearer note must be unity, or \(q_t = \beta \), and the one-period return to acquiring a newly-issued bearer note must also be unity, or \(q_t = \alpha_2 \). But this is a contradiction, since \(\alpha_2 / \beta < 1 \). Q.E.D.

Proposition 1 and proposition 3 then imply that in a stationary monetary equilibrium either bearer notes are not issued or good bearer notes and bad bearer notes coexist with valued fiat money. We then have one of the following cases, where \(A \) is now the set of assets held in a stationary equilibrium in addition to fiat money.

Case 1. \(A = \{G,B,F\} \)

Case 2. \(A = \{F\} \)

Case 3. \(A = \{G,B\} \)

Case 4. \(A = \{ \} \)
Case 1 can be ruled out through reasoning identical to that for the stationary non-monetary equilibrium. With case 3 we must have

$$q_t = \beta$$

(31)

and

$$\gamma_t = \frac{\beta - \alpha_2}{(\alpha_1 - \alpha_2)}.$$

(32)

Equations (31) and (32) state that newly-issued bad bearer notes and secondhand bearer notes are perfect substitutes for fiat money in equilibrium given (30). With case 3, (18) and (19) must hold with equality, but this is inconsistent with (21) - (23). With case 4, (19) holds with equality, but this implies that (20) does not hold. Therefore, the only possibility is case 2.

Proposition 4. A unique stationary monetary equilibrium exists if and only if (29) holds.

Proof: Necessity: From definition 1, in the case 2 equilibrium q_t and γ_t are given by (31) and (32). Given this, (18) will not hold in equilibrium if (29) does not hold. I.e., if (29) does not hold, there is an incentive for banks to issue good bearer notes given equilibrium prices, and therefore an equilibrium does not exist.

Sufficiency: Since $u(\cdot,\cdot)$ and $v(\cdot,\cdot)$ are concave, there is a unique (s^*, f^*) with $s^*, f^* > 0$ which is the solution to:

$$\max_{(s,f)} \lambda u(y - s - f, s) + (1 - \lambda) v(y - s - f, s + \alpha f/(1 - \lambda))$$

(33)
Then, if agents face prices of $q_t = \beta, p_t = (2-\lambda)s^*/H$, and $\gamma_t = (\beta-\alpha_2)/(\alpha_1-\alpha_2)$ for all t, and if (29) holds, then it is optimal for agents to choose $m^*_t = m_t = s^*/p_t$ and $f_t = f^*$ for all t. The market for fiat money clears in each period and the market for secondhand notes clears (with quantity demanded and supplied equal to zero in each period). Q.E.D.

Next, we state and prove the following welfare result.

Proposition 5. Under laissez faire, if a stationary non-monetary equilibrium exists, then a stationary monetary equilibrium exists which is Pareto superior.

Proof: Propositions 2 and 4 imply that the stationary monetary equilibrium exists if and only if the stationary non-monetary equilibrium exists. Agents in the proposition 4 equilibrium face a gross rate of return of unity to holding assets for one period, while agents in the proposition 2 equilibrium face a one-period gross rate of return of $(\alpha_2/\beta)^{1/2} < 1$. Agents in both equilibria also have the option of holding non-transferable notes with a two period gross rate of return of $\alpha_1/(1-\lambda)$. Therefore, agents born in period $t = 1, 2, 3, \ldots, \infty$, are unambiguously better off in the proposition 4 equilibrium. Also, agents who are in their second and third periods of life at time 1 are better off in the proposition 4 equilibrium, since their endowments of fiat money are not valued in the non-monetary equilibrium. Q.E.D.

Introducing government-produced fiat money permits the existence of an equilibrium with valued fiat money in which all agents are better off than in the stationary non-monetary equilibrium under laissez faire. Note that
the government has an effective monopoly on the issue of circulating notes in a stationary monetary equilibrium. This monopoly is self-enforcing in that would-be private note issuers have no incentive to issue either good or bad bearer notes in equilibrium. Note that valued fiat money coexists in the stationary monetary equilibrium with private deposit liabilities. The assets which back deposits (good capital) dominate fiat money in rate of return, and fiat money has a higher transactions velocity than do deposits.

Note, however, that the mere introduction of fiat money does not remove or lessen the problem of instability. From propositions 2 and 4, under laissez faire the stationary monetary equilibrium does not exist if and only if the stationary non-monetary equilibrium does not exist. Introducing fiat money does not change the subset of the parameter space in which we have non-existence of a stationary equilibrium.

IV. RESTRICTIONS IN PRIVATE BANKING

The reason that a stationary monetary equilibria may not exist under laissez faire is that the government's monopoly in the supply of circulating media of exchange is not always self-enforcing. If (29) does not hold, then there exists an incentive for private banks to issue good bearer notes in a stationary monetary equilibrium. Given that good bearer notes are issued, there are profit opportunities to issuing bad bearer notes, and the equilibrium unravels.

This suggests that 'stability' could be achieved through legal restrictions on private banking. In most (if not all) regimes with government-issued fiat money, there are restrictions on the types of liabilities which private intermediaries may issue. A common restriction
is the prohibition of at least some types of circulating notes. Suppose, then, that we introduce a prohibition on the issue of circulating notes by private intermediaries in the model of Section II. Each young agent born at time \(t \) then chooses nominal fiat money acquisitions, \(m_t \), and nontransferable note acquisitions, \(f_t \), to solve:

\[
\max \lambda u(c_t, c_{t+1}) + (1-\lambda)v(c_t, c_{t+2})
\]

subject to:

\[
c_t = y - p_t m_t - f_t
\]

\[
c_{t+1} = p_{t+1} m_t
\]

\[
c_{t+2} = p_{t+2} m_t + \alpha_1 f_t / (1-\lambda)
\]

\[
c_t, c_{t+1}, c_{t+2}, m_t, f_t \geq 0.
\]

The first order conditions for an optimum are then

\[
-\lambda u_1 - (1-\lambda)v_1 + \lambda p_{t+1} u_2 / p_t + (1-\lambda)p_{t+2} v_2 / p_t = 0, \quad (34)
\]

\[
-\lambda u_1 - (1-\lambda)\alpha_1 v_2 \leq 0, \quad (35)
\]

where (35) holds with equality if \(f_t > 0 \).

It is immediate from proposition 4 that, with a legal prohibition on the private issue of circulating bearer notes, a stationary monetary equilibrium always exists. If (29) holds, the equilibrium is identical to the stationary monetary equilibrium under laissez faire, since the legal restriction is not binding. If (29) does not hold, the legal restriction is binding, and the equilibrium is of the same type; valued fiat money with a gross rate of return
of unity coexists with deposit liabilities backed by good capital.

Thus, legal restrictions can eliminate the problem of instability in laissez faire banking, without making any agents worse off. This can be contrasted to Sargent and Wallace (1982), where restrictions on private intermediation make some agents better off and some agents worse off, and where a Pareto optimal equilibrium always exists under laissez faire. In Smith (1986), the existence of fiat money permits the existence of equilibrium in an environment with adverse selection, but legal restrictions do not have a role in permitting the existence of equilibrium.

CONCLUSIONS

The model constructed here confirms the conventional wisdom of Friedman (1960); due to informational externalities, laissez faire banking tends to be unstable, and it can be inefficient. Establishing a government monopoly in the supply of circulating media of exchange can improve matters. However, our results differ from the views of Friedman in that a government monopoly in supplying circulating notes is self-enforcing in some circumstances, without restrictions on the activities of private intermediaries. The most important reason for this difference is that Friedman did not draw a distinction between unbacked fiat money and privately-issued 'money'.

The primary feature of the model which generates these results is the decentralized nature of exchange. Since exchange occurs at times and in places where it is costly for agents who engage in trade to verify the quality of financial claims which are offered in exchange for goods, there are advantages to having a universally-recognizable medium of exchange. Our model captures this type of costly communication and decentralized exchange, as do some models of Townsend (see Townsend 1980, 1983), in an environment with
spatial separation, where trade and communication across 'islands' is infinitely costly. Clearly, as communication becomes less costly in the real world with advances in technology, the gain from having a government monopoly in the provision of media of exchange will diminish. However, it is unlikely that exchange technologies have advanced to the point where laissez faire banking would be preferable.

What is not studied in this paper is the possibility that the government might misuse its power to extract seignorage, once private circulating notes are prohibited, and thus inflict costs on the private sector through anticipated and unanticipated inflation. These costs are emphasized in Friedman's more recent writings. Friedman and Schwartz (1986, p. 59) even go so far as to argue that "leaving monetary and banking arrangements to the market would have produced a more satisfactory outcome [over the last quarter century] than was actually achieved through government involvement." Perhaps binding restrictions on government behavior are needed in regimes with fiat currency to generate preferred outcomes. However, this is a topic for further research.

Another issue which is not studied in the regime with restricted private intermediation is the optimal management of the stock of fiat money by a benevolent government. Putting aside the issue of how the government is to tax and make transfers with spatial separation, we might ask whether standard 'optimal quantity of money' prescriptions apply here. Since this model has some features which are common to Freeman (1985) and Woodford (1983), where the welfare effects of inflation are studied, we might arrive at similar conclusions to those of either or both of these authors, though this is only a conjecture.
FOOTNOTES

1 At least this is the case in the equilibria studied in this paper, where prices are identical across islands in each period.

2 This set of securities exhausts the possibilities for trading, given the nature of the informational and trading restrictions implied by the environment. Other institutional arrangements, such as having banks which live more than 3 periods and issue deposits subject to withdrawal at any time, would be equivalent to this one.

3 We assume that if an agent is indifferent between selling asset a to buy asset b, and holding asset a, that the agent chooses the first option.

4 As will be shown in what follows, (21), (22), and (23) guarantee that non-transferable notes (deposits) are held in all stationary equilibria, and that stationary equilibria where good and bad bearer notes are issued do not exist. Note that (21) – (23) are sufficient but not necessary for these results.
REFERENCES

manuscript, M.I.T.
1984

8401C Harrison, Glenn W. and Manning, Richard. BEST APPROXIMATE AGGREGATION OF INPUT-OUTPUT SYSTEMS.

8402C Parkin, Michael. CORE INFLATION: A REVIEW ESSAY.

8403C Blomqvist, Åke, and McMahon, Gary. SIMULATING COMMERCIAL POLICY IN A SMALL, OPEN DUAL ECONOMY WITH URBAN UNEMPLOYMENT: A GENERAL EQUILIBRIUM APPROACH.

8404C Wonnacott, Ronald. THE THEORY OF TRADE DISCRIMINATION: THE MIRROR IMAGE OF VINERIAN PREFERENCE THEORY?

8405C Whalley, John. IMPACTS OF A 50% TARIFF REDUCTION IN AN EIGHT-REGION GLOBAL TRADE MODEL.

8406C Harrison, Glenn W. A GENERAL EQUILIBRIUM ANALYSIS OF TARIFF REDUCTIONS.

8407C Horstmann, Ignatius and Markusen, James R. STRATEGIC INVESTMENTS AND THE DEVELOPMENT OF MULTINATIONALS.

8408C Gregory, Allan W. and McCurdy, Thomas H. TESTING THE UNBIASEDNESS HYPOTHESIS IN THE FORWARD FOREIGN EXCHANGE MARKET: A SPECIFICATION ANALYSIS.

8409C Jones, Ronald W. and Kierzkowski, Henryk. NEIGHBORHOOD PRODUCTION STRUCTURES WITH APPLICATIONS TO THE THEORY OF INTERNATIONAL TRADE.

8410C Weller, Paul and Yano, Makoto. THE ROLE OF FUTURES MARKETS IN INTERNATIONAL TRADE: A GENERAL EQUILIBRIUM APPROACH.

8411C Brecher, Richard A. and Bhagwati, Jagdish N. VOLUNTARY EXPORT RESTRICTIONS VERSUS IMPORT RESTRICTIONS: A WELFARE-THEORETIC COMPARISON.

8412C Ethier, Wilfred J. ILLEGAL IMMIGRATION.

8413C Eaton, Jonathon and Gene M. Grossman. OPTIMAL TRADE AND INDUSTRIAL POLICY UNDER OLIGOPOLY.

8414C Wooton, Ian. PREFERENTIAL TRADING AGREEMENTS - A 3xn MODEL.

8416C Deardorff, Alan V. FIRless FIR woes: HOW PREFERENCES CAN INTERFERE WITH THE THEOREMS OF INTERNATIONAL TRADE.

8417C Greenwood, Jeremy. NONTRADED GOODS, THE TRADE BALANCE, AND THE BALANCE OF PAYMENTS.
8418C Blomqvist, Ake and Sharif Mohammad. CONTROLS, CORRUPTION, AND COMPETITIVE RENT-SEEKING IN LDCs.

8419C Grossman, Herschel I. POLICY, RATIONAL EXPECTATIONS, AND POSITIVE ECONOMIC ANALYSIS.

8420C Garber, Peter M. and Robert G. King. DEEP STRUCTURAL EXCAVATION? A CRITIQUE OF EULER EQUATION METHODS.

8421C Barro, Robert J. THE BEHAVIOR OF U.S. DEFICITS.

8422C Persson, Torsten and Lars E.O. Svensson. INTERNATIONAL BORROWING AND TIME-CONSISTENT FISCAL POLICY.

8423C Obstfeld Maurice. CAPITAL CONTROLS, THE DUAL EXCHANGE RATE, AND DEVALUATION.

8424C Kuhn, Peter. UNION PRODUCTIVITY EFFECTS AND ECONOMIC EFFICIENCY.

8425C Hamilton, Bob and John Whalley. TAX TREATMENT OF HOUSING IN A DYNAMIC SEQUENCED GENERAL EQUILIBRIUM MODEL.

8426C Hamilton, Bob, Sharif Mohammad, and John Whalley. RENT SEEKING AND THE NORTH-SOUTH TERMS OF TRADE.

8427C Adams, Charles and Jeremy Greenwood. DUAL EXCHANGE RATE SYSTEMS AND CAPITAL CONTROLS: AN INVESTIGATION.

8428C Loh, Choon Cheong and Michael R. Veall. A NOTE ON SOCIAL SECURITY AND PRIVATE SAVINGS IN SINGAPORE.

8429C Whalley, John. REGRESSION OR PROGRESSION: THE TAXING QUESTION OF INCIDENCE ANALYSIS.

8430C Kuhn, Peter. WAGES, EFFORT, AND INCENTIVE-COMPATIBILITY IN LIFE-CYCLE EMPLOYMENT CONTRACTS.

8431C Greenwood, Jeremy and Kent P. Kimbrough. AN INVESTIGATION IN THE THEORY OF FOREIGN EXCHANGE CONTROLS.

8432C Greenwood, Jeremy and Kent P. Kimbrough. CAPITAL CONTROLS AND THE INTERNATIONAL TRANSMISSION OF FISCAL POLICY.

8433C Nguyen, Trien Trien and John Whalley. EQUILIBRIUM UNDER PRICE CONTROLS WITH ENDOGENOUS TRANSACTIONS COSTS.

8434C Adams, Charles and Russell S. Boyer. EFFICIENCY AND A SIMPLE MODEL OF EXCHANGE RATE DETERMINATION.
Kuhn, Peter. UNIONS, ENTREPRENEURSHIP, AND EFFICIENCY.

Hercowitz, Zvi and Efraim Sadka. ON OPTIMAL CURRENCY SUBSTITUTION POLICY AND PUBLIC FINANCE.

Lenjosek, Gordon and John Whalley. POLICY EVALUATION IN A SMALL OPEN PRICE TAKING ECONOMY: CANADIAN ENERGY POLICIES.

Aschauer, David and Jeremy Greenwood. MACROECONOMIC EFFECTS OF FISCAL POLICY.

Hercowitz, Zvi. ON THE DETERMINATION OF THE EXTERNAL DEBT: THE CASE OF ISRAEL.

Stern, Robert M. GLOBAL DIMENSIONS AND DETERMINANTS OF INTERNATIONAL TRADE AND INVESTMENT IN SERVICES.

Deardorff, Alan V. COMPARATIVE ADVANTAGE AND INTERNATIONAL TRADE AND INVESTMENT IN SERVICES.

Daly, Donald J. TECHNOLOGY TRANSFER AND CANADA'S COMPETITIVE PERFORMANCE.

Grey, Rodney de C. NEGOTIATING ABOUT TRADE AND INVESTMENT IN SERVICES.

Grossman, Gene M. and Carl Shapiro. NORMATIVE ISSUES RAISED BY INTERNATIONAL TRADE IN TECHNOLOGY SERVICES.

Chant, John F. THE CANADIAN TREATMENT OF FOREIGN BANKS: A CASE STUDY IN THE WORKINGS OF THE NATIONAL TREATMENT APPROACH.

Aronson, Jonathan D. and Peter F. Cowhey. COMPUTER, DATA PROCESSING, AND COMMUNICATION SERVICES.

Feketakuty, Geza. NEGOTIATING STRATEGIES FOR LIBERALIZING TRADE AND INVESTMENT IN SERVICES.

Harrison, Glenn, W. and E.E. Rutstrom. THE EFFECT OF MANUFACTURING SECTOR PROTECTION ON ASEAN AND AUSTRALIA: A GENERAL EQUILIBRIUM ANALYSIS.
8501C Greenwood, Jeremy and Kent P. Kimbrough. FOREIGN EXCHANGE CONTROLS IN A BLACK MARKET ECONOMY.

8502C Horstmann, Ignatius and James R. Markusen. UP YOUR AVERAGE COST CURVE: INEFFICIENT ENTRY AND THE NEW PROTECTIONISM.

8503C Gregory, Allan W. TESTING INTEREST RATE PARITY AND RATIONAL EXPECTATIONS FOR CANADA AND THE UNITED STATES.

8504C Kuhn, Peter and Ian Wooton. INTERNATIONAL FACTOR MOVEMENTS IN THE PRESENCE OF A FIXED FACTOR.

8505C Wong, Kar-yiu. GAINS FROM GOODS TRADE AND FACTOR MOBILITY.

8506C Weller, Paul and Makoto Yano. FUTURES MARKETS, REAL INCOME, AND SPOT PRICE VARIABILITY: A GENERAL EQUILIBRIUM APPROACH.

8507C Dievert, W.E. THE EFFECTS OF AN INNOVATION: A TRADE THEORY APPROACH.

8508C Ethier, Wilfred J. FOREIGN DIRECT INVESTMENT AND THE MULTINATIONAL FIRM.

8509C Dinopoulos, Elias. INSIDE THE BLACK BOX: (IN)TANGIBLE ASSETS, INTRA-INDUSTRY INVESTMENT AND TRADE.

8510C Jones, Richard, John Whalley, and Randall Wgle. REGIONAL IMPACTS OF TARIFFS IN CANADA: PRELIMINARY RESULTS FROM A SMALL DIMENSIONAL NUMERICAL GENERAL EQUILIBRIUM MODEL.

8511C Whalley, John. HIDDEN CHALLENGES IN RECENT APPLIED GENERAL EQUILIBRIUM EXERCISES.

8512C Smith, Bruce. SOME COLONIAL EVIDENCE ON TWO THEORIES OF MONEY: MARYLAND AND THE CAROLINAS.

8514C Romer, Paul R. TAX EFFECTS AND TRANSACTION COSTS FOR SHORT TERM MARKET DISCOUNT BONDS.

8515C McCallum, Bennett T. ON CONSEQUENCES AND CRITICISMS OF MONETARY TARGETING.

8516C Dinopoulos, Elias and Ian Wooton. A NORTH–SOUTH MODEL OF INTERNATIONAL JUSTICE.

8517C Huffman, Gregory W. A DYNAMIC EQUILIBRIUM MODEL OF ASSET PRICES AND TRANSACTION VOLUME.

8518C Huffman, Gregory W. AN ALTERNATIVE VIEW OF OPTIMAL SEIGNIORAGE.

8519C Huffman, Gregory W. ASSET PRICING WITH HETEROGENEOUS ASSETS.
8520C Hercowitz, Zvi. THE REAL INTEREST RATE AND AGGREGATE SUPPLY.

8521C Davies, James and Michael Hoy. COMPARING INCOME DISTRIBUTIONS UNDER AVERSION TO DOWNSIDE INEQUALITY.

8522C Nguyen, Trien T. and John Whalley. COEXISTENCE OF EQUILIBRIA ON BLACK AND WHITE MARKETS.

8523C Clarete, Ramon and John Whalley. INTERACTIONS BETWEEN TRADE POLICIES AND DOMESTIC DISTORTIONS: THE PHILIPPINE CASE.

8524C Hamilton, Bob, Sharif Mohammad, and John Whalley. APPLIED GENERAL EQUILIBRIUM ANALYSIS AND PERSPECTIVES ON GROWTH PERFORMANCE.

8525C Huffman, Gregory W. THE LAGGED EFFECTS OF POLICY ON THE PRICE LEVEL.

8526C Laidler, David. FISCAL DEFICITS AND INTERNATIONAL MONETARY INSTITUTIONS.

8527C Goodfriend, Marvin. MONETARY MYSTIQUE: SECURITY AND CENTRAL BANKING.

8528C Nguyen, Trien T. and John Whalley. GENERAL EQUILIBRIUM ANALYSIS OF PRICE CONTROLS A TWO-SECTOR COMPUTATIONAL APPROACH.

8529C Heckman, James J. and V. Joseph Hotz. AN INVESTIGATION OF THE LABOR MARKET EARNINGS OF PANAMERICAN MALES: EVALUATING SOURCES OF INEQUALITY.

8530C Greenwood, Jeremy and Gregory W. Huffman. A DYNAMIC EQUILIBRIUM MODEL OF INFLATION AND UNEMPLOYMENT.

8531C Freeman, Scott. INSIDE MONEY, MONETARY CONTRACTIONS, AND WELFARE.

8532C Paderanga, Cayetano Jr. and Ian Wooton. A POSITIVE VIEW OF INFANT INDUSTRIES.

8533C St-Hilaire, France and John Whalley. A MICROCONSISTENT DATA SET FOR CANADA FOR USE IN REGIONAL GENERAL EQUILIBRIUM POLICY ANALYSIS.

8534C Whalley, John. OPERATIONALIZING WALRAS: EXPERIENCE WITH RECENT APPLIED GENERAL EQUILIBRIUM TAX MODELS.

8535C Melvin, James R. THE GENERAL NON-EQUIVALENCE OF TARIFFS AND IMPORT QUOTAS.
1986

8601c Greenwood, Jeremy and R. Preston McAfee. EXTERNALITIES AND ASYMMETRIC INFORMATION.

8602c Dinopoulos, Elias and Mordechai E. Kreinin. IMPORT QUOTAS AND VERS: A COMPARATIVE ANALYSIS IN A THREE-COUNTRY FRAMEWORK.

8603c Clarete, Ramon and John Whalley. COMPARING THE MARGINAL WELFARE COSTS OF COMMODITY AND TRADE TAXES.

8604c Wigle, Randy. CANADIAN TRADE LIBERALIZATION: SCALE ECONOMIES IN A GLOBAL CONTEXT.

8605c Parkin, Michael. DOMESTIC MONETARY INSTITUTIONS AND FISCAL DEFICITS.

8606c Dinopoulos, Elias and Ian Wooton. INTERNATIONAL TRADE AND THE ACQUISITION OF SKILLS.

8607c Kawasaki, Seiichi and John McMillan. THE DESIGN OF CONTRACTS: EVIDENCE FROM JAPANESE SUBCONTRACTING.

8608c Williamson, Stephen D. LIQUIDITY, BANKING, AND BANK FAILURES.

8609c Grossman, Gene M. and Carl Shapiro. COUNTERFEIT-PRODUCT TRADE.

8610c Deardorff, Alan V. WHY DO GOVERNMENTS PREFER NONTARIFF BARRIERS?

8611c Horstmann, Ignatius and James R. Markusen. LICENSING VERSUS DIRECT INVESTMENT: A MODEL OF INTERNALIZATION BY THE MULTINATIONAL ENTERPRISE.

8612c Thursby, Jerry G. and Marie C. Thursby. BILATERAL TRADE FLOWS, THE LINDE HYPOTHESIS, AND EXCHANGE RISK.

8613c Clarete, Ramon and John Whalley. EQUILIBRIUM IN THE PRESENCE OF FOREIGN EXCHANGE PREMIA.

8614c Wooton, Ian. TOWARDS A COMMON MARKET: FACTOR MOBILITY IN A CUSTOMS UNION.

8615c St-Hilaire, France and John Whalley. SOME ESTIMATES OF TRADE FLOWS IN BANKING SERVICES.

8616c Evenson, Robert E. and Cayetano Paderanga Jr. RURAL LABOUR MARKETS, TRANSACTION COST AND FERTILITY.

8617c Fried, Joel and Peter Howitt. FISCAL DEFICITS, INTERNATIONAL TRADE AND WELFARE.

8618c Treila, Irene, John Whalley, and Randy Wigle. INTERNATIONAL TRADE IN AGRICULTURE: DOMESTIC POLICIES, TRADE CONFLICTS, AND NEGOTIATING OPTIONS.
Markusen, James R. and Anthony J. Venables. TRADE POLICY WITH INCREASING RETURNS AND IMPERFECT COMPETITION: CONTRADICTORY RESULTS FROM COMPETING ASSUMPTIONS.

Hunter, Linda and James R. Markusen. PER-CAPITA INCOME AS A DETERMINANT OF TRADE.

Jones, Rich and John Whalley. A CANADIAN REGIONAL GENERAL EQUILIBRIUM MODEL AND SOME APPLICATIONS.

Freeman, Scott, and Gregory W. Huffman. INSIDE MONEY, OUTPUT, AND CAUSALITY.

Hamilton, Colleen, and John Whalley. DEALING WITH THE NORTH: DEVELOPING COUNTRIES AND GLOBAL TRADE NEGOTIATIONS.

Williamson, Stephen D. LAISSEZ FAIRE BANKING AND CIRCULATING MEDIA OF EXCHANGE.