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Abstract

Electroencephalography (EEG) has been widely used to record electromagnetic fields for

motor imagery (MI)-based brain-computer interfaces (BCIs). However, collecting MI signals

is often time-consuming and challenging to classify due to the inter-subject variability of EEG

signals. To address these issues, we propose a novel framework MACNet, which stands for

Multi-view Adversarial Contrastive Network. MACNet employs a contrastive learning ap-

proach to learn spatial and temporal features in two views, using Riemannian and Euclidean

encoders. By jointly extracting underlying features and learning domain-invariant represen-

tations in both source and target features, MACNet improves the alignment and accuracy. In

addition, we propose a domain mixup for the BCI field at the signal and embedding levels, to

improve domain alignment. We evaluate MACNet on two public datasets and demonstrate that

it outperforms all previous methods in inter-subject transfer learning. Specifically, MACNet

achieves 83.79% accuracy for the BCI Competition IV dataset and 80.00% accuracy for the

OpenBMI dataset.

Keywords: EEG, Multi-View Contrastive, Riemannian Neural Network, Unsupervised

Domain Adaptation, Neural network, Transfer learning
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Summary for Lay Audience

A Brain-Computer Interface (BCI) allows users to control external devices using their brain ac-

tivity. Motor Imagery (MI) is one of the primary forms of brain-computer interfaces (BCIs) in

which the participant is asked to imagine moving different parts of the body. The inter-subject

variability of brain signals, which leads to a domain shift between sessions, is a significant

issue in the practical use of MI systems. As a result, machine learning models trained on

one session perform poorly on the other session since the data distribution varies from what

they have learned. This thesis introduced a novel machine-learning model specifically for MI

tasks to build a robust data-driven method that extracts and learns domain-invariant features in

different views of EEG signals.
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Chapter 1

Introduction

A brain-computer interface (BCI) is a system that builds a communication channel to help

people control external devices by using their brain activities. This procedure begins with the

recording of the user’s brain activity and continues with signal processing to determine the

user’s intent. Moreover, BCI can also be used to detect and identify potential brain defects

[68, 70]. Among various methods of brain signals, cortex electroencephalography (EEG) [32]

gains its population due to its low-cost and non-invasive nature. EEG records brain signals

through electrodes placed on specific cortex areas with millisecond-level high temporal reso-

lution. Depending on the system’s function, different types of EEG signals can be utilised in

BCIs. One of the main types of EEG signals is Motor Imagery (MI). MI refers to the mental

movement of a body part without actual action. In such an MI-based BCI system, the subject

is requested to envision moving different portions of their body in order to stimulate neuronal

activity in certain brain regions associated with the imagined movements. For instance, one of

the popular tasks is a left, right hand MI [78]. which may be utilised to instinctively complete

tasks with similar lateral characteristics.

There are several applications for BCI systems based on EEG in the real world setting. For

instance, by learning neural patterns when emotionally charged information is consumed by

EEG signals, BCI can help in identifying a user’s affective state, such as being sad, happy,

or neutral [110]. Moreover, by imagining movements such as left or right, users can move

1



2 Chapter 1. Introduction

virtual objects on screen [14]. In this regard, several approaches have been implemented for

learning task-relevant discriminative characteristics of EEG data, such as statistical [36] and

machine learning models [3, 20, 81, 87]. Although, many BCI applications perform well in the

laboratory, it is difficult to create these applications appropriate for real-world settings. There

are three main challenges in this field:

First, gathering BCI data is time-consuming since recording EEG signals requires long

recording sessions. Additionally, labelling them is difficult. For instance, while collecting and

labelling image data, we may take images from various perspectives and lighting conditions,

and we can classify the objects after taking the picture for object detection. However, while

collecting a BCI dataset, the data must be labelled while the subject executes the activity. It

is difficult to determine which class a subject trial belongs to based on the raw signals alone.

Consequently, we have limited data available in this field, and most classification methods in

machine learning require large training datasets; thus, the number of samples in this field is

challenging.

Second, due to the low signal-to-noise ratio (SNR) of brain electrical activity and poor spa-

tial resolution for volume conduction [11], EEG signals are non-stationary within a subject and

vary between sessions [62]. This will result in changes in the order of minutes to days, which

poses a problem for the long-term dependability of BCIs. In addition, non-stationarities may

arise due to changes in mental strategy, mental state, and physical properties of the electrodes

in EEG experiments.

Third, EEG signals contain lots of noise and outliers. This is due to the high complexity of

brain signals and noisy sensors since they are extremely sensitive to detect even the small poten-

tial changes across sessions while recording the experiments. Hence artefacts from non-brain

activity sources, such as movement or blinking, are detected in the experiments. Moreover,

noise and outliers will negatively impact learning algorithms.

As a result, it is challenging to develop an appropriate, robust machine learning model for

different subjects, and sessions [90, 102].

The dimension of raw EEG is large compared to the number of trials. As a result, nonlin-



3

earities can be found in high-dimensional multichannel EEG signals, and existing methods are

often incapable of learning these nonlinearities. Hence, the majaority of researches in these

fields suggest pipelines for BCIs. Therefore, a feature extraction step is applied before feeding

the signals to a classifier to extract discriminant features corresponding to the user’s different

underlying neurological mechanisms.

One of the most effective traditional pre-processing methods for feature extraction in the

MI paradigm is the common spatial pattern (CSP) [82] and its variants [86], [61]. Moreover,

for binary classification problems (right hand vs. left hand), CSP aims to develop optimal

spatial filters such that the variance of spatially filtered signals is maximized for one class and

minimized for another class [11]. While employing CSP as the feature extraction approach,

several classifiers such as Support Vector Machine (SVM), Naive Bayes (NB), and Linear

Discriminant Analysis (LDA) have achieved promising results [26, 29, 37, 96]. However, CSP

can easily get distorted by artifacts and outliers [11] and are specific to subjects and sessions.

Due to the advancement of machine learning methods in recent years in many fields, such

as computer vision [24,79,95,98], natural language processing [13,31,58], timeseries [23,104]

and health systems [22], recently researchers have proposed novel Deep Neural Networks

(DNN) methods in BCI fields [3, 20, 108]. Many DNN methods in this field are based on

convolutional neural networks (CNN) along with temporal and spatial filters [49, 50, 87]. In

comparison to traditional methods, CNN is making significant advances in its ability to rep-

resent patterns in brain topography. Lawhern et al. [50] proposed EEGNet, a compact CNN

including deathwise and separable convolution incorporating well-known EEG feature extrac-

tion. EEGNet achieved high results in Event Related Potential (ERP) and Oscillatory-based

BCIs in a variety of BCI paradigms, for both including the MI, P300, and Steady State Visu-

ally Evoked Potential (SSVEP). However, using just CNN for feature extraction in BCI tasks

is ineffective since the underlying structures of images and signals are different. In particu-

lar, for CNN to efficiently extract local features, there are assumptions in computer vision that

the structure of input image data be stationary, translation invariant, and stable with respect to

local deformations, which is conceptually described as the Euclidean nature [52]. Moreover,
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most of the DNN methods implemented in this field extract features only in Euclidean space.

However, according to electrophysiological and dynamical neuroscience studies, the structure

of EEG signals may not be in a Euclidean space; In addition, due to the non-stationary struc-

ture of EEG signals, the local statistics differ from the location’s [42]. Hence, using DNN

implemented in Euclidean space cannot capture all the significant features, such as spatial in-

formation, and another view of EEG signals is needed to capture these information.

In addition to the Euclidean view, Riemannian approaches that rely on symmetric positive

definite (SPD) matrices represent another view of EEG signals in Riemannian space. In BCI

classification algorithms, Riemannian approaches have achieved robust results [19, 100, 105].

They have also shown their superiority in many BCI applications, such as sleep/respiratory

state classification [41] and EEG pattern decoding [69]. Riemannian learning methods have

the capacity to learn suitable statistical representations, specifically the spatial information

underlying SPD manifolds [39]. Recently, a novel Riemannian-based network [40] has been

proposed that uses SPD matrices and can capture the spatial information of the input data.

Although DNN and Riemannian models have been tackled with high accuracy, due to the

covariate shift, the distribution of the sessions and subjects is different [11]. This will result

in the poorer performance of models when transferred to other sessions or subjects. Unsuper-

vised Domain Adaptation (UDA) is a useful approach that can enhance the target domain’s

performance by reducing the distribution discrepancy between the source and the target do-

main. UDA tries to efficiently transfer the knowledge learned in the supervised domain to its

unsupervised counterpart. Moreover, this approach has been intensively studied in computer

vision tasks [27, 46, 57, 59, 92]. Adversarial domain adaption are one of the main groups of

UDA methods, which began with the gradient reverse paper [93].

1.1 Motivation

Machine learning has shown great potential for improving our understanding of BCIs and

unlocking their full potential for various applications. However, due to the distribution shift
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between training and test data, traditional machine-learning approaches are limited in their

ability to achieve high accuracy when dealing with inter-subject problems in MI data. This

thesis aims to address the domain shift problem in MI data from different sessions.

Adversarial domain adaptation is a popular method used to address domain shift problems.

Its goal is to achieve domain-level alignment between the source and target domains by reduc-

ing the distribution discrepancy between them. While this approach may improve the model’s

accuracy by extracting more generalized features applicable across domains, it is not guaran-

teed to obtain high performance on the target domain. Even if the domain discriminator is fully

confused, the supervised classifier may still perform poorly on the target domain due to the im-

portance of domain-specific features. To address the domain shift problem in MI data, we

propose a method that captures significant features specific to the MI field within both source

and target domains. Specifically, our proposed method uses two views of the data (EEG sig-

nal and SPD metrics) to capture more comprehensive representations. In particular, our mode

captures spatial and temporal features jointly for both the source and target data, which im-

proves the model’s ability to learn discriminative and invariant representations across different

sessions.

Additionally, since we assume that we do not have any labeled data in the target domain,

our proposed method utilizes a contrastive learning approach to encourage the model to learn

representations that group data points with similar labels closer together. This approach makes

the job of the classifier easier, as it is able to identify patterns more easily when the data points

with the same label are closer together in the learned feature space.

To accomplish this, we incorporate adversarial training, with two levels of domain mixup

to get the domain invariant features, and multi-view contrastive learning to further extract spa-

tial and temporal features simultaneously in a self-supervised way for both sources and target

domains.
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1.2 Contributions

In this thesis, different from existing works in the BCI field, our machine learning model aims

to capture the features of MI data in different views in both source and target domain, which

is invariant between different domains. To achieve this, in addition to the adversarial task, we

design a contrastive task that learns feature embedding of the same EEG signal with different

views in both source and target domain. In this task, the representation of the different views

of the same signal gets closer, and the views of the other EEG signals get farther apart.

We further investigate the performance of our model on the two benchmark datasets, OpenBMI

[53], and BCI Competition IV [14] dataset. In general, this thesis has the following contribu-

tions:

1. Multi-view adversarial contrastive network (MACNet) is proposed for MI signals. Our

method learns domain-invariant representations of MI data from two views, incorporating spa-

tial and temporal information, resulting in a more robust representation learning.

2. Multi-level mixup is proposed at both the signal and embedding levels with soft domain

labels, enhancing the feature extractor’s generalization ability.

3. Extensive adaption experiments on two datasets have been utilized to illustrate the supe-

rior performance of our method.

1.3 Thesis Outline

The first chapter of this thesis presents the problem’s definition, challenges, and the suggested

solution’s scope. In the second chapter, the fundamental ideas, such as the various Euclidean

and Riemannian learning methods employed in this project, are addressed, as well as past

research in this field. Further, the design and implementation of the suggested approach are

detailed in the third chapter. The fourth chapter discusses the evaluation and analysis of the

results, while the fifth chapter provides a summary, a conclusion, and suggestions for further

research.



Chapter 2

Literature Review

2.1 Electroencephalography & MI

The first study on EEG in humans published in 1929 by Hans Berger [34] which shows that

researching and analyzing EEG signals is an old technique. EEG is a non-invasive method that

measures electric brain activity using electrodes placed on the head. To be exact, the electrodes

are able to record changes in postsynaptic potential caused by neurotransmitter release between

a presynaptic axon and a postsynaptic dendrite. The electrode cap (see Figure 2.1) is used to

enhance scalp-electrode conductivity to measure the voltage changes in the soma. Moreover,

in usual EEG experiments, conductive gel is added between the electrode and the scalp to

improve the connection.

Figure 2.1: Electrode cap

7
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EEG signals are often employed in BCIs due to their low cost, high temporal resolution,

and relative simplicity. MI is one of the main categories of BCI experiments that are done by

collecting EEG signals from subjects. MI is a cognitive process in which a person imagines

completing a movement without actually performing the action and contracting the muscle.

There are primarily two varieties of MI, namely visual and kinesthetic. Visual MI is a vi-

sualization of the movement matching the visual network. In addition, kinesthetic MI is the

ability to imagine performing a movement by having a mental image of the muscle contraction

and sensation during an actual movement. It has been demonstrated that the mental visualisa-

tion of motor activity, such as the execution of a hand movement, may induce brain activation

identical to that of the actual event. There are several benefits to MI. Numerous studies have

demonstrated that neural plasticity and brain activity during MI training are comparable to

those observed during actual MI practice. Second, there is no restriction on a patient’s ability

to perform motions. Lastly, the effects of MI training are impacted by the contextual setting

and the emotional state of the individuals.

2.2 Euclidean learning

2.2.1 Neural Network

Artificial Neural Networks (ANNs) are biologically inspired as they are composed of com-

putational components that behave in a manner comparable to the fundamental functions of a

biological neuron. Artificial neurons in ANN are organised into several layers; this is compara-

ble to the human visual cortex, which consists of a collection of hierarchically organised brain

regions. As in a biological neural network, the connection and signal transmission between

neurons and layers enable the ANN system to convert the particular input signal into relevant

outputs, also known as the prediction. ANN is capable of predicting output based on any given

input when the mathematical connection between input and output is nonlinear, complicated,

etc. The structure of an ANN comprises an input layer, a hidden layer, and an output layer.

As it can be seen in Figure 2.2 input neurons receiving input data compose the input layer.
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Additionally, the hidden layer contains neurons that receive input neurons and transmit them

to the output layer. Finally, the output layer is composed of neurons that reflect the expected

output parameters.

Figure 2.2: Artificial Neural Networks

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are a category of neural network. In practice, they

are typically employed for the classification of images and other grid-like data. CNN is first

introduced by LeCun et al. [51]. There are different layers in CNN’s:

Convolutional Layers

The convolutional layer is the first layer of CNN that includes three main components: input,

filters (also known as kernels), and output. It performs element-by-element multiplication with

the part of the input that it covers in each stage, and in the next step, it sums their outputs for

each sliding operation. The convolution result is then provided to the activation function or
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feature map. The mathematical definition of convolution is as follows:

( f ∗ g) (i) =
M∑
m

g(m) · f (i − m) (2.1)

where f represents a one-dimensional input, g represents a one-dimensional kernel, and

M represents the size of the input. Moreover, N is the length of the input, and for each i ∈ N,

this Equation is computed. The convolution technique can be expanded to higher dimensions;

For instance, this method can be expanded to the 2D version by convolving along two axes

simultaneously:

( f ∗ g) (i, j) =
M∑
m

K∑
k

g(m, n) · f (i − m, j − k) (2.2)

In addition, one of the useful components of the convolutional layer is the stride. Stride is a

neural network filter parameter that affects the amount of movement across input data.

Figure 2.3: Two-dimensional convolution kernel is applied to an input matrix

Pooling Layers

Pooling is a technique for significantly reducing the size of intermediate feature layers. This

approach minimizes the amount of network calculations and eliminates overfitting. Similar to

convolution layers, pooling slides the filter according to its stride along the input. However,

unlike convolution layers, pooling does not include weights or learnable parameters; rather, it

computes operations such as the input’s maximum, average, and minimum in various regions.
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Fully Connected Layers

A fully connected neural network consists of a sequence of layers in which each neuron in one

layer is linked to each neuron in the other layer.

2.2.3 EEGNet

EEGNet is a CNN architecture that is adaptable to a variety of BCI paradigms and applica-

tions. The authors in their paper proposed and demonstrated the generalizability of a CNN

architecture based on different depth-wise convolution layers. Their comparisons with cutting-

edge models and approaches suggest that their design has the potential to produce superior

outcomes. The 3-layer CNN architecture includes convolution, depth-wise, and separable lay-

ers, as well as average-pooling, batch normalization (BN), and dropout layers (see Figure 2.4).

Dropout is an effective strategy for preventing overfitting in deep learning. In backpropagation,

dropout algorithms ignore neurons that do not contribute. In addition, they have evaluated their

methods on many BCI datasets, including MI, SSVEP, and ERP.

Figure 2.4: Schematic of EEGNet [50]
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2.2.4 ShallowConvNet

In comparison to more time-consuming models, ShallowConvNet has shown its superior per-

formance in the subject-dependent MI classification [87]. The first two layers of ShallowCon-

vNet are CNNs for detecting temporal and spatial features. Followed by the first two CNN

layers, there is BN, square activation, average pooling, and log activation. Then there is a flat-

ten followed by a dropout layer. The overview of ShallowConvNet can be seen in Figure 2.5.

Figure 2.5: Schematic of ShallowConvNet [87]

2.3 Riemannian learning

2.3.1 Covariance Matrices

EEG signals Xi(t) = [x(t), . . . , x(t + T − 1)] ∈ Rn×T are recorded with multiple channels and

sampled in discrete-time points, where n and T denote the number of channels and samples.

Here x(t) denotes the EEG signal vector at a specific time point t. Riemannian approaches are
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often applied to the Sample Covariance Matrix (SCM) denoted as Pi:

Pi =
1

Ts − 1
XiXT

i (2.3)

where Xi represents a i-th trial with Ts samples.

2.3.2 Riemannian Manifolds

A topological manifold can be defined as a space in which every point has a neighborhood

homeomorphic to Rn. When the topological manifolds are endowed with a differential at-

las, they become differential manifolds, where the transitions between mapping manifolds are

smooth. In a differential manifold, translating a point can be approximated as its linear trans-

formation. Then, a Riemannian manifold P(n) is a real smooth manifold. Assume P(n) be the

set of n × n SPD matrices, which is defined as:

P(n) =
{
C ∈ Rn×n | CT = C, xTCx > 0,∀x ∈ Rn

}
(2.4)

Matrices in P(n) lie in a differentiable Riemannian manifoldM [25], where the tangent space

TCP(n) of each point has a metric defining the inner product that changes smoothly along with

its elements [1].

2.3.3 Riemannian Metrics

Equipping with the inner product, it is possible to compute the length of curves in this man-

ifold. In this thesis, we utilise the affine-invariant Riemannian metric (AIRM) [76], which

defines a Riemannian distance δℜ (P1, P2) between two points, P1 and P2, as:

δR (P1, P2) =
1
2

∥∥∥∥∥log
(
P−

1
2

1 P2P−
1
2

1

)∥∥∥∥∥
F

(2.5)

The notion of the mean of a set of SPD matrices 1
N

∑
i≤N Pi can also be extended to the Rieman-

nian manifold. In addition, the Riemannian barycenter, also known as the Fréchet mean [103],
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is introduced. The Riemannian barycenter has a practical advantage in representing geometri-

cal features in Riemannian manifold analysis [77]:

Barw
(
{Pi}i≤N

)
:= arg min

G∈M

N∑
i=1

wiδ
2
N

(G, Pi) (2.6)

In the formula 2.6 a coefficient wi is associated with each point δR of the considered set, with∑
i wi = 1.

2.3.4 SPD Network

Riemannian Neural Network, which defines as an SPD matrix network (SPDNet), consists of

four typical kinds of layers analogous to the well-known CNN, including bilinear mapping

(BiMap), eigenvalue rectification (ReEig), log eigenvalue (LogEig), and BN layer. To be more

specific, the BiMap layer maps the input SPD matrices Xk−1 into Xk which is a more compact

matrices. The k-th BiMap layer f (k)
Bi can be defined as follows.

Xk = f (k)
Bi (Xk−1; Wk) =WkXk−1WT

k (2.7)

The k-th ReEig layer defined as f (k)
R is a non-linear function that tunes up the small positive

eigenvalues of the input matrices by a rectification threshold.

Xk = f (k)
r (Xk−1) = f (k)

r (Uk−1Σk−1UT
k−1)

= Uk−1 max (ϵI,Σk−1) UT
k−1

(2.8)

The Riemannian batch normalization layer (RBN) normalizes training data in every batch to

avoid the gradient becoming large or small during back-propagation. However, since all SPD

matrices are in the Riemannian manifold, this layer has to be in the same manifold. RBN

for SPD matrices is implemented by Brook et al. [12], which uses batch centering and bias-

ing. The Riemannian barycenter G and Biasing are calculated from Equation 2.9 and 2.10.

Centering from G := Bar(B) :

∀i ≤ N, P̄i = ΓG→Id (Pi) = G−
1
2 PiG

− 1
2 (2.9)
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Biasing towards parameter G :

∀i ≤ N, P̃i = ΓId→G

(
P̄i

)
= G

1
2 P̄iG

1
2 (2.10)

The LogEig Layer fL is designed to map the SPD matrices lying in Riemannian geometry into

a corresponding structure which is on Euclidean space, thus the flatten layer can be applied into

output of LogEig layer [7]:

Xk = f (k)
l (Xk−1) = log (Xk−1)

= f (k)
l (Uk−1Σk−1UT

k−1)

= Uk−1 log (Σk−1) UT
k−1

(2.11)

The overall architecture of SPDNet can be seen in Figure 2.6.

Figure 2.6: SPDNet framework proposed by huang et al. [39]

2.4 Supervised Learning

Supervised learning is the most common learning strategy in machine learning when the task

has a large amount of labelled data. As its name implies, supervised learning depends on a

teacher to penalise the model for producing incorrect results. This method can be compared

to the situation in which students learn about the course via their teachers’ direct comments.
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For instance, a teacher would clarify a student’s incorrect answer in the exam, and from the

feedback student will learn.

Supervised approaches in machine learning train networks to map input data to a corre-

sponding label. The assumption of this approach is that the model for the designed task con-

tains effective representation at the embedding level of the hidden layers. Given an N-sample

set of inputs and outputs for training {(x1, y1), (x2, y2), ..., (xN , yN)}, supervised approaches esti-

mate a function {( fθ : X → Y)} that maximises the similarity between the true label yi and the

output forecasted by the function fθ(x). In this approach, the set of parameters that have influ-

enced the loss function’s output is represented by θ. In addition, gradient descent is employed

during training to optimize the parameters θ to minimise a cost function. To evaluate the model

function f , the cost function L(θ) or cross-entropy loss is used to calculate the distance between

a given point and the target. Therefore, the more the value of the cost function L(θ), the more

error the cost function has:

L(θ) = −
M∑

c=1

yo,c log
(
po,c
)

(2.12)

In the Equation above, M represents the number of classes, whereas p is the predicted proba-

bility of classifying observation o into class c.

Nevertheless, a common assumption is made by the majority of supervised learning ap-

proaches that the training and test data are selected from the same distribution. However, due

to the domain shifts [63] this assumption is not always correct, and a classifier trained on the

source domain will likely see a performance loss when evaluated on the target domain. In

the next section, unsupervised approaches, specifically UDA methods, will be introduced that

solve this problem.

2.5 Unsupervised Learning

As discussed previously in the last section, in real-world problems, there is not much label

data available for training. This can be due to the fact that gathering data is costly and time-
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Figure 2.7: Supervised learning

consuming. Furthermore, labelling data for specific tasks such as EEG experiments necessi-

tates the use of experts. On the other hand, there is a vast amount of unlabeled data available,

such as texts, images, signals, and others. As a result, it is not advantageous not to use these

data. In the past, traditional machine learning methods, such as principal component analysis

and clustering algorithms, were used to discover data groupings and hidden patterns in unsu-

pervised data. However, in recent years, DNN algorithms have also made huge progress in

solving unsupervised problems. These approaches mainly use downstream tasks after learning

useful representations from unlabeled data.

2.5.1 Contrastive Learning

Recently, due to the increase of unlabeled data, self-supervised learning, including represen-

tation learning based on contrastive methods, has been widely studied and shown their effec-

tiveness in many applications [2, 67, 85]. In unsupervised contrastive learning, representations

of similar samples (positives) are represented close together; in contrast, dissimilar samples

(negatives) are represented far apart [15]. Different versions of contrastive learning have been

developed so far [15, 17, 33, 73]. SimCLR is one of the successful methods in this category. In

this method, an augmented form of the original sample is treated as a positive sample, while the

rest of the samples in the batch are treated as negative ones. In this method, a key contribution

to making similar samples is data augmentation approaches such as cropping a portion of the

data, resizing, adding shifts, and adding gaussian noise. For instance, as can be seen in Figure

2.8, the original data is a dog and a chair. In the first step, data augmentation is applied to the
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crop and colour distortion of each image. In the next step, the representation of each image is

created by passing the augmented pairs into convolutional encoders. Finally, the representa-

tions are passed to the projection head, which includes multi-layer perceptrons. Then the loss

function between positive and negative pairs is computed. The Equation 2.13 represents the

contrastive loss function:

Figure 2.8: Similar images are attracted to each other [15]

Lscon = − log
exp
(

sim(zi, z j) /τ
)

∑2N
k=1 [k,i] exp ( sim(zi, zk) /τ )

(2.13)

Where zi and z j are the representations of the augmentation’s after projection layer, and τ

signifies a temperature parameter. Contrastive loss is calculated over all positive pairings (i, j)

and ( j, i).

Moreover, The goal of this network is to minimize the distance of two augmented repre-

sentations of the same object close to each other and simultaneously maximize the distance of

the other objects to be far apart.

SimCLR has been demonstrated to outperform supervised approaches on several image

classification datasets, as well as prior self-supervised methods on ImageNet [15]. However,
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compared to computer vision, in the BCI field, data augmentation is challenging since aug-

menting the EEG signal, such as by adding noise, might change the label of the data. Our

approach extends SimCLR; however, we are using different views of EEG signals with differ-

ent encoders, which helps the feature extractor get more useful features compared to only using

one view.

2.6 Multi-view Contrastive Learning

Multi-view learning is a recent field of machine learning that focuses on enhancing gener-

alization performance through the use of different perspectives or views of the same inputs.

Multi-view data are popular in real-world applications. For instance, color and texture infor-

mation are two different views for images and videos. Specifically, taking the same image

from various perspectives can also consider as separate views. Data fusion and integration

from several feature sets are alternative names for multi-view learning [109].

Multi-view contrastive learning has been implemented in a variety of fields, such as image,

audio, graphs, and natural language processing [60, 72, 88, 91, 99, 101]. This method includes

learning data representations by comparing several views of the same data to maximize the

similarity between views of the same data while minimizing the similarity between views of

different data [91]. The objective is to capture a common or mutual representation of the un-

derlying structure of the data from different views. Next, same as simple contrastive methods,

the representation after training can be utilized for various downstream tasks, including clas-

sification and clustering. As it can be seen in Figure 2.9 there are four different views of the

same image, and one view of the other image, the model [91] tries to bring views of the same

scene together, while pushing views of different scenes apart in embedding space.

One key advantage of multi-view contrastive learning is that it can leverage multiple sources

of information to learn a more comprehensive representation of the data. For example, in im-

age analysis, one view of the data might be the original image, while another view might be the

same image with different camera pose. By contrasting these multiple views, the model can
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learn to capture both the content and the structure of the image, which can be useful for tasks

such as image retrieval.

Another advantage of multi-view contrastive learning is to overcome the limitations of

traditional supervised learning methods, which require large amounts of labelled data. Un-

supervised learning methods, such as multi-view contrastive learning, can be used to learn

data representations in the absence of labelled data, which can be especially useful in domains

where labelled data is scarce or costly.

Despite these promising results, there are still several challenges associated with multi-

view contrastive learning. One challenge is selecting appropriate views of the data to contrast.

Different views of the same data can capture different aspects of the data, and selecting views

that can capture useful feature is significant, while selecting views that are too similar can not

capture different features, and will not improve the accuracy.

In summary, multi-view contrastive learning is a promising approach to self-supervised

learning that has shown effectiveness in a variety of domains. By leveraging multiple views of

the same data, multi-view contrastive learning can learn comprehensive representations of the

underlying structure of the data, which can be useful for a variety of downstream tasks.

Figure 2.9: Contrastive Multiview Coding [91]
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2.6.1 Unsupervised Domain Adaptation

As discussed, when training and testing data are not drawn from the same distribution, the per-

formance of the classifier model trained on the source domain will drop when it is evaluated on

the test data. Consequently, regarding this problem, for each new dataset, we should annotate

the samples and then retrain the deep learning model to accommodate the new data. How-

ever, learning DNNs specifically for large datasets such as ImageNet is not beneficial since it

requires a significant amount of computer resources and time. domain adaptation is a useful

approach for this problem because it can reduce the need for costly labeled data in the target

domain. domain adaptation has been used to either extract robust characteristics for diverse

domains or adapt the features from the source domain to the target domain [84]. There are

several domain adaptation approaches based on available annotations of target domain data.

UDA is one of the main categories of the domain adaptation methods where it assumes that

any kind of label (weak or hard) for the target domain data is entirely missing. Many of the do-

main adaptation methods on which this thesis focuses include adversarial training. In domain

adaptation adversarial training, in addition to the label loss that has been presented in the super-

vised learning section of this chapter, domain loss is used for adopting different domains. The

domain loss is similar to the discriminator’s loss in Generative adversarial networks (GANs).

Hence, to present the background for domain adaptation strategies using adversarial learn-

ing, we will first introduce GANs. GANs was introduced in 2013 by Goodfellow et al. [30].

GANs have recently received huge amounts of research in a variety of fields. Many other types

of GANs are also presented after the initial research such as [16, 66, 71, 80]. The two main

components of GAN’s architecture are the generator and discriminator, which are both trained

concurrently and compete with each other in an adversarial process in which the generator is

trained to make discriminator mistakes. First, the synthetic data, similar to the real data, is

generated by the generator G with noisy inputs. The generated fake data will then be used as
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inputs for the discriminator D in the following step. In an ideal scenario, the discriminator

would be incapable of differentiating between real and synthetic data. Thus, the generator and

discriminator compete against one another in a min-max game in which both models attempt

to optimize Equation 2.15. In this Equation, the generator aims to reduce the loss function,

while the discriminator tries to increase it. During the training phase, both the generator and

the discriminator attempt to reduce their loss functions 2.16 and 2.17. In Equation 2.15, the

min-max formula is introduced:

minGmaxDV(G,D) = E(logD(yi)) + E(log(1 − D(G(xi)))) (2.15)

The Equations 2.16 and 2.17 are loss functions of the generator and discriminator.

Gloss =
1
m

m∑
i=1

(
log(1 − D(G(xi)))

)
(2.16)

Dloss = −
1
m

m∑
i=1

log(D(yi)) −
1
m

m∑
i=1

log(1 − D(G(xi))) (2.17)

where E is the expected value, Xi is the generator input, and yi is the actual target data. The

discriminator’s prediction is D, and the generator’s prediction is G.

DA adversarial training [28] is one of the most well-known UDA methodologies. This tech-

nique aims to learn the domain-invariant features through a feature extractor. In this approach,

the feature extractor, a deep CNN, extracts valuable input data characteristics. In the follow-

ing stage, the fully connected layer, termed label predictor, attempts to predict the label of the

provided input data. On the other hand, the domain classifier, which contains fully connected

layers, tries to predict the input from which domains. In addition, the gradient reversal layer

(GRL) is a layer that exists between the feature extractor and domain classifier. The GRL acts

as an identity mapping function for the output of the feature extractor during forward propaga-

tion. In contrast, the GRL multiplies a gradient produced from the domain-classification error

by a negative factor during backpropagation processing. In adversarial DA, both the feature

extractor and the domain classifier compete against each other in a min-max game. Hence,

in this technique, we attempt to mislead the domain classifier because if the domain classifier
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is unable to classify the actual domain, the features collected by the feature extractor are in-

variant across domains. Therefore, the goal of the adversarial domain adaptation is to create

domain-invariant features in latent space.

Figure 2.10: Domain adversarial training [28]

2.7 Related Machine Learning Works

2.7.1 Traditional Methods

CSP is an effective approach for developing spatial filters that extract power information in

frequency bands [10]. Additionally, there have been several successful methods to enhance the

CSP algorithm. Lemm et al. introduced the Common Spatio-Spectral Pattern (CSSP), which

uses a one-time-delayed sample to optimize a filter with the CSP algorithm [54]. Moreover,

Kang et al. proposed Composite Common Spatial Pattern (CCSP) [48] that uses composite co-

variance matrices derived from a linear combination of covariance matrices. Filter Bank Com-

mon Spatial Pattern (FBCSP) is another approach based on CSP that utilises a feature selection

to choose discriminative CSP features from a bank of several bandpasses and spatial filters [6].

Afterward, they used an SVM classification method to classify the extracted feature. In ad-

dition, Heung et al. proposed a novel Bayesian Spatio-Spectral Filter Optimization (BSSFO)
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technique for discriminative feature extraction for MI classification in an EEG-based BCI, in

which the class-discriminative frequency bands and associated spatial filters are optimized us-

ing probabilistic and information-theoretic approaches [89]. Moreover, Samek et al. regularize

CSP in stationary subspaces [86]. Kang et al. created a composite CSP model that used a

linear combination of two approaches in order to improve classification accuracy on a small

dataset [48]. Kang and Choi introduced a nonparametric Bayesian framework for multi-subject

learning in which they assumed that spatial patterns across subjects share a latent subspace. In

addition, they investigated the subject-to-subject relationship in their research [47].

2.7.2 Riemannian Methods

Riemannian Learning has gained popularity in a wide variety of machine learning tasks such

as computer vision [39], [35] and medical fields [8, 19, 64]. A. Barachant et al. introduced the

Riemannian geometry approach in the BCI field [9]. The main idea of their research is to first

employ spatial covariance matrices as descriptors for EEG signals and then use Riemannian

geometry for classifying the SPD matrices [9]. Rodrigues et al. presented an SPD manifold

framework for extracting features using geometric operations, and they evaluated their model

on eight public datasets, obtaining a high classification accuracy [83]. Li et al. worked on

the p300 signals and combined the XDAWN spatial filter and SPD manifold for cross-subject

classification [55]. In addition, Ju et al. proposed a geometric deep learning framework called

Tensor-CSPNet [45], which captures spatial and temporo-spatio-frequency patterns using DNN

methods on the SPD manifold.

2.7.3 DNN Methods

In recent years, a much larger volume of work on the application of DNNs in BCI has been

published compared to traditional methods explained in the last section. Schirrmeister et al.

proposed ConvNet [87] which is one of the popular methods in BCIs. ConvNet includes four

CNN layers with 40 kernels per layer, followed by fully connected layers, with average pooling
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between the CNN layers and Relu activation. Huang et al. introduced Filter-Bank Convolu-

tional Network (FBCNet) [39], that extracts spatially features with spatial filtering applied in

the preprocessing step. Moreover, CNNs and fully connected layers are followed for the clas-

sification. Zhang et al. introduced EEG Riemannian network [107], they have extracted both

spatial and temporal information by Riemannian manifolds and CNNs, and in the next step, a

fusion technique is employed that learns attention weights for both embedding features.

2.7.4 Transfer Learning Methods

As described before, collecting EEG data may be challenging due to its randomness, and non-

stationarity [43]. In recent years, transfer learning has gained attention for improving the per-

formance and accuracy of BCI classification. Dai et al. proposed a transfer kernel CSP frame-

work for learning a domain-invariant by matching source and target subjects’ distributions [21].

Jeon et al. proposed the DNN Transfer model [44] utilises a DNN for transfer learning. Their

model, first based on the resting-state EEG power spectral density, chooses a subject whose

characteristics of the EEG signal are similar to the target subject, then it uses transfer learning

for the target domain. Furthermore, Park et al. [74] improved the filter bank methods using

regularization rather than extracting common features. Next, they utilised a feature selection

algorithm to find discriminative features. Wang et al. proposed a prototype-based SPD matrix

network for domain adaptation [97] on emotion recognition EEG. In their study, they calcu-

lated the geometric mean by combining the Riemannian metric and prototype loss. Li et al.

proposed an adversarial domain adaptation method that uses association reinforcement in the

last layers to adapt the conditional distributions [56]. Moroever, Hong et al. proposed dynamic

joint domain adaptation network (DJDAN) [38] that is also adversarial domain adaptation that

uses a global discriminator and the local discriminator for alignment.



Chapter 3

Methodology

3.1 Data Preparation

In our experiment, we use two different datasets from the MI paradigm: OpenBMI [53] and

BCI Competition IV [14]. The details of each dataset are as follows:

3.1.1 OpenBMI

Provided by Korea University, OpenBMI is the largest publicly available MI dataset to date.

Overall, the dataset includes 54 subjects and two sessions for each subject. As a result, it is an

ideal dataset for testing our proposed algorithm. The EEG signals in this dataset are recorded

at a sampling rate of 1,000 Hz and collected with 62 Ag/AgCl electrodes. The exact location

and arrangement of electrodes used are shown in Figure 3.1. The MI paradigm is designed in

accordance with the recognised system protocol [18]. For all blocks, the first three seconds

of each trial start with a black fixed cross that appears in the center of the monitor to prepare

the subject for the MI task. Later, when the right arrow or left arrow appeared as a visual cue,

the subject performed the image grasping task with an instructed hand for four seconds. After

each task, the screen remains blank for six seconds (±1.5 seconds). The experiment includes

training and testing phases. In each stage, 100 experiments on the left and right image tasks

are carried out. In the online test phase, according to the real-time classifier output of the EEG

26
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signal, the gaze cross appears in the center of the monitor and moves to the right or left.

In this work, 20 Ag/AgCl electrodes have been used as in previous studies from the area of

the motor cortex (FC5, FC3, FC1, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C44, C6, CP5, CP3, CP1,

CPz, CP2, CP4, and CP6). In addition, the signal frequencies were reduced from 1,000 to 100

Hz. Furthermore, the EEG period between 0s and 4s following stimulus onset was chosen as

the MI interval.

Figure 3.1: The channel configuration of the International 10-20 system (62 EEG and 4 EMG

recording electrodes). The left panel indicates the indexing; the right panel corresponds to the

location of each electrode.

3.1.2 BCI Competition IV

This data collection consists of EEG data from 9 subjects, offered by Graz University of Tech-

nology [14]. First, the subject is seated in front of the screen on the chair. Next, after two

seconds (t = 2 s), an arrow on the screen is pointed to the left, right, down, or up and remained

on the screen for 1.25 seconds. Therefore, each subject performed 4 different tasks, such as

imagining a movement of their right hand, left hand, tongue, and both feet, in this experiment.

This dataset contains two session which each of them have been recorded in a separate date

with overall 288 trial. Moreover, experiments were obtained with a sampling frequency of 250
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Table 3.1: Detailed information about OpenBMI [53] data used in our experiments

Detailed Number of MI data

Name Parameters Extra

Subject 54 None

Classes 2 For Each Subject

Original Data 1000×200×20 Sample Point×Trial×Channel

Riemannian Input Data 200×20×20 Trial×Channel×Channel

Euclidean Input Data 200×20×1000 Trial×Channel×Sample Point

Hz and 22 Ag/AgCl electrodes.

3.1.3 Preprocessing

In this study, before the data gets into MACNet, a preprocessing step is applied. First, since

the raw EEG data used in BCI are time-domain signals that vary with time, a third-order But-

terworth band-pass filter is utilised between 4 and 38 Hz to create the filtered EEG data within

the proper frequency regions. Next, Riemannian prepossessing presented in [106] have applied

to the data. Next, for each trial in EEG signal, we calculated the SPD matrix of it. There-

fore, EEG signals from both the source and target data were transformed into SPD matrices

for a Riemannian view. For instance in BCI Competition IV dataset, the SPD matrix is 22 ×

22 and for OpenBMI dataset, it is 20 × 20 for each trial. Tables 3.2 and 3.1 contain detailed

information about the two datasets.

As indicated, both OpenBMI and BCI Competition IV dataset consists of two sessions. In

our studies, we trained our network in one session and tested it in another session. Hence,

we have tested the transfer ability of our model in 54 experiments for OpenBMI data and 9

experiments for BCI Competition IV.
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Table 3.2: Detailed information about BCI Competition IV [4] data used in our experiments

Detailed Number of MI data

Name Parameters Extra

Subject 9 None

Classes 4 For Each Subject

Original Data 1000×288×22 Sample Point×Trial×Channel

Riemannian Input Data 288×22×22 Trial×Channel×Channel

Euclidean Input Data 288×22×1000 Trial×Channel×Sample point

3.2 MACNet Framework

The variability in subjects’ conditions across different sessions results in significant differences

between the distributions of source and target samples. In this research we analyzed our model

in UDA setting. The source domains (Xs, Ys) = (xs
i , ys

i )
Ns
i=1 consist of Ns labeled samples, while

the target domain samples (Xt) = (xt
i)

Nt
i=1 consist of Nt unlabeled samples. In this study, we used

the target labels to evaluate the proposed model.

The overall architecture of our proposed MACNet method is illustrated in Figure 3.2. The

inputs to the network consist of three different types of data: the source domain, mixup signals,

and target domain.

The MACNet framework consists of six components:

(1) The first level mixup, which linearly interpolated source domain EEG signal xs
e and

target domain EEG signal xt
e to produce mixup signals xm

e .

(2) The feature extractor network, which comprises a ShallowConvNet and an SPD en-

coder, maps the Euclidean and Riemannian views of both domains to their corresponding em-

bedding levels, denoted by hs
e, ht

e, hs
r, and ht

r. The embeddings hs
e and hs

r represent the Euclidean

and Riemannian embeddings of the source domain, respectively, while ht
e and ht

r represent the

Euclidean and Riemannian embeddings of the target domain.

(3) The second level mixup, linearly combine feature embeddings of the two domains hs
e

and ht
e to produce a domain-invariant latent distribution with a more continuous feature distri-
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bution, denoted as hm2
e .

(4) The classifier is trained to predict the labels of the source data using hs
e representation.

(5) The domain classifier is trained to differentiate between the source and target domain

embeddings. The input to the domain classifier comprises embeddings from hs
e, ht

e, as well as

two levels of mixup embeddings from hm1
e and hm2

e .

(6) Contrastive task is applied after applying hs
e, hs

r, and ht
e, ht

r to the projector network Q.

In the next section, each component described above will be explained in detail.

3.2.1 Feature Extractor

The overall architecture of the feature extractor component can be seen in Figure 3.3. Our

feature extractor consists of two encoders for EEG signals with different views. The Euclidean

encoder, denoted as Esh, utilizes the ShallowConvNet approach proposed by Schirrmeister et

al. [87]. This encoder takes as input the number of trials × number of channels × number of

sample points. The encoder has two convolutional layers with 24 kernels per layer, followed

by batch normalization, square activation, and a pooling layer with a logarithmic activation

function and a dropout rate of 0.6. The last layer of the encoder is a linear layer that matches

the dimension of the encoder to the Riemannian feature extractor.

The Riemannian encoder, denoted as Esp, extracts Riemannian and spatial features from

the data. As shown in Figure 3.3, the Riemannian encoder consists of seven layers, including

BiMap, RBN, ReEig, dropout, and LogEig layers. The input to this network is the number of

trials × number of channels × number of channels, as described in Tables 3.1 and 3.2.

Both encoders map the data samples into a representation vector he and hr, respectively,

which have the same dimension and are in Euclidean space. Figure 3.3 illustrates the overall

architecture of the feature extractor component.
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Figure 3.2: The framework of MACNet. The blue lines represent the data from the source

domains, while the green lines represent the data from the target domain. The yellow and red

lines show the integration of domain mixups in both the signal and embedding levels (first and

second level). The feature extractor is comprised of two encoders, Esh and Esp, which represent

ShallowConvNet and SPDNet, respectively. Following the encoders, a projection layer Q is an

MLP layer that is applied to the embeddings for contrastive loss computation. In the next step,

Cc and Dc are classifiers for the class and domain loss.
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Figure 3.3: The overall architecture of the feature extractor. As it can be seen, feature extractor

has two components Esp for SPD matrices data with the shape of (batch, 1, number of channels,

number of channels) and Esh for time-domain EEG signals with the shape of (batch, 1, number

of channels, number of sample points). The final representation hr and he are both in Euclidean

space and have the same dimension.
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3.2.2 Domain Mixup On Two Levels

In this study, compared to previous adversarial domain adaptation [75, 93], which used only

source and target domains for domain discriminator, in this work, we propose a domain mixup

on the signal and embedding levels.

Mixup in the first level

As it can be seen in Figure 3.2 and Figure 3.4, there are three kinds of inputs for MACNet,

including source, target, and mixup signals obtained by mixing source and target signals lin-

early. Therefore, a random pair of source and target sample signals from the batch (xs
e,i, x

t
e,i) are

linearly combined to create mixup signal xm
e,i and a soft domain label lm

dom.

xm
e,i = λ ∗ xs

e,i + (1 − λ) ∗ xt
e,i, (3.1)

lm
dom = λ ∗ ls

dom + (1 − λ) ∗ lt
dom (3.2)

Figure 3.4: Mixup in the first level

where ls
dom and lt

dom represent the label of source and target domains which are manually
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set to 0 and 1. Moreover, λ is a mixup ratio and randomly sampled from a beta distribu-

tion Beta(α, α). In all of our experiments, alpha sets 2.0.

Finally, xm
e is embedded to hm1

e in the latent space by a encoder Esh (Figure 3.4).

Mixup in the second level

As it can be seen in Figure 3.5 after projecting inputs xs
e and xt

e to the encoders, mixup between

source and target embedding was employed to produce a more continuous domain-invariant

latent distribution, which can be defined as:

hm2
e = λ ∗ hs

e + (1 − λ) ∗ ht
e (3.3)

where hs
e is an embedding from a source feature extractor, and ht

e is an embedding from a

target feature extractor. In addition, λ is equal to the one used in the signal level mixup.

Figure 3.5: Mixup on the embedding level
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3.2.3 Supervised Classifier Training

Figure 3.6 indicates the supervised classifier. In order to extract discriminative features from

the source domain samples, we utilize a feature extractor denoted as Esh. To enable accurate

prediction of the source domain labels, we train a fully connected classifier, denoted as Cc,

to predict the corresponding label. As a result, Cc takes the representation hs
e as input and

produces the final prediction. To train the Cc, we use the cross-entropy loss, denoted as Ls
ce:

Ls
ce =

1
Ns

Ns∑
i=1

L(Cc(hs
e), y

s
i ) (3.4)

Figure 3.6: Supervised classifier

3.2.4 Domain Classifier Training

The domain classifier model, denoted as Dc, is designed to determine the domain of the input

data. As shown in Figure 3.2, the domain classifier model takes four inputs, which are derived

from the embeddings of the source and target domains denoted as hs
e, ht

e, as well as two levels

of mixup embeddings hm1
e and hm2

e .

During training, the domain discriminator model D is optimized to minimize the domain

classification loss, while the feature extractor is simultaneously trained to increase this loss.

In our proposed MACNet architecture, we have four domain classification losses corre-

sponding to the source domain, target domain, and two levels of mixup embeddings.
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Ls
d =

1
Ns

Ns∑
i=1

L(Dc(R(hs
e,i)), d

s
i ), (3.5)

Lt
d =

1
Nt

Nt∑
i=1

L(Dc(R(ht
e,i)), d

t
i), (3.6)

Lm1
d =

1
Nm1

Nm1∑
i=1

L(Dc(R(hm1
e,i ))), lm

dom), (3.7)

Lm2
d =

1
Nm2

Nm2∑
i=1

L(Dc(R(hm2
e,i )), lm

dom), (3.8)

Ld = Ls
d + Lt

d + Lm1
d + Lm2

d (3.9)

where Ld, Ls
d, L

t
d, L

m1
d , L

m2
d represent overall domain loss for source, target, mixup for signal

level and embedding level. Moreover, R represents the reversal layer.

Figure 3.7: Domain classifier



3.3. Training Procedure 37

3.2.5 Contrastive Learning With Two Views

In MACNet, both Riemannian and Euclidean representations are captured in the embeddings

zs
e, zs

r, zt
e and zt

r, for both source and target data after projection layer Q (Figure 3.8). As dis-

cussed, MACNet uses multi-view feature extractor, which captures valuable representations by

extracting spatial and temporal characteristics jointly in a self-supervised way from both the

target and source domains. Hence, the performance of inter-subject adaptation can be further

improved compared to the last proposed methods. Prior to extracting the high-dimensional la-

tent representations, the Euclidean and Riemannian views are sent to their respective encoders,

ShallowconvNet and SPDNet. Both encoders use separate projection heads to transfer the high-

dimensional latent representations, where contrastive losses are applied between zs
e and zs

r, and

between zt
e and zt

r. Therefore, MACNet has two contrastive losses, one for the source and one

for the target domain defined as Ls
scon and Lt

scon. The contrastive loss enhances the similarity

between two enhanced views of the same EEG signal while decreasing its similarity with other

EEG signals. As a result, the classification task for the model become easier.

In overall, MACNet loss is:

LMACNet = Ls
ce + Ld + Ls

scon + Lt
scon (3.10)

3.3 Training Procedure

In the training process, for training and testing, we used K80 with 12GB GPU memory. Our

MACNet framework is developed in PyTorch. In order to minimize the loss, in addition to the

SPDNet initial optimizer [12,39], AdamW is used as an optimizer. Moreover, the learning rate

sets to 0.01, and for each training process, the iteration is 250. Furthermore, the temperature

for contrastive loss is set to 0.07.
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Figure 3.8: Multi-view contrastive
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Results

4.1 Baseline Approaches

In this section, we evaluate the performance of MACNet with other state-of-the-art baseline

approaches on two benchmark datasets. Our baseline approaches have been divided into three

parts. We have selected two traditional approaches for the first part, namely FBCSP [5] and

CCSP [48]. Seven DNN approaches, including SPDNet [39], EEGNet [50], DeepConvNet

[87], FBCNet [39], ShallowConvNet [87], Tensor-CSPNet [45], and EEG Riemannian [107],

comprise the second part. In the last part, in order to better compare the performance of MAC-

Net, we had selected three other UDA methods, namely ConvNet+DANN, EEGNet+DANN

and DJDAN [38]. In this section each baseline method is explained in detail.

4.1.1 Traditional Baseline Methods

FBCSP [39] approach is one of the popular methods for analyzing EEG signals. In this model,

CSP is applied to sub-bands of the EEG signal to derive sub-band scores, which are then used

as input for a classification algorithm. FBCSP has demonstrated outstanding performance in

MI and is regarded as the most representative variant of the CSP method. The FBCSP Python

toolbox is available at GitHub 1.
1https://fbcsptoolbox.github.io

39
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Another popular traditional method in the BCI field is the CCSP approach [48]. This model

uses CSP and principal component analysis to extract several spatial filters that can capture

discriminative information across frequency bands. CCSP has shown to improve classifica-

tion accuracy in various BCI applications, such as MI and emotion recognition, compared to

previous feature extraction approaches.

4.1.2 Deep Learning Baseline Methods

In this thesis, we implemented three popular CNN-based models: ShallowConvNet, EEGNet,

and ConvNet. In Chapter 2, a detailed explanation of each model is presented. ShallowCon-

vNet and EEGNet models are publicly available for testing on GitHub 2. Additionally, ConvNet

is available on GitHub 3.

FBCNet [39] is a CNN-based method inspired by the success of FBCSP in analyzing EEG

signals. FBCNet applies customized CNN layers to individual sub-bands of EEG signals to

extract temporal and spatial frequency characteristics. The Python toolbox code for FBCNet is

readily available on 4 and has been used to obtain results in our study.

Tensor-CSPNet [45] is a framework for geometric deep learning that capture spatial co-

variance matrices derived from EEG signals on SPD manifolds. Tensor-CSPNet integrates

effective classifiers with deep neural networks on SPD manifolds. The repository of their work

is publicly available on GitHub 5.

EEG Riemannian Network [107] is a novel approach for EEG-based BCI that extract spa-

tial and temporal information from Riemannian manifolds and CNNs. In their model, they

convert EEG signals to Riemannian covariance matrices, which are then used to extract tem-

poral features by CNNs. Utilizing a fusion technique that learns attention weights for spatial

and temporal characteristics, the model can choose the most discriminative features for classi-

2https://github.com/Mrswolf/brainda
3https://github.com/braindecode/braindecode
4https://github.com/ravikiranmane/FBCNet
5https://github.com/GeometricBCI/Tensor-CSPNet-and-Graph-CSPNet



4.2. Evaluation 41

fication. The repository of their work is publicly available on GitHub 6.

4.1.3 UDA Baseline Methods

DJDAN [38] is a domain adaptation model based on adversarial learning to improve EEG

signal categorization in the target domain by using source domain knowledge. Their method

aligns the marginal distribution across domains using a global discriminator and reduces the

conditional distribution discrepancy between sub-domains using a local discriminator that con-

ditions deep representations and classifier predictions to learn a domain-invariant feature rep-

resentation. The authors’ proposed setting for the BCI Competition IV aligns with the setting

used in our thesis, making it a relevant comparison for our study. However, they have not pro-

vided code for their method, preventing us from directly comparing our model with theirs on

the OpenBMI dataset.

Many UDA papers have used the Domain Adversarial Neural Network (DANN) proposed

in [28] as a baseline to compare their networks. In this thesis, we have also compared our

network with this baseline, however, we have customised DANN specifically for our task.

Hence, the feature extractors of the two networks presented for DANN are EEGNet [50] and

ConvNet [87].

4.2 Evaluation

As described previously, different sessions for each subject have considerable variances since

subjects’ conditions under each session are various. The average prediction accuracy of all

subjects for both datasets is presented in Table 4.1 to demonstrate the transferability perfor-

mance of MACNet. Subsequently, we measured the quality of predictions using classification

accuracy presented as follows:

Accuracy =
Tp + Tn

(Tp + Tn + Fp + Fn)
(4.1)

6https://github.com/guangyizhangbci/EEGRiemannian
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where Tp is true positive, Tn true negative, Fp false positive, and Fn false negative. The

objective is to identify a model that provides the best fit and accuracy.

4.3 Comparison with Baseline Approaches

Our proposed method, MACNet, was compared against several baseline methods on both

datasets, and the results are presented in Table 4.1. One of the recent UDA methods, DJ-

DAN [38], achieved a state-of-the-art performance of 81.52% on the BCI Competition IV

dataset. However, MACNet outperformed DJDAN [65] with a high accuracy of 83.79%, rep-

resenting a 2.27% improvement. Moreover, MACNet achieved state-of-the-art performance on

the OpenBMI dataset, achieving an accuracy of 80.00% across all 54 subjects, with an average

increase of 3.15% compared to the best baseline method.

In summary, MACNet outperformed all traditional methods (CSP and its variants) and

other DNN models (EEGNet, ShallowConvNet, ConvNet) and domain adaptation methods

(DJDAN, ConvNet+DANN, EEGNet+DANN) on both datasets. Figure 4.1 shows a compari-

son of MACNet’s performance against different baselines. As can be seen, for all subjects in

both datasets, the points are above the green line, demonstrating the high classification ability

of MACNet.

4.4 Comparison with Different Transfer Setup

Initially, in the last section, all the baseline methods used all of source data and all data of

target domain without its labels for DA. In this part, we decreased the amount of the source and

target data to evaluate our method in more extreme setups and compare it with other baseline

approaches. The results are shown in Figures 4.2, 4.4, 4.3 and 4.5, for both dataset, where the

scatter points represent the accuracy for the test data.
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Figure 4.1: The comparison of mean classification accuracy in a session-to-session transfer ex-

periment between various baseline approaches and MACNet. The green diagonal line indicates

the boundary line where the comparable method performs equally as the MACNet. The first

row is on BCI Competition IV, and the second is OpenBMI data.
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Table 4.1: Classification results experimented with different methods in all subjects. Moreover,

for the rows that are shown ”-,” the method is not implemented for the second dataset, and their

code was not also available.
Accuracy in % for different methods

Method
Datasets

BCI Competition IV [14] OpenBMI [53]

FBCSP [5] 67.75 60.36

CCSP [48] 66.51 62.21

SPDNet [39] 55.67 67.77

EEGNet [50] 60.31 63.63

DeepConvNet [87] 65.17 60.77

FBCNet [39] 76.2 67.19

ShallowConvNet [87] 68.2 71.79

Tensor-CSPNet [45] 72.96 69.65

EEG Riemannian [107] 75.51 72.21

DJDAN [38] 81.52 -

ConvNet+DANN 69.09 73.24

EEGNet+DANN 77.81 76.85

MACNet 83.79 80.00

4.4.1 Comparison of Different Amount of Source Data

To evaluate the impact of the number of source data on the performance of our proposed

method, we gradually increased the amount of source data from 10% to 100% of the sam-

ples, in increments of 20%. When the number of source data is limited, the domain classifier

may struggle to learn a reliable decision boundary to distinguish between the two domains,

leading to poor feature extraction and limited generalization to the target domain. Figures 4.2

and 4.3 demonstrate the ability of MACNet and other baseline UDA methods for both datasets.

Our experimental results demonstrate that the accuracy of the two benchmark approaches
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decreases more significantly when the number of source data is low. Specifically, when only

10% of labeled data is given, our method outperforms the other two UDA methods by a signif-

icant margin. MACNet achieves 54.68% on BCI Competition IV while the other two baseline

are less than 40%. Moreover, MACNet outperformed the other two baseline models with

67.23% compare to 66% and 64% in the OpenBMI dataset. As the amount of labeled data in-

creases to 30%, our method achieves an accuracy of 68% for the BCI Competition IV dataset,

while the other two UDA models remain below 60%. Additionally, for the OpenBMI dataset

with 30% of source data, MACNet improves by more than 2%.

When 50% of the source data is used for both datasets, the accuracy of both baseline ap-

proaches is approximately 62.57% EEGNet+DANN and 58.14% ConvNet+DANN for BCI

Competition IV dataset, and 71.8% EEGNet+DANN and 70.02% ConvNet+DANN for OpenBMI

dataset. However, our proposed model achieves 74.53% and 77.32% for the two datasets, re-

spectively, outperforming the other baselines by a significant margin. These results demon-

strate the efficiency of our technique, particularly in situations where there is a limited amount

of labeled data available.

4.4.2 Comparison of Different Amount of Target Data

In the second step of our experimental evaluation, we increased the amount of target data from

10% to 100% in increments of 20%, and the results are presented in Figures 4.4 and 4.5. Our

analysis shows that the performance of the other two UDA approaches decreases significantly

when only 10% of the target data is used for alignment in both datasets. Specifically, in the

BCI Competition IV dataset, both baseline approaches achieve an accuracy below 68%, while

our proposed method MACNet achieves 76%. Similarly, in the OpenBMI dataset, both base-

line approaches perform below 67%, while MACNet achieves an accuracy of more than 72%.

Furthermore, our approach consistently outperforms the other two UDA methods for differ-

ent percentages of target data used in the model, demonstrating a significant improvement in

performance.
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Figure 4.2: Performance comparison between our method and two other benchmark UDA mod-

els for different amount of source data (%) used during training BCI Competition IV dataset.

Figure 4.3: Performance comparison between our method and two other benchmark UDA

models for different amount of source data (%) used during training Open BMI dataset.
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Figure 4.4: Performance comparison between our method and two other benchmark UDA

models for different amount of target data (%) used during training for BCI Competition IV

dataset.

Figure 4.5: Performance comparison between our method and two other benchmark UDA

models for different amount of target data (%) used during training for Open BMI dataset.
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4.5 Ablation Study

To evaluate the significance of the components of MACNet on its performance, this paper

presents an ablation study. The experiment is conducted with constant hyperparameters, and

two components are investigated. The first component is Lm2
d , which represents the domain

classifier loss for mixup in the embedding level. The second component is the multi-view

contrastive loss, which is performed on source and target data Ls
scon and Lt

scon.

Table 4.2 shows the average accuracy of all presented methods. The first set of experiments

(first raw) is the scenario where the model is trained without contrastive loss and mixup in

the embedding level. In the second set of experiments (second raw), the model is trained

without contrastive loss, and in the last experiment, the model is trained without mixup in the

embedding level. Furthermore, Figures 4.7 and 4.6 illustrate all of the proposed scenarios for

both datasets for each specific subject.

The results show that adding mixup in the embedding level to the baseline model signifi-

cantly improves the model’s performance, as seen in the second and fourth rows of Table 4.2

for both datasets. This is because mixup at the embedding level enables the model to be more

continuous in a domain-invariant embedding space.

Additionally, the contrastive component is also analyzed in the study. The third and fourth

rows of Table 4.2 indicate that adding contrastive loss to the model enhances its performance

for both datasets. This finding is consistent with the results shown in Figures 4.7 and 4.6. The

contrastive task extracts valuable features on both views, which are pulled together to create a

more semantic representation. This process helps the model to have a better representation of

domain-invariant features.

4.6 Visualization

T-distributed stochastic neighbor embedding (t-SNE) [94] is a powerful technique for visual-

izing high-dimensional data by reducing the dimensions to 2 or 3-dimensional space. In this

section, we utilize t-SNE to visualize the embeddings of MACNet to investigate its classifica-
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Table 4.2: Classification results experimented in all of the subjects with different methods

Mixup embedding Contrastive BCI Competition IV OpenBMI

× × 81.48 76.99

✓ × 82.94 77.12

× ✓ 82.98 79.18

✓ ✓ 83.79 80.00

Figure 4.6: Comparison of the different proposed methods on the OpenBMI dataset
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Figure 4.7: Comparison of the different proposed methods on BCI Competition IV dataset

tion performance and domain alignment ability. Specifically, we demonstrate the effectiveness

of MACNet by embedding it in a two-dimensional space through: (1) pulling together the

source and target classes of both domains based on contrastive loss, and (2) aligning both the

source and target domains based on the multi-level mixup and adversarial loss. Figures 4.8 and

4.9 show the test data for subjects (A03, A04, A08, A09) of the BCI Competition IV dataset

and subjects (O09, O28) of the OpenBMI dataset, respectively.

As shown in both figures, the left side represents the test embedding before applying MAC-

Net, where the labels are mixed and cannot be clustered. However, the right side shows the

final epoch of MACNet on the test data, where the feature distribution is discriminative and

can effectively classify the target data.

Furthermore, Figure 4.10 demonstrates the domain alignment ability of MACNet. Before

applying MACNet, the original features in the source and target domains are very sparse and

distant from each other, making it challenging for the model to correctly classify the labels.

However, after MACNet, the feature embeddings are completely overlapped and mixed, indi-

cating that MACNet successfully aligns both the source and target domain distributions and

creates domain-invariant features in the latent space.

Overall, t-SNE visualization results show that MACNet can effectively extract domain-
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invariant features and improve the model’s classification performance by aligning the source

and target domains.

Figure 4.8: Feature embedding of the test data before MACNet and after MACNet for BCI

Competition IV on subjects 3, 4, 8 and 9
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Figure 4.9: Feature embedding of the test data before MACNet and after MACNet for

OpenBMI on subjects 9 and 28
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Figure 4.10: Embedding of source and target domain of subject 5 of the BCI Competition IV

dataset before and after MACNet



Chapter 5

Conclusion and Future works

5.1 Conclusion

We investigate the problem of UDA in MI data in this thesis. In a BCI context, due to the

challenges, it is difficult and expensive to obtain more data. Moreover, due to the domain shift

problem, the disturbance of training and test data is different. Hence, the model will perform

poorly when it is evaluated on the test data. To address this issue, one of the most effective

solutions is UDA, which uses the data from the source domain with its label and only requires

the collection of unlabeled data for the target domain.

Even though there have been some studies in this field for an inter-subject task in MI, such

as traditional learning, DNN, and DA, there are still many ways to improve performance in

the context. This thesis proposes a novel multi-view UDA method to handle the EEG-based

MI classification task called MACNet. MACNet extracts spatio-temporal information from

multiple views of both the Riemannian manifold and Euclidean space to learn better represen-

tations. We proposed a multi-level mixup that generates a more continuous domain-invariant

latent space to enhance a domain-invariant representation among both source and target do-

mains. In addition, we test our framework with two public datasets for MI classification. Our

results illustrate the robustness of our model in both binary classification and multi-class clas-

sification in both datasets. Furthermore, extensive experiments on all methods presented in this

54
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thesis were conducted, and overall, MACNet outperformed all state-of-the-art models.

5.2 Future Works

In this thesis we have have focused on the domain adaptation problem in inter-subject of MI

data. However, DA problem in these type of data is not yet fully solved and need additional

research.

Multi-Source DA

One exciting research approach in this field is implementing multi-source DA for BCIs. In

this setup, the training set includes multiple domains, each of which has various distributions.

For instance, the training data can be 8 out of 9 subjects, and we will try to DA with another

remaining subject. In addition to this method, another exciting approach can be multi-source

to multi-target UDA. For instance, a UDA model learns on the BCI Competition IV dataset and

aligns with OpenBMI.

Domain Generalization

In this thesis, the data were nonstationary and needed to be aligned. As a result, the source

and target data were aligned, using both source and unlabeled target data. However, in many

tasks, there are no target data available; hence in these types of problems, the objective is that

the model learns from several domains and can generalize well for the unseen data.

As noted in the previous sections, numerous DA works have been presented in computer vision

and natural language processing; however, there have not been many studies on DA difficulties

in BCIs, and neither are there many codes accessible for these types of challenges. However,

as indicated, this field has a lot of potentials to grow. Thus, it is hoped that the outcomes of
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this thesis will inspire other researchers to make domain adaptations and continue this field for

different types of BCI data.



Bibliography

[1] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix

manifolds. Princeton University Press, 2009.

[2] Haider Al-Tahan and Yalda Mohsenzadeh. Clar: Contrastive learning of auditory rep-

resentations. In International Conference on Artificial Intelligence and Statistics, pages

2530–2538. PMLR, 2021.

[3] Hamdi Altaheri, Ghulam Muhammad, Mansour Alsulaiman, Syed Umar Amin,

Ghadir Ali Altuwaijri, Wadood Abdul, Mohamed A Bencherif, and Mohammed Faisal.

Deep learning techniques for classification of electroencephalogram (eeg) motor im-

agery (mi) signals: a review. Neural Computing and Applications, pages 1–42, 2021.

[4] Kai Keng Ang, Zheng Yang Chin, Chuanchu Wang, Cuntai Guan, and Haihong Zhang.

Filter bank common spatial pattern algorithm on bci competition iv datasets 2a and 2b.

Frontiers in neuroscience, 6:39, 2012.

[5] Kai Keng Ang, Zheng Yang Chin, Haihong Zhang, and Cuntai Guan. Filter bank com-

mon spatial pattern (fbcsp) in brain-computer interface. In 2008 IEEE International

Joint Conference on Neural Networks (IEEE World Congress on Computational Intelli-

gence), pages 2390–2397. IEEE, 2008.

[6] KK Ang, ZY Chin, H Zhang, and C Guan. Ieee international joint conference on neural

networks, 2008. ijcnn 2008.(ieee world congress on computational intelligence). 2008.

57



58 BIBLIOGRAPHY

[7] Vincent Arsigny, Pierre Fillard, Xavier Pennec, and Nicholas Ayache. Geometric means

in a novel vector space structure on symmetric positive-definite matrices. SIAM journal

on matrix analysis and applications, 29(1):328–347, 2007.

[8] Ruslan Aydarkhanov, Marija Ušćumlić, Ricardo Chavarriaga, Lucian Gheorghe, and

Jose del R Millan. Spatial covariance improves bci performance for late erps com-

ponents with high temporal variability. Journal of Neural Engineering, 17(3):036030,

2020.
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