
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

1-12-2023 3:00 PM

Pythagorean Vectors and Rational Orthonormal Matrices Pythagorean Vectors and Rational Orthonormal Matrices

Aishat Olagunju, The University of Western Ontario

Supervisor: Jeffrey, David, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Applied Mathematics

© Aishat Olagunju 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Applied Mathematics Commons

Recommended Citation Recommended Citation
Olagunju, Aishat, "Pythagorean Vectors and Rational Orthonormal Matrices" (2023). Electronic Thesis and
Dissertation Repository. 9112.
https://ir.lib.uwo.ca/etd/9112

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=ir.lib.uwo.ca%2Fetd%2F9112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9112?utm_source=ir.lib.uwo.ca%2Fetd%2F9112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
A Pythagorean vector is an integer vector having an integer 2-norm. Such vectors are closely
related to Pythagorean n-tuples, since n-tuples are the building blocks for Pythagorean vectors.
Pythagorean vectors are, in their turn, the building blocks for rational orthonormal matrices.
The work in this thesis has a pedagogical application to the QR decomposition of matrices,
widely used in Linear Algebra. A barrier for students learning the details of the QR decom-
position of a given matrix A is the occurrence of square-roots that cannot be simplified during
the application of the two standard algorithms, namely the Gram–Schmidt method and House-
holder transformations. This thesis studies Pythagorean vectors and their application to the
construction of exercises and test questions in which a given matrix A can be factored into ma-
trices Q and R, with all arithmetic operations resulting in rational quantities, free from square
roots. This freedom from square roots applies to every step of the calculations, and not just the
final result.

As a preliminary to QR decomposition, the thesis explores the properties of Pythagorean
vectors, including their generation for an arbitrary specified dimension. Pythagorean triples,
which correspond to Pythagorean vectors of dimension 2, have been widely and enthusiasti-
cally studied in the literature, but higher dimensions have been less studied, and this thesis adds
some new observations to previous studies.

Summary for Lay Audience
This thesis is based on a pedagogical application, namely the teaching of a particular topic in
Linear Algebra. Courses in advanced linear algebra include a study of a process called the QR
decomposition of a given matrix. The existing textbook treatments usually require students to
perform extensive arithmetic operations. Matters can become more difficult for students when
their calculations throw up awkward arithmetic expressions containing radicals, such as

√
168,

which cannot be simplified and which pollute the students’ working. This thesis investigates
ways in which instructors may construct exercises which are guaranteed to avoid unnecessary
arithmetic difficulties for students.

In addition, Pythagorean triples are a popular subject for investigations in the literature.
The thesis starts by happily joining this activity with new observations on the properties of
triples, and adds observations of n-tuples for n > 3.

Keywords: Pythagorean n-tuples, rational matrices, orthonormal matrices

i

Contents

Abstract i

List of Figures iv

List of Tables v

List of Algorithms vi

List of Appendices vii

1 Introduction 1
1.1 Background . 1
1.2 Properties and Applications of Orthonormal matrices 2

1.2.1 Properties of Orthonormal matrices 2
1.2.2 Applications of Orthonormal matrices 3

1.3 Research Purpose . 4

2 Pythagorean n-tuples 5
2.1 Pythagorean n-tuples: . 5
2.2 Pythagorean triple . 5
2.3 Generating Pythagorean triples . 5

2.3.1 Euclid’s formula . 6
2.3.2 Fibonacci’s method . 6
2.3.3 Ternary trees . 6
2.3.4 Area proportional to the sum of squares 9
2.3.5 Polynomial Parametrization . 9

2.4 Pictures of triples . 10
2.5 Pythagorean Quadruple . 13
2.6 Generating Pythagorean Quadruples . 14

2.6.1 Chain method . 14
2.6.2 Diophantine method . 14
2.6.3 Polynomial Parametrization . 14

2.7 Higher Dimensions . 15
2.7.1 How common are Pythagorean vectors? 16

3 QR Matrices 18
3.1 Orthogonalization . 18

ii

3.2 Gram-Schmidt . 20
3.3 Householder Transformation . 21
3.4 Gram-Schmidt Rational Orthonormal Bases 24
3.5 Householder Rational Orthonormal Bases . 24

4 Generating Rational Q Matrices 30
4.1 Cayley’s formula . 30

4.1.1 Disadvantages of Cayley . 32
4.1.2 Other previous methods . 33

4.2 A simple search approach . 33
4.2.1 Interesting Patterns . 34

Circulant-like matrices . 34
Bordered circulant-like . 35
Permutations . 35
Hadamard or Bohemian matrices . 35

4.2.2 Fraction-free QR . 35
4.2.3 Pythagorean magic squares . 37
4.2.4 A Depository of Rational Orthonormal Q matrices 39

5 Conclusion and Further works 40
5.1 Conclusion . 40

5.1.1 All 3×3 circulant-like matrices follow (4.7) 40
5.1.2 All 4×4 circulant-like matrices follow (4.9) 40
5.1.3 Repeated elements lead to degeneracy 40

Bibliography 43

A Matrices 46

B Maple codes 47

Curriculum Vitae 52

iii

List of Figures

2.1 First 3-generations with Berggren matrices . 7
2.2 First 3-generations with Price matrices . 8
2.3 Plot of all primitive Pythagorean vectors ⟨a,b⟩ calculated using (2.1). 11
2.4 maple command for the lines in Fig.2.5 . 12
2.5 Plot of a and b with 2.1 . 12
2.6 Plot of a and b in ascending order . 13
2.7 Plot of a and b in descending order . 13

iv

List of Tables

2.1 Numbers of primitive Pythagorean vectors with length less than 21 for various
dimensions. 16

2.2 Numbers of primitive Pythagorean vectors with elements less than 16 for vari-
ous dimensions. 17

4.1 Euler’s first square . 37
4.2 Example based on table 4.1. 38
4.3 Example obtained by squaring each element in table 4.2 38
4.4 Euler’s magic square of squares . 38
4.5 Example 2 . 38

v

List of Algorithms

1 Euclid’s method . 6
2 Fibonacci’s method . 6
3 Berggren matrices . 8
4 Price matrices . 8
5 Sum of squares method . 9
6 Pythagorean n-tuples . 16
7 Modified Gram-Schmidt . 21
8 Householder . 24

vi

List of Appendices

Appendix A Matrices . 46
Appendix B Maple codes . 47

vii

Chapter 1

Introduction

1.1 Background

Linear Algebra, the ”fun” branch of Mathematics whose versatility ranges from matrices to
geometry to engineering, has always been widely used and recognized. It comprises linear
combinations such as linear equations, linear maps, and their expressions in vector spaces
through matrices. The earliest study of linear algebra arose from the study of determinants,
from Leibniz’s representation of coefficients with pairs of numbers to Maclaurin’s (1729) solu-
tions of simultaneous linear equations up to 4 unknowns. Maclaurin made mention of Cramer’s
rule, which gives a general method of reducing two quadratic forms simultaneously to sums of
squares.

Pythagorean triples have been known for 4000 years. In 1922, George Arthur Plimpton
bought a Babylonian clay tablet dating back to around 1800 BC, for $10 from Edgar James
Banks[11]. Edgar discovered the tablet now known as the Plimpton 322. It was written in a sex-
agesimal number system and consists of two of the three numbers now known as Pythagorean
triples. There have been numerous articles and papers on Pythagorean n-tuples and how to gen-
erate them. From Euclid’s formula for generating Pythagorean triples to ternary trees method
with the use of Price matrices [24] and Berggren matrices[6].

Frisch and Vaserstein show that there exists a parametrization of Pythagorean triples by
a single triple of integer-valued polynomial[15]. They took it a step further and showed for
n = 4 or 6, the Pythagorean n-tuple admits a parametrization by a single n-tuple of polynomi-
als with integer coefficients [16]. There have also been a collection of proofs without words for
Pythagorean Triples[19], Pythagorean quadruples[29], and parametric representation of prim-
itive Pythagorean triples[3].

As for most things already existing in the world of mathematics the origin of matrices
can be traced back to ancient times. Gottfried Leibniz introduced the theory of matrices by
taking the coefficients of linear equations and putting them in a rectangular array. This array
would later on in 1848 be called a Matrix which is a Latin word for ”Womb” by James Joseph
Sylvester. Sylvester didn’t only name the array, he also introduced the process of finding a
determinant.

Like everything in life, having friends with similar interests can be considered a major ben-
efit such as in the case of Arthur Cayley, Sylvester’s friend who made great contributions to the

1

2 CHAPTER 1. INTRODUCTION

matrix theory involving scalar multiplication of matrices, matrix multiplication, addition, and
also inverse matrix theory. Both men were known as ’invariant twins” for their collaboration
in the development of the theory of ”forms” (or ”quantics”) [4].

Various operations can be and have been performed on matrices, one such is the decom-
position of a matrix into a product of two other matrices. From Reduced Row Echelon Form
(RREF) computations using Gaussian elimination to QR decomposition, a vital topic that in-
volves decomposing a matrix into a product of an orthogonal matrix Q, with the property that
its transpose is its inverse: QT Q = I, and an upper triangle matrix R. QR decomposition has
always been a popular research area due to its versatility in applications to many fields of
science and engineering, from machine learning, and least squares problems to reducing the
dimensionality of matrices.

In numerical linear algebra, QR has played and is still playing numerous roles. Some of
which is its application to any real or complex matrix regardless of its format or structure.
Square invertible matrices can also be decomposed using QR factorization. The QR factoriza-
tion also reveals rank.

To compute the QR decomposition, there are two main methods, the householder transfor-
mation and the most common method, the Gram-Schmidt process. The Gram-Schmidt process
has proved useful in many areas, but there have been some unfavorable articles against it. Staib
in 1969 raised a couple of objections to the Gram-Schmidt process, he found the process ”cum-
bersome” and ”inelegant” and therefore presented an alternative[33], a matrix method. Hoff-
man in 1970 addressed Staib’s objections with the paper The Gram-Schmidt Process Is Not so
Bad!, where he compared the Gram-Schmidt method and Staib’s alternative method[20].

Householder transformations are widely used in many areas such as in geometric optics,
and numerical linear algebra, for tridiagonalization and has such been discussed in different
contexts. In sparse matrices[21], in scalar product spaces[27] and also in solving complex
symmetric eigenvalue problem[30]. Solutions to least squares problems with Gram-Schmidt
and Householder transformations have also been tested for their accuracy[26].

While the Gram-Schmidt processes are common and efficient, it often falls victim to catas-
trophic cancellation. This is when the initial values are large, and the final values become small
with relative errors. The Householder QR decomposition’s significance lies in the fact that it
can be used to transform a given vector into another vector with specified zero components
while preserving length, thus preventing this phenomenon.

1.2 Properties and Applications of Orthonormal matrices

1.2.1 Properties of Orthonormal matrices

With Q being a matrix and u,v,x being vectors, we have the following important properties of
Orthonormal matrices are described below

1. Orthonormal matrices are rotations of the coordinates. This is demonstrated by the re-
sults:

(a) vector lengths are unchanged. That is ||Qx||2 = ||x||2.

1.2. PROPERTIES AND APPLICATIONS OF ORTHONORMAL MATRICES 3

Proof: This can be easily proved by
(||Qx||2)2 = (Qx)T (Qx)
(Qx)T (Qx) = xT QT (Qx) = xT (QT Q)x = xT x = (||x||2)2

(b) angles between vectors are unchanged. That is (Qu).(Qv) = u.v.
Proof: Again this can be proved by converting to matrix notation: u.v = uT v

Qu.Qv = (Qu)T Qv = (uT QT)Qv = uT (QT Q)v = uT v = u.v

2. An orthonormal matrix has columns of length 1. So Q = (q1 q2 . . .qn) has ||qk|| = 1
for all k. This implies that if the entries are rational, then we can put the entries over a
common denominator and get a Pythagorean n-tuple or vector.

Proof: q = (a1/b1 . . .an/bn) then ∑(ai/bi)
2 = 1.

Let d be LCM of the bi, then bi = d/ci and ai/b1 = aici/d.
Then ∑(aici)

2 = n2d2.

The definition of Pythagorean n-tuples can be found in 2.1.

1.2.2 Applications of Orthonormal matrices
1. Least-squares approximation: This method is used for estimating the true value of some

quantity based on a consideration of errors in observations of measurements. Suppose
A,b are real matrices and A has linearly independent columns. Then we find x such that
Ax = b, x which minimizes ||Ax−b||2 is called the least square problem.[34] Given the
equation

Ax = b.

We start off by solving for the QR decomposition of A,

A = QR

Next, we compute the reduced QR decomposition

Q = [Q1,Q2], R =

[
R1
0

]
A = Q1R1

Then solve for x
R1x = QT

1 b

In essence, when an orthonormal transformation is applied to a vector or matrix, the error
will not grow.

2. Pedagogical application: Creating an example of lines intersecting at a given angle. The
aim is to construct 2 straight lines that intersect at 45 degrees (π/4). The vector form of
a line is r(t) = a+v∗ t where a,v are vectors and t is a parameter. Starting with two lines
meeting at the origin at 45. Then we use Q matrices to rotate them to a new position.
Now we have two lines r1(t) = u∗ t and r2(s) = v∗ s. Next, we add a vector to each to
move them from the origin, this gives r1 = a+u∗ t and r2 = a+ v∗ t. In this form, it is
too easy for the students because t = s = 0 shows the lines meet at a, so, the parameters
t and s are redefined so that we get r1 = a+u∗ t and r2 = b+ v∗ t.

4 CHAPTER 1. INTRODUCTION

1.3 Research Purpose
At this age, more and more students from their high school years (some earlier) develop some
hatred for mathematics because they find it dull compared with other subjects that are easier
to connect to. Some find that it requires too much memory capacity which is not always the
case. Some mathematics problems most times require understanding more than one’s ability
to memorize formulas.

A relatable reason would be the repetitive solving pattern sometimes filled with mistakes
that are needed to gain a better understanding of the solution process of the problem, which is
seen in RREF. Making a mistake in the pivoting process of RREF would trigger an avalanche
of confusion and frustration when the realization comes of the need to go back and fix the
mistakes or start afresh in some cases.

As an instructor of Linear Algebra, the topic of matrix reduction can be a fun experience or
a stress-filled experience, since it involves a lot of arithmetic. For students who would demand
partial marks for having an idea of how the solution process should be carried out and for other
students who actually did the work but encountered mistakes of irreducible roots which made
it more complicated.

Having to teach and examine this topic stress and worry-free is expected and justified. In-
structors could even help their students by informing them that all square roots they would
encounter while solving have been constructed to simplify. Especially for exams without com-
puter aid.

As a student learning the various methods of matrix decomposition, the rigorous steps of
Reduced Row Echelon Form with Gaussian Elimination are daunting on their own not to talk
of being followed by Gram Schmidt process and Householder transformations.

One of my favorite math quotes says, ”Mathematics is like love, a simple idea, but it can get
complicated”. To avoid such further complications and to make the study of matrix decompo-
sition a little easier and less daunting for students and teachers, the introduction of Pythagorean
vectors to generate rational orthonormal matrices which when the reduction process is being
performed without the computation aid would be rational. This idea is the main driving force
for this research.

An outline for the purposes are

• Show that problems can be constructed by choosing Q and R and multiplying,

• Showing that all steps in Gram-Schmidt, Householder are rational,

• Create a public repository of Q matrices for use in applications.

Chapter 2

Pythagorean n-tuples

2.1 Pythagorean n-tuples:
Definition A Pythagorean n-tuple is a set of n positive integers xi such that

n−1

∑
i=1

(xi)
2 = (xn)

2.

A primitive n-tuple is one in which the integers are co-prime and arranged in ascending order1.
Since the focus is linear algebra, vectors are defined with similar properties.

Definition A vector x = [x1, ...,xm] is Pythagorean if ∀k, xk ∈ Z and ∥x∥2 ∈ N.

This definition relaxes some of the requirements for an n-tuple: zero entries and negative
entries are allowed. Later in the thesis, we count Pythagorean vectors, and for this purpose
we define primitive Pythagorean vectors as having elements that are positive integers, and co-
prime.

2.2 Pythagorean triple
Definition A Pythagorean triple consists of three numbers, a,b,c, which satisfy the equation
a2 +b2 = c2.

Pythagorean triples are called primitive when the gcd(a,b,c) = 1, in other words, a,b,c are
co-prime.

2.3 Generating Pythagorean triples
There are numerous ways of generating Pythagorean triples, such as Euclid’s method, Fi-
bonacci’s formula[14], areas proportional to the sum of squares, and the use of matrices and
linear transformation to mention a few.

1Ascending order is not required by all authors, and there will be places in this thesis where the requirement
will be abandoned.

5

6 CHAPTER 2. PYTHAGOREAN N-TUPLES

2.3.1 Euclid’s formula
The common way of generating Pythagorean triples is by using Euclid’s formula which incor-
porates an arbitrary pair of integers m and n with m > n > 0 and states that

a = m2 −n2 , b = 2mn , c = m2 +n2 , (2.1)

where (a,b,c) are Pythagorean triples. This formula generates non-primitive triples when m
and n are odd and generates primitive triples if m and n are co-prime and one of them is even.
While this formula generates all primitive triples it otherwise does not generate all triples. To
generate such triples another parameter k is introduced;

a = k(m2 −n2) , b = k(2mn) , c = k(m2 +n2) , (2.2)

where m,n and k are positive numbers and m and n are co-prime with m > n and at least one is
even.

Algorithm 1 Euclid’s method
1: procedure EUCLID(max) ▷ maximum number desired
2: Outlist := []
3: for m from 2 to max do
4: for n from 1 to modp(m,2) by 2 to m do
5: if igcd(m,n) = 1 then
6: Outlist := [op(Outlist), [m2 −n2,2nm,m2 +n2] ▷ compile the list

2.3.2 Fibonacci’s method
Fibonacci’s method uses the sequence of consecutive odd integers, [1,3,5, ...], with the sum of
the first n terms of the sequence being n2[14]. The method starts by choosing any odd square
integer k from (k = a2), making it the nth term, then letting b2 be the sum of the previous n−1
terms and c2 be the sum of all the n terms. The following algorithm depicts these steps;

Algorithm 2 Fibonacci’s method
1: procedure FIBONACCI(k) ▷ k is any odd square number
2: n = (k+1)/2
3: a = sqrt(k)
4: b = sqrt(add(seq(i, i = 1..n−1,2))) ▷ sum of the n−1 terms
5: c = sqrt(add(seq(i, i = 1..n,2))) ▷ sum of the n terms
6: if a2 +b2 = c2 then
7: Return c,a,b

2.3.3 Ternary trees
A ternary tree is a tree data structure with at most three child nodes, in plain terms, a tree with
at most three branches. Recent publications on generating Pythagorean triples include the use

2.3. GENERATING PYTHAGOREAN TRIPLES 7

of ternary trees with Berggren matrices[6] or Price matrices[24]. This method involves the
generation of three successors of a fixed triple a,b,c with a odd using a set of three matrices,
M1,M2,M3, composed of constants.

Note that all primitive Pythagorean triples can be generated with this method. This means
all primitive Pythagorean triples can be given a tree-like structure with each branch a represen-
tation of multiplication by M j.[6]

If M j are defined

M1 =

−1 2 2
−2 1 2
−2 2 3

 , M2 =

1 2 2
2 1 2
2 2 3

 , M3 =

1 −2 2
2 −1 2
2 −2 3


each branch in Fig 2.1 represents a matrix multiplication. An example would be M1(3,4,5)T =
(15,8,17)T where T is the transpose.

3,4,5

15,8,17

35,12,37 65,72,97 33,56,65

21,20,29

77,36,85 119,120,169 39,80,89

5,12,13

45,28,53 55,48,73 7,24,25

1

Figure 2.1: First 3-generations with Berggren matrices

Price discovered an entirely different ternary tree seen in Fig 2.2 [24], where the same
process can also be applied with Pj defined as

P1 =

 2 1 −1
−2 2 2
−2 1 3

 , P2 =

2 1 1
2 −2 2
2 −1 3

 , P3 =

2 −1 1
2 2 2
2 1 3


Thus, P1(3,4,5)T = (5,12,13)T , a different triple which could also be generated with the third
Berggren matrix M3(3,4,5)T = (5,12,13)T .
Another comparison example with both the Berggren matrices and Price matrices would be
M3(5,12,13)T = (7,24,25)T = P3(3,4,5)T . An interesting thing to note would be that the
three Berggren matrices are alike except for the signs, same with the Price matrices.

8 CHAPTER 2. PYTHAGOREAN N-TUPLES

3,4,5

5,12,13

9,40,41 35,12,37 11,60,61

15,8,17

21,20,29 55,48,73 39,80,89

7,24,25

13,84,85 63,16,65 15,112,113

1

Figure 2.2: First 3-generations with Price matrices

Algorithm 3 Berggren matrices
1: procedure BERGGREN(x,y,z) ▷ x,y,z being a Pythagorean triple
2: a =<<−1,−2,−2 > |< 2,1,2 > |< 2,2,3 >>
3: b =<< 1,2,2 > |< 2,1,2 > |< 2,2,3 >>
4: c =<< 1,2,2 > |<−2,−1,−2 > |< 2,2,3 >>
5: A =< x,y,z >
6: PT 1 = a.A ▷ Matrix multiplication
7: PT 2 = b.A
8: PT 3 = c.A
9: Return PT 1,PT 2,PT 3

Algorithm 4 Price matrices
1: procedure PRICE(x,y,z) ▷ x,y,z being a Pythagorean triple
2: a =<< 2,−2,−2 > |< 1,2,1 > |<−1,2,3 >>
3: b =<< 2,2,2 > |< 1,−2,−1 > |< 1,2,3 >>
4: c =<< 2,2,2 > |<−1,2,1 > |< 1,2,3 >>
5: A =< x,y,z >
6: PMT 1 = a.A ▷ Matrix multiplication
7: PMT 2 = b.A
8: PMT 3 = c.A
9: Return PMT 1,PMT 2,PMT 3

2.3. GENERATING PYTHAGOREAN TRIPLES 9

2.3.4 Area proportional to the sum of squares
This involves generating b and c from a, where a needs to be an odd integer and b and c are
consecutive (b+1 = c) integers. From the generated formula

Area = 6[12 +22 + ...+((a−1)/2)2]

where b = (a2 −1)/2 and c = (a2 +1)/2.[2]

Algorithm 5 Sum of squares method
1: procedure SQUARESMETHOD(a)
2: if a mod2 = 1 then
3: b = (a2 −1)/2
4: c = (a2 +1)/2
5: A = add(seq(i2, i = 1..(a−1)/2))
6: if b+1 = c and 6A = 1/(2ba) then
7: Return c,a,b

2.3.5 Polynomial Parametrization
Frisch & Vaserstein [15] posed the following interesting variant on the problem of generating
Pythagorean triples. They started by considering (3,4,5) and (4,3,5) as separate triples2. In
accordance with this convention, they declared the parameterizations (m2 − n2,2mn,m2 + n2)
and (2mn,m2 −n2,m2 +n2) to be two different parametrizations of triples. The question then
can be posed whether there is a single parametrization that will by itself generate both variants
of each triple. They show that no single triple of polynomials with integer coefficients in any
number of variables is sufficient for generating all Pythagorean triples. Note the requirement
that the polynomials have integer coefficients. A polynomial with integer coefficients must
take integer values, given integer arguments. There exist, however, polynomials with ratio-
nal coefficients which take integer values for integer arguments. If these are allowed, then a
parametrization is possible.

The method was derived with the following steps:

• Given a Pythagorean triple (a,b,c) with gcd(a,b,c) = 1 and c > 0. The triple is one of
the two forms

T1(m,n) = (m2 −n2,2mn,m2 +n2) ,

T2(m,n) = (2mn,m2 −n2,m2 +n2) .

• Then
2T2(m,n) = (4mn,2(m2 −n2),2(m2 +n2)) = T1(m+n,m−n) .

• Thus every Pythagorean triple is of the form kT1(m,n)/2 with k ∈ 1,2 and m,n ∈ Z.

2In §2.1 above, triples were defined as being in ascending order. Frisch & Vaserstein clearly set this aside.

10 CHAPTER 2. PYTHAGOREAN N-TUPLES

• Let T (m,n,k) = k(m2−n2)
2 , kmn, k(m2+n2)

2 . Then every Pythagorean triple is of the form
T (m,n,k) with m,n,k ∈ Z.

• Let m = y+ zw, n = z− yw and k = 2x− xw, then T (m,n,k) gives a parametrization of
the set of Pythagorean triples by a triple of integer-valued polynomials.

The parametrization of positive Pythagorean triples is given by(
(x+(1−w)2x)((y+(w+1)z)2 − y2)

2
,(x+(1−w)2x)(y+(w+1)z)y,

(x+(1−w)2x)((y+(w+1)z)2 + y2)

2

)
(2.3)

where x,y,z range through the positive integers and w through the non-negative integers. A
Maple session illustrates this below.

> SV:=proc(w,x,y,z) local a,b,c;

> if x>0 and y>0 and z>0 and w>=0 then

> a:= (x + (1 - w)ˆ2 *x)*((y + (w + 1)*z)ˆ2 - yˆ2);

> b:= (x + (1 - w)ˆ2 *x)*(y + (w + 1)*z)*y;

> c:= (x + (1 - w)ˆ2*x)*((y + (w + 1)*z)ˆ2 + yˆ2);

> return ([a/2,b,c/2]);

> else

> error("Incorrect values");

> end if;

> end proc:

> SV(0,1,1,1)

[3, 4, 5]

> SV(1,1,1,1)

[4, 3, 5]

> SV(1,1,2,1)

[6, 8, 10]

> SV(0,1,1,2)

[8, 6, 10]

> SV(0,1,2,1)

[5, 12, 13]

> SV(1,1,1,2)

[12, 5, 13]

2.4 Pictures of triples
Since a triple (a,b,c) is also a Pythagorean vector [a,b], it can be treated as the coordinates of
a point. Before plotting such points, note that there are several ways to create the vectors. Each
method above generates an ordering of the vectors and in addition, the Maple sort command
can be used to change the order. A list can be ordered based on the size of the largest (last)

2.4. PICTURES OF TRIPLES 11

element, or the first. Also, the list can be restricted to primitive (relatively prime) triples or all
triples.

With this in mind, we take a list of triples a,b,c and plot (a,b) as a point. The plots look
different, depending upon the ordering. In figure 2.5, the points have been generated using
only the parametrization (2.1). Thus the vectors always start with an odd integer followed by
an even integer, and in addition, the elements of the vectors are sometimes in ascending order
and sometimes in descending order. The plot is displayed in figure 2.3.

Figure 2.3: Plot of all primitive Pythagorean vectors ⟨a,b⟩ calculated using (2.1).

Looking at the plot, our eyes pick out collections of points that appear to form curves. We
can see rising curves and falling curves. Is this a case of apophenia, which is a perception of a
pattern which is not really there? To explore this question, Figure 2.5 shows an enlarged plot
with curves fitted through some points, according to the Maple code shown in figure 2.4. In
figure 2.4, the expression p2 is used to plot the red and the blue line, and p3 is the outer green
curve. For the red line, a is expressed as 2p+ 1 be and b is expressed as 2p(p+ 1) with p
being an odd number. Note that the points on the red line have norms c that are consecutive
to b. The points on the blue line have the difference of 6 for a, so a is expressed as 6p+ 9
and b as 2p(p+3) with p an even number. Also, note that the norms of the points on the blue
line have a difference of 9 with b. The green line represents the points sloping down where the
difference is 2k (k = even numbers) e.g the outer curve is 2 ∗ 40 = 80, the next is 2 ∗ 38 = 76
and so on. Note that 4 is a significant number because the difference between the differences
is 4 for both the vertical curves and the sloping curves.

12 CHAPTER 2. PYTHAGOREAN N-TUPLES

Figure 2.4: maple command for the lines in Fig.2.5

Figure 2.5: Plot of a and b with 2.1

Another way to consider the lines is to refer back to the parametrization used in (2.1),
which was also called T 1(m,n) in §2.3.5. The blue line is now seen to correspond to the one-
parameter family T 1(p, p− 1). We can note that T 1(p+ 1, p) = (2p+ 1,2p(p+ 1)) which
accords with the plot command in figure 2.4. Since T (p+ 2, p) is not primitive, there is no
line corresponding to it. The blue line is then T 1(p+ 3, p) = (6p+ 9,2p(p+ 3)). Not that
there are gaps in the points defining the blue line; they are non-primitive points. The family
of curves illustrated by the green line corresponds to T 1(M,M − (2p+ 1)) if M is even, and
T 1(M,M−2p) if M is odd. It seems then that our eyes are picking out one-parameter families
from the plots.

Ordering the list of a,b in ascending order, then plotting with the lesser value as the x-axis
gives the visually pleasing figure in Fig.2.6. While it may look like there is a pattern to it, there
really isn’t one. The lower triangle is empty because the plot has been restricted to ascending
order. If the converse is plotted, that is the descending order, the triangle-like pattern of the
plot would reflect on the lower triangle and the upper would be left empty. Which can be seen
in fig. 2.7.

2.5. PYTHAGOREAN QUADRUPLE 13

Figure 2.6: Plot of a and b in ascending order

Figure 2.7: Plot of a and b in descending order

2.5 Pythagorean Quadruple
Definition A Pythagorean quadruple is a set of 4 numbers [a,b,c,d] such that

a2 +b2 + c2 = d2

A primitive Pythagorean Quadruple is one in which its gcd is 1 (i.e co prime).

14 CHAPTER 2. PYTHAGOREAN N-TUPLES

2.6 Generating Pythagorean Quadruples

2.6.1 Chain method
Pythagorean quadruples can be generated from Pythagorean triples through the chain method.
Taking the triple (5,12,13) another triple is generated starting with 13: (13,84,85). This
gives 52 + 122 = 132 and 132 + 842 = 852, from these, 52 + 122 + 842 = 852 so, the quadru-
ple (5,12,84,85) is generated. Note that each middle number of the Pythagorean triple is a
multiple of the preceding one.[2]

2.6.2 Diophantine method
The parametric generators for primitive Pythagorean quadruples[32][5],

a = m2 +n2 − p2 −q2,

b = 2(mq+np),
c = 2(nq−mp),

d = m2 +n2 + p2 +q2.

(2.4)

gives a odd, where m,n, p,q are non-negative integers and co-prime such that m+n+ p+q is
odd. All primitive Pythagorean quadruple can be found with the parametrization

(m2 +n2 − p2 −q2)2 +(2(mq+np))2 +(2(nq−mp))2 = (m2 +n2 + p2 +q2)2. (2.5)

And non-primitive solutions where (a,b,c)> 1 can be found from primitive ones by multipli-
cation.

Theorem 2.6.1 If the parameters n,m,q, p of Eq.2.4 are subjected to the conditions

(a)nq > mp, (b)n2 +m2 > q2 + p2

(c1)n >= 1,m >= 0, (c2)q >= 1, p >= 0 (c3)p+m >= 1,
(d)n+m+q+ p ≡ 1(mod2),

(e)(n2 +m2,q2 + p2,np+mq) = 1,
(f)p = 0 → n <= m, (g)m = 0 → q <= t,

then each primitive solution of a2 +b2 + c2 = d2 is obtained once and only once.

A detailed proof and application of this theorem can be found in [32].

2.6.3 Polynomial Parametrization
Just like in Polynomial parametrization section of generating Pythagorean triples, Frisch and
Vaserstein found a single polynomial Pythagorean quadruple which covers all Pythagorean
quadruples. Given

f (k,n,m, p,q) = k(2np+mq,2nq−mp,n2 +m2 − p2 −q2,n2 +m2 + p2 +q2).

2.7. HIGHER DIMENSIONS 15

The polynomial Pythagorean quadruple

g = f (k/2,n,m, p,n+m+ p+2z) ∈ Z[k,n,m, p,z] (2.6)

in 5 parameters covers all Pythagorean quadruples.

2.7 Higher Dimensions
The generation of Pythagorean n−tuples, and hence Pythagorean vectors has been explored in a
number of papers. Parametric expressions for quintuples and sextuples have been given in [16],
but the number of required parameters increases rapidly with size. The quintuple parametriza-
tion, for example, requires 14 parameters (presented in all its glory in the appendix). It is
unlikely that a septuple parametrization will be published. Other schemes categorize n-tuples
as elemental or compound. Thus the well-known triples 3,4,5 and 5,12,13 can be compounded
to form the quadruple 3,4,12,13, whereas the quadruple 1,2,2,3 is elemental. A compound
(4+3n)-tuple is

1,2,2,2 ·3,2 ·3,2 ·32,2 ·32, . . . ,2 ·3n,2 ·3n,3n+1

Another method of generating Pythagorean n-tuples stems from a method given by
Schwaller[31] for generating Pythagorean triples. Schwaller proposed that x1 be an odd inte-
ger greater than 1 written in the form 2i+ 1 where i is a positive integer, then (2i+ 1,2i2 +
2i,2i2+2i+1) is a triple which is a solution for every integer i. With the method described by
Schwaller, Landauer[23] generalized the method to generate solutions to the equation

x2
1 + x2

2 + x2
3 + ...+ x2

n−1 = x2
n

for any preselected values of x1 and n, with x1 being a positive integer and n >= 4.
It is known that [k,k+1,k(k+1),k(k+1)+1] is a solution to the quadruple x2

1+x2
2+x2

3 =
x2

4. For quadruple, using this solution with Schwaller’s solution, a solution to the Pythagorean
quintuple can be found. Let k, k + 1 and k(k + 1) represent x1, x2 and x3 of the equation
x2

1+x2
2+x2

3+x2
4 = x2

5. It can be seen that x2
1+x2

2+x2
3 is a perfect square, the problem therefore

becomes a Pythagorean triple.
For x2

1 + x2
2 + x2

3 = (2i+1)2, integer i needs to be found.

k2 +(k+1)2 +[k(k+1)]2 = (2i+1)

recall the solution to the quadruple

(k(k+1)+1)2 = (2i+1)2

k(k+1)+1 = 2i+1
k(k+1) = 2i

i =
k(k+1)

2

Let the solution to i be I. Since k is an integer, k+ 1 is also an integer either k or k+ 1
is even so I is therefore an integer. A solution to the Pythagorean quintuple can therefore be

16 CHAPTER 2. PYTHAGOREAN N-TUPLES

obtained [k,k+ 1,k(k+ 1),2I2 + 2I,2I2 + 2I + 1]. Landauer goes on to give a solution to the
Pythagorean sextuple and illustrates with some examples[23].

We have written a simple exhaustive search which can list systematically all n-tuples for a
specified n. The algorithm below generates Pythagorean n-tuples or vectors of dimension n.
This algorithm returns a list of lists. Maple code is included in Appendix B.

Algorithm 6 Pythagorean n-tuples
Input: d, dimension of Pythagorean vector; m, the maximum element size; opt, preferred
order.
Output: Pythagorean vector/n-tuple

1. Initialise outlist = [], v =Vector(d), and inc = 1.

2. Until inc = 0;

(a) Find the initial value, vinit = v[inc] + 1 and the remaining values v[inc..d] =
Vector(d − inc+ 1, f ill = vinit), re-initialise inc = d.

(b) Until m < v[inc], find the 2-Norm of v and if it is an integer and its igcd is 1 then
set a loop for the optional argument of ordering, opt, convert v and the norm as the
case may be into a list and store in outlist. Exit the loop.

(c) Set v[inc] = v[inc]+1.
(d) Reduce inc by 1.
(e) While 0 < inc and m < v[inc] reduce the increment value by 1.

3. Return outlist.

2.7.1 How common are Pythagorean vectors?
Primitive Pythagorean triples appear to be rare. After the famous 3,4,5 the next two are
5,12,13 and 8,15,17. This rarety may be one reason for the interest in them, apart from
the practical applications. Since we intend to use these vectors to build orthonormal matrices,
there is some interest in the statistics of their distribution. Will the repository be able to offer a
useful selection of matrices? There are a number of ways one can count the vectors. One way is
to count with respect to their length (equivalently the last entry in an n-tuple). In table 2.1, the
number of vectors with lengths less than or equal to 20 are given for different dimensions. As
dimension increases, the numbers increase to a maximum and then decrease as the minimum
length of a vector increases, since the length of a vector of dimension n is bounded below by√

n. The table could be extended to dimension 400 before reaching zero, but here it stops at 8,
after reaching a maximum.

Dimension 2 3 4 5 6 7 8
Number 3 14 53 173 421 1616 1590

Table 2.1: Numbers of primitive Pythagorean vectors with length less than 21 for various
dimensions.

Another way to count is to limit the size of the elements. This is more relevant to construct-

2.7. HIGHER DIMENSIONS 17

ing a repository, since anyone using it will likely want to select matrices with small elements,
rather than small length. The number of vectors will increase indefinitely, although viewed as
a percentage of the total number of possible vectors at any dimension shows a decrease, so in
a sense they become rarer.

Dimension 2 3 4 5 6 7 8
Number 3 12 60 228 851 2444 6608

Table 2.2: Numbers of primitive Pythagorean vectors with elements less than 16 for various
dimensions.

One final exploration of the properties is prompted by the exhaustive search. The procedure
increments the elements in steps of 1, and yet this is clearly too cautious. Given a vector
⟨1,2,2,4⟩, what is the smallest n for which ⟨1,2,2,n⟩ is also Pythagorean, with the obvious
generalization? Some results relevant to this question can be obtained from the parametric
expressions.

For dimension 2, we consider [2mn,m2 −n2]. Consider m = 3,n = 2 → [12,5]. Now take
m= 6,n= 1→ [12,35]. This is enough to see a pattern: starting from n= 1 and m= p1 p2 p3 . . .,
where the pk are prime, the factors can be passed from m to n to generate vectors with the same
first (even) element. Therefore, the smallest jump is 35−5 = 30. The next smallest is 78, from
the triples 20,21,29 and 20,99,101. A search shows that a similar possibility exists for vectors
starting with an odd number, such as [15,8], [15,112] or [63,16], [63,216]. Notice, however,
that the last vector is not primitive. We do not have a simple pattern for these examples.

For dimension 3, we can consider when vectors share the first 2 elements, such as [1,12,12],
[1,12,72] and [6,6,7], [6,6,17]. Since we have the parametrization (2.4), a similar analysis is
possible for this case. For vectors of dimension 3, amongst the first 350 vectors, there are
62 pairs of vectors sharing the same first 2 elements. The smallest difference between third
elements is 10, for [6,6,7] and [6,6,17]. For vectors of dimension 4, among the first 300
vectors, there are 54 pairs with the first 3 elements common. The smallest difference between
4th elements is 8, the smallest example being [1,4,26,26], [1,4,26,34].

Chapter 3

QR Matrices

3.1 Orthogonalization

Definition Two vectors are called orthogonal if they are perpendicular to each other or their
dot product is zero.

Definition A real matrix A is orthogonal when its columns and rows are orthonormal vectors

AT A = AAT = I

where AT is the transpose of A and I the identity matrix.

A few properties of an Orthogonal matrix includes invertible A−1 = AT , unitary A−1 = A∗,
with A∗ the Hermitian adjoint, normal A∗A = AA∗ over the real numbers. Another important
property to note is that the determinant of an orthogonal matrix is ±1, but the converse doesn’t
always hold, that is if the determinant of a matrix is ±1 doesn’t always mean the matrix is
orthogonal.

In the subject of Linear Algebra, an important topic is the QR decomposition, calculated
using either the Gram–Schmidt process or Householder transformations [1, 7]. It is standard to
regard a matrix A as a set of vectors, with each column being one vector.

A = [⃗u1 u⃗2 u⃗3] ,

in the usual partitioned notation. Given a set of vectors, the Gram–Schmidt process calcu-
lates an orthonormal basis having the same span. For example, Anton [1] gives the following
problem and solution. The vector set is

u⃗1 =

1
1
0

 , u⃗2 =

2
1
3

 , u⃗3 =

1
1
1

 .

18

3.1. ORTHOGONALIZATION 19

The solution is

q⃗1 =


1√
2

1√
2

0

 , q⃗2 =



√
2

2
√

19

−
√

2
2
√

19
3
√

2√
19


, q⃗3 =


− 3√

19
3√
19
1√
19

 .

The square roots arise because each vector is normalized with respect to the vector 2-norm. If
vector u⃗ = [u1,u2 . . .un] then

∥⃗u∥2 =
√

|u1|2 + |u2|2 . . . |un|2 .

The normalization is particularly important in Numerical Linear Algebra, because it min-
imizes numerical errors in subsequent calculations [7]. The Gram-Schmidt vectors form a
matrix which is orthonormal. Since an orthonormal matrix can be interpreted as a rotation of
the basis vectors of a subspace, the QR decomposition

A = QR ,

with R upper triangular, can be interpreted as a rotation into a basis which reduces A to a
triangular matrix.

For a teacher of Linear Algebra, the Gram–Schmidt process is a frustrating topic to teach
and examine. The subject generally contains large amounts of arithmetic, and students are
notoriously bad at arithmetic. Students struggle through Reduced Row Echelon Form (RREF)
computations using Gaussian Elimination, and then they are confronted with the Gram–Schmidt
process. Gram–Schmidt is even worse for them than Gaussian elimination, because of all the
square roots that disrupt the students’ work. Marking assignments and examination answers
becomes a painful chore, because arithmetic mistakes are so common, and students demand
part marks for “having the right idea”.

Students could be helped by giving them Gram–Schmidt examination questions in which
each normalization works out to be square-root free. One could even imagine helping students
reach the end of the calculation by advising them that all square-roots have been constructed
to simplify. It is the object here to show that this is possible. It should be noted that textbooks
on numerical linear algebra are probably not aware of this issue, or at least not concerned
about it, because all working is reduced to floating-point data and ideally is performed on
a computer. Nonetheless, many courses, even numerical ones, still have traditional exams
without computational aids. The problem is very much a problem tied into working by hand,
often in an exam room.

Investigations of how to create linear algebra problems avoiding algebraic numbers have
been published for the eigenvalue problem [18], but here we discuss the Gram–Schmidt pro-
cess.

The general format for QR decomposition involves reducing a matrix A into two matrices
Q and R, A = QR, with Q an orthonormal matrix containing only rational entries and R an

20 CHAPTER 3. QR MATRICES

upper triangular matrix also containing only rational entries. The significance of Pythagorean
vectors can be observed by taking a,b,c as a Pythagorean triple, then

Q =

[
a/c −b/c
b/c a/c

]
is orthonormal.

The goal becomes finding matrices A that have rational QR factors. To find A, an efficient
way would be to start with a rational Q matrix and multiply it by an arbitrary upper trian-
gular matrix R having rational elements. Before finding matrix Q, we consider the question
of whether the matrix A constructed from a matrix Q would give rational quantities at every
reduction step.

For practicality, A and Q matrices are written in terms of their columns, but the R matrix
with its elements.

A =
[
a1 a2 ... an

]
= QR =

[
q1 q2 ... qn

]


r11 r12 . . . r1n
r22 . . . r2n

. . .
...

rnn

 (3.1)

Then

ak =
k

∑
i=1

qirik (3.2)

where the scalar rik is placed after the vector qi to line up the indices.

3.2 Gram-Schmidt
Definition The classical Gram-Schmidt process in matrix notation starts from k = 1 to n

bk = ak −
k−1

∑
j=1

(ak ·q j)q j, (3.3)

qk =
bk

||bk||
, (3.4)

where, throughout this chapter, the norm is the 2-norm.

Definition The modified Gram-Schmidt process follows, if (b1,b2, ...,bn) is a set of vectors
forming a basis then an orthonormal basis (u1,u2, ...,un) can be constructed by [10]

ũ j = b j −
j−1

∑
k=1

(ũ j
T bk)

ũ j
T ũ j

ũ j (3.5)

u j =
ũ j

||ũ j||
. (3.6)

3.3. HOUSEHOLDER TRANSFORMATION 21

The following Maple algorithm implements the modified Gram-Schmidt process:

Algorithm 7 Modified Gram-Schmidt
Require: A :: Matrix

1: n =ColumnDimension(A)
2: r = Matrix(n,n,shape = trianguar[upper])
3: q = Matrix(n)
4: a =Copy(A)
5: for i to n do
6: r[i, i] = Norm(a[.., i],2)
7: q[.., i] = a[.., i]/r[i, i]
8: for k from i+1 to n do
9: r[i,k] = DotProduct(q[.., i],a[..,k])

10: a[..,k] =−r[i,k]∗q[.., i]+a[..,k]
11: Return q, r

3.3 Householder Transformation
A second method for constructing QR factors uses Householder1 transformations (also often
called reflections) [7]. Given a matrix A of size n× n, the method constructs a sequence of
orthonormal matrices Hi such that the product H = ∏

1
i=n−1 Hi reduces A to upper triangular

form. That is
HA = Hn−1Hn−2 . . .H1A = R .

This corresponds to the common QR factoring because

A = H−1R = QR .

The computation of the Hi is a simple generalization of the computation of H1. We label each
column of A using the usual partition notation.

A = [⃗u1 u⃗2 . . . u⃗n] .

Define
v = ∥u1∥e1 −u1 ,

where eT
1 = [1,0, . . . ,0], and the norm is a 2-norm. The Householder transformation of v is its

reflection with respect to a hyperplane v in Rn orthogonal to v, through the origin represented
by the outer product of v with itself vvT , then the n×n orthogonal matrix

Hv⊥ = I − 2vvT

vT v
(3.7)

is called the Householder matrix. Then H1 is this matrix using the first column.

H1 = I − 2vvT

vT v
.

1Alston Scott Householder 1904–1993

22 CHAPTER 3. QR MATRICES

Then H1 is orthonormal and H1A is a matrix in which the first column is ∥u1∥e1. We then
continue with the submatrix obtained from H1A by eliminating the first row and column.

We are interested here in the pedagogical aspects of this procedure. If students try to
apply this procedure working without computer assistance, most matrices will quickly lead to
a series of awkward square-root contaminated calculations. Even with a system such as Maple,
the simplest result is not straightforward. For example, consider the matrix

T =

1 4 3
4 1 2
3 2 1

 . (3.8)

Using the first column as the vector z above: z = [1,4,3] and then

v =

√
26−1
−4
−3

 . (3.9)

Before simplification, the Householder matrix H1 is

H1 =



1− 2(
√

26−1)2

25+(
√

26−1)2

8(
√

26−1)
25+(

√
26−1)2

6(
√

26−1)
25+(

√
26−1)2

8(
√

26−1)
25+(

√
26−1)2

1− 32
25+(

√
26−1)2

−24
25+(

√
26−1)2

6(
√

26−1)
25+(

√
26−1)2

−24
25+(

√
26−1)2

1− 18
25+(

√
26−1)2


Simplifying the (1,1) element gives

1− 2(
√

26−1)2

25+(
√

26−1)2
=

√
26−1

26−
√

26
=

√
26

26
. (3.10)

This task somewhat basic to some can end up being an error prone task to a student who without
the computer or calculator aid finds it difficult to simplify. It should be noted that it is not only
a student who might find it difficult to simplify: Maple simplify command does not succeed
in obtaining the best form. For the expression below, the evala command in needed. The
simplified H1 matrix is

H1 =



√
26

26
2
√

26
13

3
√

26
26

2
√

26
13

9
25

− 8
√

26
325

−12
25

− 6
√

26
325

3
√

26
26

−12
25

− 6
√

26
325

16
25

− 9
√

26
650


(3.11)

3.3. HOUSEHOLDER TRANSFORMATION 23

and thus

H1A =



√
26

7
√

26
13

7
√

26
13

0
36

√
26

65
− 3

5
128

√
26

325
+

6
25

0
27

√
26

65
+

4
5

96
√

26
325

− 8
25


. (3.12)

The second Householder reflection uses the submatrix
36

√
26

65
− 3

5
128

√
26

325
+

6
25

27
√

26
65

+
4
5

96
√

26
325

− 8
25

 .
From this the second Householder matrix is found as

H2 =


1 0 0

0
36

√
14

175
− 3

√
91

175
27

√
14

175
+

4
√

91
175

0
27

√
14

175
+

4
√

91
175

−36
√

14
175

+
3
√

91
175

 (3.13)

which is the simplified form that still contains large square-roots that would increase with
subsequent steps. We now obtain the R and Q matrices as

H2H1A = R =



√
26

7
√

26
13

7
√

26
13

0
5
√

91
13

22
√

91
91

0 0
2
√

14
7


(3.14)

and

(H2H1)
T = Q =



√
26

26
9
√

364
182

√
14

14
2
√

26
13

−3
√

364
182

√
14
7

3
√

26
26

√
364

182
−3

√
14

14


. (3.15)

The maple implementation of the householder process is indicated in Algorithm 8

24 CHAPTER 3. QR MATRICES

Algorithm 8 Householder
Require: A

1: m,n = Dimensions(A)
2: R := copy(A)
3: Q := IdentityMatrix(m,compact = f alse)
4: for k to n-1 do
5: z := R[k..n,k]
6: z[1] := z[1]+ sign(z[1])∗Norm(z,2)
7: z := z/Norm(z,2)
8: v := Transpose(z)
9: R[k..n,k] := R[k..n,k]− ((2∗ z).(v.(R[k..n,k])))

10: Q[k..n, ..] := Q[k..n, ..]− ((2∗ z).(v.(Q[k..n, ..])))
11: Return simplify(Transpose(Q)), simplify(R)

3.4 Gram-Schmidt Rational Orthonormal Bases

It is obvious that if a matrix A is created using (3.1), then applying the Gram-Schmidt process
has to lead a student back to the same product. What should be proved, however, is that all of
the intermediate steps also require only rational arithmetic.

For the Gram-Schmidt method, we have this theorem:

Theorem 3.4.1 If A obeys (3.1) and (3.2) and the qk and rik are rational then, for all k, all
quantities in (3.3) and (3.4) are rational.

Proof. By induction, the values obtained by the reduction are denoted as q̂i and r̂ik. For
k = 1, b1 = a1 = q1r11 and hence q̂1 = q1sgn(r11) and ˆr11 = |r11|.
For general k,

bk = ak −
k−1

∑
j=1

(ak.q̂ j)q̂ j = ak −
k−1

∑
j=1

(ak.q j)q j

=
k

∑
i=1

qirik −
k−1

∑
j=1

k

∑
i=1

(qirik).q jq j = qkrkk

hence q̂k = q = k sgn(rkk) and ˆrkk = |rkk| and all inner products are rational.

3.5 Householder Rational Orthonormal Bases

In the case of Householder transformations, the theorems are more intricate, and suggest some
interesting side results regarding Pythagorean vectors. As before, in order to prevent square
roots from occurring, a matrix is constructed using a known rational Q and rational R. We

3.5. HOUSEHOLDER RATIONAL ORTHONORMAL BASES 25

illustrate the process with an example, with R containing symbolic entries for generality.

Q =



2
9

1
13

46
117

8
9

4
9

−10
13

47
117

−2
9

5
9

− 2
13

− 92
117

2
9

2
3

8
13

10
39

−1
3


R =


9 18 d g

0 7 e h

0 0 157 i

0 0 0 j

 .

Taking the dot product, we have

QR = A =



2
59
13

2d
9

+
e

13
+

7222
117

2g
9
+

h
13

+
46i
117

+
8 j
9

4
34
13

4d
9

− 10e
13

+
7379
117

4g
9
− 10h

13
+

47i
117

− 2 j
9

5
116
13

5d
9

− 2e
13

− 14444
117

5g
9
− 2h

13
− 92i

117
+

2 j
9

6
212
13

2d
3

+
8e
13

+
1570
39

2g
3
+

8h
13

+
10i
39

− j
3


. (3.16)

From the matrix in (3.16), vector v is found as

v1 =


7
−4
−5
−6

 . (3.17)

Then Householder matrix H1 is

H1 =



2
9

4
9

5
9

2
3

4
9

47
63

−20
63

− 8
21

5
9

−20
63

38
63

−10
21

2
3

− 8
21

−10
21

3
7


. (3.18)

And the product

H1A =



9 18 d g

0 −66
13

−66e
91

+
8949
91

−66h
91

+
57i
91

+
2 j
7

0 − 9
13

−9e
91

− 7222
91

−9h
91

− 46i
91

+
6 j
7

0
62
13

62e
91

+
8478
91

62h
91

+
54i
91

+
3 j
7


. (3.19)

26 CHAPTER 3. QR MATRICES

Then applying the transformation to the 3x3 submatrix in (3.19)
−66

13
−66e

91
+

8949
91

−66h
91

+
57i
91

+
2 j
7

− 9
13

−9e
91

− 7222
91

−9h
91

− 46i
91

+
6 j
7

62
13

62e
91

+
8478

91
62h
91

+
54i
91

+
3 j
7


gives

v2 =



157
13
9

13

−62
13

 .

The second Householder reflection becomes

H2 =



1 0 0 0

0 −66
91

− 9
91

62
91

0 − 9
91

14206
14287

558
14287

0
62
91

558
14287

10443
14287


(3.20)

which gives

A2 = H2A1 =



9 18 d g

0 7 e h

0 0 −85 − 85i
157

+
132 j
157

0 0 132
132i
157

+
85 j
157


. (3.21)

At this stage we can make a number of interesting observations. The Householder matrix
in (3.20) is rational, meaning its columns are Pythagorean (up to normalization), and thus new
Pythagorean vectors were derived from the (not necessarily Pythagorean) columns of A. This
implies a parametric expression for Pythagorean vectors.

Theorem 3.5.1 Given an integer vector [p1, ..., pn] not necessarily Pythagorean, then

Vn = [2p2
1 −

n

∑
i=1

p2
i ,2p1 p2, ...,2p1 pn]

is a Pythagorean vector.

3.5. HOUSEHOLDER RATIONAL ORTHONORMAL BASES 27

Proof: It is straightforward to prove that

∥vn∥=
n

∑
k=0

p2
k .

By induction, for v1, it is well known that

∥v1∥= ∥⟨p2
0 − p2

1,2p0 p1⟩∥= p2
0 + p2

1 .

Assuming the theorem is true for i = 1..n−1. That is, assuming

∥vn−1∥2 = ∥⟨p2
0 −

n−1

∑
i=1

p2
i ,2p0 pi, ...,2p0 pn−1⟩∥

=

(
p2

0 −
n−1

∑
i=1

p2
i

)2

+
n−1

∑
i=1

4p2
0 p2

i ,

= p4
0 +2p2

0

n−1

∑
i=1

p2
i +

n−1

∑
i=1

p2
i ,

=

(
n−1

∑
k=0

p2
k

)2

.

Then

∥vn∥2 = ∥p2
0 −

n−1

∑
i=1

p2
i − p2

n,2p0 pi, ...,2p0 pn−1,2p0 pn∥,

=

(
p2

0 −
n−1

∑
i=1

p2
i − p2

n

)2

+
n−1

∑
i=1

4p2
0 p2

i +4p2
0 p2

n ,

=

(
p2

0 −
n−1

∑
i=1

p2
i

)2

−2

(
p2

0 −
n−1

∑
i=1

p2
i

)
p2

n + p4
n +

n−1

∑
i=1

4p2
0 p2

i +4p2
0 p2

n ,

=

(
p2

0 +
n−1

∑
i=1

p2
i

)2

+2p2
0 p2

n +2

(
n−1

∑
i=1

p2
i

)
p2

n + p4
n ,

=

(
p2

0 +
n−1

∑
i=1

p2
i + p2

n

)2

,

=

(
n

∑
k=0

p2
k

)2

.

Now, returning to our example, we now want to apply the transformation to the submatrix seen
in (3.21).  −85 − 85i

157
+

132 j
157

132
132i
157

+
85 j
157

 .

28 CHAPTER 3. QR MATRICES

In order for Householder H3 to be rational, the first column must again be Pythagorean. We
recall that the original matrix was generated using Pythagorean vectors of dimension 4, but
now a Pythagorean vector of dimension 2 is needed, which is true for the example, since
[85,132,157] is a Pythagorean triple. Lady luck was not involved in the calculation process, as
the next theorem shows.

Theorem 3.5.2 Let v1 = [x1, ...,xn] and v2 = [y1, ...,yn] be Pythagorean. Let v1 be orthogonal
to v2. Then the (n−1)-dimensional vector

w = (X − x1)[y2, ...,yn]+ y1[x2, ...,xn],

where X = ||v1|| and Y = ||v2|| is Pythagorean and ||w||= (||v1||− x1)||v2||.

Proof:

||w||2 =
n

∑
k=2

[(X − x1)yk + y1xk]
2

= (X − x1)
2

n

∑
k=2

y2
k +2(X − x1)y1

n

∑
k=2

xkyk + y2
1

n

∑
k=2

x2
k

= (X − x1)
2(Y 2 − y2

1)+2(X − x1)y1(−x1y1)+ y2
1(X

2 − x2
1)

= (X − x1)[XY 2 −Xy2
1 − x1Y 2 + x1y2

1 −2x1y2
1 + y2

1X + x1y2
1]

= (X − x1)[XY 2 −Xy2
1 − x1Y 2 + y2

1X]

= (X − x1)[XY 2 − x1Y 2].

We continue with

v3 =

[
242

−132

]
to find the third Householder reflection

H3 =



1 0 0 0

0 1 0 0

0 0 − 85
157

132
157

0 0
132
157

85
157


.

Completing our calculation, we finally return to

H3H2H1A = R =


9 18 d g

0 7 e h

0 0 157 i

0 0 0 j



3.5. HOUSEHOLDER RATIONAL ORTHONORMAL BASES 29

and

(H3H2H1)
T = Q =



2
9

1
13

46
117

8
9

4
9

−10
13

47
117

−2
9

5
9

− 2
13

− 92
117

2
9

2
3

8
13

10
39

−1
3


Thus we see that at each reduction step the entries are rational.

Chapter 4

Generating Rational Q Matrices

It has been shown above that if a linear algebra problem is created by choosing a rational
orthonormal Q matrix and a rational R matrix, then the matrix A can be given to a student as a
basis for an exercise in calculating the QR factors. The student who performs the calculation
correctly is guaranteed to need only rational arithmetic. Indeed, an instructor could choose to
warn students that if they encounter square roots which do not simplify exactly, then they can
assume they have made a mistake.

For an instructor to use this as a strategy while setting exercises or exams, there must be
available a source of rational orthonormal Q matrices from which the instructor can make a
selection. It is therefore desirable to create a data-base resource containing a collection of
matrices from which users can make a selection. This chapter discusses the creation of such a
database.

4.1 Cayley’s formula
Cayley [17] gave a formula for obtaining an orthonormal matrix. Liebeck & Osborne [25]
showed that every orthonormal matrix up to reflections in the basis can be obtained from Cay-
ley’s formula, given a suitable choice of an input matrix S. We give here a simple proof of the
formula and its inverse.

Theorem 4.1.1 Let S be a skew-symmetric matrix over Rn×n with no eigenvalue equal to 1.
The matrix

Q = (S− I)−1(S+ I) (4.1)

is orthonormal.

Proof: We note that if λ is an eigenvalue of A, then A− λ I is singular. Therefore, if S has
eigenvalue 1, then the term (S− I)−1 in Cayley’s formula does not exist.

We show that the formula implies QT Q = I.

QT Q = [(S− I)−1(S+ I)]T [(S− I)−1(S+ I)] = (S+ I)T [(S− I)T]−1(S− I)−1(S+1)

= (ST + IT)[(S− I)T]−1(S− I)−1(S+ I) = (−S+ I)(−S− I)−1(S− I)−1(S+ I)

= (S− I)[S2 − I2]−1(S+ I) = (S− I)[(S+ I)(S− I)−1(S+ I)

= (S− I)(S− I)−1(S+ I)−1(S+ I) = I

30

4.1. CAYLEY’S FORMULA 31

QED.
The inverse transform can also be checked.

Theorem 4.1.2 Let Q ∈ Rn×n be an orthonormal matrix. The matrix S given by

S = (Q− I)−1(Q+ I) (4.2)

is skew symmetric.

Proof:

ST =

[
(Q− I)−1(Q+ I)

]T

= (QT + I)(QT − I)−1 = (Q−1 + I)(Q−1 − I)−1

= Q−1(Q−1 − I)−1 + I(Q−1 − I)−1 =

[
(Q−1 − I)Q

]−1

+

[
Q−1(I −Q)

]−1

= (I −Q)−1 +(I −Q)−1Q = (I −Q)−1(I +Q)

=−(Q− I)−1(Q+ I) =−S

QED
The fact that the transforms are inverses can be proved as follows.

Theorem 4.1.3 The pair of equations

Q = (S− I)−1(S+ I) .

S1 = (Q− I)−1(Q+ I)

imply that S1 = S.

Proof

S1 = (Q− I)−1(Q+ I) =

[
(S− I)−1(S+ I)− I

]−1[
(S− I)−1(S+ I)+ I

]
,

=

[
(S− I)−1

(
S+ I − (S− I)

)]−1[
(S− I)−1

(
S+ I +(S− I)

)]
,

=

[
(S− I)−12I

]−1[
(S− I)−1

(
2S
)]

,

= 1
2(S− I)(S− I)−12S = S .

QED

32 CHAPTER 4. GENERATING RATIONAL Q MATRICES

4.1.1 Disadvantages of Cayley
Our aim is to compile, in some systematic order, a gallery of rational orthonormal matrices, for
on-line reference purposes. One way to generate the matrices is to use (4.1) repeatedly, with
the entries of the skew-symmetric S matrix serving as parameters which can be varied either
randomly or systematically. There are inconveniences, however. First, the matrices need to be
non-singular, and secondly if one wants to generate themed families, for example, see below
for some themed families, or families with some sort of order, there is not as yet a way to direct
the selection of the S matrix to yield matrices with a given characteristic. Thirdly, different S
matrices can give essentially the same matrix. For example, the two matrices

S1 =


0 −1 −1 −1
1 0 0 0
1 0 0 0
1 0 0 0

 , S2 =


0 −1 −1 1
1 0 0 0
1 0 0 0
−1 0 0 0

 , (4.3)

give the matrices Qk = (Sk − I)−1(Sk + I)

Q1 =


1/2 1/2 1/2 1/2
−1/2 −1/2 1/2 1/2
−1/2 1/2 −1/2 1/2
−1/2 1/2 1/2 −1/2

 , Q2 =


1/2 1/2 1/2 −1/2
−1/2 −1/2 1/2 −1/2
−1/2 1/2 −1/2 −1/2
1/2 −1/2 −1/2 −1/2

 .

We can partially address these difficulties by analyzing simple S matrices, and the matrices
they generate. As an example, we considered the following case, generalized from (4.3) above.

Theorem 4.1.4 Let e be an n−1 column vector with entries 1, and let S be a skew-symmetric
matrix defined by

S =

[
0 −eT

e 0

]
. (4.4)

Let Ik be the k-dimensional identity matrix, then Q = (S− In)
−1(S+ In) is given by

Q =

1− 2
n

2eT

n
−2e

n
2eeT

n
− In−1

 (4.5)

Proof:

(S− In)
−1 =

[
−1 −eT

e −In−1

]−1

=

−1
n

eT

n
−e
n

eeT

n
− In−1

 .

Then we have

(S− In)
−1(S+ In) =


−1
n

eT

n
−e
n

eeT

n
− In−1

[1 −eT

e In−1

]
= Q .

Coding this outcome in maple

4.2. A SIMPLE SEARCH APPROACH 33

proc(n) ;

e = Vector(n-1,fill=1);

<<1-2/n,-2*e/n>|<2*Transpose(e)/n,

2*e.Transpose(e)/n-IdentityMatrix(n-1)>>;

And the Cayley formula

proc(S);

eye = IdentityMatrix(RowDimension(S));

simplify(MatrixInverse(S-eye).(S+eye));

end proc;

proc(n);

v = Vector(n-1,fill=1);

<<0,v>|<-Transpose(v),ZeroMatrix(n-1,n-1)>>;

end proc;

4.1.2 Other previous methods

The papers [22, 9] worked by searching for entries in a matrix A that after reduction had rational
QR factors. This approach is not appropriate for tabulating, because the present method allows
a user to generate many more matrices A than can be tabulated. Also, the present investigations
have the advantage of a guarantee that the intermediate steps in QR factoring are rational.

4.2 A simple search approach
In addition to the above approaches, we have programmed a simple exhaustive search. The
aim is to compile lists of rational orthonormal matrices, one list for each matrix dimension
n×n, with n = 3,4 assumed to be the dimensions of greatest interest. Since the columns of the
matrices will be Pythagorean vectors, we limit our search to primitive vectors. Other vectors
can be obtained using suitable factors in the R matrix, so only primitive vectors need to be
tabulated.

After selecting the desired size, we generate a list of primitive vectors with the given di-
mension. The search then starts by choosing a Pythagorean vector from the list and assigning
it to the first column. We then work through all other vectors in the generated list and test each
one to see whether it can be made orthogonal to the first column. Since the vectors all contain
only positive elements, there is a search over possible negations of some elements in each col-
umn. The search is repeated making selections from the list for a third column. An interesting
fact is that the last column does not need to be searched for, because it is uniquely determined.
It is also always rational, given that the other columns are rational [22]. It can be noted that
the calculations are all done with integer vectors. Since the primary test is orthogonality, the
normalization can be left until after the search is successful. The combinatorial demands of the
search mean that it is impractical to extend it to larger than dimension 4. Further, the matrices

34 CHAPTER 4. GENERATING RATIONAL Q MATRICES

found are dense, because all columns are selected from lists of primitive vectors of a given di-
mension. There are many possibilities of non-dense, or sparse, matrices, which would require
mixing lists of vectors of different dimensions.

4.2.1 Interesting Patterns

By taking out the Least Common Multiple of the elements in a rational orthonormal matrix, we
obtain an integer matrix, that is Q = 1

α
Θ, with Θ ∈ Zn×n. Examining these integer matrices,

we can see interesting patterns emerge, which are not so obvious when the matrix elements are
rational. We now present several of these patterns.

Circulant-like matrices

A circulant matrix contains rows which are cyclic permutations of the first row. We see a similar
pattern in many of the matrices found here. The matrices are called circulant-like because the
rows vary in their signs. For example

1
3

1 2 2
2 1 −2
2 −2 1

 ,
1
7

2 6 3
3 2 −6
6 −3 2

 ,
1

19

 6 15 10
10 6 −15
15 −10 6

 (4.6)

In fact, we can do better than this. We notice that the three examples all correspond to the
pattern ab bc ca

ca ab −bc
bc −ca ab

 . (4.7)

If we take the inner product of the first and second columns, we get abca+ bcab− caab =
abc(a+b−c). Thus for orthogonality, we require a+b = c. This is reflected in the examples.
We also require that [ab,bc,ca] is Pythagorean. All examples we have seen fit the pattern, but
we have not proved that this always applies.

There are also 4×4 examples.

1
7


1 4 4 4
4 −1 −4 4
4 4 −1 −4
4 −4 4 −1

 ,
1

13


11 4 4 4
4 −11 −4 4
4 4 −11 −4
4 −4 4 −11

 ,
1
14


11 5 5 5
5 −11 −5 5
5 5 −11 −5
5 −5 5 −11

 . (4.8)

The pattern here is 
a b b b
b −a −b b
b b −a −b
b −b b −a

 (4.9)

which is a special case of permutations below.

4.2. A SIMPLE SEARCH APPROACH 35

Bordered circulant-like

The interior block is circulant-like, but not itself rational orthonormal.

1
4


0 2 2 2 2
2 −3 1 1 1
2 1 −3 1 1
2 1 1 −3 1
2 1 1 1 −3


Permutations

Examples can be found in which the columns are permuted, but not cyclically.

1
9


2 4 5 6
4 −2 −6 5
5 6 −2 −4
6 −5 4 −2

 ,
1
9


2 2 3 8
2 −2 −8 3
3 8 −2 −2
8 −3 2 −2

 ,
1
7


2 2 4 5
2 −2 −5 4
4 5 −2 −2
5 −4 2 −2


The pattern here is 

a b c d
b −a −d c
c d −a −b
d −c b −a


We also have special cases when b = c

1
10


1 5 5 7
5 −1 −7 5
5 7 −1 −5
7 −5 5 −1


and when b = c = d, which as we can see above is the form of the 4x4 circulant-like matrix.

Hadamard or Bohemian matrices

There are also matrices that are Hadamard or Bohemian [8].

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (4.10)

4.2.2 Fraction-free QR
In [12] and [35] a variation on standard QR factoring was defined. This is called exact-division
or fraction-free QR (FFQR), and is analogous to the better-known fraction-free LU popularized
by Bareiss. For a matrix A ∈ Zn×n, for some n ∈ Z, it takes the form

A = ΘD−1R , (4.11)

36 CHAPTER 4. GENERATING RATIONAL Q MATRICES

where Θ,D,R ∈ Zn×n and D is diagonal and R is upper triangular. Clearly, the Θ in (4.11) will
be related to the integer matrices discussed above.

Using the algorithm presented in [12], we obtain the following decomposition.

A =


3 27 43 35
3 −3 −5 29
9 41 55 27

15 −15 −19 7

= ΘD−1R , (4.12)

where

Θ =


3 8100 4050000 145800000
3 −1620 −810000 845640000
9 11340 −2430000 −87480000

15 −8100 810000 −145800000

 ,

D =


108 0 0 0
0 162000 0 0
0 0 29160000 0
0 0 0 26244000000

 ,

R =


108 72 108 180
0 500 700 300
0 0 36 72
0 0 0 900

 .

The tendency of fraction-free methods to introduce spurious factors is described in [28], where
it is shown that the last column of the Θ matrix is always divisible by detA =−162000. Using
this simplification, we obtain the decomposition

Θ =


3 8100 4050000 −900
3 −1620 −810000 −5220
9 11340 −2430000 540

15 −8100 810000 900

 ,

D =


108 0 0 0
0 162000 0 0
0 0 29160000 0
0 0 0 −162000

 ,

R =


108 72 108 180
0 500 700 300
0 0 36 72
0 0 0 900

 .

This goes a small way in the direction of reducing the spurious factors, but further GCD calcu-

4.2. A SIMPLE SEARCH APPROACH 37

lations lead to

Θ =


1 5 5 −5
1 −1 −1 −29
3 7 −3 3
5 −5 1 5

 ,

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,

R =


3 2 3 5
0 5 7 3
0 0 1 2
0 0 0 1

 .

It may be that this example unfairly makes the FFQR look worse than it deserves, but it seems
that unless GCD reductions are added to the algorithm, it is likely that it will continue to deliver
unsatisfactory results.

If we make a distinction between orthonormal matrices, being defined by QT Q = QQT = I,
and orthogonal matrices, being defined by QT Q = QQT = D, where D = dI is diagonal, then
Θ matrices are in general only left orthogonal, meaning ΘT Θ = D, where D is not in general
dI, and ΘΘT is not diagonal.

4.2.3 Pythagorean magic squares

Related to searches for orthogonality is a paper by Euler [13]. The paper is in Latin, and
the description here is based on an understanding of the equations. Euler in 1771 embarked
on a mission to construct a 4-by-4 square (not magic), but which becomes a magic square of
squares. He started off with the square in table 4.1 which uses 8 parameters a,b,c,d, p,q,r,s,

ap+bq+cr+ds aq-bp+cs-dr ar-bs-cp+dq as+br-cq-dp
aq-bp-cs+dr -ap-bq+cr+ds -as-br-cq-dp ar-bs+cp-dq
ar+bs-cp-dq as-br-cq+dp -ap+bq-cr+ds -aq-bp-cs-dr
as-br+cq-dp -ar-bs-cp-dq aq+bp-cs-dr -ap+bq+cr-ds

Table 4.1: Euler’s first square

where the sum of the squares in each column, either horizontal or vertical is

= (aa+bb+ cc+dd)(pp+qq+ rr+ ss). (4.13)

Then for the sums to be equal, he squared the expression and divided each of the number by
its root. Euler had an example table 4.2 on the left and its square on the right table 4.3, whose
column and row sums was 1530 but the diagonal sum was 2516 and 541.

38 CHAPTER 4. GENERATING RATIONAL Q MATRICES

37 4 1 12
-6 33 -18 9
11 8 -7 -36
-2 19 34 -3

Table 4.2: Example based on table 4.1.

1369 16 1 144 1530
36 1089 324 81 1530

121 69 49 1296 1530
4 361 1156 9 1530

1530 1530 1530 1530 sum

Table 4.3: Example obtained by squaring
each element in table 4.2

So, Euler posed another square table 4.4 whose vertical and horizontal sums is eq.4.13.

ap+bq+cr+ds ar-bs-cp+dq -as-br+cq+dp aq-bp+cs-dr
-aq+bp+cs-dr as+br+cq+dp ar-bs+cp-dq ap+bq-cr-ds
ar+bs-cp-dq -ap+bq-cr+ds aq+bp+cs+dr as-br-cq+dp

-as+br-cq+dp -aq-bp+cs+dr -ap+bq+cr-ds ar+bs+cp+dq

Table 4.4: Euler’s magic square of squares

For the diagonal sums to be equal, eq.4.14 and eq.4.15 was made

abpq+abrs+acpr+dcqs+ad ps+adqr+bcqr+bcps+bdqs+bdqr+ cdrs+ cd pq = 0
(4.14)

−abpq−abrs+acpr+acqs−ad ps−adqr−bcqr−bcps+bdqs+bd pr− cdrs− cd pq = 0
(4.15)

from which these two are derived

(ac+bd)(pr+qs) = 0 (4.16)

(ab+ cd)(pq+ rs)+(ad +bc)(ps+qr) = 0. (4.17)

For table 4.4 to be valid the following conditions must hold

pr+qs = 0 (4.18)

a/c = (−d(pq+ rs)−b(ps+qr))/(b(pq+ rs)+d(ps+qr)). (4.19)

Using Euler’s values, p = 6 q = 3 r = 1 s =−2 a = 9 b = 1 c = 16 d = 0, which satisfies the
conditions eq.(4.18) and eq.(4.19) to produce the square, table 4.5 whose squares of square has
horizontal, vertical and diagonal sum of 16900.

73 -85 65 11
-53 31 101 41
-89 -67 1 -67
-29 -65 -35 103

Table 4.5: Example 2

4.2. A SIMPLE SEARCH APPROACH 39

4.2.4 A Depository of Rational Orthonormal Q matrices
A repository containing 3X3 rational orthonormal matrices and 4X4 rational orthonormal ma-
trices which are either dense or sparse can be found on the ORCCA projects website page. And
can also be accessed with the link http://orcca.on.ca/projects.html.

Chapter 5

Conclusion and Further works

5.1 Conclusion
”Do not worry about your difficulties in mathematics, I can assure you mine are still greater.”
Albert Einstein

While the struggles of Einstein cannot be compared to the struggles of mathematics stu-
dents, especially linear algebra students for the purpose of this research, it is quite real and
telling. As mentioned in the research purpose, solving problems in mathematics requires pa-
tience and the ability to make mistakes and learn from them. While this ability is encouraged,
there is also an advantage in making some aspects a little easier for both the students and the
instructors, in this case square root free.

In the course of this research, it is evident that there are various methods of generating
Pythagorean n-tuples, although only a few are mentioned and described in the paper. A lot
more research work are being carried out on Pythagorean n-tuples and its various application
to various fields such as in the case of Pythagorean theorem in surveying, navigation and facial
recognition to mention a few.

The application of Pythagorean n-tuples to generate rational orthonormal matrices[22]
shows an interesting observation such as in the 3×3 case where the last column doesn’t need
to be found because it is unique and rational. As shown with the Gram-Schmidt method all
the quantities and entries at each reduction step are rational which makes a less complicated
teaching and learning encounter.

This thesis has some conjectures which were not resolved. They are listed here.

5.1.1 All 3×3 circulant-like matrices follow (4.7)

5.1.2 All 4×4 circulant-like matrices follow (4.9)

5.1.3 Repeated elements lead to degeneracy
One aim of this thesis is the generation of linear algebra exercises. Mostly one prefers exam-
ples that do not have lucky simplifications that cause steps to be skipped. If one constructs
QR problems from matrices in which the columns have repeated elements, then Householder
transformations will lead to trivial submatrices. For example, using a matrix from §4.2.1, we

40

5.1. CONCLUSION 41

have

A =
1
9


2 4 5 6
4 −2 −6 5
5 6 −2 −4
6 −5 4 −2




9 9 −9 3
0 9 9 3
0 0 9 −3
0 0 0 −3

=



2 6 7 −5
3

4 2 −12 1

5 11 −1
17
3

6 1 −7 −1
3


The intermediate matrices in a Householder decomposition are

9 9 −9 3

0
2
7

−20
7

−5
3

0
62
7

73
7

7
3

0 −11
7

47
7

−13
3


,



9 9 −9 3

0 9 9 3

0 0 −99
61

−147
61

0 0
546
61

−213
61


,


9 9 −9 3
0 9 9 −3
0 0 9 −3
0 0 0 −3



At each step a new Householder matrix must be computed. If now a matrix is used with
columns containing repeated elements

A =
1
5


1 2 2 4
2 −1 4 −2
2 4 −1 −2
4 −2 −2 1




5 5 −5 1
0 5 5 1
0 0 1 −1
0 0 0 −1

=



1 3
7
5

−3
5

2 1 −11
5

−1
5

2 6
9
5

9
5

4 2 −32
5

3
5


The intermediate matrices in a Householder decomposition are

5 5 −5 1
0 0 1 −1
0 5 5 1
0 0 0 −1

 ,


5 5 −5 1
0 5 5 1
0 0 1 −1
0 0 0 −1

 .

Thus the reduction requires a second step that is essentially just rearranging, and then the third
step is not needed. Its value as a didactic exercise is reduced. Pity the instructor who builds an
exercise using (4.10): the Householder reduction terminates after one step! The conjecture is
that the degeneracy is the result of the repeated elements in the columns of the matrix. Notice,
it is not a result of the circulant-like or permutation structures, as the first example shows.

The implied snag is that many of the 4×4 matrices that have been found in our systematic
search contain columns with repeated elements. This is already apparent when looking at lists
of Pythagorean quintuples (dimension 4 vectors). For vectors of higher dimensions, the possi-
bility of repeated elements 1 and 2 means that vectors containing strings of small integers can

42 CHAPTER 5. CONCLUSION AND FURTHER WORKS

be adjusted to become Pythagorean. This effect is restricted to matrices in which Pythagorean
vectors are required. The matrices used in numerical linear algebra are subject to less tempta-
tions to emphasize these structures. More work can be done to find more quintuples that can
be used to build 4x4 rational matrices without repeated elements.

Further research can also be made on the computation of Pythagorean n-tuples of higher
dimensions and their application to the method described above. Another research idea could
be in the realm of LU decomposition such as the application of the Bareiss method to rational
matrices generated with Pythagorean n-tuples.

Bibliography

[1] H. Anton. Elementary Linear Algebra. Wiley, 11 edition, 2013.

[2] Edward J. Barbeau. Power Play. Mathematical Association of America, 1997.

[3] Raymond A. Beauregard and E. R. Suryanarayan. Proof without words: Parametric rep-
resentation of primitive Pythagorean triples. Mathematics Magazine, 69(3):189, Jun.,
1996.

[4] Carl B. Boyer. A History of Mathematics. John Wiley and Sons Inc., Hoboken, New
Jersey, 3rd edition, 2011.

[5] R. D. Carmichael. Diophantine Analysis. John Wiley and Sons, New York, 1915.

[6] Byungchul Cha, Emily Nguyen, and Brandon Tauber. Quadratic forms and their Berggren
trees. Journal of Number Theory, 185:218—-256, 2018.

[7] R.M. Corless and N. Fillion. A graduate introduction to numerical methods. Springer,
2013.

[8] Robert M. Corless. What can we learn from bohemian matrices. Maple Transactions,
1(1), 2021.

[9] A. C. Camargos Couto and D. J. Jeffrey. Rational Householder transformations. In
SYNASC 2018, pages 61–64. IEEE, 2018.

[10] Richard Earl, James R. Nicholson, and Christopher Clapham. The concise Oxford dictio-
nary of mathematics. Oxford: Oxford University Press, sixth edition, 2021.

[11] Robson Eleanor. Words and Pictures: New Light on Plimpton 322. Mathematical Asso-
ciation of America Monthly, 109(2):105–120, 2002.

[12] Úlfar Erlingsson, Erich Kaltofen, and David Musser. Generic Gram–Schmidt orthogo-
nalization by exact division. In ISSAC 1996, pages 275–282. ACM Press, 1996.

[13] Leonhard Euler. Problema algebraicum ob affectiones prorsus singulares memorabile.
Novi Commentarii academiae scientiarum Petropolitanae, 15:75–106, 1771.

[14] L. Fibonacci and L. E. Sigler. The book of squares. Academic Press, Boston, 1987.

43

44 BIBLIOGRAPHY

[15] Sophie Frisch and L. N. Vaserstein. Parametrization of pythagorean triples by a single
triple of polynomials. J. Pure Appl. Algebra, 212(1):271–274, 2008.

[16] Sophie Frisch and Leonid N. Vaserstein. Polynomial parametrization of pythagorean
quadruples, quintuples and sextuples. Journal of Pure and Applied Algebra, 216(1):184–
191, 2012.

[17] F. R. Gantmacher. The Theory of Matrices, volume I. Chelsea, 1960.

[18] R.C. Gilbert. Companion matrices with integer entries and integer eigenvalues and eigen-
vectors. American Math. Monthly, 95(10):947–950, 1988.

[19] N. G. Heo. Proof without words: Pythagorean theorem. The College Mathematics Jour-
nal, 46, 2015.

[20] Anthony E. Hoffman. The Gram-Schmidt process is not so bad! Mathematics Magazine,
43(5):261–263, Nov., 1970.

[21] Linda Kaufman. The genaralized Householder transformation and sparse matrices. Lin-
ear Algebra and Its Applications, 90:221–234, 1987.

[22] Nasir Khattak and David J. Jeffrey. Rational orthonormal matrices. SYNASC, 2017.

[23] Edward G. Landauer. A method of generating Pythagorean n-tuples. Int. J. Math. Edu.
Sci. Technol., 10[2]:293–294, 1979.

[24] Price H. Lee. The Pythagorean tree: A new species. https://arxiv.org/abs/0809.4324,
2008.

[25] Hans Liebeck and Anthony Osborne. The generation of all rational orthogonal matrices.
The American Mathematical Monthly, Vol.98, No.2,:pp.131–133, (Feb.,1991).

[26] James W. Longley and Roger D. Longley. Accuracy of gram-schmidt orthogonalization
and householder transformation for the solution of linear least squares problems. Numer-
ical Linear Algebra with Applications, 4(4):295–303, 1997.

[27] D.Steven Mackey, Niloufer Mackey, and Francoise Tisseur. G-reflectors: analogues of
Householder transformations in scalar product spaces. Linear Algebra and Its Applica-
tions, 385:187–213, 2004.

[28] Johannes Middeke, David J. Jeffrey, and Christoph Koutschan. Common factors in
fraction-free matrix decompositions. Mathematics in Computer Science, 15:589–608,
2020.

[29] Roger Nelson. Proof without words: Pythagorean quadruples. The College Mathematics
Journal, 45(3), May,2014.

[30] J.H. Noble, M. Lubasch, and U.D. Jentschura. Genaralized householder transformations
for the complex symmetric eigenvalue problem. The European Physical Journal Plus,
128:93, 2013.

BIBLIOGRAPHY 45

[31] R. L. Schwaller. A method of generating Pythagorean triples. Int. J. Math. Edu. Sci.
Technol., 10[1]:75–77, 1979.

[32] Robert Spira. The Diophantine equation x2 + y2 + z2 = m2. The American Mathematical
Monthly, 69:360—-365, 1962.

[33] John H. Staib. An alternative to the Gram-Schmidt process. Mathematics Magazine,
42(4):203–205, Sep., 1969.

[34] Llyod N. Trefethen and David Bau III. Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, 1997.

[35] Wenqin Zhou and David J. Jeffrey. Fraction-free matrix factors: new forms for LU and
QR factors. Frontiers of Computer Science in China, 2(1):67–80, 2008.

Appendix A

Matrices

• Bergrren Matrices:

M1 =

−1 2 2
−2 1 2
−2 2 3

 , M2 =

1 2 2
2 1 2
2 2 3

 , M3 =

1 −2 2
2 −1 2
2 −2 3


• Price Matrices:

P1 =

 2 1 −1
−2 2 2
−2 1 3

 , P2 =

2 1 1
2 −2 2
2 −1 3

 , P3 =

2 −1 1
2 2 2
2 1 3



46

Appendix B

Maple codes

• Euclid’s formula

euclid:=proc(max) local outlist, m, n;

outlist:=[];

for m from 2 to max do

for n from 1 + modp(m,2) by 2 to m do

if igcd(m,n) =1 then

outlist:= [op(outlist),[mˆ2 - nˆ2, 2nm, mˆ2+nˆ2]];

end if;

end do;

end do;

end proc:

• Fibonacci’s method

fibtrip:= proc(k) local n, a, i, b, c;

if type(sqrt(k),odd) = true then

n := k/2+1/2;

a := sqrt(k);

b := sqrt(add(seq(i, i = 1 .. k-1, 2)));

c := sqrt(add(seq(i = 1.. k,2)));

if aˆ2 +bˆ2 =cˆ2 then

return c,a,b;

end if;

else

print("not an odd square integer:);

end if;

end proc:

• Bergrren matrices

47

48 CHAPTER B. MAPLE CODES

bmatrices := proc(x, y, z) local a, b, c, A, PT1, PT2, PT3;

a := <<-1, -2, -2> | <2, 1, 2> | <2, 2, 3>>;

b := <<1, 2, 2> | <2, 1, 2> | <2, 2, 3>>;

c := <<1, 2, 2> | <-2, -1, -2> | <2, 2, 3>>;

A := <x, y, z>;

PT1 := a . A;

PT2 := b . A;

PT3 := c . A;

return PT1, PT2, PT3;

end proc:

• Price matrices

pmatrices := proc(x, y, z) local a, b, c, A, PT1, PT2, PT3;

a := <<2, -2, -2> | <1, 2, 1> | <-1, 2, 3>>;

b := <<2, 2, 2> | <1, -2, -1> | <1 2, 3>>;

c := <<2, 2, 2> | <-1, 2, 1> | <1, 2, 3>>;

A := <x, y, z>;

PT1 := a . A;

PT2 := b . A;

PT3 := c . A;

return PT1, PT2, PT3;

end proc:

• Polynomial Parametrization of Pythagorean triples

soph := proc(w,x,y,z) local a,b,c;

if x>0 and y>0 and z>0 and w>=0 then

a := (x+(1-w)ˆ(2)*x)*((y+(1+w)*z)ˆ(2)- yˆ2)/2;

b := (x+(1-w)ˆ(2)*x)*(y+(1+w)*z)*y;

c := (x+(1-w)ˆ(2)*x)*((y+(1+w)*z)ˆ(2)+ yˆ2)/2;

if aˆ(2) + bˆ(2) = cˆ(2) then

return a,b,c;

end if;

end if;

end proc:

• Polynomial Parametrization of Pythagorean Quintuples
This is the theorem presented in [16]. The authors state that there are 14 variables, but
they also multiply the output by y0 which is not included in the parameter list. In order
for this code to run in Maple, y0 must be added to the parameter list. Also, the output is
f1,f2,f3,f5,f6 and f4 is not mentioned in the paper.

49

sophie5:=proc(w0,w12,w13,w14,w23,w24,w34,t1,t2,t3,d1,d2,d3,w4)

local f1,f2,f3,f5,f6,y0,y1,y2,y3,y4,y5,y6,y7,y8,z0,z1,z2,z3,z4,z12,

z13,z14,z23,z24,z34;

z0 := w0 + t1*w0 + t2*w0 - 2*t1*t2*w0 + t3*w0 - 2*t1*t3*w0

- t2*t3*w0 + 2*t1*t2*t3*w0 + t1*w12 - t1*t2*w12 - t1*t3*w12

+ t2*t3*w12 + t2*w13 - t1*t2*w13 + t3*w14 - t1*t3*w14

+ t1*w23 + t2*w23 - 2*t1*t2*w23 - t1*t3*w23 - t2*t3*w23

+ 2*t1*t2*t3*w23 + t1*w24 - t1*t2*w24 + t3*w24 - 2*t1*t3*w24

- t2*t3*w24 + 2*t1*t2*t3*w24 + t2*w34 - t1*t2*w34 + t3*w34

-t1*t3*w34 - 2*t2*t3*w34 + 2*t1*t2*t3*w34;

z1 :=2*d1 + t1*t2 + t3 - 2*t1*t2*t3 + w4;

z2 :=2*d2 + t1 - t1*t2 + t3 - t1*t3 - t2*t3 + 2*t1*t2*t3 + w4;

z3 :=2*d3 + t2 + t3 - t1*t3 - 2*t2*t3 + 2*t1*t2*t3 + w4;

z4 :=w4;

z12 :=w12 + t1*t2*w12 - t1*t2*t3*w12 + t1*t2*w14 - t1*t2*t3*w14

+ t1*t2*w23 - t1*t2*t3*w23 + t1*t2*w34 - t1*t2*t3*w34;

z13 :=w13 + t1*t3*w13 - t1*t2*t3*w13 + t1*t3*w14 - t1*t2*t3*w14

+ t1*t3*w23 - t1*t2*t3*w23 + t1*t3*w24 - t1*t2*t3*w24;

z14 :=w14;

z23 :=w23;

z24 :=t1*t2*t3*w12 + t1*t2*t3*w13 + w24 + t1*t2*t3*w24

+ t1*t2*t3*w34;

z34 :=w34;

y1 :=z0*z1;

y2 :=z0*z2;

y3 :=z0*z3;

y4 :=z0*z4;

y5 :=-z14*z1 - z24*z2 - z34*z3;

y6 :=z13*z1 + z23*z2 - z34*z4;

y7 :=-z12*z1 + z23*z3 + z24*z4;

y8 :=-z12*z2 - z13*z3 - z14*z4;

f1 :=2*y0*(y1*y5 + y2*y6 + y3*y7 + y4*y8);

f2 :=2*y0*(-y1*y6 + y2*y5 + y3*y8 - y4*y7);

f3 :=2*y0*(-y1*y7 - y2*y8 + y3*y5 + y4*y6);

f5 :=y0*(y1ˆ2 + y2ˆ2 + y3ˆ2 + y4ˆ2 - y5ˆ2 - y6ˆ2 - y7ˆ2 - y8ˆ2)/2;

f6 :=y0*(y1ˆ2 + y2ˆ2 + y3ˆ2 + y4ˆ2 + y5ˆ2 + y6ˆ2 + y7ˆ2 + y8ˆ2)/2;

if f1ˆ2+f2ˆ2+f3ˆ2=f5*f6 then

return f1,f2,f3,f5,f6;

end if;

end proc:

50 CHAPTER B. MAPLE CODES

• Pythagoran n-tuples or vectors

Calculates Pythagorean vectors of dimension d up to a maximum of m. The vectors are
returned as a list of lists, with each list being a vector in one of three forms, selected
by an optional argument. Option 1: < Norm,vector >; option 2: < vector >; option
3: < vector,Norm >. Option 3 corresponds to the usual presentation of a Pythagorean
n-tuple. Option 1 is convenient for sorting the vectors by their lengths.

PythagVecs:=proc(d::posint,m::posint,opt::posint := 1)

local v,inc,outlist,t,vinit;

outlist := [];

v := Vector(d);

inc := 1;

do

vinit := v[inc]+1;

v[inc..d] := Vector(d - inc+1,fill=vinit);

inc := d;

do

t := LinearAlgebra:-Norm(v,2);

if type(t,integer) then

if igcd(entries(v,’nolist’))=1 then

if opt=1 then

outlist := [op(outlist),convert(<Norm(v,2),v>,list)];

elif opt=2 then

outlist := [op(outlist),convert(v,list)];

else

outlist := [op(outlist),convert(<v,Norm(v,2)>,list)];

end if;

end if;

end if;

v[inc] := v[inc]+1;

until m<v[inc];

inc := inc - 1;

while 0<inc and m<=v[inc] do

inc := inc - 1;

end do;

until inc=0;

return outlist;

end proc

• QR matrices

erichqr := proc(B) local d, sig, mut, i, j, l, m, n, a, Bt;

m, n := LinearAlgebra:-Dimension(B);

d := Array(0 .. n);

51

mut := Array(1 .. n, 1 .. n);

Bt := Matrix(m, n);

d[0] := 1;

for i to n do

for j to i - 1 do

sig := 0;

for l to j - 1 do

sig := (d[l]*sig + mut[i, l]*mut[j, l])/d[l - 1];

end do;

mut[i, j] := d[j-1]*((B[()..(),i]).(B[()..(),j]))- sig;

end do;

sig := 0;

for l to i - 1 do

sig := (d[l]*sig + mut[i, l]ˆ2)/d[l - 1];

end do;

d[i] := d[i - 1]*((B[()..(), i]).(B[()..(), i])) - sig;

mut[i, i] := d[i];

a := d[1]*B[() .. (), i] - mut[i, 1]*B[() .. (), 1];

for l to i - 2 do

a := (d[l + 1]*a - mut[i,l + 1]*Bt[()..(),l + 1])/d[l];

end do;

Bt[() .. (), i] := a;

end do;

Bt[() .. (), 1] := B[() .. (), 1];

return Bt;

end proc:

Curriculum Vitae

Name: Aishat Olagunju

Post-Secondary Bowen University
Education and Iwo, Osun State, Nigeria
Degrees: 2014 - 2018 B.Sc.

The University of Western Ontario
London, ON, Canada
2020 - 2022 M.Sc.

Related Work Teaching Assistant
Experience: The University of Western Ontario

2021 - 2022

52

	Pythagorean Vectors and Rational Orthonormal Matrices
	Recommended Citation

	tmp.1675805632.pdf.E1SCs

