
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

3-31-2023 12:00 PM 

Denoising-Based Domain Adaptation Network for EEG Source Denoising-Based Domain Adaptation Network for EEG Source 

Imaging Imaging 

Runze Li, The University of Western Ontario 

Supervisor: Boyu, Wang., The University of Western Ontario 

Co-Supervisor: Charles, Ling., The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in 

Computer Science 

© Runze Li 2023 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Artificial Intelligence and Robotics Commons 

Recommended Citation Recommended Citation 
Li, Runze, "Denoising-Based Domain Adaptation Network for EEG Source Imaging" (2023). Electronic 
Thesis and Dissertation Repository. 9246. 
https://ir.lib.uwo.ca/etd/9246 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F9246&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9246?utm_source=ir.lib.uwo.ca%2Fetd%2F9246&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract

Electrophysiological source imaging (ESI) is a widespread and no-invasive technique in neu-

roscientific research and clinical diagnostics. It provides a well-established and high temporal

resolution of source activity and gives the brain signal by analyzing the corresponding EEG

signal. However, it is still a major challenge to deal with the domain shift problem between

the datasets of different subjects or sessions in ESI problem. Furthermore, the variable noise

included in the EEG signals inevitably influence the accuracy of localization of source activity.

In this paper, we propose a novel denoising autoencoder-based unsupervised domain adapta-

tion (DAE-UDA) algorithm to tackle these problems. To the best of our knowledge, it is the

first to solve the domain shift in the ESI problem by using UDA to narrow the discrepancy

between different domains. Moreover, we innovatively combine our model with denoising au-

toencoder (DAE) to remove noise and learn a robust mapping from the noisy EEG signal to the

brain activity. Extensive numerical experiments and the analysis of real EEG datasets demon-

strate that DAE-UDA can effectively remove noise and mitigates the domain shift of low-SNR

EEG signal. Our model outperforms other classical ESI methods in robustly imaging source

activities under a variety of source settings.

Keywords: Electromagnetic source imaging (ESI), Denoising network, Domain Adapta-

tion, Transfer learning, EEG source localization, deep learning
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Summary for Lay Audience

In our daily lives, some people suffer from several neurological diseases such as epilepsy,

ADHD, Alzheimer’s, etc. These neurological diseases may be caused by some lesion areas in

patients’ brain. Thus, if we could find an effective method to locate the exact localization of the

areas of the lesions, many mental illnesses could be alleviated or even cured. Electroencephalo-

gram (EEG) is a recording of brain activity that measures electrical activity in our brain using

small metal electrodes attached to the surface of the top of the patient’s head. Due to the non-

invasiveness and convenience of EEG, some researchers want to measure and analyze patients’

EEG signals to find the source in the brain that generates the EEG signal, which may be the

location of the brain lesion area. However, there are two main challenges that bother doctors

and scientists: the noise in EEG signals impacts the analysis, and the probability distributions

of EEG signals and the source of the signal in the brain often change.

In this paper, we propose a new deep learning method call DAE-UDA to solve these prob-

lems. Our model mainly consists of two parts: unsupervised domain adaptation and denois-

ing autoencoder. The first component unsupervised domain adaptation technique (UDA) can

overcome the change in the distribution of EEG and source activity in the brain and make

our model more applicable, and the second component denoising autoencoder (DAE) can re-

move the noise contained in EEG signals. Extensive numerical experiments and the analysis

of real EEG datasets demonstrate that DAE-UDA can effectively remove noise and mitigates

the change of distribution of noisy EEG signal.
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Chapter 1

Introduction

1.1 Introduction

With recent advancements in brain science and bioelectric signal measurement technology, a

growing number of medical experts and researchers in the field of brain diseases have discov-

ered that neurological and physiological disorders such as Parkinson’s disease, ADHD, and

epilepsy are closely associated with brain lesions or abnormal brain electrical signals. As a

result, there is a requirement to develop effective methods or algorithms to accurately deter-

mine the specific location of brain lesions and the source of abnormal brain electrical signals,

whether it is in the brain or the brain stem. This process, known as brain source localization

(BSL) or brain source imaging (BSI) problem, involves identifying the position, direction, and

depth of the disease source in the brain.

Traditional methods for brain source localization or imaging, such as the subdural elec-

trode method, typically involve invasive techniques that require sensors or electrodes to be

inserted into the patient’s head and brain in order to record electrical signals from the brain

and scalp, with the aim of identifying the location of the disease. However, these invasive

methods are associated with drawbacks such as invasiveness, risk of rejection, and potential

for causing temporary or permanent damage or dysfunction to the patient’s brain, as well as

increased susceptibility to infection or edema. As a result, non-invasive methods have been de-

veloped in recent years, utilizing physiological signals related to the brain that can be collected

from outside the body, such as magnetic resonance imaging (MRI), functional magnetic res-
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2 Chapter 1. Introduction

onance imaging (fMRI), electroencephalogram (EEG), and magnetoencephalography (MEG),

among others. Non-invasive techniques offer advantages in terms of safety, cost-effectiveness,

non-invasiveness, and patient-friendliness, which have led to significant attention and rapid

development in recent years. Among these non-invasive techniques, EEG measurement tech-

nology has shown particular promise, with advantages such as high temporal resolution, min-

imal equipment and measurement environment requirements, and low cost. As a result, EEG

has become one of the most widely used biological signals for non-invasive measurement of

electromagnetic brain activity [28].

The EEG source imaging problem, also referred to as EEG source localization problem

(ESL), is a non-invasive brain source imaging (BSI) problem that aims to reconstruct the high

temporal resolution of source activity in the brain using measurements of EEG signals. Among

the non-invasive source localization methods, EEG-based brain source localization methods for

patients with brain diseases have become widely used for BSI. However, ESI faces challenges

due to the poor spatial resolution of EEG signals, resulting in an ill-posed problem. This is

caused by the low spatial resolution and limited number of recording sensors compared to the

numerous potential source solutions in the brain. In some cases, different source activities in

the cortex can result in the same EEG topology recorded on the scalp of patients.

To find the source resolution of EEG signals, statistical ESI methods rely on the optimiza-

tion or probabilistic framework, where regularization techniques or pieces of prior information

about the head conditions of the patient are exploited to constrain the solution space and re-

move noise for a specific signal-to-noise ratio, such as weighted MNE [15], LORETA [46], and

sLORETA [48], etc. However, no matter what strategies are used, these classical ESI methods

are unstable owing to noise sensitivities, initial source configurations and also rely on the esti-

mation of the patient’s brain physiological properties [5, 18, 19, 52, 58]. Moreover, choosing

optimal values for regularization in these approaches is a significant concern because inade-

quate settings may cause minor perturbations in the dataset, resulting in neurophysiologically

implausible outcomes [26].

In recent years, there has been rapid development of deep learning neural network (DNN)

techniques in various fields, including computer vision, natural language processing, image

generation, and biomedical signal and image analysis [17, 12, 32, 38, 7, 22]. In the context of
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source imaging, DNNs based on the end-to-end approach treat the mapping of the EEG signal

to source activity as a black box, which can be optimized by the parameters of the network

without relying on prior knowledge of the physical characteristics of the head [28]. However,

most existing DNN methods for EEG source imaging (ESI) assume that the probability dis-

tributions of training and testing samples are independent and identically distributed (i.i.d.),

which is difficult to meet in practice. The probability distribution of EEG signals and source

signals can change due to various factors such as the patient’s mood, illness, and physiological

state, leading to a violation of the i.i.d. assumption and resulting in the domain shift problem.

Remarkably, to the best of our knowledge, there has been no research on the domain shift prob-

lem in ESI, which hinders the potential and applicability of deep neural networks in addressing

ESI challenges.

In light of the limitations of conventional EEG source imaging techniques, as previously

outlined, including susceptibility to noise, domain shift instabilities, and the complexity of se-

lecting appropriate regularization values, we propose a novel method called denoising autoencoder-

based unsupervised domain adaptation (DAE-UDA) to address these challenges. The UDA

component in our method aims to narrow the distribution gap and learn common features from

labeled training data in the source domain and unlabeled test data in the target domain. Fur-

thermore, to address the challenge of low signal-to-noise ratio (SNR) and noise in EEG signals,

we drew inspiration from previous related work and proposed an effective architecture based

on the denoising autoencoder (DAE) [56] to remove the noise in EEG signals. Through the

collaborative efforts of the encoder and decoder in DAE, our model is capable of removing

noise from EEG signals and extracting relevant features, thereby improving the robustness and

stability of the model in the presence of noisy EEG signals. To the best of our knowledge, we

are the first to utilize an unsupervised domain adaptation approach (UDA) to mitigate the issue

of domain shift in ESI.

1.2 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 introduce the background, signifi-

cance, challenges in the EEG source imaging problem and the related work of ESI and domain



4 Chapter 1. Introduction

adaptation. In Chapter 3, we give the details and problem setup of domain adaptation prob-

lem on ESI we need to solve with. Chapter 4 introduces the details of the forward model and

the simulated process used to simulate EEG and source activity data. Moreover, the archi-

tecture and details of DAE-UDA algorithm we proposed are shown in Chapter 4. Chapter 5

uses the simulated data and real data to evaluate the performance of DAE-UDA and compares

DAE-UDA with some classical existing ESI methods. Chapter 6 discusses and concludes the

findings of the study.



Chapter 2

Background

2.1 Electrophysiological Source Imaging (ESI) Problem

2.1.1 Background and Definitions of ESI Problem

Electroencephalogram(EEG) are important technologies for measuring human brain activity

and physiological state, which have an advantage over other non-invasive tools, higher tempo-

ral resolution and a cheaper cost of measurement than other techniques like functional mag-

netic resonance imaging (fMRI). The advantages of EEG and flexible application make EEG

become one of the most used methods in brain biology and human neurology. With the in-

crease in the number of patients with epilepsy and other brain diseases and the development of

brain science, many researchers realize that there is a need for effective methods to study the

activity of nerves in the brain. More and more researchers are starting to study brain activity

by using invasive tools and non-invasive methods. EEG which includes spatial and temporal

information generated by the underlying brain electrical activity is one of the most important

method of non-invasive source imaging methods in recent years [35][47][42] [27][20].

The process of generating the external surface potentials or magnetic fields from a defi-

nite setting of neuronal current activities in the brain is called the forward problem of EEG.

In contrast, the EEG inverse problem is the process of reconstructing brain activity sources

from external measurements of signals in the scalp, which is called the electromagnetic source

imaging (ESI), also known as electromagnetic source localization (ESL), problem. However,

5



6 Chapter 2. Background

Figure 2.1: An illustration of forward and inverse problems in the context of EEG[3]

such scalp topographical maps like EEG are influenced by the volume conduction effect, which

causes us only to get a rough estimation of the underlying sources. Therefore, electrophysi-

ological source imaging (ESI) was created and developed to greatly enhance the spatial and

temporal resolution of EEG signals. ESI is a inverse process of predicting the underlying elec-

trical activity in subject’s brain and scalp from the recording EEG signals and aims to search

a brain source distributions which can fit the recorded EEG signals [27]. In essence, the ESI

is a non-invasive prediction of brain underlying activity which based on the projections to the

sensors on the scalp and constitutes an inverse advantage.

2.1.2 Importance and Significance of ESI Problem

The related researches in EEG source localization shows that EEG source localization tech-

niques are important and effective in the diagnosis and treatment of many brain abnormalities

and diseases. In the past, it has been a great challenge to find the source of brain diseases in the

brains of patients like epileptics or ADHD patients. The EEG source localization techniques

have more achievements and contributions in Epilepsy and Attention Deficit and Hyperactiv-

ity Disorder (ADHD) among the brain diseases which have been studied by the ESI meth-

ods. Thus, in the following, the contributions and significance of ESI techniques in epilepsy,
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ADHD, and other brain abnormalities will be introduced separately. First, we will review the

ESI methods used in detecting epilepsy spikes. In addition, we will study the application of

ESI in ADHD.

Diagnosis of ADHD Abnormalities Using BSI Based on EEG Signal

Attention deficit and hyperactivity disorder called ADHD is a serious and common brain dis-

ease that is usually found in children. Associated medical researchers consider ADHD as a

clinical psychiatric condition that will influence frontal circuitry with respect to deficits in

practical cognitive functions [2]. According to related studies, ADHD is a disorder that hap-

pened in patients’ childhood and rarely continues into adulthood [29]. Moreover, some other

studies have shown that there is a delay in patients with ADHD [39][51]. ADHD patients will

face many challenges and difficulties in daily life and work like high living costs, interpersonal

relationship, and harmful academic and work consequences. In addition, patients with ADHD

also suffer an altered level of inattention, hyperactivity, and violence. Therefore, it is very

significant and necessary to find a method to find the source of the disease in the brain of the

ADHD patient.

The brain source localization which is based on the abnormal EEG signals of ADHD pa-

tients shows a new way to help doctors diagnose ADHD, find the source of the disease and treat

ADHD. Some papers has shown that the application of the parents’ EEG signals can help to

evaluate the impact of pharmacological and non-pharmacological treatments on electrocortical

activity [2][29]. Moreover,some researches investigate using the combining of high quality

EEG signals based source localization application in find if the ADHD-subtype specific mod-

ulations of neurophysiological processes are different for different type of ADHD patients or

not and distinguishing them. These studies have shown that ESI methods and techniques can

help associated medical researchers and physicians diagnose and treat ADHD abnormalities in

patients with brain disease.

Detecting and Localizing Epileptic Seizures by Using ESI

Traditional methods used to detect and treat epilepsy are always invasive and harmful to epilep-

tic patients. For example, doctors usually use subdural electrode method to localize the position
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of epileptogenic tissue. However, due to the invasive nature of the technique, this method likely

causes infections in the brain and scalp of patients.Thus, it is very necessary and useful for the

epilepic patients to find a non-invasive method without risk of infection to localize the local-

ization of epileptogenic tissue. Recently, brain source localization based on EEG signals from

patients has become a novel and non-invasive method with great potential for development to

help detect and localize epileptic seizures. Many researchers have investigated the application

of ESI at the epilepsy site since 1995 [55][37][31][44][11][53]. These studies investigate many

aspects of how to use ESI techniques in epileptic seizures, such as the relationship between the

number of sensors and the precision of epileptogenic tissue localization, the restrictions that

can restrict the prediction space and solve the ill-posed problem. Fig. 2.2 shows the result

investigated from one of the related studies that investigates the relationship between source

location and electrode number in pediatric patients with partial epilepsy based on the inverse

solution of sLORETA. In Fig. 2.2, the blue dot shows the maximum localization, and the

yellow line presents the resection boundaries. This paper concludes that the accuracy of the

predicted location of the source of abnormal EEG signals will be improved when the number

of electrode and sensor increases. However, this result and improvement are not obvious or

significant for a number of electrodes larger than 128 [53].

In addition to the above results and applications, brain source localization based on EEG

signals has other advantages and good points in comparison to traditional inverse source local-

ization methods. Although invasive methods are more effective and more precise, they cause

invasive damage to the patient’s brain, affect normal brain function, interfere with patient re-

covery, and are very expensive in practice. Compared to invasive methods, the non-invasive

method of ESI has great advantages in cost, patient friendliness, operability, etc. Using the ESI

methods, we can predict the source activities by only using EEG signals that are recorded by

the non-invasive methods on the head of patient. Furthermore, ESI helps physicians and re-

searchers narrow the gap between EEG recordings and generators on the brain nerve. Once we

have obtained the correct detail information on the source activities such as locations, intensity,

extents, and polarity, we can efficiently, accurately and quickly find the pathogenic location of

patients with epilepsy and take measures to control the development of the disease[34]. More-

over, dealing with the ESI problem using the noninvasive method can help researchers and
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Figure 2.2: Relationship between the number of electrodes and the location of the source of

the interictal spike in patients[53]

scientists better understand the information and details about different functional areas of the

brain in a cheaper and safer way.

2.1.3 Difficulties and Challenges we are facing in ESI Problem

The Ill-posed Challenge of ESI Problem:

Although, the non-invasive method has more advantages than other methods, we still face some

difficult and important challenges, which seriously affect the implementation and need to be

solved at first. The most important and toughest problem we need to deal with is that the ESI

problem is a highly ill-posed inverse problem, which means that there are infinite theoretically

reasonable and possible solutions for a recorded and given measured EEG signals. The reason

why the ESI problem is highly ill-posed is that the number of sensors or channels of external

measurements like EEG is limited and not enough compared with the number of unidentified

source dipoles, which becomes a long-standing challenge for the ESI problem.
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The Prior Knowledge Impacts on The Accuracy of ESI Problem

Moreover, the classical ESI methods need to assume some prior information about the charac-

teristic and physiological status of the subject’s brain to create the head model for prediction.

The accuracy of the prior information will significantly impact the performance and predic-

tion error of the model. Furthermore, prior information about source activity is achieved by

constraints that are often adopted to enable mathematical tractability but may not accurately

reflect actual source configurations [50]. Thus, the accuracy of regression of the ESI problem

strongly depends on the prior information and the forward model capabilities to accurately sim-

ulate the head anatomy of the head of subject from the recorded data and available structural

data like MRI, fMRI, etc. Many statistical and deep learning approaches have been proposed to

deal with these problem and to find the correct source dipoles. Some of them enhance the head

model within the individual-specific forward model, using the head geometry complexity of the

head tissue compartments and the prior information of the head morphology. Some researchers

validate the proposed methodology using 25 subjects, from which a set of magnetic-resonance

imaging scans is acquired, extracting the anatomical priors and an electroencephalography

signal set needed for validating the ESI scenarios. The results obtained confirm that the in-

corporation of patient-specific head models enhances the accuracy performed and improves

the localization of focal and deep sources [8]. In next section, we will introduce some clas-

sical and famous statistical and deep learning methods in ESI problem to illustrate relevant

achievements, progress and existing problems.

2.2 Related work

In this section, we will introduce the background and related work in the ESI problem and the

domain adaptation problem. According to recent related research, almost one third (38%) pa-

pers solves the inverse problem by statistical method [2] and many researchers used the ANN to

deal with the ESI problem. Thus, we separate the ESI approaches into two parts. The first one

is classical and statistical approaches that proposed in the early research period and the second

part is the deep learning approaches which are proposed in recently years and show great fu-

ture in this yield. The traditional and statistical methods usually used for EEG source imaging
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are centered on the optimization or probabilistic framework where regularization techniques

or pieces of prior information are exploited to constrain the solution space. The deep learning

methods always treat the inverse process of ESI problem as a black box and train the neural

network like CNN or ANN to simulate the black box to deal with the ESI problem without

prior information. At the last of this section, we introduce some related work and background

in the transfer learning and domain adaptation, which are useful in narrowing the domain shift

in ESI problem.

2.2.1 The Related Work Solving ESI Problem by Statistical Methods

For the ESI problem, the one kind of popular brain source localization methods is statistical

method, which accounted for thirty percent of all ESI methods in recent years[2]. Statistical

methods for ESI can be mainly classified into different categories, including statistical meth-

ods based on minimum norm estimate (MNE), recursive multiple signal classification method

(MUSIC), beamformer localization method and other statistical methods. These statistical

methods will be introduced below.

Smooth Solution Methods Based on MNE and Related Methods

The minimum norm estimate (MNE) approach [57] is a typical smooth solution method. The

MNE applies the L2-norm regularization to constrain the source space to deal with the ill-

posed problem of brain source localization and predict spatially smooth sources. Although the

results predicted by MNE and variant methods are good in the aspects of current resolution and

estimation, these methods cannot address the problem of deep source activity in the outermost

cortex. The reason is that the solution of MNE methods is a harmonic function, which attain

maximum values at the outermost cortex in this case.

Due to the disadvantages of MNE, some researches propose some new methods, such as

weighted minimum norm estimate solution (wMNE) and low-resolution electromagnetic to-

mography (LORETA) to get lower error of localization distance and to predict well in the

position of non-boundary sources [47]. Weighted minimum norm estimate (wMNE) [15] is a

variant of MNE. wMNE try to mitigate the bias towards superficial sources by adding addi-
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tional weights to the sources. Low-Resolution Electromagnetic Tomography (LORETA) [46]

is an improved version of wMNE method that adds Laplacian constraint and its variants are fa-

mous proponents of the MNE family that belongs to L2 norm-based approaches. The LORETA

and its variants assume that the current density of souce activity in any position of cortex is sim-

ilar to the average current density of its adjacent points, which become the basis of LORETA

method and force sources to be smoothly distributed through the spatial Laplacian operator.

Compared to MNE and wMNE, the results of LORETA are smoother and have a lower local-

ization error for the deep source activity. However, LORETA also have some shortcoming and

disadvantage, such as low spatial resolution of prediction and blurred localized images [59].

As a variant of LORETA, standardized LORETA (sLORETA) [48] is based on the assumption

of standardization of current density [2]. Exact LORETA (eLORETA) is another variant of

LORETA, which focus on how to reduce the localization mistakes of deeper source. The lo-

calization accuracy of the sLORETA and eLORETA methods is better than that of LORETA,

but their spatial resolution is not appropriate [2]. What’s more, the L2-norm-based approaches

may produce some overly diffuse estimates for focal sources [21].

To address this limitation of LORETA and related methods, the Focal Underdetermined

System Solution (FOCUSS) [18] is proposed by researchers. FOCUSS is a high resolution

non-parametric technique that uses a forward model that assigns a current to each element

within a predetermined reconstruction region. In this algorithm, the weights are iterated at

each step from the solution of the previous step. Weighted minimum norm method is applied

for mathematical calculations in the recursive steps. It is reported that the FOCUSS algorithm

has better localization accuracy compared with other methods and can manage non-uniquely

defined localized energy sources as well as having acceptable spatial resolution. Furthermore,

it is robust against non-uniquely defined localized energy sources. The result of FOCUSS on

a complex source configuration is shown in Fig. 2.3. Another famous approach is Dynamic

Statistical Parametric Mapping (dSPM) [14]. dSPM combines structural and functional MRI

with magnetoencephalography (MEG) to obtain spatial-temporal maps of human brain activity

with millisecond temporal resolution.
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Figure 2.3: The results of reconstruction of a complex source configuration of FOCUSS and

compared methods [18]

Multiple Signal Classification Algorithm (MUSIC) and Related Methods

The recursive multiple signal classification algorithm (MUSIC) was first proposed in 1995.v

This algorithm tries to scan a single activity dipole through a grid confined to the subject’s head

or a source volume. MUSIC uses the EEG signal to produce a signal subspace and project

the dipoles at each grid point from the forward model to the subspace. The location where

the mapping is best fit onto the signal subspace is the location of source activity. However,

MUSIC still faces some challenges and problems in the practical case. Because it is so much

noise and many disturbances in practical applications that the signal subspace and forward

model of patient have to include some noise and error, which impact the selection of the best

mapping location in MUSIC seriously.

In 2011, Birot proposed a new generalization of MUSIC called spatially-extended neocor-

tical sources MUSIC approach (ExSo-MUSIC approach) [4]. This method uses the higher

order statistics to obtain a better result that has better robustness and can resist the Guassian

noise in the modeling errors and spatial coherence. Compared with classical MUSIC methods,

ExSo-MUSIC has better performance and robustness. Moreover, some researchers also pro-
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posed other generalizations of MUSIC, such as recursively applied and projected multiple sig-

nal classification (RAP-MUSIC), Truncated RAP-MUSCI (TRAP-MUSIC) and blind source

separation (BSS), etc. These methods use addition information, constrains or processing stage

to obtain a better result and be more valid and appropriate for ESI applications.

Although these inverse algorithms have shown to, not only find the location but also esti-

mate the correct size of sources, they can not get satisfied performance when the EEG signal

has a low-level SNR or cannot overcome differences in EEG signal distribution over time.

Thus, some researchers propose some novel approaches based on artificial networks or deep

learning networks.

2.2.2 Deep Learning Approaches in ESI Problem and Inverse Solutions

As mentioned above, existing classical or statistical EEG source analysis methods attempt to

solve the ESI inverse problem in a straight-forward manner that use different forms of prior

assumptions and regularization to constrain the source space of the optimization problem.

However, it is extremely difficult to find correct prior assumptions or regularization which

can reflect the actual source configurations. In the aspect of deep learning, prior assumptions

and regularization are more likely to be related to the parameters of an artificial neural network.

Mathematically, the inverse process of the ESI problem is similar to the black box, which could

be approximated by a designed deep learning network structure. Thus, some researchers tried

to apply ANNs, such as convolution neural network (CNN), long short-term memory network

(LSTM), to solve the inverse problem of EEG based on single or several dipoles [1]. Up to now,

some achievements have been made in the application of ANNs in brain source localization of

recorded EEG signals

Huang[30] proposed a new approach based on the autoencoder network and is called the

Data Synthesis-Based Denoising Autoencoder (DST-DAE). The data-synthesized deep learn-

ing strategy of DST-DAE has been shown in Fig. 2.4. This paper proposed a ANNs method

called DST-DAE which used an autoencoder network that has convolutional layers to encode

EEG signals and deconvolutional layers to decode ESI and EEG signals to remove noise in

the environment and the recording process from the noisy EEG signals. The neural network
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Figure 2.4: One of Data-synthesized deep learning strategy for ESI problem [30]

reformulates the brain source localization problem as a supervised machine learning problem

and in This architecture achieved a reliable estimate of both the source positions and their sizes

at varying levels of noise, but required a fixed-size temporal dimension of the EEG signals,

which was set to 40-time slices. Furthermore, the DST-DAE was only used for single- and

two-source patches and did not investigate the performance on multiple sources.

Cui [13] proposed a long short-term memory (LSTM) network to deal with the ESI prob-

lem. This network was trained on the simulated EEG data and aimed to find the localization

and direction of single-dipole sources. Because the type of input and output of the model are all

spatio-temporal and have same length, this model can be considered as a sequence-to-sequence

(seq2seq) model. The architecture of the proposed method in this paper is shown in Fig. 2.5.

However, the simulation process in this paper was a vast simplification that could not reflect the
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Figure 2.5: LSTM network architecture for the EEG inverse localization problem [13]

real EEG activity and the LSTM model only focused on the single dipole sources, which was

an oversimplification of realistic brain activity patterns. Thus, the results and achievements in

this paper can be only considered as a preliminary proof and attempt of the feasibility of the

LSTM model to solve the ESI problem.

2.2.3 Unsupervised Domain Adaptation

Recently, the deep learning and artificial neural networks have achieved great achievements

in many fields and enjoyed great success in various aspects of application. The most super-

vised deep learning methods are built on a basic and common assumption: the training and

testing data are sampled from the same distribution, which we call an independent and identi-

cal distribution. However, when the training and test distributions are distinct, the classifier or

regressor that is trained on the source dataset will easily suffer a decrease in performance on

the target dataset, which is caused by the difference between the domains called domain shift

[49] or domain shift. Furthermore, in some cases, the dataset we used to predict or classify

don’t have enough or even any labeled samples. We only have some related but differently
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Figure 2.6: An example of unsupervised domain adaptation

distributed labeled to train our model. Therefore, unsupervised domain adaptation (UDA) has

been proposed to handle domain shift, knowledge transfer, and unsupervised learning. Unsu-

pervised domain adaptation (UDA) is the task of training a statistical model on labeled data

from a source domain to achieve better performance on data from a target domain, with access

to only unlabeled data in the target domain [43].

The domain-adversarial neural network (DANN) is a famous and classical work in UDA,

which first introduced the idea of adversarial training into UDA [16]. The main thought of

DANN is using the adversarial architecture in a two-player game to confuse a domain dis-

criminator and to learn the transferable feature representations. The architecture of DANN is

illustrated in Fig. 2.7. However, DANN was designed for learning transferable representations

in the classification problem and much unnecessary domain related information and features is

involved. Thus, the generalization to the regression problem in the target domain is impacted.

Zhang proposed a new measurement called Margin Disparity Discrepancy to overcome and

bridge the gap between the theory and algorithm existed in adversarial learning of UDA [60].

This paper define a novel divergence MDD for domain adaptation and give the exact gener-

alization bounds that uncover reveal the trade-off between generalization error and the choice

of margin. This method and divergence can be transformed into some adversarial learning

methods for unsupervised domain adaptation. Thus, we are inspired by these idea and MDD

discrepancy to proposed a new algorithm based on MDD to overcome the domain shift in ESI

problem and bridge the gap between the samples in the source domain and the samples in the

target domain.
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Figure 2.7: The architecture of domain-adversarial training of neural networks [16]
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Unsupervised domain adaptation problem

on EEG source imaging

In this section, we introduce the ESI problem and related definitions for the domain adaptation

in ESI problem. We first give a brief introduction of the forward problem about ESI, then the

ESI domain adaptation problem is denoted. Next, we give the goal we want to achieve in the

ESI domain adaptation problem.

3.1 Forward Problem of ESI

The forward problem in EEG source imaging involves the computation of the EEG signal on

the scalp from the distribution of brain source activity through the use of the lead field matrix.

This matrix represents the electric current field generated within the volume conductor of the

head [40]. The lead field matrix is a critical tool in simulating EEG data and obtaining the

corresponding source labels. Since it is difficult to obtain the corresponding source signal non-

invasively in real-life scenarios, the simulation of EEG and source activity signals through the

lead field matrix of the forward problem is crucial in the training of deep neural networks. The

relationship between the source signal and the corresponding EEG signal can be mathemati-

cally expressed as a linear model:

c = Hs (3.1)

19



20 Chapter 3. Unsupervised domain adaptation problem on EEG source imaging

where c ∈Rn×1 is the generated clean EEG signal from n electrodes on the scalp, which doesn’t

include any noise. H ∈ Rn×m is the lead field matrix that reflects the relationship between the

neural activity of the source of the m dipoles in the brain and the EEG activity on the scalp, and

s ∈ Rm×1 represents the neural activity of the source signal in m dipoles. In practical applica-

tions, EEG signals are often mixed with many noises, which often come from eye movement

signals, muscle electrical signals, power grid interference, etc. To make the simulated EEG

signal more realistic, we artificially add noise to the EEG signal, which can be expressed as:

e = Hs + ε (3.2)

where e ∈Rn×1 is the noisy EEG signal with artificial noise, and ε ∈ Rn×1 is the artificial noise

which is similar to the noise in real EEG signal.

The lead field matrix is the linear mapping between the scalp potential measured by the

electrodes and the brain source signal. The forward problem relies on the establishment of

the lead field matrix. In practice, the lead field matrixH is computed by solving Maxwell’s

equations using for example a boundary element methods (BEM) [36], based on structural MRI

scans of specific subjects or an average classical lead field template. Once the lead field matrix

is determined, the forward problem can be solved.

Compared with forward problem, ESI is the inverse process of the forward problem, re-

quiring the computation of the brain source activity distribution from the EEG signal collected

on the scalp of a subject.

3.2 Unsupervised Domain Adaptation Problem in ESI

In the unsupervised domain adaptation problem, we have a labeled dataset from the source

domain and an unlabeled dataset from the target domain. The distributions of samples in these

two datasets are different, which causes the domain shift problem. Learning a discriminative

classifier or regressor in the presence of a domain shift between two different distributions is

known as domain adaptation [16].

In the unsupervised domain adaptation problem in ESI, we also have the source domain S,

and the target domain T . For the source domain S, we can draw a label source dataset, which
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can be expressed as:

DS = {(eS
i , s

S
i )}NS

i=1 ∈ S (3.3)

where DS is the labeled dataset drawn from the source domain S, and eS
i represents the i-th

noisy EEG signal in dataset, and sS
i is the corresponding i -th source signal for the EEG signal

eS
i , and NS indicates the number of samples in source dataset DS .

For the target domain T , we can also draw an unlabeled dataset, which can be expressed as:

DT = {eT
j }

NT
j=1 ∈ T (3.4)

where DT is the unlabeled dataset drawn from the target domain T , and eT
j is the j-th noisy

EEG signal, and NT indicates the number of samples in DT . During training, the examples in

DT are unlabeled, and we cannot use the corresponding source signal sT
j to optimize our model.

In the ESI domain adaptation problem, we try to solve a domain shift problem caused

by the same patient’s different sessions or emotional instability, signal acquisition conditions

change. Since the physiological properties of the same patient’s head do not change easily

over a period of time, we can assume that the leading matrix is invariant in the two datasets.

Change in the patient’s emotion, signal acquisition conditions, and sessions will only influence

the distribution of EEG signal and source signal and cause the domain shift. Our goal is to train

a regressor F that uses the given knowledge of DS and DT and to obtain good performance on

prediction of the source signal of the unlabeled samples from DT .
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Method

In this section, we first give a brief introduction about the lead field matrix, simulation method

and the forward model that we used in the data simulation. Second, the denoising autoen-

coder technique is explained. Then we show the architecture and loss functions of the denois-

ing autoencoder-based unsupervised domain adaptation network (DAE-UDA) for domain shift

problem in ESI.

4.1 Lead Field Matrix and Simulation

The DAE-UDA network is utilized to address the ill-posed ESI problem by treating it as a

regression problem. To successfully overcome the domain shift between the source and target

datasets, model need to learn common features and uncover the mapping function using a non-

linear artificial neural network. To achieve this goal, sufficient samples from both the source

and target datasets are required for network training. However, direct recordings of electrical

activity in subjects’ brains are invasive, which makes it difficult to acquire enough source data

samples in practice. Therefore, we need deal with a forward problem that computes the EEG

signal on the scalp from the brain source activity distribution by the specific lead field matrix of

a real head model. In the forward problem, we utilize a data synthesis approach based on real

lead field matrix that combines spatio-compactness and the properties of a realistic subject’s

head model.

The lead field matrix is a crucial component in the simulation of the EEG signal and source

22
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activation. It provides a solution to the forward problem and enables the creation of a generative

model. In order to produce realistic simulated EEG data, we utilized the standard sample data

from the MNE package, which includes actual EEG signals and a related lead field matrix built

from MRI data of a real subject. This dataset was acquired at the Athinoula A. Martinos Center

of Biomedical Imaging of the MGH/HMS/MIT, using the Neuromag Vectorview system. The

original MRI data set was obtained using an MPRAGE sequence with a Siemens 1.5 T Sonata

scanner. Our forward model employed a source space with p = 7498 dipoles along the cortical

surface provided by Freesurfer tool. These dipoles were selectively activated to simulate brain

activity in the subject. We used a set of 60 EEG electrodes, with all problematic channels

removed to mitigate signal disturbance.

In this section, the simulation of EEG and source signal was carried out using the method

described in the related research [28]. To ensure the authenticity of the simulation data, five pa-

rameters were taken into account during the simulation process: the number of activated source

dipoles, the extent of the activated area, the intensity amplitude of the activated dipoles, the

distribution of the activated area and the signal-to-noise ratio (SNR). Each simulation sample

included at least one activated dipole cluster, with the number of activated clusters increasing

to five in some simulation settings. These activated clusters can be considered smooth areas

of activation within the brain. The center of the activated cluster was generated by selecting

an activated dipole randomly from our cortical source model and growing the dipoles in the

surrounding region using the approach described in [9]. Our growing method involved recur-

sively activating all surrounding adjacent dipoles starting from the central activated dipole to

generate a larger source extent based on the distance from the center. Each center dipole had a

dipole moment, which were referred to as amplitudes of the activated dipole. The moments of

neighboring dipoles decreased based on the distance from the center activated dipole, follow-

ing the classical Gaussian distribution we set for the distribution shape. Moreover, the mean

of the Gaussian distribution was the moment of the center dipole, and its standard deviation

was half the radius of the dipole clusters, which enabled the generation of a smooth activated

source area.

After generating the source signal, we can compute the corresponding EEG signal on the

scalp by the lead field matrix in Eq. 3.1. However, these generated EEG signals are not as
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noisy as the actual EEG signals. Therefore, to generate more realistic EEG for training, we use

the Gaussian noise generation method described in [54] to add noise ε to the simulated EEG

data based on the real SNR of realistic EEG signals of subjects. Specifically, we analyze the

realistic data in the MNE sample dataset firstly and calculate the SNR of the EEG signal to get

the level of noise in practice. According to our analysis, the SNR of the EEG signals in sample

dataset is about 4.5 dB. Second, we create Gaussian noise based on the SNR level of realistic

signals and add the noise to the simulated EEG signals.

According to the above process, we change the setting of the parameters of the simulation

process to imitate the domain shift and obtain the source dataset DS and target dataset DT . In

the source dataset DS , we have NS = 10000 labeled examples (CS , ES , S S ) = {(cS
i , e

S
i , s

S
i )}NS

i=1,

which include the simulated source signal S S and the clean EEG signal CS without artificial

Gaussian noise and the noisy EEG signal ES that has been added artificial Gaussian noise ϵS .

In the target dataset DT , we have the NT = 10000 unlabeled examples (ET ) = {eT
j }

NT
j=1, which

includes noisy EEG signal ET with the artificial noise ϵT . In training of models, CS , ES , S S

and ET can be used for training, but source signal for target samples S T , ϵS , and ϵT are invisible

during training.

4.2 The Design of DAE-UDA Network

The traditional approaches, which are typically used to address the ESI problem, may poten-

tially overfit the noise in EEG signals, resulting from factors such as eye movement, power

frequency interference, and ambient electromagnetic interference. Moreover, the change of

distribution of source and EEG signal causes the domain shift problem and seriously impacts

the model’s performance and robustness. As far as we know, no relevant researchers or papers

study the domain shift problem in ESI, which limits the potential application and prospects of

artificial neural networks to address this problem.

To overcome above problems and challenges, we propose a more anti-interference and ro-

bust model that integrates unsupervised domain adaptation, latent-space learning, and discrim-

inative representation into the framework of the DAE-UDA. Inspired by the work on regression

domain adaptation [60], EEG encoding-decoding networks, and recent neural networks on the



4.2. The Design of DAE-UDA Network 25

Flatten Min

Max

Min

Output

Denoising
 Features

Min

Noisy EEG Images

Denoising EEG
Images

Clean EEG Images

Figure 4.1: Overall architecture of the proposed DAE-UDA method. The arrows represent the

input-to-output sequence of the DAE-UDA. The dashed arrows and lines indicate the output

and corresponding loss functions.

ESI problem, we use the blocks in the denoising autoencoder with the spatio stepwise con-

volution and deconvolution tailored to EEG signals to extract robust features from the noisy

EEG signal from the latent space features in the denoising autoencoder. These features can

capture underlying correlations and spatio structure, which could be used effectively to remove

noise from signals and to reconstruct signals without noise. Moreover, we apply the adver-

sarial idea to the domain adaptation problem. By constructing two regressors with the same

structure to fight against each other, we conduct a minimax game to narrow the difference in

data distribution between the two datasets and achieve model generalization.

The overall architecture of network is illustrated in Fig. 4.1. The architecture of our model

can be separated into two components: the denoising auto-encoder is used to remove noise

from signals and another part for domain adaptation to overcome the domain shift. The two

parts are introduced and presented separately.

4.2.1 Overall of DAE-UDA

The input of DAE-UDA is the labeled examples in the source domain DS and unlabeled ex-

amples in the target domain DT . Note that all EEG signals in the two datasets have been
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interpolated into the 9*9 EEG images that can be used in the convolutional neural network

and then fed into the neural network as samples for training. Thus, all the following EEG

signals and related notation refer to the interpolated EEG images. This method converts the

EEG signal into an EEG image according to the position of the EEG electrode on the scalp and

the intensity of the corresponding collected electrical signal. The position of the pixel in the

image represents the positional relationship of the EEG electrode, and the value of the pixel

corresponds to the intensity of the EEG electrical signal.

In training, the DAE encoder layers Ge map the noise EEG images to the latent space and

try to extract the noise-free features first. The outputs of Ge are the noise-free features Ge(ES )

from the source domain and denoising features Ge(ET ) from the target domain. After the DAE

encoder layers Ge, Ge(ES ) will be fed into the decoder layers Gd. Ge(ES ) and Ge(ET ) will

be fed into the regressors F and Fadv for domain adaptation separately according to different

domains of samples. Finally, the decoder Gd will output the denoising cleaned EEG images,

the regressors will predict the source activated label of source domain’s features and the target

domain’s features, which will be used for network optimization and loss computation.

4.2.2 Denoising Autoencoder

To remove the noise in the EEG signal, we proposed a denoising architecture, which is based

on auto-encoder technique and illustrated in Fig. 4.2. In denoising process, we only used the

labeled samples ES from the source dataset DS to simulate a situation where clean EEG signal

is scarce in the target dataset due to the poor acquisition environment and other reasons. First,

we feed the noisy EEG images in the source dataset to Encoder Ge to extract denoising features

Ge(ES ). The decoder layers are consisted by two convolution layers to extract features from

samples and dropout layers to overcome the overfitting problem.

For the DAE decoder layers Gd, the denoising features Ge(ES ) extracted from the labeled

samples from the source domain will be fed into these layers. In the DAE decoder layers Gd,

which consists of spatial decoding blocks, batch normalization (BN) layers, and two trans-

posed convolution layers, these layers will decode spatial information from denoising features

Ge(ES ) to compute and generate reconstructed denoising EEG images Cre as output from the
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Figure 4.2: Overall architecture of denoising auto-encoder.

denoising autoencoder. The BN layers are add into the encoder and decoder layers, which

will overcome the distribution and convariate shift that may happen in feature mapping and in

using the large scale dataset to training. Moreover, BN layers can also make prediction not

only insensitive to the initialization of the parameters of each component in the network, but

also make the learning process quickly and smoothly. These reconstructed images Cre can be

regarded as reconstructed images of the original noisy EEG images after the neural network

removes the noise and extracts useful features. The loss function of the denoising autoencoder

will calculate the reconstruction error between clean EEG images CS from the source domain

and the reconstructed denoising EEG images Cre generated from noisy EEG images ES . The

loss function of the reconstruction process is as follows:

min
Ge,Gd

Lre(CS ,Cre) = min
Ge,Gd
λL1(CS ,Cre) + (1 − λ)L2(CS ,Cre)

= min
Ge,Gd

λ

Ns

Ns∑
i

|cS
i − cre

i | +
1 − λ

Ns

Ns∑
i

(cS
i − cre

i )2 (4.1)

where NS is the total number of samples used for training in the source domain, Lre is the

loss function to evaluate the reconstructed error between Cre and ES , and λ is the trade-off

parameter between the L1-norm L1 and L2-norm L2, which varies in different experiments. In

reconstruction loss Lre, we use the L1 loss and L2 loss to compute the reconstruction loss. The

reasons are that the L1 loss is very sensitive to subtle differences in the predictions, and L2 loss

can detect errors that are caused by higher amplitudes.
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4.2.3 Margin Disparity Discrepancy Based Unsupervised Domain Adap-

tation

To deal with the challenge of domain shift in the ESI problem, we proposed the unsupervised

regression domain adaptation model for the domain shift problem in ESI. The architecture of

UDA is illustrated in Fig. 4.3. In the training of UDA component, we feed labeled samples in

the source dataset and unlabeled samples in the target dataset to extract the common features

and narrow the domain gap. Our method is based on the margin disparity discrepancy (MDD),

which is inspired by Long’s related work on the regression and classification domain adaptation

[60]. MDD is a novel measurement with critical generalization upper bounds and could be

very flexible for use in various domain adaptation problems [60]. According to related theories

and researches about MDD, the supremum of network’s error on unlabeled target samples is

determined by several factors: the empirical regression error of network on the source domain,

the empirical MDD loss, the ideal error and the complexity terms. In practice, the upper

bound of the target error is mainly affected by the first two important factors and the latter

two parameters can be ignored [60][16]. In order to get better results, our model needs to get a

lower error on samples of the source domain and to narrow the empirical MDD between source

dataset and target dataset. Thus, the optimization object we need to solve is a minimization

problem for the optimal regressor:

min LUDA = min
(
LS + LMDD(DS ,DT )

)
(4.2)

where LS is the regression loss for the samples in the source dataset DS and LMDD(DS ,DT ) is

the empirical MDD loss between the source dataset and the target dataset. To achieve this ob-

ject, the UDA network is divided into two parts which are called Regressor F and Adversarial

Regressor Fadv, which have the same architectures, but the objectives of two regressions are

different. For Regressor F, Regressor F first accepts the denoising features of the labeled sam-

ples Ge(ES ) in the source dataset and the denoising features of the unlabeled samples Ge(ET )

in the target dataset as input, then predicts the corresponding labels of the source samples Ŝ S

and the label of the target samples Ŝ T . For the source label Ŝ S , we evaluated the regression

error between Ŝ S and the ground-true label of the source samples S S by loss LS . For the tar-

get label S T , we will transfer these characteristics to the adversarial regressor to calculate the
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Figure 4.3: Overall architecture of UDA.

discrepancy between S T and S ′T , which is the divergence metric between the source and target

domains. The loss of regression of the samples in the source domain LS can be expressed as:

min
Ge,F
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where LS is cosine similarity which could evaluate the similarity between the true source activ-

ities S S of the examples in the source dataset and the predicted source activities Ŝ S . The aim

of LS is to narrow the difference between prediction and ground true to decline the prediction

error of regressor on source dataset.

The regressor error on the source samples can be minimized by the loss function LS of

the Regressor F. However, we still need to narrow the LMDD between the source and the

target dataset to reduce the supremum prediction error on the target dataset. According to

related research, the minimization problem of LMDD between two dataset y is a minimax game

since MDD is defined as the supremum over hypothesis space, which can be quantified as the

supremum of the difference between the predictions of two different regressors F and Fadv for

features of samples from different datasets DS and DT . This could be expressed as follows:

min
Ge,F
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where disp(·)Ge(ES ) and disp(·)Ge(ET ) is margin discrepancies that evaluate the difference be-

tween the output of regressors F and F∗adv on the datasets. F∗adv is the optimal regressor in
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hypothesis space, which maximizes the difference between the output of two regressors to ap-

proximate the supremum of the difference LMDD infinitely. In practice, it is very challenging to

compute the MDD between the source and target domain, because it is very difficult to find an

exact regressor F∗adv in the hypothesis space to compute the MDD, which means that we can

only find an optimization problem to find a regressor to approximate F∗adv in LMDD infinitely. So

in order to find such a regressor F∗adv, we used the adversarial regressor Fadv to play a minimax

game with Regressor F.

The adversarial regression Fadv has the same architecture and input data as the regressor

F but has a different loss function and optimized object, which are very important to narrow

the domain gap and to approximate F∗adv infinitely. The denoising features of target samples

Ge(ET ) and the denoising features of source samples Ge(ES ) will be fed into the Adv-Regressor

Fadv. After processing and predicting, the Adv-Regressor Fadv will output the label of the target

samples S ′T . To find the optimal regressor F∗adv, the object of Fadv in the minimax game of LMDD

can be expressed as follows:

F∗adv = argmax
Fadv

LMDD(DS ,DT )

= argmax
Fadv

dispGe(ET )(Fadv, F) − dispGe(ES )(Fadv, F) (4.5)

In training, to facilitate model training and realize the minimax game, we introduce the

GRL layer [16] between the denoising features and the Adv-Regression. Therefore, the final

optimal function of the UDA component can be expressed as follows:

min
Ge,F

max
Fadv

LUDA = min
Ge,F

(
LS (S S , Ŝ S ) +max
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LMDD(DS ,DT )

)
= min
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(
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)
(4.6)

4.2.4 Final Optimal Function of DAE-UDA

To sum up the above, we can give the final optimal function L of our model, which consists of

three components: the reconstruction error of denoising EEG signals Lre, the regression error
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of samples in the source domain LS and the loss function of the Adv-Regressor Ladv:

min
Ge,Gd ,F

max
Fadv

L = min
Ge,Gd ,F

max
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(
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)
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(4.7)

where the optimal object of Gd is to reconstruct clean denoising EEG images that are similar

to real cleaned EEG signals. The feature encoder Ge attempt to remove the noise in signals and

to extract domain invariant features which can be used to predict more accurately, reconstruct

more completely and narrow the LMDD. In the next chapter, we will introduce the details

of implementation of our model. Moreover, the experimental results on simulated and real

datasets and the analysis of the results will be presented in the next chapter.



Chapter 5

Experiment

In this section, we will present experiments using realistic and simulated data to demonstrate

the efficacy of our model. The performance of the proposed model will be compared with

some state-of-the-art algorithms, namely ConvDip [28], dSPM [14], eLORETA [45], DANN

[16] and MNE [57]. Specifically, the five experiments were devised based on different simu-

lated data and one experiment based on real EEG signals to compare the performance of our

model with that of four existing classical and novel ESI methods, including three norm regular-

ization and classical EEG source imaging approaches: minimum norm estimation (MNE) [57],

eLORETA [45] and dynamic statistical parameter maps (dSPM) [14], which were proposed for

the reconstruction of a spatially extended and activated source. Moreover, two deep learning

neural networks, Convdip [28] and Domain-Adversarial Training of Neural Networks [16], are

compared with our method. The first neural network, Convdip, were specifically designed to

estimate activated source dipoles at peak time point. The second neural network, DANN, is a

classical and famous domain adaptation network, which is the first to introduce the idea of ad-

versarial architecture and Gradient Reversal Layer (GRL) into the field of domain adaptation.

Most research and articles on domain adaptation [60][6][25] used DANN as a baseline model

to compare and evaluate the performance of their model. Thus, the performance of DANN

on the ESI problem can become a symbol and an important reference standard to measure the

quality of our model. The performance of our model is investigated by evaluating the estimated

source signals in a variety of experimental settings using multiple metrics, mean localization

error (MLE), mean squared error (MSE), normalized mean squared error (nMSE), and area

32
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under curve (AUC) [23]. First, we simulate different sampled datasets as the samples extracted

from different domains by changing several aspects of the simulation setting (Extents, SNR,

Number of activated source dipoles). Secondly, we evaluate our model and the baseline model

on simulated samples to compare the performance of different methods and analyze the results.

Finally, the real EEG dataset was analyzed to further illustrate the superiority of our model in

practice. Note that the evaluation set is the target dataset with label whose label is invisible to

all models during training.

5.1 Forward Model

The prediction of the location of source activity is based on four aspects: the EEG signals

measured on the scalp, the spatial sensor position of electrodes, the head conductive property,

and the location of source dipoles. In our sample dataset, there are 60 EEG channel electrode

caps on the scalp and the method of subdivision of the source space is the octahedron (OCT6).

The octahedron 6 divides the brain into two hemispheres, each with 4098 source dipoles per

thousand square centimeters. Thus, our source space has 7498 dipoles on the white matter

surface of the brain in both hemispheres. In oct6, the spacing between each dipole is 4.9mm

and the surface area of per source dipole is 24 mm2. For the last aspect of the head conductive

property, the sample dataset uses structural magnetic resonance imaging (MRI) data to build

subject-specific anatomical models of the scalp, inner/outer skull, and cortical surface to obtain

the head models of real subjects, which are based on the classical numerical method: Boundary

Element Method (BEM). The conductivity parameters of scalp, skull and cortical the dataset

used are 0.3 S/m, 0.006 S/m and 0.3 S/m that are used widely for the conductivity of head

[28].

5.2 Settings of Simulation Data

In the simulation data generation method we used, We divide the characteristics of the source

activities in the scalp of the brain into five aspects: the number of activated source dipoles,

the extents of activated area, the amplitudes of intensity of activated dipoles, the distribution
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Table 5.1: Simulation parameters of various sources numbers for source and EEG signal

Parameters Parameter Range Parameter Type

Number of sources S : 1 T : 2, 3, 4, 5 Various

Extents 21- 58 mm Shared

Amplitudes 1-10 nAm Shared

Source shape Gaussian Shared

Signal-to-noise ratio 4.5 Shared

of source activated area, and the signal-to-noise (SNR) ratio. To simulate the domain shift

of the brain situation of subjects in practice, we set up different experiments on these five

aspects respectively, which could evaluate the impact of the offset of each parameter on the

models’ performance about handling domain shift and the transfer ability of our model. In

each aspect, we will change one aspect of five aspects in an experiment to simulate each 10000

samples separately in the source and target domain to obtain the datasets with domain shift.

Specifically, we will set a fixed parameter for the data in the source domain and set different

parameters to simulate the samples in the target domain. We refer to relevant research and

the literature to reasonably set the range of parameter setting values [28]. Since our model

operates on single time instances of EEG or MEG data, we only use the signal on the peak of

the EEG signal as input, which means that the duration of the EEG data is one time point.In all

experiments, the attenuation of the neighboring dipole moment follows the classical Gaussian

distribution.

In research and papers about the ESI problem, the number of activated source dipoles is a

very important factor for source prediction and model performance. Many regression models

that perform well on the single activated dipole cannot regress the source activities of multiple

activated dipoles accurately, which means that the difference in number of activated sources

causes a huge domain shift and decreases the robustness of most models. Thus, we change

the number of activated source dipoles and set experiment about source number to investigate

and compare our model’s transfer ability and robustness with baseline models. The setting of

simulation parameters is illustrated in Table 5.1.
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Table 5.2: Simulation parameters of different extents for source and EEG signal

Parameters Parameter Range Parameter Type

Number of sources 1 Shared

Extents S : 20 T : 30, 40, 50, 60 mm Various

Amplitudes 1- 10 nAm Shared

Source shape Gaussian Shared

Signal-to-noise ratio 4.5 Shared

For the second experiment, we investigate the impact of different extents of source signals

on the performance of the models. The simulation setting for first experiment is shown in the

Table 5.2. In the simulation setting of extents, we set various extents in the range from 20mm

to 60mm according to related research. For the setting of samples in the source domain, the

simulation parameters are as follows: the number of activated source dipoles is single, the

extent is 20mm, the amplitudes of source activity are uniformly distributed from 1 nAm to 10

nAm and the SNR ratio of the EEG signals is 4.5 dB, which is close to the SNR ratio of the

real EEG signals in the standard sample dataset in the MNE package. For the samples in target

domain, all parameters setting are same as the setting of source samples except the extents.

The extents of target samples are set from small to large as 30mm, 40mm, 50mm and 60mm.

These settings can reflect the shift of the brain activation range as the subject’s brain state and

emotions change due to external stimuli or diseases that we encounter in practice. In addition,

this experiment can also investigate the robustness and stability of the model in this regard.

Because different patients are affected by physical state, emotion, etc., the activity intensity

of the same brain stimulation has certain changes, sometimes stronger and sometimes weaker.

Variations in signal strength can also affect prediction accuracy. Thus, in the third experiment,

we study the impact of amplitudes of source activities on the regression of the ESI problem.

The experiment can assess the model’s ability to capture weak signals and process stronger

brain activity. The relevant settings of the simulation parameters are shown in Table 5.3.

Due to various interference from patients and the collection environment during data col-

lection, the collected EEG data will be mixed with different degrees of noise, resulting in very
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Table 5.3: Simulation parameters of different amplitudes for source and EEG signal

Parameters Parameter Range Parameter Type

Number of sources 1 Shared

Extents 21- 58mm Shared

Amplitudes S : 2 T : 4, 6, 8, 10 nAm Various

Source shape Gaussian Shared

Signal-to-noise ratio 4.5 Shared

Table 5.4: Simulation parameters of different SNR for source and EEG signal

Parameters Parameter Range Parameter Type

Number of sources 1 Shared

Extents 21- 58 mm Shared

Amplitudes 1- 10 nAm Shared

Source shape Gaussian Shared

Signal-to-noise ratio S : 45 T : -5, 5, 15, 25 dB Various

variable signal-to-noise ratios. Moreover, the traditional statistical model needs to artificially

set the signal-to-noise ratio of the signal to train, which cannot be automated and is seriously

affected by human judgment. Therefore, we set up the final experiment on the SNR of EEG

signals to evaluate the impact of different levels of noise on the ESI problem. The SNR setting

of parameters is shown in Table 5.4.

Area under the ROC curve (AUC): We calculated the area under the receiver operating

characteristic curve (ROC-AUC) as described in [23]. First, we will normalize all dipoles in the

activated clusters to unite the amplitudes between 0 and 1, which are normalized by division

of the maximum. However, the positives and the negatives in the data should be the same in

AUC. To achieve this requirement, we use the method described in related research [24][10] to

calculate two different AUC: AUC f ar and AUCclose. Two AUCs include all positive dipoles and

differ in the selection of negative dipoles. AUC f ar is a metric that captures how well an inverse

solution (1) finds the sources at the correct locations and (2) avoids false positives. AUCclose
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also captures (1) how well sources are correctly localized but also (3) how well the size was

estimated. Therefore, AUCclose captures the dispersion of an inverse solution.The overall AUC

was then calculated by taking the average of AUCclose and AUC f ar.

Mean localization error (MLE): It is a very important ability to locate the center of source

activity accurately or not for the inverse model. Thus, we use the mean localization error

(MLE) as a metric to evaluate the inverse performance of the models, which calculate the

Euclidean distance, a common measure of inverse solution accuracy, between the positions of

the maximum of predicted source label and the ground truth source maximum. However, this

metric is suitable only for the single source patch.

For multiple activated source dipoles, we use the procedure similar to that described in [28].

The most important thing we need to do is to identify the location of maxima the prediction

and ground truth. We first chose the dipole whose amplitudes are larger than those of its

neighboring dipoles, which will yield many maxima. However, there are some positive maxima

called false positive maxima can not constitute an active cluster of dipoles. Thus, we get rid

of these maxima whose neighboring dipoles are not sufficiently active. Moreover, we also

remove the maxima that are so close to another maximum dipole. So far we have obtain a

list of locations of maxima for prediction and ground truth. Then we need match the maxima

in prediction and ground truth and calculate the pairwise Euclidean distances. To match the

maxima, we locate the closest activated source dipole in the prediction from the maxima in the

true source and calculate the MLE by averaging these minimum distances.

Mean square error (MSE): Another metric that we use is the mean square error (MSE),

which is very popular in the regression problem and the inverse problem. The MSE will cal-

culate the square error between each dipole in estimation and true source. Due to the square

processing of the data in the calculation, the metric is very sensitive to the results with large

amplitudes errors and can effectively control extreme values. The MSE can be expressed as

follow:

MS E =
1
p

p∑
i=1

( ji − j′i)
2 (5.1)

Normalized mean square error (nMSE): Due to the sensitivity of MSE to extreme val-

ues, we may ignore subtle differences and cannot easily calculate the entire error level of the
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regression. Thus, we normalize the values of dipoles before calculating the MSE error and

get the normalized mean square error (nMSE). Normalized MSE (nMSE) was calculated by

normalizing both the true source vector j and the predicted source vector j′ before calculating

the MSE. By normalizing the vectors, we eliminate possible offsets and capture the overall

differences in the patterns more closely. The nMSE can be expressed as follow:

nMS E =
1
p

p∑
i=1

(
ji

| j|max
−

j′i
| j′|max

)2 (5.2)

5.3 Experiment Results and Analysis

As we mentioned in Section 5.2, we used different settings to simulate different ESI datasets

that differ in the following parameters: subjects, SNR of the signals, activated extents of source

dipoles and numbers of activated source dipoles. The settings of parameters we used followed

some simulation settings in [28]. Through these different simulation setting, we can simulate

the distribution of brain neural activity in different states of the same patient and the brain

activity of different patients under actual conditions. We evaluated our model and baseline

models on these samples from different ESI data domains and analysis the results to improve

the advantage of our models.

5.3.1 Experiment with Varying Number of Sources

In the realistic situation, the EEG signals will be generated by signals that originate from sev-

eral regions of the brain simultaneously, which will provoke the inversion process. Moreover,

it is difficult to identify the location of sources reliably, which is caused by the low spatial

resolution of the EEG signals. Thus, in the first experiment, we designed the experiment and

simulation setting to evaluate the performance of the models in reconstructing more difficult

samples from single- and multiple-source data sets. The details of the simulated setting are

given in Table 5.1. For the samples from the source domain, the number of activated source is

only single-source. For the target domain, we set the number of sources as 2, 3, 4, 5 separately

to simulate the situation of multiple sources. All models are trained on single-source samples
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Table 5.5: Results of transfer from single-source to multiple-source datasets

Task Model MSE (SD) (10−19) nMSE (SD) AUC (SD) (%) MLE (SD) (mm)

1 to 2

Convdip [28] 2.47 (0.07) 0.022 (0.006) 80.59 (0.41) 15.35 (0.23)
MNE [57] 3.24 0.027 70.04 21.44
eLORETA [45] 3.25 0.070 71.47 19.72
dSPM [14] 3.30 0.043 71.49 21.59
DANN [16] 2.74 (0.08) 0.018 (0.003) 85.40 (0.98) 17.72 (0.77)
DAE-UDA 2.58 (0.16) 0.012 (0.001) 81.13 (1.74) 14.06 (1.03)

1 to 3

Convdip [28] 4.37 (0.89) 0.023 (0.002) 76.85 (0.16) 18.89 (0.74)
MNE [57] 5.45 0.030 67.52 21.85
eLORETA [45] 5.46 0.076 68.52 21.57
dSPM [14] 5.55 0.044 68.21 23.69
DANN [16] 4.40 (0.05) 0.021 (0.004) 77.97 (1.06) 21.45 (0.73)
DAE-UDA 4.29 (0.21) 0.012 (0.001) 76.58 (1.03) 16.21 (0.94)

1 to 4

Convdip [28] 5.97 (0.07) 0.024 (0.003) 70.77 (0.84) 18.46 (0.60)
MNE [57] 6.66 0.031 63.73 22.58
eLORETA [45] 6.68 0.077 65.05 22.22
dSPM [14] 6.79 0.045 65.18 23.79
DANN [16] 5.97 (0.12) 0.021 (0.002) 71.35 (1.81) 23.56 (1.40)
DAE-UDA 6.34 (0.34) 0.015 (0.002) 71.76 (0.47) 17.67 (0.54)

1 to 5

Convdip [28] 8.85 (0.44) 0.026 (0.009) 68.37 (0.76) 21.51 (0.84)
MNE [57] 8.77 0.032 64.06 24.16
eLORETA [45] 8.78 0.080 65.25 23.44
dSPM [14] 8.93 0.047 65.35 24.42
DANN [16] 8.79 (0.14) 0.021 (0.001) 69.03 (2.09) 23.73 (0.34)
DAE-UDA 8.19 (0.41) 0.019 (0.002) 69.67 (1.61) 19.14 (1.05)

from the source domain and evaluating on multiple-source samples from the target domain

which source number are 2,3,4,5. We think that this experiment can effectively evaluate the

robustness and transfer ability of our model and the baseline models under the influence of the

source number.The result and the aforementioned metrics are illustrated in the Table 5.5

Results on different numbers of sources: Based on the result of the number of sources

in Table 5.5, we can find that the performance of all models will worsen as the number of

sources increases. The reason is that the divergence between the single-source domain and the

multiple-source domain will be larger when the number of sources increases, which impairs

the performance of the models. However, the MDD network clearly shows improved predictive
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performance with the application of domain adaptation and obtains the state-of-the-art result.

All performance metrics displayed in Table 5.1 show the highest performance compared to

Convdip and baseline models, which means that the domain adaptation method can learn com-

mon and robust knowledge of different numbers of sources and effectively improve predictive

performance. For the MSE metric, the MDD significantly outperforms Convdip by a large mar-

gin, with an improvement of over 50% to 5% in the MSE for the numbers of different sources.

5.3.2 Experiment with Varying Extents

The second experiment focuses on the influence of varying extents of activated source on the

performance of models. Due to the change of subject’s emotion, state of an illness and mental

state, the activated area of the dipole cluster and the number of activated Neighboring dipoles

will varying, which will have impact on the localization and regression of source activity.

Thus, we change the extents of the samples from the source domain and the target domain as

mentioned in Section 5.2. The extent of source domain is 20mm that is more compact than

the extents of the target domain, which are 30mm, 40mm, 50mm, 60mm. This experiment

can evaluate the robustness and ability to handle with different extents. The result is shown

in Table 5.6. Moreover, to make the results more intuitive and easy to understand, we also

map the regression result on the brain cerebral cortex and visualize the prediction of models

on the brain cortex in the Fig. 5.1. The illustration shows the ground truth source label in the

first picture and the results of our model and baseline models are shown in the rest pictures.

The range of amplitudes of the source activity is shown in the right of pictures. Negative

amplitudes of signals are represented by blue, and the lighter the color, the smaller the value.

And the positive amplitudes of the signals are represented by red to orange, and the lighter the

red, the higher the amplitudes.

Results of different extents: We analyzed the influence of extents on the inverse solution

quality using the evaluation set introduced above. Results are depicted in Table 5.6. The vi-

sualization of losses of several models has been shown in Fig. 5.2. Across source analysis

methods and evaluation measures, we found a non-surprising overall pattern of worse perfor-
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Table 5.6: Results of transfer from 20mm extent to larger extent datasets

Task(mm) Model MSE (SD) (10−19) nMSE (SD) AUC (SD) (%) MLE (SD) (mm)

20 to 30

Convdip [28] 0.63 (0.02) 0.012 (0.0020) 94.13 (0.16) 14.79 (0.42)
MNE [57] 0.77 0.022 72.64 20.15
eLORETA [45] 0.78 0.060 74.20 16.40
dSPM [14] 0.79 0.036 74.02 19.36
DANN [16] 0.57 (0.02) 0.015 (0.0022) 90.57 (0.87) 14.99 (0.56)
DAE-UDA 0.41 (0.05) 0.006 (0.0005) 96.83 (0.13) 12.83 (0.29)

20 to 40

Convdip [28] 1.08 (0.02) 0.011 (0.0032) 93.47 (0.19) 15.44 (0.16)
MNE [57] 1.47 0.025 76.78 19.66
eLORETA [45] 1.48 0.061 75.48 16.73
dSPM [14] 1.50 0.039 74.75 19.89
DANN [16] 1.46 (0.01) 0.015 (0.0029) 86.76(1.76) 17.91(0.66)
DAE-UDA 0.95 (0.001) 0.005 (0.0005) 95.27 (0.70) 12.48 (0.85)

20 to 50

Convdip [28] 1.64 (0.07) 0.011 (0.0031) 91.02 (0.44) 15.68 (0.12)
MNE [57] 2.35 0.029 70.63 24.87
eLORETA [45] 2.38 0.065 73.07 19.80
dSPM [14] 2.39 0.041 73.48 21.33
DANN [16] 2.47 (0.05) 0.018 (0.0028) 75.92 (2.97) 19.55 (0.89)
DAE-UDA 1.55 (0.03) 0.006 (0.0001) 93.35 (0.52) 13.83 (0.77)

20 to 60

Convdip [28] 2.59 (0.04) 0.012 (0.0069) 88.89 (0.60) 17.23 (0.20)
MNE [57] 4.20 0.033 71.22 23.50
eLORETA [45] 4.18 0.071 73.28 20.74
dSPM [14] 4.28 0.044 73.20 22.03
DANN [16] 4.29 (0.04) 0.022 (0.0066) 74.13 (1.33) 19.89 (0.15)
DAE-UDA 3.42 (0.18) 0.009 (0.0006) 89.27 (0.84) 16.92 (0.30)

mance with increasing extents. We also found a clear advantage of the DAE-UDA inverse

solutions compared to the baseline approaches to the inverse problems across all evaluation

metrics. Especially in the two performance metrics, nMSE and AUC, we can find that the in-

creased extents have a great impact on neural network in these two metrics. For example, as

the change of extents, the AUC of the Convdip decreases from 94% to 88% quickly and the

standard deviation increases from 0.16 to as high as 0.6. Compared with the results of classical

methods, we can find the DANN and Convdip has some advantage in four metrics. However,

our proposed method has a great performance improvement over other methods, especially in

nMSE and AUC, which shows that our method has stable performance and can learn the char-
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acteristics of the signal to different extents well. Moreover, we visualize the localization of the

source in Fig. 5.1, which make the advantage and better performance more intuitive and easy

to understand. In Fig. 5.1, the moments of activated dipoles are plotted on the white matter

surface of the brain in the view of the leaf hemisphere. In Fig. 5.1 (a), the location and pat-

tern of the ground truth source is depicted with an obvious cluster of activated dipoles in the

right cortex of the right hemisphere. The various inverse solutions of regression models that

try to predict the pattern of ground truth are illustrated in Fig. 5.1 (b)-(g) next to Fig. 5.1 (a).

These visualization images of statistical models show that statistical models cannot locate the

approximate location of the center dipole of the activated cluster precisely and the range of the

amplitudes is not quite different from the target range, some even by several orders of magni-

tude. Moreover, we can clearly observe that the positive region and negative region are mixed

together and closer to each other in Fig. 5.1 (b)-(g), which means that the statistical models are

inability to accurately judge whether the source activity is positive or negative. The results of

neural networks Convdip and DANN are shown in Fig. 5.1 (b) and (f). As can be observed, the

neural network can correctly predict the positive source clusters, but the reconstructed sources

are diffuse, where the activation is smeared in the neighboring area and yields a few spurious

sources in the vicinity of the center cluster. Furthermore, the amplitudes of the reconstructed

source of DANN and Convdip are weaker than the ground truth. As for DAE-UDA, the visu-

alization in Fig. 5.1 (g), our model can yield the highly focal source location without diffusion

occurs and the polarity of sources is most positive. Since the DAE-UDA can effectively learn

the features of large and small extents and narrow the shift, our model can faithfully predict the

spatial extent of the source clusters with accurate estimating the amplitude. Above all, we can

conclude that both quantitative and qualitative results we obtained can strong demonstrate the

transfer ability and robustness of our model, which compare with other baseline algorithms.

5.3.3 Experiment with Varying Amplitudes

Results of different Amplitudes: The performance of the models on the datasets with dif-

ferent amplitudes is shown in Table 5.7. According to the results, we can find that amplitude

changes have limited impact on models’ performance. In particular, the MSE of all methods
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(a) True label (b) Convdip (c) MNE

(d) eLORETA (e) dSPM (f) DANN

(g) DAE-UDA

Figure 5.1: Result of models on datasets with different extents from 20mm to 60mm
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Figure 5.2: Losses of models from 20mm to 60mm extent.

Table 5.7: Results of transfer from 2nAm amplitude to larger amplitudes datasets

Task(nAm) Model MSE (SD) (10−19) nMSE (SD) AUC (SD) (%) MLE (SD) (mm)

2 to 4

Convdip [28] 0.38 (0.01) 0.017 (0.0006) 96.31 (0.41) 13.66 (0.23)
MNE [57] 0.74 0.026 71.95 19.52
eLORETA [45] 0.73 0.063 74.23 16.83
dSPM [14] 0.75 0.038 74.27 19.98
DANN [16] 0.63 (0.14) 0.025 (0.0027) 90.31 (0.57) 16.73 (0.23)
DAE-UDA 0.31 (0.07) 0.009 (0.0007) 97.45 (0.71) 11.85 (0.11)

2 to 6

Convdip [28] 0.90 (0.06) 0.018 (0.0008) 96.51 (0.16) 14.32 (0.19)
MNE [57] 1.78 0.027 73.80 21.98
eLORETA [45] 1.79 0.064 75.36 18.47
dSPM [14] 1.82 0.039 74.98 21.13
DANN [16] 1.39 (0.03) 0.021 (0.0002) 91.03 (0.76) 16.99 (0.41)
DAE-UDA 0.66 (0.02) 0.009 (0.0007) 97.00 (0.79) 11.06 (0.08)

2 to 8

Convdip [28] 1.52 (0.02) 0.019 (0.0002) 95.75 (0.57) 14.68 (0.76)
MNE [57] 2.83 0.026 73.90 21.67
eLORETA [45] 2.84 0.063 75.09 18.32
dSPM [14] 2.89 0.039 74.71 20.73
DANN [16] 2.55 (0.05) 0.020 (0.0004) 91.30 (0.41) 18.41 (0.39)
DAE-UDA 1.15 (0.03) 0.008 (0.0005) 97.99 (0.46) 10.23 (0.28)

2 to 10

Convdip [28] 2.48 (0.05) 0.018 (0.0007) 96.41 (0.59) 14.26 (0.92)
MNE [57] 4.59 0.027 69.23 22.42
eLORETA [45] 4.60 0.063 71.90 18.72
dSPM [14] 4.67 0.038 72.29 21.43
DANN [16] 3.55 (0.09) 0.024 (0.0030) 90.42 (0.19) 16.94 (0.84)
DAE-UDA 1.70 (0.06) 0.009 (0.0011) 97.40 (0.49) 11.83 (0.67)

are sensitive to changes in amplitudes. However, the residual metrics nMSE, AUC and MLE

did not change significantly. We think the reason is that the MSE metric is sensitive to the
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extreme values of prediction. As the amplitude increases, the absolute error of the prediction

will increase. However, the location of positive dipoles in the prediction will not change a lot,

which means the metrics AUC, MLE will not be affected by the change of amplitudes. Since

nMSE will first normalize the results to calculate the error, it reflects the overall error at the

global level and is not sensitive to extreme errors in several dipoles. According to the result,

DAE-UDA still performs better on all metrics when transferred between two different ampli-

tudes. Especially on the nMSE, our method has excellent performance, which shows that our

method is significantly better than other methods in prediction at the overall level and proves

that our model is useful and meaningful in different amplitudes’ ESI problems.

5.3.4 Experiment with Varying SNR of EEG Signals

Results on different SNR: The result of the transferable experiment on different SNR is shown

in Table 5.4. Based on the result, we can conclude that the performance of the models is sig-

nificantly affected by the SNR of the EEG signal. As the signal-to-noise ratio decreases, the

performance of the models significantly degrades. The result shows that the SNR of the EEG

signal is a very important factor for the localization of the EEG source. In addition, if the model

needs to process EEG signals with a low signal-to-noise ratio, the performance of the model

often can’t meet the requirements. However, we still find that the DAE-UDA performs better

than Convdip and other baseline models, although the SNRs become worse, which means that

the DAE-UDA can be robust for noisy, abstract and learning useful features without noise ef-

fectively.

5.3.5 Ablation Experiment of DAE-UDA

We set different ablation experiments to give evidence that our proposed DAE-UDA model is

effective and has the ability to overcome domain shift and remove noise from EEG signals in

the ESI problem. Ablation is a classical method to investigate the performance of a machine

learning method and discover the usefulness of the component to the whole system, which

removes certain components of a machine learning system. The ablation method was proposed
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Table 5.8: Results of transfer from 45 dB SNR to lower SNR datasets

Task (dB) Model MSE (SD) (10−19) nMSE (SD) AUC (SD)(%) MLE (SD)(mm)

45 to -5

Convdip [28] 0.87 (0.12) 0.018 (0.005) 96.83 (0.34) 13.20 (0.49)
MNE [57] 1.56 0.024 76.78 19.66
eLORETA [45] 1.56 0.060 77.55 16.12
dSPM [14] 1.59 0.039 76.70 19.10
DANN [16] 1.40 (0.07) 0.030 (0.006) 91.50 (0.89) 16.67 (0.63)
DAE-UDA 0.63 (0.14) 0.0068 (0.002) 97.96 (0.36) 11.03 (0.23)

45 to 5

Convdip [28] 0.89 (0.18) 0.018 (0.004) 96.33 (0.24) 14.14 (0.31)
MNE [57] 1.50 0.026 72.26 22.91
eLORETA [45] 1.51 0.063 73.96 17.73
dSPM [14] 1.53 0.038 74.02 20.38
DANN [16] 1.18 (0.02) 0.019 (0.002) 92.11 (0.94) 17.30 (0.62)
DAE-UDA 0.56 (0.23) 0.0071 (0.001) 97.91 (0.49) 10.92 (0.94)

45 to 15

Convdip [28] 0.88 (0.29) 0.019 (0.007) 96.66 (0.08) 14.17 (0.33)
MNE [57] 1.47 0.025 75.86 22.96
eLORETA [45] 1.48 0.055 76.97 17.77
dSPM [14] 1.50 0.038 76.34 20.07
DANN [16] 1.26 (0.05) 0.019 (0.008) 91.83 (0.74) 16.22 (0.28)
DAE-UDA 0.50 (0.35) 0.0059 (0.001) 98.02 (0.18) 10.62 (0.39)

45 to 25

Convdip [28] 0.77 (0.21) 0.018 (0.005) 96.82 (0.13) 13.28 (0.65)
MNE [57] 1.42 0.027 76.61 19.05
eLORETA [45] 1.43 0.056 77.57 15.88
dSPM [14] 1.46 0.037 76.79 19.10
DANN [16] 1.20 (0.01) 0.021 (0.002) 91.54 (0.38) 17.64 (1.01)
DAE-UDA 0.46 (0.40) 0.0066 (0.001) 98.49 (0.99) 10.10 (0.31)

in a tutorial on speech recognition in 1974 by Allen Newell, which has become a convenient

method to evaluate artificial intelligence and its durability to damage in the construction of

networks [41]. Related researchers usually use the ablation method to analyze artificial neural

nets in analogy to ablative brain surgery [41].

In our ablation experiment, we divide our model to three components: the denoising com-

ponent for removing noisy from EEG signals Gd, the domain adaptation component to over-

come domain shift F′ and the prediction component for regressing the source activities of EEG

signals Ge and F. In the ablation experiment, we use the experiment setting as the same as

the setting in 5.2. Specifically, we use the 20mm extents EEG signals and the corresponding
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Table 5.9: Ablation result of DAE-UDA

Ablation Component MSE (SD) (10−19) nMSE (SD) AUC (SD)(%) MLE (SD)(mm)
DAE-UDA 3.42 (0.18) 0.009 (0.0006) 89.27 (0.84) 16.92 (0.30)
Removing Denoising Gd 3.77 (0.15) 0.018 (0.0011) 88.03 (0.97) 17.11 (0.31)
Removing Domain Adaptation F′ 3.65 (0.21) 0.015 (0.0021) 87.15 (1.13) 18.32 (0.49)
Removing Both Gd and F′ 4.01 (0.18) 0.025 (0.0032) 86.42 (0.98) 19.86 (0.78)

source activity as the samples in source domain and the EEG signals with 60mm extents as

the target samples in target domain. Firstly, we remove the denoising component Gd from the

architecture of DAE-UDA to evaluate the effectiveness and impact of denoising component

on the EEG signals and regression. Moreover, we eliminate the domain adaptation compo-

nent adv-regressor F′ to investigate the impact of domain adaptation on the performance of

DAE-UDA. Finally, we remove both components Gd and F′ to prove the effectiveness of our

model.

According to the result in Table 5.9, we can find that the performance of the model without

the denoising component Gd has a noticeable decrease in MSE and nMSE, which means that

the noisy signal in the EEG signal has an obvious negative impact on the error of the prediction

of the source activity at the entire level and some extreme peak values. Moreover, the domain

adaptation component F′ can obviously affect the mean localization error and AUC, indicating

that domain adaptation can effectively narrow the domain shift between the source domain

and the target domain. Finally, the result of model without denoising and domain adaptation

components reaffirms our above viewpoints and conclusions.

5.3.6 Experiment with Real EEG Data

In the end of the experiment, we use the real EEG signal from the MNE standard dataset

to evaluate the performance and robustness of our model in the real situation. This dataset

was collected with the Neuromag Vectorview system by Martinos center Biomedical Imaging,

which has 60 EEG channels in the collection system. During the experiments, checkerboard

patterns were presented to several subjects and a smiley face was presented at the center of the

visual field in each 750ms. These subjects were asked to press a key with the right index finger

as soon as possible after the appearance of the smiley face.
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In our experiment on the real data, we chose the peak time point (0.1s) of the recorded EEG

signal of one subject in the dataset who receives specific visual and auditory stimuli and makes

corresponding actions. This subject’s EEG signals has been processed by low-pass filter (0-40

Hz) to remove high-frequency noise in the dataset. We evaluate the baseline models and the

training DAE-UDA model, which obtained in extend experiments, on the real EEG signals to

investigate the performance of our model. The results are illustrated in the Fig. 5.3.

According to related research[33], the regions of left brain activation corresponding to the

subjects’ responses in the experiment have been marked with circles. When subjects accepted

the stimulation by eyes and moved their fingers, marked part of left brain was activated which

was used to control the right hand and to do visual reaction of the subject. The region in the

right back and the front of the left brain represent the activity about vision, body movement. As

can be observed, the results of classical methods in Fig.5.3 (b) to (d) are diffuse in the brain and

the positive and negative region are smeared in same region. DANN and Convdip in Fig.5.3

(a) and (e) yield focal sources, but can not localize the corresponding area. DAE-UDA in Fig.

5.3 (f) can successfully recover source activities in right area.

Another important observation in real EEG data is the inter-individual variability, which

is a direct result of individual brain anatomies. For DAE-UDA application to the real EEG

data, particularly with group data, it is thus advised to collect anatomical MRI brain scans

of each individual subject. Individual neural networks then need to be trained based on each

subjects’ specific anatomy provided by the MRI data, which may help to achieve accurate group

study source estimations. However, it raises the problem of computation time, since training

individual neural networks is time consuming. A solution for it is the inter-individual transfer

learning approach, where DAE-UDA is trained in one subject’s anatomy and fine-tuned for

each additional subject with new training data of the individual anatomies. Fine tuning could

be achieved by replacing the output-layer, lowering the learning rate and retraining for only

few epochs. Training time per second is another important topic, when we consider CNNs to

handle the inverse problem.
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(a) Convdip (b) MNE (c) eLORETA

(d) dSPM (e) DANN (f) DAE-UDA

Figure 5.3: Result of models on real EEG signal



Chapter 6

Discussion and Conclusions

6.1 Conclusions

With the development of medicine and technology, more and more people are paying attention

to finding the source of the disease of many abnormalities in the brain. The brain source local-

ization method as one of the most important method in finding the source of brain disease have

make many achievements brain disease diagnosis and treatment. The brain source localization

based on EEG signals has become the main method in BSI in recent years. Many algorithms

based on statistical or deep learning methods have been proposed to deal with the ESI prob-

lem. However, the noise in the EEG signals, the ill-posed feature of the ESI problem, and the

domain shift between the training and testing data still impact the performance and application

of the EEG methods.

In this thesis, we proposed a new EEG neural network DAE-UDA based on autoencoder

and unsupervised domain adaptation to deal with these challenges in ESI problem. In our

model, we use the autoencoder architecture to remove the noise in EEG signals, use the artifi-

cial neural network to consider the inverse process of ESI problem as a black box that can be

approximated by a deep learning network. Moreover, based on the related unsupervised do-

main adaptation theory, we proposed a UDA architecture to extract the common features from

the labeled samples from source domain and unlabeled samples from target domain and nar-

row the distribution gap. With our experiment, we 1) evaluate our methods on simulated EEG

signals with different SNR level and prove the stability of our model to the low SNR signals, 2)

50
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demonstrate the robustness and generalization of our model on the domain shift of EEG signals

by changing three aspects of source activity to simulate the domain shift in practise and evalu-

ating our model, 3) show that it can be effective and useful to deal with the ill-posed problem

and avoid the influence of prior knowledge error by considering the inverse process as a black

box and training the neural network to automatically learn the sensor-to-source mapping.

6.2 Applications

The domain adaptation EEG source imaging or localization based on neural networks has var-

ious applications in practice. The ability of DAE-UDA to overcome the domain shift of EEG

and source activity can save the time and economic cost of extensive retraining of the model

on strange patients. Moreover, the robustness of our model on low SNR EEG signals can make

our model widely used to predict source activity for some low quality EEG signal.

6.3 Future Research

To predict the source activity rapidly and widely use ESI model in different actual scenarios,

there are still some problems need to be solved. First, it is necessary to reduce the volume

of the model and increase the response speed of the model to realize the real-time processing

and prediction of the EEG signal in the actual application. Second, according to our study,

We found that the divergence between the forward models of different patients was too huge

to make it difficult to construct a single effective model or method to solve the ESI problems

of different patients. Thus, it is a meaningful and important research direction about how to

overcome the divergence between different subjects and generalize the model on them.
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[4] Gwénaël Birot, Laurent Albera, Fabrice Wendling, and Isabelle Merlet. Localization

of extended brain sources from EEG/MEG: the ExSo-MUSIC approach. NeuroImage,

56(1):102–113, 2011.

[5] Joyce Chelangat Bore, Peiyang Li, Lin Jiang, Walid MA Ayedh, Chunli Chen, Dennis Joe

Harmah, Dezhong Yao, Zehong Cao, and Peng Xu. A Long Short-Term Memory Network

for Sparse Spatiotemporal EEG Source Imaging. IEEE Transactions on Medical Imaging,

40(12):3787–3800, 2021.

[6] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Du-

mitru Erhan. Domain separation networks. Advances in neural information processing

systems, 29, 2016.

52



BIBLIOGRAPHY 53

[7] Erik Cambria and Bebo White. Jumping NLP curves: A review of natural language

processing research. IEEE Computational intelligence magazine, 9(2):48–57, 2014.
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[26] Jens Haueisen, A Büttner, Hannes Nowak, Hartmut Brauer, and Cornelius Weiller.

The influence of conductivity changes in boundary element compartments on the for-

ward and inverse problem in electroencephalography and magnetoencephalography-
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