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Abstract 

High-resolution fMRI using gradient-echo blood-oxygen-level-dependent (BOLD) contrast is 

beneficial for the non-invasive study of neural microcircuits. However, the signal spatial 

specificity of the BOLD contrast severely limits the ability to localize regions of neural 

activity at the mesoscopic scale in the cortex due to signal contamination from large veins. 

Phase regression is a venous bias correction technique that uses the correlation between 

magnitude and phase data in large veins to estimate and supress their contribution to the 

BOLD signal. This thesis further investigates the performance of phase regression by 

examining the laminar BOLD signal in human ocular dominance columns. Phase regression 

removes the venous bias from pial veins and large intracortical veins, while not removing the 

venous bias from venous vessel sizes within the cortex running parallel to the cortical 

surface. This thesis demonstrates improved laminar BOLD signal specificity that will be 

beneficial in future high-resolution laminar fMRI studies. 
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Summary for Lay Audience 

Functional MRI is a popular non-invasive imaging modality that relies on changes in the 

concentration of blood oxygenation to map changes in neural activity associated with brain 

function. Neural activity is energy intensive and requires oxygen, leading to changes in local 

blood oxygenation in areas of neural activity. A major problem with this technique is that 

blood oxygenation changes are most prominent in large veins because blood drains away 

from many small vessels in activated regions and pools in fewer large veins. Large veins are 

more distant from the activated regions, meaning that they are not an accurate measure of 

blood oxygenation changes caused at the actual site of neural activity.  

One technique that attempts to remove the venous bias from the signal is called phase 

regression and it relies on phase data. MRI acquisitions result in complex-valued data, which 

is commonly represented as magnitude and phase images, with the phase data typically being 

discarded. In phase regression, the phase data is used to estimate and suppress the venous 

bias from the signal. This helps ensure the measured signal is more spatially specific to the 

site of neural activity. 

A laminar and columnar analysis was performed in ocular dominance columns in the 

human primary visual cortex to investigate the performance of phase regression for high-

resolution functional MRI. Ocular dominance columns are vertical columns across the cortex 

with alternating sensitivity to right and left eyes. They also contain varying amounts of signal 

exchange between columns at different cortical depths (laminae). This makes ocular 

dominance columns well suited for performing a laminar and columnar analysis assessment 

as they are a cortical structure with relatively well-known mesoscopic functions.  

It was shown that laminar signal profiles across cortical depths were improved by 

phase regression. However, phase regression did not help clearly define ocular dominance 

columns. This is convincing evidence that phase regression is only effective for the largest 

veins, and not smaller venous vessels within the cortex running parallel to the cortical 

surface. Overall, this thesis demonstrates that phase regression will be a useful tool for high-

resolution functional MRI studies performing laminar analyses. 



 

iv 

 

Co-Authorship Statement 

The following thesis is presented in Integrated Article format and contains one unpublished 

manuscript.  

Chapter 2: Liem B. T., Akbari A., Gati J. S., Zeman P., & Menon R. S. Depth-Dependent 

Analysis of Human Ocular Dominance Columns using BOLD fMRI with Phase Regression 

at 7 T. In preparation.  

Brett T. Liem performed study design conceptualization, software development, guidance on 

hardware development, participant recruitment, data acquisition, data analysis, data 

interpretation, drafting the manuscript, as well as manuscript revisions. Atena Akbari 

provided support on data analysis and data interpretation, as well as proving manuscript 

revisions. Joseph S. Gati provided guidance on data acquisition and data analysis. Peter 

Zeman contributed by performing hardware development. Ravi S. Menon provided 

supervision, study design conceptualization, guidance on software development and data 

interpretation, as well as manuscript revisions.  



 

v 

 

Acknowledgments 

To my supervisor, Ravi Menon: Thank you for support and guidance throughout my time as 

a member of your lab. I am extremely grateful for the opportunity and resources you 

provided that have allowed me to engage in research projects I never truly believed I could 

be part of. Thank you for continuing to push me to grow not only as a researcher, but as a 

person.  

To the members of my advisory committee: Thank you Ali Khan and Jody Culham 

for your support and advice throughout my degree. Your knowledge and experience played a 

big role in many of my important research decisions.  

To everyone at the Centre for Functional and Metabolic Mapping (CFMM): Thank 

you everyone for your endless support, providing such a superb research environment, and 

making my time here so enjoyable. I would like to extend this thank you to Trevor Szekeres 

for your assistance with data acquisition, Joe Gati for your expertise with sequence 

refinement, and Peter Zeman for your work on crucial hardware for my research. I would like 

to give a special thank you to all the participants who took time out of their day to volunteer 

for my study, your generosity helped make this research possible.  

To my past and present fellow lab members: Thank you for answering my many 

questions, no matter how frequent those questions were. A big thank you to Olivia Stanley 

and Atena Akbari who helped guide me throughout my time with phase regression and 

laminar fMRI research. You were both so thorough when providing me with assistance and 

helped me more than you probably even realize.  

To my friends: Thank you for keeping me sane throughout the ups and downs of 

research. You provided me a reliable outlet whenever I was feeling stressed and all I needed 

was to take a step back and relax.  

Finally, to my family: Thank you for always being there when I needed support at any 

hour of the day. You always knew how to reassure me when I was doubting myself and I 

would not have been able to do this without you. 



 

vi 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience ............................................................................................... iii 

Co-Authorship Statement................................................................................................... iv 

Acknowledgments............................................................................................................... v 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................. viii 

List of Abbreviations ......................................................................................................... xi 

List of Appendices ........................................................................................................... xiv 

Chapter 1 ............................................................................................................................. 1 

1 Introduction .................................................................................................................... 1 

1.1 High-Resolution Study of the Human Brain ........................................................... 1 

1.1.1 Blood-Oxygen-Level-Dependent Contrast ................................................. 2 

1.1.2 Gradient-Echo Echo-Planar Imaging .......................................................... 5 

1.2 Cortical Structure .................................................................................................... 9 

1.2.1 Ocular Dominance Columns ....................................................................... 9 

1.2.2 Cortical Layers .......................................................................................... 10 

1.2.3 Cortical Vasculature.................................................................................. 12 

1.3 fMRI Signal Spatial Specificity ............................................................................ 15 

1.3.1 Alternate Imaging Contrasts ..................................................................... 16 

1.3.2 Venous Bias Correction Techniques ......................................................... 18 

1.3.3 Phase Regression ...................................................................................... 19 

1.4 Thesis Objectives .................................................................................................. 20 

1.5 References ............................................................................................................. 21 

Chapter 2 ........................................................................................................................... 28 



 

vii 

 

2 Depth-Dependent Analysis of Human Ocular Dominance Columns using BOLD fMRI 

with Phase Regression at 7 T ....................................................................................... 28 

2.1 Introduction ........................................................................................................... 28 

2.2 Methods................................................................................................................. 31 

2.2.1 Data Acquisition ....................................................................................... 31 

2.2.2 Data Preprocessing.................................................................................... 33 

2.2.3 Data Analysis ............................................................................................ 35 

2.3 Results ................................................................................................................... 37 

2.4 Discussion ............................................................................................................. 46 

2.5 Conclusions ........................................................................................................... 52 

2.6 References ............................................................................................................. 53 

Chapter 3 ........................................................................................................................... 61 

3 Conclusions and Future Directions .............................................................................. 61 

3.1 Summary ............................................................................................................... 61 

3.2 Limitations ............................................................................................................ 62 

3.3 Future Directions .................................................................................................. 64 

3.4 Conclusions ........................................................................................................... 65 

3.5 References ............................................................................................................. 65 

Appendices ........................................................................................................................ 67 

Curriculum Vitae .............................................................................................................. 68 

  



 

viii 

 

List of Figures 

Figure 1.1. Neurovascular Coupling. A) A visualization and B) corresponding chart 

illustrating the changes in the volume fraction, inflow and BOLD effect in arterial blood, 

extravascular tissue, venous blood, and cerebrospinal fluid that correspond to neural activity. 

Image sourced from Kim and Ogawa (2012) [18] © 2012 SAGE Publications and reproduced 

with the permission of the copyright holder. ............................................................................ 4 

Figure 1.2. Hemodynamic Response Function. The response of the BOLD time series 

following a brief stimulus. The amplitudes of the response will depend on the field strength. 

Courtesy of Allen D. Elster, MRIquestions.com. ..................................................................... 5 

Figure 1.3. GE-EPI Pulse Sequence Diagram. A diagram illustrating the timing of the 

radiofrequency (RF) pulse, the slice-selective (SS), phase-encoding (PE), and frequency-

encoding (FE) gradients, and the signal produced by the echoes in a GE-EPI sequence. In 

practice, 64-128 echoes would be used. Image sourced from McRobbie et al. (2006) [24] © 

2006 Cambridge University Press and reproduced with the permission of the copyright 

holder. ....................................................................................................................................... 7 

Figure 1.4. Ocular Dominance Columns. Shown using A) cytochrome oxidase staining in 

post-mortem histology of a patient with monocular vision loss approximately a year before 

death and B) the overlap of GE-EPI from three sessions. Image A adapted from Adams et al. 

(2007) [32] © 2007 Society for Neuroscience and reproduced with the permission of the 

copyright holder. Image B adapted from Yacoub et al. (2007) [33] © 2007 Elsevier Inc. and 

reproduced with the permission of the copyright holder. ....................................................... 10 

Figure 1.5. Varying Connectivity Across Cortical Layers of Ocular Dominance Columns. An 

example of the differences in connectivity across a few cortical layers in ocular dominance 

columns. Signal travels from the eyes through the lateral geniculate nucleus (LGN) and into 

the primary visual cortex (V1). Monocular exclusivity is restricted to layer IVC, the main 

input layer in V1. Signal exchange between columns can happen in other cortical layers. 

Image sourced from Tychsen et al. (2010) [34] © 2010 Lippincott Williams and reproduced 

with the permission of the copyright holder. .......................................................................... 11 



 

ix 

 

Figure 1.6. Cortical Vasculature. A cross section of the cortex outlining the six cortical layers 

(left) and four vasculature layers (right) from the CSF to WM (cingulate sulcus (CS) to 

subcortical white matter (SC), respectively). The microvasculature density is the intertangled 

mesh of smaller vasculature throughout the cortex, with the highest density existing in the 

third vasculature layer. The veins are the larger vasculature, with a pial vein parallel to the 

cortical surface in the CSF, principal intracortical veins penetrating the cortex perpendicular 

to the cortical surface, which branch off into smaller intracortical veins running parallel to 

the cortical surface. Image sourced from Duvernoy et al. (1981) [36] © 1981 Elsevier Inc. 

and reproduced with the permission of the copyright holder. ................................................ 13 

Figure 1.7. Laminar GRE BOLD Profile. An example laminar GRE BOLD profile which has 

a similar shape as seen in most studies (red) and one that has a shape that more accurately 

corresponds to neural activity (blue). Image sourced from Koopmans et al. (2010) [49] © 

2010 Wiley‐Liss, Inc. and reproduced with the permission of the copyright holder. ............. 16 

Figure 2.1. Data Quality. An example slice from tSNR maps of the A) native magnitude and 

B) phase regressed data, along with the C) phase temporal standard deviation. .................... 38 

Figure 2.2. Retinotopic Meridian Mapping. A) The vertical and horizontal bowtie-shaped 

visual stimulus used for the meridian mapping. B) The activation map of the Vertical > 

Horizontal contrast from the native magnitude data of a single participant on the inflated 

cortical surface from their left hemisphere. The cool colours correspond to the vertical bowtie 

while the warm colours correspond to the horizontal bowtie. ................................................ 39 

Figure 2.3. Ocular Dominance Columns fMRI Map. A) The goggles used to control which 

eye(s) could view the B) visual stimulus. The activation map of the Right > Left contrast of 

the C) native magnitude and the D) phase regressed data, overlaid on the inflated cortical 

surface from the left hemisphere of a single participant. The warm colours correspond to the 

sensitivity to right eye stimulation and the cool colours correspond to the sensitivity to left 

eye stimulation. E) The absolute difference map between the native magnitude and phase 

regressed data shows the areas of venous suppression. .......................................................... 40 

Figure 2.4. Laminar Profiles Across Cortical Depths. A) An example ROI of ten layers 

created for the analysis using LayNii. B) The native magnitude and C) phase regressed 



 

x 

 

percent BOLD signal change across ten cortical depths corresponding to each stimulation 

condition. The error bars represent the standard error of the mean across participants. ........ 41 

Figure 2.5. Suppression Ratios. The ratio between native magnitude and phase regressed data 

during each stimulation condition. .......................................................................................... 42 

Figure 2.6. Binocular Stimulation in ODCs Across Cortical Depths. A) The native magnitude 

and B) phase regressed responses to monocular (solid lines) and binocular stimulation 

(dashed lines) in ODCs. The error bars represent the standard error of the mean across 

participants. ............................................................................................................................. 43 

Figure 2.7. Ratios Between Binocular and Monocular Stimulation in ODCs. The ratios in 

ODCs between binocular and monocular stimulation that corresponds to the eye-dominated 

column for both the native magnitude (solid lines) and phase regressed (dashed lines) data. 44 

Figure 2.8. Opposing Monocular Stimulation in ODCs Across Cortical Depths. A) The native 

magnitude and B) phase regressed responses to corresponding monocular (solid lines) and 

opposing monocular (dashed lines) stimulation in ODCs. The error bars represent the 

standard error of the mean across participants. ....................................................................... 45 

Figure 2.9. Ratios Between Opposing Monocular Stimulation in ODCs. The ratios in ODCs 

between corresponding and opposing monocular stimulation for both the native magnitude 

(solid lines) and phase regressed (dashed lines) data.............................................................. 46 

 



 

xi 

 

List of Abbreviations 

BOLD   Blood-Oxygen-Level-Dependent 

CBF   Cerebral Blood Flow 

CBV   Cerebral Blood Volume 

CSF   Cerebrospinal Fluid 

DAQ   Data Acquisition 

EPI   Echo-Planar Imaging 

FA   Flip Angle 

FE   Frequency-Encoding 

fMRI   Functional Magnetic Resonance Imaging 

GE-EPI  Gradient-Echo Echo-Planar Imaging 

GLM   General Linear Model 

GM   Grey Matter 

GRAPPA  GeneRalized Autocalibrating Partially Parallel Acquisitions 

GRE   Gradient-Echo 

HRF   Hemodynamic Response Function 

MP2RAGE  Magnetization Prepared 2 Rapid Acquisition Gradient Echoes 

MR   Magnetic Resonance 

MRI   Magnetic Resonance Imaging 

NORDIC  NOise Reduction with DIstribution Corrected  



 

xii 

 

ODCs   Ocular Dominance Columns 

PE   Phase-Encoding 

PLATO  Portable Liquid crystal Apparatus for Tachistoscopic Occlusion 

RF   Radiofrequency 

ROI   Region-of-Interest 

ROMEO  Rapid Opensource Minimum spanning treE algOrithm  

SAR   Specific Absorption Rate 

SE   Spin-Echo 

SE-EPI  Spin-Echo Echo-Planar Imaging 

SNR   Signal-to-Noise Ratio 

SS   Slice-Selective 

SVD   Singular Value Decomposition 

T1   Longitudinal Relaxation Time 

T2   Transverse Relaxation Time 

T2*   Apparent Transverse Relaxation Time 

TE   Echo Time 

TR   Repetition Time 

tSNR   Temporal Signal-to-Noise Ratio  

V1   Primary Visual Cortex 

V2   Secondary Visual Cortex 



 

xiii 

 

VASO   Vascular Space Occupancy 

WM   White Matter 



 

xiv 

 

List of Appendices 

Appendix A: Human Ethics Approval – Chapter 2 ................................................................ 67 



1 

 

 

 

Chapter 1  

1 Introduction 

1.1 High-Resolution Study of the Human Brain 

The human brain is an extremely complex organ that controls nearly all the body’s 

functions. This has made it a significant research interest for decades with the 

overarching goal of furthering our understanding of human brain function [1]. Currently, 

much of this research aims at improving our understanding of brain connectivity through 

examining the human cerebral cortex in vivo while attempting to understand the 

functional organization of mesoscale circuitry [2]. If the logic behind local connectivity 

between functionally distinct cortical layers and columns involved in mesoscale circuitry 

can be revealed, it will help further our understanding of the extraordinarily convoluted 

connectivity [3,4] present within the human brain.  

One of the main imaging modalities used to non-invasively examine human brain 

activity is functional magnetic resonance imaging (fMRI) [5]. fMRI provides the ability 

to image time-varying changes in cerebral blood oxygenation, which have been shown to 

be associated with changes in neural activity [5]. It is often paired with structural MRI to 

find the anatomical locations of the activated brain regions and it can be used 

macroscopically across the whole brain or locally (mesoscopically) within a specific 

cortical region. fMRI studies are classified as either task-based or resting-state, the 

former of which will be the focus of this study. Task-based fMRI is a technique that can 

be used to activate specific regions of the brain [6]. This is done by having the participant 

perform a cognitive task during the functional scan that modulates neural activity in the 

desired regions. The nature of the task that is used during a task-based fMRI study 

provides a level of control over the location of neural activity that cannot be provided 

with resting-state fMRI, meaning that it is beneficial when attempting to examine a 

particular cortical region or structure [6]. This makes task-based fMRI a useful method 

for investigating specific cortical functions. 



2 

 

 

 

Mesoscopic cortical structures such as layers and columns push the boundaries of 

fMRI due to their physical size and associated vascular physiology [7]. Considerable 

work has been done since the inception of fMRI to improve image quality, imaging 

resolutions, and acquisition time to help researchers examine mesoscopic cortical 

structures [8–10]. Increased field strengths and technical improvements in magnetic 

resonance (MR) hardware are some of the many advances that have recently allowed for 

fMRI to be used to examine functions across cortical layers (laminar fMRI) [11]. There 

have also been advancements in analysis techniques used over the years to enhance the 

processing of laminar fMRI studies [12]. However, there is still plenty of work to do 

before these high-resolution laminar fMRI techniques are robust. 

This thesis contributes to advancing high-resolution laminar fMRI studies by 

further investigating techniques that aim to improve the spatial specificity of the 

acquisition. In the following study, fMRI combined with a technique called phase 

regression will be used for the first time in a laminar analysis across cortical columns in 

humans to determine its suitability as a technique for non-invasively examining 

mesoscale structures in the human brain.  

1.1.1 Blood-Oxygen-Level-Dependent Contrast 

The most common contrast used in fMRI is the blood-oxygen-level-dependent (BOLD) 

contrast, discovered by Ogawa et al. (1990) [13]. The BOLD contrast is an effect 

produced by paramagnetic oxygen-desaturated hemoglobin (deoxyhemoglobin) in red 

blood cells that is measured from water protons within blood and brain tissue when using 

a susceptibility-weighted pulse sequence [13]. Water is the most abundant molecule in 

biological tissues, with brain tissue being found to have extremely high concentrations 

[13]. Ogawa et al. (1990) [13] found that the concentration of water in brain tissue was 

too high to directly measure normal metabolic reactions, as the resonance signal was 

insensitive to the changes in concentration of water required for reactants. This led them 

to begin exploiting naturally occurring physiological events that indirectly affect the 
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resonance signal produced by water proton spins, such as the changes in regional cerebral 

blood oxygenation, which is known as the BOLD contrast [13].  

When an area of the brain is stimulated, there is an increase in neuronal firing. 

Neural activity and the associated glial metabolism are energy intensive and require an 

increased supply of oxygen [14], which is provided via hemoglobin within red blood cells 

[15]. This link between neural activity and the corresponding changes in cerebral blood 

flow (CBF) and cerebral blood volume (CBV) is referred to as neurovascular coupling 

[16] (Figure 1.1). Neurovascular coupling allows for neural activity to be indirectly 

measured using changes in local blood oxygenation. Increases in CBF and CBV provide 

increased levels of oxygen-saturated hemoglobin (oxyhemoglobin) to areas of activation, 

which corresponds to a relative decrease in the local concentration of deoxyhemoglobin 

[13]. The reason that the changes in the level of blood oxygenation can be measured is 

because of the susceptibility difference of deoxyhemoglobin relative to oxyhemoglobin. 

While oxyhemoglobin is diamagnetic, deoxyhemoglobin is paramagnetic [17], and the 

paramagnetic nature of deoxyhemoglobin provides a difference in magnetic susceptibility 

relative to the generally diamagnetic tissue [13]. The field inhomogeneities produced by 

deoxyhemoglobin lead to phase dispersion of water proton spins, which reduces the 

BOLD signal intensity when using a susceptibility-weighted pulse sequence [13]. The 

presence of more oxyhemoglobin leads to less dephasing and a corresponding higher 

BOLD signal intensity [13]. The magnetic field variation from deoxyhemoglobin can 

extend beyond the boundary of the vessel to varying amounts that depend on the pulse 

sequence, which means there is both an intravascular and extravascular component to the 

BOLD signal [13]. The BOLD signal increases supra-linearly with magnetic field 

strength, meaning that the intravascular and extravascular components are amplified at 

high field strengths [13].  
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Figure 1.1. Neurovascular Coupling. A) A visualization and B) corresponding chart illustrating the 

changes in the volume fraction, inflow and BOLD effect in arterial blood, extravascular tissue, venous 

blood, and cerebrospinal fluid that correspond to neural activity. Image sourced from Kim and Ogawa 

(2012) [18] © 2012 SAGE Publications and reproduced with the permission of the copyright holder.  

BOLD fMRI indirectly measures neural activity because it relies on neurovascular 

coupling to produce measurable signal changes. Neurovascular coupling is not an 

instantaneous process, and the temporal lag of the BOLD signal behind neural activity 

can be characterized by the hemodynamic response function (HRF) [18]. The HRF 

consists of three main components: the initial dip, the main BOLD response, and the 

post-stimulus undershoot (Figure 1.2). The difficult to detect initial dip in BOLD signal is 

a small negative response below baseline that generally lasts 1-2 seconds and is thought 

to be due to a local increase in deoxyhemoglobin caused by energy intensive neural 

activity before the corresponding increase in CBF to meet the oxygen demands [18]. The 

main BOLD response is the subsequent increase in oxygenated blood to the area of neural 

activity due to the corresponding changes in CBF and CBV [18], taking approximately 6 

seconds to reach the peak in blood oxygenation and this is the portion of the BOLD 

signal that is typically measured. After the main BOLD response, there is a post-stimulus 
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undershoot where the BOLD signal again reaches a negative response before stabilizing 

at baseline, first showed by Kwong et al. (1992) [19]. There are two relatively common 

explanations mentioned when describing the post-stimulus undershoot. This first 

explanation is that there remains persistent increased oxygen consumption even after the 

duration of the stimulus, which was proposed by Frahm et al. (1996) [20] after showing 

large, reproducible post-stimulus undershoots. The second explanation is the balloon 

model proposed by Buxton et al. (1998) [21], postulating that vasodilation from the 

increase in CBV resulting from neural activity left a larger volume of deoxyhemoglobin 

than normal as CBF decreased following neural activity.  

 

Figure 1.2. Hemodynamic Response Function. The response of the BOLD time series following a brief 

stimulus. The amplitudes of the response will depend on the field strength. Courtesy of Allen D. Elster, 

MRIquestions.com.  

1.1.2 Gradient-Echo Echo-Planar Imaging 

MR imaging data is collected in k-space which contains the spatial frequency distribution 

of the image [22]. The slice-selective (SS) gradient is used to determine the slice 
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thickness and location where k-space will be filled. The frequency-encoding (FE) and 

phase-encoding (PE) gradients are used to vary the spatial frequency and phase of the 

spin distribution, which manipulates the position of the signal in k-space. These two 

gradients are manipulated until k-space is filled. The x-axis of k-space typically 

corresponds to the frequency-encoding direction, while the y-axis corresponds to the 

phase-encoding direction. The SS gradient is then used to select a different slice where 

the process to fill k-space is repeated. Taking the two-dimensional inverse Fourier 

transform of k-space will provide the image in real space.  

Gradient-echo echo-planar imaging (GE-EPI) is the most common sequence used 

across all fMRI studies that measures changes in the BOLD signal (Figure 1.3). In the 

gradient-echo (GRE) sequence [23], a radiofrequency (RF) excitation pulse is used to tip 

the net magnetization of spins away from the longitudinal axis towards the transverse 

plane at a flip angle (FA) of 90 or less, while simultaneously applying the SS gradient. 

The rephasing SS gradient is then applied along with the PE and FE gradients, which are 

used to determine the line of k-space that will be filled and to dephase the spins in the 

transverse plane, respectively. The echo is produced by applying the FE gradient in the 

opposite direction to rephase the spins in the transverse plane. The peak of the echo is 

when the signal is measured, and the echo time (TE) is the time from initial RF excitation 

pulse to the peak in the signal. This process is repeated until k-space is filled and then 

performed again at each slice, and the time between successive pulse sequences being 

applied to the same slice is called the repetition time (TR).  

The FE gradient only refocuses spins that were dephased by the gradient itself and 

did not diffuse significantly, meaning that GRE is extremely sensitive to susceptibility in 

the magnetic field produced by deoxyhemoglobin [24], which cause the spins to not 

completely refocus in the transverse plane. This leads to a reduction in the T2* of the 

blood and a corresponding reduction in the intensity of a T2*-weighted image [25]. 

Therefore, a reduction in deoxyhemoglobin (or an increase in oxyhemoglobin) increases 
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the intensity of a T2*-weighted image [25]. T2* is the apparent transverse relaxation 

time, as opposed to T2 which is the transverse relaxation time.  

Echo-planar imaging (EPI) is an MR acquisition technique invented by Mansfield 

(1977) [26] that is a modification of the GRE approach. It uses a rapidly reversing FE 

gradient with intermittent low amplitude PE gradients between reversals to fill k-space. 

This allows for echoes at multiple PE steps to be acquired from a single RF pulse, 

making it possible to rapidly obtain MR slices without needing additional RF pulses. EPI 

is commonly used in fMRI to allow for greatly reduced scan durations, freezing 

participant motion and because it is sensitive to magnetic susceptibility.  

 

Figure 1.3. GE-EPI Pulse Sequence Diagram. A diagram illustrating the timing of the radiofrequency 

(RF) pulse, the slice-selective (SS), phase-encoding (PE), and frequency-encoding (FE) gradients, and the 

signal produced by the echoes in a GE-EPI sequence. In practice, 64-128 echoes would be used. Image 

sourced from McRobbie et al. (2006) [24] © 2006 Cambridge University Press and reproduced with the 

permission of the copyright holder.  
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Increasing the speed of image acquisition is nearly always desirable, but it is 

essential for whole-brain imaging with increased spatial and temporal resolutions [11]. 

Most of the commonly used acceleration techniques rely on k-space undersampling or 

simultaneous acquisitions. GeneRalized Autocalibrating Partially Parallel Acquisitions 

(GRAPPA) is a parallel imaging technique invented by Griswold et al. (2002) [8]. 

GRAPPA accelerates acquisition times by undersampling PE steps while fully sampling 

the centre of k-space and estimating the missing data from each receive coil using the 

weighted sensitivities of all other receive coils. Partial Fourier imaging techniques, first 

used by Feinberg et al. (1986) [10], use redundancies in k-space, which are conjugate 

symmetries diagonally across the origin of k-space. In theory, only half of k-space is 

needed, but realistically, this idea can be used to reconstruct MR images with 

approximately three quarters of k-space being sampled. Larkman et al. (2001) [9] 

invented Simultaneous Multi-Slice Imaging (also known as MultiBand Imaging) which is 

a parallel imaging technique that can excite several slices simultaneously using complex 

RF pulses. This allows for k-space from multiple slices to be filled simultaneously, 

making this an extremely useful technique for speeding up acquisitions. Combinations of 

acceleration techniques are usually necessary for high-resolution functional imaging [11].  

The positives of GE-EPI are a high signal-to-noise ratio (SNR), as magnetic 

susceptibility changes increase the BOLD signal intensity [5]. GE-EPI can also be used 

with a low FA (< 90) to use very little of the longitudinal magnetization [23]. While this 

will reduce the measured signal in the transverse plane, it also reduces the recovery time 

due to the longitudinal relaxation time (T1). This allows for a shorter repetition time (TR) 

as the spins can be excited more frequently, which corresponds to an increased temporal 

resolution [23]. This is often done to decrease the TR in GE-EPI because of the relatively 

high SNR per unit time of the GRE sequence. GE-EPI also has much less constraints with 

the specific absorption rate (SAR) than other sequences due to the reduced FA [27], 

allowing for an even higher temporal resolution [23]. GE-EPI paired with acceleration 

techniques is an extremely robust method that is simple to use, making it the main choice 

for most high-resolution fMRI studies.  
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1.2 Cortical Structure 

It is important to understand the general structure of the cerebral cortex when imaging the 

human brain using fMRI, especially at high resolutions. The cortex is the outermost layer 

of neural tissue of the cerebrum. It is made up of grey matter (GM), which contains high 

concentrations of neuronal cell bodies and has a significant role in the higher-order 

functions of the human brain. The cortex exists between the cerebrospinal fluid (CSF), 

which surrounds the brain, and white matter (WM), which consists of myelinated axons 

deeper in the brain. The three features of cortical structure that will be further discussed 

in this work are cortical layers, cortical columns, and cortical vasculature.  

Ocular dominance columns (ODCs) are cortical structures located in the primary 

visual cortex (V1) that have been of particular focus in high-resolution fMRI studies. 

Because their physiology and neuroanatomy are well understood, they are well 

characterized sub-millimeter cortical structures that will be helpful to test the efficacy of 

high-resolution fMRI acquisition techniques. Hence, the following study will focus on 

ODCs, and the cortical structure overview will be on the human V1.  

1.2.1 Ocular Dominance Columns 

One of the best studied cortical columns are ocular dominance columns (ODCs). After 

initially being discovered in cats using electrophysiology by Hubel and Wiesel (1962) 

[28], the research interest turned towards revealing ODCs in humans. They were first 

suggested to be present in humans by Hitchcock and Hickey (1980) [29] using Glees 

silver staining in post-mortem histology. ODCs were first clearly shown in humans by 

Horton and Hedley-Whyte (1984) [30] using cytochrome oxidase staining in post-mortem 

histology of patients with monocular vision loss, before Menon et al. (1997) [31] 

demonstrated ODCs were visible in humans using fMRI. Figure 1.4 shows ODCs in 

humans using a couple of the previously mentioned techniques, from Adams et al. (2007) 

[32] and Yacoub et al. (2007) [33]. ODCs alternate by sensitivity to input from right and 

left eyes in columns roughly perpendicular to the cortical surface. In humans, ODCs are 
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approximately 0.5-1.0 mm in width, and they are cortical structures that are restricted to 

V1, ending rather abruptly at the edge of V1 [32].  

 

Figure 1.4. Ocular Dominance Columns. Shown using A) cytochrome oxidase staining in post-mortem 

histology of a patient with monocular vision loss approximately a year before death and B) the overlap of 

GE-EPI from three sessions. Image A adapted from Adams et al. (2007) [32] © 2007 Society for 

Neuroscience and reproduced with the permission of the copyright holder. Image B adapted from Yacoub 

et al. (2007) [33] © 2007 Elsevier Inc. and reproduced with the permission of the copyright holder.  

1.2.2 Cortical Layers 

The cortex can be divided into layers parallel to the cortical surface based on cell types. 

Although the interaction between cortical layers within V1 and with higher visual areas is 

extremely convoluted with feedforward and feedback processes originating at and 

connecting to various cortical depths, this overview will be kept relatively simple for the 

purpose of the following study.  

In V1, there is a widely accepted six-layer structure, beginning at layer I which is 

the most superficial layer adjacent to the CSF and ending at layer VI, the deepest layer 

adjacent to the WM [2], as shown on the left side of Figure 1.6. Layer IVC (a subdivision 

of layer IV) receives visual information from each retina via a thalamic relay nucleus, 
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known as the lateral geniculate nucleus, and projects to more superficial layers [2]. Input 

from higher visual areas is also received mainly in superficial layers, primarily arriving 

from deep cortical layers [2].  

Connectivity between ODCs varies as a function of cortical depth [28] (Figure 

1.5). As mentioned above, layer IVC is the main input layer in V1, so this is where the 

signal from stimulated eyes first arrives in the cortex. This is the only cortical layer where 

ODCs are sensitive to segregated input from each eye [28]. In all the other cortical layers 

above and below layer IVC, ODCs can be sensitive to input from both eyes and the 

amount can vary from remaining sensitive to only one eye or equal sensitivity to both 

[28]. The varying mesoscale connectivity in V1 due to ODCs alternating between 

sensitivity to right and left eyes, along with differences in connectivity between ODCs 

across cortical depths makes them well suited for testing high-resolution fMRI 

techniques.  

 

Figure 1.5. Varying Connectivity Across Cortical Layers of Ocular Dominance Columns. An example 

of the differences in connectivity across a few cortical layers in ocular dominance columns. Signal travels 

from the eyes through the lateral geniculate nucleus (LGN) and into the primary visual cortex (V1). 
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Monocular exclusivity is restricted to layer IVC, the main input layer in V1. Signal exchange between 

columns can happen in other cortical layers. Image sourced from Tychsen et al. (2010) [34] © 2010 

Lippincott Williams and reproduced with the permission of the copyright holder.  

1.2.3 Cortical Vasculature 

Since BOLD fMRI measures a vascular response, understanding the organization of 

cortical vasculature and the mechanisms behind neurovascular coupling is extremely 

important. Blood vessels are classified into three main types: arteries, veins, and 

capillaries. Arteries carry oxygenated blood from the heart to the brain. Capillaries are 

the smallest of all the vessels, with thin walls that oxygen can most easily diffuse across 

to be used by the neurons within the cortex [18]. Veins carry partially deoxygenated 

blood from capillaries back to the heart. As arteries and veins near capillaries they 

decrease in size and these smaller vessels are called arterioles and venules, respectively. 

These three types of smaller vessels are often referred to as microvasculature. The focus 

of the following study primarily involves microvasculature and veins as they are what 

produce most of the measured BOLD signal changes at high field strengths [35]. 

The cortical vasculature can be divided into four layers based on vessel size, 

density, and orientation [36] as shown on the right side of Figure 1.6. The third vascular 

layer is of particular interest due to its greater vascular density, consisting of 

microvasculature meshes that are oriented in all directions. Vascular layers 1, 2, and 4 all 

contain a much lower density of microvasculature. The size and density of veins also 

varies across the cortex, and veins can be classified as multiple types [36]. The two 

largest types are pial veins, that run randomly along the cortical surface, and principal 

intracortical veins, that penetrate tangentially to the cortex to drain blood from the 

microvasculature [36]. Pial veins have a diameter of 280 µm or greater and principal 

intracortical veins have a diameter in the range of 80-170 µm [36]. There are also even 

smaller intracortical veins, reaching down to about 20 µm in diameter, that break off 

from principal intracortical veins and run parallel to the cortical surface at varying depths 

to help drain blood from the cortex [36]. The diameter of a single principal intracortical 

vein can vary quite drastically across cortical depths because as a principal intracortical 



13 

 

 

 

vein approaches the cortical surface, blood from increasing amounts of microvasculature 

and smaller intracortical veins will be drained to the same principal intracortical vein 

[36]. This causes principal intracortical veins to increase in diameter as they approach 

cortical surface to compensate for the increased blood volume [35]. Principal intracortical 

veins also vary in the depth that they penetrate the cortex, with some only reaching layers 

I and II [36]. This means that both the diameter and density of principal intracortical 

veins increase as they approach the cortical surface.  

 

Figure 1.6. Cortical Vasculature. A cross section of the cortex outlining the six cortical layers (left) and 

four vasculature layers (right) from the CSF to WM (cingulate sulcus (CS) to subcortical white matter (SC), 

respectively). The microvasculature density is the intertangled mesh of smaller vasculature throughout the 

cortex, with the highest density existing in the third vasculature layer. The veins are the larger vasculature, 
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with a pial vein parallel to the cortical surface in the CSF, principal intracortical veins penetrating the 

cortex perpendicular to the cortical surface, which branch off into smaller intracortical veins running 

parallel to the cortical surface. Image sourced from Duvernoy et al. (1981) [36] © 1981 Elsevier Inc. and 

reproduced with the permission of the copyright holder.  

Along with the organization of cortical vasculature, there is also a need to 

understand the processes behind the regulation of CBF. The three main paradigms 

involved with the regulation of cerebral blood flow are cerebral pressure autoregulation, 

flow-metabolism coupling, and neurogenic regulation [37]. Cerebral pressure 

autoregulation and neurogenic regulation focus more on maintaining constant CBF and 

are not significantly involved with neurovascular coupling [37]. Flow-metabolism 

coupling was first shown over a century ago and it refers to the cerebral blood flow 

changes that vary with cerebral metabolism [38]. This paradigm is important for the 

following study as we are using a task-based stimulus to induce metabolism associated 

with neural activity in specific regions while measuring the changes in blood 

oxygenation. Most of the mechanisms involved with flow-metabolism coupling are 

centered around metabolic causes of vasodilation, which is a significant component of 

neurovascular coupling [18] as shown in Figure 1.1. One of the mechanisms of flow-

metabolism coupling is that synaptic activity involves potassium and hydrogen ions and 

the increases in these ions have been shown to stimulate vasodilation [39]. Another is that 

extracellular adenosine increases with neural activity, which has shown to increase 

microvascular vasodilation when applied topically [40]. Adenosine is also released in 

response to glutamate, which is one of the main neurotransmitters [41]. Nitric oxide also 

plays a role in flow-metabolism coupling but the exact mechanism is not completely 

understood [40,42]. These mechanisms primarily operate at the microvasculature level, 

while not operating at the artery or venous level, meaning that the microvasculature itself 

plays a key role in its own blood flow regulation [37]. The microvasculature is much 

closer to the actual site of neural activity than arteries and veins [18]. This shows that 

neural activity influences CBF in microvasculature, demonstrating the dependence 

neurovascular coupling has on flow-metabolism coupling.  
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1.3 fMRI Signal Spatial Specificity 

Signal specificity is extremely important when performing laminar fMRI studies as non-

invasive techniques indirectly measure neural activity. GE-EPI is the most common 

sequence used in laminar fMRI studies to date because of its increased sensitivity 

compared to many alternative sequences [43]. However, the blood oxygenation changes 

it measures are most abundant in large veins because deoxygenated blood combines 

downstream while draining from increased amounts of microvasculature [18,44]. The 

corresponding intensity changes produced by large veins dominate the BOLD signal 

[45,46] and due to the location, size, and density of principal intracortical veins and pial 

veins [36], the amount of deoxygenated blood throughout the cortex is biased towards the 

cortical surface [44,47,48]. This skews the measured BOLD signal towards the cortical 

surface (Figure 1.7), away from the microvasculature that is more tightly coupled to the 

neural activity [49]. Furthermore, as deoxygenated blood drains away from the 

microvasculature, it distances itself from areas of neural activity within the cortex [44]. 

This not only adds to the skewed BOLD signal towards the cortical surface, but it also 

displaces the BOLD signal spatially along the cortex as many venous vessels also run 

parallel to the cortical surface [50]. BOLD signal contamination from large veins hinders 

the ability to image using the BOLD contrast at high resolutions [7]. The BOLD signal 

changes produced exclusively by the microvasculature would be a better measure of 

neural activity as they are more directly related to neurovascular coupling and are in 

much closer proximity to the neurons, but the strength of the BOLD signal they produce 

is very small compared to that of larger veins because of their minimal contribution to 

extravascular dephasing [46]. The trade-off between SNR and spatial specificity is a 

major problem in laminar fMRI studies [7].  
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Figure 1.7. Laminar GRE BOLD Profile. An example laminar GRE BOLD profile which has a similar 

shape as seen in most studies (red) and one that has a shape that more accurately corresponds to neural 

activity (blue). Image sourced from Koopmans et al. (2010) [49] © 2010 Wiley‐Liss, Inc. and reproduced 

with the permission of the copyright holder.  

1.3.1 Alternate Imaging Contrasts 

Many different acquisition techniques have been used in an attempt to combat the 

problem of spatial specificity in laminar fMRI studies. The first, and most easily 

comparable to GE-EPI, is spin-echo echo-planar imaging (SE-EPI) [51]. The SE 

sequence [52] is very similar to the GRE pulse sequence, with an additional 180 RF 

refocusing pulse after the simultaneous application of the SS, PE, and FE gradients. 

Instead of needing to apply a refocusing FE gradient as in GRE, the RF refocusing pulse 

reverses the dephasing in the transverse plane to refocus the spins. This also refocuses 

spins in the tissue surrounding the vasculature that were dephased due to susceptibility in 

the magnetic field, reducing the T2* effects produced by changes in the concentration of 

deoxyhemoglobin from the signal, producing a more T2-weighted image. The measured 

signal in T2-weighted images is much more specific to microvasculature due to the 
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reduction in T2* effects that are most prominent around large veins [46]. Although SE-

EPI has higher spatial specificity compared to GE-EPI, it has a considerably reduced 

SNR because of the inversion pulse used to reduce the T2* effects, which reduces the 

amount of spins that are producing the measured signal [7]. The additional refocusing 

pulse also lengthens the TE, along with being more SAR-intensive [27].  

Another alternate sequence that has gained interest in laminar fMRI studies is 

vascular space occupancy (VASO) [53]. VASO is based on changes in CBV, which 

primarily happens in microvasculature, as large vessels are unimportant for the local 

regulation of blood flow during neural activity [53]. This method relies on the T1 

difference between blood and the surrounding tissue. It uses a 180 RF nonselective 

inversion pulse to invert the magnetization in the longitudinal plane. The blood signal is 

nulled by waiting to perform the 90 RF excitation pulse until the longitudinal 

magnetization of blood crosses zero, leaving only signal produced by the surrounding 

tissue and extravascular BOLD changes [53]. BOLD data is also acquired so it can be 

used to remove T2* contamination from the surrounding tissue [53]. Neural activity 

causes an increase in microvascular CBV, which reduces the measured signal from the 

surrounding tissue [53]. Due to the inverse relationship with CBV (i.e., the extravascular 

signal decreases with increased CBV), a negative signal change is expected in VASO. 

While VASO is specific to microvasculature, it has considerably lower SNR because 

only a limited tissue signal remains at the time of blood nulling. The amount of signal 

remaining decreases even further with higher magnetic field strengths because it reduces 

the T1 difference between blood and tissue [54]. VASO also has a much lower temporal 

resolution than GE-EPI because of the need to wait for the longitudinal magnetization to 

completely revert before a subsequent RF inversion pulse [53]. 

 These are only brief overviews of two of the most common alternatives to GE-

EPI. Even with other sequences that have superior spatial specificity, GE-EPI is still the 

most common sequence due to its higher SNR, which many deem the single most 

limiting factor in laminar fMRI. 
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1.3.2 Venous Bias Correction Techniques 

Instead of sacrificing SNR for one of the previously mentioned more spatially specific 

sequences, there have been many techniques paired with GRE BOLD to help increase its 

spatial specificity by reducing the venous bias while maintaining a higher SNR. These 

techniques vary from additional imaging to postprocessing steps and everything in 

between, some of which will be mentioned here.  

One technique used recently in an ODC study by Hollander et al. (2021) [55] was 

deconvolution based on the cortical vascular model described in Markuerkiaga et al. 

(2016) [47]. The model was formulated from the distribution of microvasculature and 

density of intracortical veins throughout the cortex. It only included intracortical veins 

and microvasculature (no pial veins) to simulate BOLD signal across cortical depths for 

GRE BOLD and SE-BOLD. This cortical vascular model was used to determine the 

weighting factors for the spatial deconvolution [56]. While this method does assist in the 

removal of the venous bias, it is still based on a generalization of cortical vasculature.  

Another technique proposed for increasing the spatial specificity of GRE BOLD 

was by imaging at a higher spatial resolution and then excluding the upper cortical layers 

from the analysis [57]. In this technique, only the deep and middle cortical layers are kept 

in the analysis. This attempts to avoid pial veins along the cortical surface and partial 

volume effects with CSF, both of which reduce the spatial specificity of the BOLD 

signal. By removing the superficial layers from the analysis, it effectively provides a 

BOLD signal that is more specific to layer IV. One downside to this technique is that it 

also removes any true signal produced by superficial neuronal activity when removing 

the venous bias from the superficial layers.  

There is also a technique involved with examining the initial dip of the BOLD 

response [58]. It was shown that the magnitude of the initial dip is dependent on cortical 

depth, which can be used to improve the localization of functional activation. However, 

the signal amplitude in the initial dip is extremely small, especially at deeper cortical 
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layers. While this provides an understanding of the location of the responses at varying 

cortical depths, it doesn’t necessarily assist in removing venous bias from the analysis.  

These are only a few of many venous bias correction techniques that have been 

proposed. Due to the vast differences between techniques, they all have significantly 

varying pros and cons. As of now, there is still no consensus on the ideal venous bias 

correction technique. This only adds to the difficult choice between a more spatially 

specific imaging sequence or one of the many venous bias correction techniques 

commonly paired with GRE BOLD, and a considerable amount of research is still 

dedicated to finding the ideal method for performing laminar fMRI studies.  

1.3.3 Phase Regression 

One technique that uses phase data to remove the venous bias from the corresponding 

GRE BOLD magnitude data, now referred to as phase regression, was first proposed by 

Menon (2002) [59]. It is important to note that fMRI is a complex valued imaging 

modality. This is commonly represented as magnitude and phase data, with phase data 

typically being discarded. However, it has been shown that phase data contains valuable 

information that can be used to correct for field distortions [60], physiological noise [61], 

and venous bias [59]. In the following study, the main use of phase data will be for 

removing the venous bias from magnitude data.  

Menon et al. (2002) [59] showed that varying sizes and orientations of vasculature 

will produce different effects in both the magnitude and phase data. Large veins 

contribute to significant portions of the magnitude data, while also producing measurable 

changes in phase data [59]. Microvasculature contributes to a smaller amount of the 

magnitude data and produces minimal changes in phase data [59]. These differences in 

phase changes produced by large veins and microvasculature allow the large vein 

contribution in magnitude data to be estimated [59]. The estimate of the large vein 

contribution in magnitude data can then be subtracted from the native magnitude to leave 

the portion of the data that is more specific to microvasculature (phase regressed data).  
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It has been shown that it is unlikely one can obtain useful phase information from 

vasculature under 150 µm in diameter [62], meaning that phase regression will only be 

effective on pial surface veins and large principal intracortical veins. At low resolutions, 

phase changes related to the BOLD signal are predominantly from intravascular changes 

[45,59]. At high resolutions, phase regression has been shown to be effective at 

suppressing both the intravascular and extravascular BOLD components, increasing the 

reduction of venous bias [63]. Pairing phase regression with GRE BOLD will provide it 

with increased spatial specificity while maintaining a relatively high SNR [63]. This 

potentially makes it better suited for laminar fMRI studies 

1.4 Thesis Objectives 

Laminar fMRI is an area of research that has attracted increasing interest over recent 

years due to advancements in fMRI acquisition and analysis techniques [64,65] that have 

increased our potential for understanding the functional organization of mesoscale 

circuitry in the human brain [66]. This thesis looks to further laminar fMRI techniques, 

with the primary focus on the use of phase data to remove the venous bias from the GRE 

BOLD signal. Phase regression is expected to provide GRE BOLD with improved spatial 

specificity to allow for the investigation of mesoscopic cortical structures. The main 

objective of this thesis was to investigate the effectiveness of GRE BOLD with phase 

regression for high-resolution laminar and columnar studies in the human V1.  

 Chapter 2 investigates using GRE BOLD with phase regression as a technique for 

high-resolution laminar and columnar studies by imaging ODCs across cortical depths in 

human V1 at 7 T. Phase regression’s improvements in spatial specificity were determined 

through examining ODCs using a task-based experiment, with and without phase 

regression. We hypothesized that GRE BOLD with phase regression will provide more 

defined ODCs by removing BOLD signal distant to the neural activity, that the laminar 

BOLD signal profile will peak in the middle of the cortex after removing the venous bias, 

and that the difference between right and left eye specificity in ODCs will be greatest in 

layer IVC where ODCs are exclusively receive input from a single eye. 
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The final chapter of this thesis discusses and summarizes the findings of this 

study. The study limitations will be thoroughly discussed before providing 

recommendations on future directions related to high-resolution BOLD fMRI with phase 

regression.  
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Chapter 2  

2 Depth-Dependent Analysis of Human Ocular 
Dominance Columns using BOLD fMRI with Phase 
Regression at 7 T 

This study investigated the signal spatial specificity of the gradient-echo blood-oxygen-

level-dependent (GRE BOLD) contrast with and without phase regression across layers 

of the human primary visual cortex (V1) in ocular dominance columns (ODCs) at 7 T. 

Phase regression is a post-processing technique that uses phase data to suppress large 

vein signal, thus improving the GRE signal spatial specificity. A task-based fMRI study 

was performed where the visual stimulus was presented to the participants monocularly 

and binocularly. The depth-dependent and column-specific BOLD profiles with and 

without the phase regression were obtained in V1 to examine the spatial specificity of the 

phase regressed BOLD signal. Our results showed that the phase regressed laminar 

BOLD profile peaked towards the middle cortical depth, while that of GRE BOLD was 

biased towards the cortical surface. However, phase regression failed to improve the 

contrast between right and left eye ODCs, suggesting that we could not obtain useful 

phase information from venous vessel sizes running parallel to the cortical surface at 

various depths. 

2.1 Introduction 

Laminar fMRI studies typically use high field strengths to provide an improved signal-to-

noise ratio (SNR) that allows for functional imaging with sub-millimeter voxels [1]. 

High-resolution imaging provides researchers with the ability to study cortical layers and 

columns non-invasively in both animals and humans [2–4]. Input and output in primary 

sensory regions are located in different cortical layers and they are associated with 

feedforward and feedback activity [5]. Studying local functional connectivity between 

cortical layers could improve our understanding of feedforward and feedback activity 

within the visual areas of the human brain [6].  
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One of the best studied cortical columnar structures in the human brain are ocular 

dominance columns (ODCs) [7]. They are located within the primary visual cortex (V1) 

and are predominantly sensitive to input from a specific eye [7]. ODCs alternate in 

columns roughly perpendicular to the cortical surface, approximately 0.5-1.0 mm in 

width, spanning across the entire V1 [8]. While ODCs exist across all cortical depths, 

monocular input is specific to layer IVC [7]. Above and below layer IVC, ODCs have 

varying amounts of signal exchange between columns [7]. While ODCs have been shown 

non-invasively in humans using fMRI, they are commonly imaged with anisotropic 

voxels and without specifying differences in cortical depths [9–11]. Only recently have 

they been shown with sub-millimeter isotropic voxels that allows for depth-dependent 

analysis across the layers of the columns [4].  

The most common MR sequence used in laminar fMRI studies to date is gradient-

echo echo-planar imaging (GE-EPI). GE-EPI measures the blood-oxygen-level-

dependent (BOLD) signal change, which is an fMRI contrast that relies on changes in the 

concentration of deoxyhemoglobin within the blood [12,13]. GE-EPI comes with one 

major downside of not being specific to microvasculature (i.e., capillaries and venules) in 

the cortex [14,15]. Large veins dominate the BOLD signal changes and skew the signal 

towards the cortical surface due to their location, size, and density [16–18]. This makes it 

difficult to pinpoint the laminar origin of the BOLD signal even when imaging at higher 

resolutions [19,20]. To conduct a laminar fMRI study with greater signal specificity, the 

BOLD signal originating from large veins needs to be reduced [14].  

There have been multiple acquisition and post-processing techniques used to 

suppress the BOLD signal change originating from large veins. The two most common 

alternate MR acquisition techniques used in laminar fMRI are spin-echo EPI (SE-EPI) 

[21] and vascular space occupancy (VASO) [22], both of which have shown better signal 

spatial specificity compared to BOLD. Post-processing methods have also been proposed 

to reduce the venous signal contribution. A deconvolution approach based on a cortical 

vascular model [16], eliminating the voxels located in superficial cortical layers from the 
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analysis [23] or using the initial dip of the BOLD response [24], are among the post-

processing methods that have been used with some success.  

Phase regression is a data-driven approach to suppress the BOLD signal from 

large veins and relies on the fact that magnitude data contains signal contribution from 

large veins and microvasculature, while phase data mainly reflects the venous signal 

change [25]. The correspondence between magnitude and phase data produced from large 

veins allows the phase data to be used to estimate the BOLD signal contribution from 

large veins and suppress their effect. Phase regression was originally used at lower 

resolutions [25–32] although it has recently been shown to also be effective at higher 

resolutions [33]. Stanley et al. (2020) [33] compared the sensitivity and specificity of 

phase regressed GRE BOLD signal with the SE and native GRE BOLD signal and 

showed that phase regression provides a comparable specificity to SE, yet higher signal 

sensitivity. Thus, phase regression promises a more spatially specific GRE BOLD signal 

both parallel and perpendicular to the cortical surface. This could make it well suited for 

laminar and columnar studies.  

In the current study, we investigated the GRE BOLD signal spatial specificity and 

sensitivity for imaging the ocular dominance columns with and without phase regression 

in order to determine if differences in interactions between columns at specific cortical 

depths can be revealed. We expected that GRE BOLD with phase regression will produce 

better defined columns by removing downstream BOLD signal distant to the site of 

neural activity. It is hypothesized that the laminar BOLD signal profile from GRE with 

phase regression will peak in the middle of the cortex, corresponding to the density of the 

microvasculature across the cortex. It is also hypothesized that the difference between 

right and left eye sensitivity in ODCs will be greatest in the middle of the cortex where 

ODCs exclusively receive signal from a specific eye, when using GRE BOLD with phase 

regression.  
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2.2 Methods 

2.2.1 Data Acquisition 

2.2.1.1 Participant Characteristics 

Data was acquired from five participants (3 females and 2 males; age range 22-35 years). 

To ensure each participant had appropriate stereo vision, they performed the Randot 

Stereotest (Stereo Optical, Inc., Chicago, IL) prior to imaging and all participants fell 

within the normal or borderline normal range. Informed consent was collected from all 

participants and approved by the Human Subjects Research Ethics Board at the 

University of Western Ontario. 

2.2.1.2 Imaging Protocol 

Imaging was performed with a 7 T MRI scanner (Siemens MAGNETOM 7 T MRI Plus, 

Erlangen, Germany) optimized for the human brain imaging, equipped with an AC84 II 

head gradient coil. Functional data was collected using an 8-channel Tx/32-channel Rx 

radiofrequency (RF) coil optimized for occipital-parietal imaging [34]. For the functional 

imaging, the data collected was axial-oblique GE-EPI centered around the calcarine 

sulcus with the following imaging parameters: isotropic resolution = 0.8 mm3; TE = 23.8 

ms; TR = 1 s; FA = 50; GRAPPA acceleration factor = 3; partial Fourier 6/8; MultiBand 

= 2. Each participant performed two functional imaging sessions with the same GE-EPI 

sequence: one for imaging the ODCs and one for performing retinotopy. The retinotopy 

consisted of meridian mapping for localizing V1. The ODC session consisted of 5 runs of 

600 volumes each and the retinotopy session consisted of 4 runs of 324 volumes each. 

The structural data was collected using an 8-channel Tx/32-channel Rx whole head RF 

coil and used the MP2RAGE sequence with an isotropic resolution of 0.75 mm3.  

 The default coil combination provided on most MRI systems is generally not 

optimized for phase reconstruction, producing poor phase images with many spatial and 

temporal phase wraps. When performing phase regression, a quality phase image is 

needed to produce a proper fit between magnitude and phase data. To improve the phase 
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images, we used a coil combination with coil sensitivities estimated using singular value 

decomposition (SVD) for the reconstruction of the functional data [35]. This was 

beneficial for avoiding destructive interference between coils when reconstructing phase 

data. Instead of using a pre-scan as before [35], the coil sensitivity was estimated using 

an integrated SVD from the first 25 volumes of the current run before beginning the 

reconstruction. While this slightly delays the start of reconstruction, it generally does not 

delay the time to a completely reconstructed run, as the image reconstruction is faster 

than the acquisition. It also allows the coil sensitivities to be estimated for each run 

individually, making the approach robust against motion that may occur between runs. 

These coil sensitivities are now applied directly, and the reconstruction happens on the 

MRI system.  

2.2.1.3 Visual Stimuli 

Separate visual stimuli were used for the ODC and retinotopy functional imaging 

sessions. Both visual stimuli were created and presented in PsychoPy (v2021.2.0) [36] 

and spanned a total visual angle of approximately 40, while the checkerboard spanned 

approximately the centre 20. The ODC imaging stimulus consisted of a 10 Hz contrast 

reversing checkerboard on a grey background with a central fixation cross. It faded to 

grey at the periphery of the checkerboard to avoid any persistent contrasts in the outer 

portion of the stimulus. This was paired with goggles modified from the Portable Liquid 

crystal Apparatus for Tachistoscopic Occlusion (PLATO) Visual Occlusion Spectacles 

that use lenses made of liquid crystal cells [37]. The lenses can rapidly change from 

transparent to light-scattering independent of one another. These goggles were mounted 

on the occipital parietal RF coil between the participant’s eyes and the mirror. The visual 

stimulus alternated between 30 seconds off and 30 seconds on for 10 repetitions. Each 

time the visual stimulus turned on, the goggles would change transparent and light-

scattering lenses, rotating through three stimulation conditions of binocular, right eye, 

and left eye stimulation. The grey colour of the lenses when set to light-scattering was 

very similar to the background of the visual stimulus. A septum divider was also attached 
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to the front of the goggles to prevent excess light from the visual stimulus illuminating 

the opposing lens during monocular stimulation.  

The timing of each lens changing opacity was controlled through PsychoPy, 

incorporated along with the visual stimulus timing. Measurement Computing’s Universal 

Library was imported into PsychoPy and used to control a miniLAB 1008 USB data 

acquisition (DAQ) device. The DAQ provided two separate digital outputs to the 

controller of the goggles. Each digital output was used to control the opacity of a single 

lens, allowing for any of the four possible combinations of transparent and light-

scattering lenses. Incorporating the DAQ programming into PsychoPy prevented any 

timing issues between the stimulus and goggles by controlling them simultaneously. The 

script used for controlling the stimulus and goggles is available publicly via GitHub: 

https://github.com/brettliem/phaseregression.git.  

The second visual stimulus consisted of bowtie-shaped wedges that were portions 

of a 10 Hz contrast reversing checkerboard on a grey background with a central fixation 

cross. Each wedge subtended 45 extending from the central fixation cross and a bowtie 

was made up of two radially opposing wedges. The bowtie orientation alternated from 

vertical to horizontal every 18 seconds for 8 repetitions with an additional 18 second 

baseline at the beginning and end of the task. It has been demonstrated that this stimulus 

with a contrast of Vertical > Horizontal will highlight the boundaries of visual areas 

[38,39] and in the current study it was used to find the boundary between V1 and the 

secondary visual cortex (V2).  

2.2.2 Data Preprocessing 

2.2.2.1 Functional Data 

The functional datasets from both the ODC and retinotopy imaging sessions underwent 

the same preprocessing. The magnitude data was motion corrected and aligned to the first 

volume of the first run using AFNI (22.0.11) [40]. Motion correction with AFNI provides 

the ability to save the transformations along with the six motion regressors. The 

https://github.com/brettliem/phaseregression.git


34 

 

 

 

transformations from the magnitude data motion correction were applied to the 

corresponding phase data to motion correct and realign the phase data with the magnitude 

data. 

The phase data from the coil combination using an SVD estimation of coil 

sensitivity has reduced spatial and temporal phase wraps and produced a smoother phase 

image [35]. However, to improve the quality of the phase data even further it still 

underwent additional spatial and temporal unwrapping using the Rapid Opensource 

Minimum spanning treE algOrithm (ROMEO) [41]. ROMEO provides fast and accurate 

exact phase unwrapping that can unwrap four dimensions in a single step, making it well 

suited for fMRI studies involving phase data.  

Denoising the magnitude data was extremely important for phase regression as it 

improves the quality of the fit between the magnitude and phase data. Without any 

denoising at sub-millimeter resolutions, the fit between magnitude and phase data is 

heavily influenced by noise. In the first high-resolution study that used phase regression, 

Stanley et al. (2020) [33] used CompCor for removing physiological noise [42]. It has 

been shown that at sub-millimeter resolutions, thermal noise tends to dominate the 

magnitude data more than physiological noise [43]. Therefore, in the current study we 

used NOise Reduction with DIstribution Corrected (NORDIC) for thermal denoising as it 

is effective at removing noise without altering any desirable BOLD signal changes 

corresponding to neural activity [44].  

Low frequency drifts caused by the scanner instabilities [45] can also appear in 

both the magnitude and phase data as a gradual increase or decrease over the course of 

the time series. This greatly affects the ability to fit magnitude and phase together as the 

amount of drift in the two quantities can be inconsistent. To remove the low frequency 

drifts, the magnitude and phase data were detrended using FSL FEAT preprocessing [46], 

using a high-pass filter of 0.01 Hz.  
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2.2.2.2 Phase Regression 

In the current study, phase regression was performed using a custom MATLAB (2021b) 

script (https://github.com/brettliem/phaseregression.git) built upon previous work 

[25,27,33,47]. The script fits each corresponding voxel of magnitude and phase together 

linearly. A unified least-squared-error and maximum likelihood estimator was used for 

the fit [48]. This estimator considers the magnitude and phase time series along with the 

temporal standard error of each time series and calculates the correlation between the 

magnitude and phase time series to determine the best fit in each voxel. A high-pass filter 

of 0.15 Hz, which is above the task frequency, is used to estimate the temporal standard 

error in each of the magnitude and phase data. The fit parameters were then used to 

produce a maximum likelihood estimator of the amount of the magnitude signal 

fluctuations that could be accounted for by the phase fluctuations in a least-squared sense. 

This estimator (ascribed to the venous BOLD signal) is subtracted from the native 

magnitude time series to give a magnitude time series that is more specific to 

microvasculature. The script performs phase regression at every voxel to produce a 

modified magnitude dataset (‘phase regressed”) that is more specific to microvasculature 

and was performed on the data from the ODC session.  

2.2.2.3 Structural Data  

Presurfer [49] was used on the MP2RAGE images for bias field correction, background 

noise removal, and skull stripping the brain. This processed MP2RAGE image was then 

registered to the functional data using ANTs [50]. The scans from the retinotopy session 

were registered to the ODC session to avoid warping the ODC data as the columnar 

activation exists at a much finer resolution than that of the meridian mapping.  

2.2.3 Data Analysis 

Before performing phase regression, the quality of the preprocessed magnitude and phase 

data was determined by evaluating the temporal signal-to-noise ratio (tSNR) of the 

magnitude data and the temporal standard deviation of the phase data for each run. The 

https://github.com/brettliem/phaseregression.git
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tSNR and temporal standard deviation maps were masked using the region-of-interest 

(ROI) that was used during all further analysis on each participant. These values were 

then averaged across runs and between participants to determine a single value for the 

study.  

SPM 12 (Wellcome Department, UK) [51] was used for the general linear model 

(GLM) analysis of the unsmoothed native magnitude and phase regressed ODCs data, as 

well as the retinotopy data. The six motion regressors obtained from AFNI were 

converted to SPM format to be used as regressors in the GLM. This was done using a 

custom script (https://github.com/brettliem/phaseregression.git) that converts degrees to 

radians, reorders the motion regressors into the same sequence as used in SPM, divides 

the motion regressors back into their original runs and normalizes them about the first 

volume for each run. Voxels with t-values above 3.1 corresponding to an uncorrected 

significance level of p < 0.001 were identified as the activated regions for both the ODC 

and the retinotopy data.  

2.2.3.1 ODCs on Inflated Surfaces 

Cortical grey matter segmentation of the registered MP2RAGE was performed with the 

FreeSurfer recon-all pipeline [52,53]. The cortical segmentation was inspected to ensure 

accurate grey matter segmentation and manual corrections were performed when 

necessary. The Connectome Workbench [54] was used to register the activation maps on 

the inflated cortical surfaces. The Vertical > Horizontal contrast from retinotopy session 

(Figure 2.2), along with the Right > Left contrast from ODC session for both the native 

magnitude and phase regressed data were overlaid on the inflated surface (Figure 2.3). 

The Vertical > Horizontal contrast was used to localize V1 while the Right > Left 

contrast was used to show the sensitivity to a specific eye.  

2.2.3.2 Laminar BOLD Signal Profiles 

The functional data and registered MP2RAGE were upsampled in the in-plane resolution 

by a factor of four to provide smoother layering. For each participant, the location of the 

https://github.com/brettliem/phaseregression.git
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ROI was determined using the Vertical > Horizontal contrast from their retinotopy 

images. The ROIs were manually drawn on ten slices to outline the white matter/grey 

matter (WM/GM) and grey matter/cerebrospinal fluid (GM/CSF) boundaries. Ten equi-

distant cortical layers were created in each ROI using LayNii (LN2_LAYERS) [55]. The 

mean and standard deviation of the BOLD signal changes produced during all three 

ocular stimulation conditions were calculated across each depth for both native 

magnitude and phase regressed data. These ten cortical layers are arbitrary and do not 

correspond directly to cortical layers I through VI, but the use of additional layers is 

beneficial when attempting to examine laminar differences and we will refer to the 

defined layers in three relatively even groups of superficial, middle, and deep cortical 

layers.  

2.2.3.3 ODCs Across Cortical Depths 

ODCs were examined across cortical depth in the same ROIs as the laminar BOLD signal 

profiles. Right- and left-eye-dominated columns were determined by thresholding the 

Right > Baseline and Left > Baseline maps at t > 2.3, respectively. Monocular stimulation 

of ODCs was compared across cortical depths to both binocular stimulation and 

monocular stimulation from the opposing eye. The mean and standard deviation of the 

BOLD signal changes were calculated in both right- and left-eye-dominated columns for 

all three ocular simulation conditions across each depth for both native magnitude and 

phase regressed data. Ratios were also calculated in ODCs across cortical depths between 

the conditions of ocular stimulation for both the native magnitude and phase regressed 

data to further compare right- and left-eye-dominated columns.  

2.3 Results 

An example of the native magnitude tSNR, phase regressed magnitude tSNR, and phase 

temporal standard deviation are displayed on a single brain slice in Figure 2.1. The phase 

temporal standard deviation was masked to avoid the high values outside of the brain. 

The native magnitude tSNR and phase temporal standard deviation were averaged within 

the ROI that was used for further analysis on each participant. The mean native 
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magnitude tSNR across participants was 20.91  5.75 (mean  standard deviation) and 

the mean phase temporal standard deviation was 0.020  0.012 radians. After phase 

regression, the mean magnitude tSNR across participants was 19.94  4.82.  

 

Figure 2.1. Data Quality. An example slice from tSNR maps of the A) native magnitude and B) phase 

regressed data, along with the C) phase temporal standard deviation.  

Before we examined the BOLD signal specificity in ODCs with phase regression, 

we needed to precisely localize V1. Meridian mapping from the retinotopy session was 

used to determine the boundaries of the visual areas. Figure 2.2 illustrates the Vertical > 

Horizontal activation map from a single participant overlaid on the inflated cortical 

surface from their left hemisphere. The black lines marked the boundaries of the visual 

areas, as they followed the peak activation which should form a linear ridge down the 

centre of each region of activation. The three boundaries of particular interest were the 

V1/V2 dorsal boundary, the V1/V2 ventral boundary, and the V1 dorsal/ventral 

boundary. The V1 dorsal/ventral boundary was defined as the cool colour in the centre of 

all the areas of activation and provided the starting point for determining the location of 

the other boundaries. The V1/V2 dorsal and ventral boundaries are the closest boundary 

on either side of the V1 dorsal/ventral boundary. This clearly defined the location of V1 

in each participant and was used as an aid when drawing the ROIs.  
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Figure 2.2. Retinotopic Meridian Mapping. A) The vertical and horizontal bowtie-shaped visual stimulus 

used for the meridian mapping. B) The activation map of the Vertical > Horizontal contrast from the native 

magnitude data of a single participant on the inflated cortical surface from their left hemisphere. The cool 

colours correspond to the vertical bowtie while the warm colours correspond to the horizontal bowtie.  

The ODCs activation map (Right > Left) for native magnitude, phase regressed 

data and the absolute difference map between the two (areas of venous suppression) from 

the same participant were displayed using the same inflated cortical surface as in Figure 

2.2 (Figure 2.3). It was important to ensure that ODCs were visible across V1 before 

moving to examine them laminarly. The results highlighted areas of the cortex that were 

predominantly sensitive to the input from one eye over the other. This revealed an 

alternating pattern of ODCs in V1, similar to those shown in previous fMRI studies 

[4,9,10]. Sensitivity to right and left monocular stimulation alternated in a blotchy stripe-

like pattern across the cortex. Some signal remained outside the boundaries of V1 in 

other visual areas, although the amplitude of the signal was lower compared to V1. The 

absolute difference map between native magnitude and phase regressed ODCs showed 

widespread venous suppression across V1, within and outside of ODCs.  

BA
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Figure 2.3. Ocular Dominance Columns fMRI Map. A) The goggles used to control which eye(s) could 

view the B) visual stimulus. The activation map of the Right > Left contrast of the C) native magnitude and 

the D) phase regressed data, overlaid on the inflated cortical surface from the left hemisphere of a single 

participant. The warm colours correspond to the sensitivity to right eye stimulation and the cool colours 

correspond to the sensitivity to left eye stimulation. E) The absolute difference map between the native 

magnitude and phase regressed data shows the areas of venous suppression.  
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To compare the spatial specificity of the depth-dependent BOLD signal with and 

without the phase regression, we performed a laminar analysis across V1. An example of 

ten cortical layers on a slice from a single participant is shown in Figure 2.4, along with 

the mean percent BOLD signal change in the ROI across the cortical depths during all 

three stimulation conditions in the native magnitude and phase regressed data. Right eye 

stimulation appeared to produce slightly greater BOLD signal changes than left eye 

stimulation across all cortical depths in the ROI. The native magnitude BOLD signal 

change at the most superficial cortical layer towards the CSF was approximately 2.8 

times higher than in the deepest layer adjacent to the WM during binocular stimulation. 

During right and left eye stimulation, the most superficial layer was approximately 3.1 

and 3.0 times higher than the deepest layer, respectively. Phase regression essentially 

removed the BOLD signal bias towards the cortical surface, with most superficial layer 

now only being approximately 1.2 times that of the deepest layer during binocular 

stimulation, and approximately 1.3 times higher during each monocular stimulation 

condition, which consequently lowered the tSNR of the image.  

 

Figure 2.4. Laminar Profiles Across Cortical Depths. A) An example ROI of ten layers created for the 

analysis using LayNii. B) The native magnitude and C) phase regressed percent BOLD signal change 

across ten cortical depths corresponding to each stimulation condition. The error bars represent the standard 

error of the mean across participants. 
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The amount of venous suppression in V1, or the ratio between the percent BOLD 

signal change of the native magnitude and phase regressed data varied with cortical 

depth. Suppression ratios were calculated between native magnitude and phase regressed 

data for the binocular and monocular cases. As one approached the cortical surface, a 

greater ratio between the BOLD signal changes in the native magnitude and phase 

regressed data was observed, consistent with the preponderance and location of the 

venous vasculature (Figure 2.5).  

 

Figure 2.5. Suppression Ratios. The ratio between native magnitude and phase regressed data during each 

stimulation condition.  

We also wanted to examine the laminar BOLD signal changes specifically within 

ODCs. This was done using the previously defined right- and left-eye-dominated 

columns. The percent BOLD signal change across cortical depths in ODCs produced by 

monocular and binocular stimulation for both the native magnitude and phase regressed 

data is shown in Figure 2.6. Both binocular and monocular stimulation produced a similar 

shaped laminar BOLD profile in ODCs as in the V1 ROI analysis above, which was 

expected as ODCs are restricted to V1. The amplitude of the BOLD signal changes 
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produced within the monocularly-defined columns were greater during binocular 

stimulation than monocular stimulation.  

 

Figure 2.6. Binocular Stimulation in ODCs Across Cortical Depths. A) The native magnitude and B) 

phase regressed responses to monocular (solid lines) and binocular stimulation (dashed lines) in ODCs. The 

error bars represent the standard error of the mean across participants. 

To investigate the differences produced by varying stimulation conditions in 

ODCs, ratios were taken between binocular and monocular stimulation (Figure 2.7). 

Binocular stimulation in ODCs produced 1.4-1.8 times the percent BOLD signal changes 

of monocular stimulation in both the native magnitude and phase regressed data. In left-

eye-dominated columns, the ratio between binocular and monocular stimulation was 

consistently higher than in right-eye-dominated columns, except at the deepest cortical 

depth. Further examining the ratios, we see that the greatest difference between binocular 

stimulation and monocular stimulation in ODCs in the native magnitude data was at the 

most superficial cortical layers, while phase regression moved this more towards the 

middle cortical depth.  
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Figure 2.7. Ratios Between Binocular and Monocular Stimulation in ODCs. The ratios in ODCs 

between binocular and monocular stimulation that corresponds to the eye-dominated column for both the 

native magnitude (solid lines) and phase regressed (dashed lines) data.  

The percent BOLD signal change across cortical depths in ODCs was presented 

again, but this time it showed the signal change produced in ODCs with corresponding 

and opposing monocular stimulation (Figure 2.8). Surprisingly, right and left monocular 

stimulation produced a very similar percent BOLD signal change regardless of 

stimulating a right- or left-eye-dominated column.  
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Figure 2.8. Opposing Monocular Stimulation in ODCs Across Cortical Depths. A) The native 

magnitude and B) phase regressed responses to corresponding monocular (solid lines) and opposing 

monocular (dashed lines) stimulation in ODCs. The error bars represent the standard error of the mean 

across participants. 

 Ratios were also taken in ODCs between corresponding and opposing monocular 

stimulation across cortical depths (Figure 2.9). The ratios clearly showed that in right-

eye-dominated columns, right eye stimulation produced a greater percent BOLD signal 

change, represented by the ratio above 1.0. While in left-eye-dominated columns, right 

eye stimulation still produced a slightly greater percent BOLD signal change, represented 

by the ratio slightly below 1.0, aside from the deep cortical layers. The largest difference 

in BOLD signal change produced between corresponding and opposing monocular 

stimulation in ODCs was in the deep cortical layers.  
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Figure 2.9. Ratios Between Opposing Monocular Stimulation in ODCs. The ratios in ODCs between 

corresponding and opposing monocular stimulation for both the native magnitude (solid lines) and phase 

regressed (dashed lines) data.  

2.4 Discussion 

In the current study, we examined the signal spatial specificity of the GRE BOLD 

contrast with and without the phase regression on the scale of cortical layers and columns 

of the human V1. Specifically, we expected the middle cortical depth of V1 to display the 

strongest differentiation between opposing ODCs, along with the peak in the laminar 

BOLD signal profile. Using GE-EPI, we performed retinotopic meridian mapping to 

locate V1 and imaged ODCs consecutively for each participant. The results showed 

improved laminar signal specificity with the phase regressed BOLD contrast compared to 

the native magnitude BOLD contrast, while failing to provide the signal specificity 

required within the cortex to accurately examine mesoscopic cortical structures. The 

results confirmed that phase regression is especially beneficial for high-resolution 

imaging when one is interested in investigating the BOLD signal change as a function of 

the cortical depth but has limitations when trying to distinguish adjacent columnar 

structures.  
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We performed similar retinotopic meridian mapping as performed by Greenberg 

et al. (2012) [38], but with an improved sub-millimeter imaging resolution at 7 T. The V1 

areas between the boundaries shown in Figure 2.2 were used as an aid when drawing the 

ROIs to ensure the laminar analysis was restricted to V1. ODC data was displayed on an 

inflated surface (Figure 2.3), and it formed an alternating pattern of right and left eye 

preference in both the native magnitude and phase regressed data. This pattern of ODCs 

closely resemble those shown previously in humans with post-mortem histology and 

fMRI [8,10,11,56–60]. The areas with the greatest amount of venous suppression were 

aligned with the areas in the native magnitude ODC map that produced the largest BOLD 

signal changes. This was expected because the maximum signal changes seen in GRE 

BOLD are produced by large veins [15], as blood pools in principal intracortical veins 

from the surrounding microvasculature in areas of neural activity [18]. There was also 

venous suppression at the edges of adjacent ODCs which, on the phase regressed ODC 

map, made adjacent ODCs appear more distinct. This suggested that phase regression 

effectively suppressed BOLD signal changes distant from areas of neural activity [61]. 

Once referencing Figure 2.5, we assumed that this was achieved by suppressing the 

BOLD signal changes produced by pial veins, as they run along the cortical surface in the 

most superficial cortical layer. ODCs have been imaged previously using the BOLD 

contrast without phase regression [9–11], but in the current study it was demonstrated 

that phase regression suppressed BOLD signal changes distant from neural activity 

produced by pial surface veins [18,61] and reduced the amount of signal blurring between 

opposing ODCs.  

BOLD signal profiles seen in most laminar fMRI studies typically have a similar 

shape to that of the native magnitude data shown in Figure 2.4 [4,21,23,62–75]. This is 

because the volume and density of large veins is skewed towards the cortical surface and 

their influence on the BOLD signal [18]. The middle cortical depths have the highest 

density of microvasculature and the highest metabolic rate [76,77], so we might expect to 

see the maximum signal change at the middle cortical depth (layer IVC). Some of the 

other most common acquisition techniques mentioned before, such as SE-EPI [21] and 
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VASO [22], provide this laminar signal profile by avoiding signal produced by large 

veins, but they suffer from a lower SNR and temporal resolution while being SAR-

intensive [21,22]. A recent study by Hollander et al. (2021) [4] examined cortical depth-

dependent BOLD signal in ODCs using a laminar deconvolution model for venous 

suppression developed by Markuerkiaga et al. (2016) [16]. They showed a laminar 

BOLD signal profile with a peak in the middle of the cortex within ODCs. Our results 

with phase regression were similar and we obtained a peak in the middle of the cortex 

within both V1 (Figure 2.4) and specific ODCs (Figure 2.6 and Figure 2.8). We also 

wanted to determine if phase regression was accurately suppressing BOLD signal 

changes by comparing the amount of suppression with the known organization of cortical 

vasculature. The blood volume density of principal intracortical veins increases 

approximately linearly approaching the cortical surface [16,76] and the suppression ratios 

we found in V1 (Figure 2.5) generally agree with this. However, our suppression ratios 

seemed to be slightly more exponential, rather than linear, particularly in the superficial 

cortical layers. Additionally, the peak in the phase regressed laminar BOLD signal profile 

appeared to be located somewhat more superficially rather than directly in the middle of 

the cortex. It has been previously shown that with the observed phase noise floor, EPI is 

unlikely to be sensitive to discrete phase changes from vessels below 150 µm in diameter 

[47], which would comprise the smaller principal intracortical veins, intracortical veins 

running parallel to the cortical surface, and microvasculature [76]. The diameter of 

principal intracortical veins increase up to a vessel diameter of approximately 170 µm as 

they approach the cortical surface [76] due blood pooling from microvasculature [18], 

which leaves only the most superficial principal intracortical veins and pial surface veins 

as vasculature producing measurable discrete phase changes [47]. This could be why the 

laminar profile peak was slightly more superficial than expected, as we are only obtaining 

sufficient phase information at the most superficial cortical depths which leads to 

inadequate intracortical venous suppression.  

When examining the response in ODCs across cortical depths, we first noticed 

that BOLD signal changes produced across all cortical depths within the monocularly-
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defined columns were greater during binocular stimulation than monocular stimulation 

(Figure 2.6). Hubel and Wiesel (1962) [7] showed that there are varying amounts of 

interaction between ODCs above and below layer IVC. Outside of layer IVC, ODCs can 

vary from being sensitive to input exclusively from one eye or from both eyes equally 

[7]. This could be why, in the current study, binocular stimulation produced greater 

BOLD signal changes than monocular stimulation, even in monocularly-defined 

columns. We attempted to further examine this using depth-dependent ratios between 

binocular and monocular stimulation in ODCs (Figure 2.7). Although the ratios in left-

eye-dominated columns were greater than in right-eye-dominated columns, the native 

magnitude ratios in both monocularly-defined columns had similar trends with a slight 

peak in the deep cortical layers and a general increase approaching the cortical surface. 

The similarities continued between the phase regressed ratios, both showing slight 

suppression in the superficial cortical layers and the only main difference between the 

two being in the most superficial layer, where the ratio in the left-eye-dominated column 

did not continue decreasing. If the ratios significantly decreased at more superficial 

cortical layers with phase regression, we might assume that the increased BOLD signal 

changes found during binocular stimulation were due to local neural activity, as the 

increased BOLD signal changes in the superficial cortical layers during binocular 

stimulation would not have been suppressed with phase regression. In contrast, if the 

ratios remained similar to that of the native magnitude, we might assume the increased 

BOLD signal changes during binocular stimulation were due to additional blood pooling 

in primary intracortical veins because of increased neural activity in layer IVC from 

stimulating adjacent ODCs, as the increased BOLD signal changes in the superficial 

layers during binocular stimulation would have been suppressed with phase regression. 

Our results landed somewhere in between, which suggested that the increased BOLD 

signal changes found in the superficial cortical layers during binocular stimulation might 

be a combination of both increased amounts neural activity from intercolumn interactions 

and more blood pooling in primary intracortical veins from the increased activity in layer 

IVC from stimulating adjacent ODCs.  
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We were expecting the signal specificity in ODCs during right and left eye 

stimulation to be most defined in layer IVC because this is where ODCs are exclusively 

sensitive to monocular stimulation [7]. For this reason, we also expected the ratios 

between corresponding and opposing monocular stimulation in the monocularly-defined 

columns to be much greater than one in the middle of the cortex. The monocularly-

defined columns should be more sensitive to the corresponding monocular stimulation, so 

it was unexpected that the BOLD signal changes in ODCs with the corresponding and 

opposing monocular stimulation were nearly identical (Figure 2.8). This was also shown 

in Figure 2.9Figure 2.8 as the ratios were close to one, and phase regression was providing 

minimal improvements. This led us to assume that there was a significant amount of 

overlap between the right- and left-eye-dominated columns defined from the t-maps 

against a control grey condition (as opposed to being defined from Right > Left or Left > 

Right, as is commonly done). Intracortical veins can reach well below the size where we 

can obtain useful phase information [47], to approximately 20 µm in diameter at their 

smallest, branching off from primary intracortical veins and extending outwards parallel 

to the cortical surface [76]. Since they produce BOLD signal changes distant from areas 

of neural activity that could blur the vascular response between adjacent columns, this 

could have reduced our ability to accurately define right- and left-eye-dominated 

columns.  

Across all our results, right eye stimulation produced slightly greater BOLD 

signal changes than left eye stimulation. This was most notable in Figure 2.9, as left-eye-

dominated columns produced greater BOLD signal changes with right eye stimulation, 

except in the deep layers. Hubel and Wiesel (1977) [78] studied ODCs with early 

deprivation on the visual system in monkeys, and the ODCs corresponding to monocular 

stimulation appeared to take over area from the ODCs corresponding to monocular 

closure, which led to wider columns that respond to the stimulated eye. While most 

monocular deprivation studies were performed during development, it has also been 

shown that the eye preference of neurons in the upper and lower cortical layers of ODCs 

may change even after development [79]. Most humans preferentially use one eye over 
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the other (66% right eye, 24% left eye, 10% no preference) [80] and it was qualitatively 

shown by Goodyear et al. (2002) [59] that ODCs corresponding to the preferred eye are 

slightly wider. Slightly wider right-eye-dominated columns would mean that a larger 

portion of V1 is sensitive to right eye stimulation than left eye stimulation. This would 

correspond to more deoxygenated blood pooling in large veins and could be responsible 

for the slightly greater BOLD signal changes during right eye stimulation. The spatial 

resolution of the functional imaging in the current study could also have been responsible 

because we used a voxel size that is somewhat wider than the width of an ODC, as 

opposed to Goodyear et al. (2002) [59] who used an in-plane resolution slightly narrower 

than the width of an ODC. The partial volume effects between adjacent ODCs in the 

current study could have led to the larger response during right eye stimulation and the 

inability to separate the responses from right and left monocular stimulation. BOLD 

signal changes during right eye stimulation would have appeared in more voxels if the 

width of the right-eye-dominated ODCs were slightly larger than both the width of the 

left-eye dominated columns and the voxel size. 

A limitation of the current study was our functional imaging resolution of 0.8 mm 

isotropic. This not only could have affected the ability to define ODCs as mentioned 

above, but also our ability to define cortical depths. The human visual cortex is one the 

most convoluted, myelinated, and thinner parts of the cortex, and 0.8 mm isotropic only 

provided approximately 2-3 voxels across the depth of V1. This resolution was relatively 

coarse compared to the depth and curvature of the cortex in V1, meaning that automated 

cortical segmentations were susceptible to partial volume errors. Our data was upsampled 

to minimize the number of these errors, but this also required manual correction of the 

cortical segmentation to avoid leaving entire voxels in the CSF or WM, and manual 

correction can be prone to error.  

Another important limitation of the current study was that the use of partial 

Fourier in high-resolution fMRI has been shown to cause signal blurring [81]. Signal 

blurring can affect its specificity, which is important when examining sub-millimeter 
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cortical structures and could have influenced our ability to monocularly define columns. 

However, the more critical aspect of this limitation to discuss for the current study was 

phase blurring, as significant phase blurring between voxels with and without veins 

would affect the amount and location of venous suppression during phase regression. The 

improved quality of phase data produced by the phase sensitive coil combination should 

have reduced the significance of phase blurring, but the amount and effects of phase 

blurring caused by partial Fourier between voxels with and without veins should be 

further investigated.  

An advantage to using GE-EPI with phase regression in laminar fMRI studies is 

that it can be collected with a higher temporal resolution than other techniques, as shown 

in the current study. GE-EPI is normally offset by its lower specificity to 

microvasculature, which is why alternate imaging sequences with greater spatial 

specificity and lower temporal resolutions are often employed in laminar fMRI studies. 

Phase regression is a data-driven method to improve the spatial specificity of GRE 

BOLD while maintaining its higher temporal resolution, which makes it possible to study 

functional connectivity between cortical layers.  

2.5 Conclusions 

GE-EPI with phase regression has been shown to be effective at suppressing the BOLD 

signal from pial vessels in high-resolution laminar analysis of the human brain at 7 T. 

Phase regression provides a simple approach for suppressing the unwanted BOLD signal 

from the large surface veins that typically dominates over the contribution from the 

microvasculature. The increased spatial specificity of this method provides a more 

accurate representation of laminar BOLD signal. However, phase regression does not 

improve the contrast between columns, suggesting that the phase is not sensitive to the 

venous vessel sizes running parallel to the cortical surface in the various layers. Phase 

regression provides data-driven suppression of large veins, as opposed to other methods 

requiring additional imaging or models of vasculature. Overall, GRE BOLD with phase 
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regression is promising for high-resolution laminar fMRI studies due to its 

straightforward method of removing the venous bias from the BOLD signal.  
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Chapter 3  

3 Conclusions and Future Directions 

3.1 Summary 

Phase regression is a valuable method that uses the routinely discarded phase data 

collected with GRE BOLD to reduce the large vein bias from the BOLD signal and 

increase the spatial specificity of conventional fMRI. The work presented in this thesis 

represents the first time both laminar and columnar analyses were performed on phase 

regressed GRE BOLD data. This thesis contributes to high-resolution fMRI studies by 

demonstrating that phase regression makes GRE BOLD better suited for laminar 

analyses, while also determining its limitations.  

Chapter 2 of this thesis explored the efficacy of GRE BOLD with phase 

regression as a correction technique for laminar and columnar analyses in high-resolution 

fMRI studies by comparing the BOLD signal in both native magnitude and phase 

regressed data across cortical layers of ODCs. To accomplish this, GE-EPI data at 0.8 

mm isotropic was collected from five participants in two functional imaging sessions, 

each using separate visual stimuli. The first imaging session consisted of retinotopic 

meridian mapping to localize for V1, and the second imaging session used custom 

goggles that could provide monocular or binocular vision paired with the visual stimulus 

to image ODCs. Phase regression suppressed BOLD signal changes distant from neural 

activity produced by pial surface veins [1,2], which reduced the amount of signal blurring 

between opposing ODCs when displayed on an inflated surface. The native magnitude 

and phase regressed data were compared in V1 across cortical layers using laminar 

BOLD signal profiles. While the native magnitude BOLD signal increased towards the 

cortical surface, the phase regressed BOLD signal showed a peak near the middle cortical 

depth. This corresponded more to the density of microvasculature without the venous 

bias [3]. ODCs were also examined across cortical depths by comparing laminar BOLD 

signal profiles of right- and left-eye-dominated columns with varying stimulation 
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conditions. Binocular stimulation was shown to produce greater BOLD signal changes in 

ODCs than monocular stimulation, which could be a result of both additional intercolumn 

interactions and increased blood pooling in principal intracortical veins from the adjacent 

ODCs during binocular stimulation. When comparing corresponding and opposing 

monocular stimulation, the BOLD signal changes were nearly equal. This was consistent 

for the native magnitude and phase regressed data, which suggested that there was a 

significant amount of overlap between the right- and left-eye-dominated columns defined 

with monocular stimulation. Since EPI is unlikely to be sensitive to discrete phase 

changes from intracortical vein sizes running parallel to the cortical surface [3], this could 

have blurred BOLD signal changes produced by right and left monocular stimulation. 

Partial volume effects between adjacent ODCs due to the width of the columns compared 

to the voxel size could also have been responsible for the inability to separate the 

responses during right and left monocular stimulation. These results show that the 

improved spatial specificity of GRE BOLD with phase regression advantageous when 

performing a laminar analysis, but phase regression struggles to reveal mesoscopic 

cortical structures.  

3.2 Limitations 

Studying the human visual cortex poses many additional challenges over other cortical 

areas. The visual cortex is one of the thinnest parts of the cortex, making laminar and 

columnar analysis of high-resolution functional data quite difficult. Even with sub-

millimeter functional resolutions, which in most current human laminar fMRI studies is 

limited at approximately 0.75-0.8 mm isotropic [4], there are only about 2-3 voxels 

across the depth of the visual cortex. This means that the resolution of the functional 

image is relatively coarse compared to the curvature of the cortex, which increases the 

amount of partial volume errors during cortical grey matter segmentation. The cortical 

thickness also varies between sulci and gyri [4], which further increases the difficulty to 

perform segmentation. In nearly all laminar fMRI studies the data is upsampled, but this 

does not improve automated cortical segmentations that are performed using most of the 

available software, as they still produce coarse outlines of the grey matter. At sub-
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millimeter resolutions, a coarse cortical segmentation can have a significant effect on the 

analysis due to partial volume effects and entire voxels that could be in the CSF or WM. 

To take advantage of the upsampled data, manual correction of grey matter segmentation 

is often required when performing high-resolution analyses [5]. While this is often 

necessary, it can introduce significant amounts of error and is very time consuming. 

Imaging with higher in-plane resolutions helps to reduce the coarseness of the 

segmentation compared to the curvature of the cortex, but this also reduces the SNR 

which is compensated by an increased slice thickness. This limits the ability to examine 

both layers and columns simultaneously, which requires a sub-millimeter resolution in all 

three dimensions. This remains one of the main difficulties in high-resolution fMRI 

studies, as it is heavily reliant on MR systems and techniques [5,6] that can provide the 

required SNR and spatial specificity for sub-millimeter isotropic voxels.  

Performing phase regression requires both magnitude and phase data from GRE 

BOLD. Phase data is not commonly used in fMRI studies and on most MR systems the 

default coil combination is not optimized for phase reconstruction. This results in the 

default phase data containing many spatial and temporal wraps. There are unwrapping 

techniques such as ROMEO [7], which was used in the study in Chapter 2, that can help 

reduce the number of wraps in the phase data, but the most significant improvements in 

the phase data come from the use of a phase sensitive coil combination [8]. The necessity 

of quality phase images makes a phase sensitive coil combination crucial for the 

performance of phase regression and hinders the simplicity of applying phase regression 

to GRE BOLD data. For phase regression to become a more commonly used technique it 

should be paired with a standardized phase sensitive coil combination.  

Partial Fourier is not essential for phase regression, but it allows for imaging with 

higher spatial and temporal resolutions which are important in laminar and columnar 

analyses [6]. However, partial Fourier has also been shown to cause blurring in high-

resolution fMRI [9]. Smoother phase data due to improved phase reconstruction should 

help reduce the negative consequences of spatial phase blurring, but this could still be a 
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problem between voxels with and without veins. The difference between the change in 

the phase angle found in voxels with and without visible veins was shown to be just over 

0.1 radians [10]. The blurring effect on the phase data between voxels without veins and 

voxels with veins needs to be investigate because it could alter the relationship between 

magnitude and phase data, thus altering the amount of venous suppression.  

This study had a small number of participants, which is common in high-

resolution laminar fMRI studies. It would be beneficial to increase the number of 

participants in future studies to verify the statistical relevance of certain parts of this 

study, such as if preferred eye stimulation consistently produces greater BOLD signal 

changes with and without phase regression. Since phase regression requires phase data to 

be saved alongside the magnitude data, this doubles the amount of data that is essential 

from each scan. Correspondingly, this approximately doubles the time spent on data 

preprocessing. While this is done offline so it does not affect the scan duration, it still 

increases the amount of time and memory spent on preprocessing per participant. 

Preprocessing high-resolution fMRI data is inherently more time consuming as there are 

increased amounts of voxels, and it often utilizes additional preprocessing steps to aid 

with SNR, spatial specificity, and accurate cortical segmentations. If phase regression is 

to be used in a larger study, it will significantly affect the amount of time and memory 

used before the data can be analyzed.  

3.3 Future Directions 

Perhaps the biggest advantage of GRE BOLD with phase regression opposed to other 

imaging sequences that have greater spatial specificity is its higher temporal resolution, 

which increases the statistical power of the data. The improved spatial specificity that 

phase regression provides, along with the higher temporal resolution of GRE BOLD 

allows for the study of local functional connectivity between cortical layers. This 

technique can push the boundaries of high-resolution fMRI by examining differences 

between feedforward and feedback processes in V1. Feedforward and feedback processes 

are associated with inputs and outputs in primary sensory regions, which have been 
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shown to be separated by cortical layers [11]. Examining feedforward and feedback 

processes in vivo using local functional connectivity could help further our current 

knowledge on neural microcircuits in human V1. This is possible because phase 

regression helps remove the venous bias which has plagued BOLD fMRI studies of 

functional connectivity across cortical depths.  

3.4 Conclusions 

Laminar and columnar analyses have been becoming increasingly prominent over the 

past decade in high-resolution fMRI research, leading to advances in acquisition and 

analysis techniques. This study expands on previous research involving phase regression 

at high resolutions by determining its efficacy when performing laminar and columnar 

analyses in humans. Examining a well-known mesoscopic cortical structure such as 

ODCs provided a means to assess the results produced with phase regression. This thesis 

demonstrates that phase regression is an effective technique for removing the large vessel 

venous bias from the BOLD signal and it is beneficial for improving the spatial 

specificity of laminar fMRI studies.  
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