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ABSTRACT

Cluster randomization trials are experiments where intact social units (e.g. hos-

pitals, schools, communities, and families) are randomized to the arms of the trial

rather than individuals. The popularity of this design among health researchers is

partially due to reduced contamination of treatment effects and convenience. How-

ever, the advantages of cluster randomization trials come with a price. Due to the

dependence of individuals within a cluster, cluster randomization trials suffer reduced

statistical efficiency and often require a complex analysis of study outcomes.

The primary purpose of this thesis is to propose new confidence intervals for effect

measures commonly of interest for continuous outcomes arising from cluster random-

ization trials. Specifically, we construct new confidence intervals for the difference

between two normal means, the difference between two lognormal means, and the

exceedance probability.

The proposed confidence intervals, which use the method of variance estimates

recovery (MOVER), do not make certain assumptions that existing procedures make

on the data. For instance, symmetry is not forced when the sampling distribution

of the parameter estimate is skewed and the assumption of homoscedasticity is not

made. Furthermore, the MOVER results in simple confidence interval procedures

rather than complex simulation-based methods which currently exist.

Simulation studies are used to investigate the small sample properties of the

MOVER as compared with existing procedures. Unbalanced cluster sizes are sim-

ulated, with an average range of 50 to 200 individuals per cluster and 6 to 24 clusters

per arm. The effects of various degrees of dependence between individuals within the

same cluster are also investigated.

When comparing the empirical coverage, tail errors, and median widths of confi-

dence interval procedures, the MOVER has coverage close to the nominal, relatively

balanced tail errors, and narrow widths as compared to existing procedure for the

iii



majority of the parameter combinations investigated. Existing data from cluster ran-

domization trials are then used to illustrate each of the methods.

Keywords: cluster randomization trials, confidence intervals, normal mean, lognor-

mal mean, exceedance probability, method of variance estimates recovery, generalized

confidence interval procedure, Wald method.
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Chapter 1

INTRODUCTION

1.1 Randomized controlled trials

A randomized controlled trial is an experiment that randomly assigns units to different

intervention groups, usually a control group and an experimental group. Successful

randomization can prevent selection bias and balance intervention groups for both

known and unknown factors associated with the outcome of interest such that the

arms of the trial will differ only according to the intended difference being tested

(Julious and Zariffa, 2002). Thus, a well conducted randomized controlled trial is

usually considered as the gold standard for evaluating health care interventions. Con-

sequently, many systematic reviews of the effects of health care interventions, such

as those of the Cochrane Collaboration, are carried out primarily using data from

randomized controlled trials (Clarke et al., 1999, section 13.1.3).

1.2 Cluster randomization trials

Cluster randomization trials are a special case of randomized controlled trials where

intact social units, rather than individuals, are randomly allocated to the arms of the

trial. These social units are commonly termed “clusters”.

Cluster randomization trials have a number of interesting properties. As with in-

dividually randomized trials, on average, cluster randomization balances comparative

groups according to known and unknown factors associated with the outcome of inter-

est (Donner and Klar, 2000, page 11). Therefore, it is used to eliminate confounding

effects at both the cluster level and the individual level.
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Cluster sizes are diverse, ranging from as few as one or two individuals to hundreds

of thousands. Examples of clusters include families, schools, work sites, physician

practices, and entire communities. Another example is given by Daltroy et al. (2007),

who randomized ferry boats on which entertainment troupes delivered an educational

intervention about how to prevent Lyme disease by avoiding contact with ticks.

A distinctive property of cluster randomization trials is that observations within

each cluster may be correlated. If inferences are made at the cluster level, then this is

not an issue. However, if inferences at the individual level are of interest, clustering

may lead to reduced efficiency and a potentially complicated analysis as compared

to individual level randomization. Consequently, the effects of clustering must be

accounted for in the design and the analysis of the study if the unit of inference (e.g.

the individual) differs from the unit of random allocation (e.g. the cluster).

Due to the potential loss in efficiency and the increased complexity of the analysis

of cluster randomization trials when the unit of randomization differs from the unit of

inference, justification for adopting the clustered design is necessary. Several common

reasons warrant the use of a cluster randomization trial. First, interventions may

only be delivered at the cluster level. This strategy was adopted by Williamson

et al. (2007) who compared the effects of an environmental intervention (including

changes to the cafeteria menu) to those of an active control for preventing weight

gain in children. Since the change to the cafeteria menu is designed to be delivered

to an entire school, it would not be feasible to randomize individuals to receive this

intervention. Randomization must necessarily be at the cluster level, the school.

Second, given that individuals in the same cluster are likely to interact, randomiz-

ing clusters to intervention groups commonly reduces contamination across the arms

of a study. For example, Sankaranarayanan et al. (2007) evaluated the effect of visual

screening as compared to usual care on cervical cancer incidence and mortality in

India by randomizing villages to reduce contamination within each village.

Third, a clustered design can enhance the compliance of participants or investi-
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gators, improve logsitic convenience, or decrease the cost of the study. For instance,

Trevino et al. (2004) randomized schools to receive either an educational intervention

or usual care for the purpose of decreasing capillary glucose levels in an attempt to

control diabetes mellitus. A clustered design was chosen because programs which

include social support and peer pressure tend to improve compliance (Perri et al.,

1988).

Finally, if the objective of a study is to obtain the total effect of an intervention,

a clustered design may be employed. With certain interventions it may be feasible

to randomize at either the individual or cluster level, but if the question of interest

lies at the cluster level, the unit of randomization must necessarily be the cluster.

A common example arises from studies of infectious disease, where both direct and

indirect effects are of interest (Hayes and Moulton, 2009, Chapter 3). Direct effects

of an intervention such as an immunization may be captured using an individually

randomized trial. However, indirect effects include the effects of an intervention which

is administered to others, such as herd immunity. Unfortunately, this type of effect

cannot be measured in a trial which randomizes individuals. A cluster randomization

trial on the other hand would allow the measure of direct, indirect, and total (the

combination of direct and indirect) effects of the intervention. Melese et al. (2008)

were interested in the effect of biannual antibiotic treatment on infectious trachoma

as compared to an annual treatment. The total effect of antibiotic treatment on the

population was of interest. This was measured by the comparison of village prevalence

of occular chlamydial infection, therefore villages were randomized to each arm.

Oftentimes a cluster randomization trial design is used for multiple reasons. For

example, a recent cluster randomization trial (Pandey et al., 2007) randomized dis-

tricts (each containing 5 village clusters) in the Uttar Pradesh state in India to inves-

tigate the impact on health and social services delivered by the villages by informing

resource-poor rural populations about entitled services. The advantage of random-

ization by cluster in this case was administrative convenience, as the districts were
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obtained from a single state which determined both health and educational services.

Furthermore, randomization by cluster was adopted to lower the level of contamina-

tion, as travel between intervention and control villages would have been difficult.

When there are acceptable justifications for clustering, there are a number of trial

designs to choose from. The most commonly used clustered designs are the completely

randomized design, the stratified design, and the matched-pair design.

In a completely randomized cluster trial all of the clusters involved in the study are

randomly allocated to the arms of the trial without the statifying or mathing baseline

characteristics. For instance, this design was used by Vizcaino et al. (2008), where

no stratification was used to randomize twenty schools to receive either a physical

activity program or usual care to prevent childhood obesity. In this case, random

allocation was performed using a computer generated procedure.

An implication of randomizing clusters, however, is that only a small number of

clusters may be involved in the study, especially when the cluster sizes are large.

As such, randomization may not ensure balance of cluster level confounders between

arms. In such cases, stratification or matching may be useful to increase balance

between the arms of a trial. For the stratified and matched-pair designs, the clusters

in each stratum are assigned according to baseline characteristics or similarities be-

tween clusters such that these characteristics are potentially related to the outcome.

Examples of common matching characteristics include cluster size and geographical

location.

A stratified design assigns multiple clusters to different interventions within each

stratum. This design was adopted by Naylor et al. (2006) who studied the effect

of a physical-activity action plan in schools on physical activity level. With so few

clusters, cluster size and geographic location may not have been balanced between

trial arms, so the ten schools were first stratified by these variables, then the clusters

within each stratum were randomly assigned to the two study arms.

A matched pair design is a special case of a stratified design where there are only
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two clusters within a stratum, such that there is a very tight balance of baseline

characteristics associated with the outcome between these two clusters. Each cluster

in a pair is then randomly allocated to a different arm. As an example, Flannery et al.

(2003) matched eight schools based on geographic proximity, the percentage of ethnic

students, the percentage of students eligible for free or reduced-price lunch, and the

percentage of students in English as a Second Language classes. These clusters were

randomized to determine the effect of an immediate social peace building intervention

on violence prevention, as compared to a delayed intervention. It is important to

recognize that the lack of replication of clusters to each arm within each stratum

complicates the ability of quantifying the similarity of individuals within each cluster

as compared to between clusters, because the variation of responses between clusters

is confounded with the effect of intervention. Thus, data from such a design is usually

analyzed at the cluster level (Klar and Donner, 1997).

1.3 Notation

Correlated continuous outcomes commonly arise from cluster randomization trials,

where these responses may often be approximated with the normal distribution. To

allow for a more detailed discussion about useful effect measures, we now digress to

introduce some notation by starting with an assumption that data from each arm

of the trials is assumed to follow a one-way random effects model. This assumption

allows two levels of variance - one at the individual level and one at the cluster level.

Furthermore, attention is limited to a completely randomized trial design for the sake

of simplicity.

Suppose ki clusters are randomized to intervention i (i = 1, 2). Let mij denote

the jth cluster size (j = 1, ...ki) of arm i. Now let

Yijl = µi + Aij + Eijl, (1.1)

where Yijl denotes the lth observed outcome (l = 1, ..., mij) from the jth cluster of
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arm i, µi is the population mean of arm i, and Aij ∼ N(0, σ2
Ai

) is independent of

Eijl ∼ N(0, σ2
Ei

).

Continuing with the case of two arms, the three parameters in each arm include

the overall mean (µi), the between-group (or between-cluster) variance component

(σ2
Ai

), and the within-group (within-cluster) variance component (σ2
Ei

). Observations

can then be used to estimate these three parameters. Attention is limited to Analysis

of Variance estimators of variance components, as recommended for low to moderate

values of the intraclass correlation coefficient (ICC) (see Section 1.4.2) (Donner and

Koval, 1980). This thesis focuses on small to moderate values of the ICC, as discussed

in Chapter 4.

The overall mean of arm i, µi, may be estimated by

¯̄Yi = M−1
i

∑

j

∑

l

Yijl,

where Mi =
∑

j mij denotes the total number of individuals in arm i. The cluster-

specific mean may be estimated by

Ȳij = m−1
ij

∑

l

Yijl.

To estimate the variance components, denote

MSCi =
SSCi

ki − 1
and

MSWi =
SSWi

Mi − ki

as the mean squared errors between- and within-clusters, respectively, where

SSCi =
∑

j

mij

(
Ȳij − ¯̄Yi

)2

and

SSWi =
∑

j

∑

l

(
Yijl − Ȳij

)2
.

The between-cluster variance component may be estimated by

S2
Ai

=
MSCi − MSWi

moi

,

(1.2)
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where

moi =
Mi −

∑
j m2

ij/Mi

ki − 1
,

and the within-cluster variance component by

S2
Ei

= MSWi.

An estimate of the total variance in arm i is then given by S2
Ti

= S2
Ai

+ S2
Ei

.

When all cluster sizes are equal (or balanced), the estimated parameters of each

arm (assumed to follow a one-way random effects model) of a cluster randomization

trial follow familiar distributions. That is,

¯̄Yi ∼ N

(
µi,

σ2
Ai

+ σ2
Ei

/mi

ki

)
(Donner and Klar, 2000, page 8),

SSCi

σ2
Ei

+ miσ
2
Ai

∼ χ2
ki−1, and

SSWi

σ2
Ei

∼ χ2
Mi−ki

(Graybill, 1976, page 609). (1.3)

These properties may be used to construct confidence intervals for the overall mean

and variance components of the model.

However cluster sizes are rarely balanced in practice. Although SSWi/σ
2
Ei

∼
χ2

Mi−ki
approximately holds for the unbalanced design, SSCi/(σ

2
Ei

+ miσ
2
Ai

) no longer

follows a chi-squared distribution and the variance of ¯̄Yi must be adjusted (Burdick

et al., 2006). Thomas and Hultquist (1978) proposed an unweighted mean squared

error which may be used in the unbalanced design,

S2
Ui =

nHi

∑
j(Ȳij − ¯̄Yi)

2

ki − 1
, (1.4)

where

E(S2
Ui) = σ2

Ei
+ nHiσ

2
Ai

,

nHi =
ki∑

j 1/mij
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is the harmonic mean of the cluster sizes, and

(ki − 1)S2
Ui

σ2
Ei

+ nHiσ2
Ai

∼ χ2
ki−1.

The variance estimate of the estimated overall mean, ¯̄Yi, is then given by S2
Ui/(kinHi)

(for i = 1, 2).

1.4 Brief summary of methods for cluster randomization trials with

continuous data

The primary purpose of conducting a cluster randomization trial is to make compar-

isons between arms. The first step of meeting such an objective is to obtain a useful

summary statistic that answers the primary question of interest of the study. The

primary question of interest informs whether the analysis will be performed at the

cluster level or at the individual level. We start with cluster level analysis as the

methods are simpler.

Cluster-level analyses

Although randomization in a cluster randomization trial occurs at the cluster level,

investigators usually have a choice between cluster-level or individual-level analyses.

Cluster-level analysis begins with creating cluster-specific summary statistics, followed

by the application of standard statistical methods which are approximately valid.

Each cluster level summary measure is then treated as a single observation, and

clusters are independent.

Cluster-level analyses are appropriate when the primary question of interest is

directed not to the individual, but to the randomized unit. For example, Lenhart

et al. (2008) were interested in determining the effect of insecticide treated bednets

on the transmission of vector-borne diseases and dengue by mosquitos in Haiti. The

treated bednets kill the disease transmitting vectors when mosquitos come into contact
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with them. In this study, 9 pairs of sectors containing a total of 1017 houses were

randomized to either insecticide treated bednets or bednets which were not treated

(usual care). The outcome of primary interest in this case was the number of trap

containers with mosquitos with immature stages of disease per 100 households. A

paired t-test was used to obtain inferences on this cluster-level outcome, where it

was found that insecticide treated bednets had an immediate positive effect on vector

diseases and dengue transmission.

As standard statistical methods may be used to analyze data at the cluster level,

many valid and efficient procedures already exist. This thesis therefore focuses on

analysis procedures at the individual level. Thus, unless otherwise stated, any mention

of statistical analyses refers to individual level methods rather than those at the cluster

level.

Individual level analyses

Although randomization occurs at the cluster level, inferences at the individual level

are commonly of interest. For example, in a prenatal care study, Villar et al. (1998)

evaluated a new antenatal care program by comparison to standard care through a

cluster randomization trial, where the program’s effects on birth weight was of primary

interest. As another example, Christian et al. (2003) randomized 426 communities to

five trial arms to determine the effect of micronutrient supplements on birth weight,

where comparisons were made using the differences in average birth weights between

each treatment arm and the control. To obtain inferences on this difference at the

individual level, both between cluster and within cluster variance components must

be accounted for.

Clusters in a cluster randomization trial may be assumed to be independent,

however the individuals within each cluster may not. Two individuals in the same

cluster are likely to be more similar than two individuals from different clusters (Hayes

and Moulton, 2009, page 11). Therefore, there exist two levels of variation in a
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clustered design: the variation within clusters (σ2
E) and the variation between clusters

(σ2
A), where the total variation equals σ2

T = σ2
A + σ2

E. Clustering occurs when the

variation between clusters is non-zero. Therefore, these variance components may be

used to quantify the similarity of individuals within the same cluster.

Two indices have been used to quantify the similarity of responses within clusters

rather than between. The first is the intraclass correlation coefficient (ICC) (Donner

et al., 1981), interpreted as the standard Pearson correlation coefficient between two

responses in the same cluster. It is given by the ratio of the between cluster variance

component to the total variance (ρ = σ2
A/σ2

T ). When the responses of individuals in

the same cluster are no more similar than those of other clusters, the between cluster

variation and consequently the ICC both equal zero. At the other extreme, when all

of the responses of individuals in the same cluster are identical, the within cluster

variance component equals zero, and the ICC equals one. The majority of the time,

the ICC falls between these two extremes. In a review by Eldridge et al. (2004),

the median ICC value for cluster sizes of around 30 was 0.04, with an interquartile

range of −0.02 to 0.21. Larger clusters such as communities typically have smaller

ICC values of 0.002 to 0.012 (Hannan et al., 1994). Note that negative ICC values

are possible, but improbable, typically occurring when individuals within the same

cluster are less similar to one another than to individuals in other clusters (Hayes and

Moulton, 2009, page 17). Due to their rare occurrence (Donner and Klar, 2000, page

11), negative ICC values will not be investigated further.

The second index used to account for dependent responses in a cluster is the coef-

ficient of variation between clusters (CVA = σA/µ) (Hayes and Moulton, 2009, page

16). As the similarity in responses of two individuals in the same cluster with respect

to other clusters increases, the difference in the responses between clusters will also

increase. That is, the variance of the cluster-specific means will increase. The be-

tween cluster coefficient of variation measures the spread of the cluster-specific means

as a proportion of the overall mean. Therefore, when the responses of two individu-
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als in the same cluster are no more similar than the responses of two individuals in

different clusters, then σ2
A = 0 and CVA = 0. However, when the responses of two

individuals in the same cluster are more similar than the responses of two individuals

in different clusters, then σ2
A > 0 and CVA > 0 (assuming that µ > 0). Shoukri et al.

(2008) and Quan and Shih (1996) give a description of the within-cluster coefficient

of variation (CVE = σE/µ) as a measure of reproducibility. However, this measure

(CVE) is not as relevant to quantifying the effect of clustering as CVA, because it

gives no information about existing differences between clusters.

The common element in both the ICC and the between-cluster coefficient of vari-

ation is the between-cluster variance component, σ2
A. These statistics may further be

used to quantify the effect of clustering for analysis at the individual level.

The effect of clustering on data analysis may be quantified by the design effect

(Donner and Klar, 2000, page 8). The design effect is interpreted as the ratio of

the variance of the estimated effect measure for cluster sampling to that of random

sampling, and is given as (Hayes and Moulton, 2009, page 21)

deff = 1 + (m − 1)ρ (1.5)

= 1 + (m − 1)
σ2

A

σ2
T

= 1 + (m − 1)
σ2

A

σ2
T

µ2

µ2

= 1 + (m − 1)CVA
µ2

σ2
T

, (1.6)

where m is the size of the clusters.

Once the effect of clustering is quantified, there are a variety of analysis procedures

to choose from. The choice of analysis procedure depends on the question of interest

and the properties of the data.
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Current methods for a difference between two normal means

The responses from a cluster randomization trial may often be approximated with

the normal distribution. For instance, body weight, height, body temperature, blood

pressure, or summary scores from standardized questionnaires frequently follow nor-

mal distributions. For example, Kinra et al. (2008) randomized villages in India

to investigate the effect of protein-calorie supplementation and public health pro-

grammes on cardiovascular risk. Outcome measures in this study included height and

blood pressure, and were assumed to be normally distributed. As another example,

Montgomery et al. (2000) randomized twenty-seven general practices to investigate

the effect of a computer based clinical decision support system and a risk chart on

blood pressure, an outcome which may be assumed to follow a normal distribution.

This data is used in Chapter 5 as an illustration of the methods investigated in this

thesis.

When sample means and their differences are assumed to follow normal distribu-

tions, confidence intervals or hypothesis tests for a difference between means or the

equality of means may be used to draw conclusions from a cluster randomization trial.

Because they encompass hypothesis testing, confidence intervals are preferred. This

claim is detailed in Chapter 2.

A method proposed by Donner and Klar (1993) is to use the design effect (Equa-

tion (1.5)) to adjust the variance of the difference for clustering. The inflated variance

is then plugged into the usual t-interval, setting degrees of freedom to the number

of clusters minus two. This procedure uses a pooled estimate of the standard error,

thereby assuming equal variances (homoscedasticity) in the two arms being com-

pared. As in the case of individually randomized designs, variance homogeneity can

be assumed in hypothesis testing when the null hypothesis is true, but not in the con-

struction of confidence intervals (Wang and Chow, 2002). Donner and Klar (1993)

pointed this out in the context of cluster randomization trials for the assumption of
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a common design effect under the null hypothesis.

To avoid the homoscedasticity assumption of many statistical inference procedures,

the variance in each arm of a cluster randomization trial may be estimated separately.

The usual variance estimate which ignores clustering is biased when ICC > 0, under-

estimating the total variance (White and Thomas, 2005). Instead, the total variance

of the overall mean in each arm of a clustered trial is given by (Donner and Klar,

2000, page 8)

var(Ȳi) =
σ2

A + σ2
E/m

k
,

where k is the number of clusters of size m. This cluster-adjusted variance may be

estimated using the unweighted mean squared error (Thomas and Hultquist, 1978)

for variable cluster sizes. El-Bassiouni and Abdelhafez (2000) showed that using the

unweighted mean squared error to construct a confidence interval for a single normal

mean from a one-way random effects model maintains the desired coverage, although

tends to be wide when the ICC is less than 0.2. This confidence interval method may

be applied here, because the observations in each arm of a cluster randomization trial

may be assumed to follow a one-way random effects model.

Another approach to the above closed-form procedures is the generalized confi-

dence interval method (Weerahandi, 1993). Generalized confidence intervals are based

on the simulation of a known generalized pivotal quantity that possess the following

two properties:

(i) its probability distribution is not dependent on any unknown parameters and

(ii) the observed value is not dependent on any unknown nuisance parameters.

Property (i) of the generalized pivotal quantity ensures that the confidence region

may be found without the knowledge of unknown parameter values. This property

is also found in the definition of the usual pivotal quantity - a quantity which is a
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function of observations and unknown parameters, but whose distribution does not

depend on any unknown parameters. Property (ii) of the generalized pivotal quantity,

which is not found in the usual definition of pivotal quantities, further ensures that

the confidence region may be obtained with only the use of the observed data.

To construct a generalized confidence interval, the generalized pivotal quantity

is simulated a large number of times and the limits are set to the α/2 and 1 − α/2

quantiles. However, certain drawbacks of generalized confidence intervals arise as a

consequence of property (ii): aside from having to know the generalized pivotal statis-

tic in advance, generalized confidence intervals do not have a closed form, because

the observed pivotal is based on simulation. Consequently, two generalized confidence

intervals of the same confidence coefficient for the same dataset may differ. This may

make a difference particularly in cases where there is a composite parameter of inter-

est.

More complex methods of analysis include mixed regression models (Harville, 1977;

Harville and Jeske, 1992) and generalized estimating equations with an exchangeable

correlation matrix (Liang and Zeger, 1996). When there are a small number of clusters

involved in a trial, there may be chance imbalance of covariates that are predictive of

the outcome. These methods have the ability to adjust for unbalanced covariates in

different trial arms. Unfortunately, the methods may be invalid when there are fewer

than fifteen clusters per arm (Hayes and Moulton, 2009, Chapter 11), precisely when

chance imbalance of covariates may occur, although improvements have been sug-

gested (Skene and Kenward, 2010). Additionally, regression methods and generalized

estimating equations as applied to cluster randomization trials sacrifice the desired

simplicity of many of the confidence interval procedures discussed thus far. Covari-

ate adjustment procedures will therefore be exempt from this thesis. Extensions for

covariate adjustment may be considered in future works.
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1.5 Alternative effect measures in cluster randomization trials

The standardized mean difference

Some outcomes are not as easily interpreted on the raw scale as outcomes such as

height, weight, or blood pressure which have a natural comparison using a difference.

For example, quality of life scores are a subjective assignment of values based on a

combination of features. Other subjective ratings may also have this problem. In

such cases, investigators often compare two groups using Cohen’s effect size (Cohen,

1988), defined by the difference in the magnitudes of treatment effects in units of

standard deviation. For instance, Jordhoy et al. (2001) randomized community health

districts and used the effect size as the summary measure to assess the impact of

comprehensive palliative care compared with conventional care on the quality of life

of cancer patients. Also, Bernstein et al. (2005) randomized schools to three arms to

compare effectiveness of school-based interventions for anxious children. The primary

outcome was the change in composite clinician severity rating from baseline to post-

treatment, where the effect size was used as the summary measure when comparing

the arms of the trial. Also note that the effect size is often used to summarize results

in a meta-analysis. For example, in the meta-analysis by Brunoni et al. (2009) the

effect size was used to show that placebo responses of major depressive disorders are

large regardless of the intervention of the study.

The choice of the effect size expression is more complicated in cluster randomiza-

tion trials than in individually randomized trials. In an individually randomized trial,

the effect size is set to the difference between means divided by the standard devi-

ation. This standard deviation may be set to the pooled sample standard deviation

(Hedges and Olkin, 1985), with an interpretation of the difference between means of

two arms in terms of the extent to which individual responses vary. Alternatively,

the denominator may be set to the control group standard deviation, leading to a

measurement of the difference in means between the arms in terms of the extent to
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which control group individuals vary amongst one another. However, in cluster ran-

domization trials which have two levels of variation, there are even more possibilities

for the denominator. Hedges (2007b) discusses three possibilities, each depending

on the inference of interest to the researcher. These possibilities include setting the

denominator to a function of the within cluster variance component, the between

cluster variance component, or the total variance. Consequently, each would have a

slightly different interpretation, potentially complicating the summary of results in

meta-analyses which often include both cluster randomization trials and individually

randomized trials.

Another issue lies with the direct interpretation of the effect size. Cohen (1988)

defined “small”, “medium”, and “large” effect sizes as 0.2, 0.5, and 0.8, respectively.

However, this interpretation is meant for application to the behavioral sciences, not

necessarily as a generalization to all disciplines. Furthermore, the interpretation in

units of standard deviations has more of a statistical meaning rather than a clinical

meaning, potentially complicating results to a clinician. Also, although this mea-

sure has gained popularity in the behavioral and social sciences, there is no clear

interpretation to the measure in a probabilistic sense.

Using the standard normal cumulative distribution function, it can be shown that

the interpretation of the effect size is a function of the probability that the observation

(Y1) of a randomly selected individual from one arm of the trial is larger than the

mean of another arm (µ2). That is, assuming µ2 > µ1 and homoscedasticity for

simplicity,

P(Y1 > µ2) = P(Y1 − µ1 > µ2 − µ1)

= P

(
Y1 − µ1√

σ2
>

µ2 − µ1√
σ2

)

= P

(
Z >

µ2 − µ1√
σ2

)

= Φ

(
µ1 − µ2√

σ2

)
,
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where σ2 is the pooled variance. Note that if µ1 > µ2 then the effect measure would

be Φ
(

µ2−µ1√
σ2

)
. However, there are two clear concerns with this interpretation. First,

the true mean (µ2) is rarely known in practice. Second, it is illogical to interpret

study results by comparing a randomly selected individual in one arm to the mean

of the observations from another arm. This comparison does not generally answer

typical questions which motivate the conduct of cluster randomization trials.

It would be more logical to find the probability that a randomly selected individual

in one arm has a larger outcome than a randomly selected individual in another arm,

P(Y1 > Y2). For example, in a medical context comparing the responses of two

treatments, where Y2 represents the response under treatment 1 and Y2 represents

the response under treatment 2, P(Y1 > Y2) = 0.7 makes more sense to a clinician

and a patient than does (µ1−µ2)/σ = 1. Let us refer to P(Y1 > Y2) as the exceedance

probability.

In the past, the exceedance probability has been described as intuitive and simple

(McGraw and Wong, 1992; Grissom, 1994; Kraemer et al., 2003) and has shown wide

application in the literature. For instance, its application may be found in reliability

measurements (Church and Harris, 1970) and clinical equivalence trials (Hauck et al.,

2000). It is also closely related to the area under the receiver operator characteristic

curve and to non-parametric statistics (Acion et al., 2006). It is its application to

cluster randomization trials which is of interest here.

Let Y1 ∼ N(µ1, σ
2
T1

) and Y2 ∼ N(µ2, σ
2
T2

) represent observations from two arms of

a cluster randomization trial, where σ2
Ti

= σ2
Ai

+σ2
Ei

. The exceedance probability may
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then be manipulated to uncover the effect measure which is of applicable interest,

P(Y1 > Y2) = P(Y1 − Y2 > 0)

= P(Y1 − Y2 − (µ1 − µ2) > −(µ1 − µ2))

= P


Y1 − Y2 − (µ1 − µ2)√

σ2
T1

+ σ2
T2

>
−(µ1 − µ2)√

σ2
T1

+ σ2
T2


 (1.7)

= P


Z >

−(µ1 − µ2)√
σ2

T1
+ σ2

T2




= Φ


 (µ1 − µ2)√

σ2
T1

+ σ2
T2


 .

The effect measure of interest is thus a monotone function of the standardized mean

difference,

δ =
µ1 − µ2√
σ2

T1
+ σ2

T2

. (1.8)

Although the term ‘standardized mean difference’ is often used interchangeably with

‘Cohen’s effect size’, here it will refer to δ. Confidence intervals for P(Y1 > Y2) may

then be obtained from confidence intervals for δ using the transformation principle

(see Section 2.3.2).

In addition to having a logical interpretation, this measure is capable of capturing

all of the effects of the treatment as compared to the control. A difference in means

is clearly useful when comparing overall results. However, the variability in each arm

of the cluster randomization trial reflects the consistency in response. Since δ is a

function of the means and variances, it takes into account both the magnitude and

consistency of responses.

Once the exceedance probability is estimated, it is important to obtain inferences

on this measure. Obtaining inferences on δ is more complicated in cluster randomiza-

tion trials than in individually randomized trials. In an individually randomized trial,
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estimates of the standardized mean difference follows the non-central t-distribution

with non-centrality parameter µ1 − µ2 (Owen et al., 1964). However, as a result of

the two levels of variation present in clustered designs, this relationship does not hold

(Thomas and Hultquist, 1978). The estimates of δ and P(Y1 > Y2) do not follow

exact distributions, and therefore exact confidence intervals may not be obtained.

Confidence interval procedures for δ are scarce because the parameter is a function

of the normal mean (µ), the between-cluster variance component (σ2
Ai

) and the within-

cluster variance component (σ2
Ei

). One option is to apply the multivariate delta

method to obtain an expression for the variance of the estimate of δ. Slutsky’s theorem

(Casella and Berger, 2002, page 239-240) states that

If Xn → X in distribution and Yn → a, a constant, in probability, then

i) YnXn → aX in distribution and

ii) Xn + Yn → X + a in distribution.

Using Slutsky’s theorem, the estimated variance at the point estimate may then be

plugged into Wald type confidence intervals which are constructed by inverting the

Wald test (Wald, 1941). That is, the limits are set to the point estimate plus or minus

some multiple of this estimated standard error. By using this plug-in principle, the

estimated variance used for the upper limit is forced to equal the estimated variance

used when constructing the lower limit, thus yielding symmetric limits around the

point estimate. In fact, any Wald-type confidence interval procedure which utilizes

this plug-in principle will have this restriction. However, as in individually randomized

trials, the estimate δ̂ may have a skewed sampling distribution in cluster randomiza-

tion trials. Therefore, one limit of a symmetric confidence interval may fail to exclude

all extreme values while the other limit may exclude too many values. Confidence

interval procedures which take into account the shape of the distribution are therefore

desirable.

The Fieller method (Fieller, 1954) is not restricted to symmetry and may be used

to construct confidence intervals for a ratio, and thus for δ. However, this method
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assumes that the sampling distribution of both the numerator and the denominator

are normal. Although the estimated numerator of the standardized mean difference

may be approximately normal, the denominator is a function of estimated variance

components. The unweighted mean squared error (Equation (1.4)) may be used

to approximate the denominator, and Thomas and Hultquist (1978) show that this

statistic is approximately proportional to the chi-squared distribution. Thus, the

denominator of the standardized mean difference is typically skewed in distribution.

Therefore, the Fieller method would also fail to capture the underlying distribution

of the effect measure.

Alternatively, generalized confidence intervals may be constructed for the stan-

dardized mean difference, and thus for P(Y1 > Y2), when the data in each arm follow

a one-way random effects model. Recall from Section 1.4.3 that this method requires

the existence of a generalized pivotal statistic. Using the results of Thomas and

Hultquist (1978), Krishnamoorthy et al. (2007) provide generalized pivotal statistics

for the normal mean, the between-group variance component, and the within-group

variance component when data follow a one-way random effects model,

Gµ = ¯̄Y +
Z√
χ2

k−1

√
SSC

k
, (1.9)

Gσ2
A

=

(
SSC

χ2
k−1

− ñSSW

χ2
M−k

)

+

, (1.10)

Gσ2
E

=
SSW

χ2
M−k

, (1.11)

where Z ∼ N(0, 1), χ2
df is a random variable from the chi-squared distribution with

df degrees of freedom, SSC is the sum of squares between groups, SSW is the sum of

squares within groups, (x)+ = max{0, x}+, and ñ = (1/k)
∑k

j mj. Thus, Equations

(1.9) to (1.11) may be obtained by plugging in both summary statistics of the data

as well as simulated standard normal and chi-squared random variables. These three

generalized pivotal statistics may then be used to obtain a generalized pivotal statistic

for the standardized mean difference from a cluster randomization trial. This is
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because an attractive feature of the generalized confidence interval procedure is that

the generalized pivotal statistic of a function of parameters is simply that function

applied to the generalized pivotal statistics of those parameters. Thus, as long as the

generalized pivotal quantity of the components of a particular parameter of interest

are known, the generalized pivotal quantity of the parameter may be found.

As the standardized mean difference is given by Equation (1.8), the generalized

pivotal quantity of this statistic may be expressed as

Gδ =
Gµ1 −Gµ2√

Gσ2
A1

+ Gσ2
E1

+ Gσ2
A2

+ Gσ2
E2

.

To obtain generalized confidence intervals (Lδ , Uδ), an algorithm similar to that found

in Krishnamoorthy et al. (2007) may be used with Gδ . Generalized confidence inter-

vals for P(Y1 > Y2) are then given by (Φ(Lδ), Φ(Uδ)).

Generalized confidence intervals have not previously been applied to the standard-

ized mean difference or to P(Y1 > Y2) when data arise from a cluster randomization

trial. Theoretically, their application would not result in symmetric limits around a

parameter with a skewed sampling distribution like those of the Wald interval. How-

ever, recall that their application would not result in closed form intervals. A closed

form procedure is preferable.

The difference between two lognormal means

In addition to the normal distribution, data found in practice may commonly be ap-

proximated by the lognormal distribution. For instance, when a variable is bounded

with a concentration of data falling near the lower bound, then the data may be

skewed, potentially following a lognormal distribution. Also, according to the mul-

tiplicative central limit theorem, the multiple of a large number of independent and

positive random variables, each with a finite mean and variance, will approximately

follow a lognormal distribution (Limpert et al., 2001). Examples of outcomes which
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commonly follow lognormal distributions in practice include hospital wait times and

cost data (Thompson and Barber, 2000). Panella et al. (2007) randomized 14 hospitals

to either treatment according to a clinical pathway or usual care, where non-normal

outcomes of interest included length of hospital stay and overall cost. Also, Marrie

et al. (2000) investigated the efficiency of a critical pathway, randomizing 19 hospitals

to either continued conventional management or to implement the critical pathway.

One of the outcomes was the length of hospital stay which may be approximated by

the lognormal distribution, as we shall see in Chapter 5 where we used this data as

an illustration for the methods investigated in this thesis. Similar to outcomes which

may follow a normal distribution, two arms of a cluster randomization trial may nat-

urally be compared using a difference of means when outcomes are approximately

lognormal.

Obtaining inferences on a single lognormal mean has been a challenge when data

follow a one-way random effects model on the log scale (Briggs et al., 2005). This

is because the lognormal mean is a function of three parameters: the normal mean

(µ), the between-group (or between-cluster in an arm of a cluster randomization

trial) variance component (σ2
A), and the within-group (or within-cluster) variance

component (σ2
E). Existing inference procedures are limited in scope, requiring not

only the assumption of homoscedasticity, but symmetric confidence intervals when

the lognormal distribution is skewed in shape. An example of this arises when the

multivariate delta method is used to estimate the variance of the lognormal mean at

the point estimate, which is then plugged into the Wald-type intervals using Slutsky’s

theorem. Again, the shape of the confidence interval should reflect the shape of the

distribution, thereby ensuring that only the extreme values are excluded.

Two types of procedures which are not restricted to symmetry are bootstrap pro-

cedures and generalized confidence intervals. Bootstrap confidence intervals have

become popular since they were first introduced by Efron (1979), and their use is

cautiously encouraged when valid parametric procedures are not available (DiCiccio
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and Efron, 1996). However, the performance of the bootstrap has not been ideal for

the lognormal mean. Recall that the lognormal mean is a function of the normal

mean and variance. DiCiccio and Efron (1996) and Schenker (1985) have shown that

the percentile method and the bias-corrected bootstrap procedures for the normal

variance have low coverage when sample sizes are small to moderate. These results

seem to be consistent throughout the literature. More recently, Dinh and Zhou (2006)

and Zou and Donner (2008) have shown that bootstrap confidence interval procedures

have low coverage for the lognormal mean when data on the log scale follow a fixed

effects model. Also, Flynn and Peters (2004) used Monte Carlo simulations to show

that the bias-corrected and accelerated bootstrap procedure lead to confidence inter-

vals with low coverage for a difference between mean costs in cluster randomization

trials, where cost data are normally and lognormally distributed.

The poor performance of the bootstrap in these cases stems from the fact that the

bootstrap procedure requires the existence of a transformation which can make the

sampling distribution of the statistic of interest both normal and pivotal (Schenker,

1985). Such a transformation does not seem to exist for the normal variance. For

instance, the log transformation makes it pivotal but not normal, and the cubic root

transformation makes it normal but not pivotal (Kendall and Stuart, 1977, page 371).

Alternatively, generalized confidence intervals may be constructed for a difference

between two lognormal means when the data are assumed to follow a one-way random

effects model on the log scale. The required pivotal statistic may be constructed using

Equations (1.9), (1.10), and (1.11). This statistic is given by

GLN = exp

(
Gµ1 +

Gσ2
A1

+ Gσ2
E1

2

)
− exp

(
Gµ2 +

Gσ2
A2

+ Gσ2
E2

2

)
.

Similar steps to the generalized confidence interval algorithm for δ (see Section 1.5.1)

may be followed to construct confidence intervals for a difference between two lognor-

mal means. However, as previously discussed, this procedure is not closed form. A

closed form procedure would be preferred.
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1.6 Scope of the thesis

Cluster randomized trials have been growing in popularity over the last three decades.

For example, in the areas of public health and medicine “the number of trials report-

ing a cluster design has risen exponentially since 1997” (Campbell, 2004). As a

result, there have been many advancements in the design and analysis of such studies

(Cornfield, 1978; Donner and Klar, 2000; Hayes and Moulton, 2009). The CONSORT

statement, a guideline for the reporting of clincal trials, has been extended to improve

the reporting of cluster randomization trials (Campbell et al., 2004). This in turn

has resulted in some improvement in the design, analysis, and reporting of cluster

randomization trials (Bland, 2004; Varnell et al., 2004).

The primary goal of this thesis is to develop statistical methods for quantifying

effects in cluster randomization trials with continuous outcomes. Data from cluster

randomization trials can often be approximated by the normal distribution on the raw

or log scale. Therefore, I focus on normally and lognormally distributed outcomes.

The purpose of conducting a cluster randomization trial is to make comparisons

between the results of each arm. A typical question of interest is whether one treat-

ment is better than another. A natural comparison in this case is a difference between

the means of the two arms. Alternatively, it may be of interest to find the exceedance

probability. Effect measures which directly answer these questions are

∆ = µ1 − µ2 (1.12)

∆LN = exp

(
µ1 +

σ2
A1

+ σ2
E1

2

)
− exp

(
µ2 +

σ2
A2

+ σ2
E2

2

)
(1.13)

P(Y1 > Y2) = Φ


 µ1 − µ2√

σ2
A1

+ σ2
E1

+ σ2
A2

+ σ2
E2


 , (1.14)

for a difference between two normal means, a difference between two lognormal means,

and the exceedance probability for normal outcomes, respectively.

Inference procedures such as hypothesis tests and confidence intervals which put
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effect measures of interest into context are important. A rejection of the null hypoth-

esis of equal means provides evidence that the means are in fact different without any

information about the magnitude of that difference. Confidence intervals however do

provide information about the magnitude. Furthermore, a single confidence interval

is equivalent to conducting an infinite number of hypothesis tests (see Chapter 2 for

a more thorough comparison of confidence intervals and hypothesis tests). Therefore,

this thesis focuses on confidence interval procedures for the three effect measures

described above (Equations 1.12, 1.13, and 1.14).

Closed form confidence interval procedures are developed using the method of

variance estimates recovery (MOVER) (Zou, 2008). Confidence interval construction

for the first two effect measures (Equations (1.12) and (1.13)) begin by defining a set

of parameters for which valid confidence interval procedures exist and whose linear

combination equals a difference in means. The central limit theorem is invoked to

recover the variance estimates from the confidence intervals of each individual pa-

rameter. These variance estimates are then used to construct intervals for the linear

combination (Zou, 2008).

Confidence intervals for the third effect measure (Equation (1.14)) are developed

by first focusing on the standardized mean difference, δ. The standard normal cu-

mulative distribution function (Φ) is a monotone increasing function. Therefore,

confidence intervals for P(Y1 > Y2) = Φ(δ) may easily be constructed by applying the

transformation principal to the intervals of the standardized mean difference. The

ratio is first re-parameterized into a linear combination of parameters, then quadratic

equations are solved for the upper and lower limits of the standardized mean differ-

ence, (Lδ, Uδ) (Zou and Donner, 2010). Finally, confidence limits of P(Y1 > Y2) are

given by (Φ(Lδ), Φ(Uδ)).

These new intervals are expected to improve on existing confidence interval proce-

dures by relaxing the assumption of homoscedasticity and avoiding forced symmetry.

In fact, Efron and Tibshirani (1993, page 187) stressed that forced symmetry is the
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most serious error in confidence interval construction. Homoscedasticity is avoided by

estimating the variance separately in each arm, and the proposed confidence intervals

are not forced to be symmetric because variances are estimated in the vicinity of the

lower limit and upper limit rather than at the point estimate. These improvements

are detailed further in Chapter 2, where a review of the development of the MOVER

is given, as is a new proof for the application of the MOVER to a linear combination

of n parameters using the method of induction.

For simplicity, attention is focused on the completely randomized design. Exten-

sions to the pair-matched and the stratified designs are discussed in the final chapter

of the thesis.

1.7 Objectives

The objectives of the thesis are to propose new confidence intervals for the the differ-

ence between two normal means, the difference between two lognormal means, and

the exceedance probability for normal outcomes, such that these intervals are

1) valid for completely randomized cluster randomization trials with a small

number of large clusters,

2) not symmetric for parameter estimates with a skewed sampling distribution,

3) statistically efficient, and

4) simple to apply.

These proposed confidence interval procedures are analytically justified, evaluated,

and compared with existing procedures throughout the thesis.

Solutions to these objectives will provide useful confidence interval procedures

which may be used to make valid and efficient inferences on data of future trials.
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1.8 Organization of the thesis

The thesis consists of six chapters. Chapter 2 includes a detailed description of

confidence intervals and their properties, including the principles of confidence interval

construction for a single parameter. The general justification of the MOVER is also

described.

Chapter 3 outlines the proposed and existing confidence interval procedures with

necessary proofs, while Chapter 4 presents a simulation study. The performance of

the proposed asymptotic confidence intervals are evaluated and compared to those of

existing methods.

The applicability of the three proposed intervals is demonstrated in Chapter 5

using data from two studies. The first study (Montgomery et al., 2000) deals with

approximately normal data used to evaluate the effect of a computer based clinical

decision support system and risk chart on blood pressure by randomly assigning 27

practices to three intervention groups. The second study (Marrie et al., 2000) deals

with data evaluating the use of a critical pathway against conventional management

for the treatment of community acquired pneumonia from a randomization of 19

hospitals. The outcome of interest was the length of hospital stay which may be

approximated by the lognormal distribution.

General conclusions, limitations of the proposed procedures, with a review of

important assumptions, and a discussion of potential future research are given in

Chapter 6.



28

Chapter 2

FUNDAMENTALS OF CONFIDENCE INTERVAL

ESTIMATION

2.1 Introduction

Fisher (1925) was one of the first to suggest the use of p-values in judging the sig-

nificance of a study, where significance testing is a major tool in statistical inference.

Significance testing starts with a null hypothesis which itself may or may not be of

direct interest. The test statistic then reports the strength of evidence against the null

hypothesis using a p-value (Altman, 2005). Alternatively, a hypothesis test (Neyman

and Pearson, 1933) is a decision making device, where both a null and an alterna-

tive hypothesis are declared. The p-value is not reported, but only the significance

level and whether or not one rejects or fails to reject the null. Unfortunately, both

significance testing and hypothesis testing may easily be abused. It is the p-value in

particular which is often the source of misinterpretation.

Walter (1995) highlights four key points related to the misinterpretation of p-

values. First, there may exist some confusion between Fisher’s significance test and

Neyman-Pearson’s hypothesis test. Significance testing refers to a single null value

which may not be of direct interest and is intended to measure the strength of evidence

suggested by the data. However, the p-value is only based on the null value and does

not directly consider other values. Also, the p-value reflects the tail area of the sample

space which may include values which are not of interest to the investigator (Walter,

1995). A hypothesis test is a decision making tool, reducing a problem to a yes or

no question. This type of test fails to distinguish between p-values of say 0.049 and
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< 0.001, both of which would lead to the same conclusion - reject the null.

Second, the p-value is commonly misinterpreted as the probability that the ob-

served effect is an error, thereby ignoring the initial assumption that the null is true.

The correct definition of the p-value is the probability of estimating something at least

as extreme as the observed had the null hypothesis been true. Fisher suggested that

if this probability is very small then there is evidence to reject the null hypothesis or

no effect.

Third, the p-value ignores clinical significance by failing to communicate the effect

size. This takes the focus away from estimation in its interpretation, despite the fact

that the primary goal of a study is to draw conclusions about the magnitude of the

effect.

Finally, the p-value combines the magnitude of the effect size and the sample size,

potentially leading to misinterpretation. A low p-value may be a result of either a

large sample size or a large effect. A large p-value may be a result of a small sample

size of no effect.

On the other hand, confidence intervals are useful when interpreting results be-

cause they keep the focus on estimation (Neyman, 1937) while providing information

about the precision of the point estimate. They are defined as a range of values where

the true parameter value is likely to lie according to the sample data. The precision

of the estimate is then demonstrated by the width of the interval, with a narrower

interval indicating greater precision. This is useful in application when, for example,

a wide interval indicates a need for further study.

By focusing on estimation, confidence intervals may be used to judge clinical

significance for a range of potential parameter values rather than a single point. Con-

fidence interval construction involves not only the point estimate, but also the limits

of the interval, thereby bringing attention to other potential values of the parameter

which may be either more or less clinically significant. Therefore, confidence intervals

are especially useful when dealing with statistically non-significant results, where the
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interval may contain potentially clinically significant values. This is particularly rele-

vant to cluster randomization trials which tend to have lower power than individually

randomized trials of the same size due to the similarity of individuals within the same

cluster.

In addition to the portrayal of precision and clinical significance, confidence in-

tervals also encompass hypothesis tests thereby providing information on statistical

significance. A single interval is equivalent to conducting an infinite number of hy-

pothesis tests, providing information for every possible parameter value. The values

within the interval include all the values which would not be rejected had hypothesis

tests been conducted at one minus the confidence level, and the values outside the

interval would be found statistically significant.

As a result of the advantages of confidence interval construction over hypothesis

testing, guidelines for the reporting of randomized trials (such as the CONSORT

Statement (Schulz et al., 2010)) recommend the use of confidence intervals in the

interpretation of study results.

Unfortunately, investigators tend to have an attachment to the p-value to the point

that much of the information communicated with confidence intervals are ignored and

confidence intervals are often used to resort back to hypothesis testing. For example,

when interest lies in the comparison of sample means, the overlap of the intervals

of each mean is used to judge statistical significance (e.g. Djordjevic et al., 2000;

Mancuso et al., 2001; Tersmette et al., 2001), despite warnings that overlap does not

necessarily mean non-significance (Schenker and Gentleman, 2001; Wolfe and Hanley,

2002; Wilcox, 2003, page 246). Thus, in addition to once again shifting the focus away

from estimation, the conclusions reached using this method of hypothesis testing may

be fallacious.

The application of the overlap method may also be due to a lack of valid hypothesis

tests or confidence intervals for the difference of two parameters. This method is

equivalent to naively setting the confidence limits for the difference θ2 − θ1 to (l2 −
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u1, u2− l1), where (li, ui) is the (1−α)% confidence interval for θi. This overestimates

the variance, leading to conservative intervals (Schenker and Gentleman, 2001).

2.2 Definition of a confidence interval

There is an inherent connection between hypothesis testing and confidence interval

estimation. In fact, confidence limits can be defined based on the Neyman-Pearson

hypothesis testing principle (Neyman, 1935, 1937). Let θ = θ0 represent the true value

of the unknown population parameter. A confidence interval for θ with confidence

coefficient α may be given by the random variables (Lθ, Uθ), such that

P(Lθ ≤ θ ≤ Uθ|θ = θ0) = 1 − α.

That is, given the true parameter value, the probability that this fixed value lies

between the two random variables Lθ and Uθ is 1 − α. The probability expression is

true for any θ0, therefore it may be expressed as

P(Lθ ≤ θ ≤ Uθ) = 1 − α. (2.1)

The limits Lθ and Uθ are statistics based upon data. Under repeated random

sampling, the estimated (1−α)100% confidence interval (Lθ, Uθ) will contain the true

parameter value (1 − α)100% of the time. More specifically, if we are interested in

equal tail probabilities,

P(θ < Lθ) = α/2 (2.2)

P(θ > Uθ) = α/2, (2.3)

so that with repeated random sampling one would expect to exclude the true value

from either side of the interval (α/2)100% of the time.
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2.3 Confidence interval estimation for a single parameter

Two general principles have usually been applied when constructing confidence in-

tervals: i) the confidence interval inversion principle, and ii) the confidence interval

transformation principle. These two principles are usually applied in conjunction with

the delta method.

The inversion principle

The confidence interval inversion principle allows the inversion of test statistics to

obtain confidence intervals. Cox and Hinkley (1974) pointed out that “to obtain

‘good’ 1−α upper confidence limits, take all those parameter values not ‘rejected’ at

level α in a ‘good’ significance test against lower alternatives”. According to Casella

and Berger (2002, p. 421-422), the inversion principle is as follows: let A(θ0) represent

the acceptance region of a test of H0 : θ = θ0 at the α level, where θ0 ∈ Θ and Θ is

the parameter space. Then C(x) = {θ0 : x ∈ A(θ0)} is the random 1 − α confidence

set in the parameter space for each x ∈ X. Conversely, let C(X) represent a 1 − α

confidence set. Then A(θ0) = {x : θ0 ∈ C(x)} is the acceptance region of the test

H0 : θ = θ0 at the α level for any θ0 ∈ Θ. Note that a confidence set is a set of values

contained in the confidence interval.

In summary, this means that once a hypothesis test fixes the parameter value at

θ = θ0, the sample values not rejected by the test at some alpha level make up the

confidence interval. On the flip side, once a confidence interval is obtained by fixing

a sample value, all of the potential parameter values within that interval would not

be rejected by the corresponding hypothesis test, while values outside the interval are

statistically significant.
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The transformation principle

The confidence interval transformation principle allows confidence intervals for a sin-

gle parameter to be used to construct confidence intervals for any monotonic trans-

formation of that parameter (Steiger, 2004). Daly (1998) refers to this principle as

the ‘substitution method’. Let f(θ) be a monotonic transformation on the single pa-

rameter θ, where θ has the (1 − α)100% confidence interval (l, u). If the function is

increasing then the confidence interval of f(θ) is (f(l), f(u)). However, if the function

is decreasing, then the confidence interval of f(θ) is (f(u), f(l)). As an example, this

principle is used in generalized linear models such as logistic regression where confi-

dence intervals for odds ratios are first obtained on the log scale, then transformed

back by exponentiating the limits.

Also note that a limitation of this method is that the new measure must be

a function of a single parameter rather than of multiple parameters, otherwise the

transformation principle will fail (Daly, 1998).

2.4 Wald-type confidence intervals and the delta method

Wald-type confidence intervals are often constructed for a parameter of interest using

the delta method and Slutsky’s theorem (Casella and Berger, 2002, page 239-240).

The Wald test (Wald, 1941) may be inverted (Section 2.3.1) to obtain a two-sided con-

fidence interval expression consisting of the point estimate (θ̂), the variance (var(θ̂)),

and some quantile of the standard normal distribution (zα/2). That is,





L = θ̂ − zα/2

√
var(θ̂)

U = θ̂ + zα/2

√
var(θ̂).

The delta method may be used to obtain an expression for the variance of θ̂. Slutsky’s

theorem then allows an estimate of the variance to be plugged into the Wald limits if
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the variance expression is a function of parameters. That is,




L = θ̂ − zα/2

√
v̂ar(θ̂)

U = θ̂ + zα/2

√
v̂ar(θ̂).

(2.4)

A single parameter

Let the parameter of interest g(θ) be a function of a single parameter θ. The delta

method uses a first-order Taylor approximation to solve for the variance of the function

of a random variable, var[g(θ̂)],

g(θ̂)
.
= g(θ) + (θ̂ − θ)g′(θ)

g(θ̂) − g(θ)
.
= (θ̂ − θ)g′(θ)

E{[g(θ̂) − g(θ)]2} .
= E[(θ̂ − θ)]2[g′(θ)]2

var[g(θ̂)]
.
= var(θ̂)[g′(θ)]2. (2.5)

This variance approximation is satisfactory only if there is a high probability that

the random variable θ̂ is close to θ. Once Slutsky’s theorem is applied to plug in the

point estimate, the corresponding Wald limits for g(θ) are




L = g(θ̂) − zα/2

√
v̂ar(θ̂)(g′(θ̂))2

U = g(θ̂) + zα/2

√
v̂ar(θ̂)(g′(θ̂))2.

(2.6)

A function of multiple parameters

Let the parameter of interest g(θ1, ..., θn) be a function of multiple parameters, θ1, ..., θn,

estimated by θ̂1, ..., θ̂n. Similar to the univariate case, the multivariate delta method

may be applied to find an expression for the variance of g(θ̂1, ..., θ̂n):

var[g(θ̂1, ..., θ̂n)] = [g′(θ1, ..., θn)]
Tcov(θ̂i, θ̂j)g

′(θ1, ..., θn), (2.7)

where cov(θ̂i, θ̂j) is an n by n variance-covariance matrix, g′(θ1, ..., θn) is a vector of

partial derivatives, and [M]T is the transpose of the matrix M. This variance may
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then be applied with Wald confidence intervals and Slutsky’s theorem to estimate the

limits of g(θ1, ..., θn),





L = g(θ̂1, ..., θ̂n) − zα/2

√
v̂ar[g(θ̂1, ..., θ̂n)]

U = g(θ̂1, ..., θ̂n) + zα/2

√
v̂ar[g(θ̂1, ..., θ̂n)].

(2.8)

Properties of Wald-type confidence intervals

The wide application of Wald-type confidence intervals with the delta method is

largely due to its simplicity. However, this advantage comes with a price, especially

when using the conventional delta method to estimate variances.

The first assumption that the Wald procedure makes is that the sampling distri-

bution of the parameter estimate is approximately normal,

θ̂ − θ√
var(θ̂)

∼ N(0, 1).

Due to the central limit theorem, the sum of a large number of independent ran-

dom variables, which each have a finite mean and variance, is approximately normal

(Casella and Berger, 2002, page 236). In such cases, Wald-type confidence interval

procedures are applicable.

The second assumption of the Wald procedure is made when using the delta

method for estimating the variance of a function of a parameter estimate. If the

function of the parameter (g(.)) is non-linear and there is much variation in the data,

the estimated variance of the parameter estimate may not be satisfactory. The delta

method uses the first-order Taylor series approximation when estimating the variance

(see Equation (2.6)), and as a result, it makes an assumption of a linear transformation

over the expected range of the parameter. However, when looking at the function over

a narrow enough region, the function may appear somewhat linear. That is, when

most of the data fall near the parameter value and the variance is not considerably

large, use of the first-order Taylor series approximation may result in a satisfactory
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variance expression. To reiterate, when interest lies in the non-linear transformation

of a parameter, the widely used delta method with Wald-type confidence intervals

should not be applied if the variance is large.

The third assumption of Wald-type confidence intervals when the delta method is

used is that the variance estimate is independent of the parameter estimate. Thus,

the variance estimates at the limits would be the same as the variance estimate at

the point estimate. However, only for the normal distribution is the sample mean

independent of the variance (Lukacs, 1942). When the sampling distribution of the

parameter estimate is non-normal, this assumption is usually violated. A simple ex-

ample is the case of a proportion (Anderson, 2009). As a result, Wald-type confidence

intervals which make use of the delta method may have poor coverage in practice,

because the plugged-in point estimate may not be close to its value at the limits. This

is a consequence of fixing the estimated variance when the point estimate is plugged

in, potentially posing problems when the sampling distribution of the estimated pa-

rameter of interest is skewed.

As another example consider the variance, σ2, estimated by s2 = (n−1)−1
∑n

i=1(Xi−
X̄)2, where Xi ∼ N(µ, σ2), i = 1, ..., n, are independent and identically distributed.

The delta method gives a variance of 2σ4/n, corresponding to Wald limits of

(L, U) = s2 ± zα/2

√
2s4/n.

where zα/2 is the upper (α/2)100% quantile of the standard normal distribution.

Alternatively, exact confidence intervals may be constructed for σ2 because

(n − 1)s2/σ2 ∼ χ2
n−1,

giving the limits

L =
(n − 1)s2

χ2
1−α/2,n−1

U =
(n − 1)s2

χ2
α/2,n−1
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where χ2
q,n−1 is the qth quantile of the chi-squared distribution with n − 1 degrees of

freedom.

To see the difference between the two procedures, we can use a confidence inter-

val function, which is a graph of confidence intervals at every confidence level for

a particular dataset (Poole, 1987). In Figure 2.1 a confidence interval function of

the delta method and the exact procedure are superimposed, with the solid vertical

line indicating the point estimate. Although the sample variance is skewed, notice

how the delta method results in symmetric Wald intervals around the point estimate.

Comparison with the exact interval shows the potential of the delta method to result

in lopsided tail errors - displayed by the difference between ‖ld − le‖ and ‖ud − ue‖
at any confidence level 1 − α (α 6= 0, 1), where (ld, ud) and (le, ue) are the limits of

the Wald interval with the delta method and the exact interval, respectively. Also

notice that as the confidence level increases within a practical range, the discrepancy

between the delta method and the exact method increase. This is because at low

confidence, the intervals are narrower thereby more closely satisfying the assumption

of the delta method that the point estimate of the variance is close to the limits.

2.5 Confidence intervals for a function of multiple parameters

Many of the confidence intervals for the effect measures of interest in this thesis (which

are functions of other parameters) will be derived using the method of variance esti-

mates recovery (MOVER) and the transformation principle (Section 2.3.2). In fact,

the MOVER received its name due to its key step - the recovery of variance estimates

for the estimated parameter of interest using the individual confidence intervals of

the component parameters (Zou, 2008).
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Figure 2.1: A confidence interval function of the delta method and the exact procedure
for the normal variance (σ2 = 2, s2 = 2.1, n = 100)

The MOVER for a linear combination of parameters

Zou and Donner (2008) and Zou (2008) provide a detailed outline of the MOVER.

This method was derived as follows: consider two parameters θ1 and θ2 which have

(1 −α)100% confidence limits (l1, u1) and (l2, u2), respectively. The individual limits

of θ1 and θ2 may be used to estimate variances near the limits of the sum of the two

parameters (Σ = θ1 + θ2). These variance estimates may then be used to obtain a

confidence interval for Σ.

To begin, the application of the central limit theorem and standardization results
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in the following set of equations:

z2
α/2 =

(
Σ̂ − Σ

)2

v̂ar(Σ̂)

⇒ z2
α/2 =

[
(θ̂1 + θ̂2) − (θ1 + θ2)

]2

v̂ar(θ̂1 + θ̂2)

⇒ z2
α/2 =

[
(θ̂1 + θ̂2) − (θ1 + θ2)

]2

v̂ar(θ̂1) + v̂ar(θ̂2) + 2ĉov(θ̂1, θ̂2)
.

This thesis will only focus on the case when cov(θ̂1, θ̂2) = 0, because θ̂1 and θ̂2 are

either from separate arms of the trial and are thus independent, or they are functions

of the normal mean and normal variance which are independent (Lukacs, 1942). Thus,

z2
α/2 =

[
(θ̂1 + θ̂2) − (θ1 + θ2)

]2

v̂ar(θ̂1) + v̂ar(θ̂2)
. (2.9)

An expression for the limits of Σ may be obtained by applying the inversion

principle (Section 2.3.1) to Equation (2.9):





LΣ = (θ̂1 + θ̂2) − zα/2

√
v̂ar(θ̂1) + v̂ar(θ̂2)

UΣ = (θ̂1 + θ̂2) + zα/2

√
v̂ar(θ̂1) + v̂ar(θ̂2).

(2.10)

The variances in expression (2.10) are traditionally obtained by estimating them at the

point estimate. However, fixing the variance in this way would force the interval to be

symmetric around the point estimate. If the sampling distribution of the estimators

may be approximated by a normal distribution, this restriction is not a problem.

However, when the sampling distribution is skewed, symmetric intervals could lead

to intervals with asymmetric tail errors. Consequently, too many potential parameter

values may be excluded from one side of the interval and not enough from the other.

Thus, Equations 2.2 and 2.3 would not be satisfied.

Figure 2.2a shows the resulting limits of a parameter estimate with a skewed

sampling distribution when a single normal curve is used to estimate the variance



40

at the point estimate. Although balanced tail errors are intended, from the figure it

can be seen that α1 6= α2. This occurs because the separate limits are constructed

by first fixing variance estimates at the point estimate, then plugging them in (using

Slutsky’s theorem).

Alternatively, the score confidence interval method is obtained by inverting the

score test (Rao, 1948). The likelihood may be maximized at the maximum likelihood

estimate, where the score equals zero. Therefore, the null hypothesis may then be

tested by determining how much the score deviates from zero at the null value, with

large deviations providing evidence that the null is untrue (Buse, 1982). This is done

using the score statistic, which is the square of the score at the null divided by the

variance at the null. This statistic has an approximate chi-squared distribution with

one degree of freedom (Buse, 1982). By constantly updating the null, a confidence

interval may then be constructed. The confidence interval would not be restricted

to symmetry because the variances would be estimated at the limits. That is, the

variance at the lower limit may be different from the variance at the upper limit. How-

ever, due to the complexity of the score function for clustered designs, this procedure

will be excluded in this thesis.

Letting the interval of θi be given by (li, ui), the MOVER approximates the score

method (which estimates the variance at the lower limit) by using the variance es-

timate at l1 + l2 (near the lower limit) rather than the variance estimate at θ̂1 + θ̂2

(used by the delta method with Slutsky’s theorem) when constructing the lower limit

of θ1 + θ2, because l1 + l2 is closer to the lower limit than is θ̂1 + θ̂2. The distance
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Figure 2.2: a) A symmetric confidence interval (L, U) for a summary measure (θ̂) of
data following a skewed distribution using traditional methods. b) An asymmetric
confidence interval (L, U) for a summary measure (θ̂) of data following a skewed
distribution, by application of the MOVER.
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between l1 + l2 and the lower limit of θ1 + θ2, is

||(l1 + l2) − L||

=

∣∣∣∣
∣∣∣∣
(

θ̂1 − zα

√
var(θ̂1) + θ̂2 − zα

√
var(θ̂2)

)
−
(

θ̂1 + θ̂2 − zα

√
var(θ̂1) + var(θ̂2)

)∣∣∣∣
∣∣∣∣

=

∣∣∣∣
∣∣∣∣−zα

√
var(θ̂1) − zα

√
var(θ̂1) + zα

√
var(θ̂1) + var(θ̂2)

∣∣∣∣
∣∣∣∣

= zα

∣∣∣∣
∣∣∣∣
√

var(θ̂1) + var(θ̂2) −
(√

var(θ̂1) +

√
var(θ̂1)

)∣∣∣∣
∣∣∣∣ .

This is smaller than the distance between θ̂1 + θ̂2 and L, expressed as

∣∣∣
∣∣∣(θ̂1 + θ̂2) − L

∣∣∣
∣∣∣

=

∣∣∣∣
∣∣∣∣θ̂1 + θ̂2 −

(
θ̂1 + θ̂2 − zα

√
var(θ̂1) + var(θ̂2)

)∣∣∣∣
∣∣∣∣

= zα

∣∣∣∣
∣∣∣∣
√

var(θ̂1) + var(θ̂2)

∣∣∣∣
∣∣∣∣ .

Similarly, u1 + u2 is closer to the upper limit of θ1 + θ2 than is θ̂1 + θ̂2.

Thus, the MOVER improves upon the traditional Wald method by separately

estimating the variances near the limits. Traditional symmetric intervals are improved

upon by removing the symmetry restriction without the use of complex procedures

such as the score method. The flexibility of the MOVER stems from the use of two

separate normal curves rather than one when estimating variances (see Figure 2.2b).

This results in more balanced tail errors (α1
.
= α2).

The variance terms in Equation (2.10) may be estimated near the upper and

lower confidence limits of Σ using the information already available in the confidence

intervals of the individual parameters, θ1 and θ2. An application of the central limit

theorem (z ∼ (θ̂i − θi)/
√

var(θ̂i)) and Slutsky’s theorem estimates variances near the
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lower (v̂arli(θ̂i)) and upper (v̂arui(θ̂i)) limits of θi as

v̂arli(θ̂i) =

(
θ̂i − li

)2

z2
α/2

v̂arui(θ̂i) =

(
ui − θ̂i

)2

z2
α/2

,

for i = 1, 2. Using these estimates with Equation (2.10), two-sided (1 − α)100%

confidence limits for Σ may be given as

LΣ = θ̂1 + θ̂2 − zα/2

√
v̂arl(θ̂1) + v̂arl(θ̂2)

= θ̂1 + θ̂2 − zα/2

√
(θ̂1 − l1)2

z2
α/2

+
(θ̂2 − l2)2

z2
α/2

= θ̂1 + θ̂2 −
√

(θ̂1 − l1)2 + (θ̂2 − l2)2 (2.11)

UΣ = θ̂1 + θ̂2 + zα/2

√
v̂aru(θ̂1) + v̂aru(θ̂2)

= θ̂1 + θ̂2 + zα/2

√
(u1 − θ̂1)2

z2
α/2

+
(u2 − θ̂2)2

z2
α/2

= θ̂1 + θ̂2 +

√
(u1 − θ̂1)2 + (u2 − θ̂2)2. (2.12)

Similarly, confidence intervals may be obtained for a difference between two pa-

rameters using the transformation principle (Section 2.3.2). If the confidence limits

for θ2 are (l2, u2), then the confidence limits for −θ2 are (−u2,−l2). A two-sided

(1 − α)100% confidence interval for ∆ = θ1 + (−θ2) may then be constructed using

the equations above,





L∆ = θ̂1 − θ̂2 −
√

(θ̂1 − l1)2 + (u2 − θ̂2)2

U∆ = θ̂1 − θ̂2 +

√
(u1 − θ̂1)2 + (θ̂2 − l2)2.

(2.13)

In this thesis, the effect measures of interest may be expressed as linear functions

of more than two parameters. The (1−α)100% confidence interval for h1θ1 + h2θ2 +
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· · · + hnθn is given by

L =
n∑

i=1

hiθ̂i −

√√√√
n∑

i=1

[
hiθ̂i − min(hili, hiui)

]2
(2.14)

U =
n∑

i=1

hiθ̂i +

√√√√
n∑

i=1

[
hiθ̂i − max(hili, hiui)

]2
(2.15)

where θ1, θ2, ..., θn are independent and h1, h2, ..., hn represent the coefficients of θ1, θ2, ..., θn

which have individual (1−α)100% limits (l1, u1), (l2, u2), ..., (ln, un), respectively. This

can be proven using the method of induction:

Step 1: prove true for n = 1

Note that if the limits of θ1 are known in practice, then the following steps to

obtain the limits of h1θ1 would be redundant. Rather, the transformation principle

may simply be applied. However, for the purpose of proving Equations (2.14) and

(2.15), it will be shown that when n = 1, the application of the transformation

principle and the central limit theorem give L = h1θ̂1 −
√[

h1θ̂1 −min(h1l1, h1u1)
]2

and U = h1θ̂1 +

√[
h1θ̂1 − max(h1l1, h1u1)

]2
.

Let the (1−α)% confidence interval for θ1 be known as (l1, u1). According to the

transformation principle, if h1 > 0 then the confidence interval for h1θ1 is (h1l1, h1u1).

Next, the variance of h1θ1 may be estimated near the limits using the central limit

theorem:

v̂arl1

[
h1(θ̂1)

]
=

(
h1θ̂1 − h1l1

)2

z2
α/2

v̂aru1

[
h1(θ̂1)

]
=

(
h1u1 − h1θ̂1

)2

z2
α/2

.

Alternatively, if h1 < 0 then the limits of h1θ1 are (h1u1, h1l1) and its variance esti-
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mates near the limits are

v̂arl1

[
h1(θ̂1)

]
=

(
h1u1 − h1θ̂1

)2

z2
α/2

v̂aru1

[
h1(θ̂1)

]
=

(
h1θ̂1 − h1l1

)2

z2
α/2

.

Plugging these estimates into a standard confidence interval formula (Equation (2.10))

gives the desired expressions for the upper and lower limits when n = 1.

Step 2: assume true for n = k

Assume that the (1 − α)100% confidence interval for h1θ1 + · · · + hkθk is

Lk =
k∑

i=1

hiθ̂i −

√√√√
k∑

i=1

[
hiθ̂i − min(hili, hiui)

]2

Uk =

k∑

i=1

hiθ̂i +

√√√√
k∑

i=1

[
hiθ̂i − max(hili, hiui)

]2
.

Step 3: prove true for n = k + 1

The MOVER for a linear combination of two parameters has already been proven

above. Thus, if h1θ1 + · · · + hkθk is treated as the first parameter and hk+1θk+1 is

treated as the second parameter with respective confidence intervals (Lk, Uk) and

(lk+1, uk+1), then the expressions (2.14) and (2.15) hold for n = k + 1.

The MOVER for the ratio of two independent parameters

The derivation for the confidence interval of a ratio of two independent parameters

using the MOVER may be found in Zou and Donner (2010). This derivation is as

follows: let θ1/θ2 = R, where θ1 and θ2 are independent and R is some constant.

Denote the (1 − α)100% confidence interval of R as (LR, UR). By the definition of

confidence intervals,

P

(
θ1

θ2

< LR

)
= α/2

⇒ P (θ1 − LRθ2 < 0) = α/2 (2.16)
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and

P

(
θ1

θ2
> UR

)
= α/2

⇒ P (θ1 − URθ2 > 0) = α/2. (2.17)

Using the transformation principle, if the confidence interval of θ2 is (l2, u2), then the

intervals of −LRθ2 and −URθ2 are (−LRu2,−LRl2) and (−URu2,−URl2), respectively.

Thus, focusing on θ1 − LRθ2 and θ1 − URθ2 by setting LΣ and UΣ to 0 in Equations

(2.11) and (2.12) and applying the transformation principle results in the following

quadratic equations:

(θ̂1 − LRθ̂2)
2 = (θ̂1 − l1)

2 + (LRu2 − LRθ̂2)
2

(θ̂1 − URθ̂2)
2 = (u1 − θ̂1)

2 + (URθ̂2 − URl2)
2.

The quadratic formula is then used to solve these quadratic equations, setting

LR =
−bL −

√
b2
L − 4aLcL

2aL
(2.18)

UR =
−bU +

√
b2
U − 4aUcU

2aU

(2.19)

to the lower and upper (1−α)100% limits of R, respectively, where aL = u2(2θ̂2−u2),

bL = −2θ̂1θ̂2, cL = l1(2θ̂1 − l1) in Equation (2.18), and aU = l2(2θ̂2 − l2), bU = −2θ̂1θ̂2,

cU = u1(2θ̂1 − u1) in Equation (2.19).

The MOVER for the ratio of two independent parameters simplifies to Fiellers

theorem (Fieller, 1944) when θ1 and θ2 are both normally distributed. Blaker and

Spjotvoll (2000) show the possibility of three solutions when constructing confidence

intervals for the special case of a ratio of two normal means using Fieller’s theorem.

These solutions include setting the limits to (LR, UR), to (−∞, UR) and (LR,∞)

when UR < LR, and to the whole real line (−∞,∞). Figure 2.3 displays a confidence

interval curve showing when each of these intervals exist for the general case of a

ratio of two parameters. The confidence interval lies between the roots LR and UR in
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Figure 2.3: Confidence interval curve for a ratio of two parameters

situation ‘A’ of the figure because LR < UR when the denominators of the roots (2aL

and 2aU) are greater than zero and the two roots are real. The confidence interval

lies outside of the roots in situation ‘B’ because LR > UR when the denominators of

the roots are less than zero and the two roots are real. Finally, the confidence interval

is set to the whole real line in situation ‘C’ when the two roots are complex; that is,

when b2
L − 4aLcL < 0 and b2

U − 4aUcU < 0. A similar argument is made when solving

for quadratic equations in expressions 2.18 and 2.19.

Properties of the MOVER

The MOVER relaxes some assumptions of traditional confidence intervals. First, the

MOVER does not restrict the interval to symmetry if the sampling distribution of

the parameter estimate is skewed. The key step of the MOVER is the estimation of

the variance of a linear combination of parameter estimates near their limits using
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the individual confidence intervals of each parameter. Thus, two variance estimates

exist for each parameter estimate: one near the upper limit and one near the lower

limit. This is consistent with Neyman’s definition of the confidence interval (Neyman,

1937), that the lower limit is the smallest estimate of the parameter for which the

obtained point estimate would be the largest value that would occur by chance with

a probability of α/2. The upper limit is defined analogously.

The variance near the upper limit of the linear combination may differ from that

near the lower limit, leading to asymmetric confidence intervals. If the variances near

the limits are equivalent (this occurs if the individual confidence intervals of each

parameter component are symmetric) then the resulting confidence interval of the

linear combination will be symmetric. Therefore, it is evident that the application of

the MOVER does not force symmetry. A depiction of this property is given in Figure

(2.4) and was derived by Zou and Donner (2010) using the Pythagorean theorem.

The figure demonstrates that the margins of error on either side of the point estimate

(e.g.

√
(θ̂1 − l1)2 + (u2 − θ̂2)2 and

√
(u1 − θ̂1)2 + (θ̂2 − l2)2 for the the point estimate

θ1 − θ2) are not necessarily restricted to equality. For instance, consider the top left

diagram in Figure (2.4) for the difference between two parameters. The diagonal

line in quadrant II represents the lower margin of error of the difference θ̂1 − θ̂2. An

estimate of this margin of error is obtained using the margin of error of θ̂1 near the

lower limit, estimated by θ̂1 − l1, and that of θ̂2, estimated by u2 − θ̂2. Therefore,

according to the Pythagorean theorem, the margin of error of θ̂1 − θ̂2 (depicted by

the diagonal line in quadrant II) is given by

√
(θ̂1 − l1)2 + (u2 − θ̂2)2. Similarly, the

diagonal line in quadrant IV represents the upper margin of error of the difference

θ̂1− θ̂2, estimated by

√
(u1 − θ̂1)2 + (θ̂2 − l2)2. Note that in this first figure, θ1 and θ2

both have symmetric sampling distributions, as indicated by the lengths of the axes.

Diagrams in the second row display the margins of error when θ1 has an asymmetric

sampling distribution, while θ2 has a symmetric sampling distribution. Diagrams in

the third row display margins of error when both θ1 and θ2 have asymmetric sampling
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distributions.

Second, the MOVER does not assume homoscedasticity when constructing confi-

dence intervals for a linear combination of parameters. The MOVER estimates the

variance of each parameter estimate separately. These individual variance estimates

are then used to obtain the variance estimate for the linear combination of parameter

estimates. Since summary measures of each arm of a cluster randomized trail are often

compared by their linear combination (e.g. their difference) and the variances of each

summary measure are estimated separately, then no assumption of homoscedasticity

is made.

A necessary condition for the MOVER to work well is that the confidence limits for

each component parameter be valid. Otherwise, the confidence intervals constructed

using the MOVER will adopt any handicaps of the confidence intervals of the com-

ponent parameters. In fact, if confidence intervals for each component parameter are

obtained with the Wald method, the MOVER will recover the Wald method for the

linear combination of parameters. See below for more details.

Previous applications

The MOVER is a general confidence interval procedure which may be used for a

linear combination or a ratio of parameters. It will be used to construct confidence

intervals for the parameters of interest in this thesis. The key step of this procedure

is estimating variances near the limits of the estimated parameter of interest using

the confidence intervals of the component parameters. In fact, this step is what gave

the MOVER its name (Zou, 2008).

The MOVER may be applied to recover many previously defined confidence inter-

val procedures. One such confidence interval procedure was proposed by Howe (1974)

for the mean of the sum of two random variables. The method was justified using the

Cornish-Fisher expansion for the cases of the non-central t-distribution and variance

components in the one-way random effects model.
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Difference of parameters Sum of parameters

l1 u1

l2

u2

√
(bθ1−l1)2+(u2−bθ2)2

√
(u1−bθ1)2+(bθ2−l2)2

(θ̂1, θ̂2)

l1 u1

l2

u2

√
(u1−bθ1)2+(u2−bθ2)2

√
(bθ1−l1)2+(bθ2−l2)2

(θ̂1, θ̂2)

l1 u1

l2

u2

l1 u1

l2

u2

l1 u1

l2

u2

l1 u1

l2

u2

Figure 2.4: The flexibility of the MOVER for differences and sums as shown using
margins of errors and the Pythagorean theorem
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There has been a number of generalizations and applications of the approximation

presented by Howe (1974) which may also be obtained by application of the MOVER.

These include those of Graybill and Wang (1980), Ting et al. (1990), and Burdick

and Graybill (1992) for a linear combination of chi-squared random variables. A

generalization for a linear combination of random variables was then provided by

Hyslop et al. (2000) and was recommended by the Food and Drug Administration

(FDA) for evaluating individual bioequivalence (Food and Administration, 1999).

Although these resulting confidence interval expressions have appeared previously,

the MOVER takes these procedures a step further by providing a new justification

while also extending them for a ratio of two random variables (Zou and Donner, 2010).

Other past works which may be justified by application of the MOVER include

Burdick and Graybill (1984); Wang and Chow (2002); Ames and Webster (1991);

Newcombe (1998); Lee et al. (2004); Burdick et al. (2006). Under certain situations

(specified in each of the papers above), application of the MOVER would result

in equivalent confidence interval expressions. For instance, Newcombe (1998) con-

structed confidence intervals for the difference between two independent proportions

using Wilson’s score confidence interval for a single proportion (Wilson, 1927) and

found that the intervals maintained coverage for a wide range of parameter combina-

tions. Newcomb’s method can be justified analytically using the MOVER approach.

We also note that the MOVER may be used to recover standard Wald intervals

when the sampling distribution of each individual component parameter has Wald-

type confidence limits. For instance, standard Wald-type confidence intervals for

θ1 − θ2 are





L = θ̂1 − θ̂2 − zα/2

√
v̂ar(θ̂1) + v̂ar(θ̂2)

U = θ̂1 − θ̂2 + zα/2

√
v̂ar(θ̂1) + v̂ar(θ̂2),
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where θ1 and θ2 are independent. Now let θi have the limits





li = θ̂i − zα/2

√
v̂ar(θ̂i)

ui = θ̂i + zα/2

√
v̂ar(θ̂i).

Application of the MOVER in Equations (2.11) and (2.12) then gives the following

limits for θ1 − θ2

L = θ̂1 − θ̂2 −
√

(θ̂1 − l1)2 + (u2 − θ̂2)2

= θ̂1 − θ̂2 −
√

z2
α/2v̂ar(θ̂1) + z2

α/2v̂ar(θ̂2)

= θ̂1 − θ̂2 − zα/2

√
v̂ar(θ̂1) + v̂ar(θ̂2)

U = θ̂1 − θ̂2 +

√
(θ̂1 − l1)2 + (u2 − θ̂2)2

= θ̂1 − θ̂2 +
√

z2
α/2v̂ar(θ̂1) + z2

α/2v̂ar(θ̂2)

= θ̂1 − θ̂2 + zα/2

√
v̂ar(θ̂1) + v̂ar(θ̂2).

This thesis aims to use the MOVER to obtain new confidence interval expressions

for common parameters of interest for continuous outcomes, specifically for data aris-

ing from cluster randomization trials. These parameters include a difference between

two normal means, a difference between two lognormal means, and the exceedance

probability. The proposed confidence intervals will not force symmetry or assume

homoscedasticity.
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Chapter 3

CONFIDENCE INTERVAL ESTIMATION FOR EFFECT

MEASURES IN CLUSTER RANDOMIZATION TRIALS

The first chapter of this thesis outlined the notation of a completely randomized

cluster randomization trial, with each arm of the trial following a random effects

model and two arms additionally differing according to a fixed effect. Next, key out-

comes commonly of interest within cluster randomization trials were discussed. These

include the difference between two normal means, the difference between two lognor-

mal means, and the exceedance probability. The chapter also introduced existing

confidence interval procedures for these effect measures, demonstrating that a simple

and valid method for these measures as applied to cluster randomization trials does

not currently exist.

Chapter two discussed confidence intervals in more detail. The advantages and

challenges of the well known Wald-type confidence intervals with application of the

delta method were revealed. The MOVER (Zou and Donner, 2008), a general confi-

dence interval method for the linear combination or a ratio of parameters, was then

discussed as a potential remedy to these challenges.

This chapter unites Chapters one and two by applying the MOVER with existing

confidence intervals for the components of a random effects model to construct new

confidence intervals for the parameters of interest as applied to cluster randomization

trials. These closed form intervals are flexible, allowing asymmetric limits around the

point estimate for parameter estimates with asymmetric distributions. The proposed

and existing confidence interval procedures are asymptotic, suggesting that similar
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results will be observed as the number of clusters gets large. Note that for the

remainder of the thesis, the proposed confidence intervals will be referred to as the

MOVER.

3.1 A difference between two normal means

The MOVER

Clinical trials often compare the mean values of two groups of subjects where each

observation has an approximate normal distribution. The confidence interval of the

mean of group i may be expressed once the variance of the sample mean is obtained.

Donner and Klar (2000, page 8) define the variance of the sample mean as

var( ¯̄Yi) =
σ2

Ai
+ σ2

Ei
/mi

ki

for the balanced design, where mi is the size of the clusters in group (arm) i and ki

is the number of clusters in group i. However, unbalanced cluster sizes occur more

frequently in practice than balanced cluster sizes (Eldridge et al., 2006). This variance

expression may then be extended for the unbalanced design using the unweighted

mean squared error expressed in Equation (1.4) (Thomas and Hultquist, 1978), if

we use the standard assumption that data from each arm of a cluster randomization

trial follows a one-way random effects model. The resulting approximate confidence

interval for a single mean is given by





Lµi
= ¯̄Yi − t1−α/2,ki−1

√
S2

Ui

kinHi

Uµi
= ¯̄Yi + t1−α/2,ki−1

√
S2

Ui

kinHi
,

(3.1)

where t1−α/2,ki−1 is the (1−α/2)100% quantile of the t-distribution with ki−1 degrees

of freedom, S2
Ui is the unweighted mean squared error, and nHi is the harmonic mean

of the cluster sizes for arm i (i = 1, 2), respectively. El-Bassiouni and Abdelhafez
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(2000) showed that this approximate interval maintains coverage for the unbalanced

one-way random effects model. However, the interval tends to be wide when the

ICC < 0.2.

Equation (2.13) may now be applied with the interval of each mean (Equation

(3.1)) to obtain the (1 − α)100% confidence interval of the difference between two

normal means as




L∆ = ¯̄Y1 − ¯̄Y2 −
√

A1 + A2

U∆ = ¯̄Y1 + ¯̄Y2 +
√

A1 + A2,

(3.2)

where

Ai = t21−α/2,ki−1

S2
Ui

kinHi
.

Note that the variance of each sample mean is estimated separately in Equation

(3.2), therefore the procedure does not assume homoscedascity. Also, these limits are

symmetric because each mean follows a normal and therefore symmetric distribution,

making their difference also normally distributed (Casella and Berger, 2002, page

159-160). The limits in Equation (3.2) may be considered as an extension of those

by Wang and Chow (2002), who derived results for independent data rather than

clustered data.

Alternative confidence intervals

Wald confidence interval

Wald-type confidence intervals (Equation 2.4) may be constructed using the results

of Thomas and Hultquist (1978) for a difference between two normal means, where

θ̂ = ¯̄Y1 − ¯̄Y2, v̂ar(θ̂) = S2
U1/k1nH1 + S2

U2/k2nH2, S2
Ui is the unweighted mean squared

error of arm i, ki is the number of clusters in arm i, and nHi is the harmonic mean of
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the cluster sizes in arm i. The confidence interval is then given by





L = ¯̄Y1 − ¯̄Y2 − zα/2

√
S2

U1

k1nH1

+
S2

U2

k2nH2

U = ¯̄Y1 + ¯̄Y2 + zα/2

√
S2

U1

k1nH1
+

S2
U2

k2nH2
.

(3.3)

This interval is similar to the MOVER (Equation (3.2)), except that the MOVER

uses the (1 − α/2)100% quantile of the t-distribution while Equation (3.3) uses the

(1 − α/2)100% quantile of the standard normal distribution. As a result, confidence

intervals obtained using Equation (3.3) will be narrower than those obtained using

Equation (3.2).

Cluster-adjusted confidence interval

An alternative confidence interval procedure for the difference between two normal

means from a cluster randomization trial is given by Donner and Klar (1993). This

procedure is referred to as the cluster-adjusted confidence interval method. This

method uses a pooled estimate of the standard error, thereby assuming homoscedas-

ticity. Although a common variance and a common ICC may be assumed under the

null hypothesis when hypothesis tests or significance tests are used, these assumptions

may be questionable when constructing confidence intervals (Donner and Klar, 2000,

page 96). This is because confidence intervals reflect a range of possible values, not

just the null value of 0.

Once the pooled variance is adjusted for clustering, it is plugged into the usual

t-interval

θ̂ ± tα/2,df

√
v̂ar(θ̂)

and degrees of freedom (df) are set to the total number of clusters minus two. Theo-

retically this asymptotic method would be better than ignoring the effect of clustering;

however, it has not yet been evaluated in a simulation study.
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The cluster-adjusted confidence interval (Donner and Klar, 1993) for a difference

between two normal means is given by

¯̄Y1 − ¯̄Y2 ± tα/2,dfŜE( ¯̄Y1 − ¯̄Y2), (3.4)

where

ŜE( ¯̄Y1 − ¯̄Y2) = SP

[
C1

M1
+

C2

M2

]1/2

,

SP =

√
(M1 − 1)S2

T1
+ (M2 − 1)S2

T2

M − 2
,

S2
Ti

=

ki∑

j=1

mij∑

l1

(Yijl − Ȳi)
2

Mi − 1
,

Ci =

ki∑

j=1

mij
1 + (mij − 1)ρ̂i

Mi
,

ρ̂i =
S2

Ai

S2
Ai

+ S2
Ei

,

df = k1 + k2 − 2, and C1 and C2 are estimated separately in the two trial arms. Note

that the estimated ICC is truncated at zero, because negative ICC values are not

of interest in this thesis. The main difference between this cluster-adjusted proce-

dure and the MOVER is that this method uses a pooled variance estimate while the

MOVER does not assume homoscedasticity.

Generalized confidence interval

The generalized confidence interval procedure (Weerahandi, 1993) may be used to

construct confidence intervals for a difference between two normal means in a cluster

randomization trial when applying the unweighted mean squared error statistic, pro-

posed by Thomas and Hultquist (1978). The generalized confidence interval procedure

is based on simulation and requires the existence of a generalized pivotal quantity.

Let G = g(X;x,v) be a function of X, x, and v, where X is a random variable, x is

the observed data, v = (θ, γ) is a vector of unknown parameters, θ is the parameter
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of interest, and γ is a vector of nuisance parameters. The statistic G is a generalized

pivotal quantity if it satisfies the following two properties (Weerahandi, 1993):

(i) the probability distribution of the pivotal, G = g(X;x,v), is free of any

unknown parameters, v, and

(ii) the observed value of the pivotal, Gobs = g(x;v), does not depend of γ.

If Cα is a region such that P(G ∈ Cα) = 1 − α, then the values of θ which satisfy

{θ : G(x;x,v) ∈ Cα} is the (1−α)100% generalized confidence interval of θ. Note that

property (i) guarantees that Cα is independent of θ and γ. Property (ii) guarantees

that the generalized confidence interval can be obtained using only the observed

values. However, a consequence of property (ii), aside from having to know the

generalized pivotal quantity in advance, is that the resulting generalized confidence

interval is not closed form. This is because the pivotal quantity is dependent on the

simulation of random variables, as shown below.

Krishnamoorthy et al. (2007) provide a pivotal quantity for a single normal mean

in a one-way random effects model,

Gµ = ¯̄Y +
Z√
χ2

k−1

√
SSC

k
,

where ¯̄Y is the overall mean, Z ∼ N(0, 1), χ2
df is a random variable from the chi-

squared distribution with df degrees of freedom, SSC is the sum of squares among

groups (clusters), and k is the number of groups.

Each arm of a cluster randomization trial may follow a one-way random effects

model, therefore Equation (3.5) may be used to construct a generalized confidence

interval for a normal mean from a cluster randomization trial by including a subscript

i to indicate the trial arm,

Gµi
= ¯̄Yi +

Z√
χ2

ki−1

√
SSCi

ki
. (3.5)
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Interest lies in constructing generalized confidence intervals for a difference be-

tween two normal means. The generalized pivotal quantity of a function of parame-

ters, such as f(µ1, µ2) = µ1 − µ2, is simply the same function applied to the pivotal

quantity of each parameter, Gµ1 −Gµ2 (Krishnamoorthy et al., 2007). Therefore, the

following algorithm may be used to construct generalized confidence intervals for a

difference between two normal means from a cluster randomization trial:

1. Use the dataset to compute ¯̄Yi and SSC

2. For i = 1, ..., 1000

- generate Z ∼ N(0, 1) and χ2
k−1

- use these generated random variables to compute Gµ1 and Gµ2 , then Gµ1 − Gµ2

3. Sort Gµ1 − Gµ2 in ascending order

4. Set the lower limit (L) and the upper limit (U) to the 100(α/2)% and 100(1−α/2)%

percentiles of the sorted Gµ1 − Gµ2 values, respectively.

A disadvantage of the asymptotic generalized confidence interval procedure is that

it is based on simulation, potentially leading to differing results for the same dataset.

Another disadvantage is that a generalized pivotal is required, yet there are no general

rules for obtaining such a pivotal.

3.2 A difference between two lognormal means

The MOVER for a single mean

Let Xijl, i = 1, 2, j = 1, ..., ki, and l = 1, ..., mij represent lognormal data with

parameters µi, σAi
, and σEi

. Thus, the log-transformed variables Yijl are normally

distributed, N(µi, σ
2
Ai

+ σ2
Ei

). The lognormal mean from an arm of a cluster random-

ized trial may be expressed as

E(X) = exp

[
µi +

σ2
iA + σ2

iE

2

]
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and estimated by

Ê(X) = exp

[
¯̄Yi +

S2
Ai

+ S2
Ei

2

]
,

where ¯̄Yi is the sample mean of the log-transformed observations of arm i, S2
Ai

is the

between-cluster sample variance of the log-transformed observations of arm i, and

S2
Ei

is the within-cluster sample variance of the log-transformed observations of arm

i (i = 1, 2).

Let the exponent of the lognormal mean be set to

µi + (σ2
iA + σ2

iE)/2 = θ1i + (θ2i + θ3i)/(2nHi),

where

θ1i = µi,

θ2i = σ2
Ei

+ nHiσ
2
Ai

, and

θ3i = (nHi − 1)σ2
Ei

. (3.6)

The (1−α)100% confidence interval of θ1i is given in Equation (3.1) and the intervals

of θ2i and θ3i are given by
[

(ki − 1)S2
U

χ2
1−α/2,ki−1

,
(ki − 1)S2

U

χ2
α/2,ki−1

]
(3.7)

and [
(nHi − 1)(M − k)S2

E

χ2
1−α/2,Mi−ki

,
(nHi − 1)(M − k)S2

E

χ2
α/2,Mi−ki

]
, (3.8)

respectively, since (ki−1)S2
Ui/(σ

2
Ei

+nHiσ
2
Ai

) ∼ (approx.)χ2
ki−1 (Thomas and Hultquist,

1978) and (Mi − ki)S
2
Ei

/σ2
Ei

∼ χ2
Mi−ki

. To obtain the confidence interval of a single

lognormal mean, Equations (2.11) and (2.12) may be applied with the transformation

principle (Section 2.3.2) to the limits of θ2i and θ3i obtained from Equations (3.7) and

(3.8) to find the confidence limits of

θ4i = (θ2i + θ3i)/(2nHi)

=
σ2

Ai
+ σ2

Ei

2
,
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given by




lθ4i
=

S2
Ai

+ S2
Ei

2
−
√

Bi

4
+

Ci

4

uθ4i
=

S2
Ai

+ S2
Ei

2
+

√
Di

4
+

Ei

4
,

(3.9)

where

Bi =
1

n2
Hi

(
S2

Ei
+ n2

HiS
2
Ai

− (ki − 1)S2
Ui

χ2
1−α/2,ki−1

)2

,

Ci =
(nHi − 1)2S4

Ei

n2
Hi

(
1 − Mi − ki

χ2
1−α/2,Mi−ki

)2

,

Di =
1

n2
Hi

(
(ki − 1)S2

Ui

χ2
α/2,ki−1

− S2
Ei

− n2
HiS

2
Ai

)2

,

Ei =
(nHi − 1)2S4

Ei

n2
Hi

(
Mi − ki

χ2
α/2,Mi−ki

− 1

)2

.

Equivalent limits were evaluated by Burdick and Graybill (1984) and shown to main-

tain coverage for numerous unbalanced designs, though they may be liberal under

extreme unbalance when the ICC is less than 0.2.

Equations (2.11) and (2.12) for a confidence interval of the sum of two parame-

ters may again be applied, this time with the limits of θ1i (Equation (3.1)) and θ4i

(Equation (3.9)), to find the limits of θ1i + θ4i = µi + (σ2
Ai

+ σ2
Ei

)/2. Exponentiating

the limits of µi + (σ2
Ai

+ σ2
Ei

)/2 then provides the (1 − α)100% confidence interval of

a single lognormal mean,




li = exp

(
¯̄Yi +

S2
Ai

+ S2
Ei

2
−
√

Ai +
Bi

4
+

Ci

4

)

ui = exp

(
¯̄Yi +

S2
Ai

+ S2
Ei

2
+

√
Ai +

Di

4
+

Ei

4

)
.

(3.10)

Note that these limits are not restricted to symmetry because the limits of the com-

ponents θ2i and θ3i were not restricted to symmetry.



62

The MOVER for a difference between two lognormal means

When comparing lognormal means from two groups, researchers are frequently inter-

ested in inferences on the difference between means. Let E(Xi) denote the lognormal

mean of arm i (i = 1, 2) and Ê(Xi) denote its estimate. Equation (2.13) may then

be applied to construct confidence limits for the difference, E(X1) − E(X2), once a

confidence interval for each mean is found using Equation (3.10). The (1 − α)100%

confidence interval for the difference between two lognormal means is given by





L∆E(X)
= Ê(X1) − Ê(X2) −

√
Ê(X1)

2

F 2
1 + Ê(X2)

2

G2
2

U∆E(X)
= Ê(X1) − Ê(X2) +

√
Ê(X1)

2

G2
1 + Ê(X2)

2

F 2
2

(3.11)

where

Fi = 1 − 1

exp
(√

Ai + Bi/4 + Ci/4
)

Gi = exp
(√

Ai + Di/4 + Ei/4
)
− 1,

for i = 1, 2. Similar to the confidence interval for a single mean, these limits are not

forced to be symmetric because the intervals of the components θ2i and θ3i are not

symmetric. Furthermore, they do not assume homoscedasticity because the variance

of each sample lognormal mean is estimated separately.

Alternative confidence intervals

Wald confidence interval and the delta method

The multivariate delta method (Section 2.4.2) may be used to construct symmetric

Wald-type confidence intervals for the difference between two lognormal means. A

single lognormal mean may be expressed as

gi = exp(θ1i + θ2i + θ3i),
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where

θ1i = µi

θ2i =
(nHi − 1)σ2

Ei

2nHi
, and

θ3i =
σ2

Ei
+ nHiσ

2
Ai

2nHi

have sample variances of

var(θ̂1i) =
S2

Ui

kinHi
,

var(θ̂2i) =
(nHi − 1)2σ4

Ei

2n2
Hi(Mi − ki)

, and

var(θ̂3i) =
S4

Ui

2n2
Hi(ki − 1)

,

respectively for arm i = 1, 2. The multivariate delta method may then be used to

obtain a variance estimate for the sample lognormal mean of arm i,

v̂ar(ĝi) = Hi + Ii + Ji,

where

Hi =
exp(2 ¯̄Yi + σ2

Ai
+ σ2

Ei
)S2

Ui

kinHi

Ii =
exp(2 ¯̄Yi + σ2

Ai
+ σ2

Ei
)(HHi − 1)2σ4

Ei

2n2
Hi(Mi − ki)

Ji =
exp(2 ¯̄Yi + σ2

Ai
+ σ2

Ei
)S4

Ui

2n2
Hi(ki − 1)

.

Wald-type confidence intervals for the difference between two lognormal means

are then given by




LW = L̂N1 − L̂N2 − zα/2

√
v̂ar(ĝ1) + v̂ar(ĝ2)

UW = L̂N1 − L̂N2 + zα/2

√
v̂ar(ĝ1) + v̂ar(ĝ2).

(3.12)

It can clearly be seen from Equation (3.12) that these confidence intervals are sym-

metric, though the sampling distribution for a lognormal mean is skewed. It would

therefore be expected that the interval would not have balanced tail errors.
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Generalized confidence intervals

Generalized confidence intervals for the difference between two lognormal means in

cluster randomization trials may be constructed using the generalized pivotal quan-

tities given by Krishnamoorthy et al. (2007) for the three parameters in a one-way

random effects model (µ, σ2
A, and σ2

E). These generalized pivotal quantities may be

constructed using the unweighted mean squared error (Thomas and Hultquist, 1978).

The generalized pivotal quantity for µi is given by Equation (3.5) in Section 3.1.2.3,

while those of σ2
Ai

and σ2
Ei

(for i = 1, 2) are given by

Gσ2
Ai

= max

(
SSCi

χ2
ki−1

+
ñiSSWi

χ2
Mi−ki

, 0

)
and (3.13)

Gσ2
Ei

=
SSWi

χ2
Mi−ki

, (3.14)

respectively, where χ2
df is a random variable from the chi-squared distribution with

df degrees of freedom, SSC is the sum of squares between groups (or clusters), SSW

is the sum of squares within groups, ñ = (1/k)
∑k

j=1 mj, and each arm of a cluster

randomization trial follows a one-way random effects model.

A generalized pivotal quantity for the lognormal mean, exp
(
µi + (σ2

Ai
+ σ2

Ei
)/2
)
,

of arm i may be obtained using the generalized pivotal quantities of the three param-

eter components of the lognormal mean (µi, σ2
Ai

, and σ2
Ei

) by substituting Gµi
, Gσ2

Ai

,

and Gσ2
Ei

for µi, σ2
Ai

, and σ2
Ei

, respectively. A generalized pivotal quantity for the

lognormal mean is then given by

GE(X)i
= exp

(
Gµi

+
Gσ2

Ai

+ Gσ2
Ei

2

)
,

(i = 1, 2). A generalized pivotal quantity for a difference between two lognormal

means may be expressed as

GE(X)1 − GE(X)2. (3.15)

Generalized confidence intervals for the difference between two lognormal means

may be obtained using the algorithm in Section 3.1.2.3, by substituting GE(X)i
for Gµi

.
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Similar to the MOVER (Equation (3.11)), these intervals make use of the unweighted

mean squared error (Equation (1.4)), proposed by Thomas and Hultquist (1978).

Therefore, they will have similar properties to the MOVER for the difference between

two lognormal means which also apply the unweighted mean squared error.

The major differences between these generalized confidence intervals and the

MOVER are that generalized confidence intervals are based on simulation, whereas

the MOVER is easier to obtain and are closed form. This is especially important

when constructing confidence intervals for the lognormal mean, because the limits

are first estimated on the log scale, then exponentiated to obtain the limits of the

mean. Without a closed form solution where different limits may be obtained at sep-

arate occasions, even a small difference in the limits on the log scale may translate

into a clinically significant difference once exponentiated.

3.3 The exceedance probability

The MOVER

To obtain confidence intervals for

P (Y1 > Y2) = Φ


 µ1 − µ2√

σ2
T1

+ σ2
T2


 ,

where σ2
Ti

= σ2
Ai

+ σ2
Ei

, the limits of the standardized mean difference must first be

obtained. The expression for the standardized mean difference is given by

δ =
(µ1 − µ2)√
σ2

T1
+ σ2

T2

.

Confidence intervals of the numerator of δ are given in Equation (3.2). The con-

fidence limits of

σ2
Ti

=
1

nHi

[(
σ2

Ei
+ nHiσ

2
Ai

)
+
(
(nHi − 1)σ2

Ei

)]

= σ2
Ai

+ σ2
Ei
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may be found using the transformation principle (Section 2.3.2) with Equations (2.11)

and (2.12), such that (ki − 1)S2
Ui/(σ

2
Ei

+ nHiσ
2
Ai

) ∼ (approx.)χ2
ki−1 (Thomas and

Hultquist, 1978) and (Mi − ki)S
2
Ei

/σ2
Ei

∼ χ2
Mi−ki

(Graybill, 1976, page 613). The

limits of σ2
T1

+ σ2
T2

are given by

L =
(
S2

A1
+ S2

E1
+ S2

A2
+ S2

E2

)
−
√

B1 + C1 + B2 + C2

U =
(
S2

A1
+ S2

E1
+ S2

A2
+ S2

E2

)
+
√

D1 + E1 + D2 + E2.

The limits of the denominator of the standardized mean difference,
√

σ2
T1

+ σ2
T2

,

are then set to (
√

L,
√

U) using the transformation principle. This interval, denoted

here as (l2, u2), and the interval for the numerator (the difference between two normal

means), denoted by (l1, u1), may be used to find the (1− α)100% confidence interval

of the standardized mean difference with Equation (2.18),





Lδ =
θ̂1θ̂2 −

√
θ̂2
1θ̂

2
2 − u2l1(2θ2 − u2)(2θ̂1 − l1)

u2(2θ̂2 − u2)

Uδ =
θ̂1θ̂2 +

√
θ̂2
1θ̂

2
2 − l2u1(2θ̂2 − l2)(2θ̂1 − u1)

l2(2θ̂2 − l2)
,

(3.16)

where θ̂1 = ¯̄Y1 − ¯̄Y2 and θ̂2 = ST =
√

S2
A1

+ S2
E1

+ S2
A2

+ S2
E2

.

According to the transformation principle, the (1−α)100% confidence interval for

P(Y1 > Y2) is then given by (Φ(Lδ), Φ(Uδ)). This confidence interval is not restricted

to symmetry because the intervals of the denominator are asymmetric.

Alternative confidence intervals

Wald confidence interval and the delta method

Symmetric Wald-type confidence intervals for the standardized mean difference may

be constructed using the multivariate delta method (Section 2.4.2). The standardized
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mean difference may be expressed as

δ =
µ1 − µ2√
σ2

T1
+ σ2

T2

=
θ1 − θ2√

θ3 + θ4 + θ5 + θ6

,

where the estimates of

θ1 = µ1

θ2 = µ2

θ3 =
nH1 − 1

nH1
σ2

E1

θ4 =
σ2

E1
+ nH1σ

2
A1

nH1

θ5 =
nH2 − 1

nH2

σ2
E2

θ6 =
σ2

E2
+ nH2σ

2
A2

nH2

have sample variances

var(θ̂1) =
S2

U1

k1nH1

var(θ̂2) =
S2

U2

k2nH2

var(θ̂3) =
2(nH1 − 1)2σ4

E1

n2
H1(M1 − k1)

var(θ̂4) =
2S2

U1

nH1(k1 − 1)

var(θ̂5) =
2(nH2 − 1)2σ4

E2

n2
H2(M2 − k2)

var(θ̂6) =
2S2

U2

nH2(k2 − 1)
,

respectively. Application of the multivariate delta method gives the variance of the

estimated standardized mean difference,

v̂ar(δ̂) = O + P + Q + R + S + T,
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where

O =
S2

U1[
(nH1−1)

nH1
σ2

E1
+

S2
U1

nH1
+ (nH2−1)

nH2
σ2

E2
+

S2
U2

nH2

]
k1nH1

P =
S2

U2[
(nH1−1)

nH1
σ2

E1
+

S2
U1

nH1
+ (nH2−1)

nH2
σ2

E2
+

S2
U2

nH2

]
k2nH2

Q =
(µ1 − µ2)

2(nH1−1)
2σ4

E1

2
[

(nH1−1)
nH1

σ2
E1

+
S2

U1

nH1
+ (nH2−1)

nH2
σ2

E2
+

S2
U2

nH2

]3
n2

H1(M1 − k1)

R =
(µ1 − µ2)

2S4
U1

2
[

(nH1−1)
nH1

σ2
E1

+
S2

U1

nH1
+ (nH2−1)

nH2
σ2

E2
+

S2
U2

nH2

]3
n2

H1(k1 − 1)

S =
(µ1 − µ2)

2(nH2−1)
2σ4

E2

2
[

(nH1−1)
nH1

σ2
E1

+
S2

U1

nH1
+ (nH2−1)

nH2
σ2

E2
+

S2
U2

nH2

]3
n2

H2(M2 − k2)

T =
(µ1 − µ2)

2S4
U2

2
[

(nH1−1)
nH1

σ2
E1

+
S2

U1

nH1
+ (nH2−1)

nH2
σ2

E2
+

S2
U2

nH2

]3
n2

H2(k2 − 1)
.

Plugging in the variance estimate using Slutsky’s theorem (Casella and Berger, 2002,

page 239), Wald-type confidence intervals for the standardized mean difference are

obtained,





L = δ̂ − zα/2

√
v̂ar(δ̂)

U = δ̂ + zα/2

√
v̂ar(δ̂).

(3.17)

Using the transformation principle (Section 2.3.2), the confidence interval for

P(Y1 > Y2) is then given by (Φ(L), Φ(U)). Although the standardized mean dif-

ference can be skewed in distribution and thus so can P(Y1 > Y2), these limits are

symmetric around the point estimate, potentially leading to unbalanced tail errors.

Generalized confidence interval

Generalized confidence intervals may be constructed for the standardized mean dif-

ference using a generalized pivotal quantity for the standardize mean difference. This
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statistic may be obtained using the generalized pivotal quantity for µi (Equation

(3.5)), σ2
Ai

(Equation (3.13)), and σ2
Ei

(Equation (3.14)).

The generalized pivotal quantity for the standardized mean difference may be

expressed as

GSMD =
Gµ11 − Gµ2√

Gσ2
A1

+ Gσ2
E1

+ Gσ2
A2

+ Gσ2
E2

. (3.18)

To obtain generalized confidence intervals, the algorithm in Section 3.1.2.3 may

be applied while changing step 2 to compute Gµi
, Gσ2

Ai

, Gσ2
Ei

, and GSMD instead

of Gµ1 − Gµ2 . Letting (L, U) represent the (1 − α)100% confidence interval of the

standardized mean difference, the generalized confidence interval for P(Y1 > Y2) is

given by [Φ(L), Φ(U)].
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Chapter 4

SIMULATION STUDY OF CONFIDENCE INTERVAL

PROCEDURES

4.1 Introduction

The discussion in Chapter 3 was based on an algebraic comparison of various existing

confidence interval procedures as compared to the MOVER for each of the three effect

measures, 1) the difference between two normal means, 2) the difference between two

lognormal means, and 3) the exceedance probability. The validity of each procedure is

based on large sample theory. Consequently, we expect coverage to approach nominal

levels as the number of clusters gets large. It is therefore important to evaluate the

methods to identify conditions under which the procedures perform well, in addition

to when and how they fail.

In this chapter, the confidence interval procedures shown in Chapter 3 are com-

pared under a variety of common parameter combinations using Monte Carlo simula-

tions, following three steps. First, data are generated according to chosen parameter

values to resemble random variables found in practice. Second, the generated data are

analyzed using all methods considered, and third the analysis is evaluated by com-

paring estimates with the truth (the known parameter values). Empirical coverage

rates, tail errors and median widths are used to identify the finite sample properties

of procedures.
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4.2 Objectives

In general, a simulation study allows the finite properties of asymptotic statistics to

be examined and various methods to be compared. This simulation study evaluates

confidence intervals for a difference between two normal means, the difference between

two lognormal means, and the exceedance probability when data arise from cluster

randomization trials. The simulation study evaluates these confidence intervals with

three main objectives:

1) to determine the parameters required per trial arm to maintain confidence

internal coverage rates, which indicate the procedure’s overall validity,

2) to compare confidence interval tail error rates, which show the validity of each

confidence limit, and

3) to compare confidence interval widths, which reflect efficiency.

Achieving these objectives will allow recommendations to be made for confidence

interval procedure as applied to cluster randomization trials with normal or lognormal

outcomes.

For all three objectives 95% confidence intervals will be investigated. Empirical

coverage is set to the percentage of times the confidence intervals obtained from

the generated data contain the true parameter value, where the aim is to have the

empirical coverage fall close to the nominal coverage of 95%. With 1000 simulation

runs, we regard empirical coverage between (93.6%, 96.4%) as acceptable. This range

was determined by 0.95± 1.96
√

(0.95)(0.05)/1000. Note that this confidence interval

for the nominal coverage is symmetric, because it is expected that 1000 replicate data

sets will likely lead to a symmetric sampling distribution for the coverage.

If empirical coverage falls within the interval given above, left and right tail errors

will then be compared. Left and right tail errors are the percentage of times the

confidence interval lies above or below the parameter value. We emphasize tail errors

because we define a 95% confidence interval for a parameter θ as given by (L, U),



72

where P(L ≥ θ) = 0.025 and P(U ≤ θ) = 0.025. On average, tail errors demonstrate

how often the interval misses the truth from each side. Also, balance between tail

errors is desirable to ensure that only extreme values are excluded from the interval.

Ideally, the interval should miss the true parameter value 2.5% of the time from each

side for a 95% confidence interval. If tail errors are not balanced, then the interval

may exclude likely parameter values from the side with the larger tail and may include

extreme values which are unlikely to be true from the side with the smaller tail.

If more than one procedure has acceptable coverage and comparable tail errors,

the procedures will be compared based on confidence interval widths. The median

confidence interval width will be compared from the 1000 runs of each procedure,

where a narrower width, indicating greater precision, is desirable. Median widths

are of interest rather than mean widths, because the sampling distribution of confi-

dence interval width is skewed for the confidence intervals of a difference between two

lognormal means.

4.3 Methods

Parameter combinations

Many parameter values were varied within each simulation study according to pre-

viously published cluster randomization trials to make recommendations about the

procedures and to learn about their shortcomings. For simplicity, the design of the

experiment was a completely randomized cluster randomization trial with two arms.

Extensions to other clustered trial designs and to more than two arms may be inves-

tigated in future work. The parameters which varied within each simulation study

included the number of clusters in each arm, the average cluster size, the ratio of

variances in the two arms, and the ICC.

Many cluster randomization trials occur at the practice or even the community

level, demonstrating a need for statistical inference procedures when there are a small
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number of large clusters. Such methods would also be applicable when there are a

large number of small clusters, because increasing the number of clusters (k) typically

contributes more to the precision of the parameter estimates than increasing the

cluster size (m), as can be seen from the variance expression in Donner and Klar

(2000, page 8) for a single normal mean,

var(Ȳi) =
σ2

km
[1 + (m − 1)ρ],

when σ2 is the unknown variance of Y and ρ is the ICC. Thus, a balanced and unbal-

anced number of clusters in the two arms (control, experimental) will be set to (6, 6),

(12, 6), (12, 12), (24, 12), and (24, 24) with an average of 50, 100, and 200 observations

per cluster. These parameters are consistent with the simulation study performed by

Flynn and Peters (2004), where the performance of the Huber-White robust variance

estimator (Huber, 1981; White, 1980) was shown to have closer coverage to the nom-

inal than bias-corrected and accelerated bootstrap confidence intervals (Efron, 1987)

for normal and lognormal data from cluster randomization trials. The above sample

sizes often occur in community randomized trials and trials randomizing physician

practices (Feng et al., 1996; Donner and Klar, 1996) and will therefore be used in this

simulation study.

Balanced cluster sizes rarely occur in practice. The imbalance of cluster sizes may

be described by the imbalance parameter,

v =
1

1 + k2
, (4.1)

where k = σ/µ denotes coefficient of variation (Ahrens and Pincus, 1981), which is

a normalized measure of the dispersion of data points around the mean, σ is the

standard deviation of the cluster sizes, and µ is the mean cluster size. Imbalance

parameters range from 0 to 1, with 1 denoting complete balance between cluster sizes.

Cluster sizes of 50, often seen in general practices (Eldridge et al., 2004), typically

have an imbalance parameter of roughly 0.8 (Eldridge et al., 2006). Several trials (e.g.
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Marrie et al., 2000; Burns and Kendrick, 1997) and previous simulation studies (e.g.

Zou, 2002; Klar, 1993; Donner et al., 1994) examined had estimates of the imbalance

parameter approximately equal to 0.8. Thus, cluster sizes will be generated from the

uniform distribution with the imbalance parameter set to 0.8. A detailed description

is provided in Section 4.3.2.1.

Individuals within any one of these clusters typically have a positive correlation

with others in the same cluster. The degree of their similarity as compared to indi-

viduals in other clusters for some outcome may be measured using the ICC. The ICC

is important because it is used to estimate the design effect (Chapter 1), which may

then be used for the proper design and analysis of cluster randomization trials when

interest lies at the individual level. Although negative values of the ICC are theo-

retically possible, we limit the discussion to positive values in the context of cluster

randomization trials. Typical ICC values for the sample sizes above range from 0.005

to 0.2 (Hedges, 2007a; Donner and Klar, 2004; Feng et al., 1996). The simulation

studies will therefore investigate data with ICC values of 0.005, 0.01, 0.1, and 0.2.

Note that the ICC value for lognormal data is not of direct interest as it is common

practice for investigators to transform the data onto the log scale. Also, this thesis

is not focused on the direct interpretation of the ICC. Rather, the ICC is used here

to potentially correct for the effect of clustering when inferences are at the individual

level, or to quantify the effect of clustering on the raw or log scale.

Without loss of generality, the normal mean was set to µT = 1.0 for the experi-

mental arm and to µC = 0 for the control arm for the difference between two normal

means and the difference between two lognormal means according to the simulation

study performed by Flynn and Peters (2004).

Although variance homogeneity may be assumed in hypothesis testing under the

null, this assumption may not hold for confidence interval construction. Heteroscedas-

ticity may arise in practice in the presence of an intervention effect, where the in-

tervention may also have an effect on the sample variance of the outcome in the
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intervention arm. The effects of heteroscedasticity are therefore investigated by the

simulation study. Following the notation in Section 1.3, the ratio of variances (exper-

imental arm to control arm, σ2
Ti

/σ2
Ci

) is set to 1.0 and 1.4, while keeping the variance

of the control arm constant at 5.0 units2. Note that the maximum ratio of normal

variances was not set larger than 1.4 particularly due to the exponentiated lognormal

data. A larger variance of roughly exp(10) is not realistic or of practical value.

For the exceedance probability, P(Y1 > Y2) = Φ(SMD), the values of µT and µC

are altered such that P(Y1 > Y2) = 0.5 and 0.9. These values are changed to µT = 0

and µC = 0 for P(Y1 > Y2) = 0.5. When P(Y1 > Y2) = 0.9, µT = 4.0 and µC = 0 when

σ2
T1

/σ2
T2

= 1.0 (σ2
T2

= 5), and µT = 4.4 and µC = 0 when σ2
T1

/σ2
T2

= 1.4 (σ2
T2

= 5).

A summary of the parameters investigated in the simulation study is given in

Table 4.1. A factorial design is followed with a total of 120 parameter combinations

for the difference between two normal means and the difference between two lognormal

means, and 240 parameter combinations for the exceedance probability, P(Y1 > Y2).

Burton et al. (2006) defines two types of datasets generated in simulation studies -

fully independent datasets and moderately independent datasets. Fully independent

datasets are defined as different sets of independent datasets for each method and

each parameter combination in each of the 1000 runs, while moderately independent

datasets are defined as the same simulated dataset for each method within a scenario,

but different and independent datasets for different scenarios (or different parameter

combinations). This study uses moderately independent simulations to more easily

detect any differences between the procedures.

Data generation

Cluster sizes

Cluster sizes were simulated using the discrete uniform distribution such that the

average cluster size and degree of imbalance may easily be controlled. Existing trials
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Table 4.1: Parameter combinations used for Monte Carlo simulations

Parameter value

Runs per parameter 1000
combination

α 0.05

Clusters/arm (6,6), (12,6), (12,12),
(Control, Experimental) (24,12), (24,24)

Average cluster size 50, 100, 200

ICC 0.005, 0.01, 0.1, 0.2

Imbalance parameter (v) 0.8

µ2 − µ1, (µ1 = 0) 1

σ2
T1

/σ2
T2

, (σ2
T2

= 5.0) 1.0, 1.4

P(Y1 > Y2), when
σ2

T1
/σ2

T2
= 1.0, 1.4 0.5, 0.9

(σ2
T2

= 5.0)
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typically have imbalance parameters of 0.8 (Eldridge et al., 2006; Marrie et al., 2000;

Burns and Kendrick, 1997) and previous simulation studies have generated clustered

data using an imbalance parameter of 0.8 for cluster sizes (e.g. Zou, 2002; Klar, 1993;

Donner et al., 1994). Therefore, an imbalance parameter of 0.8 and average cluster

sizes of 50, 100, and 200 individuals were generated. These cluster sizes were chosen

to reflect typical sizes in existing trials and past simulation studies (Eldridge et al.,

2006; Flynn and Peters, 2004).

To sample data from the uniform distribution, the mean and variance are first

required. Equation (4.1) may be used by setting the value of v to 0.8 for unbalanced

cluster sizes and solving for k (k = 0.5). Using the desired mean (50, 100, or 200), the

standard deviation of the uniform distribution may be obtained using the expression

for the coefficient of variation, CV = k = σ/µ (Eldridge et al., 2006). The variance

of the discrete uniform distribution is given by

σ2 =
(b− a + 1)2 − 1

12
,

where a and b are the endpoints. The width of the uniform distribution is then given

by b − a + 1. By using the variance expression to solve for the width, the endpoints

of the uniform distribution may be expressed as

(
µ − b − a + 1

2
, µ +

b − a + 1

2

)
. (4.2)

Table 4.2 gives the end points of each uniform distribution for each average cluster

size when v = 0.8.

Correlated normal data

Once the cluster sizes have been determined, the observations must be generated for

the simulation study. As discussed in Chapter 1, an extensively used distribution for

the generation of data is the normal distribution because it commonly approximates

many types of data found in practice, including continuous and relatively symmetric
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Table 4.2: Imbalance parameter and the corresponding endpoints of the discrete
uniform distribution used to sample unbalanced cluster sizes ( v = 0.8)

Average cluster size Endpoints

50 (7, 93)

100 (13, 187)

200 (27, 373)

health-related data such as blood pressure and weight. The normal distribution was

used to generate observations for the simulation study when interest lay in inferences

on a difference between two normal means and the exceedance probability.

Data were generated according to the one-way random effects model. Specifically,

the lth observation, Yijl, from the jth cluster in the ith arm is given by

Yijl = µi + Aij + Eijl

where µi is the population mean of arm i, Aij ∼ N(0, σ2
Ai

) is independent of Eijl ∼
N(0, σ2

Ei
), and two observations within a cluster have correlation ρ (ρ is the value of

the ICC).

Correlated lognormal data

A multivariate lognormal distribution may be used to approximate positively skewed

data which commonly occur in cluster randomization trials with outcomes such as

hospital wait times and health care costs (see Chapter 1). Following the notation

in Section 1.3, multivariate lognormal data were generated by exponentiating the

multivariate normal (MVN) observations. That is,

Xijl = exp(Yijl)

where Yijl ∼ MVN(µ,Σ) with coerrelation coefficient ρ.
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Computer software for data generation

All data were generated using SAS (Statistical Analysis Systems) software. For in-

stance, cluster sizes were then sampled in SAS IML using the UNIFORM function using

the endpoints specified in Table 4.2. Also, correlated normal data were generated in

Proc IML in SAS with the NORMAL function. Correlated lognormal data were gener-

ated by simply exponentiating the correlated normal observations.

Methods of comparison

The algebraic expressions of the methods of comparison for each of the parameters of

interest are given in Chapter 3. These methods are organized in Table 4.3 for each of

the three parameters.

For the difference between two normal means, the MOVER is evaluated and com-

pared to the Wald method, the cluster-adjusted confidence interval procedure (Donner

and Klar, 1993), and the generalized confidence interval procedure (Weerahandi, 1993;

Krishnamoorthy et al., 2007).

For the difference between two lognormal means, the MOVER is evaluated and

compared to the Wald method, and the generalized confidence interval procedure

(Weerahandi, 1993; Krishnamoorthy et al., 2007).

For the exceedance probability, the MOVER is evaluated and compared to the

Wald method, and the generalized confidence interval procedure (Weerahandi, 1993;

Krishnamoorthy et al., 2007). Evaluations and comparisons are consistent with those

described in Section 4.2.

All of these confidence interval procedures adjust for clustering and heteroscedas-

ticity. However, only the MOVER and the generalized confidence interval procedure

allow asymmetric limits around the parameter estimate when its sampling distribution

is skewed.
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Table 4.3: Methods of comparison for the difference between two normal means
(E(Y1) − E(Y2)), the difference between two lognormal means (E(X1) − E(X2)), and
the exceedance probability (P(Y1 > Y2)).

E(Y1) − E(Y2) E(X1) − E(X2) P(Y1 > Y2)

MOVER, Equation (3.2) MOVER, Equation (3.11) MOVER, Equation (3.16)

Wald, Equation (3.3) Wald, Equation (3.12) Wald, Equation (3.17)

Cluster-adjusted, Equation (3.4) GCI, Equation (3.15) GCI, Equation (3.18)

GCI, Equation (3.5)

4.4 Results

The simulation results for each of the parameters of interest are presented in tabular

form, each table differing by the number of clusters per arm. This presentation

design was chosen because the number of clusters appeared to have the greatest

impact on empirical coverage for each of the three parameters investigated. Also,

each table displays the results of all three objectives of the study (Section 4.2). For

each parameter investigated, empirical coverage is first discussed, followed by balance

between tail errors, and finally median interval width.

The difference between two normal means

Empirical coverage results (α = 0.05), tail errors, and median widths for the Wald

method, the cluster-adjusted confidence interval procedure, the generalized confidence

interval procedure and the MOVER as applied to unbalanced, completely randomized

cluster randomization trials for a difference between two normal means are presented

in Tables 4.4 to 4.8.
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Confidence interval coverage

Overall, all of the procedures, except the cluster-adjusted confidence interval (Donner

and Klar, 1993), show great improvement in empirical coverage as the number of

clusters per arm increase. Other parameters such as the average cluster size, the ICC,

and variance homogeneity/heterogeneity do not greatly influence coverage rates.

When the number of clusters per arm is small, e.g. at least one arm with 6

clusters, the Wald method has low coverage rates, with an average empirical coverage

of 91.8% in Tables 4.4 and 4.5. As the number of clusters increases to 24 (Table 4.8)

the method’s performance improves greatly to coverage rates of almost all parameter

combinations falling within the desired range, i.e. 93.6% to 96.4%.

The cluster-adjusted confidence interval procedure shows consistently high cov-

erage throughout all of the parameter combinations (Tables 4.4-4.8), showing only

very slight improvements as the number of clusters increase. An average empirical

coverage of 99.4% (nominal coverage of 95%) was obtained for the 120 parameter

combinations investigated due to overestimated variances.

The generalized confidence interval procedure performed reasonably well overall,

falling within the desired range 73.6% of the time. The other 26.4% of the time, the

procedure had an average empirical coverage of 97%. With only 6 clusters per arm,

the method showed coverage outside the desired range 83.3% of the time.

The MOVER had similar empirical coverage performance to the simulation inten-

sive generalized confidence interval procedure. When there are only 6 clusters per

group the method has coverage outside the desired range 75% of the time, exceeding

the nominal coverage by an average of 2.2%. However, when the number of clus-

ters increases to (12, 6) (Table 4.5), coverage rates fall closer to the nominal 95%.

This improvement continues as the number of clusters increase to 24 clusters per arm

(Table 4.8).
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Table 4.4: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two normal means when the number of clusters per arm
equal 6 (control) and 6 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald ClusterAdj GCI MOVER

Cov, (<, >)%, WD Cov (<, >)% WD Cov (<, >)% Width Cov (<, >)% WD

0.005 50 1.0 92.6 (3.4, 4.0) 0.9 99.9 (0.1, 0.0) 1.6 97.6 (0.9, 1.5) 1.2 97.5 (1.0, 1.5) 1.2

1.4 92.8 (3.4, 3.8) 1.0 99.9 (0.1, 0.0) 1.8 97.3 (1.0, 1.7) 1.3 97.8 (0.9, 1.3) 1.3

100 1.0 91.9 (3.8, 4.3) 0.7 99.7 (0.1, 0.2) 1.2 96.8 (0.9, 2.3) 0.9 96.8 (1.2, 2.0) 0.9

1.4 91.9 (3.9, 4.2) 0.7 99.7 (0.1, 0.2) 1.4 97.3 (0.9, 1.8) 1.0 96.9 (1.2, 1.9) 1.0

200 1.0 91.8 (4.5, 3.7) 0.5 100.0 (0.0, 0.0) 1.0 97.4 (1.2, 1.4) 0.7 97.7 (1.1, 1.2) 0.7

1.4 91.0 (4.8, 4.2) 0.6 100.0 (0.0, 0.0) 1.1 97.6 (1.0, 1.4) 0.8 97.7 (1.1, 1.2) 0.8

0.01 50 1.0 92.1 (3.9, 4.0) 1.0 99.9 (0.1, 0.0) 1.8 97.3 (1.0, 1.7) 1.3 97.5 (1.0, 1.5) 1.3

1.4 92.1 (3.6, 4.3) 1.1 99.9 (0.1, 0.0) 1.9 97.6 (0.9, 1.5) 1.4 97.7 (0.9, 1.4) 1.4

100 1.0 91.3 (4.2, 4.5) 0.8 99.6 (0.2, 0.2) 1.4 97.0 (1.1, 1.9) 1.0 96.8 (1.3, 1.9) 1.0

1.4 91.5 (4.0, 4.5) 0.8 99.6 (0.2, 0.2) 1.6 97.0 (1.2, 1.8) 1.1 96.8 (1.3, 1.9) 1.1

200 1.0 91.5 (4.6, 3.9) 0.6 99.9 (0.1, 0.0) 1.2 97.1 (1.1, 1.8) 0.8 96.9 (1.3, 1.8) 0.8

1.4 91.2 (4.5, 4.3) 0.7 99.7 (0.2, 0.1) 1.3 97.1 (1.2, 1.7) 0.9 97.1 (1.2, 1.7) 0.9

0.1 50 1.0 91.7 (3.9, 4.4) 1.8 99.5 (0.1, 0.4) 3.5 96.6 (1.4, 2.0) 2.3 96.6 (1.5, 1.9) 2.3

1.4 91.7 (3.8, 4.5) 1.9 99.5 (0.1, 0.4) 3.8 96.5 (1.4, 2.1) 2.5 96.4 (1.6, 2.0) 2.5

100 1.0 91.3 (4.1, 4.6) 1.6 99.7 (0.2, 0.1) 3.3 95.7 (2.2, 2.1) 2.1 96.1 (2.1, 1.8) 2.2

1.4 91.6 (3.9, 4.5) 1.8 99.7 (0.2, 0.1) 3.6 95.9 (2.0, 2.1) 2.3 95.8 (2.2, 2.0) 2.4

200 1.0 92.2 (3.7, 4.1) 1.6 99.6 (0.3, 0.1) 3.2 97.1 (1.3, 1.6) 2.1 97.1 (1.4, 1.5) 2.1

1.4 91.8 (4.0, 4.2) 1.7 99.6 (0.3, 0.1) 3.6 96.8 (1.5, 1.7) 2.3 97.2 (1.4, 1.4) 2.3

0.2 50 1.0 92.7 (3.5, 3.8) 2.4 99.6 (0.1, 0.3) 4.7 96.6 (1.7, 1.7) 3.1 96.8 (1.7, 1.5) 3.1

1.4 91.8 (4.1, 4.1) 2.6 99.5 (0.2, 0.3) 5.1 96.6 (1.7, 1.7) 3.4 96.4 (1.8, 1.8) 3.4

100 1.0 91.3 (4.1, 4.6) 2.2 99.6 (0.2, 0.2) 4.5 95.6 (2.1, 2.3) 2.9 95.8 (2.0, 2.2) 2.9

1.4 91.2 (3.9, 4.9) 2.5 99.7 (0.2, 0.1) 5.0 95.8 (1.9, 2.3) 3.2 95.8 (2.1, 2.1), 3.2

200 1.0 91.9 (4.0, 4.1) 2.2 99.8 (0.1, 0.1) 4.5 97.2 (1.3, 1.5) 2.9 97.1 (1.5, 1.4) 2.9

1.4 91.7 (4.2, 4.1) 2.4 99.7 (0.2, 0.1) 4.9 97.0 (1.3, 1.7) 3.2 97.3 (1.3, 1.4) 3.2
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Table 4.5: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two normal means when the number of clusters per arm
equal 12 (control) and 6 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald ClusterAdj GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width Cov (<, >)% WD

0.005 50 1.0 92.7 (3.4, 3.9) 0.8 99.6 (0.1, 0.3) 1.2 97.5 (1.2, 1.3) 1.0 97.3 (1.4, 1.3) 1.0

1.4 92.2 (3.7, 4.1) 0.9 99.5 (0.1, 0.4) 1.3 97.0 (1.3, 1.7) 1.1 97.3 (1.3, 1.4) 1.1

100 1.0 92.9 (4.2, 2.9) 0.6 99.5 (0.3, 0.2) 0.9 96.2 (2.4, 1.4) 0.7 96.9 (2.1, 1.0) 0.7

1.4 92.7 (4.4, 2.9) 0.7 99.5 (0.3, 0.2) 1.0 96.2 (2.4, 1.4) 0.8 96.7 (2.1, 1.2) 0.8

200 1.0 92.0 (3.6, 4.4) 0.5 99.3 (0.4, 0.3) 0.7 95.6 (1.5, 2.9) 0.6 96.0 (1.6, 2.4) 0.6

1.4 91.6 (3.7, 4.7) 0.5 98.8 (0.5, 0.7) 0.8 95.4 (1.5, 3.1) 0.6 95.7 (1.5, 2.8) 0.6

0.01 50 1.0 91.9 (3.9, 4.2) 0.8 99.3 (0.2, 0.5) 1.3 96.6 (1.6, 1.8) 1.0 96.6 (1.7, 1.7) 1.0

1.4 91.6 (4.1, 4.3) 0.9 99.2 (0.2, 0.6) 1.4 96.3 (1.9, 1.8) 1.2 96.3 (1.9, 1.8) 1.2

100 1.0 92.1 (4.5, 3.4) 0.7 99.3 (0.5, 0.2) 1.0 95.9 (2.6, 1.5) 0.8 96.7 (2.1, 1.2) 0.8

1.4 92.0 (4.5, 3.5) 0.7 99.3 (0.5, 0.2) 1.1 96.1 (2.4, 1.5) 0.9 96.3 (2.3, 1.4) 0.9

200 1.0 92.0 (3.7, 4.3) 0.5 99.1 (0.5, 0.4) 0.9 95.7 (1.6, 2.7) 0.7 95.8 (1.7, 2.5) 0.7

1.4 90.9 (4.2, 4.9) 0.6 98.9 (0.6, 0.5) 1.0 95.3 (1.6, 3.1) 0.8 95.8 (1.7, 2.5) 0.8

0.1 50 1.0 91.9 (3.9, 4.2) 0.8 99.3 (0.2, 0.5) 1.3 96.6 (1.6, 1.8) 1.0 96.6 (1.7, 1.7) 1.0

1.4 91.6 (4.1, 4.3) 0.9 99.2 (0.2, 0.6) 1.4 96.3 (1.9, 1.8) 1.2 96.3 (1.9, 1.8) 1.2

100 1.0 92.1 (4.5, 3.4) 0.7 99.3 (0.5, 0.2) 1.0 95.9 (2.6, 1.5) 0.8 96.7 (2.1, 1.2) 0.8

1.4 92.0 (4.5, 3.5) 0.7 99.3 (0.5, 0.2) 1.1 96.1 (2.4, 1.5) 0.9 96.3 (2.3, 1.4) 0.9

200 1.0 92.0 (3.7, 4.3) 0.5 99.1 (0.5, 0.4) 0.9 95.7 (1.6, 2.7) 0.7 95.8 (1.7, 2.5) 0.7

1.4 90.9 (4.2, 4.9) 0.6 98.9 (0.6, 0.5) 1.0 95.3 (1.6, 3.1) 0.8 95.8 (1.7, 2.5) 0.8

0.2 50 1.0 91.3 (5.2, 3.5) 2.0 99.1 (0.6, 0.3) 3.4 95.4 (2.6, 2.0) 2.4 95.4 (2.6, 2.0) 2.5

1.4 90.5 (5.4, 4.1) 2.2 99.1 (0.6, 0.3) 3.8 95.1 (2.8, 2.1) 2.8 95.2 (2.9, 1.9) 2.8

100 1.0 91.7 (4.9, 3.4) 1.9 98.5 (1.0, 0.5) 3.4 96.1 (2.2, 1.7) 2.4 95.9 (2.3, 1.8) 2.4

1.4 91.0 (5.6, 3.4) 2.2 98.4 (1.1, 0.5) 3.7 96.1 (2.1, 1.8) 2.7 95.8 (2.4, 1.8) 2.7

200 1.0 92.2 (4.0, 3.8) 1.9 99.2 (0.2, 0.6) 3.3 96.7 (1.7, 1.6) 2.3 96.7 (1.9, 1.4) 2.4

1.4 91.4 (4.2, 4.4) 2.1 99.1 (0.3, 0.6) 3.7 96.7 (1.8, 1.5) 2.6 96.6 (1.9, 1.5) 2.7



84

Table 4.6: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two normal means when the number of clusters per arm
equal 12 (control) and 12 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald ClusterAdj GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width Cov (<, >)% WD

0.005 50 1.0 93.9 (3.2, 2.9) 0.7 99.5 (0.3, 0.2) 1.0 95.5 (2.4, 2.1) 0.7 96.1 (2.2, 1.7) 0.7

1.4 93.4 (3.7, 2.9) 0.7 99.6 (0.4, 0.0) 1.1 95.7 (2.4, 1.9) 0.8 96.0 (2.3, 1.7) 0.8

100 1.0 92.6 (3.7, 3.7) 0.5 99.5 (0.2, 0.3) 0.7 95.6 (2.1, 2.3) 0.5 95.4 (2.1, 2.5) 0.6

1.4 92.8 (3.4, 3.8) 0.5 99.3 (0.3, 0.4) 0.8 95.2 (2.2, 2.6) 0.6 95.1 (2.4, 2.5) 0.6

200 1.0 93.6 (3.3 , 3.1) 0.4 99.4 (0.4, 0.2) 0.6 96.6 (1.5, 1.9) 0.4 96.7 (1.8, 1.5) 0.4

1.4 93.3 (3.4, 3.3) 0.4 99.6 (0.2, 0.2) 0.7 96.1 (1.7, 2.2) 0.5 96.5 (1.8, 1.7) 0.5

0.01 50 1.0 93.7 (3.4, 2.9) 0.7 99.4 (0.5, 0.1) 1.0 95.9 (2.4, 1.7) 0.8 96.3 (2.2, 1.5) 0.8

1.4 93.6 (3.7, 2.7) 0.8 99.4 (0.5, 0.1) 1.1 95.8 (2.5, 1.7) 0.9 96.0 (2.4, 1.6) 0.9

100 1.0 92.7 (3.4, 3.9) 0.6 98.8 (0.6, 0.6) 0.9 95.4 (2.1, 2.5) 0.6 95.7 (2.1, 2.2) 0.6

1.4 93.0 (3.0, 4.0) 0.6 98.7 (0.7, 0.6) 0.9 94.9 (2.2, 2.9) 0.7 95.4 (2.1, 2.5) 0.7

200 1.0 93.9 (3.1, 3.0) 0.5 99.7 (0.1, 0.2) 0.7 96.3 (1.6, 2.1) 0.5 96.6 (1.4, 2.0) 0.5

1.4 93.3 (3.6, 3.1) 0.5 99.7 (0.1, 0.2) 0.8 96.5 (1.4, 2.1) 0.6 96.5 (1.3, 2.2) 0.6

0.1 50 1.0 93.3 (4.2, 2.5) 1.3 99.6 (0.3, 0.1) 2.1 95.1 (3.3, 1.6) 1.4 95.0 (3.3, 1.7) 1.4

1.4 93.7 (4.0, 2.3) 1.4 99.6 (0.3, 0.1) 2.3 95.2 (3.1, 1.7) 1.5 95.1 (3.2, 1.7) 1.6

100 1.0 93.4 (3.1, 3.5) 1.2 99.6 (0.3, 0.1) 2.0 94.7 (2.3, 3.0) 1.3 95.2 (2.2, 2.6) 1.3

1.4 93.5 (3.0, 3.5) 1.3 99.6 (0.3, 0.1) 2.2 95.0 (2.1, 2.9) 1.4 95.5 (1.8, 2.7) 1.5

200 1.0 92.4 (3.7, 3.9) 1.1 99.9 (0.1, 0.0) 2.0 96.1 (1.5, 2.4) 1.3 96.6 (1.3, 2.1) 1.3

1.4 92.6 (3.5, 3.9) 1.2 100.0 (0.0, 0.0) 2.2 96.1 (1.6, 2.3) 1.4 96.9 (1.1, 2.0) 1.4

0.2 50 1.0 92.6 (4.5, 2.9) 1.7 99.7 (0.2, 0.1) 2.9 95.4 (2.8, 1.8) 1.9 95.5 (2.9, 1.6) 1.9

1.4 93.6 (4.0, 2.4) 1.8 99.6 (0.2, 0.2) 3.2 95.3 (2.8, 1.9) 2.0 95.3 (3.0, 1.7) 2.1

100 1.0 93.6 (2.9, 3.5) 1.6 99.6 (0.3, 0.1) 2.8 95.6 (1.8, 2.6) 1.8 95.7 (1.7, 2.6) 1.8

1.4 93.8 (2.9, 3.3) 1.8 99.6 (0.3, 0.1) 3.1 95.4 (1.8, 2.8) 2.0 95.6 (1.8, 2.6) 2.0

200 1.0 93.2 (3.2, 3.6) 1.6 100.0 (0.0, 0.0) 2.8 96.1 (1.5, 2.4) 1.8 96.2 (1.4, 2.4) 1.8

1.4 93.0 (3.2, 3.8) 1.7 100.0 (0.0, 0.0) 3.0 95.9 (1.9, 2.2) 1.9 96.6 (1.5, 1.9) 2.0
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Table 4.7: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two normal means when the number of clusters per arm
equal 24 (control) and 12 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald ClusterAdj GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width Cov (<, >)% WD

0.005 50 1.0 94.3 (3.2, 2.5) 0.6 98.9 (0.7, 0.4) 0.8 95.9 (2.7, 1.4) 0.6 95.8 (2.7, 1.5) 0.6

1.4 93.7 (3.6, 2.7) 0.6 98.8 (0.8, 0.4) 0.8 95.7 (2.6, 1.7) 0.7 95.7 (2.6, 1.7) 0.7

100 1.0 93.5 (3.4, 3.1) 0.4 98.8 (0.7, 0.5) 0.6 95.5 (2.2, 2.3) 0.5 95.3 (2.3, 2.4) 0.5

1.4 93.1 (3.5, 3.4) 0.5 98.5 (0.7, 0.8) 0.6 95.3 (2.0, 2.7) 0.5 95.6 (1.9, 2.5) 0.5

200 1.0 94.6 (3.0, 2.4) 0.3 99.1 (0.5, 0.4) 0.5 95.8 (2.4, 1.8) 0.4 95.9 (2.3, 1.8) 0.4

1.4 94.0 (3.3, 2.7) 0.4 98.9 (0.7, 0.4) 0.5 95.9 (2.5, 1.6) 0.4 96.1 (2.4, 1.5) 0.4

0.01 50 1.0 94.1 (3.7, 2.2) 0.6 99.1 (0.6, 0.3) 0.8 96.1 (2.6, 1.3) 0.7 96.2 (2.7, 1.1) 0.7

1.4 93.9 (3.6, 2.5) 0.7 98.9 (0.8, 0.3) 0.9 96.2 (2.7, 1.1) 0.7 96.2 (2.6, 1.2) 0.7

100 1.0 92.9 (3.2, 3.9) 0.5 98.6 (0.7, 0.7) 0.7 94.9 (2.4, 2.7) 0.5 95.1 (2.3, 2.6) 0.5

1.4 92.8 (3.1, 4.1) 0.5 98.5 (0.7, 0.8) 0.8 94.3 (2.4, 3.3) 0.6 94.6 (2.3, 3.1) 0.6

200 1.0 93.8 (3.3, 2.9) 0.4 99.2 (0.4, 0.4) 0.6 95.7 (2.1, 2.2) 0.4 96.4 (1.8, 1.8) 0.4

1.4 93.7 (3.2, 3.1) 0.4 99.1 (0.5, 0.4) 0.7 95.7 (2.1, 2.2) 0.5 96.3 (1.7, 2.0) 0.5

0.1 50 1.0 94.7 (2.8, 2.5) 1.1 99.9 (0.1, 0.0) 1.7 96.0 (1.8, 2.2) 1.2 96.2 (1.8, 2.0) 1.2

1.4 94.3 (3.0, 2.7) 1.2 99.7 (0.2, 0.1) 1.9 95.8 (1.9, 2.3) 1.3 96.1 (1.9, 2.0) 1.4

100 1.0 93.9 (2.7, 3.4) 1.0 99.3 (0.2, 0.5) 1.7 95.1 (2.2, 2.7) 1.1 95.3 (2.2, 2.5) 1.1

1.4 93.3 (3.0, 3.7) 1.1 99.3 (0.2, 0.5) 1.8 94.8 (2.4, 2.8) 1.3 95.1 (2.2, 2.7) 1.3

200 1.0 92.9 (3.0, 4.1) 1.0 99.8 (0.2, 0.0) 1.6 95.0 (1.9, 3.1) 1.1 95.7 (1.8, 2.5) 1.1

1.4 93.2 (3.0, 3.8) 1.1 99.7 (0.2, 0.1) 1.8 94.6 (2.2, 3.2) 1.2 95.2 (1.8, 3.0) 1.2

0.2 50 1.0 94.1 (3.1, 2.8) 1.4 99.8 (0.1, 0.1) 2.3 95.6 (2.2, 2.2) 1.6 96.3 (1.7, 2.0) 1.6

1.4 93.7 (3.6, 2.7) 1.6 99.7 (0.2, 0.1) 2.6 95.5 (2.2, 2.3) 1.8 96.1 (1.8, 2.1) 1.8

100 1.0 94.2 (2.8, 3.0) 1.4 99.6 (0.0, 0.4) 2.3 95.9 (1.7, 2.4) 1.5 96.3 (1.7, 2.0) 1.5

1.4 93.4 (3.0, 3.6) 1.6 99.4 (0.0, 0.6) 2.5 95.5 (2.0, 2.5) 1.7 95.7 (2.1, 2.2) 1.7

200 1.0 93.0 (3.1, 3.9) 1.4 99.7 (0.2, 0.1) 2.3 95.1 (1.9, 3.0) 1.5 95.5 (1.9, 2.6) 1.5

1.4 93.3 (3.0, 3.7) 1.5 99.5 (0.2, 0.3) 2.5 94.9 (2.0, 3.1) 1.7 95.1 (2.0, 2.9) 1.7
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Table 4.8: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two normal means when the number of clusters per arm
equal 24 (control) and 24 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald ClusterAdj GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width Cov (<, >)% WD

0.005 50 1.0 95.8 (1.6, 2.6) 0.5 99.4 (0.3, 0.3) 0.6 96.9 (1.1, 2.0) 0.5 96.9 (1.2, 1.9) 0.5

1.4 95.6 (1.7, 2.7) 0.5 99.3 (0.3, 0.4) 0.7 96.8 (1.4, 1.8) 0.5 96.7 (1.3, 2.0) 0.5

100 1.0 93.9 (3.1, 3.0) 0.4 98.6 (0.5, 0.9) 0.5 94.8 (2.8, 2.4) 0.4 94.8 (2.8, 2.4) 0.4

1.4 93.8 (3.3, 2.9) 0.4 98.6 (0.5, 0.9) 0.5 95.1 (2.4, 2.5) 0.4 95.3 (2.5, 2.2) 0.4

200 1.0 93.5 (3.3, 3.2) 0.3 99.0 (0.5, 0.5) 0.4 94.8 (2.6, 2.6) 0.3 95.0 (2.7, 2.3) 0.3

1.4 93.9 (3.0, 3.1) 0.3 99.1 (0.5, 0.4) 0.4 94.5 (2.8, 2.7) 0.3 95.0 (2.7, 2.3) 0.3

0.01 50 1.0 96.1 (1.4, 2.5) 0.5 99.0 (0.5, 0.5) 0.7 96.6 (1.0, 2.4) 0.5 96.7 (1.1, 2.2) 0.5

1.4 96.0 (1.4, 2.6) 0.5 99.0 (0.5, 0.5) 0.7 96.7 (1.2, 2.1) 0.6 96.8 (1.2, 2.0) 0.6

100 1.0 93.9 (3.4, 2.7) 0.4 99.0 (0.4, 0.6) 0.6 94.7 (2.9, 2.4) 0.4 95.1 (2.6, 2.3) 0.4

1.4 94.1 (3.2, 2.7) 0.4 98.9 (0.4, 0.7) 0.6 95.1 (2.6, 2.3) 0.5 95.2 (2.8, 2.0) 0.5

200 1.0 93.6 (3.3 , 3.1) 0.3 99.4 (0.4, 0.2) 0.5 94.4 (3.0, 2.6) 0.3 94.6 (2.8, 2.6) 0.3

1.4 93.8 (3.0, 3.2) 0.4 99.3 (0.5, 0.2) 0.5 94.7 (2.9, 2.4) 0.4 94.9 (2.5, 2.6) 0.4

0.1 50 1.0 94.9 (2.5, 2.6) 0.9 99.4 (0.3, 0.3) 1.4 96.1 (1.7, 2.2) 0.9 96.2 (1.8, 2.0) 0.9

1.4 95.0 (2.4, 2.6) 1.0 99.3 (0.4, 0.3) 1.5 96.0 (1.8, 2.2) 1.0 96.4 (1.6, 2.0) 1.0

100 1.0 94.4 (3.1, 2.5) 0.8 99.8 (0.2, 0.0) 1.4 95.3 (2.7, 2.0) 0.9 95.4 (2.7, 1.9) 0.9

1.4 94.1 (3.0, 2.9) 0.9 99.8 (0.2, 0.0) 1.5 95.3 (2.6, 2.1) 1.0 95.4 (2.7, 1.9) 1.0

200 1.0 94.0 (2.6, 3.4) 0.8 99.7 (0.2, 0.1) 1.3 94.8 (2.4, 2.8) 0.9 95.3 (2.1, 2.6) 0.9

1.4 93.8 (2.8, 3.4) 0.9 99.7 (0.2, 0.1) 1.5 94.8 (2.4, 2.8) 0.9 95.2 (2.2, 2.6) 0.9

0.2 50 1.0 95.0 (2.5, 2.5) 1.2 99.4 (0.3, 0.3) 1.9 95.7 (2.0, 2.3) 1.2 95.6 (2.0, 2.4) 1.2

1.4 95.1 (2.2, 2.7) 1.3 99.3 (0.4, 0.3) 2.1 96.1 (1.6, 2.3) 1.4 96.1 (1.6, 2.3) 1.4

100 1.0 94.7 (2.9, 2.4) 1.2 99.8 (0.2, 0.0) 1.9 95.3 (2.4, 2.3) 1.2 95.6 (2.5, 1.9) 1.2

1.4 93.9 (3.4, 2.7) 1.3 99.8 (0.2, 0.0) 2.1 95.3 (2.6, 2.1) 1.3 95.7 (2.4, 1.9) 1.3

200 1.0 93.9 (2.7, 3.4) 1.1 99.7 (0.2, 0.1) 1.9 94.9 (2.3, 2.8) 1.2 95.2 (1.9, 2.9) 1.2

1.4 93.9 (2.6, 3.5) 1.2 99.8 (0.1, 0.1) 2.1 95.1 (2.3, 2.6) 1.3 95.4 (2.2, 2.4) 1.3
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Tail errors

The Wald method and the cluster-adjusted method both result in symmetric limits

around the point estimate, while the generalized confidence interval method and the

MOVER do not. This enforced symmetry is not an issue however when the sampling

distribution of the parameter estimate is symmetric. The difference between two

normal means follows a normal distribution, therefore it was expected that all of the

procedure would perform similarly in terms of balance between tail errors. This is

clearly seen in the simulation results found in Tables 4.4-4.8. There is no need to

compare tail errors of the cluster-adjusted procedure because its coverage results are

not valid.

Median width

Procedures with empirical coverage close to the nominal are compared based on their

median confidence interval widths, where a narrower width is translated into greater

precision. For all of the methods, the median width increases with the ICC value and

under heteroscedasticity, whereas an increase in both the number of clusters per arm

and the average cluster size lead to narrower confidence interval widths, and therefore

greater precision.

The Wald method is comparable to the generalized confidence interval procedure

and the MOVER when there are a large number of clusters per arm (Table 4.8). The

method shows slightly narrower median widths than the other procedures, especially

as the average cluster sizes increase.

Discussion of the confidence interval width of the cluster adjusted procedure is

excluded because the method failed to satisfy the coverage requirements for all of

the parameter combinations. Confidence interval width is therefore irrelevant if the

interval itself cannot maintain nominal coverage.

The most meaningful comparison lies between the generalized confidence interval
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procedure and the MOVER. These two methods had similar empirical coverage and

tail error performances throughout all of the parameter combinations. The generalized

confidence interval procedure showed slightly narrower widths than the MOVER, but

only occasionally. With 24 clusters per arm there were no differences between the

median widths of the two procedures.

The difference between two lognormal means

Empirical coverage results, tail errors, and median widths for the Wald method, the

generalized confidence interval procedure and the MOVER as applied to unbalanced,

completely randomized cluster randomization trials for a difference between two log-

normal means are presented in Tables 4.9 to 4.13.

Confidence interval coverage

The three confidence interval procedures are investigated for 120 parameter combina-

tions. Overall, each procedure shows improved coverage performance as the number

of clusters per arm increase.

Even with only 6 clusters per arm, the empirical coverage of the Wald method

falls within the desired range (93.6% − 96.4%) when the ICC is less than 0.1 (see

Table 4.9). With larger ICC values, the Wald method shows anti-conservative results,

particularly when the variances in the two arms differ. Fortunately, as the number

of clusters increase to 12 or 24, the Wald method shows improved coverage results

with larger ICC values. Under homoscedasticity with a larger effective sample size,

empirical coverage is close to the nominal. However, under heteroscedasticity, results

remain anti-conservative.

The generalized confidence interval procedure often has high coverage when there

are only 6 clusters per group, exceeding the desired coverage range (93.6% − 96.4%)

46% of the time. When exceeding this acceptable range, empirical coverage falls an av-

erage of 1.9-percentage points above the nominal. However, when the number of clus-
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ters per arm increases to (24,12) and (24,24), the empirical coverage results fall closely

around the nominal. The average cluster size, homoscedasticity/heteroscedasticity,

and the ICC value do not greatly impact coverage results for this method.

The MOVER performs best out of all three procedures in terms of confidence

interval coverage. With only 6 clusters per arm, the empirical coverage exceeds the

desired range only 17% of the time by an average of 1.8-percentage points above the

nominal. Furthermore, similar to the generalized confidence interval procedure, the

empirical coverage is consistently close to the nominal when there are (24,12) and

(24,24) clusters per arm. The method appears to be somewhat sensitive to high ICC

values (ICC=0.2) with a small number of clusters per arm, however average cluster

size and homoscedasticity/heteroscedasticity do not influence coverage results.

Tail errors

The lognormal mean is a function of the normal mean and variance, making it the

sum of a normal random variable and a chi-squared random variable. Consequently,

the sampling distribution of the lognormal mean is skewed. Symmetric confidence

interval procedures would therefore fail to balance tail errors, resulting in excluding

potentially plausible parameter values from one side of the interval while failing to

exclude extreme values from the other. Alternatively, confidence interval procedures

which capture the underlying distribution of the lognormal mean would improve tail

error performance.

The Wald method is the only symmetric confidence interval procedure investigated

for the difference between two lognormal means to demonstrate the flaw in such a

restriction. The lognormal distribution is skewed to the right, suggesting that a

symmetric interval would miss plausible parameter values on its right. This is clearly

seen in the simulation results in Tables 4.9 to 4.13, where the method consistently

misses less than 2.5% from the left and more than 2.5% from the right.

The generalized confidence interval procedure and the MOVER both have rela-
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Table 4.9: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two lognormal means when the number of clusters per arm
equal 6 (control) and 6 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 94.7 (0.1, 5.2) 36.8 96.8, (2.1, 1.1) 59.6 96.1, (2.6, 1.3) 52.8

50 1.4 92.5 (0.0, 7.5) 121.0 96 (3.1, 0.9) 201.4 95.7 (2.8, 1.5) 176.1

100 1.0 94.8 (0.5, 4.7) 26.3 97.1 (1.5, 1.4) 36.4 96.0 (1.9, 2.1) 31.9

100 1.4 93.8 (0.2, 6.0) 88.1 96.5 (2.4, 1.1) 121.6 96.0 (2.3, 1.7) 108.2

200 1.0 94.3 (1.0, 4.7) 19.3 96.3 (1.7, 2.0) 24.6 94.6 (2.7, 2.7) 21.6

200 1.4 93.4 (0.6, 6.0) 65.1 95.7 (2.4 1.9) 82.6 95.1 (2.7 2.2) 73.1

0.01 50 1.0 94.8 (0.2, 5.0) 38.0 9.0 (2.0, 1.0) 64.4 96.4 (2.3, 1.3) 56.9

50 1.4 91.6 (0.0, 8.4) 124.2 96.4 (2.8, 0.8) 216.8 95.7 (2.8, 1.5) 193.8

100 1.0 94.7 (0.4, 4.9) 28.1 96.8 (1.5, 1.7) 41.4 95.8 (1.8, 2.4) 36.3

100 1.4 92.8 (0.1, 7.1) 91.7 96.3 (2.3, 1.4) 137.7 95.7 (2.6, 1.7) 120.6

200 1.0 93.3 (1.4, 5.3) 21.3 96.4 (1.9, 1.7) 28.9 94.3 (2.8, 2.9) 25.1

200 1.4 92.9 (0.3, 6.8) 69.9 95.7 (2.4, 1.9) 94.3 94.8 (2.6, 2.6) 83.6

0.1 50 1.0 92.4 (0.2, 7.4) 59.5 96.3 (1.6, 2.1) 286.8 96.0 (1.6, 2.4) 251.0

50 1.4 87.8 (0.0, 12.2) 176.1 95.9 (2.4, 1.7) 1075.7 95.6 (2.1, 2.3) 912.7

100 1.0 94.0 (0.0, 6.0) 50.4 96.8 (0.9, 2.3) 208.8 96.7 (0.8, 2.5) 177.8

100 1.4 88.3 (0.1, 11.6) 151.4 96.7 (1.4, 1.9) 730.9 96.3 (1.3, 2.4) 618.1

200 1.0 91.8 (0.2, 8.0) 46.9 97.1 (1.0, 1.9) 181.9 96.2 (1.1, 2.7) 152.9

200 1.4 87.5 (0.0, 12.5) 139.4 96.4 (1.5, 2.1 ) 588.0 95.3 (1.8, 2.9) 500.1

0.2 50 1.0 92.2 (0.2, 7.6) 83.9 96.0 (1.1, 2.9) 1359.0 96 (1.2, 2.8) 1098.8

50 1.4 84.0 (0.0, 16.0) 230.0 96.0 (1.7, 2.3) 5683.5 96.3 (1.4, 2.3) 4516.3

100 1.0 93.3 (0.0, 6.7) 74.8 97.0 (0.8, 2.2) 948.9 97.1 (0.6, 2.3) 827.5

100 1.4 84.6 (0.0, 15.4) 205.7 96.2 (1.6, 2.2) 4243.3 96.1 (1.3, 2.6) 3553.8

200 1.0 92.8 (0.0, 7.2) 73.5 97.3 (0.8, 1.9) 881.1 96.9 (0.7, 2.4) 741.1

200 1.4 84.2 (0.0, 15.8) 206.8 96.6 (1.3, 2.1) 3575.9 96.5 (1.0, 2.5) 3052.0
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Table 4.10: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two lognormal means when the number of clusters per arm
equal 12 (control) and 6 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 93.8 (0.1 , 6.1 ) 34.8 96.2 (2.6, 1.2) 51.7 95.6 (2.5, 1.9) 45.6

50 1.4 92.3 (0.0, 7.7) 119.8 96.3 (2.7, 1.0) 198.3 96.3 (2.0, 1.7) 171.7

100 1.0 94.6 (0.2, 5.2) 25.5 97.4 (1.6, 1.0) 33.5 96.2 (1.9, 1.9) 29.7

100 1.4 92.3 (0.0, 7.7) 89.2 97.1 (1.9, 1.0) 123.0 96.5 (1.8, 1.7) 109.1

200 1.0 94.6 (0.6, 4.8) 19.0 96.6 (2.1, 1.3) 23.4 95.0 (2.5, 2.5) 20.8

200 1.4 94.8 (0.2, 5.0) 65.2 96.9 (2.2, 0.9) 82.4 95.9 (2.2, 1.9) 74.1

0.01 50 1.0 92.7 (0.2, 7.1) 35.7 96.1 (2.4, 1.5) 55.1 96.0 (2.1, 1.9) 48.9

50 1.4 91.8 (0.0, 8.2) 122.4 96.2 (2.4, 1.4) 212.9 96.3 (2.0, 1.7) 186.1

100 1.0 94.3 (0.2, 5.5) 27.1 97.2 (1.7, 1.1) 37.1 96.1 (1.9, 2.0) 32.8

100 1.4 92.5, (0.1, 7.4) 93.1 96.7 (2.1, 1.2) 136.4 96.4 (1.8, 1.8) 120.4

200 1.0 94.4 (0.7, 4.9) 20.8 96.7 (2.0, 1.3) 27.4 95.0 (2.4, 2.6) 23.9

200 1.4 94.1 (0.4, 5.5) 70.5 97.1 (2.1, 0.8) 96.7 95.6 (2.2, 2.2) 84.8

0.1 50 1.0 90.6 (0.1, 9.3) 52.9 96.8 (1.8, 1.4) 168.6 96.3 (1.8, 1.9) 144.8

50 1.4 86.9 (0.0, 13.1) 170.8 96.0 (2.6, 1.4) 792.7 96.3 (1.8, 1.9) 671.4

100 1.0 90.1 (0.3, 9.6) 48.3 96.4 (1.6, 2.0) 146.8 95.7 (1.8, 2.5) 124.8

100 1.4 86.5 (0.1, 13.4) 155.6 95.5 (2.4, 2.1) 673 95.7 (1.9, 2.4) 571.9

200 1.0 91.5 (0.2, 8.3) 43.3 96.5 (1.4, 2.1) 120.6 96.4 (1.1, 2.5) 104.6

200 1.4 88.5 (0.1, 11.4) 139.8 96.4 (1.9, 1.7) 517.1 96.2 (1.4, 2.4) 443.3

0.2 50 1.0 88.2 (0.1, 11.7) 70.6 96.4 (1.9, 1.7) 500.5 96.5 (1.2, 2.3) 437.5

50 1.4 82.8 (0.1, 17.1) 223.3 96.0 (2.6, 1.4) 3132.7 96.4 (1.5, 2.1) 2631.5

100 1.0 89.3 (0.1, 10.6) 69.3 95.3 (1.9, 2.8) 449.0 96.0 (1.2, 2.8) 385.1

100 1.4 83.6 (0, 16.4) 217.2 95.4 (2.2, 2.4) 2706.8 95.7 (1.6, 2.7) 2445.5

200 1.0 90.0 (0.1, 9.9) 62.8 96.3 (1.6, 2.1) 384.2 96.9 (0.6, 2.5) 334.7

200 1.4 84.4 (0.0, 15.6) 195.6 95.7 (2.2, 2.1) 2229.5 96.0 (1.2, 2.8) 2052.2
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Table 4.11: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two lognormal means when the number of clusters per arm
equal 12 (control) and 12 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald GCI MOVER

Cov, (<, >)%, WD Cov, (<, >)%, WD Cov, (<, >)%, Width

0.005 50 1.0 96.0 (0.4, 3.6) 25.7 97.1 (1.6, 1.3) 30.4 96.6, (1.8, 1.6) 28.7

50 1.4 95.0 (0.0, 5.0) 85.3 96.9 (2.1, 1.0) 102.7 96.5 (2.2, 1.3) 96.6

100 1.0 94.5 (0.4, 5.1) 18.7 96.0 (2.1, 1.9) 20.9 95.0 (2.0, 3.0) 19.9

100 1.4 93.5 (0.1, 6.4) 61.9 96.4 (2.2, 1.4) 70.2 96.1 (1.8, 2.1) 66.9

200 1.0 95.1 (1.0, 3.9) 14.1 96.7 (1.5, 1.8) 15.5 95.4 (2.0, 2.6) 14.6

200 1.4 94.8 (0.5, 4.7) 47.2 95.7 (2.8, 1.5) 51.5 95.2 (2.6, 2.2) 49.1

0.01 50 1.0 95.4 (0.4, 4.2 ) 26.4 97.4 (1.4, 1.2) 31.8 97.1 (1.5, 1.4) 29.9

50 1.4 94.5 (0.0, 5.5) 86.9 96.7 (2.0, 1.3) 106.9 96.8 (1.6, 1.6) 100.5

100 1.0 94.4 (0.5, 5.1) 19.7 95.6 (2.3, 2.1) 22.3 95.2 (2.1, 2.7) 21.2

100 1.4 93.8 (0.2, 6.0) 65.0 96.4 (2.0, 1.6) 74.6 95.9 (1.8, 2.3) 70.7

200 1.0 94.9 (0.8, 4.3) 15.5 96.3 (1.6, 2.1) 17.4 95.3 (1.9, 2.8) 16.2

200 1.4 94.6 (0.4, 5.0) 50.9 95.9 (2.6, 1.5) 57.3 94.9 (2.6, 2.5) 54.1

0.1 50 1.0 94.5 (0.2, 5.3) 40.5 96.6 (1.8, 1.6) 67.0 95.9 (1.6, 2.5) 61.9

50 1.4 90.1 (0.0, 9.9) 126.9 96.2 (2.2, 1.6) 220.4 96.0 (1.9, 2.1) 203.8

100 1.0 93.5 (0.2, 6.3) 36.3 95.6 (2.1, 2.3) 57.7 95.8 (1.5, 2.7) 52.5

100 1.4 89.9 (0, 10.1) 114.3 95.2 (2.5, 2.3) 189.6 95.4 (2.2, 2.4) 173.8

200 1.0 93.1 (0.5, 6.4) 34.8 95.4 (1.7, 2.9) 54.4 94.9 (1.6, 3.5) 49.7

200 1.4 89.6 (0.2, 10.2) 108.5 94.7 (2.4, 2.9) 175.9 94.6 (1.7, 3.7) 161.3

0.2 50 1.0 93.4 (0.0, 6.6) 57.2 95.6 (1.7, 2.7) 132.2 95.9 (1.4, 2.7) 124.8

50 1.4 87.0 (0.0, 13.0) 171.5 95.0 (2.5, 2.5) 469.3 95.6 (1.7, 2.7) 430.9

100 1.0 93.7 (0.0, 6.3) 53.7 95.9 (1.6, 2.5) 119.8 95.9 (1.3, 2.8) 110.1

100 1.4 87.8 (0.0, 12.2) 164.3 95.3 (2.5 2.2) 424.4 95.3 (2.1, 2.6) 378.1

200 1.0 93.0 (0.0, 7.0) 52.8 94.9 (2.0, 3.1) 116.0 95.1 (1.4, 3.5) 106.4

200 1.0 87.2 (0.0, 12.8) 161.2 94.9 (2.3, 2.8) 394.6 95.2 (1.5, 3.3) 367.5
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Table 4.12: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two lognormal means when the number of clusters per arm
equal 24 (control) and 12 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 94.9 (0.0, 5.1), 24.7 95.7 (2.5, 1.8) 29.0 94.9 (2.6, 2.5) 27.3

50 1.4 93.5 (0.0, 6.5) 85.7 95.1 (3.3, 1.6) 104.4 95.2 (2.6, 2.2) 97.5

100 1.0 93.5 (1.2, 5.3) 18.1 94.9 (2.6, 2.5) 20.1 94.2 (2.5, 3.3) 19.0

100 1.4 93.3 (0.6, 6.1) 62.9 95.0 (2.7, 2.3) 70.5 94.3 (2.9, 2.8) 67.3

200 1.0 94.1 (1.5, 4.4) 13.5 94.7 (3.0, 2.3) 14.7 94.4 (2.8, 2.8) 13.9

200 1.4 94.1 (1.1, 4.8) 46.4 94.7 (3.1, 2.2) 50.6 94.3 (2.8, 2.9) 48.2

0.01 50 1.0 94.5 (0.1, 5.4) 25.4 95.4 (2.7, 1.9) 30.2 95.0 (2.5, 2.5) 28.4

50 1.4 92.9 (0.0, 7.1) 87.8 95.2 (3.2, 1.6) 108.1 95.4 (2.4, 2.2) 101.1

100 1.0 93.4 (1.2, 5.4) 19.1 95.3 (2.4, 2.3) 21.5 93.9 (2.7, 3.4) 20.3

100 1.4 93.6 (0.7, 5.7) 65.5 94.9 (2.8, 2.3) 75.2 94.8 (2.5, 2.7) 71.0

200 1.0 94.1 (1.9, 4.0) 15.0 94.4 (3.2, 2.4) 16.6 94.2 (3.0, 2.8) 15.6

200 1.4 94.9 (0.9, 4.2) 50.6 94.1 (3.5, 2.4) 57.0 94.6 (2.8, 2.6) 53.3

0.1 50 1.0 92.7 (0.2, 7.1) 38.1 95.2 (3.0, 1.8) 58.7 95.8 (2.3, 1.9) 54.2

50 1.4 90.7 (0.0, 9.3) 126.6 95.3 (2.9, 1.8) 225.3 95.8 (2.2, 2.0) 202.7

100 1.0 92.2 (0.2, 7.6) 34.8 95.6 (2.6, 1.8) 51.3 95.7 (1.6, 2.7) 47.4

100 1.4 91.2 (0.1, 8.7) 115.2 95.3 (2.9, 1.8) 188.5 95.1 (2.5, 2.4) 175.7

200 1.0 93.3 (0.2, 6.5) 33.1 94.0 (3.6, 2.4) 48.3 94.5 (2.3, 3.2) 44.7

200 1.4 92.1 (0.1, 7.8) 108.3 94.1 (3.8, 2.1) 176.3 94.4 (2.3, 3.3) 163.5

0.2 50 1.0 92.2 (0.0, 7.8) 51.4 95.0 (2.6, 2.4) 105.5 95.2 (2.1, 2.7) 96.1

50 1.4 89.4 (0.0, 10.6) 169.9 94.2 (3.5, 2.3) 440.2 95.0 (2.5, 2.5) 403.6

100 1.0 91.5 (0.1, 8.4) 50.1 95.4 (2.3, 2.3) 97.2 95.7 (1.8, 2.5) 89.1

100 1.4 88.7 (0.0, 11.3) 163.8 94.8 (3.1, 2.1) 399.5 96.2 (1.5, 2.3) 360.9

200 1.0 91.6 (0.1, 8.3) 50.0 94.0 (3.3 , 2.7 ) 96.0 94.9 (1.9, 3.2) 88.5

200 1.4 88.4 (0.0, 11.6) 164.1 94.2 (3.6, 2.2) 398.6 95.0 (2.2, 2.8) 359.9
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Table 4.13: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for the difference between two lognormal means when the number of clusters per arm
equal 24 (control) and 24 (experimental), α = 0.05, imbalance parameter=0.8, and
runs=1000

ICC mij

σ2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 95.3 (0.6, 4.1) 18.3 95.8 (2.6, 1.6) 19.8 95.5 (2.6, 1.9) 19.1

50 1.4 94.3 (0.3, 5.4) 61.4 95.3 (3.1, 1.6) 66.8 95.0 (2.9, 2.1) 64.9

100 1.0 94.4 (1.4, 4.2) 13.3 95.2 (1.8, 3.0) 13.9 95.0 (2.0, 3.0) 13.6

100 1.4 93.9 (1.2, 4.9) 44.4 95.3 (2.4, 2.3) 46.9 94.7 (2.3, 3.0) 45.7

200 1.0 95.6 (1.6, 2.8) 9.9 96.5 (2.0, 1.5) 10.4 95.8 (2.5, 1.7) 10.1

200 1.4 95.0 (1.3, 3.7) 32.9 95.7 (2.3, 2.0) 34.3 95.7 (2.2, 2.1) 33.4

0.01 50 1.0 95.7 (0.5, 3.8) 18.9 95.5 (2.9, 1.6) 20.4 95.4 (2.6, 2.0) 19.8

50 1.4 94.2 (0.3, 5.5) 62.5 95.5 (2.7, 1.8) 69.2 95.2 (2.6, 2.2) 67.0

100 1.0 94.2 (1.4, 4.4) 14.1 95.4 (2.2, 2.4) 14.9 95.1 (2.2, 2.7) 14.5

100 1.4 93.7 (0.9, 5.4) 46.8 95.2 (2.4, 2.4) 49.6 94.8 (2.2, 3.0) 48.4

200 1.0 95.1 (1.9, 3.0) 10.9 96.1 (2.3, 1.6) 11.5 96.0 (2.3, 1.7) 11.1

200 1.4 94.5 (1.4, 4.1) 35.8 95.8 (2.1, 2.1) 37.7 95.6 (2.3, 2.1) 36.6

0.1 50 1.0 94.1 (0.1, 5.8) 28.5 95.4 (1.7, 2.9) 35.1 95.4 (1.5, 3.1) 33.5

50 1.4 92.3 (0.0, 7.7) 92.3 95.0 (1.9, 3.1) 115.6 95.1 (1.5, 3.4) 111.3

100 1.0 94.3 (0.4, 5.3) 25.2 94.7 (2.2, 3.1) 30.5 94.6 (1.9, 3.5) 29.1

100 1.4 92.0 (0.1, 7.9) 80.2 93.7 (3.2, 3.1) 98.6 93.8 (2.5, 3.7) 95.0

200 1.0 95.2 (0.4, 4.4) 23.9 95.7 (2.3, 2.0) 28.5 95.4 (1.9, 2.7) 27.3

200 1.4 92.6 (0.2, 7.2) 75.4 95.6 (2.5, 1.9) 92.7 95.8 (1.6, 2.6) 88.8

0.2 50 1.0 93.6 (0.0, 6.4) 39.2 95.7 (1.4, 2.9) 55.0 95.6 (1.3, 3.1) 53.0

50 1.4 90.5 (0.0, 9.5) 124.6 94.9 (2.0, 3.1) 184.2 95.0 (1.4, 3.6) 177.9

100 1.0 94.4 (0.0, 5.6) 36.5 95.2 (1.8, 3.0) 51.0 95.0 (1.6, 3.4) 48.4

100 1.4 90.5 (0.0, 9.5) 113.8 94.0 (3.2, 2.8) 167.5 94.0 (2.7, 3.3) 157.6

200 1.0 94.5 (0.1, 5.4) 35.9 95.3 (1.8, 2.9) 49.3 95.6 (1.6, 2.8) 47.1

200 1.4 90.1 (0.0, 9.9) 113.4 95.7 (2.1, 2.2) 162.8 95.4 (2.0, 2.6) 155.9
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tively balanced tail errors, although not perfect. Tail error imbalance typically occurs

more so with the generalized confidence interval procedure when empirical coverage

is high.

Median width

The Wald method generally has low median interval widths. However, the low cover-

age with high ICC values and heteroscedasticity, acompanied by the unbalanced tail

errors makes this method less desirable than its alternatives.

The generalized confidence interval procedure is consistently wider than the MOVER,

suggesting that the MOVER demonstrates greater precision. However, both meth-

ods demonstrate increased width as the ICC value increases. Heteroscedasticity also

increases confidence interval widths. An increase in the number of clusters per arm,

and to a lesser extent the average cluster size, result in greater precision for these

confidence interval procedures.

The exceedance probability

Empirical coverage results (α = 0.05), tail errors, and median widths for the Wald

method, the generalized confidence interval procedure and the MOVER as applied to

unbalanced, completely randomized cluster randomization trials for the exceedance

probability are presented in Tables 4.14 to 4.23. For each objective, the results of

P(Y1 > Y2) = 0.5 (Tables 4.14 to 4.18) are first discussed, followed by those of

P(Y1 > Y2) = 0.9 (Tables 4.19 to 4.23).

Confidence interval coverage

When P(Y1 > Y2) = 0.5, the Wald method has low coverage when there are a small

number of clusters per arm, although this method shows some evidence of improve-

ments as the ICC increases (Tables 4.14 and 4.15). When the number of clusters
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per arm increases to 12, the Wald method greatly improves, with 95.8% of empirical

coverage results falling within the desired range of 93.6%−96.4%. Tables 4.16 to 4.18

show only slight, but consistent, coverage below 95%. For all 120 parameter combi-

nations, the Wald method maintains coverage 61.8% of the time. A similar pattern

is seen when P(Y1 > Y2) = 0.9 - empirical coverage is low when there are a small

number of clusters per arm (Tables 4.19 and 4.20), but improves as the number of

clusters increase (Tables 4.21 to 4.23). The ICC value, the average cluster size, and

homoscedasticity/heteroscedasticity do not influence empirical coverage greatly. The

Wald method maintains coverage 58.1% of the time for all parameter combinations.

For P(Y1 > Y2) = 0.5, The generalized confidence interval procedure shows con-

servative coverage results when there are (6,6) or (6,12) clusters in the arms, but

improves in performance as the number of clusters increase, though not as quickly as

the Wald method. The generalized confidence interval procedure shows comparable

performance to the Wald method when the number of clusters are set to (24,12). In

Tables 4.17 and 4.18, empirical coverage lies close to the nominal 95% level. The

procedure shows coverage closer to the nominal as the ICC increases to 0.2, but clus-

ter sizes and homoscedasticity/heteroscedasticity do not greatly influence coverage

results. Overall, the generalized confidence interval procedure maintains coverage for

61.7% of the parameter combinations. For P(Y1 > Y2) = 0.9, a similar general pattern

of results were observed - with empirical coverage falling closer to the nominal as the

number of clusters increases. The procedure maintains reasonable coverage within

the range 93.6% − 96.4% for 85% of the 120 parameter combinations.

When P(Y1 > Y2) = 0.5, the MOVER has similar performance to the Wald method

- with anti-conservative coverage when there are (6,6) or (12,6) clusters and coverage

consistently close to the nominal as the number of clusters increase. Additionally, this

procedure shows improvements in validity as the ICC increases, with slight evidence of

improvements when the cluster sizes increase. As evident in the tables, the MOVER is

not sensitive to homoscedasticity/heteroscedasticity. Overall, this method shows the
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best performance out of all three methods, maintaining coverage 68.3% of the time.

When P(Y1 > Y2) was set to 0.9, the MOVER shows considerable improvements in

empirical coverage results, even with a small number of clusters per arm (Tables 4.19

and 4.20). For all 120 parameter combinations, this method has coverage close to the

nominal 90% of the time - better than either of the other two procedures investigated.

Tail errors

Although some imbalance is observed with the confidence intervals derived using the

Wald method when P(Y1 > Y2) = 0.5 the method shows balanced tail errors for

many of the parameter combinations, especially when the ICC is low. When the

ICC=0.2, the confidence intervals miss the true parameter value from the left more

often than the right. This pattern lessens when there are 24 clusters per arm. When

P(Y1 > Y2) = 0.9, the Wald method has unbalanced tail errors more frequently than

when P(Y1 > Y2) = 0.5. A similar pattern of increased imbalance occurs as the ICC

increases to 0.2, as well as increased balance as the number of clusters per arm reaches

24.

The balance of tail errors for the generalized confidence interval procedure is better

than that of the Wald method, however this procedure still experiences unbalanced tail

errors when the ICC is high (ICC=0.2) - with the interval missing the true parameter

value from the right more often than the left. When P(Y1 > Y2) = 0.9 there is more

imbalance than when P(Y1 > Y2) = 0.5, though in both cases tail error performance

improves as the number of clusters per arm increase.

The MOVER maintains balanced tail errors more often than either the Wald

method or the generalized confidence interval procedure. When P(Y1 > Y2) = 0.5

and there are only 6 clusters per arm some imbalance is observed. Above 6 clusters

per arm, tail error imbalance for the MOVER is not an issue. When P(Y1 > Y2) = 0.9,

tail errors of the MOVER are relatively balanced for the 120 parameter combinations,

even at high ICC values and 6 clusters per arm.
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Table 4.14: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.5 when the number of clusters per arm equal 6 (control) and 6
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 93.0 (4.1, 2.9) 0.1 98.0 (1.1, 0.9) 0.1 92.9 (4.2, 2.9) 0.1

1.4 93.1 (3.8, 3.1) 0.1 97.6 (1.3, 1.1) 0.1 93.1 (3.8, 3.1) 0.1

100 1.0 92.7 (3.6, 3.7) 0.1 97.7 (0.9, 1.4) 0.1 92.6 (3.6, 3.8) 0.1

1.4 93.0 (3.2, 3.8) 0.1 97.7 (1.0, 1.3) 0.1 92.9 (3.3, 3.8) 0.1

200 1.0 91.5 (4.2, 4.3) 0.1 97.3 (1.5, 1.2) 0.1 91.5 (4.2, 4.3) 0.1

1.4 91.4 (4.1, 4.5) 0.1 97.1 (1.4, 1.5) 0.1 91.4 (4.1, 4.5) 0.1

0.01 50 1.0 92.9 (3.7, 3.4) 0.1 98.1 (1.1, 0.8) 0.2 92.9 (3.7, 3.4) 0.1

1.4 92.9 (3.7, 3.4) 0.1 97.8 (1.2, 1.0) 0.2 92.9 (3.7, 3.4) 0.1

100 1.0 93.1 (3.1, 3.8) 0.1 97.0 (1.2, 1.8) 0.1 93.1 (3.1, 3.8) 0.1

1.4 92.9 (3.3, 3.8) 0.1 97.3 (1.3, 1.4) 0.1 92.8 (3.3, 3.9) 0.1

200 1.0 90.9 (4.4, 4.7) 0.1 97.2 (1.7, 1.1) 0.1 90.8 (4.4, 4.8) 0.1

1.4 91.0 (3.9, 5.1) 0.1 97.0 (1.5, 1.5) 0.1 91.0 (3.9, 5.1) 0.1

0.1 50 1.0 92.4 (2.9, 4.7) 0.2 97.6 (1.1, 1.3) 0.3 92.4 (2.9, 4.7) 0.2

1.4 92.4 (3.0, 4.6) 0.2 97.2 (1.1, 1.7) 0.3 92.4 (3.0, 4.6) 0.2

100 1.0 93.1 (2.8, 4.1) 0.2 97.6 (1.1, 1.3) 0.2 93.0 (2.8, 4.2) 0.2

1.4 92.8 (3.0, 4.2) 0.2 97.7 (0.9, 1.4) 0.2 92.8 (3.0, 4.2) 0.2

200 1.0 90.9 (4.8, 4.3) 0.2 97.0 (1.9, 1.1) 0.2 90.7 (4.8, 4.5) 0.2

1.4 90.9 (4.8, 4.3) 0.2 96.2 (2.2, 1.6) 0.2 90.8 (4.8, 4.4) 0.2

0.2 50 1.0 94.6 (3.8, 1.6) 0.1 96.5 (0.7, 2.8) 0.2 97.1 (1.2, 1.7) 0.1

1.4 93.8 (3.6, 2.6) 0.2 96.6 (0.4, 3.0) 0.2 95.9 (1.5, 2.6) 0.2

100 1.0 92.4 (4.9, 2.7) 0.1 96.3 (0.5, 3.2) 0.2 95.2 (1.9, 2.9) 0.2

1.4 92.5 (4.7, 2.8) 0.2 96.9 (0.5, 2.6) 0.2 95.2 (1.9, 2.9) 0.2

200 1.0 91.5 (5.7, 2.8) 0.1 95.9 (1.5, 2.6) 0.2 93.7 (3.4, 2.9) 0.2

1.4 91.6 (5.2, 3.2) 0.1 95.5 (1.6, 2.9) 0.2 93.5 (3.3, 3.2) 0.2
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Table 4.15: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.5 when the number of clusters per arm equal 12 (control) and 6
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 93.4 (3.3, 3.3) 0.1 97.6 (1.3, 1.1) 0.1 93.3 (3.4, 3.3) 0.1

1.4 92.9 (3.5, 3.6) 0.1 97.3 (1.4, 1.3) 0.1 92.9 (3.5, 3.6) 0.1

100 1.0 94.0 (2.9, 3.1) 0.1 96.8 (1.5, 1.7) 0.1 94.0 (2.9, 3.1) 0.1

1.4 93.3 (3.1, 3.6) 0.1 96.9 (1.5, 1.6) 0.1 93.3 (3.1, 3.6) 0.1

200 1.0 94.9 (2.5, 2.6) 0.1 98.3 (0.9, 0.8) 0.1 94.9 (2.5, 2.6) 0.1

1.4 94.8 (2.4, 2.8) 0.1 98.2 (1.2, 0.6) 0.1 94.8 (2.4, 2.8) 0.1

0.01 50 1.0 93.3 (3.4, 3.3) 0.1 97.6 (1.1, 1.3) 0.1 93.3 (3.4, 3.3) 0.1

1.4 92.8 (3.5, 3.7) 0.1 97.4 (1.3, 1.3) 0.1 92.8 (3.5, 3.7) 0.1

100 1.0 92.4 (3.8, 3.8) 0.1 96.9 (1.2, 1.9) 0.1 92.4 (3.8, 3.8) 0.1

1.4 92.5 (3.6, 3.9) 0.1 96.8 (1.4, 1.8) 0.1 92.5 (3.6, 3.9) 0.1

200 1.0 94.7 (2.6, 2.7) 0.1 98.3 (0.9, 0.8) 0.1 94.7 (2.6, 2.7) 0.1

1.4 94.3 (2.8, 2.9) 0.1 98.3 (1.0, 0.7) 0.1 94.3 (2.8, 2.9) 0.1

0.1 50 1.0 92.4 (3.5, 4.1) 0.2 96.9 (1.7, 1.4) 0.2 92.4 (3.5, 4.1) 0.2

1.4 92.3 (3.7, 4.0) 0.2 96.6 (1.7, 1.7) 0.2 92.2 (3.8, 4) 0.2

100 1.0 92.9 (3.6, 3.5) 0.2 96.0 (2.0, 2.0) 0.2 92.9 (3.6, 3.5) 0.2

1.4 92.5 (3.8, 3.7) 0.2 95.8 (2.1, 2.1) 0.2 92.5 (3.8, 3.7) 0.2

200 1.0 94.2 (2.7, 3.1) 0.2 96.9 (1.4, 1.7) 0.2 94.2 (2.7, 3.1) 0.2

1.4 93.9 (2.8, 3.3), 0.2 97.0 (1.4, 1.6) 0.2 93.9 (2.8, 3.3) 0.2

0.2 50 1.0 93.4 (4.3, 2.3) 0.1 95.9 (0.8, 3.3) 0.1 96.3 (1.2, 2.5) 0.1

1.4 91.6 (5.3, 3.1) 0.1 95.9 (1.0, 3.1) 0.2 94.2 (2.6, 3.2) 0.2

100 1.0 92.7 (4.7, 2.6) 0.1 96.0 (1.4, 2.6) 0.2 94.1 (3.2, 2.7) 0.1

1.4 92.1 (4.8, 3.1) 0.1 95.5 (1.6, 2.9) 0.2 93.8 (3.1, 3.1) 0.1

200 1.0 94.4 (3.9, 1.7) 0.1 96.5 (1.3, 2.2) 0.1 96.1 (2.2, 1.7) 0.1

1.4 94.1 (4.0, 1.9) 0.1 96.5 (1.3, 2.2) 0.2 95.6 (2.5, 1.9) 0.1
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Table 4.16: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.5 when the number of clusters per arm equal 12 (control) and 12
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 94.0 (3.2, 2.8) 0.1 96.0 (2.2, 1.8) 0.1 94.0 (3.2, 2.8) 0.1

1.4 94.0 (3.2, 2.8) 0.1 96.1 (2.2, 1.7) 0.1 94.0 (3.2, 2.8) 0.1

100 1.0 94.7 (3.0, 2.3) 0.1 97.5 (1.4, 1.1) 0.1 94.7 (3.0, 2.3) 0.1

1.4 94.8 (3.2, 2.0) 0.1 97.2 (1.6, 1.2) 0.1 94.8 (3.2, 2.0) 0.1

200 1.0 94.7 (2.6, 2.7) < 0.1 96.7 (1.7, 1.6) 0.1 94.7 (2.6, 2.7) < 0.1

1.4 94.5 (2.7, 2.8) < 0.1 96.5 (1.7, 1.8) 0.1 94.5 (2.7, 2.8) < 0.1

0.01 50 1.0 94.1 (3.1, 2.8) 0.1 96.2 (2.0, 1.8) 0.1 94.0 (3.1, 2.9) 0.1

1.4 93.7 (3.2, 3.1) 0.1 95.8 (2.3, 1.9) 0.1 93.7 (3.2, 3.1) 0.1

100 1.0 94.6 (2.9, 2.5) 0.1 96.8 (1.5, 1.7) 0.1 94.6 (2.9, 2.5) 0.1

1.4 94.4 (3.0, 2.6) 0.1 96.7 (1.6, 1.7) 0.1 94.4 (3.0, 2.6) 0.1

200 1.0 94.1 (3.0, 2.9) 0.1 96.1 (1.8, 2.1) 0.1 94.1 (3.0, 2.9) 0.1

1.4 93.8 (3.0, 3.2) 0.1 95.9 (1.9, 2.2) 0.1 93.8 (3.0, 3.2) 0.1

0.1 50 1.0 94.1 (2.7, 3.2) 0.2 96.0 (1.8, 2.2) 0.2 94.1 (2.7, 3.2) 0.2

1.4 93.8 (2.7, 3.5) 0.2 95.8 (1.8, 2.4) 0.2 93.8 (2.7, 3.5) 0.2

100 1.0 94.0 (2.9, 3.1) 0.1 95.9 (1.8, 2.3) 0.2 94.0 (2.9, 3.1) 0.1

1.4 94.1 (3.0, 2.9) 0.1 95.6 (2.0, 2.4) 0.2 94.1 (3.0, 2.9) 0.1

200 1.0 93.8 (2.8, 3.4) 0.1 95.8 (1.9, 2.3) 0.2 93.8 (2.8, 3.4) 0.1

1.4 93.6 (3.1, 3.3) 0.1 95.7 (2.0, 2.3) 0.2 93.6 (3.1, 3.3) 0.1

0.2 50 1.0 95.7 (2.8, 1.5) 0.1 96.5 (0.8, 2.7) 0.1 96.8 (1.5, 1.7) 0.1

1.4 94.6 (3.4, 2.0) 0.1 96.0 (1.0, 3.0) 0.1 95.6 (2.3, 2.1) 0.1

100 1.0 94.2 (3.6, 2.2) 0.1 96.2 (0.9, 2.9) 0.1 95.8 (1.9, 2.3) 0.1

1.4 94.5 (3.2, 2.3) 0.1 96.1 (1.0, 2.9) 0.1 95.2 (2.3, 2.5) 0.1

200 1.0 93.5 (4.0, 2.5) 0.1 96.0 (1.3, 2.7) 0.1 94.3 (3.1, 2.6) 0.1

1.4 93.6 (4.0, 2.4) 0.1 95.4 (1.6, 3.0) 0.1 94.4 (3.2, 2.4) 0.1
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Table 4.17: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.5 when the number of clusters per arm equal 24 (control) and 12
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 94.8 (2.2, 3.0) 0.1 96.3 (1.8, 1.9) 0.1 94.8 (2.2, 3.0) 0.1

1.4 94.4 (2.5, 3.1) 0.1 96.3 (2.0, 1.7) 0.1 94.4 (2.5, 3.1) 0.1

100 1.0 93.7 (3.2, 3.1) 0.1 95.7 (2.0, 2.3) 0.1 93.7 (3.2, 3.1) 0.1

1.4 94.2 (3.1, 2.7) 0.1 95.6 (2.2, 2.2) 0.1 94.2 (3.1, 2.7) 0.1

200 1.0 93.8 (2.9, 3.3) < 0.1 95.6 (2.1, 2.3) < 0.1 93.8 (2.9, 3.3) < 0.1

1.4 93.7 (3.1, 3.2) < 0.1 95.7 (2.0, 2.3) < 0.1 93.7 (3.1, 3.2) < 0.1

0.01 50 1.0 94.5 (2.7, 2.8) 0.1 96.3 (2.0, 1.7) 0.1 94.5 (2.7, 2.8) 0.1

1.4 94.5 (2.7, 2.8) 0.1 96.0 (2.1, 1.9) 0.1 94.5 (2.7, 2.8) 0.1

100 1.0 93.6 (3.2, 3.2) 0.1 95.7 (2.3, 2.0) 0.1 93.6 (3.2, 3.2) 0.1

1.4 93.6 (3.2, 3.2) 0.1 95.5 (2.4, 2.1) 0.1 93.6 (3.2, 3.2) 0.1

200 1.0 94.3 (2.6, 3.1) 0.1 95.7 (2.1, 2.2) 0.1 94.3 (2.6, 3.1) 0.1

1.4 94.1 (2.6, 3.3) 0.1 96.2 (2.0, 1.8) 0.1 94.1 (2.6, 3.3) 0.1

0.1 50 1.0 93.6 (3.5, 2.9) 0.1 96.1 (2.1, 1.8) 0.1 93.6 (3.5, 2.9) 0.1

1.4 93.6 (3.7, 2.7) 0.1 96.2 (2.2, 1.6) 0.1 93.5 (3.7, 2.8) 0.1

100 1.0 93.1 (3.5, 3.4) 0.1 95.1 (2.6, 2.3) 0.1 93.1 (3.5, 3.4) 0.1

1.4 92.9 (3.8, 3.3) 0.1 94.9 (2.9, 2.2) 0.1 92.9 (3.8, 3.3) 0.1

200 1.0 94.6 (2.6, 2.8) 0.1 96.1 (1.8, 2.1) 0.1 94.4 (2.8, 2.8) 0.1

1.4 94.8 (2.5, 2.7) 0.1 96.5 (1.6, 1.9) 0.1 94.8 (2.5, 2.7) 0.1

0.2 50 1.0 93.7 (4.2, 2.1) 0.1 94.4 (2.5, 3.1) 0.1 94.5 (3.1, 2.4) 0.1

1.4 92.9 (5.1, 2.0) 0.1 95.4 (1.9, 2.7) 0.1 94.0 (4.0, 2.0) 0.1

100 1.0 93.5 (4.2, 2.3) 0.1 95.2 (1.9, 2.9) 0.1 94.3 (3.3, 2.4) 0.1

1.4 93.1 (4.4, 2.5) 0.1 95.1 (2.1, 2.8) 0.1 93.8 (3.7, 2.5) 0.1

200 1.0 94.5 (3.4, 2.1) 0.1 96.4 (0.9, 2.7) 0.1 95.4 (2.4, 2.2) 0.1

1.4 94.5 (3.5, 2.0) 0.1 96.2 (1.3, 2.5) 0.1 95.7 (2.2, 2.1) 0.1



102

Table 4.18: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.5 when the number of clusters per arm equal 24 (control) and 24
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 94.3 (2.7, 3.0) 0.1 95.2 (2.2, 2.6) 0.1 94.3 (2.7, 3.0) 0.1

1.4 94.3 (2.7, 3.0) 0.1 95.3 (2.0, 2.7) 0.1 94.2 (2.7, 3.1) 0.1

100 1.0 94.9 (2.1, 3.0) < 0.1 95.7 (1.7, 2.6) < 0.1 94.9 (2.1, 3.0) < 0.1

1.4 95.0 (2.0, 3.0) < 0.1 95.7 (1.6, 2.7) < 0.1 95.0 (2.0, 3.0) < 0.1

200 1.0 94.1 (3.1, 2.8) < 0.1 95.3 (2.4, 2.3) < 0.1 94.1 (3.1, 2.8) < 0.1

1.4 93.5 (3.3, 3.2) < 0.1 94.8 (2.4, 2.8) < 0.1 93.5 (3.3, 3.2) < 0.1

0.01 50 1.0 94.7 (2.3, 3.0) 0.1 95.3 (2.0, 2.7) 0.1 94.7 (2.3, 3.0) 0.1

1.4 95.3 (2.0, 2.7) 0.1 95.7 (1.9, 2.4) 0.1 95.3 (2.0, 2.7), 0.1

100 1.0 94.0 (2.4, 3.6) < 0.1 95.5 (1.5, 3.0) 0.1 94.0 (2.4, 3.6) < 0.1

1.4 94.1 (2.4, 3.5) < 0.1 94.6 (2.1, 3.3) 0.1 94.1 (2.4, 3.5) < 0.1

200 1.0 93.2 (3.2, 3.6) < 0.1 94.7 (2.5, 2.8) < 0.1 93.2 (3.2, 3.6) < 0.1

1.4 93.2 (3.5, 3.3) < 0.1 94.0 (2.9, 3.1) < 0.1 93.2 (3.5, 3.3) < 0.1

0.1 50 1.0 94.1 (3.3, 2.6) 0.1 94.4 (3.2, 2.4) 0.1 94.1 (3.3, 2.6) 0.1

1.4 94.1 (3.1, 2.8) 0.1 94.8 (2.5, 2.7) 0.1 94.1 (3.1, 2.8) 0.1

100 1.0 94.9 (2.7, 2.4) 0.1 95.4 (2.3, 2.3) 0.1 94.9 (2.7, 2.4) 0.1

1.4 94.8 (2.6, 2.6) 0.1 95.4 (2.5, 2.1) 0.1 94.8 (2.6, 2.6) 0.1

200 1.0 94.6 (2.8, 2.6) 0.1 95.9 (2.1, 2.0) 0.1 94.6 (2.8, 2.6) 0.1

1.4 94.4 (2.9, 2.7) 0.1 95.3 (2.3, 2.4), 0.1 94.4 (2.9, 2.7) 0.1

0.2 50 1.0 94.6 (3.2, 2.2) 0.1 94.7 (1.8, 3.5) 0.1 95.5 (2.0, 2.5) 0.1

1.4 94.0 (3.7, 2.3) 0.1 94.7 (2.1, 3.2) 0.1 94.6 (2.9, 2.5) 0.1

100 1.0 94.7 (3.0 , 2.3 ) 0.1 95.5 (1.9, 2.6) 0.1 95.1 (2.6, 2.3) 0.1

1.4 94.8 (2.9, 2.3) 0.1 95.0 (2.1, 2.9) 0.1 94.9 (2.7, 2.4) 0.1

200 1.0 94.5 (3.9, 1.6) 0.1 95.9 (1.7, 2.4) 0.1 95.1 (3.2, 1.7) 0.1

1.4 94.0 (3.9, 2.1) 0.1 95.3 (1.6, 3.1) 0.1 94.1 (3.6, 2.3) 0.1



103

Table 4.19: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.9 when the number of clusters per arm equal 6 (control) and 6
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 93.8 (3.5, 2.7) 0.1 97.3 (0.4, 2.3) 0.1 94.6 (2.7, 2.7) 0.1

50 1.4 93.3 (3.7, 3.0) 0.1 97.2 (0.5, 2.3) 0.1 94.4 (2.6, 3.0) 0.1

100 1.0 93.5 (2.9, 3.6) < 0.1 97.3 (0.6, 2.1) 0.1 93.9 (2.5, 3.6) < 0.1

100 1.4 93.4 (2.9, 3.7) < 0.1 97.3 (0.6, 2.1) 0.1 93.9 (2.5, 3.6) < 0.1

200 1.0 92.8 (3.9, 3.3) < 0.1 97.7 (0.9, 1.4) < 0.1 93.2 (3.5, 3.3) < 0.1

200 1.4 92.9 (3.7, 3.4) < 0.1 97.5 (0.8, 1.7) < 0.1 93.3 (3.3, 3.4) < 0.1

0.01 50 1.0 93.6 (3.6, 2.8) 0.1 97.5 (0.5, 2.0) 0.1 94.8 (2.4, 2.8) 0.1

50 1.4 93.4 (3.5, 3.1) 0.1 97.0 (0.6, 2.4) 0.1 94.5 (2.5, 3.0) 0.1

100 1.0 93.3 (2.8, 3.9) < 0.1 97.2 (0.8, 2.0) 0.1 93.9 (2.2, 3.9) < 0.1

100 1.4 93.2 (2.7, 4.1) < 0.1 96.8 (1.0, 2.2) 0.1 93.7 (2.3, 4.0) < 0.1

200 1.0 92.2 (4.3, 3.5) < 0.1 97.2 (1.2, 1.6) < 0.1 92.7 (4.0, 3.3) < 0.1

200 1.4 91.9 (4.7, 3.4) < 0.1 96.8 (1.3, 1.9) < 0.1 92.2 (4.4, 3.4) < 0.1

0.1 50 1.0 93.9 (3.3, 2.8) 0.1 97.0 (0.4, 2.6) 0.1 95.6 (1.6, 2.8) 0.1

50 1.4 93.7 (3.3, 3.0) 0.1 96.9 (0.4, 2.7) 0.1 95.1 (1.9, 3.0) 0.1

100 1.0 92.5 (4.2, 3.3) 0.1 96.7 (0.5, 2.8) 0.1 94.1 (2.6, 3.3) 0.1

100 1.4 92.9 (4.2, 2.9) 0.1 97.0 (0.3, 2.7) 0.1 94.9 (2.1, 3.0) 0.1

200 1.0 91.5 (5.6, 2.9) 0.1 95.9 (1.7, 2.4) 0.1 93.2 (3.8, 3.0) 0.1

200 1.4 91.0 (5.9, 3.1) 0.1 95.6 (1.7, 2.7) 0.1 93.3 (3.4, 3.3) 0.1

0.2 50 1.0 94.1 (3.8, 2.1) 0.1 96.8 (0.3, 2.9) 0.2 96.2 (1.5, 2.3) 0.2

50 1.4 93.7 (3.8, 2.5) 0.1 96.3 (0.4, 3.3) 0.2 96.1 (1.3, 2.6) 0.2

100 1.0 92.4 (4.9, 2.7) 0.1 96.3 (0.5, 3.2) 0.2 95.2 (1.9, 2.9) 0.2

100 1.4 92.8 (4.6, 2.6) 0.1 96.7 (0.5, 2.8) 0.2 95.4 (1.9, 2.7) 0.2

200 1.0 91.5 (5.7, 2.8) 0.1 95.9 (1.5, 2.6) 0.2 93.7 (3.4, 2.9) 0.2

200 1.4 91.8 (5.2, 3.0) 0.1 95.5 (1.6, 2.9) 0.2 93.9 (3.1, 3.0) 0.1
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Table 4.20: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.9 when the number of clusters per arm equal 12 (control) and 6
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 93.3 (4.2, 2.5) < 0.1 96.3 (1.3, 2.4) 0.1 93.9 (3.6, 2.5) 0.1

50 1.4 92.9 (4.2, 2.9) 0.1 96.1 (1.6, 2.3) 0.1 93.7 (3.3, 3.0) 0.1

100 1.0 93.3 (3.6, 3.1) < 0.1 96.5 (1.1, 2.4) < 0.1 93.8 (3.1, 3.1) < 0.1

100 1.4 93.7 (2.9, 3.4) < 0.1 96.3 (1.3, 2.4) < 0.1 94.0 (2.7, 3.3) < 0.1

200 1.0 95.9 (2.3, 1.8) < 0.1 98.1 (0.7, 1.2) < 0.1 95.9 (2.3, 1.8) < 0.1

200 1.4 95.5 (2.7, 1.8) < 0.1 98.1 (0.8, 1.1) < 0.1 95.9 (2.4, 1.7) < 0.1

0.01 50 1.0 93.1 (4.1, 2.8) 0.1 96.4 (1.3, 2.3) 0.1 93.6 (3.6, 2.8) 0.1

50 1.4 92.9 (4.0, 3.1) 0.1 96.5 (1.5, 2.0) 0.1 93.4 (3.5, 3.1) 0.1

100 1.0 93.8 (3.4, 2.8) < 0.1 96.5 (0.9, 2.6) < 0.1 94.2 (3.0, 2.8 ) < 0.1

100 1.4 93.3 (3.5, 3.2) < 0.1 96.4 (1.1, 2.5) 0.1 93.9 (2.9, 3.2) < 0.1

200 1.0 95.5 (2.5, 2.0) < 0.1 98.1 (0.9, 1.0) < 0.1 95.7 (2.3, 2.0) < 0.1

200 1.4 95.3 (2.8, 1.9) < 0.1 98.1 (0.9, 1.0) < 0.1 95.8 (2.4, 1.8) < 0.1

0.1 50 1.0 92.5 (4.6, 2.9) 0.1 96.5, (0.8, 2.7) 0.1 94.0 (3.1, 2.9) 0.1

50 1.4 92.1 (5.2, 2.7) 0.1 95.8, (1.3, 2.9) 0.1 93.8 (3.4, 2.8) 0.1

100 1.0 93.0 (4.2, 2.8) 0.1 96.2, (1.5, 2.3) 0.1 94.1 (3.1, 2.8) 0.1

100 1.4 92.6 (4.3, 3.1) 0.1 95.8, (1.5, 2.7) 0.1 93.5 (3.3, 3.2) 0.1

200 1.0 94.5 (3.4, 2.1) 0.1 96.7, (1.4, 1.9) 0.1 95.8 (2.1, 2.1) 0.1

200 1.4 94.1 (3.8, 2.1) 0.1 96.8, (1.2, 2.0) 0.1 95.6 (2.2, 2.2) 0.1

0.2 50 1.0 93.1 (4.5, 2.4) 0.1 96.2, (0.8, 3.0) 0.2 95.3 (2.2, 2.5) 0.1

50 1.4 91.6 (5.4, 3.0) 0.1 96.0, (0.9, 3.1) 0.2 94.8 (2.2, 3.0) 0.1

100 1.0 92.7 (4.7, 2.6) 0.1 96.0, (1.4, 2.6) 0.2 94.1 (3.2, 2.7) 0.1

100 1.4 92.2 (4.9, 2.9) 0.1 95.6, (1.5, 2.9) 0.2 94.1 (3.0, 2.9) 0.1

200 1.0 94.4 (3.9, 1.7) 0.1 96.5, (1.3, 2.2) 0.1 96.1 (2.2, 1.7) 0.1

200 1.4 94.1 (4.1, 1.8) 0.1 96.5, (1.3, 2.2) 0.2 96.0 (2.2, 1.8) 0.1
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Table 4.21: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.9 when the number of clusters per arm equal 12 (control) and 12
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 94.3 (3.2, 2.5) < 0.1 95.8 (1.3, 2.9) < 0.1 94.7 (2.9, 2.4) < 0.1

50 1.4 93.7 (3.3, 3.0) < 0.1 95.2 (1.5, 3.3) < 0.1 94.0 (3.2, 2.8) < 0.1

100 1.0 95.3 (2.5, 2.2) < 0.1 96.8 (1.3, 1.9) < 0.1 95.3 (2.5, 2.2), < 0.1

100 1.4 95.0 (2.8, 2.2) < 0.1 96.1 (1.7, 2.2) < 0.1 95.1 (2.7, 2.2) < 0.1

200 1.0 95.8 (2.5, 1.7) < 0.1 97.1 (1.7, 1.2) < 0.1 95.9 (2.4, 1.7) < 0.1

200 1.4 95.4 (2.8, 1.8) < 0.1 96.7 (1.7, 1.6) < 0.1 95.5 (2.7, 1.8) < 0.1

0.01 50 1.0 94.1 (3.3, 2.6) < 0.1 95.7 (1.4, 2.9) < 0.1 94.3 (3.1, 2.6) < 0.1

50 1.4 93.6 (3.5, 2.9) < 0.1 95.2 (1.7, 3.1) < 0.1 93.8 (3.3, 2.9) < 0.1

100 1.0 95.4 (2.9, 1.7) < 0.1 96.6 (1.5, 1.9) < 0.1 95.4 (2.9, 1.7) < 0.1

100 1.4 94.8 (3.0, 2.2) < 0.1 96.6 (1.5, 1.9) < 0.1 94.9 (2.9, 2.2) < 0.1

200 1.0 95.2 (2.9, 1.9) < 0.1 96.4 (1.9, 1.7) < 0.1 95.2 (2.9, 1.9) < 0.1

200 1.4 94.8 (3.1, 2.1) < 0.1 96.5 (2.0, 1.5) < 0.1 94.9 (3.0, 2.1) < 0.1

0.1 50 1.0 94.1 (3.2, 2.7) 0.1 95.6 (1.1, 3.3) 0.1 94.3 (2.9, 2.8) 0.1

50 1.4 94.2 (3.2, 2.6) 0.1 95.4 (1.4, 3.2) 0.1 94.5 (2.8, 2.7) 0.1

100 1.0 94.6 (3.1, 2.3) 0.1 96.2 (1.2, 2.6) 0.1 95.5 (2.2, 2.3) 0.1

100 1.4 94.8 (3.0, 2.2) 0.1 95.9 (1.1, 3.0) 0.1 95.4 (2.4, 2.2) 0.1

200 1.0 93.6 (3.5, 2.9) 0.1 95.8 (1.4, 2.8) 0.1 94.0 (2.9, 3.1) 0.1

200 1.4 93.5 (3.8, 2.7) 0.1 95.8 (1.6, 2.6) 0.1 94.1 (3.2, 2.7) 0.1

0.2 50 1.0 94.6 (3.3, 2.1) 0.1 96.1 (0.9, 3.0) 0.1 95.2 (2.7, 2.1) 0.1

50 1.4 94.6 (3.4, 2.0) 0.1 95.9 (1.0, 3.1) 0.1 95.6 (2.3, 2.1) 0.1

100 1.0 94.2 (3.6, 2.2) 0.1 96.2 (0.9, 2.9) 0.1 95.8 (1.9, 2.3) 0.1

100 1.4 94.7 (3.2, 2.1) 0.1 96.4 (1.0, 2.6) 0.1 95.2 (2.3, 2.5) 0.1

200 1.0 93.5 (4.0, 2.5) 0.1 96.0 (1.3, 2.7) 0.1 94.3 (3.1, 2.6) 0.1

200 1.4 93.6 (4.1, 2.3) 0.1 95.7 (1.4, 2.9) 0.1 94.4 (3.2, 2.4) 0.1
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Table 4.22: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.9 when the number of clusters per arm equal 24 (control) and 12
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 94.3 (2.7, 3.0) < 0.1 95.5 (1.1, 3.4) < 0.1 94.5, (2.5, 3.0) < 0.1

50 1.4 94.7 (2.5, 2.8) < 0.1 95.6 (1.1, 3.3) < 0.1 94.8, (2.4, 2.8) < 0.1

100 1.0 94.2 (3.4, 2.4) < 0.1 95.6 (2.1, 2.3) < 0.1 94.4, (3.3, 2.3) < 0.1

100 1.4 94.0 (3.5, 2.5) < 0.1 95.5 (2.0, 2.5) < 0.1 94.2, (3.3, 2.5) < 0.1

200 1.0 94.6 (2.8, 2.6) < 0.1 95.9 (2.0, 2.1) < 0.1 94.6, (2.8, 2.6) < 0.1

200 1.4 94.9 (2.7, 2.4) < 0.1 95.8 (2.0, 2.2) < 0.1 94.9, (2.7, 2.4) < 0.1

0.01 50 1.0 94.3 (2.8, 2.9) < 0.1 95.6 (1.1, 3.3) < 0.1 94.6, (2.5, 2.9) < 0.1

50 1.4 94.6 (2.6, 2.8) < 0.1 95.5 (1.2, 3.3) < 0.1 94.7, (2.5, 2.8) < 0.1

100 1.0 94.1 (3.4, 2.5) < 0.1 95.5 (2.1, 2.4) < 0.1 94.2, (3.3, 2.5) < 0.1

100 1.4 93.8 (3.6, 2.6) < 0.1 95.4 (2.0, 2.6) < 0.1 94.0, (3.4, 2.6) < 0.1

200 1.0 94.9 (2.9, 2.2) < 0.1 96.0 (2.0, 2.0) < 0.1 95.1, (2.7, 2.2) < 0.1

200 1.4 94.9 (2.8, 2.3) < 0.1 95.6 (2.0, 2.4) < 0.1 94.9, (2.8, 2.3) < 0.1

0.1 50 1.0 93.6 (4.0, 2.4) 0.1 95.1 (1.9, 3.0), 0.1 94.0 (3.6, 2.4) 0.1

50 1.4 93.4 (4.4, 2.2) 0.1 95.3 (2.0, 2.7), 0.1 94.0 (3.7, 2.3) 0.1

100 1.0 93.3 (4.2, 2.5) 0.1 95.0 (2.4, 2.6), 0.1 93.8 (3.7, 2.5) 0.1

100 1.4 93.3 (4.2, 2.5) 0.1 95.0 (2.3, 2.7), 0.1 93.6 (3.9, 2.5) 0.1

200 1.0 94.4 (3.2, 2.4) 0.1 95.5 (1.6, 2.9), 0.1 94.8 (2.7, 2.5) 0.1

200 1.4 94.6 (3.3, 2.1) 0.1 95.9 (1.5, 2.6), 0.1 94.8 (2.9, 2.3) 0.1

0.2 50 1.0 92.7 (4.9, 2.4) 0.1 95.2 (1.9, 2.9), 0.1 93.9 (3.7, 2.4) 0.1

50 1.4 92.9 (5.1, 2.0) 0.1 95.3 (1.9, 2.8), 0.1 94.0 (3.9, 2.1) 0.1

100 1.0 93.5 (4.2, 2.3) 0.1 95.2 (1.9, 2.9), 0.1 94.3 (3.3, 2.4) 0.1

100 1.4 93.2 (4.4, 2.4) 0.1 95.3 (1.9, 2.8), 0.1 94.0 (3.5, 2.5) 0.1

200 1.0 94.5 (3.4, 2.1) 0.1 96.4 (0.9, 2.7), 0.1 95.4 (2.4, 2.2) 0.1

200 1.4 94.5 (3.5, 2.0) 0.1 95.8 (1.4, 2.8), 0.1 95.6 (2.3, 2.1) 0.1
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Table 4.23: Empirical coverage (%), tail errors ((<, >)%), and median widths (WD)
for P(Y1 > Y2) = 0.9 when the number of clusters per arm equal 24 (control) and 24
(experimental), α = 0.05, imbalance parameter=0.8, and runs=1000.

ICC mij

σ
2

T1

σ2

T2

Wald GCI MOVER

Cov (<, >)% WD Cov (<, >)% WD Cov (<, >)% Width

0.005 50 1.0 93.9 (3.3, 2.8) < 0.1 94.2 (2.6, 3.2) < 0.1 94.0 (3.2, 2.8) < 0.1

50 1.4 93.9 (3.1, 3.0) < 0.1 94.1 (2.4, 3.5) < 0.1 93.9 (3.1, 3.0) < 0.1

100 1.0 94.7 (2.4, 2.9) < 0.1 95.5 (1.5, 3.0) < 0.1 94.8 (2.3, 2.9) < 0.1

100 1.4 94.6 (2.6, 2.8) < 0.1 95.8 (1.6, 2.6) < 0.1 94.6 (2.6, 2.8) < 0.1

200 1.0 93.4 (3.1, 3.5) < 0.1 93.8 (2.7, 3.5) < 0.1 93.4 (3.1, 3.5) < 0.1

200 1.4 93.2 (3.0, 3.8) < 0.1 94.2 (2.4, 3.4) < 0.1 93.2 (3.0, 3.8) < 0.1

0.01 50 1.0 93.6 (3.7, 2.7) < 0.1 93.9 (2.8, 3.3) < 0.1 93.7 (3.7, 2.6) < 0.1

50 1.4 94.0 (3.3, 2.7) < 0.1 93.9 (2.6, 3.5) < 0.1 94.1 (3.2, 2.7) < 0.1

100 1.0 94.9 (2.7, 2.4) < 0.1 95.3 (1.9, 2.8) < 0.1 95.0 (2.6, 2.4) < 0.1

100 1.4 94.5 (2.9, 2.6) < 0.1 95.2 (2.2, 2.6) < 0.1 94.5 (2.9, 2.6) < 0.1

200 1.0 93.2 (3.5, 3.3) < 0.1 93.8 (2.9, 3.3) < 0.1 93.3 (3.4, 3.3) < 0.1

200 1.4 92.8 (3.6, 3.6) < 0.1 93.9 (2.7, 3.4) < 0.1 92.9 (3.5, 3.6) < 0.1

0.1 50 1.0 93.6 (3.9, 2.5) 0.1 94.1 (2.7, 3.2) 0.1 93.8 (3.6, 2.6) 0.1

50 1.4 93.9 (3.6, 2.5) 0.1 94.5 (2.2, 3.3) 0.1 94.2 (3.1, 2.7) 0.1

100 1.0 94.6 (3.1, 2.3) < 0.1 95.4 (2.0, 2.6) 0.1 95.0 (2.7, 2.3) 0.1

100 1.4 94.7 (2.9, 2.4) < 0.1 94.9 (2.4, 2.7) 0.1 94.8 (2.8, 2.4) < 0.1

200 1.0 94.1 (3.8, 2.1) < 0.1 95.1 (1.7, 3.2) 0.1 94.3 (3.5, 2.2) < 0.1

200 1.4 93.4 (4.2, 2.4) < 0.1 94.7 (1.9, 3.4) 0.1 93.6 (3.8, 2.6) < 0.1

0.2 50 1.0 93.5 (4.1, 2.4), 0.1 94.6 (2.4, 3.0) 0.1 94.4 (3.2, 2.4) 0.1

50 1.4 94.3 (3.4, 2.3), 0.1 94.7 (2.1, 3.2) 0.1 94.7 (2.9, 2.4) 0.1

100 1.0 94.7 (3.0, 2.3), 0.1 95.5 (1.9, 2.6) 0.1 95.1 (2.6, 2.3) 0.1

100 1.4 94.8 (2.9, 2.3) 0.1 95.0 (2.1, 2.9) 0.1 94.9 (2.6, 2.5) 0.1

200 1.0 94.5 (3.9, 1.6) 0.1 95.9 (1.7, 2.4) 0.1 95.1, (3.2 1.7) 0.1

200 1.4 94.2 (3.9, 1.9) 0.1 95.4 (1.6, 3.0) 0.1 94.2 (3.6, 2.2) 0.1
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Median width

All three confidence interval procedures show comparable widths, as shown in Tables

4.14 to 4.23. There is a general pattern of increased median width when the ICC

increases to 0.1 or 0.2, however this increase is very slight. Furthermore, the gener-

alized confidence interval procedure shows slightly larger widths than the other two

procedures when there are 6 or 12 clusters per arm.

4.5 Discussion

Asymptotic procedures such as the ones investigated above improve in performance

(coverage, tail errors, and width) as the effective sample size of a study increases. An

increase in the number of clusters contributes more to the effective sample size than

does the cluster size (Donner, 1998). However, many cluster randomization trials

have a small number of large clusters (Donner and Klar, 2001). Inference procedures

must therefore be evaluated when the number of clusters is small.

The difference between two normal means

If clustering is ignored when making inferences on a cluster randomization trial, then

the results of the trial will be invalid, with elevated type I errors or low confidence

interval coverage (Donner and Klar, 1996). To avoid this mistake, the cluster adjusted

confidence interval procedure (Donner and Klar, 1993) was introduced. This method

inflates the variance estimate using the ICC value and the cluster sizes. Another

commonly used procedure is the standard Wald method after adjusting the variance

for the effect of clustering. However, the empirical coverage of the Wald method,

using the delta method with unweighted mean squared error (Thomas and Hultquist,

1978), and the cluster adjusted confidence interval method have not been previously

evaluated in a simulation study for the difference between two normal means. Finally,

simulation based procedures, such as the generalized confidence interval procedure
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(Weerahandi, 1993) may be applied to the difference between two normal means.

Unfortunately, such a procedure is computationally intensive and is not closed form.

The MOVER is in closed form and simple to apply, requiring only the limits of each

individual mean, which are readily available.

Confidence interval coverage

Simulation results evaluating and comparing the four confidence interval procedures

show comparable coverage results of the generalized confidence interval method and

the MOVER. Although the coverage results of the Wald procedure improve as the

sample size increases, it does not do so as quickly as those of the generalized confidence

interval method and the MOVER. The fourth method, the cluster adjusted confidence

interval, consistently has very conservative results with no signs of improvement with

increasing sample size.

The often anticonservative performance of the Wald method is explained by its

use of the standard normal critical value. Although the variance of the MOVER is

the same as that of the Wald, the larger critical value of the t-distribution is used

rather than that of the standard normal distribution. The MOVER therefore has

larger margins of error than the Wald method, in this case leading to less liberal

coverage results. The works of El-Bassiouni and Abdelhafez (2000) show that that

the t-interval with the variance estimated using the unweighted mean squared error for

a single normal mean from a random effects model has coverage close to the nominal

for a range of unbalanced designs using a simulation study. Although El-Bassiouni

and Abdelhafez (2000) initially used Satterthwaite degrees of freedom (Satterthwaite,

1946), they show that degrees of freedom may be approximated by the number of

clusters minus one. The MOVER (setting degrees of freedom to the number of clusters

minus one) showed somewhat conservative results when the number of clusters per arm

was as small as 6, however improvements were observed as these numbers increased.

It is expected that the MOVER would have similar results to the generalized
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confidence intervals described in Krishnamoorthy et al. (2007), because both proce-

dures use the unweighted mean squared error (Thomas and Hultquist, 1978) and the

t-distribution in their corresponding estimated confidence limits. The key difference

between these two procedures is that the MOVER is closed form, while the general-

ized confidence interval procedure is based on simulation. This renders the MOVER

as more easily applicable.

Not only is the MOVER a valid confidence interval procedure and easily applicable,

but it solves the common misconceptions of using overlapping confidence intervals

(Wolfe and Hanley, 2002; Schenker and Gentleman, 2001; Wilcox, 2003, page 246)

to judge statistical significance. The overlap method is both a backwards step to

reducing confidence intervals to “yes” or “no” hypothesis tests, and may be incorrect

when no statistical significance is declared with two overlapping intervals. With the

MOVER, if the (1 − α)% confidence intervals for two separate means are obtained

using the unweighted mean squared error (Thomas and Hultquist, 1978), a confidence

interval for their difference may easily be obtained, using Equation 2.13.

Confidence interval tail errors

Tail errors for all four confidence interval procedures are relatively balanced. Each

confidence interval procedure is symmetric, because the sampling distribution of a

difference between two normal means is symmetric. Therefore, none of the procedures

stand out as “better” than the other based on confidence interval tail error equality.

The tail errors of the cluster adjusted procedure were smaller than the desired

2.5% on each side, while those of the Wald method were larger. This is explained by

the conservative coverage results of the cluster adjusted confidence interval procedure

and the liberal results of the Wald procedure.
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Confidence interval widths

When there are as many as 24 clusters per arm, the Wald method is comparable to

the MOVER in terms of coverage, shifting the focus of comparisons to confidence

interval widths. As expected, the median widths of the Wald method are narrower

than those of the MOVER. This is explained by the standard normal critical value of

the Wald versus the larger critical value of the MOVER from the t-distribution.

The MOVER has comparable widths to those of the generalized confidence in-

terval procedure, which happens to also have comparable coverage for all parameter

combinations investigated. Note that the slight difference between median widths is

not alarming, but only a difference of a tenth of a decimal place. There is likely to

be very little difference from both a numerical and a clinical perspective between the

two procedures. The more meaningful difference between the procedures lies in the

simplicity of the MOVER.

It should be noted that the increase in the confidence interval widths of all three

procedures with heteroscedasticity is at least partially due to the simulation param-

eters. The overall variance for the difference between two means was increased from

5 units2 per arm under homoscedasticity to 5 units2 (in arm 1) and 7 units2 (in arm

2) under heteroscedasticity when simulating data.

The difference between two lognormal means

The Wald method is an asymptotic confidence interval procedure commonly applied

due to its simplicity. However, its assumption of normality forces the limits to be

symmetrically placed around the point estimate. Forced symmetry is seen as one

of the most serious errors in confidence interval construction (Efron and Tibshirani,

1993, page 180). A remedy for this problem is found in the generalized confidence

interval procedure (Weerahandi, 1993), which takes into account the skewness of the

parameter estimate, in particular the skewness of the sampling distribution of the
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normal variance estimate. However, this method is based on simulation and is thus

more complex than the Wald method.

The MOVER has the simplicity advantage of the Wald method, while also taking

into account the asymmetric of the sample lognormal mean. This is done using the

unweighted mean squared error, presented by Thomas and Hultquist (1978).

Confidence interval coverage

An asymptotic confidence interval procedure for the difference between two lognormal

means in cluster randomization trials, utilizing the MOVER and the transformation

principle, has been presented. Previous procedures have been symmetric in nature,

while the MOVER takes into account the skewness of the underlying lognormal dis-

tribution. Note that a further advantage of the MOVER is that it solves the problem

of overlapping confidence intervals. Further details have been provided in Section

4.5.1.1.

The MOVER makes the assumption that the confidence intervals of the com-

ponents are valid. Fortunately, the confidence intervals constructed for each of the

components (the normal mean and variance components) have previously been eval-

uated and shown to have coverage close to nominal (El-Bassiouni and Abdelhafez,

2000; Burdick and Graybill, 1984).

In general, the simulation study suggests that the MOVER performs better than

existing procedures. Caution must be taken when there are as few as 6 clusters per

arm, as simulations show conservative behavior and wide interval widths for high ICC

values. These issues tend to subside when the number of clusters increases to 12 per

arm.

As the number of clusters per arm increases, the empirical coverage of the Wald

method improves. The results of Flynn and Peters (2004) suggest the Wald method

to be valid with the robust sandwich variance estimator (Huber, 1981; White, 1980).

However, these results pool the performance of the Wald method for both the dif-
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ference between two normal means and the difference between two lognormal means,

making it difficult to draw conclusions on any one of these parameters separately.

Although Flynn and Peters (2004) used a different variance estimate, their use of the

Wald method imposed an assumption of normality and symmetry on the confidence

intervals. Our results show that the Wald method is anticonservative for the difference

between two lognormal means as the ICC increases to 0.1 or 0.2, particularly when

the variances in the two group differ. However the procedure improves as the number

of clusters increases to 24 per arm, although low empirical coverage is still observed

with high ICC values. Despite its improved validity as the number of clusters in-

creases, the symmetry of the Wald interval consistently causes unbalanced tail errors,

rendering the procedure inferior to the generalized confidence interval procedure and

the MOVER.

Confidence interval tail errors

As expected, the symmetric Wald method has unbalanced tail errors for all parameter

combinations investigated, with the upper tail consistently exceeding the lower. This

is an intuitive result, because the lognormal mean (a function of the normal mean

and the normal variance) is skewed to the right.

Even with valid coverage results, the unbalanced tail errors of the Wald method

suggest that the interval should not be used. One advantage of confidence intervals lies

in eliminating extreme values from either side of the point estimate. If the right tail is

larger than α/2 and the left smaller than α/2, then this suggests that unlikely larger

values than the point estimate were included within the interval while potentially true

values less than the point estimate were excluded.

Furthermore, the upper (U) and lower limits (L) are defined by the conditions

that P(L ≥ θ) = α/2 and P(U ≤ θ) = α/2, respectively (Neyman, 1937). That

is, confidence intervals set the upper and lower limits such that values above and

below these limits would be rejected by hypothesis tests, while values within the
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limits would not. If tail errors are unbalanced, that is if the probability conditions

above are not satisfied and the corresponding one-sided α/2 hypothesis tests are either

liberal or conservative, then the limits have failed regardless of whether or not the

overall coverage is valid. Confidence interval procedures with valid overall coverage

and balanced tail errors will always be preferred.

The results also show that the generalized confidence interval procedure and the

MOVER have comparably balanced tail errors, unless the number of clusters in both

arms is fewer than 12. Under such conditions, the prevalence of imbalance is rare for

the generalized confidence interval procedure and even rarer for the MOVER.

Confidence interval widths

The generalized confidence interval procedure and the MOVER both have generally

valid confidence interval methods for the difference between two lognormal means,

with similar tail error performance. Inspection of the results shows that the MOVER

has slightly narrower widths, indicating greater precision. Again, an increase in me-

dian width is observed under heterscedasticity, but this is at least partially due to the

increase in overall variance when simulating the data.

The exceedance probability

Although the Wald method is simple to apply, it makes the assumption of normality

on the exceedance probability. However, the exceedance probability is a standard

normal cumulative distribution function applied to the standardized mean difference,

a ratio of the mean and standard deviation. The generalized confidence interval

procedure should be better able to account for the shape of the parameter estimate,

however it is based on simulation and therefore more complex apply. The MOVER is

a closed form procedure which carries the simplicity of the Wald method while able

to account for the underlying distribution of the sample exceedance probability.
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Confidence interval coverage

The Wald-type confidence intervals with the Wald method and the generalized con-

fidence interval procedure have not previously been evaluated for the exceedance

probability. Our results show that when there are only 6 clusters per arm the gen-

eralized confidence interval procedure has conservative results and the Wald method

and MOVER have liberal results. When the number of clusters increases to 12 in

one arm and 6 in the other, the generalized confidence interval procedure and the

MOVER both perform well, while the Wald method requires at least 12 clusters per

arm to have coverage close to the nominal 95% level.

The improvement of the Wald method with a larger effective sample size is a result

of the central limit theorem. The improvements of the generalized confidence interval

procedure and the MOVER with an increasing effective sample size is explained by

the asymptotic relationship of the unweighted mean squared error to the chi-squared

distribution (Thomas and Hultquist, 1978).

A further advantage of the MOVER includes avoidance of the box method for the

ratio of two parameters (Briggs et al., 1999). The box method crudely sets the limits

of the ratio of θ1 (l1, u1) and θ2 (l2, u2) to (l1/u1, u2/l2), resulting in conservative limits

and should thus be avoided.

Confidence interval tail errors

All three procedures have relatively balanced tail errors when the exceedance proba-

bility is set to 0.5, except for the Wald method and the generalized confidence interval

procedure when the ICC is as large as 0.2 with less than 24 clusters per arm. The

MOVER rarely has unbalanced tail errors, even when the ICC is large. Similar results

are observed when the exceedance probability is set to 0.9, except that the tail errors

of the generalized confidence interval procedure are unbalanced when there are only

6 clusters per arm, even when the ICC is as low as 0.005.
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The results for P(Y1 > Y2) = 0.9 may by explained by the fact that the tail error

performance of the exceedance probability is dependent on the tail error performance

of the standardized mean difference, which is a ratio of the normal mean and variance.

Such a parameter has a sampling distribution that is skewed to the left.

Confidence interval widths

All three procedures show similar confidence interval widths, with the generalized

confidence interval procedure rarely exceeding the width of the MOVER by 0.1. This

results in a 10% difference in the exceedance probability. It is up to the investigator

to decide whether this difference is clinically significant. Note that the width of the

MOVER also exceeded the width of the Wald method by 0.1 when the ICC was set

to 0.2. However this occurs when there are a few clusters per arm, when the Wald

method has invalid coverage.

4.6 Overall conclusions

The overall conclusion is that the MOVER should be used for all three effect measures

of interest. For a difference between two normal means from a cluster randomization

trial, the MOVER and the generalized confidence interval procedure performed best,

with empirical coverage closest to the nominal. However, the MOVER procedures

are simpler to obtain and are closed form, making them more favorable. For the

exceedance probability, P(Y1 > Y2), the MOVER again has coverage closer to the

nominal than the alternative procedures as the number of clusters increases. Caution

must be practiced for the difference between two normal means and the exceedance

probability when there are only 6 clusters per arm. The MOVER shows some con-

servative behavior in the former and can be liberal in the latter.

A further advantage of the MOVER is that it may be used to avoid the practice

of overlapping confidence intervals when intervals for each individual mean exist and
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inferences are desired for their difference. If the unweighted mean squared error is

used with the t-distribution for the confidence limits of each individual mean (either

normal or lognormal) then the MOVER may be recovered for the difference between

two means. Constructing confidence intervals for the difference not only avoids the

common misconception that two overlapping confidence intervals suggest statistical

insignificance (Schenker and Gentleman, 2001), but also avoids ignoring useful infor-

mation within confidence intervals by simply treating them as hypothesis tests, as is

done by Cumming (2009) amd Maghsoodloo and Huang (2010).
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Chapter 5

EXAMPLES

Chapters 1 and 2 introduced the confidence interval procedures investigated in

this thesis. Chapter 3 then presented the proposed procedure (the MOVER) for

each of the three parameters of interest as well as some existing confidence interval

methods. These methods were evaluated for finite sample sizes using Monte Carlo

simulations in Chapter 4, showing that the MOVER and the generalized confidence

interval procedure were the most reliable in terms of confidence interval coverage with

relatively balanced tail errors for each of the parameters. Furthermore, the MOVER

often demonstrated greater precision than the generalized confidence interval proce-

dure with narrower widths. This chapter illustrates the methods for each of the effect

measures by applying them to datasets arising from published cluster randomization

trials.

5.1 The difference between two normal means

Introduction

Data from the cluster randomization trial by Montgomery et al. (2000) are used in

this section to illustrate confidence interval contruction of a difference between two

normal means. Montgomery et al. (2000) investigated the effect of a computer based

clinical decision support system and risk chart on patient blood pressure. Multiple

risk factors exist for cardiovascular disease, including high blood pressure, total body

mass index, total cholesterol, smoking, and diabetes (Jackson et al., 1993). It may

therefore be difficult for health professionals to estimate cardiovascular risk without
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the use of risk charts or computer based clinical decision support systems, which have

the advantages of organizing patient information, performing complex evaluations,

and presenting results quickly. Thus, the study by Montgomery et al. (2000) evaluated

the effect of computer decision support systems and risk charts on cardiovascular risk

and blood pressure.

Methods

The clinical decision support system uses a patient’s sex, age, diabetes status, smoking

habits, blood pressure, cholesterol, body mass index, symptomatic cardiovascular

disease, family history of ischaemia heart disease, and familial hypercholesterolaemia

to calculate the five-year risk of a cardiovascular event. A risk chart provides the same

information about cardiovascular risk as that of a computer based clinical decision

support system. A cardiovascular event includes a new diagnosis of angina, myocardial

infarction, coronary heart disease, stroke, or transient ischaemic attack.

After the practices were stratified by computer system, an independent researcher

blinded to the practice identity used a random number generator to randomize twenty-

seven general practices to one of three arms: computer based clinical decision support

system with cardiovascular risk chart, cardiovascular risk chart alone, or usual care.

For the sake of simplicity, only two of the arms will be investigated in this illustration:

the computer based clinical decision support system plus risk chart arm and the usual

care arm. Also, the trials will be treated as a completely randomized trial for the

sake of this illustration.

Eligible patients included those who were 60-80 years of age and who were pre-

scribed anti-hypertensive drugs within the last year. Measurements were taken at

baseline and at 12 months follow up. This illustration will use data from the follow-

up period to find confidence intervals for a difference between two normal means.

The primary outcome was the percentage of patients in each arm with five year

cardiovascular risk ≥ 10%. Secondary outcomes included systolic blood pressure,
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diastolic blood pressure and amount of cardiovascular drugs prescribed. Confidence

intervals will be constructed for the difference between mean systolic blood pres-

sure (SBP) in this illustration because preliminary analyses show that systolic blood

pressure in each cluster appears to be approximately normally distributed (see the

quantile-quantile plots in Figures 5.1 and 5.2). Note that it may be of interest to also

a single quantile-quantile plot of the residuals (see e.g. SAS Institute Inc, 2009, page

530-533), however for the sake of this illustration, Figures 5.1 and 5.2 will suffice.

Results and recommendations

Twenty seven clusters were randomized to the three arms of the study. The two

arms of interest in this example contained 17 of those clusters, with 10 clusters in

the computer decision support system arm and 7 clusters in the usual care arm.

Descriptive statistics at follow-up for these two arms (computer and usual care) are

given in Table 5.1. The imbalance statistic for number of participants per practice

was close to one, because the trial was originally designed to have balanced practice

sizes. However due to eligibility criteria and some loss to follow-up, the imbalance

statistics fell slightly below one.

Confidence intervals for the difference in mean systolic blood pressure between the

two arms are constructed using the Wald method (and the delta method), the cluster

adjusted method (Donner and Klar, 1993), the generalized confidence interval method

(Weerahandi, 1993) and the MOVER. Table 5.2 shows the estimated difference in

means of the two arms with the four confidence intervals and their corresponding

widths.

Although the Wald method has the narrowest width, the empirical coverage re-

sults in Chapter 4 suggests the use of either the MOVER or the generalized confidence

interval procedure for the analysis of this data. Consistent with the simulation re-

sults, the MOVER has a narrower width than the more computationally intensive

generalized confidence interval procedure. Therefore, the MOVER is recommended
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Figure 5.1: Q-Q plots of SBP by practice (7 clusters) in the usual care arm
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Figure 5.2: Q-Q plots of SBP by practice (10 clusters) in the clinical decision support
system with cardiovascular risk chart arm
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Table 5.1: Descriptive statistics for the computer clinical decision support system arm
and usual care arm of the hypertension study

Computer support Usual care

plus chart

No. practices (clusters) 10 7

No. patients at follow-up 202 130

Mean no. participants per practice 20 19

Imbalance statistic for practice size 0.98 0.97

ICC 0.08 0.04

Mean SBP (std dev) 153 (17) 159 (22)

for the analysis of this data if interest lies in the difference between the mean sys-

tolic blood pressure in the two groups. The data suggest that the true difference in

means may lie anywhere from -13 mm Hg to 2 mm Hg with 95% confidence, with an

estimated difference of -5.5 mm Hg. Although the confidence interval contains zero,

corresponding to a statistically non-significant result, the lower limit of the interval

suggests a possible mean systolic blood pressure of 13 mm Hg lower in the computer

plus risk chart arm as compared to the usual care arm. Also, note that it is not sur-

prising that the cluster-adjusted procedure has the widest width, as coverage results

for this procedure show conservative behavior. The results provided in Table 5.2 are

consistent with those found by Montgomery et al. (2000).

Collins and Peto (1994) found that a reduction of 10 mm Hg in systolic blood

pressure was associated with a 35−40% reduction in stroke and a 20−25% reduction

in coronary heart disease. Further research investigating the effect of a computer

based clinical decision support system is therefore recommended.
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Table 5.2: The Wald-type confidence interval (Wald), cluster-adjusted confidence
interval, generalized confidence interval (GCI) and the MOVER for the difference
between mean systolic blood pressure (mm Hg) in the treatment arm vs. the control
arm.

Wald Cluster adjusted GCI MOVER

Estimated difference −5.5 −5.5 −5.5 −5.5

95% CI (−11.8, 0.6) (−16.1, 5.0) (−14.0, 2.0) (−13.0, 2.0)

Width 12.4 21.1 16.0 15.0

5.2 The difference between two lognormal means

Introduction

Each year approximately 600,000 people are admitted to hospital for community

acquired pneumonia in the United States, of which approximately 15% die (Bartlett

and Mundy, 1995). However, a large amount of variation exists among hospitals in

their use of treatment resources.

The analysis of administrative data has revealed a large amount of variation in

admission rates, length of hospital stay, and use of institutional resources (Fine et al.,

1993; Gilbert et al., 1998). These resources have a high cost to society. Therefore, in-

terventions which improve the care and efficiency of treatment of community acquired

pneumonia are desirable.

A critical pathway is a strategy used to define the necessary steps of complex

processes. In this case, the complex process is the treatment of community acquired

pneumonia. Critical pathways are used to improve the quality of care and/or reduce

the cost of care by ensuring that the necessary steps are followed in an efficient

manner.

The study by Marrie et al. (2000) used a stratified cluster randomization trial
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to evaluate the use of a critical pathway for the treatment of community acquired

pneumonia in 19 hospitals in the United States. One outcome of the study was length

of hospital stay, which was used as a surrogate for resource utilization. This outcome

is used here to illustrate the confidence interval procedures for the difference between

two lognormal means, since such data usually follow an approximately lognormal

distribution (Thompson and Barber, 2000). Note that although a stratified design

(based on the type of hospital and historical length of stay) was used, the study will

be treated as a completely randomized cluster randomization trial in the analysis, as

it was in Marrie et al. (2000) .

Methods

The primary hypothesis of the study by Marrie et al. (2000) was that institutional

resources would be reduced if a critical pathway was implemented for the treatment

of community acquired pneumonia, without impairing the safety and efficacy of the

therapy. For this investigation of resource utilization, an outcome of interest was the

length of hospital stay.

Computer-generated random numbers were used to allocate the 19 participating

hospitals to either implement the critical pathway or to continue with conventional

management. Hospitals were matched prior to random assignment by type of insti-

tution (teaching hospital or community hospital) and historical length of stay. The

components of the critical pathway included the use of clinical prediction rule to as-

sist in admission decisions, treatment with antibiotics, and criteria for switching from

intravenous to oral antibiotics and hospital discharge.

Hospital charts were used to collect data for resource utilization. The length of

stay for patients who died in the hospital was calculated as the admission time to the

date of death. Furthermore, the length of stay was arbitrarily censored at 42 days to

avoid a large amount of skewness due to patients with extended hospital stays. This

cut-off point will not be implemented in this example, because the confidence interval
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Table 5.3: Descriptive statistics for the critical pathway versus usual care for the
treatment of community acquired pneumonia.

Critical pathway Usual care

No. hospitals (clusters) 9 10

No. patients at follow-up 351 587

Mean no. participants per hospital 39 58.7

Imbalance statistic for hospital size 0.73 0.83

ICC (log-scale) 0.01 0.07

Mean length of stay (std dev) 9.41 (13.65) 10.28 (13.20)

procedures do not all assume symmetry.

The mean length of hospital stay is compared between the two arms and confidence

intervals for the difference between these two means are constructed. Preliminary

analyses show that the log length of stay in each cluster appears to be approximately

normally distributed (see the quantile-quantile plots in Figures 5.3 and 5.4). There-

fore, the Wald interval, the MOVER, and the generalized confidence interval are

constructed at the α = 5% level for the difference between lognormal means.

Results and recommendations

Nineteen hospitals (clusters) were randomized to two arms, with 9 receiving the criti-

cal pathway intervention and 10 receiving usual care for the treatment of community

acquired pneumonia. Descriptive statistics of the two arms may be found in Table 5.3.

The descriptive statistics found in the table are similar to the parameters investigated

in the simulation study (Tables 4.9 to 4.11 in Appendix B).

Confidence intervals for the difference between mean length of hospital stay in the

two arms are constructed using the Wald method (and the delta method for variance
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Figure 5.3: Q-Q plots of log length of stay (10 clusters) in the usual care arm
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Figure 5.4: Q-Q plots of log length of stay (9 clusters) in the critical pathway arm
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Table 5.4: The Wald-type confidence interval (Wald), generalized confidence interval
(GCI) and the MOVER for the difference between mean length of stay (in days) in
the critical pathway arm and the usual care arm.

Wald GCI MOVER

Estimate −0.87 −0.87 −0.87

CI (−3.23, 1.50) (−3.88, 2.02) (−3.44, 1.59)

Width 4.73 5.09 5.03

estimation), the generalized confidence interval procedure, and the MOVER. Point

estimates and confidence intervals with their corresponding widths for each of the

three procedures may be found in Table 5.4.

Table 5.4 shows that the Wald confidence interval has the narrowest width, fol-

lowed by the MOVER, and finally the generalized confidence interval. Simulation

results in Chapter 4 (tables in Appendix B) for the difference between two lognormal

means show that both the Wald method and the MOVER have coverage close to the

nominal 95% when parameters are similar to those estimated in this example. That

is, when the ICC is 0.01 or less, when variances in the two arms are equal (Table 5.4

shows similar standard deviations for the length of stay in the two arms), when the

effective sample size (number of clusters per arm and average cluster size) is low, and

when the imbalance statistic of the cluster size is roughly 0.8. However, the Wald

method imposes symmetry on the interval, thereby resulting in unbalanced tail errors

(Appendix B). The generalized confidence interval procedure is not recommended

over the other two procedures due to the somewhat conservative coverage behaviour

found in the simulation results. Furthermore, this procedure is not as precise as the

Wald or the MOVER. The MOVER is therefore recommended for the analysis of this

data.

The findings using the confidence interval procedures above are difficult to compare
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to those of Marrie et al. (2000), because the original study made inferences on the

median length of hospital stay rather than the mean due to the skewness of the data.

The mean length of stay in the critical pathway arm was found to be 0.87 days lower

than that of the usual care arm (9.41 days vs. 10.28 days), with a 95% confidence

interval of 3.44 fewer days to 1.59 more days (MOVER). Although an average of 0.87

fewer days seems like a minor difference, when multiplied by the size of the hospital,

the monetary savings for each hospital can be quite major, especially over an extended

period of time. Note the lack of statistical significance when inferences are performed

on the arithmetic mean, as well as a difference potentially as large as 3.44 days between

the length of stay in the two arms. Further study is thus recommended.

The original study found that the median length of stay was 1.7 days lower in

the intervention arm than the control (5.0 days vs. 6.7 days, p-value= 0.01). The

difference between the mean length of stay and median length of stay in each arm

is expected when data are lognormally distributed, as the arithmetic mean exceeds

the geometric mean (or median). Note that the lognormal mean is a function of

both µ and σ2, while the lognormal median is only a function of µ. This if interest

lies in the mean, then inferences on the median are irrelavant and could lead to a

misinterpretation of results, as seen in the original study which provided inferences

on median length of stay.

The original study found a reduction in the rate of admission in the critical path-

way arm as compared to the usual care arm, which combined with the lower length of

stay in the treatment arm can potentially save approximately $1700 US per patient

admitted to hospital (Niederman et al., 1998; Guest and Morirs, 1997).
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5.3 The exceedance probability

Introduction

The confidence intervals for the exceedance probability investigated in Chapter 4

are applied to data from a study investigating the effect of clinical decision support

system and risk chart on cardiovascular disease and blood pressure (Montgomery

et al., 2000). Computer clinical decision support systems and risk charts help organize

patient information, perform complex evaluations, and present results quickly when

assessing the risk of cardiovascular disease and high blood pressure. It is desired that

the intervention will lead to lower the systolc blood pressure of patients. Background

about the study may be found in Section 5.1.1.

Methods

The methods of the study by Montgomery et al. (2000) are summarized in Section

5.1.2. Confidence intervals for the exceedance probability are of interest for the sec-

ondary outcome, systolic blood pressure. That is, confidence intervals will be con-

structed for the probability that a randomly selected individual from the usual care

arm has a higher systolic blood pressure than that from the computer decision sup-

port system and risk chart arm. Quantile-quantile plots in Figures 5.1 and 5.2 show

systolic blood pressure outcomes to follow an approximate normal distribution in each

clusters. Therefore the procedures outlined in Section 3.3 may be applied to obtain

confidence intervals for the exceedance probability.

Results and recommendations

Descriptive statistics for systolic blood pressure in the computer based clinical man-

agement and risk chart arm and the usual care arm are presented in Table 5.1. With

the number of clusters per arm and the estimated ICC value, empirical results in
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Table 5.5: The Wald-type confidence interval (Wald), generalized confidence interval
(GCI) and the MOVER (MOVER) for the exceedance probability of systolic blood
pressure for the control arm vs. the treatment arm

Wald GCI MOVER

Estimate 0.579 0.579 0.579

CI (0.490, 0.664) (0.469, 0.684) (0.491, 0.665)

Width 0.174 0.215 0.174

Chapter 4 suggest the use of the MOVER or the Wald method when constructing

confidence intervals for the exceedance probability.

Table 5.5 gives similar results using the Wald-type interval and the MOVER, with

the intervals containing the un-informative exceedance probability of 50%. The Wald-

type interval suggests that the true exceedance probability could lie anywhere from

49% to 66.4%, whereas the MOVER suggests that the truth could be anywhere from

49.1% to 66.5% with 95% confidence, a negligible difference. It is not surprising that

the width of the generalized confidence interval procedure is larger than that of the

other two procedures, as this was also observed in the simulation results in Chapter

4.
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Chapter 6

SUMMARY

6.1 Introduction

The primary objective of this thesis was to develop and evaluate confidence interval

procedures using the MOVER for three common effect measures occurring in cluster

randomization trials, the difference between two normal means, the difference be-

tween two lognormal means, and the exceedance probability. As a starting point and

for the sake of simplicity, attention was given to the completely randomized design.

Extensions to more complex designs are discussed at the end of this chapter. The

main purpose of this chapter is thus to summarize results, to make recommendations,

and to propose areas of future works by identifying existing limitations.

6.2 Overall findings and recommendations

The finite sample properties of four confidence interval procedures were compared for

a difference between two normal means. More specifically, we compared the Wald

method, the cluster adjusted method, the generalized confidence interval method,

and the MOVER, based on the empirical coverage results, the tail error results, and

the median interval widths. The Wald method, the generalized confidence interval

procedure, and the MOVER are all derived using the expression for the unweighted

mean squared error, introduced by Thomas and Hultquist (1978). The results showed

that the MOVER and the generalized confidence interval method had empirical cov-

erage closer to the nominal 95% coverage than the alternatives. Between these two

procedures, the MOVER is recommended due to its simplicity and closed-form re-
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sults. Although when there are more than 12 clusters per arm, the Wald method has

comparable coverage results and greater precision than the MOVER and generalized

confidence interval procedures. Thus, this method may be applied as the effective

sample size increases.

For the difference between two lognormal means arising from a cluster random-

ization trial, we compared three confidence interval procedures based on their finite

sample properties. The Wald method (with the variance estimated using the delta

method), the generalized confidence interval method, and the MOVER were all de-

rived using the results of Thomas and Hultquist (1978). The MOVER is recommended

primarily due to it’s valid coverage performance as compared to the alternatives, and

secondarily to its balanced tail error performance, precision, and simplicity of appli-

cation.

We compared the finite sample properties of three confidence interval procedures

for the exceedence probability. These procedures were the Wald method (with the

use of the delta method to estimate the variance), the generalized confidence interval

method, and the MOVER. Again, all three confidence intervals were derived using

the unweighted mean squared error, introduced by Thomas and Hultquist (1978). We

recommend the MOVER for all of the parameter combinations investigated due to it’s

overall empirical coverage performance. However, we also recommend caution when

there are less than 12 clusters per arm, as simulation results showed anti-conservative

behavior when P(Y1 > Y2) = 0.5. Alternatively, the more complex and somewhat

conservative generalized confidence interval procedure may be a useful option.

To apply the MOVER for the parameters of interest, we re-write each of them into

components for which valid confidence limits already exist, such as a single normal

mean and the variance components (Thomas and Hultquist, 1978, page 613). The

crucial step in each MOVER procedure is estimation of the variance near the lower

limit and near the upper limit separately using the existing and valid confidence in-

tervals of the components. Alternatively, the Wald-type confidence interval estimates
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the variance of the parameter estimate at the point estimate, thereby fixing the vari-

ance and potentially failing to estimate valid limits. Furthermore, estimating the

variance at the point estimate imposes symmetry restrictions on the interval when

the parameter estimate may have a skewed sampling distribution. However, although

the MOVER for each of the three parameters of interest has shown many desirable

finite sample properties, a number of limitations exist.

6.3 Limitations

The previous section made confidence interval recommendations for each of the three

parameters investigated. These recommendations included the MOVER for each pa-

rameter presented in Chapter 3. However, the limitations of these MOVER procedures

are important to note before their application.

The thesis focused on the analysis of a two-armed cluster randomization trial,

however many trials contain more than two arms. For instance, in a trial with three

arms (intervention 1, intervention 2, and usual care) the results of each intervention

arm may be compared with the usual care arm using either differences between the

means or exceedance probabilities. This would result in two simultaneous compar-

isons, (intervention 1 v.s. usual care) and (intervention 2 v.s. usual care). Here, the

issue with multiple comparisons needs to be taken into account. Usual confidence

interval procedures for the comparison parameter of interest, such as the ones out-

lined in this thesis, would lead to anti-conservative confidence intervals for the overall

experiment (Westfall et al., 1999, page 18). Adjustments than the MOVER may be

made to allow for multiple comparisons, as outlined in the next section.

Another limitation of the proposed procedures obtained using the MOVER is

that they are specifically for data following an approximately normal distribution

on the raw or log scale. Although each MOVER-based procedure in Chapter 3 is

derived using the MOVER (Zou, 2008), which itself makes no parametric assumptions,
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but only requires valid confidence limits for each component, the derived procedures

assume that the data approximately follow a one-way random effects model on the raw

or log scale. That is, the mean and variance components of the one-way random effects

model are used to construct confidence intervals for the difference between two normal

means, the difference between two lognormal means, and the exceedance probability.

Alternatively, non-parametric randomization methods may be used (e.g. The Commit

Research Group, 1995; Gail et al., 1996), however note that these methods lack the

computational simplicity of the MOVER.

Although tests of normality exist for independent data, they generally do not

apply to clustered data. Quantile-quantile plots for each cluster may be used to

check the parametric assumption of normality, as illustrated in Chapter 5. Each

plot will be based on the individual cluster sizes, not on the overall sample size.

When the plots show an apparent deviation from normality, the proposed confidence

interval procedures are not recommended. Similarly, the assumption of lognormally

distributed outcomes (when estimating the difference between two lognormal means)

may be checked by taking the logarithm of the data and observing the quantile-

quantile plot separately for each cluster.

A third limitation of the MOVER is that the variance of the sampling distribution

of the parameter estimate is estimated near the limits, not at the limits. Alternatively,

the Score confidence interval method is a likelihood-based method which estimates

the variance at the limits, leading to narrower confidence interval widths. However,

the required likelihood function is complex for clustered data. Even so, the validity

of the score is still based on the central limit theorem. Furthermore, it would be

infeasible to parameterize a composite parameter, such as the lognormal mean or

the standardized mean difference, into a function of a single parameter. Instead, the

key step in each of the MOVER intervals uses existing and valid confidence intervals

for the components of the parameter to estimate the variance of that parameter

near its lower limit and near its upper limit, thereby simplifying the procedure. In
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other words, the MOVER sacrifices some precision for the sake of simplicity. The

simulation study in Chapter 4 has shown the MOVER to have valid coverage results,

balanced tail errors, and narrow widths for the majority of the small-sample parameter

combinations investigated, therefore this limitation should not be a major concern.

As a final limitation, we recognize that the MOVER does not allow for covariate

adjustments. Although on average a completely randomized cluster randomization

trial design adjusts for known and unknown confounders related to the outcome,

any one cluster randomization trial may have chance imbalance of baseline covari-

ates. This is particularly true when there are fewer clusters randomized, and thus a

smaller effective sample size, precisely the condition investigated in this thesis. Pos-

sible remedies include changing the design of the study (consider a stratified cluster

randomization trial or a pair matched cluster randomization trial) or adjusting the

analysis of the study (e.g. by considering adjusted means obtained from analysis of

covariance). Adjustments to the MOVER are considered at the end of the following

section.

6.4 Future research

The simulation study in Chapter 4 indicated the empirical coverage, tail errors, and

median widths of each of the procedures investigated when data arose from a com-

pletely randomized cluster randomization trial with either normally distributed or

lognromally distributed outcomes. With the MOVER commonly recommended for

each parameters of interest, it is also important to recognize the parametric assump-

tions of these confidence interval procedures, that is the assumption of normal or

lognormal data. It would therefore be interesting for future works to investigate the

performance of the three MOVER intervals when parametric assumptions are vio-

lated, particularly when the number of clusters is small.

As previously mentioned, the MOVER intervals were developed specifically for a
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completely randomized cluster randomization trial design. However, other common

designs include the stratified and the matched-pair cluster randomization trial de-

signs. The MOVER may easily be extended to accommodate a stratified design using

two steps. First, the point estimate may be set to the average or weighted average

(weighted by the amount of information in each stratum) of the point estimates in all

the strata. Second, a confidence interval may be constructed for this average using the

MOVER for a linear combination of parameters (Zou, 2008) and the transformation

principle. That is, the MOVER will be applied to obtain the confidence limit of the

sum of the stratum-specific means, followed by the application of the transformation

principle to find the limits of the average (or weighted average) mean of the strata.

Note that if a weighted average is used, the overall variance estimate of the weighted

average will also have to be weighted (Donner and Klar, 2000, page 126).

Obtaining confidence intervals for the parameters of interest in a pair matched

study is more complex, because the estimation of the between-cluster variance is

confounded by the possible effect of the intervention. One option is to extend the

MOVER to account for the similarities of the matched pairs. We can use the Pearson

correlation as computed over the paired clusters to estimate the covariance between

the two arms (Freedman et al., 1997). This covariance may then be applied by

inserting a covariance term within the MOVER, as shown in the appendix of Zou

(2008). However, it is important to realize that the potential gain in efficiency due

to pairing may be overshadowed by the smaller effective sample size. Half as many

observations are available when dealing with paired data as compared to unpaired

data. Martin et al. (1993) showed that with a maximum of 10 pairs, the Pearson

correlation between pairs must be at least 0.2 for an efficient use of matching. This

thesis investigated confidence interval procedures for cluster randomization trials with

as few as 6 clusters per arm. Therefore, a pair matched cluster randomization trial

with only 6 pairs would require a relatively large Pearson correlation coefficient over

matched pairs to be considered efficient.
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Another option is to break the matches and treat the trial as if it were a completely

randomized trial. However, this would lead to conservative confidence limits with

coverage above the nominal alpha level if matching is strong (Donner et al., 2007).

The validity of the MOVER for stratified or pair matched cluster randomization trial

designs must first be examined through a simulation study before their application

can be implemented in practice.

An additional open reserach question concerns simultaneous confidence intervals.

As mentioned in the previous section, the MOVER intervals are intended for cluster

randomization trials comparing only two arms. Extensions to more than two arms,

where comparisons are made based on the same control group, may be made by ac-

counting for multiple comparisons to control empirical coverage values. One simple

option is to translate the Bonferroni correction for multiple hypothesis testing (Per-

neger, 1998) to confidence interval construction by adjusting the critical value used

from the upper α/2
th

quantile to the upper α/2m
th

quantile, where m is the number

of comparisons conducted. However, this over-controls for the false positive error

rate, resulting in rather conservative limits, and also comes at the cost of an elevated

false negative error rate, or lower precision. Alternative options include using the si-

multaneous confidence interval procedure by Dunnett (1980) which does not assume

equal variances, the Tukey-Kramer procedure (Tukey, 1953; Kramer, 1956) which

does assume equal variances, or using a multivariate normal distribution rather than

a univariate normal distribution when constructing simultaneous confidence intervals

(Hasler and Hothorn, 2008; Donner and Zou, 2010).

Another area for future research is the performance of the MOVER for the differ-

ence between two normal or lognormal means and the exceedance probability when

the groups being compared are correlated. This would not occur in a completely

randomized cluster randomization trial due to the random assignment of independent

clusters to trial arms, but is common in pair matched studies and in cross-over trials.

Possible extensions for pair matched cluster randomization trials have been discussed
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above. In cross-over trials, the same subjects receive an intervention and also act as

their own controls. This is done by evaluating subjects at different times (Rothman

et al., 2008). Therefore, the variance for the estimated difference must be adjusted to

factor in a correlation term. This may be done using the MOVER, as outlined in the

appendix of Zou (2008). Again, the validity of these altered asymptotic confidence

interval procedures would require verification through a simulation study.

As a final discussion of future research, we consider an extension to adjust for

covariates which are related to the outcome. Although baseline covariate imbalance

may be tackled in the design of the study by adopting a stratified or pair matched

cluster randomization trial, an alternative option is to adjust the analysis of the clus-

tered data. Such adjustments may be used to avoid bias due to covariate imbalances

or to improve the precision of the estimates (Hauck et al., 1998; Donner and Klar,

2000, page 121). The mixed-effects regression models may be used to estimate the

mean difference in treatment effects on the raw or log scale, as well as the variance

components of this outcome after the data have been adjusted for baseline covariates.

This may be done in SAS using the MIXED procedure with the option TYPE=VC in

the random statement. However, aside from the more complex analysis, Hayes and

Moulton (2009, Chapter 11) caution the use of regression models for the adjustment of

covariates when there are fewer than 15 clusters per arm, as results may be unreliable.
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