
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

1-13-2023 2:00 PM

A Computational Framework for Aerodynamic and Aeroelastic A Computational Framework for Aerodynamic and Aeroelastic

Modeling of Wind Loads on Tall Buildings Modeling of Wind Loads on Tall Buildings

Abiy Fantaye Melaku, The University of Western Ontario

Supervisor: Bitsuamlak, Girma T., The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Civil and Environmental Engineering

© Abiy Fantaye Melaku 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Civil Engineering Commons, Computational Engineering Commons, and the Structural

Engineering Commons

Recommended Citation Recommended Citation
Melaku, Abiy Fantaye, "A Computational Framework for Aerodynamic and Aeroelastic Modeling of Wind
Loads on Tall Buildings" (2023). Electronic Thesis and Dissertation Repository. 9277.
https://ir.lib.uwo.ca/etd/9277

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/252?utm_source=ir.lib.uwo.ca%2Fetd%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/311?utm_source=ir.lib.uwo.ca%2Fetd%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/256?utm_source=ir.lib.uwo.ca%2Fetd%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/256?utm_source=ir.lib.uwo.ca%2Fetd%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9277?utm_source=ir.lib.uwo.ca%2Fetd%2F9277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Driven by the burgeoning growth of computing power over the last few decades, the capa-

bility of computational fluid dynamics (CFD) to simulate turbulent flows of practical interest
has progressed rapidly. In the past, a notable research effort has been dedicated to applying
CFD for modeling wind loads on structures, particularly for tall buildings. However, the cur-
rent state of CFD for wind load evaluation of tall buildings using Large-Eddy Simulation (LES)
has several critical challenges, including the treatment of atmospheric boundary layer (ABL)
flow conditions, turbulence modeling of separated flows around buildings, and simulation of
wind-structure interaction for dynamically sensitive buildings. For CFD to be a practically use-
ful wind engineering tool, these challenges must be addressed adequately, meeting the rigors
of the current wind engineering practice. This thesis presents the development of a CFD-based
framework for accurate aerodynamic and aeroelastic modeling of tall buildings with the objec-
tive of overcoming these key limitations. The capabilities of the framework are demonstrated
using a series of case studies.

The CFD-based framework is developed in three major phases. In the first phase, computa-
tionally efficient methods were developed for modeling the characteristics of the approaching
ABL turbulence. A novel synthetic inflow turbulence generation method is proposed that sat-
isfies two-point flow statistics coupled with an implicit ground roughness modeling technique
to represent the local terrain effect. In the next phase of the framework, aerodynamic wind
loads on tall buildings having different surrounding configurations are simulated and validated
against wind tunnel results. Initially, the cladding and overall loads, as well as responses of
an isolated standard tall building, are investigated. Then, the framework is applied to a more
realistic case involving a complex-shaped tall building located in a city center. In the final
phase of research, the capability of the framework is extended by implementing a high-fidelity
fluid-structure interaction (FSI) procedure to model the aeroelastic response of tall buildings.
The implemented FSI algorithm uses a partitioned approach that couples a transient fluid solver
with a multi-degree-of-freedom model of the building. Then the FSI procedure is applied to
simulate the aeroelastic response of a tall flexible building. Overall, comparing the results from
each phase of the study with wind tunnel measurements showed an encouraging level of agree-
ment. It is expected that the framework presented in this thesis is of practical importance to the
wind-resistant design of tall buildings.

Keywords: Atmospheric boundary layer (ABL), wind loads, computational fluid dynam-
ics (CFD), inflow turbulence generation, large-eddy simulation (LES), spectral representa-
tion method, tall building, wind-induced response, fluid-structure interaction (FSI), aeroelastic
modeling, structural dynamics, computational efficiency, validation, open-source code, soft-
ware implementation

i

Summary for Lay Audience

Over the last few decades, the power of computers has shown rapid growth, making it possible
to simulate complex wind flows virtually using numerical models. This development attracted
interest in wind-induced loads on structures, particularly tall buildings, that are more suscepti-
ble to wind effects. However, computational modeling of wind load on tall buildings accurately
has several critical challenges. To mention some, replicating the natural wind around the build-
ing site, capturing its complex behavior around buildings, and simulating its interaction with
the motion of the building. To make computational methods practical design tools, these chal-
lenges must be resolved by adhering to the rigor of established experimental testing practices.
This thesis presents the development of a high-fidelity computational framework for accurately
modeling wind loads on tall buildings. The capabilities of the framework are demonstrated us-
ing a series of case studies.

The computational framework is developed in three major phases. In the first phase, a
new technique was developed to mimic the natural wind approaching a building with minimal
computational cost. In the next step of the framework, wind effects on tall buildings situated
in different surrounding configurations are simulated and compared with experimental mea-
surements. At this stage of development, the structure is modeled by neglecting its swaying
motion. The primary wind effects simulated on the building are the pressure exerted on its
façades and the cumulative force on the entire building structure. The final research phase
expands the framework to model the two-way interaction between the building and the wind.
The wind blows on the structure causing it to sway, and the tower disturbs the air around it
while swinging. Such kind of simulation was achieved by integrating two computational en-
tities: the wind flow model and the structural model of the building. Then, this technique is
applied to simulate the swaying motion of a tall building under strong wind conditions. Finally,
comparing the results from each phase of the study with experimental measurements showed
an encouraging level of agreement. The framework presented in this thesis is expected to have
practical relevance for designing tall buildings that can withstand wind effects.

ii

Acknowledgments

I want to express my appreciation and sincere gratitude to my supervisor Prof. Girma Bitsuam-
lak for his continued support and guidance. A good supervisor shows the path, helps students
when they face challenges and gives encouragement and critiques while pushing them towards
their ultimate potential. Prof. Girma Bitsuamlak balanced all these roles in the most friendly
way. I would also like to thank Prof. Gregory Kopp, Prof. Catherine Gorle, Dr. John Kil-
patrick, and Dr. Jubayer Chowdhury for their constructive comment on this dissertation.

My appreciations go to my colleagues and all members of Prof. Girma Bitsuamlak’s research
group. I am especially indebted to Tsinuel Geleta, Anant Gairola and Kimberley Adamek
for their unreserved support and proofreading of this thesis. The discussions with Dr. Tibebu
Birhane were also valuable in this study. I would also like to acknowledge Christopher Howlett,
Thomas Boekels, and Dr. Eric Lalonde for their assistance related to some of the experimen-
tal data used in this study. My appreciation also goes to Dr. Chieh-Hsun Wu for helping me
conduct wind field measurements for validation. In addition, I would like to thank members
of the Boundary Layer Wind Tunnel Laboratory at Western University, who assisted me in the
wind tunnel tests. The inspiring conversations with Dr. Tadilo Bogale, Dr. Anwar Awol, and
Dr. Meseret Kahsay are also unforgettable.

I would also like to thank the SharcNet and Digital Research Alliance of Canada for providing
a high-performance computing resource used in this study with excellent technical support. I
am very grateful for the financial support from the Government of Ontario-Trillium Scholar-
ship.

Most importantly, I give my special heartfelt thanks to my parents, Fantaye Melaku and Almaz
Nigatu, my sister Etagegnew Fantaye and the rest of my family members for their continued
support and encouragement during this study.

iii

Co-Authorship Statement

This thesis has been prepared in accordance with the regulations for an Integrated Article the-
sis format stipulated by the School of Graduate and Postdoctoral Studies at the University of
Western Ontario and has been co-authored as:

From Chapter 2, “A divergence-free inflow turbulence generator using spectral representation
method for large-eddy simulation of ABL flows” is published in Journal of Wind Engineering

and Industrial Aerodynamics under the co-authorship of Abiy F. Melaku and Girma T. Bit-
suamlak.

From Chapter 3, “Computationally efficient simulation of multivariate wind velocity field
using a low-rank representation of the cross-power spectral density matrix” is submitted to
Journal of Engineering Mechanics under the co-authorship of Abiy F. Melaku and Girma T.
Bitsuamlak.

From Chapter 4, “LES for predicting wind loads and responses: prospect for wind-resistant
tall building design” is submitted to Journal of Wind Engineering and Industrial Aerodynamics

under the co-authorship of Abiy F. Melaku and Girma T. Bitsuamlak.

From Chapter 5, “Wall-modeled large-eddy simulation for evaluating wind loads on a tall
building located in a city center: comparison with experimental data” is prepared for submis-
sion to Engineering Structures under the co-authorship of Abiy F. Melaku, Jeroen Janssen and
Girma T. Bitsuamlak.

From Chapter 6, “windFSI: An open-source fluid-structure interaction framework for aeroe-
lastic modeling of flexible structures” is prepared for submission to Advances in Engineering

Software under the co-authorship of Abiy F. Melaku and Girma T. Bitsuamlak.

For the work presented in Chapter 5, the experimental Boundary Layer Wind Tunnel Labo-
ratory data is provided by Thornton Tomasetti.

iv

Contents

Abstract i

Summary for Lay Audience ii

Acknowledgments iii

Co-Authorship Statement iv

List of Figures x

List of Tables xvii

List of Appendices xviii

List of Abbreviations xix

1 Introduction 1
1.1 Background and motivation . 1

1.2 Research objectives . 3

1.3 Outline of the thesis . 5

1.3.1 Modeling of the approaching ABL turbulence 5

1.3.2 LES-based wind load and response evaluation on tall buildings 6

1.3.3 Fluid-structure interaction for aeroelastic modeling 7

2 Inflow turbulence generation using spectral representation method 8
2.1 Introduction . 8

2.2 Numerical procedure . 11

2.2.1 Proposed inflow generation method 11

2.2.1.1 Time series generation using Fast Fourier Transform (FFT) . 15

2.2.2 Divergence-free modification . 17

2.2.3 Treatment of ground roughness boundary condition 17

v

2.3 Experimental measurements . 18
2.4 Validation of the generated velocity field . 21

2.4.1 Evaluation of one-point statistics . 21
2.4.2 Evaluation of two-point statistics . 23

2.5 Application of DFSR for LES of neutrally stratified ABL flow 26
2.5.1 Computational domain and grid generation 26
2.5.2 Boundary conditions . 27
2.5.3 Numerical method . 28
2.5.4 Results and comparative discussion 29

2.5.4.1 Comparison of ABL wind profiles 30
2.5.4.2 Comparison of the velocity spectra 31
2.5.4.3 Wind pressure flactuations 33

2.6 Conclusions . 35

3 Computationally efficient generation of inflow turbulence 36
3.1 Introduction . 36
3.2 Wind field simulation using POD-based SRM 38
3.3 Proposed method . 44

3.3.1 The Nyström method for simulating random process over a linear domain 44
3.3.2 Approximate Eigen decomposition of the CPSD matrix using Nyström

Method . 45
3.3.3 Error estimate of the Nyström method 47
3.3.4 Column sampling schemes . 50

3.4 Numerical examples . 51
3.4.1 Wind characteristics . 52
3.4.2 Example 1: Homogeneous wind field simulation over a line 53

3.4.2.1 Comparison of the generated velocity field 56
3.4.3 Example 2: Inflow generation for large-eddy simulation of ABL flow . 61

3.5 Summary and conclusion . 65

4 LES for predicting wind loads and responses of a standard tall building 66
4.1 Introduction . 66
4.2 Boundary layer wind tunnel experiment for LES validation 70

4.2.1 Target atmospheric boundary layer flow 70
4.2.2 High-frequency pressure integration model 71

4.3 LES modeling . 72
4.3.1 Governing equations . 73

vi

4.3.2 Dimensions of the computational domain 75

4.3.3 Mesh generation . 76

4.3.4 Boundary Conditions . 78

4.3.4.1 Inflow turbulence generation 79

4.3.4.2 Ground surface roughness modeling 80

4.3.4.3 Building surface . 81

4.3.5 Numerical setup . 82

4.4 Structural model . 82

4.4.1 Equations of motion . 83

4.4.2 Structural properties of the CAARC building 84

4.4.3 Wind load transfer scheme . 85

4.5 Results and discussion . 87

4.5.1 Incident flow characteristics . 87

4.5.2 Flow structure around the building . 90

4.5.3 Pressure coefficients . 91

4.5.3.1 Comparison of mean, RMS and Peak 93

4.5.3.2 Comparison of Skewness and Kurtosis 101

4.5.3.3 Grid sensitivity study . 101

4.5.3.4 Sensitivity to SGS modeling 104

4.5.4 Global wind loads . 105

4.5.4.1 Base force and moment coefficients 106

4.5.5 Structural responses . 109

4.5.5.1 Displacement response . 109

4.5.5.2 Acceleration response . 112

4.6 Conclusion and summary . 115

5 LES for predicting wind loads on a tall building located in a city center 117
5.1 Introduction . 117

5.2 Reference wind tunnel measurement . 118

5.2.1 Characteristics of the simulated terrain 120

5.3 Numerical model . 121

5.3.1 Size of the computational domain . 121

5.3.2 Geometric modeling . 122

5.3.3 Computational grid generation . 123

5.3.4 Inflow boundary condition . 125

5.3.5 Other boundary and initial conditions 126

vii

5.3.6 Numerical setup . 127

5.4 Results and discussion . 128

5.4.1 Incident flow characteristics . 128

5.4.2 Wind flow field . 130

5.4.3 Comparison of global aerodynamic loads 131

5.4.3.1 Validation metric . 132

5.4.3.2 Base force coefficients . 133

5.4.3.3 Base moment coefficients 134

5.5 Summary and conclusion . 135

6 Fluid-structure interaction for aeroelastic modeling of tall buildings 138
6.1 Introduction . 138

6.2 Formulations of the fluid-structure interaction framework 141

6.2.1 Governing equations . 141

6.2.1.1 Fluid domain . 142

6.2.1.2 Structural domain . 142

6.2.1.3 Dynamic mesh . 143

6.2.2 Compatibility requirements . 144

6.2.3 Numerical schemes . 145

6.2.3.1 Fluid solver . 145

6.2.3.2 Structural solver . 147

6.2.4 FSI coupling algorithm . 147

6.2.4.1 Conventional serial staggered algorithm 148

6.2.4.2 Fixed-point iteration coupling algorithm 149

6.3 Software implementations . 150

6.3.1 Overall software architecture . 151

6.3.2 Implementation of the structural subsystem 152

6.3.3 Implementation of the dynamic mesh 155

6.3.4 Implementation of the FSI Solver . 155

6.4 Numerical examples and validation . 158

6.4.1 Vortex induced oscillation of a circular cylinder 158

6.4.1.1 Numerical model . 158

6.4.1.2 Results . 160

6.4.2 Wind induced vibration of a tall building 164

6.4.2.1 Modeling of the wind flow 165

6.4.2.2 Modeling of the building structure 166

viii

6.4.2.3 Results . 168
6.5 Conclusions and outlook . 170

7 Summary, conclusions, contributions, and future research directions 172
7.1 Overview . 172
7.2 Modeling of approaching ABL turbulence . 173

7.2.1 Chapter 2: Synthetic inflow turbulence generator for large-eddy simu-
lation of ABL flows using spectral representation method 173

7.2.2 Chapter 3: Computationally efficient inflow turbulence generation us-
ing a low-rank matrix decomposition 175

7.3 LES-based wind load and response evaluation on tall buildings 176
7.3.1 Chapter 4: LES for predicting wind loads and responses of a standard

tall building: prospect for wind-resistant tall building design 176
7.3.2 Chapter 5: LES-based wind load evaluation on a tall building located

in a city center: comparison with experimental data 177
7.4 Fluid-structure interaction for aeroelastic modeling 178

7.4.1 Chapter 6: Fluid-structure interaction framework for computational
aeroelastic modeling of tall buildings 178

7.5 Future research directions . 179

Bibliography 182

A Numerical implementation of DFSR and CDRFG methods 206

B Upper bound of the Nyström approximation error 208

C Numerical implementation of NY-POD method 210

D Source code of the windFSI framework 236
D.1 Structural subsystem . 236
D.2 Fluid subsystem . 251
D.3 Dynamic mesh subsystem . 270

E Usage of the windFSI framework 276

Curriculum Vitae 279

ix

List of Figures

1.1 Important components of the computational framework demonstrated using
Alan Davenport’s Wind Loading Chain . 4

2.1 Flow chart summarizing the simulation procedure for the Divergence-free Spec-
tral Representation (DFSR) method . 12

2.2 Inflow plane coordinate system definition . 13

2.3 Sample frequency sequences calculated using Eq.(2.10) to interpolate the CPSD
matrix for intermediate frequencies. 16

2.4 A schematic illustration of the computational domain with the inflow applica-
tion plane . 18

2.5 Measurement configuration and wind tunnel setup 19

2.6 Comparison of measured mean velocity and longitudinal turbulence intensity
profiles with ESDU (2001a,b); ESDU-85020 (2001) standard: (a) open; (b)
suburban and (c) urban . 20

2.7 Comparison of the longitudinal velocity spectra 0.45 m above the ground with
the von Karman spectrum: (a) open; (b) suburban and (c) urban 20

2.8 Comparison of velocity spectra at Point 2: (a) S u; (b) S v and (c) S w 22

2.9 Comparison of the coherency function between points separated vertically (Point
1 and 2) and laterally (Point 3 and 4) for u, v and w components. The theoretical
curves shown in the plots are calculated using Eq.(2.4). 24

2.10 Comparison of spatial correlation of the generated velocity field using the
CDRFG and DFSR methods: (a) u-, (b) v- and (c) w-components 25

2.11 Instantaneous velocity field distribution generated using the DFSR (first row)
and CDRFG (second row) methods for open exposure condition. The columns
(a), (b) and (c) are the u-, v- and w- components, respectively. The dimension
of the plane is 3.4 m × 2.5 m. 25

2.12 Geometry of the computational domain used: (a) domain used for testing the
inflow and (b) geometry of the boundary layer wind tunnel for VWT case. . . . 27

x

2.13 Iso-surface of Q = 100 colored by the magnitude of the instantaneous velocity
field at 10s for open exposure condition: (a) DFSR; (b) CDRFG; (c) VWT . . . 29

2.14 Comparison of mean velocity profiles from the DFSR, CDRFG, VWT cases
for open, suburban and urban exposure conditions. 30

2.15 Comparison of turbulence intensity profiles from the DFSR, CDRFG and VWT
cases for open, suburban and urban exposure conditions. 32

2.16 Comparison of profiles of integral length scale of turbulence for DFSR, CDRFG
and VWT cases for open, suburban and urban exposure conditions. 33

2.17 Comparison of velocity spectra at a point located 0.45 m above the ground . . . 34

2.18 Comparison of pressure fluctuations on the ground surface 35

3.1 Sampling techniques used for points distributed over a plane: (a) pure random;
(b) farthest point; (c) clustered; (d) Halton; (d) Hammersley; (d) Sobol 51

3.2 Distribution of simulation points and selected landmark points. 54

3.3 Comparison of the leading four eigenvalues from NY-POD with POD method. . 55

3.4 Comparison of the first eight eigenvectors (top to bottom) for NY-POD and
POD methods at frequencies ω = 0.01, 0.1, 1.0 rad/s. 55

3.5 Comparison of the relative reconstruction error for NY-POD and POD meth-
ods: (a) ϵnys(ω) and ϵpod(ω); (b) Enys and Epod 56

3.6 Effect of sampling technique on the relative reconstruction error of NY-POD
method: (a) ϵnys(ω) and ϵpod(ω); (b) Enys and Epod 57

3.7 Generated sample velocity time-series for the first 1000 seconds at points 1, 2, 18
and 20 (top to bottom): POD (left) and NY-POD (right). 58

3.8 Estimated PSD functions of the velocity time-series generated by NY-POD and
POD methods using the leading r = 40-modes: (a) auto-spectrum S 1,1; (b)
cross-spectrum S 1,2; (c) auto-spectrum S 20,20; (d) cross-spectrum S 20,18 59

3.9 Estimated correlation functions of the velocity time-series generated by NY-
POD and POD methods using r = 40-modes: (a) auto-correlation R1,1; (b)
auto-correlation R20,20; (c) cross-correlation R1,2; (d) cross-correlation R20,18 . . 60

3.10 Comparison of sample auto-PSD functions at the landmark points: (a) Point 3;
(b) Point 8 . 60

3.11 Simulation points and wind profiles: (a) grid of 50 × 50 simulation points with
100(4%) landmark points; (b) mean velocity and turbulence intensity profiles;
(c) integral length scale profile . 61

xi

3.12 Snapshot of the generated instantaneous velocity field. The plots from the NY-
POD method are based on clustered sampling with a gird of c = 10 × 10, 16 ×
16, 25 × 25, and 50 × 50 landmark points (left to right). 62

3.13 Comparison of auto-PSD functions from POD and NY-POD method using the
leading 625 modes: (a) Point 1; (b) Point 2; (c) Point 3; (d) Point 4 63

3.14 Comparison of estimated auto-PSD functions for different modal truncations(r):
(a) POD; (b) NY-POD . 64

3.15 Performance comparison between NY-POD and POD methods: (a) relative er-
ror in standard deviation; (b) normalized CPU time for NY-POD method 64

4.1 Characteristics of BLWT ABL flow: (a) mean velocity and stream-wise turbu-
lence intensity profiles; (b) stream-wise velocity spectrum at the roof height in
comparison to von Karman spectrum. 71

4.2 Wind tunnel model of the CAARC building: (a) picture of the HFPI model at
the test section; (b) plan dimensions and definition of coordinate system 72

4.3 Dimensions of the computational domain relative to the building height(H) and
naming of boundaries. 76

4.4 Design of the computational grid showing all the mesh refinement zones (sam-
ple case for 0◦ wind direction): (a) close-up sectional view near the building;
(b) horizontal section; (c) longitudinal section. The mesh sizes in each zone
are given relative to the building height. 77

4.5 Structural model of the 60-story reinforced concrete building: (a) 3D view; (b)
structural layout plan . 85

4.6 The first six vibration mode shapes for lateral (X),transversal (Y) and torsional
(T) directions . 86

4.7 Comparison of the incident wind profile with the target BLWT experimental
measurements: (a) mean velocity; (b-d) turbulence intensity profiles for u, v,
and w components, respectively; (d) normalized Reynolds shear stress profile
uw; (e-h) integral length scale profiles xLu, xLv and xLw. 88

4.8 Reduced velocity spectra at the building height:(a) u-component; (b)v-component;
(c) w-component; . 90

4.9 Turbulent flow structure around the building for wind direction θ = 0◦ deter-
mined based on the Q-criterion and colored by the longitudinal component of
the velocity. 91

xii

4.10 Streamlines around the building colored by the magnitude of mean velocity
normalized by roof-height wind speed: (rows) wind directions (0◦, 45◦, 90◦);
(columns) cross-sectional views on xy and xz planes. 92

4.11 Time histories of pressure coefficient at the center of windward, side and lee-
ward faces of the building measured at 2

3 H for 0◦ wind direction: (left) experi-
ment; (right) LES . 93

4.12 Reduced power spectral density of pressure at 2
3 H for 0◦ wind direction: (a)

windward face; (b) side face; (c) leeward face 93

4.13 Mean pressure coefficients measured at 2
3 H height of the building: (a) θ = 0◦;

(a) θ = 90◦ . 94

4.14 Standard deviation of pressure coefficients measured at 2
3 H height of the build-

ing: (a) θ = 0◦; (a) θ = 90◦ . 95

4.15 Positive and negative peak pressure coefficient measured at 2
3 H height of the

building: (a) θ = 0◦; (a) θ = 90◦ . 96

4.16 Contour plots of Cp statistics for θ = 0◦: (columns) Experiment and LES;
(rows) Mean, RMS and Peak . 97

4.17 Scatter plots comparing mean Cp from LES with experiment for all wind di-
rections . 98

4.18 Scatter plots comparing RMS Cp from LES with experiment for all wind direc-
tions . 99

4.19 Scatter plots comparing peak Cp from LES with experiment for all wind directions100

4.20 Estimated error(NMAE) for mean, RMS, and peak values. The error for each
wind direction is calculated based on Eq. (4.21). 101

4.21 Comparison of Skewness and Kurtosis for experimental and LES data at 2
3 H

height of the building: (a) θ = 0◦; (a) θ = 90◦ 102

4.22 Comparison of Skewness for experimental and LES data using all pressure taps
and wind directions. 102

4.23 Comparison of Kurtosis for experimental and LES data using all pressure taps
and wind directions. 103

4.24 Grid sensitivity for distribution of Cp at 2/3H of the building for 0◦ wind di-
rection: (a) mean; (b) RMS. See Table 4.2 for the details of the grids tested. . . 104

4.25 Sensitivity of Cp distribution to SGS model used. Comparison for taps located
at 2/3H of the building for 0◦ wind direction: (a) mean; (b) RMS 105

4.26 Time-series of the base moment coefficients CMx , CMy and CMz (top to bottom)
for θ = 0◦: (left) experiment; (right) LES . 106

xiii

4.27 Reduced power spectral density of base moments: (rows) CMx , CMy and CMz;
(columns) wind directions, 0◦, 45◦ and 90◦ . 108

4.28 Comparison of force coefficients (CFx and CFy) per wind direction: (a) mean;
(b) RMS . 108

4.29 Comparison of base moment coefficients (CMx , CMy and CMz) per wind direc-
tion: (a) mean; (b) RMS . 109

4.30 Generalized wind load spectra for the first six modes of vibration. 110

4.31 Comparison of top floor displacement time histories in x, y and rotational di-
rections(top to bottom) for 0◦ wind direction for ξ = 2% damping: (left) exper-
iment; (right) LES . 111

4.32 Reduced power spectral density of top floor displacement for ξ = 2% damping:
(rows) dx, dy and dϑ; (columns) wind directions, 0◦, 45◦ and 90◦ 111

4.33 Comparison of the background and resonant displacement responses from LES
and with experiment for ξ = 2% damping: (a)x−direction; (b)y−direction;
(c)ϑ−direction . 112

4.34 Reduced power spectral density of top floor acceleration with ξ = 2% damping:
(rows) ax, ay and aϑ; (columns) wind directions, 0◦, 45◦ and 90◦ 113

4.35 RMS of the top floor acceleration for different wind directions using ξ = 2%
damping: (a) x-acceleration; (b) y-acceleration; (c) torsional acceleration 114

4.36 Comparison of top floor acceleration for different wind directions: (a) peak
acceleration; (b) relative deviation of the LES from experiment 114

5.1 Aerodynamic model used for the validation: (a) picture of the model in the
wind tunnel; (b) roof-plan view and dimensions of the building; (c) isometric
view of the study building . 119

5.2 Approaching flow characteristics from the experimental measurement: (a) stream-
wise mean velocity and turbulence intensity profiles; (b) roof-height velocity
spectra . 120

5.3 Description of the CFD modeling procedure: input preparation, pre-processing,
solution, and post-processing (left to right) . 121

5.4 Computational domain and boundaries: (a) domain size relative to building
height; (b) geometry of the numerical model 122

5.5 Sample view of the computational grid for 0◦ wind direction case: (a) xz-
sectional view; (b) close-up view near the target region; (c) gird size used in
each region expressed relative to the building height. 124

xiv

5.6 Comparison of the incident flow characteristics from LES with the experimen-
tal target measurements: (a) stream-wise mean velocity and turbulence inten-
sity profiles; (b) reduced velocity spectra at the building height. 130

5.7 Time series of the velocity at the building height for the first 36s in model scale:
(top) experimental; (bottom) LES. 130

5.8 Isometric view of instantaneous wind velocity contour and streamline paths
calculated from LES for 0◦ wind direction. 131

5.9 Magnitude of instantaneous velocity contour taken on xz-plane for all wind
directions simulated. 132

5.10 Time series of the force coefficients CFx and CFy for 0◦ wind direction: (left)
Experiment; (right) LES . 133

5.11 Reduced power spectral density of the base forces for all wind direction: (rows)
components CFx and CFy; (columns) wind directions 0◦, 90◦, 180◦, and 270◦ . . 134

5.12 Deviation of force coefficients estimated using LES from the experimental val-
ues: (a) Mean ; (b) RMS . 135

5.13 Time series of the base moment coefficients CMx , CMy and CMT for 0◦ wind
direction: (left) Experiment; (right) LES . 135

5.14 Reduced power spectral density of the base moments for all wind directions:
(rows) components CMx , CMy and CMT ; (columns) wind directions 0◦, 90◦, 180◦,
and 270◦ . 136

5.15 Deviation of base moment coefficients estimated using LES from the experi-
mental values: (a) Mean ; (b) RMS . 137

6.1 Schematic representation of the fluid and structure domains 142

6.2 Mesh displacement scaling factor s(d) over different morphing regions. 144

6.3 Conventional Serial Staggered(CSS) fluid-stricture coupling algorithm. 148

6.4 Fixed-point iteration (FPI) fluid-stricture coupling algorithm. 150

6.5 Core components of the implemented software architecture in windFSI frame-
work . 152

6.6 Class diagram showing the general structure of the implemented code. Classes
shown with dotted borders are native OpenFOAM classes. 153

6.7 Dimensions of the computational domain and definition of boundary conditions 159

6.8 Computational grid used: cross-section view along xy-plane. 160

6.9 Iso-surface of the second invariant of the velocity gradient, Q = 100 colored
by the stream-wise component of instantaneous velocity. 161

xv

6.10 Time histories of the non-dimensional displacement of the cylinder for different
velocity ratios U/Ust. 162

6.11 Comparison of the displacement time history from windFSI framework and
OpenFOAM’s rigid body motion solver for U/US t = 1.0. 162

6.12 Displacement response computed using Conventional Serial Staggered (CSS)
and Fixed-point Iteration (FPI) coupling algorithms for U/US t = 1.0. 163

6.13 Comparison of the structural responses predicted using Newmark’s constant
acceleration method and a fourth-order Runge–Kutta scheme. 163

6.14 Power spectral density(PSD) of the lift force coefficient (CL) for U/US t = 1.0:
(a) comparison of windFSI with OpenFOAM; (b) FSI vs. Rigid cylinder 164

6.15 Extent of the computational domain and naming of the boundaries 165
6.16 Computational grid used for FSI simulation with mesh size specified in each

refinement zones: (a) horizontal section; (b) longitudinal section 166
6.17 Structural system used for CAARC building: (a) 3D view ; (b) plan view; (c)

mass distribution per each floor . 167
6.18 The first six vibration mode shapes of the building in full-scale: Mode 1(0.156Hz);

Mode 2(0.167Hz); Mode 3(0.192Hz); Mode 4(0.450Hz); Mode 5(0.459Hz);
Mode 6(0.512Hz) . 167

6.19 Characteristics of the incident flow used in the FSI simulations measured in
an empty domain simulation: (a) mean velocity profile; (b) stream-wise turbu-
lence intensity profile; (c) roof-height velocity spectra 168

6.20 Time history of the top floor displacement for 0◦ wind direction. 169
6.21 Reduced spectra of the top floor displacement response in x, y and ϑ directions

for 0◦ and 90◦ wind angle of attack. 169
6.22 Reduced spectra of the top floor acceleration response in x, y and ϑ directions

for 0◦ and 90◦ wind angle of attack. 170

A.1 Comparison of execution times for different duration using 32 processors. . . . 207

xvi

List of Tables

2.1 Terrains simulated and wind tunnel setup used 20
2.2 Characteristics of the ABL profile and parameters used in the simulation 21
2.3 Relative error in standard-deviation for different frequency step 22
2.4 Summary of simulation set-up for different case studies 27
2.5 Comparison of relative error(%) in wind profiles averaged over the height . . . 30

3.1 Summary of the main simulation parameters 53
3.2 Absolute relative error in standard deviation averaged over all points 59

4.1 Guiding the numerical procedure with experience from wind tunnel 73
4.2 Computational grids used for mesh sensitivity study 78
4.3 Summary of the dynamic properties . 85
4.4 Errors for mean and RMS base load coefficients 108

5.1 Comparison of mean and RMS force coefficients 134
5.2 Comparison of mean base moment coefficients 136
5.3 Comparison of RMS base moment coefficients 137

6.1 Details of the model used for FSI simulation 159

xvii

List of Appendices

Appendix A: Numerical implementation of DFSR and CDRFG methods 206
Appendix B: Upper bound of the Nyström approximation error 208
Appendix C: Numerical implementation of NY-POD method 210
Appendix D: Source code of the windFSI framework 236
Appendix E: Usage of the windFSI framework . 276

xviii

List of Abbreviations
ABL Atmospheric Boundary Layer

ASCE American Society of Civil Engineers

BLWT Boundary Layer Wind Tunnel

BLWTL Boundary Layer Wind Tunnel Laboratory

CAARC Commonwealth Advisory Aeronautical Research Council

CFD Computational Fluid Dynamics

CPU Central Processing Unit

CPSD Cross-Power Spectral Density

CWE Computational Wind engineering

CSS Conventional Serial Staggered

CDRFG Consistent Discrete Random Flow Generation

DES Detached Eddy Simulation

DFSR Divergence-free Spectral Representation Method

DOF Degree of Freedom

DNS Direct Numerical Simulation

ESDU Engineering Science Data Unit

FEM Finite Element Method

FFT Fast Fourier Transform

FPI Fixed-point Iteration

FVM Finite Volume Method

HFPI High-Frequency Pressure Integration

HPC High-Performance Computing

LES Large Eddy Simulation

MAPE Mean Absolute Percentage Error

MDOF Multi Degree Of Freedom

MPI Message Passing Interface

xix

OOP Object-Oriented Programming

OpenFOAM Open-Source Field Operation and Manipulation

OpenMP Open Multi-Processing

PISO Pressure Implicit with Splitting Operators

PIV Particle Image Velocimetry

POD Proper Orthogonal Decomposition

PSD Power Spectral Density

RANS Reynolds Averaged Navier-Stokes

Re Reynolds number

RMS Root Mean Square

SGS Sub-grid Scale Stress

SRM Spectral Representation Method

VBLWT Virtual Boundary Layer Wind Tunnel

xx

Chapter 1

Introduction

1.1 Background and motivation

In 2050, it is projected that more than two-thirds of the world population will be dwelling in ur-
ban areas (UNDESA, 2018). To accommodate this ever-growing urban population sustainably,
designing cost-effective tall buildings satisfying structural strength and serviceability require-
ments is crucial. Partly driven by the ongoing rapid urbanization and complemented by the
advancements in the use of lightweight construction materials, innovative structural systems,
and design methods, the race toward new heights is making the current generations of tall build-
ings increasingly flexible. As a result, they are becoming highly vulnerable to wind-induced
dynamic actions. The design of tall buildings for wind poses several wind engineering chal-
lenges, starting from accurately estimating the wind loads acting on the main structural system
up to limiting the motions of the building to an acceptable level for the comfort of occupants.
In the past, several research works have been dedicated to the development of different analyt-
ical and experimental methods for predicting dynamic loads on tall buildings. Wind-induced
vibration of tall buildings is a highly complex problem that is not analytically tractable. This is
primarily due to the difficulty of analytically treating complex turbulent flows around bluff bod-
ies (Boggs, 1991). The gust response method originally proposed by Davenport (1961a, 1967)
has been widely used for predicting the wind-induced response of structures. This method is
capable of incorporating the dynamic properties of the structure and has been adopted by most
of the present-day design codes. However, its application is primarily limited to along-wind
response and fails to account for the across-wind and motion-induced (aeroelastic) effects.
Given the limitation of the gust response method, wind tunnel testing is the only known way to
directly determine the wind loads and the wind-induced response of tall buildings accurately
(Irwin, 2009).

In recent years, however, due to the burgeoning growth of High-Performance Comput-

1

2 Chapter 1. Introduction

ing (HPC) and improved numerical methods, Computational Wind Engineering (CWE) tools,
particularly Computational Fluid Dynamics (CFD), have shown remarkable potential for simu-
lating wind loads on buildings. It is widely recognized that CFD offers several advantages over
wind tunnel testing, including the ability to simulate full-scale conditions without any physical
constraints. Due to the high versatility and shorter model development cycle, CFD can also
virtually (if computing cost is not an issue) deliver results faster than experimental studies.
Moreover, CFD provides a wealth of high-resolution relevant flow field data that helps under-
stand important flow phenomena governing wind loads. Despite the aforementioned promises,
the practical use of CFD for computational wind load evaluation still remains challenging. For
example, for applications in environmental problems such as indoor flows, pollutant disper-
sion, and pedestrian-level winds, CFD is routinely utilized in practical design. For structural
load prediction, however, the fact that peak quantities are much more important than mean flow
values makes computational wind load evaluation a less forgiving task. Furthermore, when the
structure is sufficiently sensitive to dynamic effects, wind load estimation using CFD normally
requires the frequency content of the overall load to be accurately captured in addition to its
magnitude. These and other contributing factors resulted in a lack of confidence in employing
CFD for wind load prediction (Holmes, 2007; Irwin et al., 2013), which led to its slow adoption
in the industry. Thus, it is imperative that significant research effort is still needed to develop
and validate CFD-based wind load evaluation procedures tailored to the essential requirements
of wind engineering practice.

The key challenges of wind load evaluation on tall buildings using CFD stem from three
origins. First and foremost, considering that wind effects on structures are sensitive to the
atmospheric boundary layer (ABL) turbulence, the CFD models must accurately reproduce
the upstream ABL flow characteristics. Second, wind flow around tall buildings is a high
Reynolds number flow characterized by peculiar aerodynamic features like impingement, sep-
aration, reattachment, recirculation, vortex shedding, etc. Thus, accurate wind load evalua-
tion necessitates adequate resolution of these aerodynamic features using turbulence models
of the desired fidelity. For transient wind load evaluation, this normally requires the use of
high-fidelity turbulence models capable of handling complex unsteady turbulent flows such as
large-eddy simulation (LES) (Dagnew and Bitsuamlak, 2013; Murakami, 1990; Tamura et al.,
2008). This challenge is further exacerbated for tall buildings located in built-up areas where
the effect of the surrounding buildings must also be modeled. The third challenge manifests
itself in tall buildings that are dynamically sensitive and experience noticeable motion-induced
(aeroelastic) effects. In such circumstances, the aerodynamic loads and the mechanical proper-
ties of the building are coupled, thus requiring a fluid-structure interaction (FSI) phenomenon
to be aptly simulated numerically.

1.2. Research objectives 3

In addition to addressing these challenges, carefully instrumented wind tunnel testing is
critically needed to validate the CFD models at each stage of development. The validation
task needs to be carried out at different levels, including the approaching flow characteristics,
surface pressure fluctuations, integrated forces, and the wind-induced responses of the struc-
ture. Also, to establish the necessary confidence, the desired quantities from the experiment
and CFD must be compared thoroughly using one-point and two-point statistics of the mea-
surements (Melaku and Bitsuamlak, 2021). The comparison, specially for surface pressure
fluctuations, needs to be performed not only with lower-order statistics such as mean and root-
mean-square as it is usually done in most computational wind evaluation studies but also using
higher-order statistics like skewness and kurtosis (Dagnew and Bitsuamlak, 2013; Sagaut and
Deck, 2009).

In this thesis, different aspects of the key challenges of CFD-based wind load evaluation
mentioned above are addresses stage by stage with the objective of developing a high-fidelity
computational framework for aerodynamic and aeroelastic modeling of wind loads on tall
buildings. The thesis presents a collection of five stand-alone papers that collaborate toward
this common objective. Figure 1.1 illustrates the main components of the proposed computa-
tional framework. The figure is inspired by the famous Alan Davenport’s Wind Loading Chain.
Moving from left to right, the first step in CFD-based wind load evaluation is specifying ap-
propriate inflow boundary conditions characterizing the upcoming ABL turbulence. The next
important step involves modeling the effect of ground roughness representative of the local
terrain. After reproducing the approaching ABL flow, the aerodynamic wind loads are simu-
lated using LES. Finally, the responses of the structure, including aeroelastic effects resulting
from wind-structure interaction, are modeled by coupling a transient CFD solver with the FEM
model of the structure.

1.2 Research objectives

With a clear need to improve the accuracy of numerical wind load evaluation on tall buildings,
the main objective of this thesis is to develop a high-fidelity computational framework for aero-
dynamic and aeroelastic simulation of wind effects on tall buildings. The specific objectives of
the research are:

1. Developing inflow turbulence generation and ground roughness modeling methods for
large-eddy simulation of the ABL flows. The inflow generation method will be able to
take wind profiles, velocity spectra, and two-point statistics of ABL turbulence as input
to generate a realistic ABL turbulence for wind load evolution. Whereas the roughness

4 Chapter 1. Introduction

Terrain

Effect

Wind

Climate

Aerodynamic

Effect

Dynamic

Effect
Design

Criteria

Roughness Modeling

(, ,)wall x y t

Inflow Generation Structural AnalysisLarge-eddy Simulation

Fluid-structure

Interaction

Displacement

Load

Figure 1.1: Important components of the computational framework demonstrated using Alan
Davenport’s Wind Loading Chain

modeling technique takes aerodynamic roughness length as an input parameter to model
the effect of the local terrain.

2. Improving the computational speed of the inflow generation method for large-scale ap-
plications. Considering that high-fidelity LES of ABL flow requires generating inflow
turbulence over a large number of grid points, the developed method needs to be compu-
tationally efficient.

3. Investigate the wind loads and responses of a tall building employing LES with the pro-
posed inflow turbulence generation method. This must be first demonstrated using a
generic tall building with an isolated configuration. The results from LES will be vali-
dated extensively against wind tunnel measurements.

4. Assessing the accuracy of LES for predicting wind loads on a tall building located in a
city center with a realistic urban setup.

5. Developing a high-fidelity fluid-structure interaction framework for aeroelastic model-
ing of tall buildings. Specifically, the framework will implement a partitioned approach
coupling OpenFOAM and modal structural solver. The accuracy and deficiency of dif-
ferent coupling algorithms for aeroelastic applications will be investigated with the help
of numerical examples.

1.3. Outline of the thesis 5

1.3 Outline of the thesis

This thesis is prepared based on the “Integrated-Article” format. The thesis contains a com-
pilation of papers under review or published in peer-reviewed journals. Each paper addresses
one of the five research objectives identified in the previous section. The research is pursued
in three prominent themes, which are: (1) modeling of the approaching ABL turbulence, (2)
LES-based wind load and response evaluation on tall buildings, and (3) fluid-structure inter-
action for aeroelastic modeling. Chapters 2 and 3 address the challenges related to modeling
the approaching ABL turbulence. Chapters 4 and 5 present LES-based wind load valuation for
tall buildings with isolated as well as complex urban surroundings. Chapters 6 propose a fluid-
structure framework for computational aeroelastic modeling. Finally, Chapter 7 summarizes
the main findings from the current research and provides recommendations for future research
directions.

1.3.1 Modeling of the approaching ABL turbulence

Chapter 2: Synthetic inflow turbulence generator for large-eddy simulation of ABL flows
using spectral representation method

In this chapter, a new synthetic inflow turbulence generation technique with explicitly defined
two-point flow statistics is developed based on the spectral representation method. The efficacy
of the method in representing one-point and two-point statistics is demonstrated by comparing
the generated turbulence with wind field measurements taken in a boundary layer wind tunnel.
Furthermore, this chapter implements an implicit ground roughness modeling technique for
ABL flow. The proposed method is then applied to the LES of ABL flows for three exposure
conditions, and the incident wind profiles are examined. Considering that the generation of
realistic inflow turbulence is the first necessary step to conduct a successful LES, the methods
developed in this chapter offer a unique advantage for wind load evaluation studies. Finally,
the developed procedure is implemented into the OpenFOAM framework and disseminated
open-source for the wider CWE research community.

Chapter 3: Computationally efficient inflow turbulence generation using a low-rank ma-
trix decomposition

This chapter proposes a computationally efficient wind turbulence generation method that op-
erates on a low-rank representation of the cross-power spectral density (CPSD) matrix. Inflow
turbulence generation using the spectral representation method normally requires decompos-
ing the CPSD matrix at multiple frequencies. Considering that the decomposition of the full

6 Chapter 1. Introduction

CPSD matrix is prohibitively expensive, this chapter presents the application of the Nyström
technique to estimate the eigen-decomposition of the CPSD matrix from a small subset of
systematically sampled informative points. The accuracy and computational efficiency of the
proposed method relative to the conventional eigen-decomposition are investigated. Also, the
chapter studies factors affecting the accuracy of the proposed method, such as the percentage
of points sampled and the sampling technique used.

1.3.2 LES-based wind load and response evaluation on tall buildings

Chapter 4: LES for predicting wind loads and responses of a standard tall building:
prospect for wind-resistant tall building design

This chapter investigates the capability of LES for predicting transient wind loads on the
CAARC (Commonwealth Advisory Aeronautical Research Council) standard tall building.
We present the application of the inflow turbulence generation and implicit ground-roughness
modeling techniques developed in Chapter 2. To validate the LES results, we conducted exper-
imental measurements using High-Frequency Pressure Integration (HFPI) model in a boundary
layer wind tunnel. Also, the wind-induced responses of the building were investigated using the
dynamic properties of a 60-story reinforced concrete building with a moment-resisting frame
system. The validation of the numerical models is carried out stage by stage. First, the char-
acteristics of the approaching flow are examined. Then, the statistics of the cladding loads and
the base aerodynamic loads were compared. Finally, the performance of the LES for predicting
wind-induced response is evaluated.

Chapter 5: LES-based wind load evaluation on a tall building located in a city center:
comparison with experimental data

In this chapter, wind load on a tall building located in a realistic urban environment is studied
using LES. The chapter demonstrates the application of the proposed framework to a realistic
scenario involving a typical wind tunnel study in a tall building design project. The challenges
of CFD modeling for buildings in complex urban setups, including specification of boundary
conditions, mesh generation, and turbulence modeling, are highlighted and addressed. The
study first validates the incident wind profiles from LES with those reported in the experimental
data. Finally, the spectra as well as statistics of base shear and moment coefficients predicted
from the LES are compared against experimental measurements for various configurations.

1.3. Outline of the thesis 7

1.3.3 Fluid-structure interaction for aeroelastic modeling

Chapter 6: Fluid-structure interaction framework for computational aeroelastic model-
ing of tall buildings

This chapter provides the formulation and implementation of a high-fidelity Fluid-Structure
Interaction (FSI) framework for computational aeroelastic modeling of flexible structures. The
FSI framework was developed by coupling OpenFOAM’s transient solver with an in-house
structural solver. The FSI framework employs a partitioned procedure where fluid and structure
subsystems are solved separately, and the coupling is achieved by exchanging data at each time
step. In this study, the structural solver is directly integrated into the CFD solver architecture
to reduce the communication overhead between the fluid and structural solvers. Two coupling
algorithms representing “weak” and “strong” methods were considered. The framework is
implemented using C++ programming language, applying an object-oriented programming
paradigm. The software architecture of the framework is designed to be versatile so that it
can easily be extended to simulate various wind-structure problems involving structures with
complex mode shapes and non-linear material properties. Finally, the main capabilities of
the proposed FSI framework are demonstrated using two numerical examples, including the
vortex-induced crosswind oscillation of a circular cylinder and the wind-induced vibration of
a tall building.

Chapter 2

Synthetic inflow turbulence generator for
large-eddy simulation of ABL flows using
spectral representation method

2.1 Introduction

Over the last few decades, the exponential growth of computational power has made large-eddy
simulation (LES) a more accessible tool for studying turbulent flows of practical interest. Due
to this advancement, LES is now being used more often to study various wind engineering
problems. To name a few, LES has been used to evaluate wind load on buildings and com-
ponents(Aboshosha et al., 2015c; Dagnew and Bitsuamlak, 2013, 2014; Daniels et al., 2013;
Elshaer et al., 2016; Li et al., 2015; Melaku et al., 2022; Nozawa and Tamura, 2002; Tamura
et al., 2008; Tamura and Ono, 2003; Tanaka et al., 2013; Yan and Li, 2015), pedestrian level
winds (Adamek et al., 2017; Razak et al., 2013; Tominaga et al., 2008b; Yuan et al., 2016),
pollutant dispersion (Gousseau et al., 2011; Tomas et al., 2015; Tominaga and Stathopoulos,
2011; Xie and Castro, 2009) and more recently to simulate non-synoptic wind fields such as
downbursts (Aboshosha et al., 2015b; Vermeire et al., 2011) and tornados (Gairola and Bit-
suamlak, 2019; Lewellen et al., 1997). One of the main challenges of conducting a successful
LES study is generating the inflow boundary condition that characterizes the incoming turbu-
lence. Especially, LES of the atmospheric boundary layer (ABL) flows requires specifying
inlet turbulence with the correct mean velocity, turbulence intensity, and integral length scale
profiles in line with experimental or field measurements. It is also required that the generated
turbulence captures the spatiotemporal correlation of the flow describing the particular terrain
being simulated (Aboshosha et al., 2015c; Dagnew and Bitsuamlak, 2014; Huang et al., 2010;

8

2.1. Introduction 9

Melaku et al., 2017; Yan and Li, 2015). In addition to having the required wind profiles and
spatiotemporal correlation, the generated turbulence is generally required to be divergence-
free for incompressible flow simulation. Violating the divergence-free condition can introduce
non-physical pressure fluctuations in the simulation (Kim et al., 2013; Patruno and de Miranda,
2020; Poletto et al., 2013). The present study aims at developing a synthetic inflow generation
method based on the spectral representation method that meets these requirements for LES of
ABL flows.

Different inflow generation methods have been developed in the past, and these methods
can generally be grouped into two categories: precursor methods and synthetic methods. In
the first group, velocity data extracted from a precursor simulation is used as an inflow in
the successor(main) simulation (Lund et al., 1998). Whereas in the second group, the inflow
turbulence is generated artificially by employing statistical methods. For a comprehensive
review of different inflow generation methods, the reader is advised to refer to Tabor and Baba-
Ahmadi (2010), Wu (2017), and Dhamankar et al. (2018).

From a computational wind engineering (CWE) standpoint, the most direct and accurate
precursor simulation would be replicating the entire wind tunnel geometry in CFD and devel-
oping a turbulent boundary layer over a long fetch distance naturally (Jørgensen et al., 2012;
Tanaka et al., 2013; Thordal et al., 2019). However, the extra computational load and lack of
flexibility make this method uneconomical for practical use. Alternatively, the cost of running
such an expensive simulation can be reduced using recycling (Lund et al., 1998; Nozawa and
Tamura, 2002) techniques. Nonetheless, these alternatives can introduce spurious periodicity
on the generated turbulence and remain costly compared to synthetic methods.

Compared to precursor methods, synthetic methods are more flexible (give tight control
over flow statistics) and take less computational time. In the literature, there are at least three
categories of synthetic inflow generation methods. In the first category of methods, the inlet
turbulence is generated by superposing sinusoidal waves of different amplitudes, frequencies,
and phase shifts. These methods are commonly called Fourier techniques and use sine and
cosine functions correlated over space and time. Examples of turbulence generators in this
group include techniques proposed by Kraichnan (1970), Lee et al. (1992), Kondo et al. (1997),
Smirnov et al. (2001), Huang et al. (2010), Castro and Paz (2013) and Aboshosha et al. (2015c).
Synthetic inflow generation methods that are widely used in CWE studies, particularly for wind
load evaluation, belong to this group (Dagnew and Bitsuamlak, 2014; Elshaer et al., 2016; Lu
et al., 2012; Melaku et al., 2022; Ricci et al., 2017; Yu et al., 2018). The second group includes
methods that use digital filtering techniques (Di Mare et al., 2006; Kim et al., 2013; Klein
et al., 2003; Lamberti et al., 2018; Xie and Castro, 2008). In these methods, a random set
of numbers is initially generated, then digital filters are used to impose spatial and temporal

10 Chapter 2. Inflow turbulence generation using spectral representation method

correlations. However, for boundary layer flows, imposing an integral length scale that varies
over the inlet plane can be challenging as outlined in Dhamankar et al. (2018). In the third
family, the fluctuating velocity field is generated based on the classical view of turbulence
as a superposition of coherent structures with a given shape, length, and time scale (Jarrin
et al., 2006; Pamiès et al., 2009). Methods under this category include artificial vortex methods
(Mathey et al., 2006), synthetic-eddy methods (Jarrin et al., 2006; Kim and Haeri, 2015; Pamiès
et al., 2009; Poletto et al., 2013) and turbulent spot methods (Kornev and Hassel, 2007; Kornev
et al., 2008; Kröger and Kornev, 2018). Although methods in this category are very promising,
specifying arbitrary target velocity spectra explicitly/directly can be challenging (Yan and Li,
2015).

Recently, Huang et al. (2010) and Aboshosha et al. (2015c) noted that the inflow turbulence
that satisfies two-point flow statistics defined by the frequency-dependent coherency function
is crucial for wind engineering applications. For instance, Aboshosha et al. (2015c) demon-
strated the importance of inflow turbulence with a proper coherency function for the accurate
estimation of wind loads on tall buildings. Nevertheless, the method developed by Aboshosha
et al. (2015c) imposes the coherency function using an empirically tuned parameter, which
often needs problem-specific calibration and does not always guarantee a fully-correlated ve-
locity field in the three principal directions. To this end, from the available synthetic inflow
generation schemes, the method developed by Kondo et al. (1997) is capable of generating a
point-to-point correlated velocity field with explicitly defined target two-point statistics. How-
ever, the procedure used in Kondo et al. (1997) takes considerable computational time, and the
generated turbulence does not satisfy the continuity equation, requiring a separate divergence-
free operation. Nevertheless, the computational efficiency and accuracy of the procedure used
in Kondo et al. (1997) can be significantly improved using recent developments in spectral
representation methods.

The spectral representation method is one of the most commonly used and robust proce-
dures for synthesizing random fields (Spanos and Zeldin, 1998). It was first proposed by Shi-
nozuka (Shinozuka, 1971; Shinozuka and Jan, 1972) for the simulation of multidimensional,
multivariate, Gaussian stationary processes with a prescribed target cross-power spectral den-
sity (CPSD) matrix. Several researchers have applied this method for simulation of the turbu-
lent wind fields, earthquake ground motions, ocean waves, etc., (Deodatis, 1996a,b; Di Paola,
1998; Mann, 1998; Morooka et al., 1997; Shinozuka and Deodatis, 1988; Solari and Carassale,
2000; Tucker et al., 1984). The atmospheric turbulent velocity field generated by the spectral
representation method has been shown to satisfy the targeted statistical description of ABL
flow (Carassale and Solari, 2006; Di Paola, 1998). Owing to this advantage, Hémon and Santi
(2007) highlighted that the method could be an ideal approach for synthetically generating

2.2. Numerical procedure 11

inflow boundary condition for LES of ABL flows.

In this paper, we propose a computationally efficient synthetic inflow turbulence genera-
tion method based on the spectral representation method of Deodatis (1996b) with a posteriori
divergence-free operation developed by Kim et al. (2013). The proposed procedure is named
the Divergence-free Spectral Representation (DFSR) method. The computational efficiency is
achieved by using interpolation-enhanced schemes for the CPSD matrix decomposition, fol-
lowed by the application of the Fast Fourier Transform (FFT) technique for the simulation of
the velocity-time series that reduces the computational cost significantly.

The paper is organized as follows. Section 2.2 presents the detailed procedure used to simu-
late the velocity field using the spectral representation method. The wind tunnel measurements
conducted for validating the proposed method are described in Section 2.3. In Section 2.4, the
generated velocity field is validated against the experimental data at selected points, and the
performance is compared with the “Consistent Discrete Random Flow Generation” (CDRFG)
method of Aboshosha et al. (2015c). Finally, in Section 2.5, the proposed method is applied to
LES of a neutrally stratified ABL flow for three exposure conditions, and the results from LES
are compared with the experimentally measured profiles.

2.2 Numerical procedure

In this section, the procedure for generating the inlet turbulence and the subsequent steps used
to make it divergence-free are described. The inlet turbulence is simulated as a multivariate
stochastic velocity field employing the method used in Deodatis (1996b). To make the gen-
erated turbulence divergence-free, a posteriori procedure developed by Kim et al. (2013) is
adopted. The key steps in the proposed inflow generation method are summarized using a
flowchart shown in Figure 2.1.

2.2.1 Proposed inflow generation method

Let x, y, z be a Cartesian coordinate system; x, y, and z representing the longitudinal, lateral,
and vertical directions, respectively as shown in Figure 2.2. A statistically stationary velocity
vector field u(x, t) on a yz−plane that varies with position x(y, z) and time t can be represented
as

u(y, z; t) = ū(z) + u′(y, z; t), (2.1)

where ū(z) and u′(y, z; t) represent the mean and the fluctuating parts, respectively. The mean
part ū(z) can be determined from the logarithmic law profile (Tennekes, 1973)

12 Chapter 2. Inflow turbulence generation using spectral representation method

Start

Step 1: Define ABL profiles at the inflow plane
Input mean velocity, turbulence intensity, and
integral length scale profiles for u-, v- and w-
components of the velocity

Step 2: Define simulation parameters

Step 3: Calculate the CPSD matrix

Step 4: Factorize the CPSD matrix

Step 5: Generate the time-series using the FFT technique

Step 6: Impose divergence-free criteria

End

and

and

Figure 2.1: Flow chart summarizing the simulation procedure for the Divergence-free Spectral
Representation (DFSR) method

ū(z) =
1
κ

u∗ ln
(

z
z0

)
, (2.2)

2.2. Numerical procedure 13

where κ is the von Karman constant, u∗ is the shear friction velocity and z0 is the aerodynamic
roughness height. It is accepted that the log-law model works only in the lower ABL i.e.,
z < 200 m (Cook, 1997). For higher elevations, a more accurate model by Deaves and Harris
(1978) needs to be used.

The fluctuating components of the velocity are represented statistically by their correspond-
ing cross-power spectral density functions. Considering a discrete spatial domain containing n

points, for any pair of points h and k in the domain with position vectors x(h) and x(k) shown
in Figure 2.2, the CPSD function S ui(x

(h),x(k);ω) of the velocity component ui(i = 1, 2, 3) is
given by

S ui(x
(h),x(k);ω) =

√
S ui(z(h);ω)S ui(z(k);ω)Cohui(x

(h),x(k);ω) (h, k = 1, 2, ..n), (2.3)

where Cohui(x
(h),x(k);ω) is the coherency function for the velocity component ui and ω is the

angular frequency. The coherency function represents the correlation of the velocity field for
various frequencies and is defined by Davenport (1961b) as

Cohui(x
(h),x(k);ω) = exp

− ω2π
√[

Cyui

(
y(k) − y(h))]2

+
[
Czui

(
z(k) − z(h))]2

1
2

[
ū(z(h)) + ū(z(k))

]
. (2.4)

In Eq.(2.4), Cyui and Czui refer to the coherency decay coefficients in y- and z-direction for
the velocity component ui, respectively. Solari and Piccardo (2001) provided average values
and coefficients of variation for Cyui and Czui by combining data from several studies.

xy

z

x(h)
x(k)

h k

Computational domain

Figure 2.2: Inflow plane coordinate system definition

14 Chapter 2. Inflow turbulence generation using spectral representation method

In wind engineering applications, it is often assumed that the CPSD function between dif-
ferent components of the velocity is small (Solari and Tubino, 2002). In the current study,
for simplicity and to reduce the computational cost, the time series for each component of the
velocity is simulated independently (i.e., without using the combined CPSD matrix of u and w

components), which can result in zero Reynolds shear stresses. However, this limitation can
be circumvented by applying the transformation procedure used in Lund et al. (1998) with the
desired Reynolds shear stress values. For the auto-spectrum of each velocity component, the
well-known von Karman model (Simiu and Scanlan, 1996) is adopted in the following form

S ui(z;ω)
σ2

ui
(z)
=

4
[
(Lui(z)/ū(z)

][
1 + 70.8(2πωLui(z)/ū(z))2)

]5/6 (i = 1),

S ui(z;ω)
σ2

ui
(z)
=

4
[
Lui(z)/ū(z)

] [
1 + 188.4(4πωLui(z)/ū(z))2

]
[1 + 70.8(4πωLui(z)/ū(z))2)]11/6 (i = 2, 3),

(2.5)

where σui and Lui refer to the standard deviation and the integral length scale of turbulence for
the velocity component ui, respectively.

Thus, the one-sided target cross-spectral density matrix Sui(ω) for the velocity component
ui can be represented as

Sui(ω) =

S ui,11(ω) S ui,12(ω) . . . S ui,1n(ω)
S ui,21(ω) S ui,22(ω) . . . S ui,2n(ω)

...
...

. . .
...

S ui,n1(ω) S ui,n2(ω) . . . S ui,nn(ω)

. (2.6)

Assuming the imaginary part of Sui(ω) matrix to be small (Simiu and Scanlan, 1996), the
velocity component in the i−direction at location x(j) can be simulated by using the formula in
Deodatis (1996b) as

u(j)
i (t) =

√
2∆ω

j∑
m=1

N∑
l=1

∣∣∣Hui, jm(ωml)
∣∣∣ cos(ωmlt + ϕml), (2.7)

where N is the number of frequency intervals; ∆ω = ωup/N; ωup is the upper cut-off frequency
above which the cross-spectral matrix Sui(ω) can be assumed to be zero; ωml is a double indexed
frequency given as

ωml = (l − 1)∆ω +
m
n
∆ω l = 1, 2, 3, . . . ,N (2.8)

and ϕml is a random phase angle uniformly distributed in the interval [0, 2π]. Sampling ϕml

2.2. Numerical procedure 15

from a uniform distribution results in Gaussian velocity components, and a similar assumption
is often used in spectral methods since the phase information within the flow is unknown a
priori (Kondo et al., 1997; Lee et al., 1992).

The term Hui, jm(ωml) in Eq.(2.7) is the element of the lower triangular matrix Hui(ω) which
is calculated from the Cholesky factorization of the CPSD matrix Sui(ω) in the following form:

Sui(ω) = Hui(ω)HT
ui

(ω), (2.9)

where HT
ui

is the transpose of the lower triangular matrix Hui(ω).

For a large number of points on the inlet plane, the Cholesky factorization of the CPSD
matrix given in Eq.(2.9) takes considerable computational time. Elements of the CPSD, as
well as the decomposed matrix Hui(ω), are a continuous function of frequency. Thus, any ele-
ment in the Hui(ω) matrix can be interpolated between adjacent frequencies. As demonstrated
by Carassale and Solari (2006), Ding et al. (2006) and Tao et al. (2017), factorizing the CPSD
matrix at selected frequencies and interpolating for the rest can significantly reduce the compu-
tational and memory demand. Eqs. (2.7) and (2.8) require the CPSD matrix to be decomposed
for nN frequencies. However, in the current study, only Ñ ≪ nN number of frequencies are
used for factorizing the CPSD matrix. To interpolate the intermediate frequencies, a spline
interpolation is adopted based on the recommendation provided in Tao et al. (2017). The dis-
tribution of sample interpolation frequencies is shown in Figure 2.3. The frequencies used for
the interpolation are calculated as

ω̃α =

(ωup

nN

)
(nN)(α−1)/(Ñ−1), (α = 1, 2, 3, . . . , Ñ). (2.10)

2.2.1.1 Time series generation using Fast Fourier Transform (FFT)

The computational burden of simulating the flow field using Eq.(2.7) can also be drastically
reduced by utilizing the Fast Fourier Transform (FFT) technique as demonstrated by Yang
(1972, 1973) and Deodatis (1996b). Based on the procedure presented in Deodatis (1996b),
for double-indexed frequency, in order to apply FFT technique to Eq.(2.7), first, it needs to be
rewritten in the following form:

u(j)
i (p∆t) = Re

 j∑
m=1

Dui, jm(q∆t) exp
[
i
(
m∆ω

n

)
(p∆t)

] ,
p = 0, 1, 2, . . . ,M×n − 1, j = 1, 2, 3, . . . , n,

(2.11)

16 Chapter 2. Inflow turbulence generation using spectral representation method

0 10 20 30 40 50
α

10-3

10-2

10-1

100

101

102

103

104

ω̃
[r
a
d
/s

]

Figure 2.3: Sample frequency sequences calculated using Eq.(2.10) to interpolate the CPSD
matrix for intermediate frequencies.

where i =
√
−1 is an imaginary unit; M ≥ 2N, q = 0, 1, 2, ...,M − 1 is the remainder of p/M

and Dui, jm(q∆t) is given by

Dui, jm(q∆t) =
M−1∑
l=0

Bui, jm(l∆ω) exp
(
ilq

2π
M

)
, (2.12)

where Bui, jm(l∆ω) can be computed as

Bui, jm(l∆ω) =

√

2∆ωHui, jm
(
l∆ω + m∆ω/n

)
exp (iϕml), 0 ≤ l < N

0, N ≤ l < M
. (2.13)

From Eq.(2.12), it can be seen that Dui, jm(q∆t) is the inverse Fourier transform of Bui, jm(l∆ω)
and can be computed using the FFT algorithm efficiently in O

(
N log N

)
complexity, instead of

using the original cosine series representation that has O(N2) time complexity. To benefit from
the computational efficiency of the FFT algorithm, ∆t in Eq.(2.11) should satisfy the following
condition:

∆t =
2π

2ωup
, (2.14)

where ωup is defined earlier as the upper cut-off frequency.

To further reduce the computational cost of decomposing the CPSD matrix, in Chapter
3, a new factorization technique that uses a low-rank representation of the CPSD matrix is
proposed.

2.2. Numerical procedure 17

2.2.2 Divergence-free modification

The wind field generated using the spectral representation method described above is not
divergence-free, and its direct application as an inflow boundary condition might introduce
fictitious pressure fluctuations (Gresho and Sani, 1987; Kim et al., 2013; Poletto et al., 2013).
The method proposed by Kim et al. (2013) addresses this issue by inserting the generated flow
field on a vertical 2D plane close to the inlet. The inserted flow field acts as an intermedi-
ate value in the velocity-pressure coupling procedure. The flow is then corrected to satisfy
the divergence-free condition during the pressure-correction step. Applying the method to the
LES of a channel flow, Kim et al. (2013) showed that the correction has minimal effect on the
flow statistics while reducing unnecessary pressure fluctuations. In the current study, the same
procedure is adopted. Very recently, Patruno and de Miranda (2020) addressed the insurgence
of pressure fluctuations due to incompatible inflow boundary conditions by using a Variation-
ally Based Inflow Correction (VBIC) method that corrects the synthetically generated inflows
to avoid pressure fluctuations. Although the current study uses the method developed by Kim
et al. (2013), it should be noted that a similar method, like the VBIC, is also equally applicable
to correct the generated turbulence to satisfy the divergence-free condition.

The divergence-free procedure developed by Kim et al. (2013) is a modification of the
existing implementation of the Pressure-Implicit with Splitting of Operators (PISO) solver in
OpenFOAM for grid points on the 2D inflow application plane. Kim et al. (2013) demonstrated
that such a modification has a negligible effect on the solution accuracy by employing analytical
and numerical error estimation techniques. Figure 2.4 shows a schematic representation of the
computational domain and the 2D inflow application plane.

2.2.3 Treatment of ground roughness boundary condition

For the LES study of ABL flows, in addition to inlet boundary conditions, a special treatment
to the ground boundary condition is required. In wall-bounded flow like ABL flows, as we get
close to the ground surface, the flow is dominated by vortices with characteristic lengths much
smaller than those at the free stream flow (Piomelli and Balaras, 2002). Resolving these small-
size eddies requires an enormous number of computational grids near the wall and becomes
computationally expensive. For flows with high Reynolds number, such as ABL flows, wall-
modeled LES becomes the only alternative, considering the available computational power.
Among the available methods, the wall stress boundary condition has been widely applied
to LES modeling of ABL flows (Bou-Zeid et al., 2005; Grötzbach, 1987; Schumann, 1975;
Thomas and Williams, 1999). The wall shear stress model, originally introduced by Schumann

18 Chapter 2. Inflow turbulence generation using spectral representation method

xy
z

Lx

L
z

Ly

Inlet plane

Target structure

Figure 2.4: A schematic illustration of the computational domain with the inflow application
plane

(1975), relates the wall shear stress to the velocity at the wall-adjacent cell center as

τ
LES

w = −

[
κ

log[(∆z/2)/z0]

]2 (
⟨ũ1/2⟩

2 + ⟨ṽ1/2⟩
2
)

(2.15)

τ13,w = τ
LES

w

 ũ1/2√
⟨ũ1/2⟩

2 + ⟨ṽ1/2⟩
2

 (2.16)

τ23,w = τ
LES

w

 ṽ1/2√
⟨ũ1/2⟩

2 + ⟨ṽ1/2⟩
2

 (2.17)

, where κ is the von Karman constant; ∆z is the height of the wall adjacent cell; ũ1/2 and
ṽ1/2 are the filtered stream-wise and span-wise velocities at the first cell center away from
the surface, respectively. The symbol ⟨·⟩ denotes the plane-averaged velocity at the first grid
points. Finally, the wall stress calculated from Eqs.(2.16, 2.17) is applied to the ground surface,
accounting for the effect of the roughness. This method was implemented to work seamlessly
with OpenFOAM’s transient solver. To use this boundary condition for the LES, one needs to
specify only z0 representative of the exposure condition being simulated.

2.3 Experimental measurements

For validating the proposed method, experimental measurements of wind profiles were per-
formed in the Boundary Layer Wind Tunnel Laboratory (BLWTL) at Western University. A

2.3. Experimental measurements 19

turbulent boundary layer flow is simulated in a high-speed closed-circuit wind tunnel section
with a 39 m length, 3.4 m width, and 2.5 m height. To generate a fully developed ABL flow
turbulence, the BLWTL facility uses three spires, a barrier, and roughness elements as shown
in Figure 2.5b and 2.5c. The turntable is located 33 m from the inlet of the tunnel. By chang-
ing the heights of the roughness elements, three different terrain conditions that correspond to
open, suburban, and urban exposure were simulated.

(a) Cobra probes setup

(b) Spires and barrier

(c) Roughness elements

Figure 2.5: Measurement configuration and wind tunnel setup

The experiment was conducted at a geometric scale of 1:400 in an empty tunnel configura-
tion. The ABL profiles are measured at the center of the turntable. The u-, v- and w-components
of the velocity were recorded using Cobra Probes mounted on a movable anchor as shown in
Figure 2.5a. To create the profiles, measurements were taken at 28 points aligned vertically.
Table 2.1 shows details of the wind tunnel configuration used. The simulation of the terrains
is based on the wind characteristics provided in ESDU (2001a,b); ESDU-85020 (2001) for
mean velocity and turbulence intensity profiles. Figures 2.6a-c show the comparison of the
measured stream-wise mean velocity and turbulence intensity profiles with those found from
ESDU (2001a,b); ESDU-85020 (2001). The mean velocity profiles are normalized by the
mean wind speed at a reference height zre f = 0.45 m, which corresponds to a full-scale height
of 180 m. In Figures 2.7a-c, the stream-wise velocity spectrum at the reference height is shown

20 Chapter 2. Inflow turbulence generation using spectral representation method

together with the well-known von Karman spectrum for each exposure condition.

Table 2.1: Terrains simulated and wind tunnel setup used

Terrain Roughness block height [m] z0,FS [m] u∗ [m/s]
Open 0.0254 0.03 0.629

Suburban 0.0635 0.30 0.785
Urban 0.0889 0.70 0.878

0.0 0.4 0.8 1.2 1.6

Uav/Uref

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
z r
ef

(a)

0 25 50 75 100
Iu(%)

0.0 0.4 0.8 1.2 1.6

Uav/Uref

(b)

0 25 50 75 100
Iu(%)

0.0 0.4 0.8 1.2 1.6

Uav/Uref

(c)

Experiment(Uav)

ESDU(Uav)

Experiment(Iu)

ESDU(Iu)

0 25 50 75 100
Iu(%)

Figure 2.6: Comparison of measured mean velocity and longitudinal turbulence intensity pro-
files with ESDU (2001a,b); ESDU-85020 (2001) standard: (a) open; (b) suburban and (c)
urban

10−2 10−1 100 101 102 103

f [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

S
u
[m

2
s]

(a)

Experiment

von Karman

10−2 10−1 100 101 102 103

f [Hz]

(b)

10−2 10−1 100 101 102 103

f [Hz]

(c)

Figure 2.7: Comparison of the longitudinal velocity spectra 0.45 m above the ground with the
von Karman spectrum: (a) open; (b) suburban and (c) urban

2.4. Validation of the generated velocity field 21

2.4 Validation of the generated velocity field

The first step of validating the proposed method involves a statistical comparison of the flow
generated using the procedure outlined in Section 2.2.1 against the targeted experimental mea-
surements. Turbulent velocity fluctuations in the three orthogonal directions are generated at
four points given in Table 2.2. At each point, the target wind profiles, including mean velocity
(Uav), turbulence intensities (Iu, Iv, Iw) and integral length scales of turbulence (xLu,

xLv,
xLw) are

taken from the experimental data for open exposure condition. In Table 2.2, the first two points
(Point 1 and 2) are separated by 0.05 m vertical distance, while the last two points (Point 3 and
4) have a 0.15 m lateral separation. The suitability of the current method to generate ABL-like
turbulence is shown by comparing the generated velocity fluctuations with the experimental
measurement statistically. The current method is also compared with the CDRFG method of
Aboshosha et al. (2015c) since both methods model the two-point statistics of the flow using
the frequency-dependent coherency function. For a seamless comparison with the experimental
measurements, the simulation is performed at 1:400 scale for 60 s duration with ∆t = 8×10−4 s.
The other essential input parameter used in the simulation are set the same as the experimental
measurements and are given in Table 2.2. A detailed description of the experimental setting
can be found in Section 2.3.

Table 2.2: Characteristics of the ABL profile and parameters used in the simulation

Point y(m) z(m) Uav(m/s) Iu(%) Iv(%) Iw(%) xLu(m) xLv(m) xLw(m)
1 0.00 0.25 12.72 14.13 10.57 8.07 1.11 0.32 0.25
2 0.00 0.30 12.84 13.79 10.02 8.11 1.11 0.33 0.27
3 0.00 0.35 13.17 13.04 9.60 7.45 1.17 0.34 0.19
4 0.15 0.35 13.17 13.04 9.60 7.45 1.17 0.34 0.19

Simulation parameters
Cyu = 10.0,Czu = 9.0, Cyv = 3.5,Czv = 4.5, Cyw = 7.5 and Czw = 3.0
N = 214, Ñ = 50, fmax = 625 Hz,∆t = 8 × 10−4 s,T = 60 s

2.4.1 Evaluation of one-point statistics

Figure 2.8 shows a sample plot of the spectral content of the generated velocity fluctuations
from the DFSR and CDRFG methods at Point 2 for each velocity component. The figure also
shows the comparison with experimental measurement and the targeted von Karman spectrum.
For the comparison shown in Figure 2.8, the target spectra for both the DFSR and CDRFG
methods were discretized using the same frequency step. As depicted in Figure 2.8, the re-

22 Chapter 2. Inflow turbulence generation using spectral representation method

sulting spectra from the DFSR and CDRFG methods generally follow the target spectra well.
However, it should be noted that the accuracy of each method depends on the frequency step
used in the simulation. Table 2.3 shows the relative errors in the standard deviation of the time
series generated using each method at different frequency steps. The relative errors reported
in Table 2.3 are the average of the 4 points used in the simulation. As shown in Table 2.3, the
DFSR method generally gives a smaller relative error than the CDRFG method for the same
frequency step.

10−1 100 101 102 103

f [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

S
u
[m

2
s]

(a)

Experiment

CDRFG

DFSR

von Karman

10−1 100 101 102 103

f [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

S
v
[m

2
s]

(b)

10−1 100 101 102 103

f [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

S
w

[m
2
s]

(c)

Figure 2.8: Comparison of velocity spectra at Point 2: (a) S u; (b) S v and (c) S w

Table 2.3: Relative error in standard-deviation for different frequency step

Error(%)
σu σv σw

∆ f (Hz) CDRFG DFSR CDRFG DFSR CDRFG DFSR
4.88 26.23 14.61 13.12 6.94 12.11 4.54
2.44 16.93 11.13 7.24 2.24 6.89 2.24
1.22 9.23 5.53 4.09 1.83 3.02 1.76

2.4. Validation of the generated velocity field 23

2.4.2 Evaluation of two-point statistics

In the previous section, the one-point statistics of the ABL turbulence generated using the
DFSR method was studied in comparison with the experimental data. Here we evaluate the
two-point statistics of the generated velocity field by examining the coherency function and the
spatial correlation.

Figure 2.9 shows the coherency function of the generated turbulence in the vertical and
lateral directions. In the same figure, the coherency functions calculated from the experimental
data and the target function given in Eq.(2.4) are shown. To calculate the target theoretical
coherency function using Eq.(2.4), the required coherency decay coefficients, Cyui and Czui

are determined fitting the experimental data. The respective values of Cyui and Czui are given
in Table 2.2. The coherency function Cohh,k from a sample velocity time-series for any two
points labeled h and k can be computed as

[
Cohh,k(ω)

]2
=

[
S h,k(ω)

]2

S h,h(ω)S k,k(ω)
, (2.18)

where S h,k(ω) is the cross-power spectral density function between the two points and S h,h(ω)
, S k,k(ω) represent the auto-power spectral density function at point h and k, respectively.

In Figures 2.9a-c, the coherency function for each component of the velocity in the verti-
cal direction is determined using Points 1 and 2. Similarly, Figures 2.9e-f show the coherency
functions in the lateral direction calculated using Point 3 and 4. As shown in Figure 2.9, the co-
herency functions from the DFSR method are generally in excellent agreement with the target
function and the experimental measurement for a wide range of frequencies when compared
to the CDRFG method. The accuracy of the DFSR method is attributed to the fact that the co-
herency between the two points is explicitly modeled in the simulation procedure by defining
the cross-spectral density matrix given in Eq.(2.6). Furthermore, the spectral representation
method gives robust control over all velocity components in the three principal directions and
does not require problem-specific tuning, as is typically done in the existing synthetic inflow
generation methods such as CDRFG (Aboshosha et al., 2015c), DSRFG (Huang et al., 2010)
and MDSRFG (Castro and Paz, 2013).

The spatial correlation of the simulated velocity field from the current method is also in-
vestigated by generating a velocity-time series over a horizontal line that contains 30 simula-
tion points. The line is located 0.45 m above the ground and spans 1.5 m in the y-direction.
The lateral spatial correlation of the generated flow field is shown in Figure 2.10 for both the
DFSR and CDRFG methods in comparison with the theoretical curve. The targeted theoretical
curve is computed by integrating Eq.(2.4) over the frequency ranged, [0, ωup] of the simulation
(Hémon and Santi, 2007; Huang et al., 2010). Using a similar expression provided in Hémon

24 Chapter 2. Inflow turbulence generation using spectral representation method

50 100 150 200 250 300

f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0
C

oh
u
(f

)

(a)

Point 1 and 2

Experiment

CDRFG

DFSR

Theoretical

20 40 60 80 100

f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

u
(f

)

(d)

Point 3 and 4

50 100 150 200 250 300

f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

v
(f

)

(b)

Point 1 and 2

20 40 60 80 100

f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

v
(f

)

(e)

Point 3 and 4

50 100 150 200 250 300

f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

w
(f

)

(c)

Point 1 and 2

20 40 60 80 100

f [Hz]

0.0

0.2

0.4

0.6

0.8

1.0

C
oh

w
(f

)

(f)

Point 3 and 4

Figure 2.9: Comparison of the coherency function between points separated vertically (Point 1
and 2) and laterally (Point 3 and 4) for u, v and w components. The theoretical curves shown
in the plots are calculated using Eq.(2.4).

and Santi (2007), the theoretical/target spatial correlation for the velocity components ui is
determined as

S cui
h,k =

∑
l

√
S ui(x(h), ωl)S ui(x(k), ωl)Cohui(x

(h),x(k), ωl), (2.19)

where h and k are two points in space, between which the spatial correlation is sought and l

denotes index of the frequencies.

For the u-component, the spacial correlations from both DFSR and CDRFG methods have
less than a 5% deviation from the theoretical curve. For the v and w components, however, the
DFSR method resulted in an average error of 4.6% and 7.7%, respectively, while the CDRFG
method gave an error up to 60%.

Figure 2.11 shows snapshots of the instantaneous velocity field generated using the CDRFG
and DFSR methods on a vertical plane. The velocity contours in Figure 2.11 show both small
and large-scale turbulence fluctuations, which can translate to eddies of various sizes when
applied to LES. In Figure 2.11, visually comparing the snapshots of the generated turbulence, it
can be seen that large-scale fluctuations are more apparent in the velocity contours of the DFSR
method compared to that of the CDRFG method for v- and w- components of the velocity. This
is further related to the accuracy of each method to model the spatial correlation (see also Figure
2.10). It is worth mentioning that inflow turbulence with appropriate spatial correlation results

2.4. Validation of the generated velocity field 25

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Lateral coordinate, y[m]

0.0

0.2

0.4

0.6

0.8

1.0

S
p

ac
ia

l
co

rr
el

at
io

n

(a)

Target

CDRFG

DFSR

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Lateral coordinate, y[m]

0.0

0.2

0.4

0.6

0.8

1.0
(b)

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Lateral coordinate, y[m]

0.0

0.2

0.4

0.6

0.8

1.0
(c)

Figure 2.10: Comparison of spatial correlation of the generated velocity field using the CDRFG
and DFSR methods: (a) u-, (b) v- and (c) w-components

in a realistic flow field downstream of the inlet and minimizes the decay of turbulence in the
computational domain.

C
D
R
F
G

D
F
S
R

(a) (b) (c)

Figure 2.11: Instantaneous velocity field distribution generated using the DFSR (first row) and
CDRFG (second row) methods for open exposure condition. The columns (a), (b) and (c) are
the u-, v- and w- components, respectively. The dimension of the plane is 3.4 m × 2.5 m.

When generating inflow on a plane with many points (like in Figure 2.11), performing
Cholesky factorization of the CPSD matrix and simulation of the velocity time series at each
point can be time-consuming. A brief discussion regarding the computational cost of the cur-
rent method and details of the implemented code is found in Appendix A.

26 Chapter 2. Inflow turbulence generation using spectral representation method

2.5 Application of DFSR for LES of neutrally stratified ABL
flow

The previous section demonstrated that the proposed method can generate a turbulent wind
field that satisfies the prescribed one- and two-point statistics of ABL turbulence. In this sec-
tion, the DFSR method is applied to simulate a neutrally stratified ABL flow in LES. The LES
study is conducted for three exposure conditions: open, suburban, and urban targeting the ex-
perimental measurements described in Section 2.3. The performance of the proposed approach
is compared with the CDRFG method and a precursor simulation that replicates the entire wind
tunnel geometry. All the numerical simulations are carried out in OpenFOAM 5.0 using the
same geometric scale as the experimental measurements.

2.5.1 Computational domain and grid generation

Two types of computational domains are used in the current study (see Figure 2.12). The
first computational domain is shown in Figure 2.12a and is used to test the proposed inflow
generation method. The cross-sectional dimension of this domain is taken to be the same as
that of the boundary layer wind-tunnel near the turntable (see Figure 2.12). Hence, a 3.4 m
wide and 2.5 m high domain is used as shown in Figure 2.12a. However, in the stream-wise
direction, to cut computational cost, the length of the domain is set to 10 m. The second
computational domain replicates the whole boundary layer wind tunnel geometry, as shown in
Figure 2.12b. The roughness elements shown in Figure 2.12b have a length×width×height of
0.10 m × 0.05 m × 0.025 m and are spaced 0.40 m apart in each direction. Three spires are used
in the model with a 1.22 m height and 0.10 m bottom width. A barrier that has 0.38 m height
and 0.1 m width was modeled (see Figure 2.12b). In total, seven LES cases were performed,
and the details of these simulations are summarized in Table 2.4. The first six simulations use
the domain shown in Figure 2.12a, while the last case, labeled VWT (Virtual Wind Tunnel),
uses the domain shown in Figure 2.12b.

In the upper part of the domain shown in Figure 2.12a, cubical cells are used, while the
lower 20% part uses rectangularly stretched cells that have a maximum aspect ratio of 4 near
the ground surface. The total cell count for these cases is approximately 6.5 million. Case
names with prefixes DF and CD in Table 2.4 are flat tertian simulations that use the inflow
generated from the DFSR and CDRFG methods, respectively. Considering the cost of the
simulation, the VWT case is run only for an open exposure condition. The grid for the VWT
case is generated using different refinement levels. The spires, barrier, roughness elements, and
tunnel floor have additional local refinements, while in the rest of the tunnel, a uniform grid is

2.5. Application of DFSR for LES of neutrally stratified ABL flow 27

Barrier

Spires

Roughness blocks

Turn table

x
y

z 10m

2.
5m

3.4m 3.4m

2.5m

3.4m

1.
85

m

39m

(a) (b)

Probe location

2.5m

Figure 2.12: Geometry of the computational domain used: (a) domain used for testing the
inflow and (b) geometry of the boundary layer wind tunnel for VWT case.

Table 2.4: Summary of simulation set-up for different case studies

Case name Exposure z0[m] Ure f [m/s] Inflow Nx,Ny,Nz Grids
DF1 Open 0.03 13.66 DFSR 400,136,120 6.5 × 106

DF2 Suburb 0.30 12.55 DFSR 400,136,120 6.5 × 106

DF3 Urban 0.70 12.19 DFSR 400,136,120 6.5 × 106

CD1 Open 0.03 13.66 CDRFG 400,136,120 6.5 × 106

CD2 Suburb 0.30 12.55 CDRFG 400,136,120 6.5 × 106

CD3 Urban 0.70 12.19 CDRFG 400,136,120 6.5 × 106

VWT Open 0.03 13.22 Uniform 15 × 106

employed. For cases that use the DFSR and CDRFG methods, 2.5 m (one domain height) away
from the inlet, a vertical line probe is placed to measure the wind profiles (see Figure 2.12a).
This measurement location is chosen considering CWE applications, where the location of
interest is usually one domain height away from the inlet if one uses guidelines such as the
COST (Franke, 2006) recommendation. For the VWT case, the wind profiles are measured
33 m away from the inlet at the center of the turntable, the same way as the experimental
measurements described in Section 2.3.

2.5.2 Boundary conditions

For the cases that use the CDRFG (Aboshosha et al., 2015c) technique, the generated synthetic
inflow is applied at the inlet. Whereas, for DFSR cases, at the inlet, a mean logarithmic velocity
profile is imposed as shown in Figure 2.4, and the generated turbulence is inserted on a vertical
plane close to the inlet (0.625 m) as described in Section 2.2.2. For the side and top walls,

28 Chapter 2. Inflow turbulence generation using spectral representation method

no-slip boundary condition is applied. At the outlet, a Neumann condition for the velocity field
is specified with a zero-pressure outlet. Furthermore, for cases that use the domain in Figure
2.12a, a wall model is necessary to account for the effect of the ground roughness. Hence, a
wall shear stress boundary condition described in Section 2.2.3 is adopted. To use this method,
the center of the wall adjacent cell must lie in the logarithmic layer (Grötzbach, 1987; Piomelli
and Balaras, 2002). In the current study, it may be noted that for simulations that use the wall
shear stress model, all the wall-adjacent cell centers extended into the logarithmic region.

For the VWT case, a uniform velocity of 15 m/s is imposed at the inlet corresponding to
the tunnel fan speed. At the outlet, the same boundary condition used in the CDRFG and
DFSR cases is adopted. On the other surfaces, a no-slip wall boundary condition is imposed,
including the spires, barrier, roughness elements, and bottom, top and side faces of the tunnel.
In the VWT case, since the roughness elements are explicitly modeled, no wall treatment is
needed.

2.5.3 Numerical method

For the subgrid-scale (SGS) modeling, the standard Smagorinsky model (Smagorinsky, 1963)
is used with its model constant CS set to OpenFOAM’s default value of 0.158. The filter width
for the LES, ∆ is defined as the cube-root of the cell volume. It is worth mentioning that the
standard Smagorinsky SGS model suffers from excessive dissipation in laminar or high-shear
regions (e.g., close to walls) (de Villiers, 2006). Thus, for wall areas the CS constant is adjusted
using the Van Driest (Driest, 1956) damping function given as

D = 1 − exp{−z+/A+} (2.20)

where z+ is the wall normal distance in the wall units and A+ = 26 is the Van Driest constant.

For the spatial discretization, a second-order accurate scheme is employed with linear inter-
polation. The time discretization is performed using a second-order accurate backward scheme.
For the simulation of the coupled pressure-velocity equation, a transient solver based on the
PISO (Pressure-Implicit with Splitting of Operation) algorithm is adopted. In most of the sim-
ulated cases, the Courant-Friedrichs-Lewy (CFL) number is set to Co < 0.7. Simulation cases
given in Table 2.4 are run over 36 s duration with a time step of 0.001 s. For the property of
the fluid, the properties of air with a kinematic viscosity of 1.5 × 10−5m2/s and density of 1.25
kg/m3 are used.

2.5. Application of DFSR for LES of neutrally stratified ABL flow 29

2.5.4 Results and comparative discussion

After running the LES cases given in Table 2.4, the results from each case are discussed com-
paratively, taking the experimental data as a reference.

Figure 2.13 shows the downstream evolution of the coherent structures for open exposure
condition for the CDRFG, DFSR, and VWT cases. As shown in Figure 2.13a, for the CDRFG
case, the flow structures near the inlet seem relatively stretched in the longitudinal direction
compared to those seen downstream. Whereas, in the DFSR case, flow structures remain qual-
itatively the same downstream. For the DFSR method, close to the inlet, where the inflow
turbulence is applied (see Figure 2.13b), it is expected that the divergence-free operation al-
ters the statistical qualities of the inflow. However, comparing the flow statistics before and
after the divergence-free operation, it was evident that the changes are generally small, usually
below 3%.

(a) (b)

(c)

Figure 2.13: Iso-surface of Q = 100 colored by the magnitude of the instantaneous velocity
field at 10s for open exposure condition: (a) DFSR; (b) CDRFG; (c) VWT

30 Chapter 2. Inflow turbulence generation using spectral representation method

2.5.4.1 Comparison of ABL wind profiles

The performance of the DFSR method is evaluated by comparing the wind profiles from the
CFD simulation with the experimentally measured data. The wind profiles are recorded at
locations shown in Figure 2.12. Table 2.5 compares the absolute error in wind profiles averaged
over the height for all simulated cases.

Figure 2.14 shows the comparison of the mean velocity profiles from the DFSR, CDRFG,
and VWT cases with those measured from the experiment. Compared to the experimental
data, the average difference over the height is roughly below 2.0% for all cases studied(see
Table 2.5). However, the difference is more pronounced as the terrain becomes rougher.

Table 2.5: Comparison of relative error(%) in wind profiles averaged over the height

Terrain Method Uav Iu Iv Iw
xLu

xLv
xLw

Open CDRFG 0.8 3.3 21.2 37.1 88.4 54.6 57.8
DFSR 0.8 4.3 12.6 25.6 46.1 12.1 22.9
VWT 0.7 5.4 8.8 5.4 11.5 17.9 18.7

Suburban CDRFG 1.2 3.7 21.7 36.7 64.5 78.7 54.8
DFSR 1.6 5.3 13.9 28.1 58.0 22.8 29.1

Urban CDRFG 1.8 4.7 23.6 36.1 70.7 75.7 55.0
DFSR 2.1 5.3 8.5 27.5 44.1 35.5 19.7

0.0 0.5 1.0 1.5

Uav/Uref

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
z r
ef

Open

Experiment

CDRFG

DFSR

VWT

0.0 0.5 1.0 1.5

Uav/Uref

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Suburban

0.0 0.5 1.0 1.5

Uav/Uref

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Urban

Figure 2.14: Comparison of mean velocity profiles from the DFSR, CDRFG, VWT cases for
open, suburban and urban exposure conditions.

Comparison of the turbulence intensity profiles with the experimental data is shown in
Figure 2.15. The deviation from the target experimental profiles for open, suburban, and urban

2.5. Application of DFSR for LES of neutrally stratified ABL flow 31

exposure condition are given in Table 2.5 for each component of the velocity. The stream-wise
turbulence intensity profiles for both the CDRFG and DFSR cases are in excellent agreement
with the experimental data. However, in lateral and vertical directions, the DFSR method
showed better prediction than the CDRFG method. This improvement, as demonstrated in
Section 2.4.2, is attributed to the capability of the DFSR method to generate inflow turbulence
with realistic spatial correlation. Thus, the inflow is sustained up to the target location showing
relatively small decay. Since the VWT case replicates the physical wind tunnel simulation, the
turbulence intensity profiles are generally in excellent agreement with the experimental data
compared to the CDRFG and DFSR cases.

The integral length scale profiles are computed from the velocity time-series at each point
using Taylor’s frozen turbulence hypothesis, and the results are depicted in Figure 2.16. The
deviations of the integral length scale profiles from the experimental values are also reported in
Table 2.5. As shown in Figure 2.16, for xLu profile, the results from both the CDRFG and DFSR
methods are generally higher than the experimental values. However, for xLv and xLw profiles,
the DFSR cases seem to produce comparable profiles with the experimental measurements. As
expected, the integral length scale profiles from the VWT simulation matched well with the
experimental data.

2.5.4.2 Comparison of the velocity spectra

Figure 2.17 shows the spectra of the velocity fluctuations measured at the target location 0.45
m above the ground surface. The figure shows the spectra for the u, v, and w components
comparing the LES cases with the experimental data for the three exposure conditions. The
figure also shows the von Karman spectrum, which was used as a target spectrum to generate
the inflow turbulence. In the inertial subrange, the widely known −5/3 slope is observed in all
cases. The spectral plots also show a rapid drop at a frequency of f ≈ 40Hz due to the grid
resolution limit. This issue has been noticed in LES and is due to the numerical dissipation that
occurs for eddies smaller than the grid-scale (Thomas and Williams, 1999). As seen in Figure
2.17, for the u component of the velocity, the spectra from both the CDRFG and DFSR cases
agree well with the experiment and generally follow the von Karman spectrum. However,
for the v and w components, the spectra obtained from the DFSR cases seem to follow the
experimental measurements more closely when compared to the CDRFG cases. For the VWT
simulation, the spectra of all the velocity components are in agreement with the experimental
measurement for a wide range of frequencies. These observations are generally consistent in
all the three exposure conditions as shown in Figure 2.17.

32 Chapter 2. Inflow turbulence generation using spectral representation method

0.0 0.1 0.2 0.3 0.4

Iu

0.0

0.5

1.0

1.5

2.0

2.5

3.0
z/
z r
ef

Open

Experiment

CDRFG

DFSR

VWT

0.0 0.1 0.2 0.3 0.4

Iu

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Suburban

0.0 0.1 0.2 0.3 0.4

Iu

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Urban

0.0 0.1 0.2

Iv

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
z r
ef

0.0 0.1 0.2

Iv

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2

Iv

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2

Iw

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
z r
ef

0.0 0.1 0.2

Iw

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.1 0.2

Iw

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.15: Comparison of turbulence intensity profiles from the DFSR, CDRFG and VWT
cases for open, suburban and urban exposure conditions.

2.5. Application of DFSR for LES of neutrally stratified ABL flow 33

0 2 4 6
xLu[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
z r
ef

Open

Experiment

CDRFG

DFSR

VWT

0 2 4 6
xLu[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Suburban

0 2 4 6
xLu[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Urban

0.00 0.25 0.50 0.75 1.00
xLv[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
z r
ef

0.00 0.25 0.50 0.75 1.00
xLv[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00
xLv[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00
xLw[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
z r
ef

0.00 0.25 0.50 0.75 1.00
xLw[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.00 0.25 0.50 0.75 1.00
xLw[m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.16: Comparison of profiles of integral length scale of turbulence for DFSR, CDRFG
and VWT cases for open, suburban and urban exposure conditions.

2.5.4.3 Wind pressure flactuations

The effect of the divergence-free modification on the pressure fluctuation can be seen if the
turbulence generated using the spectral representation method is directly applied at the inlet,

34 Chapter 2. Inflow turbulence generation using spectral representation method

10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

101

S
u
[m

2
s]

−5/3

Open

Experiment

CDRFG

DFSR

VWT

von Karman

10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

101

−5/3

Suburban

10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

101

−5/3

Urban

10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

101

S
v
[m

2
s]

−5/3

10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

101

−5/3

10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

101

−5/3

10−1 100 101 102

f [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

S
w

[m
2
s]

−5/3

10−1 100 101 102

f [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

−5/3

10−1 100 101 102

f [Hz]

10−5

10−4

10−3

10−2

10−1

100

101

−5/3

Figure 2.17: Comparison of velocity spectra at a point located 0.45 m above the ground

instead of using the procedure described in Section 2.2.2. Thus, two scenarios were compared:
one that uses the inflow directly at the inlet and the other that applies the DFSR method. Fig-
ure 2.18 shows the standard deviation of the wall surface pressure fluctuation monitored on
the ground surface for these two scenarios. The pressure fluctuation shown in Figure 2.18 is
kinematic pressure (pressure normalized by the air density) measured for open exposure con-
dition. For both cases, close to the inlet, non-physical peak pressure fluctuations are observed;
however, these fluctuations decay as we move further from the inlet. A similar observation
was also reported in other studies, especially when using synthetic inflow generation methods
(Kim et al., 2013; Patruno and de Miranda, 2020; Patruno and Ricci, 2018). From Figure 2.18,
it is clearly seen that the divergence-free modification used in the DFSR method reduced the
pressure fluctuations significantly as compared to the case that applies the inflow directly at the
inlet. It should be noted that the turbulence applied at the inlet should satisfy the continuity
equation so that such artificial fluctuations are suppressed. For example, in CWE applications,
this has important implications because these artificial fluctuations can contaminate the pres-
sure measurements on bluff bodies downstream.

2.6. Conclusions 35

0 2 4 6 8 10

x[m]

10−1

100

101

102

103

p′ w
a
ll

Inlet(direct) DFSR

Figure 2.18: Comparison of pressure fluctuations on the ground surface

2.6 Conclusions

A divergence-free synthetic inflow turbulence generation method is developed for LES and
applied to ABL flow simulation. The method uses the spectral representation method to gen-
erate inflow turbulence with explicitly specified two-point statistics followed by a posterior
divergence-free modification. The method is named the “Divergence-free Spectral Represen-
tation” (DFSR) method. The velocity spectra, coherency function, and spatial correlation ob-
tained from the proposed method are shown to be in excellent agreement with the experimental
data.

Finally, the DFSR method is applied successfully to LES of neutrally stratified ABL flows
for open, suburban, and urban exposure conditions. The downstream wind profiles from the
DFSR method were compared to those found using the “Consistent Discrete Random Flow
Generation” (CDRFG) method (Aboshosha et al., 2015c) and a precursor Virtual Wind Tunnel
(VWT) simulation. The mean velocity, turbulence intensity, and integral length scale profiles,
as well as the velocity spectra from the DFSR method, are generally in satisfactory agreement
with the experimental data. It has been shown that the capability of the DFSR method to gen-
erate inflow turbulence with proper spatial correlation has resulted in a reduction of turbulence
decay downstream as compared to the CDRFG method. Despite the high computational cost,
the results obtained from the VWT simulation showed excellent agreement with the exper-
imental data compared to both DFSR and CDRFG methods. It was also demonstrated that
the procedure used to impose the divergence-free condition in the DFSR method was able
to reduce the artificial pressure fluctuations in the computational domain. Based on the results
presented, the proposed method is expected to be well-suited to CWE applications, particularly
for LES-based wind load evaluation studies.

Chapter 3

Computationally efficient inflow
turbulence generation using a low-rank
matrix decomposition

3.1 Introduction

The spectral representation method (SRM) is one of the most popular techniques for synthe-
sizing a random field given its statistical description. Due to its accuracy and straightforward
formulation, the method is broadly applied in the statistical simulation of random fields, such
as wind velocity fields (Deodatis, 1996b; Di Paola, 1998; Li and Kareem, 1993; Solari and
Carassale, 2000), earthquake ground motions (Deodatis, 1996a; Li and Kareem, 1991; Shi-
nozuka and Deodatis, 1988), and ocean waves (Li and Kareem, 1993; Tucker et al., 1984).
For wind-resistant design, the method is commonly used to generate sample wind velocity
functions for the buffeting analysis of flexible structures such as long-span bridges (Cao et al.,
2000; Carassale and Solari, 2006; Yang et al., 1997) and tall buildings (Chen, 2008; Wu et al.,
2007; Zhang et al., 2008). More recently, SRM has attracted renewed interest in computa-
tional wind engineering studies to generate inflow turbulence for computational fluid dynamics
(CFD) simulations (Kondo et al., 1997; Melaku and Bitsuamlak, 2021; Wang and Chen, 2020).
These examples typically involve the simulation of the multivariate, multi-dimensional, and
non-homogeneous wind field in a spatial domain containing a large number of points. One of
the key challenges in the use of SRM for such large-scale applications stems from its immense
computational cost both in storage and execution time (Kareem, 2008).

For prescribed target cross-power spectral density (CPSD) functions, generating a multi-
variate wind field using SRM involves two main steps. First, the target CPSD matrix is de-

36

3.1. Introduction 37

composed at a finite sequence of frequencies using either Cholesky or eigen-decomposition
(Di Paola, 1998; Li and Kareem, 1995; Shinozuka and Jan, 1972; Shinozuka et al., 1990).
Then, using the decomposed CPSD matrix, the velocity time series is simulated by superpos-
ing harmonic waves with randomly generated phase information (Shinozuka, 1971; Shinozuka
and Jan, 1972). It has been demonstrated that the latter process can be efficiently computed
using the fast Fourier transform (FFT) technique (Deodatis, 1996b; Yang, 1972). However,
the decomposition of the CPSD matrix is the most computationally demanding part of the
procedure. In terms of computation speed, compared to eigen-decomposition, the Cholesky
decomposition is generally less expensive. However, eigen-decomposition is often attractive
because it offers a physically meaningful interpretation of the simulated process with each
eigenmode representing the basis of spatial distribution (Chen and Kareem, 2005; Di Paola,
1998). Moreover, for large-scale applications, by truncating the higher mode contributions,
significant computational savings can be achieved when generating the time series. Never-
theless, the fundamental challenge for both Cholesky and eigen-decomposition is that, for n

number of simulation points, the computational cost of factorizing the CPSD matrix inherently
scales cubically with n (i.e., O(n3)), which becomes prohibitively expensive for large-scale
simulations.

To alleviate the computational burden of factorizing large CPSD matrices in SRM, a host
of cost-effective alternatives have been devised in the past. Notably, Yang et al. (1997) and Cao
et al. (2000) proposed a computationally efficient procedure by explicitly driving a closed-form
expansion of the Cholesky decomposition. However, the method is limited to the simulation
of homogeneous wind fields for points equally spaced along a line. Another group of meth-
ods employs interpolation-enhanced schemes where the decomposition of the CPSD matrix
is done only at limited frequencies, and values for intermediate frequencies are interpolated
(Ding et al., 2006; Gao et al., 2012; Huang et al., 2013; Li et al., 2011; Melaku and Bitsuamlak,
2021; Tao et al., 2018). Although these approaches clearly reduce the overall computational
and storage cost (Tao et al., 2018), practically, they only operate well with Cholesky decom-
position. In principle, it is possible to apply interpolation for eigen-decomposition as well
(Carassale and Solari, 2006); nevertheless, the fact that eigenvectors are not a well-behaved
function of frequency makes the interpolation task particularly challenging, unless through a
stepwise approach (Tao et al., 2018). On the other hand, more recently, revisiting the stochastic
wave-based model proposed by Shinozuka and Deodatis (1991b), alternative formulations via
a wavenumber–frequency spectrum were proposed, ultimately succeeding the decomposition
of the CPSD matrix (Benowitz and Deodatis, 2015; Chen et al., 2018; Peng et al., 2016; Song
et al., 2018). While the wave-based model holds a promising research direction, its extension
to a non-homogeneous wind field with arbitrary coherency and power spectral density (PSD)

38 Chapter 3. Computationally efficient generation of inflow turbulence

functions is not trivial.

In this study, we propose a computationally efficient procedure for simulating a multivari-
ate non-homogeneous wind velocity field using a low-rank representation of the CPSD matrix.
Low-rank matrix decomposition is a well-established technique to reduce dimensionality in
many statistical and machine learning-related applications (Belabbas and Wolfe, 2009; Kumar
et al., 2009; Williams and Seeger, 2001). The proposed technique is specifically developed for
SRM that uses eigen-decomposition or better known as the proper orthogonal decomposition
(POD) method (Di Paola and Gullo, 2001). Fundamental to the POD-based approach is that
only a limited number of modes contain most of the variance in the fluctuation (Di Paola and
Gullo, 2001). Therefore, the main idea behind the proposed approach is to compute these most
pertinent eigenvalues and eigenvectors of the CPSD matrix without decomposing the entire
matrix. To achieve this objective, we apply Nyström method on a subset of columns systemat-
ically sampled from the CPSD matrix. The Nyström method is a classical technique originally
developed for the numerical solution of eigenfunction problems (Baker, 1977). Later on, the
method proved to be effective to speed up applications that involve the eigen-decomposition
of large symmetric positive semi-definite matrices (Williams and Seeger, 2001). This makes
Nyström method an attractive technique to improve the computational efficiency of multivari-
ate wind field simulation in the framework of POD-based SRM.

The original formulation for the POD-based SRM is first briefly revisited in the current
study. Next, the application of the Nyström method to the eigen-decomposition of the CPSD
matrix is discussed with important error metrics and bound to assess the accuracy of the pro-
posed method. Considering that the precision of the Nyström method greatly depends on
the way informative columns are selected from CPSD, the application of different sampling
techniques is presented. Finally, the trade-off between numerical accuracy and computational
efficiency for the proposed method relative to the conventional POD-based approach is inves-
tigated using two numerical examples.

3.2 Wind field simulation using POD-based SRM

Let us assume the correlation between the three components of wind velocity is weak, and
each component can be simulated independently. Thus, the wind velocity field in space can
be represented as a one-dimensional stochastically stationary process that varies with position
and time. Suppose that V0(t) = [V1(t),V2(t),V3(t), . . . ,Vn(t)] represents nV-1D zero-mean
stationary velocity process on n discrete points in space. The target cross-correlation matrix

3.2. Wind field simulation using POD-based SRM 39

R0(τ) for a time lag τ[−∞,+∞] is defined by

R0(τ) =

R0

11(τ) R0
12(τ) . . . R0

1n(τ)
R0

21(τ) R0
22(τ) . . . R0

2n(τ)
...

...
. . .

...

R0
n1(τ) R0

n2(τ) . . . R0
nn(τ)

, (3.1)

and the corresponding two-sided target CPSD matrix S0(ω) is expressed as

S0(ω) =

S 0

11(ω) S 0
12(ω) . . . S 0

1n(ω)
S 0

21(ω) S 0
22(ω) . . . S 0

2n(ω)
...

...
. . .

...

S 0
n1(ω) S 0

n2(ω) . . . S 0
nn(ω)

, (3.2)

where ω[−∞,+∞] is the angular frequency. The diagonal elements R0
j j(τ) and S 0

j j(ω)(j =

1, 2, . . . , n) represent the auto-correlation and auto-power spectral density functions for the
velocity process V j(t), respectively. For any two velocity processes V j(t) and Vk(t)(j, k =

1, 2, 3, . . . , n; j , k), R0
jk(τ) represents their cross-correlation function; while S 0

jk(ω) is their
CPSD function. The superscript 0 in Eq. (3.1) and (3.2) denotes the target functions. It is
worth noting that, for a stationary process, both the auto-/cross- correlation and spectral den-
sity functions are even functions.

Each entry of the cross-correlation and CPSD matrices given in Eq. (3.1) and (3.2) are
linked by Wiener-Khintchine’s Fourier transform pair as,

S 0
jk(ω) =

1
2π

∫ ∞

−∞

R0
jk(τ)e−iωτdτ j, k = 1, 2, 3, . . . , n, (3.3a)

R0
jk(τ) =

∫ ∞

−∞

S 0
jk(ω)eiωτdω j, k = 1, 2, 3, . . . , n, (3.3b)

where i =
√
−1 represents an imaginary unit. From a practical standpoint, especially when

modeling wind velocity processes, both R0
jk(τ) and S 0

jk(ω) can be regarded as real functions,
and the imaginary part is usually negligible (Simiu and Scanlan, 1996). Thus, in the current
study, it is assumed that the matrices given in Eqs. (3.1) and (3.2) are real. One of the principal
properties of the CPSD matrix is that it is symmetric (or Hermitian if it is complex-valued) and
is a positive semi-definite matrix.

Now suppose that the CPSD matrix S0(ω) can be factorized in the following form:

S0(ω) = D(ω)DT(ω), (3.4)

40 Chapter 3. Computationally efficient generation of inflow turbulence

where D(ω) is n × n square matrix, and the superscript T denotes a matrix transpose operator.
The expression in Eq. (3.5) does not particularly lead to a unique factorization of the matrix
S0(ω) (Di Paola, 1998; Li and Kareem, 1995; Shinozuka et al., 1990). In fact, there are various
ways of factorizing the CPSD matrix into such form. For stochastic simulation of wind velocity
field, the two most commonly used approaches are the Cholesky and eigenvalue decomposi-
tion. If one uses Cholesky decomposition, D(ω) = H(ω), where H(ω) is a lower-triangular
matrix. Alternately, if eigenvalue decomposition is employed, the matrix D(ω) is computed
from the eigen-decomposition of S0(ω) as

D(ω) = Ψ(ω)
√
Λ(ω), (3.5)

where Ψ(ω) and Λ(ω) contain the eigenvalues and eigenvectors of the CPSD matrix expressed
in the following form:

S0(ω) = Ψ(ω)Λ(ω)ΨT (ω), (3.6a)

Ψ(ω) = [ψ1(ω),ψ2(ω), . . . ,ψn(ω)], (3.6b)

Λ(ω) = diag[λ1(ω), λ2(ω), . . . , λn(ω)]. (3.6c)

Here in Eq. (3.6), ψk(ω) and λk(ω) (k = 1, 2, . . . , n) are the k-th eigen-vector, and eigen-
value of S0(ω) for frequency ω, respectively. The matrix Ψ(ω) is an orthogonal matrix sat-
isfying the condition Ψ(ω)ΨT (ω) = I, I being an (n × n) identity matrix. Whereas, the di-
agonal matrix Λ(ω) = diag[λ1(ω), λ2(ω), . . . , λn(ω)] holds the eigenvalues, and each diago-
nal entry λk(ω) represents the k-th eigenvalue corresponding to the eigen-vector ψk(ω). In
the subsequent discussions, the eigenvalue are assumed to be sorted in a descending order
(λ1(ω) > λ2(ω) · · · > λn(ω)). Since the CPSD matrix is positive definite, all the eigenvalues are
real and non-negative. The matrix

√
Λ(ω) in Eq. (3.5) is a diagonal matrix formed by taking

the square roots of the corresponding diagonal entries in Λ(ω).

One of the main reasons that the eigenvalue decomposition is more attractive than the
Cholesky decomposition is that the eigenvalues and eigenvectors are physically more mean-
ingful. They give insight into the spatial modal structure of the generated wind field (Di Paola,
1998). Furthermore, since the CPSD matrix exhibit fast decay in the magnitude of the eigen-
values, only the first few leading modes are sufficient to capture a larger fraction of the total
energy of the fluctuation. These properties lend to the application of POD-based SRM, re-
taining only the most pertinent modes. The approximation to the CPSD matrix employing the

3.2. Wind field simulation using POD-based SRM 41

leading r modes can thus be constructed as

S0(ω) ≃ Sr(ω) =
r∑

k=1

λk(ω)ψk(ω)ψT
k (ω) =

r∑
k=1

dk(ω)dT
k (ω), (3.7)

where dk(ω) refers to the k-th column of the matrix D(ω).

The expression on the right-hand side of Eq. (3.7) is essentially an optimal rank-r approx-
imation Sr(ω) to the target CPSD matrix S0(ω). An elaborate procedure on how to efficiently
compute this low-rank approximation using the Nyström method is presented in Section 3.3.

Once the target CPSD functions are defined, the stationary velocity process V(t) can be
generated using Fourier–Stieltjes transform (Lumley and Panofsky, 1964; Priestley, 1981; Van-
marcke, 2010). If we assume V(t) is a stochastically continuous process, V j(t)(j = 1, 2, . . . , n)
can be represented as the real part of a more general Fourier–Stieltjes integral of the form:

V j(t) = R

{∫ ∞

−∞

eiωtdZ j(ω)
}

j = 1, 2, . . . , n, (3.8)

where R{·} stands for the real part, and Z j(ω) is a complex-valued stochastic process as a
function of frequencyωwith orthogonal Fourier increments dZ j(ω) = {Z j(ω+dω)−Z j(ω)}. The
random increment dZ j(ω) is a zero-mean complex process satisfying the following conditions
(Lumley and Panofsky, 1964):

E[dZ j(ω)] = 0, (3.9a)

E[dZ j(ω)dZ∗k (ω′)] =

0, if ω , ω′

S 0
jk(ω)dω, if ω = ω′, j, k = 1, 2, . . . , n,

(3.9b)

where E[·] denotes mathematical expectation, and the ∗ indicates a complex conjugate operator.
The requirement given in Eq. (3.9b) imposes the orthogonality condition on dZ j(ω), i.e., the
increments at non-overlapping frequencies are not correlated. Fundamentally, this requirement
links the statistical properties of Z j(ω) to the target CPSD functions of the process V j(t).

For numerical simulation, the stochastic integral given in Eq. (3.8) needs to be cast in
the form of the Riemann sum. For a practical application, let us now assume that the CPSD
functions have negligible power for frequencies higher than the cut-off frequency ωu = ∆ωN.

42 Chapter 3. Computationally efficient generation of inflow turbulence

Then, Eq. (3.8) can be re-written in discretized form as follows:

V j(t) = R

{∫ ωu

−ωu

eiωtdZ j(ω)
}

≃ R

 N∑
l=−N

eiωlt∆Z j(ωl)

(3.10)

where N is the number of frequency intervals, ∆ω = ωu/N is the frequency step, and ∆Z j(ωl)
is a discrete approximation of the random Fourier increment. There are different ways of
constructing the realizations of ∆Z j(ωl), while satisfying the conditions in Eq. (3.9) (Deodatis,
1996b; Ding et al., 2011; Lumley and Panofsky, 1964). Considering the relationship S 0

jk(ω) =∑n
m=1 D jm(ω)Dmk(ω) from Eq. (3.4) and the requirement in Eq. (3.9b), ∆Z j(ωl) can simply be

constructed using

∆Z j(ωl) =
n∑

m=1

D jm(ωl)
√
∆ωeiϕml j = 1, 2, . . . , n, (3.11)

in which D jm(ωl) are the elements of the decomposed matrix D(ω), ϕml represents random
phase angles uniformly distributed in the interval [0, 2π]. Since ϕml are drawn from a uniform
distribution, by virtue of the central limit theorem, V j(t) is asymptotically Gaussian when N →

∞(Shinozuka and Deodatis, 1991a). The discrete frequencies ωl are located at the center of
each frequency step, and calculated by

ωl = (l − 1)∆ω +
1
2
∆ω l = 1, 2, . . . ,N. (3.12)

After substituting Eq. (3.11) into Eq. (3.10), the final simulation formula can be derived as

V j(t) ≃ R

 n∑
m=1

N∑
l=−N

D jm(ωl)
√
∆ωei(ωlt+ϕml)

= 2

n∑
m=1

N∑
l=1

D jm(ωl)
√
∆ω cos (ωlt + ϕml) (3.13)

The velocity process V(t) resulting from Eq. (3.13) has a period associated with the smallest
frequency ω0 = ∆ω/2 according to Eq. (3.12). Therefore, the generated time series is periodic
with:

T0 =
4π
∆ω
=

4πN
ωu

. (3.14)

Another important remark about Eq. (3.13) is that the generated stochastic wind process V j(t) is
not ergodic. In principle, it is possible to impose ergodic property through double indexing of
the sample frequencies in Eq. (3.12) as demonstrated by Deodatis (1996b). However, for large-

3.2. Wind field simulation using POD-based SRM 43

scale applications with many simulation points, the period T0 required to achieve ergodicity in
correlation would be very long for common practical applications. Despite this shortcoming,
the choice of discrete frequencies based on Eq. (3.12) renders a rate of convergence for corre-
lations that is proportional to 1/N2 (Shinozuka and Deodatis, 1991a). With regard to the time
step, in order to avoid the “aliasing” effect that results from under-sampling of a continuous
fluctuating process, ∆t should satisfy the following condition:

∆t ≤
2π

2ωu
. (3.15)

The computational cost of simulating the velocity field using the expression in Eq. (3.13) can
be expedited using the Fast Fourier Transform (FFT) technique (Deodatis, 1996b; Yang, 1972,
1973). To apply the FFT algorithm to Eq. (3.13), for a single-indexed frequency, the simulation
formula needs to be reformulated in the following form:

V j(p∆t) = R

 n∑
m=1

A jm(q∆t) exp
[
i
(
∆ω

2

)
(p∆t)

],
p = 0, 1, 2, . . . ,NT , j = 1, 2, 3, . . . , n,

(3.16)

where q = 0, 1, 2, . . . ,M is the remainder of p/M; M = 2N; NT is the number of time steps
and A jm(p∆t) is given by

A jm(q∆t) =
M−1∑
l=0

B jm(l∆ω) exp
(
ilq

2π
M

)
, (3.17)

where i =
√
−1 is a complex unit, and B jm(l∆ω) is computed as

B jm(l∆ω) =

2
√
∆ωD jm(l∆ω + ∆ω/2) exp (iϕml), 0 ≤ l < N

0, N ≤ l < M,
(3.18)

in which D jm(l∆ω + ∆ω/2) represents elements of the matrix D(ω) determined from Eq. (3.4).
From Eq. (3.17) it can be seen that A jm(q∆t) is the inverse Fourier transform of B jk(l∆ω),
and can be computed efficiently by any standard FFT routine. The simulation formulation in
Eq. (3.13) takes a computational time that scales with O(N2). Whereas a typical FFT imple-
mentation scales with O(N log N) law, which drastically reduces the overall computing cost.

44 Chapter 3. Computationally efficient generation of inflow turbulence

3.3 Proposed method

This section presents the application of the Nyström method to the spectral representation
method. The Nyström method originated as a technique for obtaining the approximate nu-
merical solution of integral equations (Baker, 1977). Thus, in the first part of the section, we
demonstrate the use of classical Nyström approximation for the numerical treatment of con-
tinuous random process over a one-dimensional space as an eigenvalue problem. Then, the
method is extended to the simulation of a multivariate velocity process with a prescribed target
CPSD matrix. Finally, different landmark selection techniques and important error metrics to
assess the accuracy of the Nyström method are briefly discussed.

3.3.1 The Nyström method for simulating random process over a linear
domain

Consider a zero-mean random process u(x, t) representing a continuous field along a linear
domain L with span length ℓ, where x is the abscissa. Let λk(ω) and ψk(x;ω)(k = 1, 2, . . .)
be the eigenvalues and the corresponding eigenfunctions of the process which are non-null
solution of the linear integral equation of the form (Carassale and Solari, 2002; Tubino and
Solari, 2005): ∫

L

S u(x, x′;ω)ψk(x′;ω)dx′ = λk(ω)ψk(x;ω), (3.19)

where S u(x, x′, ω) is the CPSD function of the process often referred as the kernel func-
tion (Baker, 1977). For positive semi-definite S u(x, x′, ω), the eigenvalues are real and non-
negative, while the eigenfunctions are real-valued orthogonal basis functions that satisfy the
condition (Carassale and Solari, 2006):∫

L

ψ j(x;ω)ψk(x;ω)dx = δ jk. (3.20)

For a set of evenly-spaced sample points X = {x1, x2, . . . xn}, the basic idea of Nyström
method is to approximate the integral in Eq. (3.19) using a simple quadrature rule as

ℓ

n

n∑
j=1

S u(x, x j;ω)ψk(x j;ω) ≃ λk(ω)ψk(x;ω), (3.21)

Here, if we choose x from {x1, x2, . . . xn}, the expression in Eq. (3.19) leads to matrix eigenvalue
problem

Su(ω)Ψ̂(ω) = Ψ̂(ω)Λ̂(ω), (3.22)

3.3. Proposed method 45

where Su(ω) is the CPSD matrix of the discrete system with matrices Ψ̂(ω) and Λ̂(ω) con-
taining its eigenvectors and eigenvalues. Finally, the Nyström extension of eigenvalues and
eigenfunctions of the continuous field are derived by matching Eqs. (3.22) and (3.21) to give
(Williams and Seeger, 2001):

λk(ω) ≈
(
ℓ

n

)
λ̂k(ω), (3.23)

ψk(x;ω) ≈
√

n
ℓ

1
λ̂k(ω)

n∑
j=1

S u(x, x j;ω)ψ̂k(x j;ω) (3.24)

It is worth noting that for bi-dimensional continuous random process u(x, t), closed-form
solution of eigenvalues and eigenfunctions is possible with homogeneous turbulence assump-
tion, as clearly demonstrated by Carassale and Solari (2006). The advantage of the Nyström ex-
tension is that it allows us to recover approximate eigenvalues and eigenfunctions for any non-
homogeneous multi-dimensional process given a set of sample points arbitrarily distributed in
space. Most importantly, the expressions in Eqs. (3.23) and (3.24) motivates analogous exten-
sions of the method to any positive semi-definite CPSD matrix as demonstrated in the following
section.

3.3.2 Approximate Eigen decomposition of the CPSD matrix using Nyström
Method

For the CPSD matrix defined over a set of discrete points in space, the Nyström method works
on the low-rank representation of a given matrix by sampling a representative column subset
from the target matrix (Williams and Seeger, 2001). Recalling that the target CPSD matrix
S0(ω) is a symmetric positive semi-definite n × n matrix, it can be represented using Nyström
method by selecting c ≪ n informative columns from S0(ω) that correspond to c landmark
points in space. Once the sample columns are selected, an n × c subset matrix C(ω) is formed.
Without losing generality, the rows and columns of S0(ω) can be reordered so that S0(ω) and
C(ω) can be re-written in a block matrix form as (Kumar et al., 2009; Williams and Seeger,
2001)

S0(ω) =

W(ω) ST
21(ω)

S21(ω) S22(ω)

 and C(ω) =

W(ω)
S21(ω)

 , (3.25)

where W(ω) ∈ Rc×c represents the intersection of the selected c columns with the correspond-
ing c rows of S0(ω). Alternatively, the matrix W(ω) can be seen as the CPSD matrix of the
selected c landmark points. The matrices S21(ω) ∈ R(n−c)×c and S22(ω) ∈ R(n−c)×(n−c) represent
block matrices formed from the remaining part of the matrix S0(ω).

Now, consider the eigen-decomposition of the intersection matrix W(ω) asΨw(ω)Λw(ω)ΨT
w(ω),

46 Chapter 3. Computationally efficient generation of inflow turbulence

whereΨw(ω) is the orthogonal matrix of eigenvectors satisfying the requirementΨw(ω)ΨT
w(ω) =

I, and Λw(ω) represents a diagonal matrix containing the eigenvalues of W(ω). Then, the
Nyström based low-rank approximation of the matrix S0(ω) is given by (Williams and Seeger,
2001):

S0(ω) ≃ S̃(ω) = C(ω)W†(ω)CT (ω), (3.26)

where W†(ω) denotes Moore-Penrose pseudo-inverse of the matrix W(ω) and can be computed
as,

W†(ω) = Ψw(ω)Λ−1
w (ω)ΨT

w(ω) (3.27)

in which Λ−1
w (ω) is the inverse of the diagonal matrix Λw(ω) that can be computed very easily.

Based on the Nyström method, the approximate eigenvalues Λ̃(ω) and eigenvectors Ψ̃(ω) of
the CPSD matrix S0(ω) are given as (Kumar et al., 2009; Williams and Seeger, 2001):

Λ̃(ω) =
(n
c

)
Λw(ω) and Ψ̃(ω) =

√
c
n

C(ω)Ψw(ω)Λ−1
w (ω). (3.28)

In Eq. (3.28), the terms n/c and
√

c/n are scaling factors introduced to compensate for the
smaller sample size used to approximate the full CPSD matrix S0(ω). It should be noted that
the matrices Λ̃(ω) and Ψ̃(ω) contain the approximate eigenvalues and eigenvectors only for the
leading c modes, not for all modes. Therefore, Λ̃(ω) is a c × c diagonal matrix, while Ψ̃(ω)
has a dimension of n× c. This implies that the number of eigenmodes r that can be determined
from Nyström method is always limited by the number of columns sampled i.e., r ≤ c ≤ n.
Using the eigenvalues and eigenvectors determined from Eq. (3.28), the approximation to the
matrix D(ω) in Eq. (3.5) can therefore be constructed by:

D̃(ω) = C(ω)Ψw(ω)Λ−1/2
w (ω) (3.29)

It can be shown theoretically that Nyström-based POD (NY-POD) approach can be very
attractive to reduce the overall computing and memory cost for large-scale applications. As
stated in Eq. (3.26), one of the main advantages of Nyström method is that we only need to
compute the eigen-decomposition of the matrix W(ω) which is relatively small compared to
S0(ω). Furthermore, based on Eq. (3.29), to effectively compute the decomposed matrix D̃(ω),
one only needs to evaluate and store a fraction of the CPSD matrix in C(ω). To demonstrate
this, if c is the number of columns sampled and the wind field simulation is performed using
the first r ≤ c leading modes, the computational cost of performing eigen-decomposition of
W(ω) scales with O(c3) time, while the matrix multiplication part in Eq. (3.29) takes O(nmr).
Therefore, the total computational complexity of the Nyström method scales with O(c3 + ncr).

3.3. Proposed method 47

Provided that c ≪ n, it is clear that the method offers a significant reduction in computational
cost compared to factorizing the whole matrix at the cost of O(n3). In addition, the NY-POD
method reduces the storage cost of the CPSD matrix from O(n2) to O(cn).

Finally, the wind field simulation formula that uses the leading r ≤ c eigenvalues and the
corresponding eigenvectors determined using the Nyström method can be derived by modify-
ing Eq. (3.13) as

V j(t) ≃ 2
r∑

m=1

N∑
l=1

D̃ jm(ωl)
√
∆ω cos (ωlt + ϕml) j = 1, 2, . . . , n, (3.30)

where D̃ jm(ωl) represents entries of the decomposed matrix D̃(ω) determined using Eq. (3.29).
It should be noted that the simulation formula given in Eq. (3.30) asymptotically approaches the
full eigen-decomposition when the number of columns sampled approaches the total number of
columns. Similar to the standard POD-based formulation given in Eq. (3.13), the computation
of the velocity time series by Eq. (3.30) can be significantly reduced by employing the FFT
technique presented in Section 3.2. Hereafter, the proposed technique that uses Eq. (3.30) is
termed as NY-POD method, as a shorthand for Nyström based POD approach. A step-by-step
procedure for the proposed method is shown in algorithm 1. For faster execution, the pro-
posed procedure is implemented in C++, and Appendix C provides details of the implemented
numerical algorithm.

3.3.3 Error estimate of the Nyström method

It is important that approximation errors relative to eigen-decomposition are quantified in the
form most relevant to the spectral representation method. Here, the approximation error associ-
ated with the Nyström method is characterized by comparing the proximity of the reconstructed
matrix S̃(ω) to the target CPSD matrix S0(ω) in terms of matrix norm. The reconstructed ap-
proximate CPSD matrix S̃(ω) is given by:

S̃(ω) =

W(ω) ST
21(ω)

S21(ω) S21(ω)W†(ω)ST
21(ω)

 (3.31)

Comparing Eq. (3.31) with Eq. (3.25), it is evident that Nyström method perfectly reconstructs
the three of blocks of the target CPSD matrix except for S22(ω) (Williams and Seeger, 2001).
This can be physically interpreted as the method being capable of accurately representing the
CPSD functions at the sampled points and all the CPSD functions between sampled and non-
sampled points. Therefore, the error solely comes from the approximation of the CPSD matrix

48 Chapter 3. Computationally efficient generation of inflow turbulence

Algorithm 1: Nyström based Spectral Representation Method
Input: Points X, number of sample points c, number frequency steps N, number time

steps NT , cut-off frequency ωu, CPSD function
Output: Velocity field V(t)

I ← SAMPLE-POINTS(X, c, n) // select the representative points

for l ∈ [1 . . .N] do
ωl ← (l − 1)∆ω + ∆ω/2
C(ωl),W(ωl)← CPSD(I,X, c, n, ωl) // sample columns from CPSD matrix

Ψw(ωl),Λw(ωl)← EIG-DECOMP(W(ωl)) // perform eigen-decomposition

D̃(ωl)← C(ωl)Ψw(ωl)Λ
−1/2
w (ωl)

Φ← UNIFORM-DIST(0, 2π) // sample phase angles from uniform

distribution

for j ∈ [1 . . . n] do
for m ∈ [1 . . . r] do

for l ∈ [1 . . . 2N] do
if l ≤ N then

B jm(ωl)← 2
√
∆ωD̃ jm(ωl) exp (iϕml)

else
B jm(ωl)← 0

A jm ← IFFT(B jm) // perform inverse fast Fourier transform

for p ∈ [1 . . .NT] do
q← p%(2N)
V j(p∆t)← V j(p∆t) +R

{
A jm(q∆t) exp

[
i
(
∆ω
2

)
(p∆t)

]}

3.3. Proposed method 49

formed using non-sampled points only i.e. S22(ω) ≈ S21(ω)W†(ω)ST
21(ω).

We measure the accuracy of the NY-POD method by calculating the reconstruction error in
Frobenius norm defined as

∥∥∥∥S0(ω) − S̃(ω)
∥∥∥∥

F
=

√√ n∑
j=1

n∑
k=1

[
S 0

jk(ω) − S̃ jk(ω)
]2
. (3.32)

However, a gross comparison using the Frobenius norm of the reconstruction error alone may
not be enough. Hence, for a given modal truncation r, the performance of the NY-POD method
and a full eigen-decomposition (POD) method are compared using a relative reconstruction
error. Let Sr(ω) and S̃r(ω) represent the reconstructed CPSD matrices for the POD and NY-
POD methods using the leading r eigenmodes. Then, the relative approximation errors for each
method are defined as:

ϵpod(ω) =
∥S0(ω) − Sr(ω)∥F
∥S0(ω)∥F

,

ϵnys(ω) =
∥S0(ω) − S̃r(ω)∥F
∥S0(ω)∥F

(3.33)

where ϵpod(ω) and ϵnys(ω) are relative reconstruction errors associated with the POD and NY-
POD methods, respectively. These errors reflect the accuracy of each method to reproduce the
CPSD matrix at a particular frequency ω using the leading r eigenmodes.

Considering the special structure of the CPSD matrix, it is possible to come up with a sim-
ple analytical bound to the reconstruction error of the NY-POD method. At the high-frequency
end, the CPSD matrix becomes a diagonally dominated matrix. If we assume a homogeneous
wind field, the reconstruction errors provided in Eq. (3.33) are bounded by:

ϵpod(ω) ≤ ϵnys(ω) =
∥S0(ω) − S̃r(ω)∥F
∥S0(ω)∥F

≤

√
n − c

n
(3.34)

We can deduce from this bound that the relative error approaches zero as we sample more
columns (c) from the CPSD matrix. Derivation of the error limit expressed in Eq. (3.34) is
demonstrated in Appendix B.

The relative errors given in Eq. (3.33) are important in evaluating the accuracy of each
method at a particular frequency. Nevertheless, the CPSD functions for all frequencies do not
contribute equally to the variance of the fluctuation. For most theoretical spectral models, such
as von Karman spectra (Simiu and Scanlan, 1996), the contribution from the low-frequency
fluctuations is usually large. Thus, to account for contribution from the full range of frequen-
cies, by performing numerical integration, the areas under the CPSD functions (i.e., cross-
covariances) are computed for each entry of the CPSD matrix, and the cumulative errors are

50 Chapter 3. Computationally efficient generation of inflow turbulence

calculated as follows:

Epod =
∥Γ0 − Γr)∥F
∥Γ0∥F

Enys =
∥Γ0 − Γr)∥F
∥Γ0∥F

Γ jk =

N∑
l=1

2∆ωS jk(ωl) j, k = 1, 2, . . . , n

(3.35)

Epod and Enys can be considered as representative of the error in cross-covariance of the velocity
field generated using the POD and NY-POD methods, respectively.

3.3.4 Column sampling schemes

Fundamental to the Nyström method is the choice of the matrix C(ω). In addition to the num-
ber of columns sampled, the accuracy of the method greatly depends on the way this small
subset of c-columns are sampled. Essentially, there are

(
n
c

)
possible combinations to select c

columns out of n. Hence, the main challenge here is to sample the best column subset that
minimizes the reconstruction error ∥S0(ω) − S̃(ω)∥F . In the literature, different sampling tech-
niques have been developed with varying levels of success. One of the most commonly used
approaches is to sample the columns randomly from a uniform distribution. This technique
has been predominantly used in computer science applications (Affandi et al., 2013; Wang and
Zhang, 2013; Williams and Seeger, 2001). Figure 3.1a shows a schematic representation of
the landmark points(solid dots) sampled randomly from uniform probability distribution on a
two-dimensional setup.

For the current problem, however, because the CPSD matrix represents a velocity field on
a grid of points spread in space, random sampling may not be well suited. In fact, for such
kinds of applications, selecting columns corresponding to landmark points well-distributed
in space is a better representative (De Silva and Tenenbaum, 2004; Liu et al., 2006; Silva
and Tenenbaum, 2002). This type of sampling technique is referred to as the farthest point
sampling (FPS) method. Figure 3.1b demonstrates the FPS technique with landmark points
that are mutually far away from each other.

Another class of sampling methods particularly relevant to the current application is a ”clus-
tered” approach. For this method, first, the points are grouped into clusters, and then the cen-
troid of each cluster is used as a landmark point (He and Zhang, 2018; Zhang and Kwok, 2010).
It has been shown that Nyström approximation with clustering is highly effective and generally
gives a very good empirical accuracy (Kumar et al., 2012). In the current study, the points are
clustered on the basis of geometric proximity. We created the centers of the clusters using the

3.4. Numerical examples 51

(a) (b) (c)

(d) (e) (f)

Figure 3.1: Sampling techniques used for points distributed over a plane: (a) pure random; (b)
farthest point; (c) clustered; (d) Halton; (d) Hammersley; (d) Sobol

FPS method, and the neighboring points that are not sampled are assigned to the nearest center
as shown in Figure 3.1c. Ultimately, an informative set of columns is calculated simply by
taking the average of the columns corresponding to the points in each cluster.

In addition to the sampling techniques described above, three other sampling methods com-
monly used in Monte Carlo integration, which include Halton (Halton, 1960), Hammersley
(Hammersley, 1960), and Sobol (Sobol, 1967) sequences, are investigated. Figure 3.1d-f de-
picts these sampling techniques for a two-dimensional space. Since these sampling methods
are based on quasi-random (low-discrepancy) sequences, they show greater uniformity (Mo-
rokoff and Caflisch, 1994). As such, they cover the domain of interest more homogeneously
and are expected to perform better than pure random sampling from a uniform distribution.

3.4 Numerical examples

To evaluate the accuracy and computational efficiency of the proposed method (NY-POD), two
numerical examples are considered. The first example simulates a wind field on the deck of a

52 Chapter 3. Computationally efficient generation of inflow turbulence

long-span bridge, assuming homogeneous wind velocity spectra. Then, in the second example,
a non-homogeneous wind field is simulated on a 2D plane targeting application for boundary
conditions of a transient CFD simulation.

3.4.1 Wind characteristics

For the numerical examples, the wind fields are generated based on the atmospheric boundary
layer(ABL) profiles that characterize an open exposure condition with an aerodynamic rough-
ness height of z0 = 0.03m. Consider a Cartesian coordinate system with x, y and z representing
the longitudinal, lateral, and vertical directions, respectively. The longitudinal component of
the velocity field V(y, z; t) on the yz-plane can be represented as

V(y, z; t) = V̄(z) + V(y, z; t), (3.36)

where V̄(z) represents the mean part of the velocity field and V(y, z; t) refers to the fluctuating
part described statistically by the CPSD functions. For any two velocity processes V j(t) and
Vk(t) at points j and k, their cross-spectral density functions are given by

S V jVk(ω) =
√

S V j(ω)S Vk(ω)Coh jk(ω). (3.37)

Here, values of S V jVk(ω) are used to form the target CPSD matrix S0(ω). The term Coh jk(ω) in
Eq. (3.37) is a frequency dependent coherency function between V j(t) and Vk(t), and defined
as (Davenport, 1961b)

Coh jk(ω) = exp

−|ω|2π

√[
Cy

(
yk − y j

)]2
+

[
Cz

(
zk − z j

)]2

1
2

[
V̄(z j) + V̄(zk)

]
, (3.38)

where Cy and Cz refers to the coherency decay coefficients for the longitudinal component of
the velocity in y and z direction, respectively. In the current study, Cy = 10.0 and Cz = 16.0 are
specified based on the recommendation in Simiu and Scanlan (1996).

For the power spectral density function S V(ω), the well-known von Karman model is used
given by (Simiu and Scanlan, 1996):

S V(f)
σ2

V(z)
=

4
[
LV(z)/V̄(z)

]
[
1 + 70.8

[
f LV(z)/V̄(z)

]2
]5/6 , (3.39)

where f = ω/2π is the frequency; σV(z) represent the standard deviation and LV(z) is the

3.4. Numerical examples 53

Table 3.1: Summary of the main simulation parameters

Parameter Values

Span L = 2000m

Number of points n = 201

Spacing between points ∆y = 10m

Height above the ground z = 50m

Mean velocity V̄ = 40m/s

Turbulence intensity IV = 14.8%

Integral length scale of turbulence LV = 421.4m

Upper cut-off frequency ωu = 4π rad/s

Frequency intervals N = 4096

Time step ∆t = 0.25s

Period of simulation T0 = 4096s

Number of time steps NT = 16, 384

integral length scale of turbulence. For the current examples, the profiles of σV(z) and LV(z)
are determined based on the ESDU-85020 (2001) standard.

3.4.2 Example 1: Homogeneous wind field simulation over a line

For this example, the longitudinal component of the velocity field is simulated on points equally
distributed over a linear domain. Since all the points are assumed to be on a horizontal line, the
wind field is regarded as homogeneous turbulence. As such, the mean velocity, turbulence in-
tensity and integral length scale are set to be uniform for all points on the deck. The parameters
used in the simulation are summarized in Table 3.1.

Figure 3.2 shows the simulation points distributed over the line with landmark points used
to form the matrix C(ω). For farthest point sampling, since the simulation points are equally
distanced, we get landmark points that are uniformly spaced at ∆ys = (n/c)∆y as shown in
Figure 3.2. Whereas, for clustered sampling, about the center of each cluster (see Figure 3.2),
points within ∆ys = (n/c)(∆y/2) distance are grouped together. The central points are the same
as those used in the farthest point sampling arrangement. In the case of random sampling,
however, the landmark points are arbitrarily assigned from a uniform probability distribution,
and each landmark point is sampled at most once.

Before evaluating the statistics of the generated velocity field, first, let us compare the
eigenvalues and eigenvectors found from the NY-POD method with the eigen-decomposition
of the full CPSD matrix for this example. To do so, consider a case with a roughly 10%

54 Chapter 3. Computationally efficient generation of inflow turbulence

FPS - points

1 2 3 7654 8 10

Clustered - points

9

L = 2000m

= 201= 201

Figure 3.2: Distribution of simulation points and selected landmark points.

column sampling using a clustered approach that has c = 20 groups, each containing roughly
10 points. Figure 3.3 compares the eigenvalues approximated by the NY-POD method based
on Eq. (3.28) with exact values determined using eigen-decomposition of the full CPSD matrix
for the first four eigenvalues λ(ω). From Figure 3.3, it is evident that the first few eigenvalues
are predicted with a high level of accuracy for the range of frequencies considered. Similarly,
in Figure 3.4 the eigenvectors from NY-POD and POD methods are compared. The figure
depicts the comparison of eigenvectors at three frequencies (ω = 0.01, 0.1, 1.0) rad/s associated
with the first eight eigenmodes. Considering the sinusoidal variation of the eigenvectors over
the line, for ease of comparison, the curves shown in Figure 3.4 are compared by neglecting
the differences in phase lags. Based on the comparison shown in Figure 3.4, the approximation
from the NY-POD method is generally excellent for lower eigenmodes. The fact that the CPSD
matrix has a low-rank structure (Di Paola, 1998) i.e., the first few eigenvalues carry a significant
portion of the total energy, makes Nyström method clearly advantageous.

Now it is time to evaluate the performance of the proposed method in terms of the error
metrics given in equations (3.33) and (3.35). Figure 3.5 illustrates this comparison. In this
figure, the relative reconstruction error ϵ(ω) determined using Eq. (3.33) is depicted for NY-
POD and POD methods over the frequency range ω[0, ωu]. The errors for the NY-POD method
are calculated using 10%, 20%, and 30% of landmark points with clustered sampling scheme
utilizing all the modes from the NY-POD approach (i.e., r = c). From Figure 3.5a, both NY-
POD and POD methods give the highest accuracy in the low-frequency range as compared to
the high-frequency end. However, it should be noted that, at the high-frequency end where the
CPSD matrix becomes nearly diagonal, the accuracy of both methods approach the analytical
error bound given in Eq. (3.34). Overall, for a given modal truncation r, the difference in
reconstruction error between NY-POD and POD methods is very small over the frequency
range considered.

Similarly, the reconstruction error determined using Eq. (3.35) is shown in Figure 3.5b. The
figure shows the convergence of both methods by varying the number of modes r considered.
As expected, when the percentage of columns sampled increases, the reconstruction error of

3.4. Numerical examples 55

0.0 0.1 0.2 0.3 0.4 0.5

ω[rad/s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

λ
(ω

)

×105

λ 4
, λ

3
, λ

2
, λ

1

POD

NY-POD

Figure 3.3: Comparison of the leading four eigenvalues from NY-POD with POD method.

ψ
1

ω = 0.01 rad/s ω = 0.10 rad/s ω = 1.00 rad/s

ψ
2

ψ
3

ψ
4

ψ
5

ψ
6

ψ
7

ψ
8

POD NY-POD

Figure 3.4: Comparison of the first eight eigenvectors (top to bottom) for NY-POD and POD
methods at frequencies ω = 0.01, 0.1, 1.0 rad/s.

56 Chapter 3. Computationally efficient generation of inflow turbulence

10−3 10−2 10−1 100 101

ω[rad/s]

0

20

40

60

80

100
E

rr
or

(ε
p

o
d
(ω

),
ε n

ys
(ω

))
[%

]
(a)

POD

r = 20

r = 40

r = 67

NY-POD

10%, r = 20

20%, r = 40

30%, r = 67

0.0 0.1 0.2 0.3 0.4 0.5

r/n

0

5

10

15

20

25

E
rr

or
(E

p
o

d
,E

ny
s)

[%
]

(b)

POD

NY-POD(c = r)

Figure 3.5: Comparison of the relative reconstruction error for NY-POD and POD methods:
(a) ϵnys(ω) and ϵpod(ω); (b) Enys and Epod

the NY-POD method is generally reduced. However, sampling a large number of columns to
construct a perfect Nyström approximation defies the main advantage of the method, making
it computationally expensive. Therefore, it is important that an optimal number of landmark
points c that produce the desired level of accuracy is determined.

Another important factor affecting the accuracy of the NY-POD method is the technique
used to sample representative columns from the CPSD matrix. To demonstrate this, the perfor-
mances of random, farthest point, and clustered sampling schemes are compared. Figure 3.6
shows this comparison using the same relative error metrics defined in Eqs. (3.33) and (3.35).
From Figure 3.6, it is evident that the clustered sampling technique consistently outperforms
both random and farthest point sampling methods for a wide frequency range. On the other
hand, compared to random sampling, the results from farthest point sampling are more accu-
rate, considering the fact that landmark points that are well spread in space tend to be more
representative.

3.4.2.1 Comparison of the generated velocity field

Thus far, we have studied the efficacy of the NY-POD method primarily by assessing its accu-
racy to reconstruct the target CPSD matrix. Now, we evaluate its performance by comparing the
statistics of the generated velocity field against the POD approach. To do so, the wind field on
the 201 points shown in Figure 3.2 is simulated using both methods. For the NY-POD method,
20% of the columns were sampled using the clustered scheme as depicted in Figure 3.2.

The velocity field is generated utilizing the leading r = c = 40 modes for both methods.
Figure 3.7 shows the time series of the generated velocity field at points 1, 2, 18 and 20 for the
first 1000s. For the same set of points, Figure 3.8 shows the comparison of the estimated auto-

3.4. Numerical examples 57

10−3 10−2 10−1 100 101

ω[rad/s]

0

20

40

60

80

100

E
rr

or
(ε

p
o

d
(ω

),
ε n

ys
(ω

))
[%

]

(a)

POD

NY-POD(Clustered)

NY-POD(FPS)

NY-POD(Random)

0.0 0.1 0.2 0.3 0.4 0.5

r/n

0

5

10

15

20

25

30

35

E
rr

or
(E

p
o

d
,E

ny
s)

[%
]

(b)

POD

NY-POD(Clustered)

NY-POD(FPS)

NY-POD(Random)

Figure 3.6: Effect of sampling technique on the relative reconstruction error of NY-POD
method: (a) ϵnys(ω) and ϵpod(ω); (b) Enys and Epod

/cross PSD functions from NY-POD and POD methods against the target curves. Considering
that the generated velocity process is not ergodic, the auto-/cross PSD functions shown in
Figure 3.8 are statistical averages of 20 realizations. Figures 3.8c and 3.8d show the CPSD
functions between points separated by 10m and 20m lateral distance, respectively.

As can be seen in Figure 3.8, the proposed method with clustered sampling scheme yields
a spectrum that coincides with the one from the POD method and target function, especially in
the low-frequency region. However, in the higher-frequency end, it appears that the estimated
spectra from both NY-POD and POD methods exhibit loss. Such a compromise is primarily a
consequence of truncating the higher modes that constitute high-frequency fluctuations. These
differences were also manifested in the reconstruction error of the CPSD matrix presented in
Figure 3.5 earlier. Nevertheless, the error introduced in the variance of the fluctuation as a
result of sacrificing some portion of the high-frequency end of the spectra is usually small and
can be tolerable depending on the application. Regarding the correlation functions, Figure 3.9
shows the estimated auto-/cross correlation functions in comparison with the target for the
same points. The correlation functions shown in Figure 3.9 were determined using a biased
correlation estimator. The target auto-/cross correlation functions were calculated by numer-
ically integrating the Fourier transformation of the target CPSD functions given in 3.37. As
can be seen from Figure 3.9, similar to the spectral comparison, the auto-/cross- correlation
functions from NY-POD and POD methods are generally in satisfactory agreement.

An interesting observation from the proposed method lies in the accuracy of the generated
time series at the landmark points sampled using the FPS and random schemes. Figure 3.10
shows the auto-PSD functions for the first two landmark points, 3 and 8. Notably, compared
to the POD method, the auto-PSD functions S 3,3 and S 8,8 from the NY-POD method match

58 Chapter 3. Computationally efficient generation of inflow turbulence

−20

0

20

V
1[

m
/s

]
POD NY-POD

−20

0

20

V
2[

m
/s

]

−20

0

20

V
18

[m
/s

]

0 200 400 600 800 1000

Time[s]

−20

0

20

V
20

[m
/s

]

0 200 400 600 800 1000

Time[s]

Figure 3.7: Generated sample velocity time-series for the first 1000 seconds at points 1, 2, 18
and 20 (top to bottom): POD (left) and NY-POD (right).

the target auto-PSD accurately. This is because Nyström method perfectly reconstructs the
intersection matrix W(ω) of Eq. (3.25) that holds all the spectral information of the landmark
points. Hence, if all the eigenmodes of the W(ω) matrix are utilized for the landmark points,
the results from the NY-POD method are equivalent to using the original POD formulation
utilizing all the eigenmodes of the full CPSD matrix. This makes the NY-POD method partic-
ularly advantageous for applications where high accuracy is needed only at critical locations
in the simulation domain. However, in the case of clustered sampling, since the representa-
tive columns are sampled as averages over each cluster, the accuracy at landmark points is
compromised.

Finally, since the accuracies of both the POD and NY-POD methods greatly depend on the
degree of modal truncation, it is worth investigating the effect of the number of modes used
(r) on the statistics of the generated time series. Table 3.2 summarizes the comparison of the
relative error in standard deviation averaged overall points using 20 realizations. The errors
in the table are listed for random, farthest point, and clustered sampling schemes. The lowest
error in standard deviation for the NY-POD method occurs for clustered sampling scheme.
Overall, considering the significant reduction in computational cost, the relative error incurred
by the NY-POD method is comparable with the original POD formulation for the same order
of modal truncation.

3.4. Numerical examples 59

10−3 10−2 10−1 100
10−5

10−3

10−1

101

103

P
S

D
[m

2
/s

]

(a)

S1,1

POD

NY-POD

Target

10−3 10−2 10−1 100
10−5

10−3

10−1

101

103

P
S

D
[m

2
/s

]

(b)

S20,20

POD

NY-POD

Target

10−3 10−2 10−1 100

Frequency[Hz]

10−5

10−3

10−1

101

103

P
S

D
[m

2
/s

]

(c)

S1,2

POD

NY-POD

Target

10−3 10−2 10−1 100

Frequency[Hz]

10−5

10−3

10−1

101

103

P
S

D
[m

2
/s

]

(d)

S20,18

POD

NY-POD

Target

Figure 3.8: Estimated PSD functions of the velocity time-series generated by NY-POD and
POD methods using the leading r = 40-modes: (a) auto-spectrum S 1,1; (b) cross-spectrum
S 1,2; (c) auto-spectrum S 20,20; (d) cross-spectrum S 20,18

Table 3.2: Absolute relative error in standard deviation averaged over all points

Error(%)

Number of modes (r) 20 40 67 80 100 201

POD 10.91 7.12 4.98 4.35 3.59 1.23

NY-POD (Random) 16.96 12.27 8.21 7.05 5.73 1.23

NY-POD (FPS) 14.78 9.62 6.58 5.79 4.58 1.23

NY-POD (Clustered) 12.82 8.42 5.92 5.41 4.73 1.23

60 Chapter 3. Computationally efficient generation of inflow turbulence

0 25 50 75 100 125 150

0

10

20

30

40

C
or

re
la

ti
on

[m
2
/s

2
]

(a)

R1,1

POD

NY-POD

Target

0 25 50 75 100 125 150

0

10

20

30

40

C
or

re
la

ti
on

[m
2
/s

2
]

(b)

R20,20

POD

NY-POD

Target

0 25 50 75 100 125 150

Time lags [s]

0

10

20

30

40

C
or

re
la

ti
on

[m
2
/s

2
]

(c)

R1,2

POD

NY-POD

Target

0 25 50 75 100 125 150

Time lags [s]

0

10

20

30

40

C
or

re
la

ti
on

[m
2
/s

2
]

(d)

R20,18

POD

NY-POD

Target

Figure 3.9: Estimated correlation functions of the velocity time-series generated by NY-POD
and POD methods using r = 40-modes: (a) auto-correlation R1,1; (b) auto-correlation R20,20;
(c) cross-correlation R1,2; (d) cross-correlation R20,18

10−3 10−2 10−1 100
10−3

10−1

101

103

P
S

D
[m

2
/s

]

(a)

S3,3

POD

NY-POD(Clustered)

NY-POD(FPS)

Target

10−3 10−2 10−1 100
10−3

10−1

101

103

P
S

D
[m

2
/s

]

(b)

S8,8

POD

NY-POD(Clustered)

NY-POD(FPS)

Target

Figure 3.10: Comparison of sample auto-PSD functions at the landmark points: (a) Point 3;
(b) Point 8

3.4. Numerical examples 61

−400 −200 0 200 400

y(m)

0

200

400

600

800

1000
z(
m

)

P1

P2

P3

P4

0 20 40 60 80

V [m/s]

0

200

400

600

800

1000

z[
m

]

V (z)

IV (z)

0 10 20 30 40
IV [%]

0 200 400 600 800 1000

LV [m]

0

200

400

600

800

1000

z[
m

]

LV (z)

Figure 3.11: Simulation points and wind profiles: (a) grid of 50 × 50 simulation points with
100(4%) landmark points; (b) mean velocity and turbulence intensity profiles; (c) integral
length scale profile

3.4.3 Example 2: Inflow generation for large-eddy simulation of ABL
flow

In the previous example, we have demonstrated the application of the proposed method to
simulate a homogeneous stochastic turbulent velocity field on a bridge deck. In this second
example, the application for non-homogeneous turbulence on a two-dimensional plane is illus-
trated. This has interesting practical use in computational wind engineering studies to generate
inflow turbulence for transient CFD methods such as large-eddy simulation (Melaku and Bit-
suamlak, 2021). For such applications, one of the main challenges is the efficient generation of
inflow turbulence on a large number of grid points, which can be improved using the proposed
method.

The points used for simulation are defined by a grid on a square plane extending 1000 m
in y- and z-directions. The grid consists of 50 × 50 = 2500 points as shown in Figure 3.11a.
The wind profile is defined based on the ESDU-85020 (2001) standard for open exposure
condition with a 10 m references wind speed V10 = 37.1m/s. Figures 3.11b-c show the mean
velocity, turbulence intensity, and integral length scale profiles used for the simulation. Except
for the distribution of grid points and wind profiles, the same simulation parameters used in
the previous numerical example are adopted (see Table 3.1). For the NY-POD method, cases
that represent 4%, 10%, and 25% column sampling using a clustered scheme were considered.
To run all the simulations in this example, we used a device with 32-core Xeon(R) 2.2GHz
E5-4620 CPUs, 256GB RAM, and Linux CentOS 7.6 operating system.

62 Chapter 3. Computationally efficient generation of inflow turbulence

Figure 3.12: Snapshot of the generated instantaneous velocity field. The plots from the NY-
POD method are based on clustered sampling with a gird of c = 10 × 10, 16 × 16, 25 × 25, and
50 × 50 landmark points (left to right).

Next, the velocity time series on all points are simulated for different modal truncation
values. Figure 3.12 shows the snapshot of the generated velocity field over the plane for NY-
POD and POD methods using the leading r = 100, 256, 625, and 2500 modes. For the NY-POD
approach, the plots correspond to landmark points with 4%, 10%, 25%, and 100% sampling,
respectively. Note that for NY-POD, all the computed modes are used, i.e., r = c. Visual
inspection of the velocity contours in Figure 3.12 indicates that the NY-POD method is able to
generate a velocity field that has similar flow features to the POD approach. It can be seen that
the eigenmodes are associated with different flow structures. For instance, lower modes are
associated with fluctuations that cover large areas, while the higher modes give rise to small-
scale fluctuations. This is in line with the classical view of turbulence as a superposition of
coherent structures of various shapes and sizes.

Figure 3.13 shows the estimated auto-PSD functions of the velocity time-series at four
points indicated in Figure 3.11a as P1, P2, P3, and P4, which are located at z = 110 m, 250
m, 510 m, and 750 m, respectively. The comparison of the two methods is based on the lead-
ing 625 modes that correspond to 25% sampling in the case of the NY-POD method. Similar
observations noted in the first example were witnessed in this example as well. Except near
the high-frequency region, which is affected by modal truncation, the auto-PSD function from
NY-POD generally follows the one from POD. Figure 3.14 demonstrates the effect of modal
truncation on the high-frequency end. The plots in Figure 3.14 are shown for point P3 using
the leading 100, 256, 625, and 2500 modes. Although the overall accuracy of the POD-based
method is superior when compared to the NY-POD method, it was observed that the estimated

3.4. Numerical examples 63

10−3 10−2 10−1 100
10−3

10−2

10−1

100

101

102

103

104

P
S

D
(m

2
/s

)

(a)

P1(z=110m)

POD

NY-POD

Target

10−3 10−2 10−1 100
10−3

10−2

10−1

100

101

102

103

104

P
S

D
(m

2
/s

)

(b)

P2(z=250m)

POD

NY-POD

Target

10−3 10−2 10−1 100

Frequency(Hz)

10−3

10−2

10−1

100

101

102

103

104

P
S

D
(m

2
/s

)

(c)

P3(z=510m)

POD

NY-POD

Target

10−3 10−2 10−1 100

Frequency(Hz)

10−3

10−2

10−1

100

101

102

103

104

P
S

D
(m

2
/s

)

(d)

P4(z=750m)

POD

NY-POD

Target

Figure 3.13: Comparison of auto-PSD functions from POD and NY-POD method using the
leading 625 modes: (a) Point 1; (b) Point 2; (c) Point 3; (d) Point 4

spectra from the NY-POD method do not sharply drop near the high-frequency end (see Fig-
ure 3.14).

Finally, we demonstrate the numerical accuracy and computational efficiency of the pro-
posed method. Figure 3.15a shows the mean relative error in the standard deviation of the gen-
erated time series averaged over all the simulation points. The errors are plotted as a function
of the percentage of modes utilized. Also, the same figure compares the relative performance
of all the sampling techniques used for the NY-POD method illustrated in Figure 3.1. Based
on Figure 3.15a, over the range of columns sampled, clustered sampling showed the lowest
error compared to the other sampling methods. The quasi-random approaches, including Hal-
ton, Hammersley, and Sobol sampling methods, generally performed better than pure random
sampling. Also, for this example, the quasi-random methods performed as good as, in some
cases, even better than the farthest point sampling method. This is attributed to the spatial
uniformity of the quasi-random methods, which results in a sample more representative of the
simulation domain. Overall, based on results from the first and the current numerical example,
the clustered technique remains the best alternative among the sampling methods tested.

Figure 3.15b shows the normalized CPU time for the NY-POD method against the percent-
age of columns sampled. The CPU times shown in Figure 3.15b are normalized by the total

64 Chapter 3. Computationally efficient generation of inflow turbulence

10−3 10−2 10−1 100

Frequency(Hz)

10−5

10−3

10−1

101

103

P
S

D
(m

2
/s

)
(a)

POD

r = 100

r = 256

r = 625

r = 2500

Target

10−3 10−2 10−1 100

Frequency(Hz)

10−5

10−3

10−1

101

103

P
S

D
(m

2
/s

)

(b)

NY-POD

r = 100

r = 256

r = 625

r = 2500

Target

Figure 3.14: Comparison of estimated auto-PSD functions for different modal truncations(r):
(a) POD; (b) NY-POD

1 10 100
% of modes used

0

5

10

15

20

25

30

E
rr

or
(%

)

(a)

POD
NY-POD (FPS)
NY-POD (Clustered)
NY-POD (Random)
NY-POD (Halton)
NY-POD (Hammersley)
NY-POD (Sobol)

20 40 60 80 100
% of modes used

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

C
P

U
T

im
e

(b)

Decomposition

FFT

Total

Figure 3.15: Performance comparison between NY-POD and POD methods: (a) relative error
in standard deviation; (b) normalized CPU time for NY-POD method

time consumed by the POD-based approach utilizing all the eigenmodes. Also, in the same
figure, the computational time for decomposing the CPSD matrix and generating the velocity
field employing the FFT technique is shown. Looking into Figure 3.15b, it is not a surprise that
for a large number of points, the decomposition of the CPSD matrix is the major computational
bottleneck when compared to simulating the velocity time series. Recalling that the computa-
tional complexity of the NY-POD method scales with O(c3+ncr), its performance is especially
significant when compared to the decomposition of the full matrix at the cost of O(n3). For
instance, as shown in Figure 3.15b, with 25% columns sampling, the proposed procedure takes
only 6.65% of the total CPU time required for the POD-based method with the same order of
modal truncation. Whereas the error for the NY-POD method is 7.90% for cluster sampling,
which appears to be comparable to the 6.61% error of the POD-based method.

3.5. Summary and conclusion 65

3.5 Summary and conclusion

A computationally efficient spectral representation method is introduced to simulate a mul-
tivariate wind velocity field on a large number of points using a low-rank representation of
the cross-power spectral density (CPSD) matrix. The proposed method uses the Nyström ap-
proximation to compute the most pertinent eigenmodes of the CPSD matrix without having to
decompose the entire matrix. By systematically sampling only a small portion of the CPSD ma-
trix, it was demonstrated that the current method could achieve remarkable computational ef-
ficiency with a minimal compromise in numerical accuracy. Furthermore, it was observed that
the performance of the proposed method, to a great extent, depends on the sampling technique
used to construct informative columns from the CPSD matrix. Among the studied sampling
techniques, the clustered scheme yielded the highest numerical accuracy compared to random,
farthest-point, and other sampling schemes commonly used in quasi-Monte Carlo methods. We
then used the proposed method to simulate homogeneous as well as non-homogeneous wind
turbulence for inflow turbulence generation applications. For the same order of modal trunca-
tion, the auto-/cross- power spectral density functions estimated from the velocity time series
generated using the proposed method and the standard POD-based approach are generally in
good agreement. Thus, with the application of the NY-POD method, one can significantly re-
duce the CPU and memory cost of generating highly correlated inlet turbulence for large-eddy
simulations of atmospheric boundary layer flows using the spectral representation method.

Chapter 4

LES for predicting wind loads and
responses of a standard tall building:
prospect for wind-resistant tall building
design

4.1 Introduction

Over the past three decades, fueled by the burgeoning advancements in computing power,
considerable progress has been made in using computational fluid dynamics (CFD) for wind
engineering applications (Blocken, 2014a; Dagnew and Bitsuamlak, 2014; Murakami, 1990;
Stathopoulos, 1997). The increased extreme wind-induced built-environment damage, which is
multi-scale (i.e., ranging from components and buildings to neighborhood and cities) and multi-
physics (i.e., wind-structure interaction, wind-driven-rain (Blocken and Carmeliet, 2004), snow
drift (Tominaga and Stathopoulos, 2011), wind-born-debris (Kakimpa et al., 2010), and other
climate stressors (Kahsay et al., 2021)), is demanding integrated numerical and experimental
techniques that can handle the scale and physics complexities of the engineering problems.
Furthermore, the need to have a preliminary assessment of wind-induced loads, responses,
damage, and loss in a quick and approximate manner at the early stages of planning and de-
signing a project is becoming far more beneficial than accurate results at the end of the project
life cycle. The other driving factor for using computational methods like CFD stems from
the need for iterative solutions in the design optimization process where numerical approaches
coupled with efficient surrogate models are inherently suitable (e.g., aerodynamic optimization
of tall buildings and long-span bridge sections) (Birhane et al., 2017; Elshaer and Bitsuamlak,

66

4.1. Introduction 67

2018; Elshaer et al., 2017a). There are still challenges in CFD application, however, especially
for wind load evaluation that require adequate modeling of lower ABL turbulence conditions
for estimating peak loads and responses with reasonable accuracy.

For the wind-resistant design of structures, computational methods offer several advantages
over conventional wind tunnel testing. Most importantly, because of their high versatility and
shorter model development cycle, they can seamlessly be integrated into most design iterations
where experimental testing cannot be achieved within a given time frame. Moreover, CFD pro-
vides enormous information about the relevant flow field without having virtually any physical
constraints. These advantages make CFD a promising tool to serve as a complementary tool to
wind tunnels for the foreseeable future before eventually becoming widely used by the industry
when large-scale computing resources become more abundant and verified and validated CFD
workflows and guidelines become available. Despite these advantages, the accuracy and relia-
bility of the CFD for computational wind load evaluation is still a primary concern (Aboshosha
et al., 2015c; Cochran and Derickson, 2011; Dagnew and Bitsuamlak, 2013; Melaku et al.,
2022; Ricci et al., 2018) at the moment. The wind-tunnel modeling had undergone several
validation efforts with full-scale measurements before it enjoyed industry-wide acceptance
(Dalgliesh, 1975; Davenport, 1988; Holmes, 1975; Newberry, 1967). For CFD to become a
reliable wind engineering tool, it needs comparable and extensive verification and validation
against bench-mark experimental and field measurements focusing on turbulence modeling.
Even more, stricter guidelines and streamlined validation schemes are required, especially for
non-expert users. To handle these multi-faceted challenges, the development of CFD mod-
els of varying levels of fidelity, complemented with established experimental techniques for
calibration and validation, and a standardized guideline is essential.

In the past, notable research efforts have been made to study wind loads on buildings using
CFD by employing turbulence models of various levels of fidelity. Computational model-
ing of wind flow around bluff objects like tall buildings is challenging mainly because it is a
high Reynolds number flow characterized by peculiar flow features like impingement, separa-
tion, reattachment, recirculation, and vortices shedding. Resolving the entire turbulent spectra
for such type flows using direct numerical simulation (DNS) of the governing Navier–Stokes
equation is simply computationally intractable even for the most simplified cases, let alone
for a building located in a city center. Thus, resorting to some turbulence closure scheme
remains the only viable alternative. The most commonly used turbulence models for com-
putational wind engineering applications are the Reynolds-averaged Navier-Stokes equations
(RANS) and large-eddy simulation (LES). The RANS-based models provide the statistical av-
erage of turbulence quantities, while LES captures the transient nature of the flow yielding
higher-order statistics, such as standard deviation and peak. In LES, large scales of the turbu-

68 Chapter 4. LES for predicting wind loads and responses of a standard tall building

lent fluctuations are resolved up to the smallest grid scale (filter width), and only the effect of
small scales of turbulence is modeled. For a detailed review of the turbulence closure schemes
commonly utilized in computational wind engineering studies, the reader is advised to refer
to the work of Murakami (1998). Among the available turbulence modeling methods, large-
eddy simulation (LES) is now becoming a powerful tool because of its inherent capability to
handle complex unsteady turbulent flows that are commonly encountered in wind engineering
applications (Dagnew and Bitsuamlak, 2014; Tamura, 2008). Due to this merit, LES is now
becoming a valuable tool in different subdomains of wind engineering, including structural
loading, pedestrian-level wind, pollutant dispersion, and ventilation studies.

Since the current study focuses on modeling transient wind loading and responses of tall
buildings, here we present a brief review of the related works, primarily focusing on LES-based
wind load evaluation studies with turbulent atmospheric boundary layer (ABL) conditions. A
more comprehensive review of the current progress in computational wind load evaluation of
buildings can be found in Dagnew and Bitsuamlak (2014); Thordal et al. (2019). Previous
studies have shown that the flow field around tall buildings can be simulated with satisfactory
accuracy (Murakami, 1993; Tominaga et al., 2008a). However, predicting the unsteady sur-
face pressure fluctuations, especially peak values, is often challenging and requires substantial
mesh refinement near the building surface (Nozu et al., 2008, 2015). Despite the encouraging
success of LES for many industrial flows (Fureby, 2008; Piomelli, 1999; Sagaut and Deck,
2009; Tucker and Lardeau, 2009), applications to wind load evaluation have been limited until
quite recently. By performing an aerodynamic wind load evaluation on the CAARC building
with LES, Huang et al. (2007) showed that the fluctuating pressure coefficients agreed with
the experimental data better than those from RANS-based models. However, the power spec-
tral densities of the integrated aerodynamics were not accurately captured mainly due to the
limitation of the turbulent inlet boundary conditions used (Aboshosha et al., 2015c; Huang
et al., 2007). Later on, developing an inflow turbulence generator suited for ABL flows, Huang
et al. (2010) showed that surface pressure fluctuations and base aerodynamic loads could be
predicted with better accuracy if inflow turbulence with prescribed target velocity spectra is
specified at the inlet. Employing the method developed by Huang et al. (2010), different vali-
dation studies have been conducted mainly on the CAARC (Dagnew and Bitsuamlak, 2014; Li
et al., 2015; Zhang et al., 2022, 2015). Other related studies that investigate surface pressure
fluctuations can also be found in the works of Daniels et al. (2013); Lamberti and Gorlé (2020,
2021).

Several studies have compared the performance of different inflow turbulence generation
methods for tall building aerodynamics (Melaku et al., 2017; Yan and Li, 2015). Aboshosha
et al. (2015c) incorporated Davenport’s coherency function (Davenport, 1961b) into the in-

4.1. Introduction 69

flow proposed by Huang et al. (2010) improving its performance for CWE applications. They
demonstrated that proper modeling of the frequency-dependent coherency function is crucial
for accurately predicting tall building wind-induced response, especially if the building is dy-
namically sensitive. The inflow turbulence generator has been refined further by Castro et al.
(2017) and Yu et al. (2018). Utilizing this inflow turbulence generation method, Elshaer et al.
(2016) investigated surface pressure distribution and wind induced-response of isolated and
surrounded CAARC model and reported a reasonable agreement with experimental measure-
ments.

Most studies discussed so far focus on validating the mean and root-mean-square (RMS) of
surface pressure fluctuations for a selected few wind directions using limited pressure points.
Although validating these quantities is the initial step, it is not sufficient to establish the use
of LES for evaluating cladding loads and overall structural loads and responses (Ricci et al.,
2018). The accurate modeling of peak pressure is crucial for adequately predicting cladding
loads. Typically this analysis is done over the 360◦ azimuth at an increment of 10◦. More-
over, matching the mean and RMS statistics of local surface pressure fluctuations with good
precision may not always result in a more accurate prediction of overall structural loads and
responses. It is well understood that the overall structural loads and responses are highly influ-
enced by the structure’s mechanical properties, such as natural frequency, mass, stiffness, and
damping (Davenport, 1971). Notably, the unsteady aerodynamic loads with frequencies near
the natural frequency of the structure considerably affect its wind-induced response. Hence,
during the LES modeling process, proper consideration must be given to adequately resolve the
spectral content of these unsteady aerodynamic loads. It is well recognized that the accuracy
of an LES model is highly dependent on the boundary conditions, the subgrid-scale model, and
the quality of the computational grid used (Fureby, 2008; Tucker and Lardeau, 2009).

Among the LES parameters, the inflow boundary condition is the most influential parameter
to accurately model the target statistical properties of the atmospheric boundary layer (ABL)
for accurate wind load prediction. To this end, Melaku and Bitsuamlak (2021) proposed a new
synthetic inflow turbulence generation method that satisfies one- and two-point statistics of
ABL flows. The technique named the Divergence-free Spectral Representation (DFSR) method
uses the spectral representation method (Deodatis, 1996b; Shinozuka and Jan, 1972) to gener-
ate spatially and temporarily correlated inflow turbulence. Although it showed improvement
in modeling the characteristics of ABL flows compared to its predecessors (Aboshosha et al.,
2015c; Huang et al., 2010), its broader applicability for wind load applications has not been
demonstrated. This study aims to investigate the application of LES to predict the cladding
loads and the wind-induced response of a standard tall building – CAARC (Commonwealth
Advisory Aeronautical Research Council) – using the DFSR inflow generator (Melaku and

70 Chapter 4. LES for predicting wind loads and responses of a standard tall building

Bitsuamlak, 2021).

The remaining part of this paper is organized into five sections. Section 4.2 briefly describes
the target boundary layer wind tunnel measurement conducted to validate the LES model. In
Section 4.3, the details of the LES modeling process are described. The dynamic analysis
procedure and structural properties used to calculate the wind-induced response of the building
are presented in Section 4.4. Section 4.5 discusses the comparison of the LES results with
experimental measurements. Finally, Section 4.6 provides a summary and conclusion of the
present numerical study.

4.2 Boundary layer wind tunnel experiment for LES valida-
tion

A set of boundary layer wind tunnel tests were conducted on the CAARC building to generate
aerodynamic data for validating the LES results. The experiment was conducted in Tunnel II of
the Boundary Layer Wind Tunnel Laboratory (BLWTL) at Western University. Measurements
of the approaching wind profiles and the surface pressure fluctuations on the CAARC building
were conducted at a 1:400 geometric scale. The CAARC building is a rectangular prismatic
building with a full-scale height H = 182.88 m, width B = 45.72 and depth D = 30.48 m as
shown in Figure 4.1b.

4.2.1 Target atmospheric boundary layer flow

The test facility used is a close-circuit boundary layer wind tunnel with a working section of
approximately 3.4 m wide and 2.5 m high, and 39 m long fetch length. The long working
section of the tunnel allows the development of thick turbulent boundary layers over a rough
tunnel floor covered with generic automated roughness blocks. The tunnel’s inlet has a saw-
tooth strip, three spires, and one solid stripping board to model the turbulence characteristics.
These additional turbulence-generating features allow the thickening of the boundary layer,
which increases turbulence intensity and integral length scale without significantly altering the
mean velocity profile (Davenport and Isyumov, 1967).

The atmospheric boundary layer (ABL) flow is simulated at the same scale as the building
model. The simulation of the exposure condition is based on the characteristics of the target
ABL flow provided in Engineering Sciences Data Unit (ESDU, 2001a; ESDU-85020, 2001).
The targeted upstream exposure condition for the present study is an open terrain characterized
by an aerodynamic roughness height of z0 = 0.025 m. The target mean velocity and turbulence

4.2. Boundary layer wind tunnel experiment for LES validation 71

0.0 0.3 0.6 0.9 1.2 1.5

Uav/UH

0.0

0.5

1.0

1.5

2.0

2.5

3.0
z/
H

Building height

(a)

Uav (BLWTL)

Uav (ESDU)

Iu (BLWTL)

Iu (ESDU)

0 20 40 60 80 100
Iu[%]

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100

f
S
u
/σ

2 u

(b)

BLWTL

von Karman

Figure 4.1: Characteristics of BLWT ABL flow: (a) mean velocity and stream-wise turbulence
intensity profiles; (b) stream-wise velocity spectrum at the roof height in comparison to von
Karman spectrum.

intensity profiles for the longitudinal component of the velocity were based on the ESDU-
85020 (2001). The wind tunnel profiles are measured on the turntable just upstream of the
turntable center. The velocity is recorded using hot-wire velocity probes placed on a vertically
traversing rig for about 90 seconds at a 400 Hz sampling rate. Although the hot-wire probes
provide high-resolution instantaneous flow velocity, the measurements are only limited to the
stream-wise direction. Figure 4.1 compares the measured wind tunnel profiles against the
targets. As shown in the figure, the mean wind speed and turbulence profiles simulated in the
testing facility reproduce the turbulence characteristics of the natural wind given by ESDU-
85020 (2001) standard. Similarly, the spectrum of the longitudinal component of the velocity
is compared with the von Karman spectrum in Figure 4.1b.

4.2.2 High-frequency pressure integration model

Aerodynamic loads on the CAARC building were measured using a high-frequency pressure
integration (HFPI) model. The HFPI model is 3D-printed from plastic material and equipped
with pressure taps that are connected to pressure transducers to measure the wind-induced
pressure. Figure 4.2a shows the close-up views of the pressure model with the upstream terrain
simulation setup. Overall, eleven wind directions (θ) from 0◦ to 90◦ in increments of 10◦ and
additional 45◦ were tested. The pressure distribution on the exterior surface of the building
is synchronously measured using 367 pressure taps distributed over the building surface as
shown in Figure 4.2b. The pressure time history was recorded at a sampling rate of 400 Hz.
From previous similar experimental measurements, it was estimated that the pressure tubing

72 Chapter 4. LES for predicting wind loads and responses of a standard tall building

Wind
(a) (b)

𝜃

𝑧

𝑥𝑦
𝐵 𝐷

𝐻

Figure 4.2: Wind tunnel model of the CAARC building: (a) picture of the HFPI model at the
test section; (b) plan dimensions and definition of coordinate system

system used has negligible attenuation for frequencies only up to about 200 Hz (BLWTL,
2007; Ho et al., 2005). Therefore, a low-pass digital filter of 200 Hz is applied to the final
pressure data. The pressure fluctuations are referenced to the free-stream mean static pressure
recorded upstream of the turntable. Finally, the surface pressure coefficients are calculated
by normalizing the measured pressures by the mean dynamic pressure at the building height.
The pressure tests were conducted at a roof-height mean wind speed of UH = 12.35 m/s and
turbulence intensity of 10.6%. The Reynolds number based on the roof-height mean wind
speed and building height is Re = 3.76 × 105.

4.3 LES modeling

All the cases described in the BLWTL experimental test (presented in Section 4.2) were mod-
eled using LES. The simulations were performed in model scale at 1:400 geometric scale, the
same as the BLWT experimental setup. The simulation conditions of the LES models are set
to match the experiments as much as possible. Table 4.1 summarizes the steps followed in
wind load evaluation in boundary wind tunnels and the corresponding computational steps that
needs to be followed to produce comparable results are also articulated in the same table. The
ABL is assumed to be neutrally stratified, and the flow develops over rough, homogeneous ter-
rain. Considering the high computational cost of wall-resolved LES for high Reynolds number
flows, the simulations in the current study are conducted using a wall-modeled LES. All the
simulations were conducted employing open source CFD toolbox OpenFOAM-8 (Greenshields
and Weller, 2022a; Weller et al., 1998).

4.3. LES modeling 73

Table 4.1: Guiding the numerical procedure with experience from wind tunnel

Step Wind tunnel procedure Numerical procedure
1. Test profile determination through upwind terrain

roughness assessment using standard methods
Detailed upwind roughness and topography mod-
eling in large-size computational domain simula-
tion or proper inflow turbulence generation by us-
ing synthetic methods (Aboshosha et al., 2015c;
Melaku and Bitsuamlak, 2021)

2. Construction of physical aerodynamic study build-
ing model

Preparation of accurate three-dimensional study-
building aerodynamic computer model

3. Inner disc trace and immediate surrounding build-
ing construction within 500 m radius from the
study site

Preparation of three-dimensional computer model
for the immediate surrounding buildings and to-
pographic elements within 1 km radius (Elshaer
et al., 2016, 2017b)

4. Upwind tunnel floor roughness and spire adjust-
ment based on test profile requirement

Appropriate implicit or explicit roughness model-
ing method coupled with proper inflow turbulence
generation method (Abdi and Bitsuamlak, 2014a;
Aboshosha et al., 2015a; Melaku and Bitsuamlak,
2021)

5. Wind tunnel testing for typically 36 wind direc-
tions by turning the turn table and different test
configurations (un-sheltered, present, future con-
figurations)

Numerical simulation for 36 wind directions by
creating a computational domain and generating
grids appropriate for each wind direction and dif-
ferent configurations (un-sheltered, present, future
configurations)

6. Wind tunnel data analysis to obtain overall drag
(along-wind forces) and lift (across-wind forces)
for design, detailed pressure coefficient (Cp) dis-
tributions on the faces of the buildings being stud-
ied, or on any required portion of the building for
C&C design

Numerical output data analysis to extract over-
all drag (along-wind forces) and lift (across-wind
forces) for design, detailed pressure coefficient
(Cp) distributions on the faces of the buildings
being studied, or on any required portion of the
building for C&C design

7. Integrate wind tunnel data with local meteorologi-
cal information at the study site to account for di-
rectional effects (Warsido and Bitsuamlak, 2015)

Integrate numerical output data with local meteo-
rological information at the study site to account
for directional effects (Warsido and Bitsuamlak,
2015)

8. Obtain design wind loads and other wind-induced
responses as required

Obtain design wind loads and other wind-induced
responses as required

4.3.1 Governing equations

Assuming the wind flow around the building as an incompressible fluid, the filtered Navier-
Stokes equations that govern the motion of the large-scale eddies can be written as:

∂ũi

∂xi
= 0, (4.1)

∂ũi

∂t
+

∂

∂x j

(̃
uĩu j

)
= −

1
ρ

∂ p̃
∂xi
+ ν

∂2ũi

∂x j∂x j
−
∂τi j

∂x j
, (4.2)

where ũi is the i-th component of the filtered velocity, p̃ represents the filtered pressure, ν is the
kinematic viscosity, and ρ refers to the density of the fluid. The shear stress term τi j represents

74 Chapter 4. LES for predicting wind loads and responses of a standard tall building

the effect of small-scale eddies and is expressed in the form of a residual term as

τi j = ũiu j − ũĩu j. (4.3)

This expression is called the subgrid-scale (SGS) stress and is often modeled using the eddy-
viscosity hypothesis. The fundamental premise of LES is that the SGS motions are spatially
homogeneous and hence can be modeled universally. The primary role of the SGS model is to
dissipate energy from the resolved scales (Nicoud and Ducros, 1999). For the current study,
the standard Smagorinsky SGS model (Smagorinsky, 1963) is adopted as

τi j −
1
3
δi jτkk = −2νtS̃ i j, S̃ i j =

1
2

(
∂ũi

∂x j
+
∂ũ j

∂xi

)
, (4.4)

where δi j is the Kronecker delta, S̃ i j represents the strain rate tensor of the resolved velocities,
and νt represents turbulent eddy-viscosity. For small-scale turbulent motions, assuming that
the energy production and dissipation are in equilibrium, νt is obtained by

νt = (Cs∆)2|S̃ |, |S̃ | =
√

2S̃ i jS̃ i j. (4.5)

Here, the parameter ∆ represents the filter width defined as the cube root of the cell volume.
Whereas, the coefficient Cs is Smagorinsky’s constant and can be expressed as (Sullivan et al.,
1994)

Cs =

Ck

√
Ck

Cϵ

1/2

, (4.6)

in which the coefficients Ck and Cϵ are constants associated with the production and dissipation
of sub-grid scale turbulent kinetic energy. Assuming the grid size lies within the inertial sub-
range, the constants Ck and Cϵ can be obtained from spectral analysis of Kolmogorov’s −5/3
spectrum (Lilly, 1967; Moeng and Wyngaard, 1988). For ABL flows, the value of Cs usually
used with the standard Smagorinsky SGS model range between 0.1 and 0.2 (Vasaturo et al.,
2018). For the current study, we used Ck = 0.094 and Cϵ = 1.048 which yields a Smagorinsky
constant Cs = 0.1678. In order to study the sensitivity of the numerical results to the Smagorin-
sky constant Cs used, by changing the value of Ck, three values, specifically Cs = 0.1, 0.17 and
0.2, were also investigated. Because of its simplicity and low computational cost, the standard
Smagorinsky model is widely used in CWE literature with considerable success (Murakami,
1998; Tominaga et al., 2008a). However, it is well known that it produces excessive dissipation
close to solid boundaries (Sullivan et al., 1994; de Villiers, 2006). To account for this effect,
near the solid walls, the coefficient Cs is multiplied by the van Driest damping factor given as

4.3. LES modeling 75

(Van Driest, 1956):

D
(
y+

)
= 1 − exp

{
−

y+

A+

}
(4.7)

where y+ is normalized wall coordinate and A+ = 26 is the van Driest constant.

For comparison purposes, in addition to the standard Smagorinsky model, two other SGS
modeling techniques, namely the Wall Adapting Local Eddy-viscosity (WALE) model (Nicoud
and Ducros, 1999) and the one equation eddy-viscosity model developed by Yoshizawa (1986)
were studied for 0◦ wind direction. The performance of the three SGS models for predicting
wind loads is compared employing the same computational grid and numerical setup.

4.3.2 Dimensions of the computational domain

The choice of the computational domain is often dictated by the extent of the region of interest
and the boundary conditions. The building needs to be sufficiently far away from the domain’s
boundaries to minimize the effects of the boundary conditions (Dagnew and Bitsuamlak, 2013;
Franke et al., 2011; Mahaffy et al., 2007). Furthermore, the domain should be large enough to
encompass the largest energy-carrying eddies in the atmospheric boundary layer. In contrast,
having a smaller computational domain is always preferable to reduce computational costs.
Therefore, the adequacy of the domain size needs to be decided based on a sensitivity analysis.
In the current study, however, since comparison with experimental measurement is the primary
interest, the dimensions of the computational domain were adapted from the wind tunnel where
the validation measurements were carried out.

Figure 4.3 shows the extent of the computational domain employed with the boundary con-
dition types. The cross-sectional width and height of the computational domain are set to 3.4
m (7.5H) and 2.5 m (5.5H), which are the same as the width and height of the wind tunnel at
the turntable (see the description in Section 4.2). Since the inflow is generated synthetically
(see Section 4.3.4.1), the length of the computational domain is set to 10 m (22H) instead of
the long fetch length of the wind tunnel used to develop the flow. The size of the current com-
putational domain satisfies the minimum requirements of the COST recommendations (Franke
et al., 2011). The maximum blockage ratio of the model, which occurs at the oblique wind
angle of attack, is approximately 0.75%. This value of blockage ratio is significantly smaller
than the 3% limit recommended by Franke et al. (2011) as well as the maximum acceptable
blockage ratio for wind tunnel studies of buildings and structures (e.g., 8% in ASCE-49-21
(2022)). The computational domain dimensions are kept the same for all simulated cases.

76 Chapter 4. LES for predicting wind loads and responses of a standard tall building

5.5H

𝑧

𝑥𝑦

Figure 4.3: Dimensions of the computational domain relative to the building height(H) and
naming of boundaries.

4.3.3 Mesh generation

For the computational grid, we used unstructured mesh with several refinement regions as
shown in Figure 4.4. The computational grid is generated using Numeca Hexpress® meshing
tool with the hex-dominant meshing option. Because the flow features in the vicinity of the
building are more critical in determining the wind loads, the computational grid is designed to
have progressive refinement close to the building surface. The grid size used in each refinement
region is shown in Figure 4.4. The first two additional refinement zones (Zone-2 and Zone-3)
extend from the inlet into the wake of the building to sustain the inflow turbulence up to the
building location. The extent of the refinement zones remains the same for all wind directions.
However, the orientation of Zone-6 is changed together with the building, depending on the
wind direction. On the surface of the building, an additional seven-cell thick surface refine-
ment is applied. Overall, the total number of cells per case ranges between 9.85− 10.7 million,
depending on the wind direction. The y+ values on the building surface were directly estimated
from an initial test run using the computational grid generated for the 0◦ wind direction. In
general, it was found that the y+ values range between 0.4 to 35, depending on the location
on the surface. The time-averaged maximum y+ value on the surface of the building is ap-
proximately 35, which occurs near the building’s upwind edges where high flow acceleration
happens. However, the mean area averaged y+ on the surface is approximately 7. Considering
the unstructured nature of the mesh, some non-orthogonality is expected. Non-orthogonality
of the grid measures the angle between the line connecting the centers of two adjacent cells
and the normal of the face shared by them. It gauges how rectangular the mesh is and assumes
a zero value for a fully rectangular structured mesh. For the current study, the maximum non-

4.3. LES modeling 77

2H 3H

2H
1.25H

2H 3HH

12H

10H

Zone-4

Zone-1

Zone-1

Zone-2

Zone-2

Zone-3

Zone-3

(b)

(c)

(a)

0.25DH/2

H

Zone-6

Zone-5

1.15H

Zone-1

Zone-2
Zone-3

Zone-4

Zone-5

Zone-6

H/9

H/18
H/36

H/73

H/146

H/292
Building H/585

Region Grid size

Figure 4.4: Design of the computational grid showing all the mesh refinement zones (sample
case for 0◦ wind direction): (a) close-up sectional view near the building; (b) horizontal section;
(c) longitudinal section. The mesh sizes in each zone are given relative to the building height.

orthogonality of the generated grid ranges between 46.5◦ and 53.7◦. It should be noted that
maximum non-orthogonality up to 65◦ is often deemed mild for the type of solver used in the
current study (Greenshields et al., 2015).

The same computational domain with a slightly different mesh is also prepared for an empty
domain configuration. For this domain, only refinement regions from Zone-1 up to Zone-4
(see Figure 4.4) are used with 4.9 million cells. The empty domain simulation is later used to
measure the undisturbed incident wind profile without the effect of the study building.

Three additional meshes were generated to investigate the discretization error associated
with the computational grid. The computational grid in each case was systematically refined
to capture essential flow phenomena. Assuming that the flow dynamics near the building,
i.e., impingement from upcoming flow, flow separation, and the turbulent wake, are primarily

78 Chapter 4. LES for predicting wind loads and responses of a standard tall building

Table 4.2: Computational grids used for mesh sensitivity study

Case Mesh regions used ∗∗Smallest gird size No. cells

G1 Zone-1 to Zone-4 H/146 4.78 × 106

G2 Zone-1 to Zone-5 H/293 7.04 × 106

G3∗ Zone-1 to Zone-6 H/585 9.85 × 106

G4 Zone-1 to Zone-6 H/1170 1.65 × 107

∗G3 is used for the final wind load simulations.
∗∗ The size of mesh used on the building surface.

responsible for most of the wind loads, the meshes used for the grid sensitivity study only
differ in the vicinity of the building. All the mesh sensitivity studies were conducted for 0◦

wind direction. Table 4.2 outlines the details of the test grids (G1, G2, and G4) and the grid
used for the final simulations (G3), which is depicted in Figure 4.4. The mesh size given in
Table 4.2 is the size of mesh used on the building surface. Cases G3 and G4 have the same
mesh refinement zones; however, for G4, two levels of surface refinement, each having 7-cell
thickens, are employed on the building surface.

4.3.4 Boundary Conditions

Boundaries of the computational domain should be carefully defined with appropriate bound-
ary conditions. Especially, validation studies require the formulation of boundary conditions
consistent with the experimental setup. Generally, for ABL flows, the transient inflow bound-
ary condition at the inlet and the rough wall boundary condition on the ground surface usually
need special consideration (Melaku and Bitsuamlak, 2021). Furthermore, appropriate wall
treatment on the surface of the building is required, especially if all the flow features up to
the viscous region are not resolved. These boundary conditions are separately discussed in
Sections 4.3.4.1, 4.3.4.2 and 4.3.4.3.

On the side and top faces of the domain, slip, and zero-gradient boundary conditions are
adopted for velocity and pressure fields, respectively. It is important to note that for most
computational wind load applications (Daniels et al., 2013; Elshaer et al., 2016; Huang et al.,
2010), at the side and top faces, a symmetric boundary condition is commonly chosen for
velocity, which resembles the slip boundary condition used in the current study. Considering
that the top and side boundary conditions are sufficiently far from the area of interest, they
are expected to have very little effect on flow near the building even if they do not perfectly
reproduce the actual boundary of the experimental facility used for the testing. At the outlet,
a Neumann boundary condition with zero gradients is applied for the velocity, while a fixed

4.3. LES modeling 79

value of zero pressure is specified for the pressure field.

4.3.4.1 Inflow turbulence generation

At the inlet of the computational domain, a time-dependent turbulent velocity field is specified
for the velocity. The turbulence is generated using the DFSR method developed by Melaku
and Bitsuamlak (2021). The method uses a computationally efficient implementation of the
spectral representation technique to synthesize a velocity field for a given target wind profile
and velocity spectra. Here, only a brief description of the DFSR method is given. For a detailed
description of the numerical procedure, the reader is advised to refer to the cited publication.

The specified target mean velocity, turbulence intensity, and integral length scale profiles
were taken from an empty tunnel measurement with the same test setup (see Section 4.2). In
addition to the turbulence intensity profile, shear stress profiles were modeled by imposing a
correlation between the longitudinal and vertical wind velocity components. The target shear
stress profile used in the DFSR method is taken from the experimental measurements.

The turbulent inlet wind field is generated as a three-dimensional stochastically station-
ary process that varies with position and time. The procedure starts by first defining the tar-
get cross-power spectral density (CPSD) functions for the three components of the velocity.
The CPSD functions are determined from the velocity spectrum and frequency-dependent co-
herency function. For this study, the velocity spectra are defined based on the well-known von
Karman model, while for the coherency function, Davenport’s exponential model (Davenport,
1961b) is adopted. The velocity spectra is discretized using N = 8192 frequency segments.
At the inlet of the computational domain, there are about 1.15 × 104 points, and decomposing
the CPSD matrix formed from all these points for each discrete frequency is computationally
expensive. Therefore, the target CPSD matrix is decomposed only using 25 systematically
sampled frequencies, and for intermediate frequencies, spline interpolation is employed. The
maximum theoretical cut-off frequency of the simulated velocity spectra is set to fmax = 200
Hz, which corresponds to a time step of dt = 0.0025 s based on Nyquist sampling theorem.
Note that the sampling frequency used for the inflow is in line with the experimental measure-
ments. Finally, the velocity time series is computed using the Fast Fourier Transform (FFT)
technique for a duration of 38 s.

For incompressible flows, it is required that the mass flow rate entering the computational
domain should be constant to avoid undesired pressure fluctuations (Gungor et al., 2012; Kim
et al., 2013; Patruno and de Miranda, 2020; Poletto et al., 2011). However, due to finite sam-
pling of the inflow points at the inlet and uneven contribution from low-frequency velocity
fluctuations, the mass flow rate of the generated inflow varies with time. Thus, the instan-
taneous stream-wise velocity field generated using the DFSR method is re-scaled to have a

80 Chapter 4. LES for predicting wind loads and responses of a standard tall building

constant flow rate defined by the mean velocity profile.

It is worth noting that the incident profiles measured near the building often differ from
the one specified at the inlet because of the downstream evolution of the flow. This results in
a noticeable decay of turbulence downstream. Therefore, for this study, the target turbulence
intensity profiles used at the inlet are adjusted until the desired level of turbulence is achieved
at the location of incidence (Lamberti et al., 2018; Melaku and Bitsuamlak, 2021). The ad-
justment is made iteratively by a scaling factor determined from the ratio between the target to
measured turbulence intensity profiles at the location of the study building.

Finally, to save computational cost, the inflow turbulence is generated once and stored in a
database, and the wind load simulations (for all wind directions) are run using the same inflow
data.

4.3.4.2 Ground surface roughness modeling

The effect of upstream terrain roughness is represented using a wall modeling technique. As
shown in Figure 4.3, the bottom patch of the computational domain is divided into two parts.
The upstream part is labeled “fetch” and stretches 5.2H from the inlet. A rough-wall boundary
condition is applied for this patch, while a no-slip boundary condition is used for the remaining
part of the bottom surface. This is analogous to most boundary-layer wind tunnels (including
the one used in the current study), where the roughness blocks are typically placed upstream
of the test section, and the remaining part of the tunnel floor is a smooth surface. Furthermore,
this makes it easy to use a bottom boundary condition based on the logarithmic wind profile
where the flow can be treated as relatively homogeneous (Cheng and Porté-Agel, 2013).

The rough wall boundary condition used for this study is based on the Schumann–Grötzbach
model (Grötzbach, 1987; Schumann, 1975). The model works by specifying the instantaneous
surface shear stress determined from the log-law relationship and the filtered velocity at the
wall-adjacent cell center. For a neutrally stratified ABL flow, the wall shear stress τw

i3(x, y, t) is
calculated as (Churchfield et al., 2010; Porté-Agel et al., 2011)

τw
i3(x, y, t) = −

 κŨ(zp, t)
log[(zp + z0)/z0]

2
ũi(x, y, zp, t)

Ũ(zp, t)
, (i = 1, 2) (4.8)

where z0 represents the aerodynamic roughness height, κ is the von Karman constant (κ = 0.41),
Ũ(zp, t) = [⟨̃u1(x, y, zp, t)⟩2 + ⟨̃u2(x, y, zp, t)⟩2]1/2. Here, ũ1 and ũ2 are filtered velocities at the
center of the wall-adjacent cell in the stream-wise and span-wise directions, respectively. The
symbol ⟨·⟩ denotes a span-wise average, and zp represents the mid-height of the wall adjacent
cell. Note that because of the regional refinements used, the mid-height of the wall-adjacent

4.3. LES modeling 81

cells varies over the ground surface. Therefore, zp used in Eq.(4.8) is determined by taking the
area-weighted average in the fetch region.

4.3.4.3 Building surface

Considering the high computational cost of resolving the wall boundary layer up to the viscous
regime, a boundary condition based on a smooth-wall function is specified on the building
surface. This boundary condition works by providing a constraint on the turbulent viscosity
using Spalding’s formula (Spalding, 1961). Spalding’s law provides a universal formulation
for the velocity profile in laminar, buffer, and turbulent core regions by

y+ = u+ +
1
E

[
exp (κu+) − 1 − κu+ −

(κu+)2

2!
−

(κu+)3

3!

]
(4.9)

where y+ = ypuτ/ν is the normalized wall coordinate, u+ = up/uτ represents near-wall velocity
in wall units, κ = 0.41 is the von Karman constant and E is a wall function constant approx-
imately equal to 9.8 for smooth walls. Here, yp is the mid-height of the wall-adjacent cell,
and up is the component of the cell center velocity parallel to the boundary. The main advan-
tage of Eq.(4.9) is that the wall relationship can be computed from a single expression without
switching between different formulations for each region of the flow (Tominaga et al., 2008b;
de Villiers, 2006). As a result, the center of the wall adjacent cell does not need to be in the
logarithmic region.

Now, we can expressed the wall shear stress τw using effective kinematic viscosity νeff =

νt + ν as (Vuorinen et al., 2015),

τw = ρ (νt + ν)
∂u
∂y

∣∣∣∣y=yp
≈ ρ(νt + ν)

up

yp
, (4.10)

where ν represents the kinematic viscosity of the fluid and νt is the turbulent eddy viscosity.
Rearranging Eq.(4.10) and substituting τw = ρu2

τ, we get:

νt = max
(
0,

u2
τ

(up/yp)
− ν

)
. (4.11)

Finally, the wall law is indirectly specified using the relationship in Eq.(4.11) and Eq.(4.9).
Since Eq.(4.9) is non-linear, uτ is computed iteratively using the Newton-Raphson method.
Although Spalding’s law is theoretically valid for the mean flow, it has also been demonstrated
to be useful for LES with instantaneous filtered velocity (Cheng and Porté-Agel, 2013; Wang
and Chen, 2020). For the current study, implementation of this boundary condition provided
in OpenFOAM-v8 as nutUSpaldingWallFunction is adopted.

82 Chapter 4. LES for predicting wind loads and responses of a standard tall building

4.3.5 Numerical setup

The simulations were conducted using a transient solver implemented in OpenFOAM-8 called
pimpleFoam, which is partly based on the Pressure-Implicit with Splitting of Operators (PISO)
algorithm developed by Issa (1986). The pimpleFoam solver essentially works by running
multiple PISO loops per each time step. The choice of pimpleFoam solver for the current study
is mainly due to its stability at high Courant-Friedrichs-Lewy (CFL) numbers. The solver is
configured with one velocity predictor computation followed by two pressure corrector loops.
In addition, to account for skewed mesh, one non-orthogonal pressure corrector loop is added.
Since pimpleFoam solver allows a dynamic time advancement, for all the wind load simula-
tions, the time step is dynamically adjusted based on a maximum CFL number of 10, which
was noticed to significantly reduces the total computational time. The maximum CFL number
of 10 is decided based initial test run simulation. For spatial discretization, a second-order
central differencing scheme with linear interpolation is used. The time discretization is done
using a second-order backward scheme. All the simulations were run over 38 s, and the first 2 s
duration was truncated to avoid the initial transient stage of the simulation. Hence, effectively
only 36 s duration is used for the analysis, which translates to a full-scale duration of nearly
1 hour. While the simulations are running, the pressure data on the surface of the building
is monitored using probes placed at the exact location as the experimental measurements (see
Figure 4.1a). The pressure time series is recorded at a sampling rate of 400 Hz (identical to the
wind tunnel study). All the LES cases were simulated in parallel using 128 AMD Rome 7502
@ 2.50 GHz CPU cores. On average, each wind load simulation case took approximately 7.5
days to run.

4.4 Structural model

The responses of the structure can be evaluated using either the time or frequency domain ap-
proach. In time-domain analysis, the structure’s response is computed directly by executing
step-by-step time integration of the governing equation of motion. On the other hand, when a
frequency-domain approach is used, the root-mean-square (RMS) of the response is estimated
using a generalized force spectrum and the theory of random vibration without solving the
governing equation of motion (Davenport, 1965, 1967). The main advantage of the frequency
domain approach over the time domain method lies in its computational efficiency, which of-
ten requires simplifying approximations (Aas-Jakobsen and Strømmen, 2001; Yeo and Simiu,
2011). Nevertheless, the time domain approach provides a more accurate and direct estimate of
the responses, alleviating most of the limitations of the conventional frequency domain tech-

4.4. Structural model 83

nique (Simiu et al., 2008). Moreover, with the currently available computing resource, the
cost of executing time domain analysis is relatively small, especially if we compare it to the
cost of running wind load simulation using LES. Thus, for the current study, the responses of
the building to dynamic wind excitation are evaluated by employing a time-domain approach.
Section 4.4.1 presents the time domain analysis procedure used to represent the structure as a
multi-degree-of-freedom (MDOF) dynamic system. In Section 4.4.2, the dynamic properties
of the building used for the analysis are briefly described.

4.4.1 Equations of motion

The structure is represented by a lumped-mass system, assuming that the floors behave like
a rigid diaphragm. At the center of each floor, we have two translational(x and y) and one
rotational(ϑ) degree of freedom. Hence, for a multi-story building with n floors, we have a
total of 3n degrees of freedom. The dynamic equilibrium equation governing the motion of a
building can be written as follows:

Md̈(t) + Cḋ(t) +Kd(t) = F(t) (4.12)

where M, C, and K are 3n × 3n matrices representing the mass, damping, and stiffness of the
structure, respectively. The vector d(t) contains the Lagrangian displacements of the floors in
x, y, and ϑ directions. Whereas F(t) holds the wind load vectors acting at the center of each
storey. The vectors d(t) and F(t) can be expressed in expanded form as

d(t) =

dx(t)
dy(t)
dϑ(t)

 =

dx1(t)
...

dϑn(t)

 and F(t) =

Fx(t)
Fy(t)
Fϑ(t)

 =

Fx1(t)
...

Fϑn(t)

 , (4.13)

where dxi(t), dyi(t) and dϑi(t) are the x-direction, y-direction and torsional displacements at i−th
floor for a time t. Similarly, Fxi(t), Fyi(t) and Fϑi(t) represent i−th storey loads in x, y and ϑ
directions, respectively.

Using modal analysis with modal basis functions Φ = [Φx,Φy,Φϑ], where [Φs] ji =

ϕs ji(s = x, y, ϑ) denotes the j−th mode shape at i−th floor. Utilizing the first N modes, the
displacement vector d(t) can be expanded by superposing modal contributions as

dsi(t) =
N∑

j=1

q j(t)ϕs ji with s = x, y, ϑ, (4.14)

where q j(t)(j = 1, 2, . . .N) is the generalized response of j−th mode (Chopra, 2007). Assuming

84 Chapter 4. LES for predicting wind loads and responses of a standard tall building

the structure is classically damped, the governing equations in Eq.(4.12) can be simplified to N

decoupled modal equations. Thus, the equation of motion in the modal coordinate is given by:

m∗jq̈ j(t) + c∗jq̇ j(t) + k∗jq j(t) = F∗j (t) (4.15)

The parameters m∗j, c∗j, k∗j , and F∗j represent generalized mass, damping, stiffness, and force
associated with j-th mode, respectively. These generalized parameters can be computed fol-
lowing the form:

m∗j =
n∑

i=1

(
mxiϕ

2
x ji + myiϕ

2
y ji + mϑiϕ

2
ϑ ji

)
c∗j = 2ω jm∗jξ j

k∗j = ω
2
jm
∗
j

F∗j (t) =
n∑

i=1

(
Fxiϕx ji + Fyiϕy ji + Fϑiϕϑ ji

)
(4.16)

whereω j is j−th mode natural frequency of the building and ξ j is the modal damping ratio. The
natural frequenciesω j and the mode shapes ϕ j are obtained from eigenvalue analysis of a freely
vibrating structure as [K − ω2M]Φ = 0. These structural properties are often conveniently
extracted from the building’s Finite Element Model (FEM) in software programs like ETABS
and SAP2000. Since the pressure measurements are not available at each storey level in the
case of the experimental data, the generalized forces F∗j (t) in Eq. (4.16) are evaluated using the
mode shape vector and pressure integration scheme described in Section 4.4.3.

After computing the generalized properties using Eq.(4.16), each modal equation in Eq.(4.15)
is numerically solved as an ordinary differential equation. In the current study, a 4th order
Runge–Kutta method is adopted to perform time integration of Eq.(4.15). Finally, once the
generalized displacements q j(t) are solved, the structural response of the building per each
floor is determined from the mode shape vector and generalized responses using Eq.(4.14).

4.4.2 Structural properties of the CAARC building

For the building structure, we adopted the structural properties of the 60-story reinforced con-
crete structure used in the work of Park et al. (2018). The building was designed based on
ASCE 7-16 (2017) specifications as a moment-resisting frame system (see Figure 4.5). The
dimensions of the building structure are identical to the geometry of the CAARC model used
in the wind load simulations. The structure consists of 7 bays with span lengths of 6.53m
along the width and 5 bays with a 6.10 m span along the depth of the building, as shown in

4.4. Structural model 85

Figure 4.5: Structural model of the 60-story reinforced concrete building: (a) 3D view; (b)
structural layout plan

Table 4.3: Summary of the dynamic properties

Modes 1st 2nd 3rd 4th 5th 6th

Natural frequency (Hz) 0.156 0.167 0.192 0.450 0.459 0.512

Damping ratio (%) 2.0 2.0 2.0 2.0 2.0 2.0

Figure 4.5b. All the floors have inter-story heights of 3.05 m and are assumed to be rigid
diaphragms. A detailed description of the sectional properties of the structural members, in-
cluding reinforcement details, can be found in Park et al. (2018). The structural properties
relevant to the wind-induced response calculation are discussed below.

The first six mode shapes reported from the modal analysis of the FEM are shown in Fig-
ure 4.6. As seen in Figure 4.6, both flexural and torsional modes of vibration are decoupled.
Table 4.3 gives a summary of the dynamic properties used for the study. For the structural
damping ratios, 2.0% of critical is used for all six modes of vibrations.

4.4.3 Wind load transfer scheme

The total dynamic loads are evaluated by integrating point pressure measurements over the
surface of the building. The same approach is used for both the LES and experimental aerody-
namic data. Although high-resolution pressure measurement is available for the LES cases, the
numerical pressure measurements at the exact tap location were used instead for ease of com-

86 Chapter 4. LES for predicting wind loads and responses of a standard tall building

−1 0 1

Mode 1

0.0

0.2

0.4

0.6

0.8

1.0
z/
H

X

Y

T

−1 0 1

Mode 2
−1 0 1

Mode 3
−1 0 1

Mode 4
−1 0 1

Mode 5
−1 0 1

Mode 6

Figure 4.6: The first six vibration mode shapes for lateral (X),transversal (Y) and torsional (T)
directions

parison with the experimental data. This entails the error introduced due to pressure integration
to be the same for both LES and experimental data.

For each wind direction, the instantaneous integrated wind forces acting in x, y, and ϑ

degrees of freedom are evaluated by superposing tributary force from each pressure tap as

fxi(t) = pi(t)axi

fyi(t) = pi(t)ayi

fϑi(t) = Fxi(t)rxi + Fyi(t)ryi

(4.17)

where fxi(t), fyi(t) and fϑi(t) represent the tributary force in x, y, and ϑ directions. pi is the point
pressure, while axi and ayi represent the tributary area of the tap projected in x and y directions.
rxi and ryi denote moment arms of the tributary forces fxi(t) and fyi(t) about the center of the
building. Finally the instantaneous generalized forces F∗j (t) for j-th mode is determined from:

F∗j (t) =
Ntap∑
i=1

[
fxiϕx j(zi) + fyiϕy j(zi) + fϑiϕϑ j(zi)

]
, (4.18)

in which ϕx j(zi), ϕy j(zi) and ϕϑ j(zi) are the mode shapes in x, y, and ϑ directions interpolated at
tap height zi. It is worth mentioning that the pressure integration procedure assumes that the
aeroelastic effects (e.g., the effect of aerodynamic damping) are negligible, which is the case
for most buildings that are not very flexible under practical wind speeds. For the structural
properties and test speed used for the current study, no significant aeroelastic feedback is ex-
pected. However, for dynamically sensitive structures that experience pronounced aeroelastic

4.5. Results and discussion 87

effects, a fully coupled fluid-structure interaction might be required. For these types of struc-
tures, Chapter 6 presents a fully coupled high-fidelity fluid-structure interaction framework.

4.5 Results and discussion

To assess the accuracy of the LES model, the numerical simulations were validated against the
BLWT experimental tests both at incident flow and aerodynamic forces level, step by step. A
necessary procedure at this early stage of LES for wind load evaluation. First, the incident flow
characteristics from the LES are compared to the wind profiles measured in the wind tunnel as
presented in Section 4.5.1. Second, the building surface pressure coefficients, including mean,
RMS, and peak values, are compared with those obtained from the BLWT experiment, Sec-
tion 4.5.3. Then, in Section 4.5.4, the aerodynamic base loads calculated from the LES, such
as base shear forces and overturning moments, are extensively compared with those calculated
from the experiment. Finally, Section 4.5.5 presents the accuracy of LES based estimation of
the overall wind-induced response of the structure.

4.5.1 Incident flow characteristics

The aerodynamic forces on the building are sensitive to the upcoming turbulence, hence the
statistics of the incident flow are first investigated using empty domain simulation. The empty
domain simulation allows us to directly measure the characteristics of the wind the building
will experiences as opposed to the inflow used at the inlet boundary. Since the empty domain
simulation is conducted using the same numerical setup as computational domain used for the
wind load simulations, the undisturbed roof-height reference wind speed can be conveniently
measured without the effect of the building aerodynamics. This reference velocity is later used
to normalize aerodynamic data such as pressure and force coefficients. It is worth emphasizing
that, analogous to the wind tunnel procedure, where we first calibrate the wind profile in the
empty tunnel configuration, it is equally vital for LES to run an empty domain simulation
before running the wind load simulations (Melaku and Bitsuamlak, 2021; Ricci et al., 2018).

Figure 4.7 shows the comparison of the incident wind profile from LES against the target
BLWT experimental measurement. The LES profile is measured over a vertical line located
0.25H upstream of the intended location of the study building model. In this figure, the curves
shown as DFSR correspond to the wind profile inlet. The absolute relative error of the LES
(downstream) profiles against the experiment averaged over 3H height above the ground is used
to measure the accuracy. It was observed that the characteristics of inlet turbulence undergo
some change downstream as the flow adjusts to an actual turbulent boundary layer structure.

88 Chapter 4. LES for predicting wind loads and responses of a standard tall building

0.0 0.5 1.0 1.5
Uav/UH

0.0

0.5

1.0

1.5

2.0

2.5

3.0
z/
H

(a)

EXP

DFSR

LES

0.0 0.1 0.2 0.3
Iu

0.0

0.5

1.0

1.5

2.0

2.5

3.0
(b)

0.0 0.1 0.2 0.3
Iv

0.0

0.5

1.0

1.5

2.0

2.5

3.0
(c)

0.0 0.1 0.2 0.3
Iw

0.0

0.5

1.0

1.5

2.0

2.5

3.0
(d)

0.0 0.5 1.0
−uw/(σuσw)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
H

(e)

0 2 4
Lu/H

0.0

0.5

1.0

1.5

2.0

2.5

3.0
(f)

0 1 2
Lv/H

0.0

0.5

1.0

1.5

2.0

2.5

3.0
(g)

0 1 2
Lw/H

0.0

0.5

1.0

1.5

2.0

2.5

3.0
(h)

Figure 4.7: Comparison of the incident wind profile with the target BLWT experimental mea-
surements: (a) mean velocity; (b-d) turbulence intensity profiles for u, v, and w components,
respectively; (d) normalized Reynolds shear stress profile uw; (e-h) integral length scale pro-
files xLu, xLv and xLw.

However, the downstream evolution in the mean velocity profile is generally very small com-
pared to the turbulence intensity profiles (see Figure 4.7a). The mean velocity profile is in
excellent agreement with the experiment having only 1.09% error over 3H height. This suc-
cess is mainly attributed to the rough wall boundary condition applied on the ground surface
(the Schumann–Grötzbach model), which maintained the mean velocity profile well up to the
incident location.

The shape and magnitude of turbulence intensity profiles have a close agreement with some
appreciable difference in the v and w components. The deviations of the incident turbulence
intensity profiles from the experiment are 2.50%, 8.19%, and 11.17% for Iu, Iv, and Iw, respec-
tively. The Iu component, which is the most important for the longitudinal components of the
load, has the least error among the three. Turbulence intensity profiles, especially the v and
w components, show appreciable decay, as can be noted from the plots in Figure 4.7c-d. This

4.5. Results and discussion 89

is mainly due to the nature of the synthetic turbulence used; since the phase information of
the flow is generated randomly, some form of turbulence decay is unavoidable (Melaku and
Bitsuamlak, 2021). Similarly, the normalized Reynolds shear stress profile, uw

σuσw
is shown in

Figure 4.7e. From the figure, it can be seen that the DFSR method was able to generate a
shear stress profile comparable to the experimental measurement. Considering that the turbu-
lence intensity (in the mean wind direction) and mean velocity profiles predominately affect
the wind loads for tall buildings, no further optimization was applied for the Reynolds shear
stress profile. For low-rise structures, the incident flow corrections such as those suggested by
Lamberti et al. (2018) can be used.

Another important quantity to be compared is the turbulence integral length scale, which
measures the average size of the turbulent eddies (Simiu and Scanlan, 1996). The integral
length scale profile is computed from the velocity time-series applying Taylor’s frozen turbu-
lence hypothesis (Taylor, 1938) as,

xLui = Uav

∫ ∞

0
ρui(τ)dτ, (4.19)

where ui(i = 1, 2, 3) is the fluctuating velocity component; Uav is the mean velocity in the
stream-wise direction and ρui represents the auto-correlation function for ui components of
the velocity. The three turbulence integral length scale profiles(xLu,

xLv,
xLw) computed by

Eq. (4.19) are shown in Figure 4.7f-h. Overall, the integral length scale profiles monitored at
the incident location are in reasonable agreement with the target experimental data showing an
average deviation of 10.33%, 11.22%, 25.92% for xLu, xLv, and xLw, respectively.

Figure 4.8 shows the reduced velocity spectra at the roof height for the three velocity com-
ponents. The figure depicts the comparison of the spectra at the inlet (DFSR), the incident
flow (LES), and the one from the wind tunnel (EXP). The figure also shows the von Karman
model used as target spectra for generating the inflow turbulence. Examining Figure 4.8a, the
spectrum of the longitudinal velocity is in good agreement over most of the frequency range
with the BLWTL measurement. For the lateral and vertical velocity components, the LES
spectra closely follow that of the von Karman. At the high-frequency end, the spectral plots
from LES show a sharp drop-off due to the grid resolution limit below which LES filters the
turbulence fluctuations. By utilizing refined grids, an attempt was done to limit the effect on the
wind loads. Since the small-scale fluctuations are localized, they can be captured by additional
mesh refinement near the building surface. The benefit of LES lies in resolving the large-scale
fluctuations that produce a significant portion of the wind loads (Shah and Ferziger, 1997).

90 Chapter 4. LES for predicting wind loads and responses of a standard tall building

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100
f
S
u
/σ

2 u
(a)

EXP

DFSR

LES

von Karman

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100

f
S
v
/σ

2 v

(b)

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100

f
S
w
/σ

2 w

(c)

Figure 4.8: Reduced velocity spectra at the building height:(a) u-component; (b)v-component;
(c) w-component;

4.5.2 Flow structure around the building

The wind field around the building is marked by various highly three-dimensional features
such as flow separation, reattachment, vortex shedding, down-wash on the leeward side, and
wake re-circulation region. Coupled with the turbulent characteristics of the incoming flow,
these body-generated flow features are responsible for the significant variations of the wind
loads on the building with changes in the wind direction. Figure 4.9 shows the flow structures
around the building when the wind is perpendicular to the wider face of the building (θ = 0◦).
The turbulent flow structures shown in the figure are computed from iso-surfaces of the second
invariant of the velocity gradient tensor. The flow features are generally topologically similar
to the widely studied wall-mounted finite-length square cylinder (Wang and Zhou, 2009). The
figure depicts the shedding of span-wise vortices rolling from separated shear layers at the
building corners. These vortices are coherent along the building height and are responsible
for the lateral loads that the building experiences in the cross-wind direction (i.e. lift). At the
front of the building, the horseshoe vortex can also be observed encircling the bottom of the
building.

To examine the details of the flow structure, in Figure 4.10, the mean streamlines around
the building are shown on cross-sectional plans. The figure illustrates the mean flow field for
θ = 0◦, 45◦ and 90◦ wind directions across xy− and xz− planes passing through the center of
the building. The xy−plane sections are taken at 2/3H height above the ground, where the flow
stagnation point is expected to occur. When the wind is normal to a face (i.e., for 0◦ and 90◦

wind directions), as expected, the flow separation is initiated at the upwind edges of the build-
ing. In both cases, the flow remains separated, and no reattachment is observed downstream.
Considering that the depth-to-width ratio for the CAARC building is 1.5, a notable difference
in the flow structure of 0◦ and 90◦ cases is the size of the separation bubble and the wake region.
As expected, for 0◦, the flow separation region and the wake are wider than the 90◦. For the 45◦

case, unlike 0◦ and 90◦ wind angles, the flow remains attached over the faces exposed to the

4.5. Results and discussion 91

Figure 4.9: Turbulent flow structure around the building for wind direction θ = 0◦ determined
based on the Q-criterion and colored by the longitudinal component of the velocity.

wind. As a result, the flow separation occurs at the end of the faces inclined to the incoming
flow. Compared to both 0◦ and 90◦ cases, it experiences a relatively larger separation region.

4.5.3 Pressure coefficients

Validation of pressure distribution on the building surface is the first important step in obtaining
accurate overall structural loads and responses. Furthermore, assessing the performance of LES
in estimating surface pressure fluctuations is crucial for cladding load predictions. The pressure
coefficient on the building surface is defined as

Cp(t) =
p(t) − p0

1
2ρU2

H

, (4.20)

where p(t) is the measured pressure, p0 represents a static reference pressure, UH is the roof-
height mean velocity measured in the empty domain setup, and ρ represents the air density. For
the LES simulation, the static reference pressure p0 is set to zero, considering that we used a
zero-pressure outlet boundary condition at the outflow.

In Figure 4.11, the time series of the pressure fluctuation recorder on the building’s wind-
ward, side, and leeward faces are compared for θ = 0◦. The Cp time-series are taken from
taps located at the centers of each face 2

3 H high above the ground. Initial qualitative inspection
of the time series indicates that the result from LES has a similar aerodynamic signature to
that of the experimental data. The spectra of the Cp fluctuations at the same tap locations are
shown in Figure 4.12. Overall, the spectral energy contents of the Cp fluctuations from LES
are in excellent agreement with those of the wind tunnel data. On the windward face of the
building, the pressure spectra resemble that of the incident longitudinal velocity. On the side

92 Chapter 4. LES for predicting wind loads and responses of a standard tall building

𝜃
=
0
0

𝑈/𝑈𝐻

𝜃
=
4
5
0

𝜃
=
9
0
0

𝑥𝑦-plane 𝑥𝑧-plane

Figure 4.10: Streamlines around the building colored by the magnitude of mean velocity nor-
malized by roof-height wind speed: (rows) wind directions (0◦, 45◦, 90◦); (columns) cross-
sectional views on xy and xz planes.

4.5. Results and discussion 93

face, the effect of vortex shedding is depicted with a peak in energy spectra close to the shed-
ding frequency (see Figure 4.12b). Also, the Strouhal number from the sidewall tap is in good
agreement with those reported in the literature. For the leeward face, the spectrum is character-
ized by fluctuations with a wide frequency range due to the highly turbulent nature of the wake
flow. It is worth noting that, with additional local mesh refinement around the building, it was
possible to capture the building-generated small-scale fluctuations well up to the sampling rate
of the experimental data. As such, it was possible to cut significant computational costs while
resolving relevant small-scale flow features near the building with localized mesh refinements.

Wind

C
A

A
R

C

0

1

2

C
p

EXP LES

Wind

C
A

A
R

C

−2

0

C
p

Wind

C
A

A
R

C

0 2 4 6 8 10 12 14 16

Time(s)

−2

−1

0

C
p

0 2 4 6 8 10 12 14 16

Time(s)

Figure 4.11: Time histories of pressure coefficient at the center of windward, side and leeward
faces of the building measured at 2

3 H for 0◦ wind direction: (left) experiment; (right) LES

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100

f
S
p
(f

)/
σ

2 p

(a)

Wind

C
A

A
R

C

EXP

LES

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100

101

f
S
p
(f

)/
σ

2 p

(b)

Wind

C
A

A
R

C

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100

101

f
S
p
(f

)/
σ

2 p

(c)

Wind

C
A

A
R

C

Figure 4.12: Reduced power spectral density of pressure at 2
3 H for 0◦ wind direction: (a)

windward face; (b) side face; (c) leeward face

4.5.3.1 Comparison of mean, RMS and Peak

Here, we present comparisons of the mean, RMS, and peak pressure coefficient with the exper-
imental data. Figure 4.13 compares the mean Cp for 0◦ and 90◦ wind directions. As seen from
Figure 4.13, on the windward face, the mean Cp is predicted well for both 0◦ and 90◦ cases.

94 Chapter 4. LES for predicting wind loads and responses of a standard tall building

A B C D A
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
M

ea
n
C
p

Wind

A

B C

D

(a)

EXP-Bristol

EXP-NAE(a)

EXP-NAE(b)

EXP-DagnewBitsuamlak

EXP-Current

LES-Current

A B C D A
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Wind

A

B C

D

(b)

Figure 4.13: Mean pressure coefficients measured at 2
3 H height of the building: (a) θ = 0◦; (a)

θ = 90◦

However, on the side and leeward faces, the results from LES show relatively more negative
Cp (higher suction). This may be due to differences related to approaching flow characteris-
tics which can affect the behavior of the separated shear layers and wake regions. Figure 4.14
presents the comparison of the root-mean-square (RMS) Cp values obtained from the LES with
the experiment for 0◦ and 90◦ wind directions, respectively. Again, as shown in Figure 4.14,
the RMS Cp from the LES generally compares well with the experimental data.

For comparison purposes, the results from the current study are shown together with pre-
vious Cp measurements on the CAARC building reported in the literature (see Figures 4.13
and 4.14). Aerodynamic data measured at the University of Bristol and National Aeronautical
Establishment(NAE(a) and NAE(b)) reported in Melbourne (1980) and more recent measure-
ments conducted by Dagnew and Bitsuamlak (2014) are used for the comparison. Although
the testing facilities used for these measurements have some differences, the reported roof-
height longitudinal turbulence intensities vary between 8% to 12%, which are comparable to
the ones used in the current study (10.6%). Overall, the mean Cp values from all studies are
in reasonable agreement with our experimental data. However, the RMS Cp from the current
study are relatively higher than the values in the literature. These variations are associated with
the differences in the turbulence profiles used by each testing facility. Deviations of turbulence
characteristics in the lateral and vertical directions could also exist that are not reported in those
wind-tunnel studies.

Comparing mean and RMS pressure coefficients is not enough to describe all the relevant
wind load characteristics on the building surface. Estimating peak Cp values is also important,
particularly when evaluating wind loads for the cladding design of the building. Figure 4.15
shows these peak pressure coefficients at the 2

3 H height of the building for 0◦ and 90◦ wind
directions. The peak pressure coefficients shown in Figure 4.15 are determined by fitting se-

4.5. Results and discussion 95

A B C D A
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
M

S
C
p

Wind

A

B C

D

(a)

EXP-Bristol

EXP-NAE(a)

EXP-NAE(b)

EXP-DagnewBitsuamlak

EXP-Current

LES-Current

A B C D A
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wind

A

B C

D

(b)

Figure 4.14: Standard deviation of pressure coefficients measured at 2
3 H height of the building:

(a) θ = 0◦; (a) θ = 90◦

lect maxima/minima values to Type I (Gumbel) distribution using the Best Linear Unbiased
Estimator (BLUE) Lieblein (1976) method. The maxima/minima are collected from individual
minima/maxima of each segment after dividing the time history into ten epochs. The epochal
peak is converted into the full duration value using Cook and Mayne’s method (Cook and
Mayne, 1979). It is worth noting that using the Gumbel fitted with the Lieblein-BLUE method
instead of absolute worst values results in statistically reliable peak estimation. In Figure 4.15,
the peak pressure (+ve) and suction (−ve) coefficients are separately shown. As seen from the
figure, the peaks predicted from the LES show satisfactory agreement with the wind tunnel
measurement. Especially on the windward face of the building, the positive peak pressures
are predicted well compared to the negative peak pressure on the side and leeward faces of
the building. This is expected because the peaks on the side and leeward faces of the building
are mainly dominated by flow separation, re-circulation, and turbulent wake regions that often
require a highly dense computational grid to resolve accurately with LES.

Thus far, we have presented a systematic comparison of the pressure coefficients only along
the perimeter of the building near the stagnation point for 0◦ and 90◦ cases. The contour
plots in Figure 4.16 present the distribution of the mean, RMS, and peak Cp distributions
over all the faces of the building for 0◦ wind direction. Comparing these contour plots, it is
evident that the distribution from LES depicts similar patterns as the BLWT measurements.
Further statistical comparison of the numerical and experimental measurements using all the
pressure taps and wind directions is presented in Figures 4.17, 4.18, and 4.19. These figures
provide a more comprehensive validation to gauge the accuracy of the numerical modeling
process. In Figure 4.17, scatter plots of experimental and LES data are shown for mean pressure
coefficients. Similarly, Figure 4.18 and Figure 4.19 depict the comparison for RMS and peak
Cp values, respectively. The scatter plots in Figure 4.19 show both positive and negative peaks.

96 Chapter 4. LES for predicting wind loads and responses of a standard tall building

A B C D A
−6

−4

−2

0

2

4

6
P

ea
k
C
p

Wind

A

B C

D

(a)

EXP (+ve Peak)

LES (+ve Peak)

EXP (-ve Peak)

LES (-ve Peak)

A B C D A
−6

−4

−2

0

2

4

6

Wind

A

B C

D

(b)

Figure 4.15: Positive and negative peak pressure coefficient measured at 2
3 H height of the

building: (a) θ = 0◦; (a) θ = 90◦

In all the figures, the line of a perfect match between LES and the experiment is shown with
a dotted trend line. Considering all the wind directions simulated, the agreement between the
experimental and LES data presented in Figures 4.17, 4.18 and 4.19 is generally satisfactory.
For a given wind direction, the accuracy of the LES relative to the experiment is estimated
using Normalized Mean Absolute Error (NMAE), defined as

NMAE =
1

Ntap

Ntap∑
i=1

∣∣∣Q(i)
EXP − Q(i)

LES

∣∣∣
(Qmax

EXP − Qmin
EXP)
× 100, (4.21)

where QEXP and QLES represent statistics of pressure coefficients from experimental and LES
data. Such type of error expression offers two advantages. First, using the absolute value
for the error permits both positive and negative differences to accumulate instead of offsetting
each other (Oberkampf and Trucano, 2002). Second, it avoids the infinite error that arises
if the normalization was done by actual experimental QEXP quantities that have close to zero
values (e.g., Cp near the upwind edges of the face normal to the wind). Thus, the normalization
based on the min-max values in Eq. (4.21) gives more weight to critical locations such as high
pressure or suction regions and penalizes low absolute Cp regions that are often less important
from wind loading perspective. Furthermore, Eq. (4.21) measures the accuracy of LES relative
to the range of variation in the experimental data.

Figure 4.20 shows the error (NMAE) related to each wind direction determined using the
expression in Eq. (4.21) for the mean, RMS and peak Cp distributions. The mean Cp predictions
from LES show a 4.6% error when averaged over all the wind directions. Whereas for the RMS
Cp, the average error is roughly close to 4%. For the peak values, the smallest error occurs for
the positive (pressure) Cp values, which is approximately below 4.7%. In contrast, for the

4.5. Results and discussion 97

Experiment LES
M
ea
n

Pe
ak

R
M
S

Figure 4.16: Contour plots of Cp statistics for θ = 0◦: (columns) Experiment and LES; (rows)
Mean, RMS and Peak

98 Chapter 4. LES for predicting wind loads and responses of a standard tall building

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

L
E

S
M

ea
n
C
p

θ = 00 θ = 100 θ = 200 θ = 300

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

L
E

S
M

ea
n
C
p

θ = 400 θ = 450 θ = 500

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
EXP Mean Cp

θ = 600

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
EXP Mean Cp

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

L
E

S
M

ea
n
C
p

θ = 700

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
EXP Mean Cp

θ = 800

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
EXP Mean Cp

θ = 900

θ

Figure 4.17: Scatter plots comparing mean Cp from LES with experiment for all wind direc-
tions

4.5. Results and discussion 99

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L
E

S
R

M
S
C
p

θ = 00 θ = 100 θ = 200 θ = 300

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L
E

S
R

M
S
C
p

θ = 400 θ = 450 θ = 500

0.0 0.1 0.2 0.3 0.4 0.5 0.6
EXP RMS Cp

θ = 600

0.0 0.1 0.2 0.3 0.4 0.5 0.6
EXP RMS Cp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

L
E

S
R

M
S
C
p

θ = 700

0.0 0.1 0.2 0.3 0.4 0.5 0.6
EXP RMS Cp

θ = 800

0.0 0.1 0.2 0.3 0.4 0.5 0.6
EXP RMS Cp

θ = 900

θ

Figure 4.18: Scatter plots comparing RMS Cp from LES with experiment for all wind direc-
tions

100 Chapter 4. LES for predicting wind loads and responses of a standard tall building

−6

−4

−2

0

2

4

L
E

S
P

ea
k
C
p

θ = 00 θ = 100 θ = 200 θ = 300

−6

−4

−2

0

2

4

L
E

S
P

ea
k
C
p

θ = 400 θ = 450 θ = 500

−6 −4 −2 0 2 4
EXP Peak Cp

θ = 600

−6 −4 −2 0 2 4
EXP Peak Cp

−6

−4

−2

0

2

4

L
E

S
P

ea
k
C
p

θ = 700

−6 −4 −2 0 2 4
EXP Peak Cp

θ = 800

−6 −4 −2 0 2 4
EXP Peak Cp

θ = 900

θ

Figure 4.19: Scatter plots comparing peak Cp from LES with experiment for all wind directions

4.5. Results and discussion 101

0 10 20 30 40 50 60 70 80 90

Wind direction(θ)

0

2

4

6

8

10

12

N
M

A
E

(%
)

Mean Cp

RMS Cp

Peak Cp(+Ve)

Peak Cp(−Ve)

Figure 4.20: Estimated error(NMAE) for mean, RMS, and peak values. The error for each
wind direction is calculated based on Eq. (4.21).

negative (suction) peaks, the LES predictions show a 4.8% deviation (under-predicted in most
cases) compared to the wind tunnel data.

4.5.3.2 Comparison of Skewness and Kurtosis

The mean and standard deviation do not completely describe the probability distribution of the
pressure on the surface of the building. Thus, higher-order moments of the probability dis-
tribution of Cp data such as Skewness and Kurtosis are computed and compared for both the
experimental and LES data. Skewness is the third central moment and measures the symmetry
of the probability distribution. For a normally distributed (Gaussian) measurement, the Skew-
ness is zero. Whereas, Kurtosis is the fourth-order moment and measures the flatness of the
probability distribution. For normally distributed data, Kurtosis becomes 3. Figure 4.21 com-
pares the Skewness and Kurtosis of Cp at 2/3H of the building along its perimeter for 0◦ and
90◦ wind directions. As expected, for the face directly exposed to the wind, the pressure field is
close to Gaussian, and LES predictions agree with the experiments having Skewness and Kur-
tosis close to zero and three. On the side and leeward faces, the Cp becomes non-Gaussian, and
the numerical results generally show a good agreement. Comparison of Skewness and Kurtosis
for all wind directions using all the pressure taps are shown in Figure 4.22 and Figure 4.23.
Overall, it was observed that compared to the Kurtosis, the LES gave a better prediction for
Skewness. This possibly is due to Skewness being one level lower order statistics compared to
Kurtosis and hence less difficult to match.

4.5.3.3 Grid sensitivity study

The effect of the errors introduced due to spatial discretization are investigated using grid-
sensitivity analysis. The sensitivity analysis uses three additional meshes for 0◦ wind direc-

102 Chapter 4. LES for predicting wind loads and responses of a standard tall building

A B C D A
−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

S
ke

w
n

es
s

an
d

K
u

rt
os

is Wind

A

B C

D

(a)

EXP-Skewness

LES-Skewness

EXP-Kurtosis

LES-Kurtosis

A B C D A
−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Wind

A

B C

D

(b)

EXP-Skewness

LES-Skewness

EXP-Kurtosis

LES-Kurtosis

Figure 4.21: Comparison of Skewness and Kurtosis for experimental and LES data at 2
3 H

height of the building: (a) θ = 0◦; (a) θ = 90◦

−4

−3

−2

−1

0

1

2

L
E

S
S

ke
w

n
es

s
C
p

θ = 0o θ = 10o θ = 20o θ = 30o

−4

−3

−2

−1

0

1

2

L
E

S
S

ke
w

n
es

s
C
p

θ = 40o θ = 45o θ = 50o

−4 −3 −2 −1 0 1 2
EXP Skewness Cp

θ = 60o

−4 −3 −2 −1 0 1 2
EXP Skewness Cp

−4

−3

−2

−1

0

1

2

L
E

S
S

ke
w

n
es

s
C
p

θ = 70o

−4 −3 −2 −1 0 1 2
EXP Skewness Cp

θ = 80o

−4 −3 −2 −1 0 1 2
EXP Skewness Cp

θ = 90o

θ

Figure 4.22: Comparison of Skewness for experimental and LES data using all pressure taps
and wind directions.

4.5. Results and discussion 103

−10

−5

0

5

10

15

20

25

30

L
E

S
K

u
rt

os
is
C
p

θ = 00 θ = 100 θ = 200 θ = 300

−10

−5

0

5

10

15

20

25

30

L
E

S
K

u
rt

os
is
C
p

θ = 400 θ = 450 θ = 500

−10 0 10 20 30
EXP Kurtosis Cp

θ = 600

−10 0 10 20 30
EXP Kurtosis Cp

−10

−5

0

5

10

15

20

25

30

L
E

S
K

u
rt

os
is
C
p

θ = 700

−10 0 10 20 30
EXP Kurtosis Cp

θ = 800

−10 0 10 20 30
EXP Kurtosis Cp

θ = 900

θ

Figure 4.23: Comparison of Kurtosis for experimental and LES data using all pressure taps and
wind directions.

104 Chapter 4. LES for predicting wind loads and responses of a standard tall building

A B C D A
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
M

ea
n
C
p

Wind

A

B C

D

(a)

EXP

LES(G1)

LES(G2)

LES(G3*)

LES(G4)

A B C D A
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
C
p

(b)

Figure 4.24: Grid sensitivity for distribution of Cp at 2/3H of the building for 0◦ wind direction:
(a) mean; (b) RMS. See Table 4.2 for the details of the grids tested.

tion. The details of each grid used for the test runs are provided in Table 4.2. In Figure 4.24
the mean and RMS of pressure coefficients for the four grids used, including the final grid used
for the wind load simulation (G3), are depicted. The mean Cp is generally less sensitive to the
grid resolution as seen in Figure 4.24a. Except very close to the upwind edge where the flow
separation initiates, further grid refinement has a marginal effect on the mean Cp distribution.
Similarly, for the face of the building normal to the wind, the grid refinement has almost no
effect on the RMS Cp too (see Figure 4.24b). This is because the primary loading mechanism
on the front face is quasi-steady by nature (i.e., gust buffeting from the upcoming turbulence);
hence, increasing the grid refinement level does not improve the accuracy of resolving an im-
portant flow phenomenon. However, on the side and back faces of the building that are in
strong flow separation and turbulent wake regions, the RMS Cp distribution shows some vari-
ation with the grid refinement level. Considering the complex nature of the flow around the
building, the results in Figure 4.24 do not change monotonically with the grid refinement level.
Nevertheless, based on Figure 4.24b, it can be seen that further grid refinement beyond the
mesh used in G3 seems to have a negligible effect on simulation accuracy.

4.5.3.4 Sensitivity to SGS modeling

Here we study the sensitivity of the LES results to the SGS model used. Figure 4.25 shows
the comparison of the Cs distribution found from the three SGS models tested, namely, the
Smagorinky, the WALE, and kEqn models described in Section 4.3.1. For the mean Cp distri-
bution, as depicted in Figure 4.25a, the sensitivity to the SGS model used is minimal. Aver-
aged over taps at 2/3H, the difference between the three models is well below 2%. For RMS
Cp distribution, however, as shown in Figure 4.25b, noticeable differences exist, especially
near strong flow separation regions (i.e., side faces of the building). Compared to the standard

4.5. Results and discussion 105

A B C D A
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

M
ea

n
C
p

Wind

A

B C

D

(a)

A B C D A
0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
C
p

(b)

EXP

LES(kEqn)

LES(WALE)

LES(Smagorinsky-Cs = 0.1)

LES(Smagorinsky-Cs = 0.17)

LES(Smagorinsky-Cs = 0.2)

Figure 4.25: Sensitivity of Cp distribution to SGS model used. Comparison for taps located at
2/3H of the building for 0◦ wind direction: (a) mean; (b) RMS

Smagorinky and kEqn SGS models, the WALE mode seems to produce relatively higher Cp

fluctuations on the side and leeward faces of the building. Nevertheless, the differences be-
tween different SGS models can be tolerable from a practical perspective. For instance, when
averaged over all the tap locations, the maximum disparity for RMS Cp among the three modes
is close to 4%. Thus, for this study, considering its simplicity and low computational cost, the
standard Smagorinsky model was employed. In the same figure, for the Smagorinsky model,
the sensitivity of the LES results to the different model constant (Cs) is shown. As expected,
for lower Cs values(i.e., 0.1), the model becomes less dissipative, and more turbulence is ob-
served in the flow-separated regions (see Figure 4.25b). The results from both Cs = 0.168
and Cs = 0.2 are relatively closer to the experimental measurement. Therefore, we adopted a
Smagorinsky constant Cs = 0.168, as it is an optimal value configured in the CFD solver used
in the current study.

4.5.4 Global wind loads

In Section 4.5.3, the Cp distributions on the surface of the building have been validated with
experimental data. However, to demonstrate the full potential of LES for predicting the un-
steady wind loads on tall buildings, validation of the integrated aerodynamic forces is more
relevant than surface pressure distribution, as the former determines the overall structural loads
and responses. Furthermore, combined with climate data and structural properties of the build-
ing, the integrated aerodynamic forces are ultimately used to determine the design loads on the
main structural system. Therefore, validating these quantities is of paramount importance from
a practical standpoint. This section compares these global aerodynamic loads obtained from
LES against the wind tunnel measurements.

106 Chapter 4. LES for predicting wind loads and responses of a standard tall building

−1

0

1
C
M

x

EXP LES

0.5

1.0

C
M

y

0 2 4 6 8 10 12 14 16

Time(s)

−0.2

0.0

0.2

C
M

z

0 2 4 6 8 10 12 14 16

Time(s)

Figure 4.26: Time-series of the base moment coefficients CMx , CMy and CMz (top to bottom) for
θ = 0◦: (left) experiment; (right) LES

4.5.4.1 Base force and moment coefficients

The aerodynamic base loads are evaluated using the pressure integration procedure described in
Section 4.4.3. For ease of comparison, for both LES and experimental data, these aerodynamic
forces and overturning moments are expressed in non-dimensional form as:

CFx =
Fx

1
2ρU

2
H BH

, CFy =
Fy

1
2ρU

2
HDH

, (4.22a)

CMx =
Mx

1
2ρU

2
HDH2

, CMy =
My

1
2ρU

2
H BH2

, CMz =
Mz

1
2ρU

2
H BDH

(4.22b)

where ρ is the air density; B and D are the widths of the wider and narrower faces of the
building, respectively; H is the height of the building, and UH represents the roof-height mean
velocity. The global loads Fx and Fy represent the integrated forces in x and y direction, while
Mx, My and Mz denote base moments about x, y and z (torsional) directions, respectively.

Figure 4.26 shows sample time-series of the base moment coefficients CMx , CMy and CMz

for 0◦ wind direction. A qualitative comparison of the time series indicates that the loads
from LES and the experiment exhibit similar behavior. For instance, the fluctuations of the
along-wind load (CMy) contain a wide range of frequencies resembling the fluctuations in the
approaching flow. In contrast, the moment created by cross-wind force (CMy) is a narrow-band
process predominantly produced by vortex shedding.

The spectral content of the base aerodynamic loads is shown in Figure 4.27. The figure
depicts the reduced power spectral density of Mx, My, and Mz for the three wind directions,

4.5. Results and discussion 107

i.e., 0◦, 45◦, and 90◦. In the along-wind direction, results agree well with the experiment for a
broad range of frequencies, especially for 0◦ and 90◦ wind directions. It is worth noting that
when the wind is normal to the faces of the building, the along-wind loads are directly related
to the quality of the inflow turbulence generator. Recalling that the pressure fluctuations on
the windward face are less sensitive to the fidelity of the LES model (e.g., grid resolution)
as seen in Figure 4.24, the accuracy of the LES prediction in the along-wind direction is ex-
pected to be good, provided that the spatiotemporal characteristics of the approaching flow are
adequately reproduced. On the other hand, the cross-wind and torsional moment spectra are
relatively more challenging to match because accurate modeling of the body-generated turbu-
lence around the building and its complex interaction with the incoming turbulence needs a
finer grid resolution coupled with more accurate SGS model.

As seen in Figure 4.27, essential flow phenomena such as vortex shedding are well cap-
tured. This is distinctively seen as peaks at the shedding frequency in the cross-wind moment
spectra of 0◦ and 90◦ cases (e.g., see the Mx plots in Figure 4.27). Compared to 0◦, the peak
for 90◦ occurs over a broader frequency range mounting to the fact that the vortex shedding
is less organized for the 90◦ case (Obasaju, 1992). However, the LES cross-wind overturning
moment spectrum for the 90◦ case shows a subtle difference around the shedding frequency.
For 0◦ wind angle, the cross-wind moment spectrum Mx from the LES and experimental data
show a narrow-band peak near a reduced frequency of f B/UH ≈ 0.10 which corresponds to a
Strouhal number (S t = f B/U = 0.1) widely reported in the literature for CAARC building in
atmospheric boundary layer flow. Similarly, the base shear forces (Fx and Fy) are in satisfac-
tory agreement with the experiment. However, since the base shears are less significant design
metrics for high-rise buildings compared to the overturning moments, they are omitted in this
comparison for brevity.

In Figures 4.28 and 4.29, the mean and RMS of the force coefficients (CFx and CFy) and
base moment coefficients (CMx , CMy and CMz) are compared for all the wind directions studied
(0◦ to 90◦). Note that the base load coefficients in Figures 4.28 and 4.29 are only aerodynamic
loads and do not include the resonant contribution from the building. As shown in the figures,
the mean and RMS base load coefficients are estimated with reasonable accuracy. In Table 4.4,
a summary of the errors of the LES results relative to the experiment is reported. These errors
are calculated based on the expression in Eq. (4.21) (NMAE) and averaged over all the wind
directions. Overall the mean base load coefficients are predicted within a 6% error range, while
for the RMS values, the maximum deviation is well within 10% range.

In addition to base aerodynamics loads, the generalized loads calculated using the expres-
sion in Eq. (4.18) are compared for each mode shape considered in the analysis. Since the
generalized loads take into account the effect of the mode shape, they are more representative

108 Chapter 4. LES for predicting wind loads and responses of a standard tall building

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101
f
S
M

x
(f

)/
σ

2 M
x

θ = 0

EXP LES

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101 θ = 45

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101 θ = 90

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101

f
S
M

y
(f

)/
σ

2 M
y

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101

10−3 10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

101

f
S
M

z
(f

)/
σ

2 M
z

10−3 10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

101

10−3 10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

101

Figure 4.27: Reduced power spectral density of base moments: (rows) CMx , CMy and CMz;
(columns) wind directions, 0◦, 45◦ and 90◦

0 10 20 30 40 50 60 70 80 90
Wind Direction, θo

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

C
F
y

C
F
x

(a)

EXP LES

CFx
CFy

CFx
CFy

0 10 20 30 40 50 60 70 80 90
Wind Direction, θo

0.0

0.1

0.2

0.3

0.4

0.5

0.6

σ
C
F
y

σ
C
F
x

(b)

EXP LES

CFx
CFy

CFx
CFy

Figure 4.28: Comparison of force coefficients (CFx and CFy) per wind direction: (a) mean; (b)
RMS

Table 4.4: Errors for mean and RMS base load coefficients

Error(%) CFx CFy CMx CMy CMz

Mean 5.19 4.45 4.79 5.71 3.61

RMS 7.97 5.16 5.44 9.14 2.75

4.5. Results and discussion 109

0 10 20 30 40 50 60 70 80 90
Wind Direction, θo

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

C
M

x
C
M

y
C
M

z

(a)

EXP LES

CMx

CMy

CMz

CMx

CMy

CMz

0 10 20 30 40 50 60 70 80 90
Wind Direction, θo

0.00

0.05

0.10

0.15

0.20

0.25

0.30

σ
C
M
x
σ
C
M
y
σ
C
M
z

(b)

EXP LES

CMx

CMy

CMz

CMx

CMy

CMz

Figure 4.29: Comparison of base moment coefficients (CMx , CMy and CMz) per wind direction:
(a) mean; (b) RMS

of the dynamic loads exciting the building. In Figure 4.30, the spectra of the generalized loads
for 0◦ wind direction are depicted for all six modes. The first three modes are fundamental
modes of vibration representing two flexural (x and y) and one torsional mode, whereas the last
three represent higher modal contribution in x, y, and torsional directions, respectively. Similar
to the spectra moment coefficients presented in Figure 4.27, the generalized load spectra from
the LES appear to agree with the experiment well, rendering the magnitudes and distributions
of storey loads are accurately estimated.

4.5.5 Structural responses

This section investigates the responses of the structure, specifically displacement and acceler-
ation responses, using the aerodynamic loads evaluated from the LES and experimental aero-
dynamic data. The dynamic analysis is performed using the theory of random vibration in the
time domain, following the procedure presented in Section 4.4.

For calculating the structural response, aerodynamic and structural properties in full scale
using the first 6 modes of vibration are adopted. The responses are calculated using a roof-
height service design wind speed of 30 m/s. It should be noted that for comparing the structural
responses, no climate data and wind directionality effect is considered. Therefore, considering
the main objective of this study is to assess the accuracy of the LES results, for all the wind
directions studied, the same wind speed is used for calculating the responses.

4.5.5.1 Displacement response

Figure 4.31 shows the time series of the top-floor structural displacements in x, y, and rotational
directions for both the LES and experiment. For ease of comparison, the rotational displace-

110 Chapter 4. LES for predicting wind loads and responses of a standard tall building

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101

f
S
F
∗ /
σ

2 F
∗

Mode-1 (x−dir)

EXP

LES

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101

Mode-2 (y−dir)

EXP

LES

10−3 10−2 10−1 100
10−4

10−3

10−2

10−1

100

101

Mode-3 (ϑ−dir)

EXP

LES

10−3 10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

101

f
S
F
∗ /
σ

2 F
∗

Mode-4 (x−dir)

EXP

LES

10−3 10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

101

Mode-5 (y−dir)

EXP

LES

10−3 10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

101

Mode-6 (ϑ−dir)

EXP

LES

Figure 4.30: Generalized wind load spectra for the first six modes of vibration.

ments shown in the figure are multiplied by the radius of gyration at the rooftop level. Next, we
examine the response spectrum of the structural displacements as shown in Figure 4.32. The
figure compares the reduced power spectral density of the top-floor displacement determined
from LES against the experiment for 0◦, 45◦, and 90◦ wind directions. It is well-recognized
that the structure’s response has a background and resonant contributions (Davenport, 1961a,
1967). As depicted in Figure 4.32, the response spectra show distinct resonant peaks concen-
trated around the natural frequency of the structure. On the other hand, the background con-
tributions are observed mainly in the along-wind direction distributed over the low-frequency
end of the spectra (see the spectrum of dx(t) for the 0◦ case).

The accuracy of the LES in predicting the contribution of the resonant peaks depends sig-
nificantly on how well the generalized force spectra near the natural frequencies of the building
are resolved. This becomes especially critical if the structure is dynamically sensitive and the
resonant contributions are much higher than the excitation due to the low-frequency back-
ground turbulence. To investigate this further, the structure’s response is broken down into
background and resonant contributions. The RMS of the background response (σdB), which
contains contributions from slowly varying forces, is treated as quasi-static and can easily be
calculated from the generalized force as:

σdB
=
σF∗

k∗
(4.23)

where σF∗ is the RMS of the generalized force, and k∗ represents the generalized stiffness of

4.5. Results and discussion 111

0.0

0.1

0.2

X
-D

is
p

[m
]

EXP LES

−0.1

0.0

0.1

Y
-D

is
p

[m
]

0 25 50 75 100 125 150 175 200

tUH/H

−0.02

0.00

0.02

rϑ
-D

is
p

[m
]

0 25 50 75 100 125 150 175 200

tUH/H

Figure 4.31: Comparison of top floor displacement time histories in x, y and rotational di-
rections(top to bottom) for 0◦ wind direction for ξ = 2% damping: (left) experiment; (right)
LES

10−3 10−2 10−1 100
10−6

10−4

10−2

100

102

f
S
d
x
(f

)/
σ

2 d
x

θ = 0

EXP

LES

10−3 10−2 10−1 100
10−6

10−4

10−2

100

102 θ = 45

10−3 10−2 10−1 100
10−6

10−4

10−2

100

102 θ = 90

10−3 10−2 10−1 100
10−6

10−4

10−2

100

102

f
S
d
y
(f

)/
σ

2 d
y

10−3 10−2 10−1 100
10−6

10−4

10−2

100

102

10−3 10−2 10−1 100
10−6

10−4

10−2

100

102

10−3 10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

f
S
d
ϑ
(f

)/
σ

2 d
ϑ

10−3 10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

10−3 10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

Figure 4.32: Reduced power spectral density of top floor displacement for ξ = 2% damping:
(rows) dx, dy and dϑ; (columns) wind directions, 0◦, 45◦ and 90◦

112 Chapter 4. LES for predicting wind loads and responses of a standard tall building

0 10 20 30 40 50 60 70 80 90
Wind Direction, θo

0.0

0.5

1.0

1.5

2.0
10

00
×
σ
d
x
/D

(a)

BACKGROUND RESONANT

EXP

LES

EXP

LES

0 10 20 30 40 50 60 70 80 90
Wind Direction, θo

0.0

0.2

0.4

0.6

0.8

10
00
×
σ
d
y
/B

(b)

0 10 20 30 40 50 60 70 80 90
Wind Direction, θo

0.0

0.3

0.6

0.9

1.2

10
00
×
σ
d
ϑ

(c)

Figure 4.33: Comparison of the background and resonant displacement responses from LES
and with experiment for ξ = 2% damping: (a)x−direction; (b)y−direction; (c)ϑ−direction

the structure (Davenport, 1961a, 1967). Since we used time domain analysis, the RMS of
the resonant part (σdR) is conveniently taken as the remaining part of the total mean square
fluctuating response, σdR =

√
σ2

d − σ
2
dB

.

In Figure 4.33, the contribution of the background and resonant parts of the displacement
responses are compared over the range of wind directions considered. The main observa-
tion from the comparison is that LES predicted the background responses with high accuracy
compared to the resonant part. Considering its quasi-static behavior, the accuracy of LES in
predicting the background responses mainly depends on how precisely the RMS of the gen-
eralized force is estimated. Since the LES model generally predicted the mean and RMS of
the aerodynamic forces well, the background responses from LES show only minor deviations
from the experiment, as depicted in Figure 4.33. However, this is not the case for the resonant
response. Estimating the resonant component of the response employing LES requires captur-
ing the high-frequency content of the generalized force properly; most importantly, the power
spectrum of the generalized force at the natural frequency of the structure, S F(f0) as opposed
to its RMS value. Thus, it is worth emphasizing that to accurately predict the wind-induced
response of tall buildings using LES, turbulent fluctuations and the aerodynamic mechanism
that produces dynamic wind loads with frequencies near the natural frequency of the building
need to be adequately resolved. This needs to be considered when designing the computational
grid, selecting the SGS model, and generating inflow turbulence.

4.5.5.2 Acceleration response

For tall buildings, top-floor accelerations are evaluated to insure compliance with serviceabil-
ity criteria. Hence, validation of the LES and dynamic structural analysis generated top-floor
acceleration is critical. Figure 4.34 depicts the power spectral density of ax, ay and aϑ com-
ponents of the top-floor acceleration for 0◦, 45◦ and 90◦ wind directions. As expected, the
top-floor acceleration of the building is dominated by the resonant response, which is captured

4.5. Results and discussion 113

10−2 10−1 100
10−6

10−4

10−2

100

102

f
S
a
x
(f

)/
σ

2 a
x

θ = 0

EXP

LES

10−2 10−1 100
10−6

10−4

10−2

100

102 θ = 45

10−2 10−1 100
10−6

10−4

10−2

100

102 θ = 90

10−2 10−1 100
10−6

10−4

10−2

100

102

f
S
a
y
(f

)/
σ

2 a
y

10−2 10−1 100
10−6

10−4

10−2

100

102

10−2 10−1 100
10−6

10−4

10−2

100

102

10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

f
S
a
ϑ
(f

)/
σ

2 a
ϑ

10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

Figure 4.34: Reduced power spectral density of top floor acceleration with ξ = 2% damping:
(rows) ax, ay and aϑ; (columns) wind directions, 0◦, 45◦ and 90◦

by both the LES and BLWT experiment.

In Figure 4.35, the RMS of sway and torsional accelerations obtained from the LES and
BLWT experiment are compared for all the wind directions. The torsional accelerations shown
in Figure 4.35c are expressed as linear accelerations at a distance furthest away from the center
of the building. Figure 4.35 shows that the cross-wind response of a tall building is dominant
compared to the along-wind response. The largest RMS acceleration occurs in x−direction
for 90◦ wind angle when the wind is perpendicular to the narrower face of the building (see
Figure 4.35a). The main reason being, the structure has a lower frequency and generalized
stiffness in the x−direction.

The resultant peak acceleration is calculated by combining the sway and torsional acceler-
ations are compared in Figure 4.36a. To calculate the expected peak acceleration (âr), a sim-
ple yet conservative combination approach based on the Square Root of the Sum of Squares
(SRSS) rule (Rosenblueth, 1951) and Davenport peak factor, (Davenport, 1964) are employed

114 Chapter 4. LES for predicting wind loads and responses of a standard tall building

0° 10°
20°

30°

40°

50°

60°

70°

80°

90°

0

1

2

3

4

5
σ
a
x
[m

ill
i-

g]
(a)

θ

EXP

LES

0° 10°
20°

30°

40°

50°

60°

70°

80°

90°

0

1

2

3

4

5

σ
a
y
[m

ill
i-

g]

(b)

θ

0° 10°
20°

30°

40°

50°

60°

70°

80°

90°

0

1

2

3

4

5

r m
ax
σ
a
ϑ
[m

ill
i-

g]

(c)

θ

Figure 4.35: RMS of the top floor acceleration for different wind directions using ξ = 2%
damping: (a) x-acceleration; (b) y-acceleration; (c) torsional acceleration

0° 10°
20°

30°

40°

50°

60°

70°

80°

90°

0

10

20

30

â
r[

m
ill

i-
g]

(a)

θ

EXP(ξ = 1%)

EXP(ξ = 2%)

EXP(ξ = 5%)

LES(ξ = 1%)

LES(ξ = 2%)

LES(ξ = 5%)

0° 10°
20°

30°

40°

50°

60°

70°

80°

90°

0

10

20

30

40

E
rr

or
(%

)

(b)

θ

ξ = 1%

ξ = 2%

ξ = 5%

Figure 4.36: Comparison of top floor acceleration for different wind directions: (a) peak accel-
eration; (b) relative deviation of the LES from experiment

as:
âr = gp

√
σ2

ax
+ σ2

ay
+ (R2

x + R2
y)σ2

aϑ (4.24)

where (Rx,Ry) are the coordinates of the building’s corner from the mass center of the top floor.
For the present study, the peak factor gp is about 3.72.

The relative errors in peak acceleration are shown in Figure 4.36b. The same figure also
shows the variation of the peak acceleration with structural damping. These responses are
calculated using 1%, 2%, and 5% damping ratios. From Figure 4.36, it can be seen that LES
gave a reasonable estimate of the resultant peak acceleration for most wind directions. It was
observed that the resultant peak acceleration shows the highest deviation for the 90◦ case, which
is roughly 22%. Overall, averaging over all the wind directions and damping ratios used, the
LES predictions in the current study are well within 15% tolerance.

4.6. Conclusion and summary 115

4.6 Conclusion and summary

The wind loads and responses of the well-known benchmark tall building (the CAARC model)
were evaluated numerically to demonstrate the capabilities of LES for the wind-resistant design
of tall buildings. The key challenges while using LES for wind load evaluation were addressed
by employing the recent developments in realistic turbulent inflow generation and wall treat-
ment techniques for ABL flows. For this purpose, a synthetic inlet turbulence generator and
an implicit ground roughness model were implemented in the open-source CFD toolbox. For
validating the numerical models, experimental measurements were conducted in the bound-
ary layer wind tunnel laboratory. The results obtained from LES were thoroughly validated in
comparison with the wind tunnel measurements stage by stage.

Statistical characteristics of the approaching wind flow in terms of the mean velocity, tur-
bulence intensity, integral length, and velocity spectra at the incident location compared well
with the experimental measurements. The capabilities of LES for estimating cladding loads
were demonstrated by statistical comparison of the mean, RMS, and peak pressure distribu-
tions on the building surface with those estimated from the BLWT experiments. Furthermore,
integrated aerodynamic loads such as base shear and overturning moments showed satisfactory
agreement with the experimental data. Overall, the base aerodynamic loads are generally well
predicted by the LES. The mean base load coefficients are estimated within a 6% error range,
while for the RMS values, the maximum deviation is approximately below 10%. Finally, using
the integrated aerodynamic loads from LES and the experiment, the dynamic response of the
structure is evaluated by performing a time-domain analysis of the structure. The top-floor
structural displacements and peak accelerations were compared against the experimental data.
It was observed that the LES predicted the low-frequency background displacement response
with high accuracy compared to the resonant part for all wind directions considered. Also,
the numerical estimate of the resultant peak acceleration is encouraging. On average, the peak
acceleration from the LES roughly showed a 15% deviation with the experiment.

Considering the encouraging level of agreement between LES and the experiment, the cur-
rent study has demonstrated the potential of LES for estimating wind loads and wind-induced
responses for the wind-resistant design of tall buildings. With the increasing availability of
cutting-edge research and cloud computing platforms, the capabilities of LES to accurately
resolve turbulent separated flows in wind engineering applications are progressively improv-
ing. However, it is to be noted that, especially for wind-induced response estimation, LES
still needs further validation using more accurate aeroelastic experimental models. The com-
putational modeling used for the current study assumed that the building undergoes small dis-
placement. For flexible structures, however, the aeroelastic effect should be incorporated using

116 Chapter 4. LES for predicting wind loads and responses of a standard tall building

high-fidelity fluid-structure interaction simulations. Given the current state of LES capability,
it offers numerous advantages to structural engineers and architects at the preliminary stage to
address the fundamental design challenges earlier in the design process.

Chapter 5

LES-based wind load evaluation on a tall
building located in a city center:
comparison with experimental data

5.1 Introduction

In recent years, in the research community, we have witnessed significant developments in the
use of CFD tools to estimate wind loads on buildings (Abdi and Bitsuamlak, 2014b; Dagnew
and Bitsuamlak, 2013; Elshaer et al., 2016; Huang et al., 2010; Lamberti et al., 2018; Lamberti
and Gorlé, 2020; Melaku and Bitsuamlak, 2021; Ricci et al., 2017). Particularly, for tall build-
ing aerodynamics, several CFD-based studies were conducted to predict wind loads employing
different types of turbulence models. Noting the importance of validation, the numerical re-
sults from the aforementioned studies were compared with experimental data in most cases.
Especially the Commonwealth Advisory Aeronautical Council (CAARC) standard tall build-
ing (Melbourne, 1980) has served as an important benchmark for validation. Nevertheless, the
vast majority of CFD-based studies are focused on the validation of wind loads on isolated
tall buildings. Although this is a key step towards establishing the required confidence in the
CFD model, it is not enough from a practical standpoint. In practice, most tall buildings are
designed and constructed in a complex urban setup. Therefore, the accuracy, as well as the
computational cost of CFD models for wind load evaluation, must be assessed by taking these
complexities into consideration.

In the past, few attempts have been made to study wind loads on a tall building located in
complex urban environments using large-eddy simulation (LES) (Elshaer et al., 2016; Nozu
et al., 2008, 2015; Tamura et al., 2015, 2017, 2010; Yan and Li, 2016; Yoshikawa and Tamura,

117

118 Chapter 5. LES for predicting wind loads on a tall building located in a city center

2015). In these studies, for accurate transient wind load estimation on buildings in urban
areas, authors emphasized the importance of (1) proper modeling of atmospheric boundary
layer(ABL) flow conditions, (2) generation of an optimum unstructured grid in the proximity
of the target region, and (3) adequate turbulence modeling with wall-treatment as the grid res-
olution requirement is severe. In addition, considering the current challenges of LES to predict
wind load in urban areas, it is clear that the numerical simulations need to be accompanied
by reliable wind tunnel measurements for validation. Thus, it is imperative that more research
needs to be done to assess the accuracy of LES for dense urban settings with more realistic
simulation scenarios that parallel a typical wind tunnel study.

In the current study, wind load on a tall building with a complex geometry located in a city
center with a realistic urban setup is studied using large-eddy simulation (LES). The approach-
ing wind characteristics measured in a boundary layer wind tunnel were properly reproduced
using a synthetic inflow turbulence generation method recently developed by Melaku and Bit-
suamlak (2021). For modeling the roughness of the surrounding terrain, an implicit roughness
modeling technique was employed. The numerical simulations were conducted using Open-
FOAM on an unstructured grid, adequately resolving the surrounding urban environment. The
global wind loads from LES were validated using experimental measurements from High-
Frequency Pressure Integration (HFPI) model. The challenges related to accurate wind load
simulation in complex urban environments using LES are addressed. From a practical appli-
cation standpoint, this study also aims to demonstrate how properly validated CFD models
can give designers the ability to generate site-specific, reasonably accurate preliminary design
loads, especially at early design stages. Moreover, with abundant flow field data from CFD, it
is possible to bring helpful design insight by examining complex aerodynamic loading mecha-
nisms responsible for the variation of wind loads.

This paper is organized into five sections. In Section 5.2, we briefly describe the boundary
layer wind tunnel data utilized for validating the LES model. Section 5.3 provides the details
of the numerical modeling process. In Section 5.4, the wind loads estimated using the LES
model are compared against the experimental data. Finally, Section 5.5 summarizes the main
findings from the present study.

5.2 Reference wind tunnel measurement

This section briefly describes the aerodynamic wind tunnel data used to validate the LES model
in a realistic urban setup. The experimental measurement is conducted at the Boundary Layer
Wind Tunnel Laboratory (BLWTL) of Western University. The aerodynamic data is measured
using a High-Frequency Pressure Integration (HFPI) model of a tall building located in a city

5.2. Reference wind tunnel measurement 119

center. The pressure model is constructed in a 1:400 scale using ABS plastic material and
instrumented with pressure taps. Figure 5.1 shows a photograph of the rigid model in the wind
tunnel with the upstream terrain model employed. The study building used for testing has a
complex geometry. The main roof has a full-scale height(H) of 277.82 m above the ground
level. The effective plan width B and depth D of the building in full scale are 78.49 m and
47.70 m, respectively. Figure 5.1b and c depict the elevation and plan views of the building
together with the coordinate system used to define the wind loads. The surrounding city is
represented using a detailed proximity model extending approximately a 500 m radius from
the center of the building. The surrounding model is built in blocks from Styrofoam material
as shown in Figure 5.1a.

(a) (b)

Study building

𝐷

𝑦

𝑥𝜃
𝐵𝑂

(c)

𝐻

Figure 5.1: Aerodynamic model used for the validation: (a) picture of the model in the wind
tunnel; (b) roof-plan view and dimensions of the building; (c) isometric view of the study
building

The original experimental measurement was conducted for a total of 36 wind directions (θ)
from 0◦ to 360◦ in increments of 10◦. However, considering the high computational cost of
running LES for all the wind directions, only a few representative wind directions were chosen
for the validation. Thus, for the current study, four different wind directions, specifically 0◦,
90◦, 180◦, and 270◦ are chosen for the validation task (see Figure 5.1b). These wind direc-
tions are chosen such that they represent cases with complex flow phenomena peculiar to the
urban environment, such as impingement, sheltering effect, and interference from adjacent tall
buildings.

120 Chapter 5. LES for predicting wind loads on a tall building located in a city center

5.2.1 Characteristics of the simulated terrain

The testing facility used for the simulation is a closed-circuit wind tunnel having a long section
that stretches 39 m long with a test cross-section of 3.4 m wide and 2.5 m high. The experiment
simulated a fully developed turbulent atmospheric boundary layer flow employing turbulence-
generating devices such as barriers and spires placed near the inlet. On the wind tunnel floor,
generic roughness blocks are used to represent the ground upwind terrain roughness (see Fig-
ure 5.1a). The simulated longitudinal mean velocity and turbulence intensity profiles measured
just upstream of the center of the turntable are shown in Figure 5.2a. The roof-height mean
wind speed measured from the tunnel is 12.68 m/s, while the turbulence intensity at the build-
ing height is 13%. The model scale Reynolds number of the flow calculated based on the
incoming roof-height mean wind speed and building height H is approximately 5.9 × 105.

The roof-height reduced velocity spectrum for the stream-wise component of the velocity
is shown in Figure 5.2b. The spectrum for the experiment is estimated using measurement
data from Hot-wire anemometer, hence only the stream-wise flow component is measured. For
comparison purposes, the von Karman spectrum is also shown in the same plot. As seen in
Figure 5.2b, the spectrum from the wind tunnel matches the von Karman model reasonably
well for a wide frequency range. Thus, the Karman model will be utilized for later comparison
and to generate synthetic inflow turbulence.

0.00 0.25 0.50 0.75 1.00 1.25

Uav/UH

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

z/
H Building Height

(a)

Uav

Iu

0 20 40 60 80 100
Iu[%]

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100

f
S
u
/σ

2 u

(b)

Experiment

von Karman

Figure 5.2: Approaching flow characteristics from the experimental measurement: (a) stream-
wise mean velocity and turbulence intensity profiles; (b) roof-height velocity spectra

5.3. Numerical model 121

5.3 Numerical model

This section describes the details of the LES model employed for the wind load simulation.
The LES modeling is done in 1:400, the same as the experiment. Although it is possible to
conduct the CFD simulation at full scale, the same geometric scale used in the experimental
study is chosen for ease of comparison with experimental data. The CFD simulations are car-
ried out using wall-modeled large-eddy simulations replicating simulation conditions similar
to the boundary layer wind tunnel test. The approaching wind characteristics were modeled
using synthetically generated inflow turbulence. The computation grid for the complex ur-
ban environments is generated as an unstructured hex-dominated mesh with several refinement
regions. All the simulations were conducted employing an open-source CFD toolbox called
OpenFOAM-8 (Weller et al., 1998). The overall CFD modeling procedure is summarized in
Figure 5.3.

Post-processingSolvingPre-processingInput preparation

1. Get the target wind
field

2. Determine the
frequency range,

wind directions, and
scales to be
simulated

3. Choose inflow
generation method

4. Generate and
validate inflow using
the selected method

5. Setup the main CD
and its BCs for

6. Mesh the main CD
based on the

requirements of Step
2.

7. Choose solver type,
schemes, turbulence models,

etc.

8. Setup data sampling for
building surface pressure,

forces, reference velocity, and
others parameters as required..

9. Run solver for a duration
determined based on a
convergence criteria or

frequency range from Step 2.

10. Calculate the
required statistics of

sampled data.

Figure 5.3: Description of the CFD modeling procedure: input preparation, pre-processing,
solution, and post-processing (left to right)

5.3.1 Size of the computational domain

The computational domain is designed based on the recommendation provided in COST (Franke
et al., 2011). Considering that the current study primarily deals with the comparison of LES
with experiments, it is reasonable to use a computational domain that has a comparable size

122 Chapter 5. LES for predicting wind loads on a tall building located in a city center

to the test section of the boundary layer wind tunnel. The experimental HFPI model of the
building combined with the proximity model has a blockage ratio approximately equal to 11%,
which is slightly higher than the recommended maximum blockage ratio of 8% for wind tunnel
studies (ASCE-49-21, 2022). For the LES model, however, to avoid possible blockage effects
and minimize the influence of the domain boundaries, we adopted a computational domain that
has a cross-section dimension much larger than the test section of the boundary layer wind tun-
nel. The height and width of the computational domain are set to 5m(7.2H) and 10m(14.4H),
respectively, compared to 2.5 m high and 3.4 m wide test section of the wind tunnel. This
results in a maximum blockage ratio of 1.86% that happens for 0◦ wind direction. It should be
noted that this level of blockage ratio is much smaller than the 3% limit normally recommended
for CFD studies (Franke et al., 2011).

In the longitudinal direction, the domain is extended to 20 m (28.8H). The center of the
study building is located 5 m (7.2H) away from the inlet. Note that a long fetch length in
boundary layer wind tunnels is often required to naturally develop a turbulent boundary layer.
However, for LES-based studies, a long fetch distance is not required, provided that the inflow
turbulence specified at the inlet satisfies the characteristics of the ABL flow. Figure 5.4 shows
the extent of the computational domain used with dimensions expressed relative to the height
of the study building. For all the simulated LES cases, the size of the computational domain
remains the same.

7.2H

H

𝑧

𝑥𝑦

𝜃

(a) (b)

Figure 5.4: Computational domain and boundaries: (a) domain size relative to building height;
(b) geometry of the numerical model

5.3.2 Geometric modeling

Before generating a computational grid, the first task is to prepare reasonably accurate geomet-
ric representations of the study building and the surrounding urban environment. A complete
representation of all the geometric details beyond the resolution capability of the local mesh
refinements is not practically relevant. Especially for the surrounding buildings, locations far

5.3. Numerical model 123

from the area of interest can be represented with fewer geometric details without affecting
the expected flow field. Hence, the geometry of the building model and the surroundings are
cleaned, in some cases moderately simplified, to generate an optimal computational grid with
acceptable mesh quality. Finally, the CAD geometry of the whole model is made water-tight
and exported to STL format for mesh generation. The geometry of the computational model
containing the study building with the 500m radius proximity model is shown in Figure 5.4b.

5.3.3 Computational grid generation

Generating a computational grid for wind load evaluation of a tall building in a complex ur-
ban environment is very challenging compared to an isolated tall building. Normally, wind
flows around an isolated building in itself (i.e., without the interference of the surrounding
buildings) has a complex flow field marked by a wide range of spatial and temporal scales
of turbulent eddies. When considering the effect of the surrounding buildings, the flow field
becomes even more complex, with the nearby buildings significantly altering the local flow
field and, consequently, the wind loads on the target building. For an LES-based study, this es-
sentially necessitates the design of an optimal computational grid that resolves important flow
features responsible for most of the wind loads on the building with a satisfactory level of ac-
curacy. Thus, in addition to the local grid refinements near the target building, the surrounding
buildings, specifically those building upstream of the target building, need to have additional
regional refinements to adequately capture the aerodynamics. As a result, when designing the
computational grid used for LES models, these challenges need to be taken into consideration.

Because of the complex geometry of the CFD model, the grid is generated as a non-uniform
unstructured mesh using the snappyHexMesh tool of OpenFOAM software. Figure 5.5 shows
a sampled computational grid generated for 0◦ wind direction simulation. The mesh is divided
into six refinement zones. Progressively finer mesh is used as we get close to the study building.
Before placing additional refinement zones, the computational domain is first provided with a
uniform mesh having 32, 64, and 128 cells in x, y, and z directions, respectively (see Zone-1
in Figure 5.5). To sustain the inflow turbulence applied at the inlet up to the region of interest
and provide further local mesh refinements, zones 2, 3, and 4 are employed. An additional
mesh refinement region shown as Zone-5 in Figure 5.5 is provided to capture the effect of the
upstream buildings that may impact the target building. In the vicinity of the study building,
Zone-6 has finer mesh to better resolve body-generated turbulence, such as vortex shedding and
turbulence at the wake. In addition, 10-cell thick surface refinements are provided in the wall-
normal direction on the surface of all the buildings. Figure 5.5c shows the grid size adopted
in each refinement region. Overall, the total number of cells for the wind load simulations for

124 Chapter 5. LES for predicting wind loads on a tall building located in a city center

each case is roughly 20 million.

Zone-4

Zone-2

Zone-3

Zone-1

Zone-6

Zone-5

Region Grid size

Zone-1 H/4.45

Zone-2 H/8.89

Zone-3 H/17.8

Zone-4 H/35.6

Zone-5 H/71.1

Zone-6 H/142

Surroundings H/284

Building H/569

(b)

(a)

(c)

Figure 5.5: Sample view of the computational grid for 0◦ wind direction case: (a) xz-sectional
view; (b) close-up view near the target region; (c) gird size used in each region expressed
relative to the building height.

The topology of the mesh used close to the surface of the buildings is predominantly non-
orthogonal, as we have complex urban geometry. A common issue with such type of grid is
the mesh quality, which affects the speed and stability of the CFD solver. The criteria normally
used to measure the quality of a computational grid for a finite volume-based solver is the
degree of non-orthogonality. The orthogonality of a grid is measured by the angle between
the normal vector of a cell surface and the line connecting the cell center of two neighboring
cells (Ferziger et al., 2002). Non-orthogonal grids compromise the accuracy and efficiency
of the solution algorithm. For instance, for transient solvers available in OpenFOAM, non-
orthogonal grids usually require additional internal iterations at each time step. Whereas a
highly non-orthogonal grid may cause nonphysical solutions and affect the stability of the
solver. Therefore, in the current study, for all simulated cases, the maximum non-orthogonality
of the grid is kept below 65◦.

In addition to the computational grid shown in Figure 5.5, a slightly different mesh is pre-
pared for an empty domain configuration using the same domain size and boundary conditions
to study the incident wind profiles. For this domain, only refinement regions from Zone-1 up to
Zone-5 are utilized (see Figure 5.5). The total number of cells for the empty domain simulation
is approximately 8.74 million. Note that because the empty domain simulation does not have

5.3. Numerical model 125

the building model, the approaching wind profiles that are used for all the wind directions are
extracted from a single run.

5.3.4 Inflow boundary condition

The critical step when conducting a transient simulation of ABL flows using LES is the gener-
ation of inflow turbulence that characterizes the approaching wind condition (Melaku and Bit-
suamlak, 2021). This can be seen as an analogous technique used in the boundary layer wind
tunnels, where turbulence generators such as spires and a strip-board at the inlet of the tunnel
are used to inject turbulence to simulate the natural wind in ABL flows. For this study, the
inflow turbulence is generated synthetically using the Divergence-free Spectral Representation
(DFSR) method developed by Melaku and Bitsuamlak (2021). The method applies the spec-
tral representation technique proposed by Shinozuka and Jan (1972) to artificially generated
inflow turbulence as a multivariate stochastic stationary process. The procedure of generat-
ing inflow turbulence using the DFSR method involves first defining the cross-power spectral
density(CPSD) matrix of the velocity field over points at the inlet. These points are the face
center of the cells at the inlet of the domain. The CPSD matrix for each velocity component
is calculated using the well-known von Karman model and a frequency-dependent coherency
function of Davenport (1961b). Then, the velocity field for each component is generated inde-
pendently using the inverse Fourier transform from the CPSD matrix. The procedure typically
requires the definition of target wind profiles at the inlet. The required target profiles include
mean velocity, turbulence intensity, and integral length scale profiles of the three components
of the velocity. For the details of the DFSR method, the reader is advised to refer to Melaku
and Bitsuamlak (2021).

For the current study, the target wind profiles fed to the DFSR method are based on the
experimental data described in Section 5.2. Since the wind profiles reported in Section 5.2 are
calculated from a hot-wire measurement, we have the statistics of the velocity in the stream-
wise direction only. However, the DFSR method normally requires profiles specifying all three
velocity components. Therefore, turbulence intensity and integral length scale profiles in the
lateral and vertical directions are taken from another set of wind tunnel measurements con-
ducted in the same testing facility for suburban exposure conditions. These profiles are already
reported in Chapter 2. One notable drawback of most synthetic inflow generation methods,
including the DFSR method, is the generated turbulence does not reproduce the correct phase
information of actual physical turbulence. This often leads to a noticeable deviation of the
incident flow characteristics from the targets specified at the inlet. Thus, to account for the
downstream evolution of the flow, it is common to adjust the wind profiles at the inlet until

126 Chapter 5. LES for predicting wind loads on a tall building located in a city center

the incident wind profiles match the target wind profiles (Lamberti et al., 2018). In the current
study, using a simple iterative approach, the turbulence intensity profile specified at the inlet is
re-scaled until we match the target value at the location of the study building.

Since we have the same exposure condition for all the wind directions, the inflow turbulence
is generated and stored in a database for multiple uses. The generated velocity field is stored
at a sampling rate of 400 Hz for a duration of 36 seconds. This combination of sampling rates
and duration is chosen to get a duration comparable to values used in the experimental HFPI
study. Finally, for the wind load simulations, for any solver time step, the inflow database is
interpolated linearly between adjacent time steps and applied at the inlet.

5.3.5 Other boundary and initial conditions

Here we described the boundary conditions specified for velocity and pressure field on the
boundaries of the computational domain shown in Figure 5.4. On the inlet face of the do-
main, the synthetic turbulence generated using the procedure in Section 5.3.4 is applied as a
time-dependent velocity boundary condition. For the pressure field, a zero-gradient Neumann
boundary condition is used. On the side and top faces of the domain, a slip boundary con-
dition is used for velocity, while a zero-gradient Neumann boundary condition is adopted for
the pressure. At the outlet, a mixed Neumann and Dirichlet boundary condition is applied for
velocity, where a zero gradient is specified for the outflow condition with the inflow set to zero
(i.e., no reverse flow was permitted). A constant static zero pressure is applied at the outlet for
the pressure field. It is worth noting that this static pressure can be set to any desired reference
value. However, when calculating the pressure coefficients on the building surface, the static
reference pressure at the outlet must be deducted to get the gauge pressure.

The treatment of the ground surface roughness representing the target exposure condition is
crucial for LES ABL flows. Particularly the effect of the upstream terrain needs to be modeled
adequately for a realistic turbulent boundary layer to develop. As depicted in Figure 5.4a, the
bottom surface of the computational domain is divided into two parts. The upstream part of the
ground surface is separately labeled as “fetch” in Figure 5.4a. It stretches approximately 5.4H

from the inlet of the domain up to the edge of the proximity model (or just upstream of the turn
table in the experimental model). On this surface, a homogeneous rough-wall boundary con-
dition is applied based on Schumann–Grötzbach model (Grötzbach, 1987; Schumann, 1975)
effectively representing the effect of roughness blocks are typically placed upstream of the test
section in the wind tunnel test. The numerical details of the Schumann-Grötzbach model used
in the current study can be found in Melaku and Bitsuamlak (2021). On the remaining part of
the bottom surface, a no-slip boundary condition is adopted.

5.3. Numerical model 127

Another important boundary condition that needs special treatment is the smooth wall
boundary of the surface of the building and the proximity model. Resolving the entire bound-
ary layer up to the viscous regime is computationally demanding on these surfaces. Thus, we
used a boundary condition based on a smooth-wall function. This boundary condition works by
providing a constraint on the turbulent viscosity using Spalding’s formula (Spalding, 1961) that
provides an analytical formulation for the velocity profile in the whole surface layer (including
the viscous sub-layer, the buffer layer, and inertial sub-layer). For the current study, implemen-
tation of this boundary condition provided in OpenFOAM-v8 as nutUSpaldingWallFunction
is adopted. One of the main advantages of this boundary condition is that the center of the wall
adjacent cell does not always need to be in the logarithmic region, giving more freedom to
choose mesh sizes independent of the wall model employed. Even though Spalding’s law is
strictly defined in the mean sense, it has also been frequently used in LES with instantaneous
spatially filtered velocity (Cheng and Porté-Agel, 2013; Wang and Chen, 2020).

As initial conditions, in the whole computational domain, the velocity field is initialized
with a stream-wise velocity of 10m/s, and the pressure field is set to zero static pressure.

5.3.6 Numerical setup

The Navier–Stokes equations governing the motion of wind were solved using the PIMPLE
algorithm implemented as pimpleFoam in OpenFOAM-8. This solver operates by combin-
ing a transient PISO (Pressure Implicit with Splitting of Operator) algorithm with steady-state
SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) solver. The PIMPLE algo-
rithm offers better numerical stability at higher Courant numbers (i.e., higher than 1) compared
to the PISO solver. Thus, for the current study, a maximum Courant number is set to 7, and
the solver time step is incremented dynamically to match the desired Courant number. This
made it possible to save significant computational time while maintaining numerical stability.
It should be noted, however, that this value of the Courant number is normally very high but
occurs only in a few grid points near the building edges where the flow gets highly accelerated.

For the time integration of the temporal derivatives, we used a fully implicit second-order
accurate backward differencing scheme. The backward differencing is preferred because of
its low computational cost compared to relatively more accurate but expensive schemes like
the Crank–Nicholson method (de Villiers, 2006). For spatial discretization, a second-order
accurate central differencing scheme is used. The face center quantities were interpolated
from their cell center values utilizing linear interpolation. Considering that the computational
grid is highly orthogonal near the buildings’ surface, additional non-orthogonal corrections are
applied while solving the pressure equation to improve numerical accuracy and stability.

128 Chapter 5. LES for predicting wind loads on a tall building located in a city center

The wind load simulations were run for well over an equivalent 1-hour full-scale dura-
tion, assuming a time-scale of approximately 1 : 100. To avoid the initial transient period,
the first few seconds were truncated. Effectively, only 36 s duration (in model scale) is used
for the analysis. Surface pressure fluctuations, as well as integrated aerodynamic base loads,
were monitored from the numerical simulations. The pressure data on the surface of the study
building is recorded by placing probes on the LES model at the exact location of the HFPI
experimental model. The base load time histories were recorded at a sampling rate of 400 Hz
(identical to the wind tunnel study) at the center of the study building. The empty domain
simulation used for examining the undisturbed incident wind profiles was conducted using the
same numerical setup as the wind loads simulations. The velocity is monitored on a vertical
line just in front of the study building at a 400 Hz sampling rate.

Finally, to run the simulations in parallel, the domain is distributed to 256 processors using
Scotch decomposition (Pellegrini, 1994). The computations are performed using AMD Rome
7532 @ 2.40 GHz CPU processors. On average, each wind load simulation took 127 hours
(approximately five days) to run on 256 processors. Using the same number of processors, the
inflow turbulence generation with the DFSR method and the empty domain simulations took
roughly 2 and 10 hours to finish, respectively.

5.4 Results and discussion

The key step towards establishing the use of CFD for wind loading applications involves de-
tailed validation and verification of the numerical model. This section presents a systematic
comparison of the results from the LES model against the experimental measurements. The
validation is performed stage by stage for selected representative wind directions. First, the
characteristics of the upcoming flow measured in an empty domain simulation are compared
with the wind-tunnel profiles in Section 5.4.1. Then, the base aerodynamic loads monitored
from LES are compared with the integrated overall forces calculated from the HFPI model in
Section 5.4.3.

5.4.1 Incident flow characteristics

After generating the inflow turbulence using the DFSR method, an empty domain simulation
(i.e., without the study building and the proximity model) is run to investigate the upcoming
flow characteristics. For the LES model, the wind profiles were measured just in front of the
study building, approximately a 7H distance away from the inlet. The LES wind profiles were
monitored for about 36 seconds after the flow achieved an equilibrium boundary layer flow. We

5.4. Results and discussion 129

examined the mean velocity and turbulence intensity profiles to evaluate how well the target
wind-tunnel profiles are reproduced. Furthermore, the energy content of the incident flow is
investigated by comparing the roof height velocity spectra against the targets.

In Figure 5.6, the incident wind profiles are compared against the target experimental mea-
surements. Figure 5.6a depicts the comparison of the mean velocity profile. As seen in Fig-
ure 5.6 the incident mean velocity wind profile generally compares well with the experiment.
However, close to the ground surface, approximately below 0.25H, the shape of the velocity
profile found from LES shows a slight deviation from the experiment. This difference could
be due to the effect of the wall boundary on the ground surface downstream of the fetch region
(see Figure 5.4). For the empty domain simulation, the region corresponding to the “turntable”
in the wind tunnel model is modeled as a smooth wall boundary condition. It is expected that
this boundary condition causes the mean flow to readjust such that the profile near the ground
seems to be altered compared to the shape of the profile reported in the wind tunnel study.
Nevertheless, when used with the proximity models for the final wind loads simulation, this is
expected to have minimal effect on the wind loads since the wind profile just upstream of the
“turntable” is more important. The mean velocity profile from LES generally has an absolute
relative deviation of 2.7% averaged over 2H height. Next, the turbulence intensity profile in
the stream-wise direction is compared in the same figure. For the most part of the profile, as
seen in Figure 5.6a, the turbulence intensity profile from the LES also shows a good agreement
with the experiment. The deviation from the experimental data averaged over 2H height is
approximately 6.75%.

For both the experiment and LES data, a sample time series of the velocity at the building
height is shown in Figure 5.7b. As can be seen from Figure 5.7, using the inflow turbulence
generated by the DFSR method, it was possible to replicate the characteristics of velocity
fluctuations observed in the experimental measurement. To inspect the energy content of the
approaching flow from the LES, the spectrum of the stream-wise velocity is illustrated in Fig-
ure 5.6b. In the same figure, for comparison purposes, the target von Karman spectrum that
was used to generate the synthetic turbulence is shown. As shown in Figure 5.6b, the velocity
spectra from the LES follow the target spectra for a wide range of frequencies. The spectral
plot from the LES shows a sharp drop-off at the high-frequency end, which is related to the grid
resolution limit. However, this limitation will be compensated in the final wind load simula-
tions, where the zonal and surface refinements near the study building permit the resolution of
small-scale turbulence features with high-frequency content compared to that of Figure 5.6b.

130 Chapter 5. LES for predicting wind loads on a tall building located in a city center

(b)(a)

Figure 5.6: Comparison of the incident flow characteristics from LES with the experimental
target measurements: (a) stream-wise mean velocity and turbulence intensity profiles; (b) re-
duced velocity spectra at the building height.

5 10 15 20 25 30 35
t[s]

−0.6

−0.3

0.0

0.3

0.6

u
/U

H

Experiment

5 10 15 20 25 30 35
t[s]

−0.6

−0.3

0.0

0.3

0.6

u
/U

H

LES

Figure 5.7: Time series of the velocity at the building height for the first 36s in model scale:
(top) experimental; (bottom) LES.

5.4.2 Wind flow field

The wind flow around the study building is generally complex and is marked by different flow
phenomena depending on the wind direction. Figure 5.8 shows the instantaneous velocity

5.4. Results and discussion 131

contour and streamline paths for 0◦ wind direction. The turbulent nature of the upcoming flow
and the turbulence generated by the study building and the surroundings can be clearly seen in
the figure. To investigate the aerodynamic loading mechanisms for different wind directions,
in Figure 5.9, the magnitude of instantaneous velocity contour for the longitudinal section is
shown for all the wind angles considered (i.e., 0◦, 90◦, 180◦ and 270◦). For instance, for 0◦

wind direction, the wider face of the study building is more or less directly exposed to the
impingement from the upcoming flow (see Figure 5.9). Whereas, for 90◦ wind direction, the
study building is in weak of a nearby tall building of almost equal height. In the case of 180◦

wind direction, the study building experiences sheltering effect from relatively short buildings
upstream of it. On the other hand, the 270◦ case is the most exposed direction as there are no
upstream buildings.

Figure 5.8: Isometric view of instantaneous wind velocity contour and streamline paths calcu-
lated from LES for 0◦ wind direction.

5.4.3 Comparison of global aerodynamic loads

The global aerodynamic loads monitored during LES runs were compared with the correspond-
ing values from the experimental data obtained by pressure integration. The coordinate system
used to define the base shears and moments can be referred from Figure 5.1b. The base shear

132 Chapter 5. LES for predicting wind loads on a tall building located in a city center

𝜃 = 0𝑜

𝜃 = 270𝑜

𝜃 = 90𝑜

𝜃 = 180𝑜

Study building

Wind

Wind

Wind

Wind

Figure 5.9: Magnitude of instantaneous velocity contour taken on xz-plane for all wind direc-
tions simulated.

and moment coefficients are defined as follows:

CFx =
Fx

1
2ρU

2
H BH

, CFy =
Fy

1
2ρU

2
H BxH

, (5.1a)

CMx =
Mx

1
2ρU

2
HDH2

, CMy =
My

1
2ρU

2
H BH2

, CMT =
MT

1
2ρU

2
H BDH

, (5.1b)

where B, D, and H, respectively, are the study building’s effective width, depth, and height,
which are defined in Section 5.2. ρ = 1.227 kg/m3 denotes the air density, and UH is the roof-
height mean wind speed. Here, CFx and CFy are the force coefficients in x and y directions, and
CMx , CMy and CMT denote moment coefficients about x, y and torsional directions, respectively.

5.4.3.1 Validation metric

The difference between the LES and experiment for a given quantity Q (e.g., CFx , CMx) in a
particular wind direction θ is measured using normalized absolute percentage deviation (Eθ) as

Eθ =

∣∣∣Q(θ)
EXP − Q(θ)

LES

∣∣∣
max(|QEXP|)

× 100, (5.2)

5.4. Results and discussion 133

where Q(θ)
EXP and Q(θ)

LES represent mean or RMS base loads from LES and experiment, respectively.
In Eq. (5.2), for the denominator, we normalized the deviation by directionally enveloped ex-
perimental base load value. For this study, the expression max(|QEXP|) is simply calculated from
experimental data by taking the maximum absolute base load quantity over all wind directions
considered (i.e., 0◦, 90◦, 180◦, and 270◦). The advantage of such normalization is that it per-
mits the error to be measured relative to the most unfavorable wind direction, which is often
critical from a design perspective. Furthermore, it avoids infinite error that results when com-
paring base load quantities with values close to zero, e.g., mean cross-wind loads, if otherwise
the normalization is done by the actual experimental value Q(θ)

EXP.

5.4.3.2 Base force coefficients

The force coefficients computed using Eq. (5.1) accordingly for both experimental and LES
data are compared. Figure 5.10 shows a sample time history of CFx and CFy for 0◦ wind di-
rection. As shown in Figure 5.10, a graphical qualitative inspection of the time histories of
the force coefficients indicates that the results from LES are marked by a similar aerodynamics
signature with the experimental measurements. The reduced force spectra for all wind direc-
tions considered are shown in Figure 5.11. The spectral plots from LES and experimental are
generally in good agreement, indicating the capability of LES to capture complex flow around
the study building and the resulting aerodynamic loads.

5 10 15 20 25 30
0.0

0.5

1.0

1.5

C
F
x

EXP (θ = 0o)

5 10 15 20 25 30
0.0

0.5

1.0

1.5
LES (θ = 0o)

5 10 15 20 25 30

Time(s)

−1.0

−0.5

0.0

0.5

C
F
y

5 10 15 20 25 30

Time[s]

−1.0

−0.5

0.0

0.5

Figure 5.10: Time series of the force coefficients CFx and CFy for 0◦ wind direction: (left)
Experiment; (right) LES

In Table 5.1, the mean and RMS force coefficients from LES are compared with the ex-
perimental values for all wind directions considered. The error for the mean and RMS force
coefficients are shown in Figure 5.12. The deviations shown in the figure are calculated based
on the expression in Eq. (5.2). To make the comparisons between LES and experiment fair,

134 Chapter 5. LES for predicting wind loads on a tall building located in a city center

10−2 10−1 100
10−4

10−3

10−2

10−1

100

f
S
F
x
/σ

2 F
x

θ = 0

EXP

LES

10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

f
S
F
y
/σ

2 F
y

10−2 10−1 100
10−4

10−3

10−2

10−1

100

θ = 90

10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

10−2 10−1 100
10−4

10−3

10−2

10−1

100

θ = 180

10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

10−2 10−1 100
10−4

10−3

10−2

10−1

100

θ = 270

10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

Figure 5.11: Reduced power spectral density of the base forces for all wind direction: (rows)
components CFx and CFy; (columns) wind directions 0◦, 90◦, 180◦, and 270◦

Table 5.1: Comparison of mean and RMS force coefficients

Mean RMS
CFx CFy CFx CFy

θ Exp. LES Exp. LES Exp. LES Exp. LES
0◦ 0.799 0.725 -0.131 -0.197 0.153 0.169 0.136 0.152

90◦ -0.060 -0.054 -0.282 -0.330 0.080 0.093 0.071 0.094
180◦ -0.667 -0.574 -0.039 -0.166 0.141 0.150 0.076 0.089
270◦ 0.118 0.090 0.560 0.599 0.094 0.097 0.131 0.169

the same duration is used to compute the errors. For the mean value, the maximum deviation
between LES and experiment is 22.7% and happens for CFy when the wind direction is 180◦

(see Figure 5.12a). Whereas, for the RMS quantities, it is 24.2% and happens for CFy with
270◦ wind direction (see Figure 5.12b). On average, the mean force coefficients are estimated
with ±9.6% accuracy, while the RMS values have ±10.9% deviation.

5.4.3.3 Base moment coefficients

The base moment coefficients were also compared in the same manner as the force coefficients.
In Figure 5.13, a sample time history of CMx , CMy and CMT are shown for 0◦ wind direction.
The base moment spectra for each component and wind directions are depicted in Figure 5.14.
The mean base moment coefficients from LES and the experiment are provided in Table 5.2.
Similarly, Table 5.3 gives the RMS base moment coefficients. The deviation of LES from
the experiment is presented in Figure 5.15. Overall, it was observed that for the mean base
moments, the values from LES are ±8.7% far from the experiment when averaged over the

5.5. Summary and conclusion 135

θ = 0o θ = 90o θ = 180o θ = 270o

Wind Direction

0

5

10

15

20

25

30

E
rr

or
(%

)

(b)

Mean Fx

Mean Fy

θ = 0o θ = 90o θ = 180o θ = 270o

Wind Direction

0

5

10

15

20

25

30

E
rr

or
(%

)

(b)

RMS Fx

RMS Fy

Figure 5.12: Deviation of force coefficients estimated using LES from the experimental values:
(a) Mean ; (b) RMS

four wind directions considered. Similarly, for the RMS base moments, on average, the LES
predictions have a ±9.0% difference.

5 10 15 20 25 30

−0.25

0.00

0.25

0.50

C
M

x

EXP (θ = 0o)

5 10 15 20 25 30

−0.25

0.00

0.25

0.50
LES (θ = 0o)

5 10 15 20 25 30

0.25

0.50

0.75

1.00

C
M

y

5 10 15 20 25 30

0.25

0.50

0.75

1.00

5 10 15 20 25 30

Time(s)

−0.1

0.0

0.1

C
M

T

5 10 15 20 25 30

Time(s)

−0.1

0.0

0.1

Figure 5.13: Time series of the base moment coefficients CMx , CMy and CMT for 0◦ wind direc-
tion: (left) Experiment; (right) LES

5.5 Summary and conclusion

Large-eddy simulation of wind flow around a tall building located in a city center was con-
ducted to assess the accuracy of LES for predicting transient wind loads. The results from LES

136 Chapter 5. LES for predicting wind loads on a tall building located in a city center

10−2 10−1 100
10−4

10−3

10−2

10−1

100
f
S
M

x
/σ

2 M
x

θ = 0

EXP

LES

10−2 10−1 100
10−4

10−3

10−2

10−1

100

f
S
M

y
/σ

2 M
y

10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

f
S
M

T
/σ

2 M
T

10−2 10−1 100
10−4

10−3

10−2

10−1

100
θ = 90

10−2 10−1 100
10−4

10−3

10−2

10−1

100

10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

10−2 10−1 100
10−4

10−3

10−2

10−1

100
θ = 180

10−2 10−1 100
10−4

10−3

10−2

10−1

100

10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

10−2 10−1 100
10−4

10−3

10−2

10−1

100
θ = 270

10−2 10−1 100
10−4

10−3

10−2

10−1

100

10−2 10−1 100

fB/UH

10−4

10−3

10−2

10−1

100

Figure 5.14: Reduced power spectral density of the base moments for all wind directions:
(rows) components CMx , CMy and CMT ; (columns) wind directions 0◦, 90◦, 180◦, and 270◦

Table 5.2: Comparison of mean base moment coefficients

CMx CMy CMT

θ Exp. LES Exp. LES Exp. LES
0◦ 0.075 0.100 0.518 0.483 -0.007 -0.005

90◦ 0.164 0.199 -0.036 -0.031 0.014 0.008
180◦ 0.014 0.079 -0.443 -0.386 0.051 0.039
270◦ -0.324 -0.336 0.036 0.025 0.008 0.006

were validated thoroughly using experimental data measured in a boundary layer wind tunnel.
The incident wind profiles obtained from empty domain LES runs were compared to the tar-
get wind tunnel profiles. It was shown that wind profiles were accurately modeled. Also, the
spectral content of the incident flow was shown to be well resolved in the relevant frequency
ranges. Then, the aerodynamic wind loads, including base shears and overturning moments,
were compared with the experimental for representative wind directions. A comparison of the
base load spectra indicated that, for the most part, the LES cases have adequately captured the
energy content of the base loads observed in the experimental data. Next, statistical quantities
of base loads, such as mean and RMS, are compared for different wind directions. Only in
a few cases, it was observed that the maximum difference between the LES and experimen-
tal becomes 24%. However, when averaged over all the wind directions simulated, the mean

5.5. Summary and conclusion 137

Table 5.3: Comparison of RMS base moment coefficients

CMx CMy CMT

θ Exp. LES Exp. LES Exp. LES
0◦ 0.066 0.068 0.099 0.113 0.022 0.023
90◦ 0.044 0.055 0.056 0.062 0.023 0.024

180◦ 0.047 0.054 0.094 0.102 0.029 0.031
270◦ 0.072 0.090 0.056 0.058 0.027 0.030

θ = 0o θ = 90o θ = 180o θ = 270o

Wind Direction

0

5

10

15

20

25

30

E
rr

or
(%

)

(a)

Mean Mx

Mean My

Mean MT

θ = 0o θ = 90o θ = 180o θ = 270o

Wind Direction

0

5

10

15

20

25

30

E
rr

or
(%

)

(b)

RMS Mx

RMS My

RMS MT

Figure 5.15: Deviation of base moment coefficients estimated using LES from the experimental
values: (a) Mean ; (b) RMS

and RMS of base loads predicted using LES showed approximately ±10% deviation from the
corresponding experimental measurement.

Overall, the agreement between the LES and the experiment is generally encouraging. The
present work has successfully demonstrated the use of LES to predict dynamic loads on a tall
building in realistic urban configurations. Furthermore, the numerical procedure demonstrated
in this study is of practical importance for wind engineers, structural engineers, and archi-
tects — it provides them with a versatile tool at their disposal to incorporate wind-informed
decisions early in the project life cycle.

Chapter 6

Fluid-structure interaction framework for
computational aeroelastic modeling of tall
buildings

6.1 Introduction

In recent years, the application of computational methods to multi-physics problems has ex-
panded rapidly in many engineering disciplines benefiting from advances in new software
technologies. Multi-physics simulation frameworks enable the integration of established tech-
niques in different domains to address more complex and coupled engineering problems such
as fluid-structure interaction (Farhat et al., 2006; Felippa and Park, 1980; Piperno and Farhat,
2001), soil-structure interaction (Romero et al., 2013; Yazdchi et al., 1999; Zhang et al., 1999),
and thermomechanical simulation (Armero and Simo, 1992; Farhat et al., 1991), to name a few.
The wind-induced excitation of flexible structures (e.g., tall buildings, chimneys, long-span
bridges, and flexible roof systems), often described as aeroelastic phenomenon in wind engi-
neering studies (Dowell et al., 2021; Irwin, 1982; Isymov, 1982; Vickery, 1990), represents
a specific class of multi-physics (i.e., fluid-structure interaction) problems, which involves a
coupled solution of a moving or deformable structure immersed in a turbulent flow. In the past,
computational Fluid-Structure Interaction (FSI) modeling techniques have been successfully
used in several applications, including, but not limited to, lightweight membrane structures
(Gallinger et al., 2009; Wüchner et al., 2007), turbomachinery (Marshall and Imregun, 1996;
Willcox et al., 1999) arterial blood flows (Bazilevs et al., 2008; Gerbeau et al., 2005) and
parachute dynamics (Stein et al., 2000; Tezduyar et al., 2008). However, despite the success
in these areas, there are only limited applications of FSI methods for modeling the aeroelas-

138

6.1. Introduction 139

tic behavior of civil structures such as tall buildings (Braun and Awruch, 2009; Zhang et al.,
2012). The development of accessible frameworks tailored to wind engineering applications
holds tremendous potential for modeling aeroelastic structures in more efficient and versatile
ways.

In practice, there are several methods to evaluate the wind-induced response of structures
employing wind tunnel procedures. The most commonly used approach involves measuring the
aerodynamic loads on a geometrically scaled rigid model of the structure and evaluating the
responses incorporating the mechanical properties of the structure (Boggs, 1991; Irwin, 2009).
This approach neglects the effect of motion-induced forces (aeroelastic feedback). Currently,
the most accurate experimental technique to model the wind-induced response of dynamically
sensitive structures is to use aeroelastic models that appropriately scale the structure’s mechan-
ical properties in addition to its geometry (Isymov, 1982; Vickery, 1990). However, aeroelastic
modes are often expensive and time-consuming to fabricate. Furthermore, the manufacturing
challenges resulting from their intricacy might lead to violation of similitude conditions (Isy-
mov, 1982). On the other hand, in recent years, alternative to experimental techniques, Com-
putational Wind Engineering (CWE) tools, particularly Computational Fluid Dynamics (CFD),
have gained favor for wind load evaluation as it alleviates most of the limitations of experimen-
tal techniques (Blocken, 2014b; Dagnew and Bitsuamlak, 2014; Stathopoulos, 1997). Several
CFD-based wind load evaluation studies have been conducted (Elshaer et al., 2016; Huang
et al., 2010, 2007; Ricci et al., 2018) in recent years, albeit most of these studies assume the
building is rigid and simulate only the aerodynamic loads. However, for dynamically sensitive
structures, accurate response estimation requires the fluid-structure interaction phenomenon to
be aptly simulated.

The numerical procedures to solve FSI problems can essentially be classified into two cat-
egories: the monolithic and the partitioned approaches (Hou et al., 2012). In the monolithic
approaches (Hübner et al., 2004; Ryzhakov et al., 2010), the fluid and structural dynamics
equations are casted in a single system of linear equations, and the solution is advanced by a
unified algorithm. The obvious benefit of these approaches is that no load/deformation trans-
fer is needed as it is implicitly handed. In addition, monolithic approaches can achieve more
accuracy and robustness, making them suitable for strongly coupled problems (Yamada et al.,
2016). However, from a software development and maintenance perspective, such codes re-
quire high expertise as they are very specialized. Conversely, in partitioned methods (Felippa
and Park, 1980; Felippa et al., 2001), the fluid and structural dynamics equations are solved
separately using their respective mesh and solution algorithm. At the fluid-structure interface,
explicit communication is necessary for transferring load and deformation. This makes the
partitioned method modular, and one can use off-the-shelf codes separately developed for the

140 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

fluid and structure parts and couple them. Based on the literature, the partitioned approach is
by far the most extensively used technique as compared to the monolithic approaches.

Nowadays, several software packages exist for solving general FSI problems. The most
commonly used commercial software packages, such as STAR-CCM+, ANSYS, and ADINA,
have already incorporated FSI functionalities. However, these software packages are generally
black-box, making them less suited for further improvement or to incorporate new techniques
tailored to specific applications. As a result, in the research community, we now see more mo-
mentum towards open-source packages like OpenFOAM. Previously, other researchers have
developed FSI frameworks for different applications by coupling structural solvers with Open-
FOAM’s transient solvers (Cesur et al., 2014; Hewitt et al., 2019; Jasak and Tuković, 2010).
Nevertheless, in these implementations, the structure is represented as a continuum medium.
This makes it challenging to represent a structure like a tall building made from discrete struc-
tural elements such as columns, beams, and slabs in a computationally efficient and convenient
manner using these frameworks. Considering that wind-structure interaction is of practical sig-
nificance for the wind-resistant design of civil structures, open-source FSI frameworks specif-
ically suited for this purpose are of paramount importance to research and practice in the wind
engineering discipline.

This paper proposes a high-fidelity FSI framework for computational aeroelastic mod-
eling of slender structures. The framework is developed by coupling OpenFOAM with a
modal structural solver implemented in C++ using the Object-Oriented Programming (OOP)
paradigm. The proposed FSI framework employs a partitioned approach, where fluid and struc-
tural solvers exchange deformation and load data every time step. The fluid subsystem is solved
in an Arbitrary Lagrangian-Eulerian (ALE) frame of reference on a moving mesh. The de-
formation of the mesh around the structure is computed using Spherical Linear Interpolation
(SLERP), which follows the modal basis functions of the structure in three dimensions. For
coupling the fluid and structural subsystems, two algorithms that represent weak and strong

coupling, namely Conventional Serial Staggered (CSS) and fixed point iteration algorithms,
respectively, were implemented. In order to reduce the communication overhead between the
fluid and structural subsystems, the structural solver is directly integrated into the CFD solver
architecture. The proposed framework is named windFSI, considering its potential application
to the target computational wind engineering community. Having designed the framework’s
architecture in OOP paradigm, the implementation of the code is versatile and can easily be
extended to simulate various wind-structure problems involving structures with complex con-
figurations and non-linear material properties.

The paper is organized into five sections. Section 6.2 describes the formulation of the
FSI problem for aeroelastic application. Software implementation of the proposed framework

6.2. Formulations of the fluid-structure interaction framework 141

using OpenFOAM and modal structural solver is described in Section 6.3. In Section 6.4, the
proposed FSI framework is demonstrated using two numerical examples, namely, the vortex-
induced oscillation of a circular cylinder and the wind-induced vibration of a tall building
immersed in turbulent atmospheric boundary conditions. Finally, Section 6.5 provides the
summary and future outlook for the current work.

6.2 Formulations of the fluid-structure interaction framework

This section presents the mathematical foundations of the proposed FSI algorithm for modeling
the aeroelastic behavior of flexible structures. The field equations governing the flow of the
wind and the equations of motion representing the deformation of the structure are described.
Most of all, the coupling algorithm synchronizing the fluid (wind) and structure domains at
each time step is presented.

Besides the fundamental difference in the governing physical laws, the fluid and struc-
ture domains are commonly simulated in different coordinate systems (Hughes et al., 1981).
The fluid flow is best studied in Eulerian co-coordinate systems, while the structural deforma-
tions can be conveniently represented in the Lagrangian frame of reference. However, in the
fluid-structure interaction problems, the motion of the structure causes the boundaries of the
fluid to move, hence requiring handling of the deforming mesh for the fluid domain (Jasak,
2009). Thus, for the current study, we adopted Arbitrary Lagrangian-Eulerian (ALE) formula-
tion widely used in the FSI studies with dynamic mesh capability. ALE permits the solution of
the Navier-Stokes equations in a domain of arbitrarily changing shape (Demirdžić and Perić,
1990). This makes the fluid-structure interaction problem rather a three-field coupling problem
that involves three computational entities: fluid flow, structural motion, and mesh deformation
(Felippa and Park, 1980; Piperno and Farhat, 2001; Piperno et al., 1995).

6.2.1 Governing equations

The fluid and structure regions are non-overlapping domains with their respective boundaries.
Figure 6.1 shows the schematic representation of the fluid and structure domain denoted by
ΩF and ΩS, respectively. The two domains share a common interface represented by ΓF /S.
Unlike other boundaries of the fluid and the structure domains, the fluid-structure interface is
where the information between the two domains is exchanged and needs to satisfy additional
compatibility and equilibrium requirements.

142 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

In
le

t

Ω𝒮
Γℱ/𝒮

Ωℱ

O
u

tl
et

Wind
Structural
Domain

Fluid
Domain

Figure 6.1: Schematic representation of the fluid and structure domains

6.2.1.1 Fluid domain

In the fluid domain ΩF , the flow of wind is governed by the well know Navier–Stokes equa-
tion. Considering that the displacements and rotations of the structure will be significant, the
governing equations are re-casted in the ALE frame of reference over a moving grid. In ALE
framework, for an incompressible flow with a fluid velocity u and the pressure p, the continuity
and Navier-Stokes equations take the form:

∇ · u = 0, (6.1)

∂u
∂t
+ [(u − um) · ∇]u = −

1
ρ
∇p + ν∇2u, (6.2)

where um is the mesh velocity vector; ν and ρ refer to the kinematic viscosity and density of the
fluid. Note that the ALE formulation of Navier–Stokes in Eq. (6.2) is similar to the standard
form used in the Eulerian frame of reference. The only difference is the advection term, which
is modified simply by substituting a relative convective velocity (u − um) into the equation.
However, the viscous term as well as the continuity equation in Eq. (6.1) are not altered as both
involve only spatial derivatives (Carmo et al., 2011).

6.2.1.2 Structural domain

The structure is described in the Lagrangian frame of reference. For aeroelastic modeling of
tall buildings, the structure is best represented as a discrete system built from individual struc-
tural elements (i.e., beams, columns, slabs, and shear walls). However, for FSI modeling, we
do not need the whole FE model of the building. The structural deformations can be effec-
tively described only using generalized properties. Hence, the deformation of the building is
computed in the time domain using these properties and integrated instantaneous aerodynamic

6.2. Formulations of the fluid-structure interaction framework 143

loads over the building surface. The generalized equations of motion for the first m modes can
be written as

[M]{q̈(t)} + [C]{q̇(t)} + [K]{q(t)} = {F(t)} (6.3)

{d(x, y, z, t)} =
m∑

i=1

qi(t){ϕi(x, y, z)} (6.4)

where {d(x, y, z, t)} represents the structural displacement of the building at any location and
time. Here, {q(t)} and {F(t)} respectively denote the generalized displacement and force vec-
tors. The matrices [M], [C], and [K] are the generalized mass, damping, and stiffness matrices,
respectively. Whereas, ϕi(i = 1, 2, . . . ,m) is the modal basis function for i−th mode. The
modal properties of the structure can be extracted from a free vibration analysis of the detailed
FE model of the building.

It is worth mentioning that for linear structural analysis, the generalized mass, damping,
and stiffness of the structure do not change with time and the deformation of the structure.
However, if one wants to incorporate a nonlinear effect, only the formulation in Eq. (6.3) will
change while the overall procedure remains the same. For example, if the structure undergoes
significant deformation, the second-order effects can be accounted by formulating a geometric
stiffness correction matrix (Wilson and Habibullah, 1987).

6.2.1.3 Dynamic mesh

The fluid mesh around the structure must deform following the motion of the structure. The de-
formed grid needs to fulfill compatibility constraints while preserving optimal mesh quality to
reduce discretization error (Jasak and Tukovic, 2006). Most importantly, for the ALE system,
the mesh motion must satisfy the Geometric Conservation Law (GCL) stated as (Demirdžić
and Perić, 1988; Thomas and Lombard, 1979):

∂Vce

∂t
+ ∇ · um = 0, (6.5)

where Vce is the cell volume. The GCL requires that the change in cell volume in any time
interval ∆t must be equivalent to the volume swept by all the faces of the cell during that time
interval (Slone et al., 2002).

To maintain a fairly regular grid, the mesh deformation around the structure needs to be
computed such that the displacements at the moving boundaries are smoothly distributed over
the surrounding grid of the fluid domain (Chen and Christensen, 2018). For this study, we used
a computationally efficient mesh morphing technique implemented in OpenFOAM that pre-
serves grid quality. The fluid mesh is divided into three regions. Near the structure, the mesh

144 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

undergoes only rigid body motion following the deformation of the structure, and this region is
controlled by specifying inner morphing distance di. The mesh far from the structure does not
move at all, and this region is controlled by providing outer morphing distance do. The third
part is the intermediate region; in this zone, the mesh deformation is smoothly interpolated be-
tween the other two regions. In this region, the mesh deformation is calculated using Spherical
Linear Interpolation (SLERP). For a smooth transition, the displacement of the mesh points in
this region is scaled by the function:

s(d) =
1
2

[
1 − cos

(
π

do − d
do − di

)]
, (6.6)

where d is the shortest Euclidean distance of the mesh point from the structure’s surface. The
plot in Figure 6.2 shows the non-dimensional scaling factor s(d) over the three regions. Com-
pared to other mesh deformation techniques, e.g., Laplacian and pseudo-solid mesh smoothing
techniques (Jasak and Tuković, 2010), SLERP is very efficient since it does not involve solving
any differential equation.

di do
d

0

1

s(
d

)

Figure 6.2: Mesh displacement scaling factor s(d) over different morphing regions.

6.2.2 Compatibility requirements

On the fluid/structure interface ΓF /S, kinematic and equilibrium conditions must be satisfied.
The structural displacement needs to match the mesh displacement at the solid boundary. Sim-
ilarly, on ΓF /S, the velocity of the structure and fluid needs to be the same. Actually, this
is a kinematic requirement which is the consequence of a no-slip boundary condition applied
on the walls of the structure. Thus, the above compatibility requirements can be expressed

6.2. Formulations of the fluid-structure interaction framework 145

mathematically as:

um =
d
dt

d on ΓF /S (6.7a)

xm = d on ΓF /S (6.7b)

In which d represents a Lagrangian displacement vector of the structure. On the other hand, if
the structure was modeled as a continuum media, in addition to the kinematic requirements in
Eq. (6.7), the stresses at the fluid/structure interface must be in equilibrium. However, for the
current study, since the structure is modeled employing a simple lumped-mass approach, only
area-integrated loads from the fluid are transferred to the structure.

6.2.3 Numerical schemes

Before discussing the FSI coupling algorithm, the numerical methods used for solving the
governing fluid flow and structural dynamics equations are presented briefly.

6.2.3.1 Fluid solver

For the fluid solver, we used OpenFOAM-8.0, an open-source finite volume-based CFD tool-
box. The incompressible Navier-Stokes equations are solved in a segregated manner using the
PIMPLE algorithm, which essentially works by running multiple PISO loops per time step.
The PISO (Pressure-Implicit with Splitting of Operators) algorithm is a pressure-velocity cou-
pling algorithm first developed by Issa (1986) for solving Navier-Stokes equations. Thus, here
we present a brief description of the PISO algorithm using the discretized form of the Navier-
Stokes equations.

Writing the momentum equation in Eq. (6.2) in a semi-discretized form, we have:

aPuP +
∑

f

aNuN = b − ∇p. (6.8)

In which P denotes the index of an arbitrary cell while index N represents the neighboring
cells. The coefficient aP and aN represent diagonal and off-diagonal elements of the assembled
system of equations, respectively. The summation

∑
f represents contributions from all bound-

ing faces, and b contains the source terms. The pressure gradient term in Eq. (6.8) is left to
be discretized in the final velocity-coupling stage. Following the notation in Jasak (1996), the
momentum equation can be rewritten as:

aPuP = H(u) − ∇p, (6.9)

146 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

where the term H(u) holds the contribution of neighboring matrix coefficients and all the source
terms.

In the same manner, discretizing the continuity equation and applying Gauss’s theorem,
Eq. (6.1) becomes ∫

V
(∇ · u)dV =

∫
∂V

u · ds ≃
∑

f

u f · s f = 0. (6.10)

Here, s f is the outward pointing surface area vector, and u f is the face-center velocity. The
pressure equation can be formed substituting uP from Eq. (6.9) into Eq. (6.10). However, this
normally requires obtaining face-center velocities from cell-centered values by some form of
interpolation. Usually, using a simple linear interpolation with refined mesh near high-velocity
gradient regions has shown to work reasonably well (de Villiers, 2006). This approach is equiv-
alent to using a central differencing scheme and renders a second-order accurate approximation
(Ferziger and Peric, 2012). Thus, after the interpolation, the final pressure equation reads as

∑
f

s f ·

(
1
aP
∇p

)
f
=

∑
f

s f ·

(
1
aP

H(u)
)

f
(6.11)

The left-hand side of Eq. (6.11) can be understood as the Laplacian of the pressure field.

Equations (6.9) and (6.11) represent the discretized Navier–Stokes equations. From these
equations, it is evident that pressure and velocity fields are coupled. Although there are numeri-
cal algorithms (Caretto et al., 1972; Van Leer, 1979) that can solve the complete Navier–Stokes
equations simultaneously, they are not often economical and incur high memory cost (de Vil-
liers, 2006). An economical way of solving Eqs. (6.9) and (6.11) coupled is to use iterative
methods such as the PISO algorithm. The PISO algorithm comprised one predictor and, at
most, two corrector steps. In the predictor step, the momentum equation (6.8) is used to obtain
an initial guess of the velocity field using the pressure gradient from a previous time step. Then,
in the corrector steps, the pressure field is solved from Eq. (6.11) multiple times, followed by
an explicit update to the velocity using Eq. (6.9) (Greenshields and Weller, 2022b).

For FSI application, since the simulation involves back-and-forth iteration between the
fluid and structure domains, several PISO iterations per time step might be required until both
the fluid and structural solutions converge. This makes the PIMPLE algorithm the solver of
choice for this type of application. Furthermore, the PIMPLE procedure generally has better
numerical stability and accuracy.

6.2. Formulations of the fluid-structure interaction framework 147

6.2.3.2 Structural solver

To compute the structural responses, the current study primarily uses Newmark’s time integra-
tion method. For comparison purposes, however, in addition to Newmark’s method, the 4-th
order Runge–Kutta method, which has superior accuracy and stability (with a modest increase
in computational cost), is also implemented.

The Newmark’s method is a second-order implicit technique developed by Newmark (1959)
for numerical integration of the dynamic structural equation of motion. Here, a brief descrip-
tion of the method for solving the modal equation of motions in Eq. (6.4) is presented. For the
current study, the structural responses are solved in a generalized coordinate system. Based on
Newmark’s time integration method, the generalized displacement and velocity for the current
time step tn+1 are:

qn+1 = qn + (∆t)q̇n +
[
(0.5 − β)(∆t)2

]
q̈n +

[
β(∆t)2

]
q̈n+1 (6.12a)

q̇n+1 = q̇n +
[
(1 − γ)∆t

]
q̈n + (γ∆t)q̈n+1 (6.12b)

with time step ∆t and parameters β and γ control the stability and accuracy of the method.
As seen in Eq. (6.12), the method is implicit, requiring iteration within a time step. However,
for linear structure, by setting specific values of β and γ, responses can be calculated without
iteration. The choice of β and γ determines the variation of acceleration within a time step
(Chopra, 2007). Choosing β = 1/4 and γ = 1/2 results in average-acceleration approximation.
For linear acceleration (trapezoidal) approximation, a value of β = 1/6 and γ = 1/2 are used.
Once the modal displacement (qn+1) and velocity (q̇n+1) of the structure are calculated from
Eq. (6.12), the acceleration (q̈n+1) is solved applying equilibrium condition. A step-by-step
procedure for Newmark’s method employing average and linear acceleration approximations
can be found in Chopra (2007).

6.2.4 FSI coupling algorithm

To solve the FSI problem, the current study employs a partitioned approach. The primary
reason for using this approach is that it preserves software modularity, which makes it simple
to implement using existing CFD and structural solvers. Two coupling algorithms belonging
to weak and strong classes of coupling algorithms were investigated. These algorithms are
the Conventional Serial Staggered (CSS) and Fixed-Point Iteration (FPI) methods. Next, each
coupling algorithm is briefly discussed with its implementation detail.

148 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

6.2.4.1 Conventional serial staggered algorithm

The Conventional Serial Staggered (CSS) is the most basic and popular coupling algorithm
commonly used for partitioned approach (Piperno and Farhat, 2001; Piperno et al., 1995). The
method is depicted graphically in Figure 6.3. Assuming the fluid and structure have the same
time step (∆tF = ∆tS), the CSS procedure goes as follows: (1) transfer the structural defor-
mation (dn, ḋn) to the fluid mesh; (2) advance the fluid system and compute the flow field
(pn+1,un+1); (3) transfer the flow-induced loads to structure; (4) advance the structural subsys-
tem to the next time step. Then, the same procedure is repeated for the next time step (see
Figure 6.3). Note that when the fluid and structure have unequal time steps, the computational
efficiency of the CSS method can be improved by applying sub-cycling for the fluid computa-
tion with a factor equivalent to n∆t = ∆tS /∆tF .

𝑝𝑛+1

𝒅𝑛+1 , ሶ𝒅𝑛+1

𝒅𝑛, ሶ𝒅𝑛, ሷ𝒅𝑛

𝑝𝑛 , 𝒖𝐧

𝒅𝑛, ሶ𝒅𝑛

𝑝𝑛+1, 𝒖𝐧+𝟏

1

2

3

4

𝒅𝑛+1, ሶ𝒅𝑛+1, ሷ𝒅𝑛+1

STRUCTURE

FLUID

Δ𝑡𝐹 = Δ𝑡𝑆

Figure 6.3: Conventional Serial Staggered(CSS) fluid-stricture coupling algorithm.

Although the CSS method is simple to implement and computationally inexpensive, the
method has some drawbacks. For example, it does not guarantee convergence and uncondi-
tional numerical stability of the fluid-structure interaction (Farhat and Lesoinne, 2000). Fur-
thermore, regardless of the accuracy of the numerical methods used for solving the fluid and
structure domains, the CSS procedure itself is well-known to be only first-order time-accurate
(Farhat et al., 2006). One of the primary reasons the CSS method lacks accuracy and stability
is that it does not check for convergence before continuing to the next time step, i.e., if the
predicted structural displacements and flow field stop changing with additional iterations for
the same time step. For this reason, the CSS algorithm is regarded as a weak or loose coupling
algorithm. These limitations especially become pronounced for FSI problems when the den-
sities of the fluid and the structure are of the same order (Deparis et al., 2003) compared to
aeroelastic applications where the fluid and structure have significant density differences.

6.2. Formulations of the fluid-structure interaction framework 149

6.2.4.2 Fixed-point iteration coupling algorithm

Figure 6.4 shows the flow chart of the fixed-point iteration (FPI) based FSI coupling algorithm
implemented. Unlike the CSS method, which solves the fluid and structure domains once
for each time step, in the fixed-point FSI algorithm, both domains are solved multiple times
before marching to the next time step. Essentially, the FPI-based coupling algorithm treats
the FSI problem as a root-finding problem. As such, solving the mesh, fluid, and structural
subsystems is considered as evaluating abstract non-linear algebraic expressions denoted by
M(d, ḋ), F (x, ẋ) and S(u, p), respectively. For a given sub-iteration k ≥ 1, omitting the time
index, the three subsystems are interrelated as (Deparis et al., 2003):

(xk+1, ẋk+1) =M(dk, ḋk),

(uk+1, pk+1) = F (xk+1, ẋk+1),

(dk+1, ḋk+1) = S(uk+1, pk+1),

(6.13)

where (x0, ẋ0), (u0, p0) and (d0, ḋ0), respectively represent mesh deformation, flow fields, and
structural responses variables from the previous time step. For each sub-iteration, the fluid
domain, therefore, is solved as F (xk+1, ẋk+1) using the PIMPLE algorithm. The sub-iteration
is deemed converged when the difference between two successive iterations is within a certain
error of tolerance. As a result, the method is globally implicit and usually unconditionally
stable (Küttler and Wall, 2008). In the literature, such types of coupling algorithms are often
referred to as strong or tight coupling methods.

To improve the convergence and stability of the FPI algorithm, the structural deformation
fed into the mesh solver is often relaxed by some factor (Küttler and Wall, 2008). For the
current study, we adopted a constant factor ω to relax the intermediate structural displacement
and velocity as:

dk+1 = dk + ω(d∗k+1 − dk),

ḋk+1 = ḋk + ω(ḋ∗k+1 − ḋk),
(6.14)

where d∗k+1 and ḋ∗k+1 are responses directly computed from equation of motion. For ω < 1 we
have under-relaxation and when ω > 1 the system is over-relaxed. But if the value of ω is set
to 1, there will be no relaxation. The exact value of ω is often problem specific and can not be
known apriori. Finally, the convergence of the method is decided based on the residual norm
of the deformation of the structure. The stopping criterion for the sub-iterations can be based
on

∥dk+1 − dk∥

dref
≤ ϵtol. (6.15)

150 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

START

SOLVE MESH

𝒙𝑘+1, ሶ𝒙𝑘+1 = ℳ 𝒅𝑘, ሶ𝒅𝑘

SOLVE FLUID

𝒖𝑘+1, 𝑝𝑘+1 = ℱ 𝒙𝑘+1, ሶ𝒙𝑘+1

SOLVE STRUCTURE

𝒅𝑘+1
∗ , ሶ𝒅∗𝑘+1 = 𝒮 𝒖𝑘+1, 𝑝𝑘+1

Converged?
NOYES

𝑘 ← 𝑘 + 1𝑡 ← 𝑡 + Δ𝑡

FIXED POINT ITERATION

RELAX RESPONSES

𝒅𝑘+1, ሶ𝒅𝑘+1 = ℛ 𝒅𝑘+1
∗ , ሶ𝒅∗𝑘+1

End time?

NO

YES

STOP

Figure 6.4: Fixed-point iteration (FPI) fluid-stricture coupling algorithm.

In which ϵtol represents a relative residual tolerance small enough such that the fluid-structure
iteration is deemed converged. The parameter dref is a reference dimension characteristic of the
structure. For wind-induced vibration building, dref can be taken as the width of the building. In
Eq. (6.15), the reference dimension dref is used instead of the norm of structural displacement
∥dk+1∥ to avoid the possibility of infinite error that would have resulted when the structure is
nearly close to its rest configuration (i.e., ∥dk+1∥ ≈ 0).

6.3 Software implementations

This section presents the implementation of the proposed FSI framework integrating high-level
programming libraries of OpenFOAM® and an in-house structural solver. The framework is
implemented using C++ programming language and employs the OOP paradigm. For seam-
less implementation and to reduce the communication overhead of the fluid and structural
solvers, the developed structural solver is directly integrated into OpenFOAM® architecture.
From a practical perspective, this seems a rational choice, especially for computational aeroe-
lastic simulations, because most of the complexities starting from modeling the physics up
to implementing the software architecture, result from the CFD part, not from the structure.
Thus, migrating the structural software capabilities to the CFD framework greatly reduces the

6.3. Software implementations 151

software development effort. Furthermore, this permits the most demanding part of the FSI
modeling (i.e., turbulent wind flow simulation) to be run in its most optimized native environ-
ment, ultimately making the overall FSI simulation computationally efficient.

In addition to considerations related to computational efficiency, by taking advantage of
the object-oriented implementations, the framework is designed to offer greater flexibility in
representing the fluid and structural subsystems. Though the proposed framework is tailored
to the aeroelastic modeling of slender structures, its overall software architecture is organized
such that it can easily be extended to simulate other FSI problems. For instance, by just simply
changing the way the modal properties of the structure are fed into the current framework,
one can seamlessly simulate the aeroelastic behavior of complex civil structures such as long-
span bridges and flexible roof systems that are normally more susceptible to the aeroelastic
phenomenon than tall buildings are (Vickery, 1990).

6.3.1 Overall software architecture

The core classes, data structure, and field manipulation functions are designed in a modular
fashion to represent the entities and operations involved in the actual physical process. Fol-
lowing the outline of the FSI framework presented in Section 6.2, the implemented software
architecture contains an assembly of classes that store and manipulate data related to each sub-
system: the fluid, dynamic mesh, and structure. Furthermore, accessory (helper) data manipu-
lation and monitoring classes were implemented. Figure 6.5 shows the high-level abstraction of
the main software components in the windFSI framework. For storing and manipulating field
data, as much as possible, the framework uses existing low-level data structures of OpenFOAM
such as scalarField and vectorField.

Based on the existing OpenFOAM’s transient solver pimpleFoam, a new solver called
pimpleFsiFoam is developed to handle the fluid-structure coupling (see Figure 6.5). For the
fluid subsystem, the implementations in pimpleFsiFoam solver are the main modification
to the original OpenFOAM’s solver capability. Note that pimpleFsiFoam is an executable
application that contains main function. For the structural subsystem, several classes were
implemented to compute fluid loads, solve modal equations of motion, and map the motion
of the structure to its exterior surface. Thus, most of the software development effort was
dedicated to the implementation of this component. Also, in order to manage dynamic mesh,
the current framework implemented a new displacement-based motion solver class that can run
with pimpleFsiFoam or any top-level flow solver. In Figure 6.6, the class diagram of all the
objects implemented in the windFSI framework. For ease of presentation, the diagram shows
only the most relevant properties and methods of each class. The details of the implemented

152 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

Updated
mesh

Deformation

W
in

d
 lo

ad
s

structuralMotion

structuralMotionState

RungeKuttaNewmarkBeta

structuralProperties structuralSolver

STRUCTURE

storeyForces structuralResponseState

dynamicFvMesh

displacementMotionSolver

MESH

structuralMotionMeshSolver

pimpleFsiFoam

FLUID

fsiControl

Figure 6.5: Core components of the implemented software architecture in windFSI framework

code can be found in Appendix D. The following subsections describe the implementation of
each component and the framework’s main features.

6.3.2 Implementation of the structural subsystem

The class structure of the structural software component is designed to be flexible and offer
different features. It is worth noting that the existing libraries in OpenFOAM do have structural
solvers (Jasak and Tuković, 2010). However, these solvers only handle rigid body motion with
six degrees of freedom (3 translational and 3 rotational); hence cannot be used to describe
the deformation of flexible structures with complex mode shapes (e.g., tall buildings). Thus,
developing a new class library to handle structural motions with a multi-degree-of-freedom
system prescribed using 3D mode shape and complex mass distribution was necessary.

Now, we introduce the high-level structure of the implemented C++ classes to demonstrate
the architecture’s capability. The structural component contains three main classes, namely
structuralMotion, structuralProperties, and structuralSolver. Each of them is
briefly described below. Furthermore, additional classes that assist these classes are described
at the end.

6.3. Software implementations 153

structuralSolver

strBody

calcGeneralizedForce()

solve()

NewmarkBeta

beta

gamma

solve()

RungeKutta

solve()

structuralProperties

nModes

modalFrequencies

modalDampingRatios

storeyMasses

modeShapes

read()

calcGeneralizedProperties()

displacementMotionSolver

structuralMotion

strProps

motionState

solver

transform()

update()

updateStructuralMotion()

structuralMotionState

generalizedDisplacement

generalizedVelocity

generalizedAcceleration

write()

structuralMotionMeshSolver

patches

innerMorphingDistance

outerMorphingDistance

solve()

curPoints()

1

1

structuralResponseState

strBody

execute()

write()

storeyForces

nStoreys

storeyHeights

calcStoreyForces()

writeStoreyForces()

fvMeshFunctionObject

1

Figure 6.6: Class diagram showing the general structure of the implemented code. Classes
shown with dotted borders are native OpenFOAM classes.

structuralMotion

The class structuralMotion is the core class of the component that coordinates most of
the operations related to the structural subsystem and communicates with the moving mesh.
To achieve this array of tasks, this class registers instances of the structuralProperties

and structuralSolver classes. The structuralMotion object is responsible for updating
the deformation of the structure at each time step based on the structural properties speci-
fied. More importantly, using the computed storey forces at each floor level, the update()

method triggers the structuralSolver object to solve the modal equations of motion. Once
the modal equations are solved, the updateStructuralMotion() method calculates the dis-
placement, velocity, and acceleration of the structure at each floor level using the mode shape
vector and instantaneous deformation of the structure in the generalized coordinate system.
The structuralMotion class also implements a method called transform(), which maps

154 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

the deformation of the structure to the surrounding mesh given the initial undeformed state of
the dynamic mesh points. Furthermore, parallel communication among processors is carried
out by this class. Considering that only a few modes are sufficient to describe the motion of
the structure, the modal equations of motion are solved only on the master processor, and the
results in the generalized coordinate system are scattered to the remaining processors at each
time step.

structuralSolver

The structuralSolver class is an abstraction of the numerical solver (time integrator) for
the dynamic equations of motion. This class is the base class for all structural solvers. It
provides methods to calculate generalized forces and solve the modal equations of motion.
Furthermore, the class registers reference to structuralMotion object for accessing the cur-
rent state of structural deformations. By driving the structuralSolver class, two time-
integrator, namely NewmarkBeta and RungeKutta, which represent Newmark’s method and
the 4-th order Runge-Kutta scheme, were implemented. Note that these time integrators are
run-time selectable by virtue of being derived from the base class structuralSolver. For
NewmarkBeta method, coefficients β and γ are read from the dictionary; hence can be adjusted
to specify constant or linear acceleration variants of the algorithm.

structuralProperties

Class structuralProperties holds the structural properties of the model. It reads dynamic
properties of the structure, such as mode shapes, mass distribution, natural frequencies, and
damping ratios. It also provides methods to calculate the generalized mass, damping, and stiff-
ness of the structure from specified dynamic properties. For the application in this paper, the
implementation of structuralProperties class assumes that the structure is just a multi-
story building with the masses concentrated on each floor, and the floors are assumed to be rigid
diaphragms. The class stores only properties that are relevant for modal analysis. However, if
one wants to change the type of structure, mainly the implementation of this class needs to be
modified.

Helper classes

Additional helper classes were also implemented for performing miscellaneous tasks. One of
them is storeyForces which calculates the loads acting on the structure at each storey level.
This is achieved by integrating pressure acting over the tributary area attributed to each floor.
The class structuralMotionState holds the motion state of the structure in generalized

6.3. Software implementations 155

coordinates. It is mainly used to scatter the motion state among processors and to save the
structural motion state if the FSI simulation gets interrupted. The fact that it stores only gen-
eralized information (much smaller than storing deformation of the whole structure) makes it
memory efficient and takes less time to distribute across processors. The other attendant class
is structuralResponseState, which monitors the structural response during runtime for
postprocessing calculations. As shown in Figure 6.6, both the structuralResponseState

and storeyForces are derived from fvMeshFunctionObject class of OpenFOAM. As a re-
sult, they are equipped with optimized runtime input-output and can be conveniently specified
in system/controlDict file.

6.3.3 Implementation of the dynamic mesh

For treating the moving mesh, the current framework implemented a new mesh solver that can
be used with the existing dynamic mesh capability of OpenFOAM. The implemented mesh
solver is structuralMotionMeshSolver class shown in Figure 6.6. In order to take advan-
tage of already developed functionalities, structuralMotionMeshSolver is derived from
OpenFOAM’s displacementMotionSolver class which only can handle rigid-body mo-
tions. The main features of structuralMotionMeshSolver are its ability to transfer the
motion of a structure with complex deformation modes into the grid points of the fluid mesh.
This class also inherits structuralMotion class and triggers the methods to update the mo-
tion of the structure.

Furthermore, by switching twoWayCoupled control on and off, it is possible to perform
two-way or one-way coupling between the fluid and structure. For example, if twoWayCoupled
is turned off, only the loads are transferred to the structure, but the mesh is not updated. This
is actually equivalent to simply running an aerodynamic simulation and post-processing the
response of the structure using the recorded aerodynamic loads. Although the primary purpose
of performing FSI simulation is to do a two-way coupled simulation, having this option offers
a systematic way to test whether the load transferring operation in the FSI simulation works ac-
curately or not by comparing it with aerodynamic simulation data. Also, this type of coupling
option can be advantageous for structures with negligible aeroelastic feedback.

6.3.4 Implementation of the FSI Solver

The FSI solver is implemented by modifying pimpleFoam transient solver, which is already
equipped with dynamic mesh capabilities. The solver is compiled as an executable application
with the name pimpleFsiFoam. Its interaction with the remaining components of the software
architecture is inscribed in Figure 6.5. Essentially, the pimpleFsiFoam application has the

156 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

“main” function of the program and loops over the fluid and structural subsystems. The code
implemented for solving the structure and the moving mesh components are integrated into
one library called libwindFSI.so, which is dynamically linked to the FSI solver during the
compilation. In order to coordinate the fluid-structure coupling, a new helper class called
fsiControl is implemented. This class controls the FSI iterations and supplies convergence
information/checks for the pimpleFsiFoam solver.

The high-level C++ code of pimpleFsiFoam solver is shown in Listing 6.1. The most ba-
sic difference between pimpleFsiFoam and the pimpleFoam solvers is that the former has
one additional loop that runs over the structure, dynamic mesh, and fluid subsystems un-
til the desired convergence criterion is met (see line 4 of Listing 6.1). Furthermore, in the
pimpleFsiFoam solver, the structure and mesh are updated once the fluid is solved using a
PIMPLE algorithm. However, in pimpleFoam solver, the dynamic mesh is updated after com-
pleting the PISO loops. The added FSI loop in pimpleFsiFoam permits better control over
convergence while providing versatility in implementing different fluid-structure coupling al-
gorithms (e.g., weak and strong coupling). For instance, if we set the maximum FSI itera-
tion to one, the code shown in Listing 6.1 normally reduces to the CSS coupling algorithm,
where both the fluid and structure are solved only once. On the other hand, when the function
fsi.loop() computes Eq. (6.15) to check the convergence of the FSI iteration; the procedure
becomes a fixed point iteration coupling algorithm. As such, by programming stopping crite-
ria such as maximum FSI iteration and error tolerance in the fsi.loop() function (a method
implemented in the fsiControl class), one can readily control the FSI coupling procedure.
Note that the first while loop in Listing 6.1 increments the time step. Regarding the geometric
conservation laws, the calculations in lines 12-16 of Listing 6.1 adjust the face fluxes such that
the geometric continuity equation stated in Eq. (6.5) is satisfied.

The pimpleFsiFoam solver assumes that the fluid and structure subsystems use the same
constant time step. For aeroelastic application, it is clear that this time step is governed by
the fluid flow and should satisfy the maximum Courant–Friedrichs–Lewy (CFL) number (Co)
required for the accuracy and stability of the numerical solutions. For moving mesh, in addition
to the flow Courant number, the mesh Courant number must be checked. The mesh Courant
number is analogous to the flow Courant number but defined based on mesh velocity. The
ratio between the mesh and flow Courant number is recommended to be kept below unity to
guarantee high-quality results (Benjamin et al., 2021).

1 while (pimple.run(runTime))

2 {

3 runTime++;

4 while(fsi.loop())

5 {

6.3. Software implementations 157

6 //Solve the structure and move the mesh

7 mesh.update();

8 //Correct flux if the mesh is moving

9 if (mesh.changing())

10 {

11 MRF.update();

12 if (correctPhi)

13 {

14 phi = mesh.Sf() & Uf();

15 #include "correctPhi.H"

16 fvc::makeRelative(phi, U);

17 }

18 }

19 //Solve the fluid domain

20 while (pimple.loop())

21 {

22 #include "UEqn.H"

23 // --- Pressure corrector loop

24 while (pimple.correct())

25 {

26 #include "pEqn.H"

27 }

28 if (pimple.turbCorr())

29 {

30 laminarTransport.correct();

31 turbulence ->correct();

32 }

33 }

34 }

35 runTime.write();

36 }

Listing 6.1: Sample high-level code of the pimpleFsiFoam solver

Regarding the turbulence modeling, similar to pimpleFoam solver, the pimpleFsiFoam

can be used with any turbulence model, including laminar, RANS, and LES. For this study,
however, the framework is tested and validated using LES, considering applications related
to wind-induced vibration of structures, where the flow around the structure is massively sep-
arated and the response of the structure in the time domain is required. In Appendix E we
briefly demonstrate how the user can set up an aeroelastic simulation utilizing the developed
FSI framework.

158 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

6.4 Numerical examples and validation

This section demonstrates the capabilities of the developed framework using two numerical
examples. The first numerical example involves a vortex-induced vibration of an elastically
mounted circular cylinder in the cross-flow direction. Then, in the second example, the frame-
work is used to simulate the aeroelastic response of a tall building with a relatively complex
three-dimensional mode shape.

6.4.1 Vortex induced oscillation of a circular cylinder

Flow-induced vibration of a circular cylinder is widely studied in the literature and has broad
applications in many engineering fields. For instance, many civil structures, including chim-
neys, towers, transmission-line conductors, etc., have circular cross-sections and are subjected
to wind-induced vibration involving several fluid-structure interaction phenomena. Here, the
vortex-induced vibration of a long circular cylinder in the cross-wind direction is chosen as
a simple yet practically important bench-marking case to test the capabilities of the proposed
framework. Furthermore, previous studies have shown that an elastically mounted circular
cylinder undergoes substantial cross-wind oscillation with significant motion-induced (aeroe-
lastic) effects compared to the wind-induced vibration of a tall building. Thus, testing the
overall FSI framework using this example demonstrates the importance of modeling the fluid-
structure interaction phenomenon.

The numerical model is prepared based on the experimental work published in Belloli et al.
(2012). The experimental study presented the vortex-induced vibration of a long circular cylin-
der of diameter D = 0.2m with a maximum Reynolds number Re = 5.4 × 105. The parameters
used in the current simulation are summarized in Table 6.1.

6.4.1.1 Numerical model

The extent of the computational domain adopted for the FSI simulation relative to the diameter
of the cylinder D is shown in Figure 6.7. The domain has a dimension of 50D × 20D × 10D,
and the cylinder is placed 10D away from the inlet of the domain. The computational grid used
has several refinement regions with denser mesh provided in the vicinity of the cylinder (see
Figure 6.8). In total, the grid consists of 10.3 million hex-dominated cells. Over the surface of
the prism, in addition to surface refinement, ten prism layers were introduced with a maximum
aspect ratio of 5. On average, the center of the first off-wall cell is located approximately y+ < 3
wall units away from the surface; hence, no wall treatment was required. At the inlet, a smooth
uniform inflow is applied, while a zero pressure boundary condition is used at the outlet. For

6.4. Numerical examples and validation 159

Table 6.1: Details of the model used for FSI simulation

Parameters Values

Diameter, D = 0.2 m

Length of the cylinder, L = 2 m

Aspect ratio, L/D = 10

Mass per unit length, mL = 6.5 kg/m

Mass ratio, m∗ = 170

Natural frequency, fs = 3.2 Hz

Structural damping, ξs = 2.5 × 10−3

Mass damping ratio, m∗ξs = 0.43

Strouhal number, S t = 0.18

Strouhal velocity, US t = 3.56 m/s

Air density, ρair = 1.225 kg/m3

Nominal Reynolds number (at US t), Re = 4.8 × 104

all other faces of the domain, a slip boundary condition is specified.

D

10D

40D

10D

20D

k/2

k/2

symmetry

symmetry

Slip wall

Slip wall

Outlet

Inlet

y

x

z

Figure 6.7: Dimensions of the computational domain and definition of boundary conditions

Considering that the flow is inherently unsteady, for the turbulence modeling, large-eddy
simulation (LES) is employed with the standard Smagoronsky subgrid-scale model. A second-
order accurate backward differencing scheme is used for time integration of the fluid domain.
The fluid domain is solved using a single PIMPLE iteration based on the procedure described

160 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

Figure 6.8: Computational grid used: cross-section view along xy-plane.

in Section 6.2.3.1. The simulations are conducted with a time step of 2 × 10−4 s for over 60 s
duration.

For time integration of the structural domain, Newmark’s method is utilized with β = 0.25
and γ = 0.5, with no relaxation of the structural displacements. Mechanical properties of the
oscillating cylinder are provided in Table 6.1. In order to test the overall load/displacement
transfer mechanism, the cylinder is divided into five segments having a constant mode shape in
a cross-wind direction. The oscillation of the cylinder is restricted to be only in the y−direction.

For the fluid-structure coupling, CSS and fixed point iteration algorithms were investigated.
For the inner and outer distance of the dynamic mesh, D and 4D, respectively, were specified.
For the tolerance of the FSI error given in Eq. (6.15), ϵtol = 1 × 10−6 is used with a reference
length equivalent to the diameter of the cylinder. For the fixed point iteration-based coupling
algorithm, the maximum FSI iteration is limited to 5. The FSI simulations are initialized with
a developed flow field mapped from prior aerodynamic simulations with the fixed cylinder.
Finally, the FSI simulation was conducted in parallel utilizing a total of 256 processors, each
having 2.50 GHz CPU core.

6.4.1.2 Results

The cylinder is first kept rigid, and the unsteady turbulent flow past the cylinder is simulated
using LES. Figure 6.9 shows the flow structure around the cylinder determined from the second
invariant of the velocity gradient. For a high Reynolds number flow (Re ≃ 5× 104) considered

6.4. Numerical examples and validation 161

in the present work, the flow is turbulent, containing a wide spectrum of length and time scales.
As seen in Figure 6.9, the fine computational grid has captured the rolling up of the separated
shear layer that forms the shedding of vortexes. Spectral analysis of the velocity at the wake
of the rigid cylinder gave Strouhal a number approximately equal to S t = 0.2, compared to a
value of 0.18 reported in the experimental work of Belloli et al. (2012).

Figure 6.9: Iso-surface of the second invariant of the velocity gradient, Q = 100 colored by the
stream-wise component of instantaneous velocity.

Now, we investigate the dynamics response of the cylinder. Here, by performing the FSI
for different velocity ratios U/US t, the cross-wind oscillation of the cylinder is investigated.
Figure 6.10 shows the time series of the displacement response for different U/US t values. It
can be noted that the cylinder experiences significant oscillation for 1.1 < U/US t < 1.25. A
similar range (1.11 < U/US t < 1.31) is also reported in the experimental work of Belloli et al.
(2012). This region is commonly referred to as the “lock-in” region in the literature, and the
shedding frequency synchronizes with the natural frequency of the structure.

The first stage of validation involves comparing the responses predicted using the current
FSI framework with the ones found using OpenFOAM’s built-in dynamic mesh solvers for rigid
body motion. Specifically, for this example, we used OpenFOAM’s sixDoFRigidBodyMotion
solver as a benchmark for windFSI framework. Thus, employing this solver, the vortex-
induced vibration of the cylinder is simulated using the same numerical setup. Figure 6.11
compares the time series of the displacement responses from the two cases as a function of
non-dimensional time tn = t/Ts, where Ts is the period of oscillation. It is worth noting that
OpenFOAM’s rigid body motion solver implements a weak coupling scheme, and for the com-
parison in Figure 6.11, a staggered coupling algorithm is adopted for windFSI framework. As

162 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

0 10 20 30 40 50 60

−0.2

0.0

0.2

y
/D

U/USt =0.98

0 10 20 30 40 50 60

−0.2

0.0

0.2

y
/D

U/USt =1.05

0 10 20 30 40 50 60

Time [s]

−0.2

0.0

0.2

y
/D

U/USt =1.12

0 10 20 30 40 50 60

−0.2

0.0

0.2

U/USt =1.18

0 10 20 30 40 50 60

−0.2

0.0

0.2

U/USt =1.25

0 10 20 30 40 50 60

Time [s]

−0.2

0.0

0.2

U/USt =1.31

Figure 6.10: Time histories of the non-dimensional displacement of the cylinder for different
velocity ratios U/Ust.

seen in Figure 6.11, despite the implementation difference, the responses predicted from both
cases are nearly identical. Further statistical comparison of the results windFSI framework
with OpenFOAM is shown Figure 6.14a for the lift force coefficient(CL).

0 5 10 15 20 25 30
tn

−0.08

−0.04

0.00

0.04

0.08

y
/D

OpenFOAM windFSI(Current)

Figure 6.11: Comparison of the displacement time history from windFSI framework and
OpenFOAM’s rigid body motion solver for U/US t = 1.0.

For FSI problems, one of the most important factors that determine the accuracy of the sim-
ulation is the coupling algorithm used. Here, using the same numerical example, we compare
the performance of CSS and FPI coupling algorithms. Figure 6.12 shows the displacement
of the cylinder predicted using the CSS and FPI coupling techniques. For the FPI coupling
algorithm, it was observed that only two FSI iterations were sufficient to reduce the relative
error below the tolerance limit. As shown in Figure 6.12, the difference between the CSS and
FPI coupling algorithms is generally small. This is also reflected in the power spectral density
(PSD) functions of the lift force coefficients from CSS and FPI as depicted in Figure 6.14a. Cit-

6.4. Numerical examples and validation 163

ing that the CSS method is a loosely coupled method and does not enforce convergence within
the one-time step, it is normally expected to be less accurate compared to the fixed point itera-
tion method. However, for this numerical example, mainly constrained by the requirements of
the fluid domain, the time step used for the structural computation is very small compared to
the period of oscillation of the structure, and the aerodynamic loads do not change significantly
over a single time step. Hence, from a practical point of view, the accuracy of the CSS and FPI
methods are comparable, ultimately making the CSS method preferable because of its reduced
computational cost. This is also true for most aeroelastic applications, where the structure is
usually heavy and stiff (Degroote et al., 2009).

0 5 10 15 20 25 30
tn

−0.08

−0.04

0.00

0.04

0.08

y
/D

CSS FPI

Figure 6.12: Displacement response computed using Conventional Serial Staggered (CSS) and
Fixed-point Iteration (FPI) coupling algorithms for U/US t = 1.0.

Furthermore, the performance of two different time integration methods, namely New-
mark’s constant acceleration method and a more accurate fourth-order Runge–Kutta method,
are compared in Figure 6.13. As seen in the figure, the responses from both methods are very
close and do not significantly alter the fluid-structure coupling. Thus, in the rest of this study,
Newmark’s scheme is employed as it is computationally less expensive.

0 5 10 15 20 25 30
tn

−0.10

−0.05

0.00

0.05

0.10

y
/D

Newmark Runge-Kutta

Figure 6.13: Comparison of the structural responses predicted using Newmark’s constant ac-
celeration method and a fourth-order Runge–Kutta scheme.

Finally, to investigate the significance of motion-induced forces (aeroelastic effect), the lift
force coefficient (CL) on the cylinder is studied with and without FSI simulation. Figure 6.14b

164 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

compares the PSD of the lift force coefficient for the rigid and oscillating cylinder. The spec-
trum shows a district peak at the vortex shedding frequency (f / fs = 1). As expected, due to the
motion-induced effects, the lift force FSI simulation results are higher than the rigid cylinder,
which seems to be captured by the FSI simulation. Overall, in this numerical example, it was
demonstrated that windFSI framework is capable of capturing the aeroelastic phenomenon of
flexible structure.

(a) (b)

Figure 6.14: Power spectral density(PSD) of the lift force coefficient (CL) for U/US t = 1.0: (a)
comparison of windFSI with OpenFOAM; (b) FSI vs. Rigid cylinder

6.4.2 Wind induced vibration of a tall building

In this second numerical example, employing the windFSI framework, the dynamic response
of a tall building to a turbulent atmospheric boundary layer (ABL) flow is simulated. Consid-
ering the framework is specially developed for slender and flexible structures, this numerical
example aims to demonstrate the framework’s most important capabilities. The flow around
the building is modeled using LES and assuming the building is immersed in ABL flow. For
the building structure, we used the Commonwealth Advisory Aeronautical Research Council
(CAARC) model. The CAARC model is a rectangular building with height H = 182.88 m,
width B = 45.72 m, and depth D = 30.48 m (Melbourne, 1980). The simulation is conducted
for two wind directions that represent cases where the wind is perpendicular to the wider face
(0◦ wind direction) and the narrower face (90◦ wind direction). For comparison purposes, for
both wind directions, the response of the structure is evaluated using a simple pressure integra-
tion using one-way coupling.

6.4. Numerical examples and validation 165

6.4.2.1 Modeling of the wind flow

The wind flow is simulated by specifying ABL flow conditions characterizing open exposure
conditions with aerodynamic roughness height of z0 = 0.025m. The computational domain
used for the simulation is shown in Figure 6.15, where dimensions are expressed relative to
the building height. At the inlet of the domain, we used inflow turbulence generated using the
Divergence-free Spectral Representation (DFSR) method (Melaku and Bitsuamlak, 2021). A
slip velocity boundary condition is specified for the side and top faces. At the outlet of the
domain, a zero-pressure boundary condition is applied. Considering the computational cost of
fully resolving the turbulent wall boundary layer for the building surface, a smooth wall func-
tion based on Spalding’s formula (Spalding, 1961) is used. On the ground surface, assuming
a log-law relationship, a rough wall boundary condition based on the Schumann–Grötzbach
model (Grötzbach, 1987; Schumann, 1975) is adopted. For the Schumann–Grötzbach model,
an aerodynamic roughness height representative of the exposure condition simulated (i.e.,
z0 = 0.025m) is supplied. For the fluid, properties of air with density ρ = 1.225kg/m3 and
kinematic viscosity ν = 1.5 × 10−5m2/s are specified.

5.5H

𝑧

𝑥𝑦

Figure 6.15: Extent of the computational domain and naming of the boundaries

The computational grid employed for the simulation is shown in Figure 6.16 for 0◦ wind
direction. To resolve important flow features near the building, the mesh is progressively re-
fined as we get close to the surface of the building. The grid size used in each refinement region
is given in Figure 6.16. Overall, the computational grid consists of approximately 10 million
cells.

In the fluid domain, a fully implicit second-order accurate backward differencing scheme
is used to perform time integration of the temporal derivatives. For spatial discretization, a

166 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

2H 3H

2H
1.25H

2H 3HH

12H

10H

Zone-4

Zone-1

Zone-1

Zone-2

Zone-2

Zone-3

Zone-3

(a)

(b)

0.25DH/2

H

Zone-6

Zone-5

1.15H

Zone-1

Zone-2
Zone-3

Zone-4

Zone-5

Zone-6

H/9

H/18
H/36

H/73

H/146

H/292
Building H/585

Region Grid size

Figure 6.16: Computational grid used for FSI simulation with mesh size specified in each
refinement zones: (a) horizontal section; (b) longitudinal section

second-order accurate central differencing scheme is adopted. The simulations were run for
a duration that is roughly equivalent to a full-scale one-hour duration. The fluid subsystem
governs the time step, and a constant value of dt = 5 × 10−5 s is adopted for this numerical
example. The maximum Courant-Friedrichs-Lewy (CFL) number in all the simulations is kept
well below 7.0.

6.4.2.2 Modeling of the building structure

For the building structure, the dynamic properties of a 60-storey reinforced concrete building
are used. Each storey has a constant inter-storey height of 3.05 m. The building uses a moment-
resisting frame structural system that constitutes columns, beams, and rigid diaphragm slabs.
The structural system is shown in Figure 6.17. A detailed description of the sectional properties
of the structural members, including reinforcement details, can be found in Park et al. (2018).
The distribution of lumped masses over the building height is shown in Figure 6.17c.

For the FSI simulations, however, the building is represented by a lumped-mass system
using only the modal properties of the structure extracted from a finite-element model of the
building. This permits the FSI simulation to be computed in a computationally efficient man-
ner. The simulations were conducted using the first six modes of vibration of the building. Fig-

6.4. Numerical examples and validation 167

(c)

Figure 6.17: Structural system used for CAARC building: (a) 3D view ; (b) plan view; (c)
mass distribution per each floor

ure 6.18 shows the mode shape of the building for longitudinal(X), lateral(Y) and torsional(T)
degrees of freedom. For structural damping, a constant modal damping ratio of 2.0% (of the
critical) is used for all modes. For the time integration of the structural subsystem, Newmark’s

−1 0 1

Mode 1

0.0

0.2

0.4

0.6

0.8

1.0

z/
H

X

Y

T

−1 0 1

Mode 2
−1 0 1

Mode 3
−1 0 1

Mode 4
−1 0 1

Mode 5
−1 0 1

Mode 6

Figure 6.18: The first six vibration mode shapes of the building in full-scale: Mode 1(0.156Hz);
Mode 2(0.167Hz); Mode 3(0.192Hz); Mode 4(0.450Hz); Mode 5(0.459Hz); Mode 6(0.512Hz)

method is employed. The same time step used in the fluid solver is also specified for the struc-
tural subsystem. The response of the building, including the displacement and acceleration of
each storey, is monitored at a sampling frequency of 400 Hz.

168 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

6.4.2.3 Results

Before evaluating the performance of the FSI framework, the characteristics of the approaching
flow simulated using LES and synthetic inflow turbulence generated using the DFSR method
are compared against experimental target measurements. This is important because the wind
profiles, as well as the spectral content of the approaching flow, significantly affect the response
of the structure. Thus, in Figure 6.19, these flow characteristics are inspected. For the LES,
the incident wind profiles and velocity spectra are measured in an empty domain simulation
without the building. The comparison of the mean velocity and turbulence intensity profiles
are depicted in Figure 6.19a and Figure 6.19b, respectively. Similarly, the roof-height velocity
spectrum for the stream-wise component is compared in Figure 6.19c. From Figure 6.19, it
can be seen that the wind profiles and velocity spectra are in excellent agreement with the
experimental data.

0.0 0.5 1.0 1.5
Uav/UH

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
H

(a)

Exp.

LES

0.0 0.1 0.2 0.3
Iu

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
H

(b)

Exp.

LES

10−3 10−2 10−1 100

fB/UH

10−3

10−2

10−1

100

f
S
u
/σ

2 u
(c)

Exp.

LES

von Karman

Figure 6.19: Characteristics of the incident flow used in the FSI simulations measured in an
empty domain simulation: (a) mean velocity profile; (b) stream-wise turbulence intensity pro-
file; (c) roof-height velocity spectra

Next, after running the FSI simulations, we investigated the wind-induced response of the
building. Figure 6.20 shows the time history of the displacements (longitudinal, lateral, and
torsional) monitored at the topmost floor of the building for 0◦ wind direction. The torsional
displacements shown in the figure are converted into linear displacement by multiplying with
the radius of gyration at the top floor. The displacements determined from fully coupled and
one-way coupled (rigid) simulations are plotted together for comparison purposes. The spectral
content of the displacement responses for the two wind directions considered (0◦ and 90◦)
is presented in Figure 6.21. The response spectra show that the FSI simulations performed
using windFSI framework have captured the fundamental (first) and higher mode effects well.
Similarly, in Figure 6.22, the spectra of the top floor acceleration responses are compared.

6.4. Numerical examples and validation 169

Comparing Figures 6.21 and 6.22, it can be noted that the contribution of higher modes is
more pronounced in acceleration compared to displacement responses, which is also commonly
observed in experimental studies (Warsido, 2013). Considering that the structure used for
this numerical example does not show significant aeroelastic effects, the responses from fully
coupled and one-way coupled (rigid) simulations are nearly identical, as shown in Figures 6.21
and 6.22.

0.0

0.2

0.4

0.6

X
-D

is
p

[m
]

−0.5

0.0

0.5

Y
-D

is
p

[m
]

0 200 400 600 800 1000
Time [s]

−0.1

0.0

0.1

rϑ
-D

is
p

[m
] Rigid FSI

Figure 6.20: Time history of the top floor displacement for 0◦ wind direction.

10−3 10−2 10−1 10010−6

10−4

10−2

100

102

f
S
d
x
(f

)/
σ

2 d
x

θ = 00

Rigid

FSI

10−3 10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

f
S
d
x
(f

)/
σ

2 d
x

θ = 900

10−3 10−2 10−1 10010−6

10−4

10−2

100

102

f
S
d
y
(f

)/
σ

2 d
y

θ = 00

10−3 10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

f
S
d
y
(f

)/
σ

2 d
y

θ = 900

10−3 10−2 10−1 10010−6

10−4

10−2

100

102

f
S
d
ϑ
(f

)/
σ

2 d
ϑ

θ = 00

10−3 10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

f
S
d
ϑ
(f

)/
σ

2 d
ϑ

θ = 900

Figure 6.21: Reduced spectra of the top floor displacement response in x, y and ϑ directions
for 0◦ and 90◦ wind angle of attack.

170 Chapter 6. Fluid-structure interaction for aeroelastic modeling of tall buildings

10−2 10−1 100
10−6

10−4

10−2

100

102
f
S
a
x
(f

)/
σ

2 a
x

θ = 0

Rigid

FSI

10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

f
S
a
x
(f

)/
σ

2 a
x

θ = 90

10−2 10−1 100
10−6

10−4

10−2

100

102

f
S
a
y
(f

)/
σ

2 a
y

θ = 0

10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

f
S
a
y
(f

)/
σ

2 a
y

θ = 90

10−2 10−1 100
10−6

10−4

10−2

100

102

f
S
a
ϑ
(f

)/
σ

2 a
ϑ

θ = 0

10−2 10−1 100

fB/UH

10−6

10−4

10−2

100

102

f
S
a
ϑ
(f

)/
σ

2 a
ϑ

θ = 90

Figure 6.22: Reduced spectra of the top floor acceleration response in x, y and ϑ directions for
0◦ and 90◦ wind angle of attack.

6.5 Conclusions and outlook

In this paper, we presented the development of a high-fidelity fluid-structure interaction frame-
work called windFSI for simulating the aeroelastic behavior of flexible structures. The frame-
work is well-suited to applications related to wind engineering, specifically for simulating over-
all wind-induced loads and responses of slender flexible structures. The mathematical formu-
lations of the framework, including the governing equations and coupling algorithms, were
described in detail. The framework uses a partitioned approach that solves the Navier–Stokes
equations for fluid domain using Arbitrary Lagrangian–Eulerian (ALE) formulation. The gov-
erning equations of motion for the structural subsystem were transformed and solved in a gen-
eralized coordinates system to improve computational efficiency. Both strong and weak cou-
pling algorithms were built-in for coupling the fluid and structure subsystems. The windFSI

framework was implemented using C++ with an object-oriented programming paradigm and
is shown to operate seamlessly with the existing software architecture of OpenFOAM.

Finally, we demonstrated the application of the proposed framework for simulating wind-
induced vibration of flexible structures using two validation examples. The first example
demonstrated the accuracy of windFSI framework for predicting the vortex-induced cross-
wind oscillation of a circular cylinder. In the second numerical example, we successfully
showed how the proposed framework could be used for predicting the wind-induced vibra-
tion of a tall building with a complex mode shape and mass distribution immersed in turbulent

6.5. Conclusions and outlook 171

atmospheric boundary layer flow. In the future, we plan to extend the framework by incorporat-
ing features for the aeroelastic modeling of structures with nonlinear material behavior. Being
in the age of high-performance computing, computational frameworks of this kind enable us
to tackle complex problems of a multi-physics nature in an efficient and integrated manner.

Chapter 7

Summary, conclusions, contributions, and
future research directions

7.1 Overview

In this chapter, the main findings, contributions, and limitations of the current research work are
summarized. This thesis presented five studies that team towards the development of a CFD-
based high-fidelity computational framework for aerodynamic and aeroelastic simulations of
wind loads on tall buildings. The main objective of this thesis has been to improve the current
capability of CFD, particularly that of large-eddy simulation (LES), by addressing some of
the critical challenges in the numerical simulation of wind loads and wind-structure interac-
tion. In addition to presenting these key enabling developments, this study demonstrated the
framework using a series of validation studies that use benchmark boundary layer wind tunnel
measurements. Based on results from the validation studies, it can be argued that CFD-based
wind load evaluation is maturing, where wind and structural engineers can drive utility from
the developments long before it reaches perfection to compete with wind tunnel testing.

The proposed framework addressed the challenges of CFD-based wind load evaluation on
tall buildings in three key stages. The first stage of the research presented the development and
implementation of computationally efficient methods needed to make LES an accurate tool for
simulating Atmospheric Boundary Layer (ABL) flows. In the next stage, neglecting the flexi-
bility of the building, the developed framework is applied to two case studies that investigate
aerodynamic wind loads in generic and complex building configurations. At the final stage
of research, we expanded the framework’s capability by incorporating a methodology to accu-
rately model the aeroelastic response of flexible tall buildings coupling the state-of-the-art LES
model with the structural model of the building.

172

7.2. Modeling of approaching ABL turbulence 173

The overall thesis is summarized in three prominent themes that were pursued in Chapters
2 to 6. These themes were modeling of approaching ABL turbulence, LES-based wind load and

response evaluation on tall buildings, and fluid-structure interaction for aeroelastic modeling.
Summaries, conclusions, and contributions of the core chapters under each theme are laid out
in the following subsections.

7.2 Modeling of approaching ABL turbulence

This research work started by addressing the challenges of LES-based modeling of atmospheric
boundary layer (ABL) turbulence, which constitutes the first important step in accurately mod-
eling wind loads on tall buildings. Chapter 2 presented the development and validation of
inflow turbulence and ground roughness modeling techniques for ABL flows. Then, Chapter 3
improved the computational efficiency of the developed inflow turbulence generation method.

7.2.1 Chapter 2: Synthetic inflow turbulence generator for large-eddy
simulation of ABL flows using spectral representation method

This chapter began by presenting a brief literature review of methods used to generate tran-
sient inflow boundary conditions for large-eddy simulation (LES) of the atmospheric boundary
layer (ABL) flows. The advantages and limitations of the different inflow turbulence generation
methods were revisited. It was emphasized that the synthetic methods provide greater flexibil-
ity and are computationally less expensive than wind tunnel replication and precursor methods.
Most importantly, synthetic methods give tight control over the generated turbulence, as they
take known statistical descriptions of the flow as input. This makes them particularly attractive
for LES-based wind load evaluation, where the first step is to match the target approaching
flow characteristics taken from experimental or field measurements.

Considering that two-point flow statistics are essential in the development of upstream ABL
turbulence and consequently determine the accuracy of wind load simulation, in Chapter 2, a
new synthetic inflow turbulence generation method is proposed. The method used the spectral
representation method to generate inlet turbulence with explicitly defined two-point statistics
of ABL turbulence. The two-point statistic of the flow is imposed by prescribing the target
cross-power spectral density (CPSD) matrix at the inlet of the domain. The generation proce-
dure involves the decomposition of the CPSD matrix followed by simulation of the velocity-
time field using the Fast Fourier Transformation (FFT) technique. The developed technique is
named the “divergence-free spectral representation” (DFSR) method.

For the LES of ABL flows, as important as the inflow boundary condition, a special wall

174 Chapter 7. Summary, conclusions, contributions, and future research directions

treatment is required to represent the effect of ground roughness. Thus, in this chapter, an
implicit roughness modeling technique is implemented to simulate any desired exposure con-
dition for a given aerodynamic roughness length. This boundary condition was found to reduce
the resolution requirement needed near the ground surface. The method was implemented to
work seamlessly with the CFD solver and the developed inflow boundary condition.

Finally, the developed methods were applied to the LES of ABL flow, and the results were
validated using experimental data thoroughly. Also, the performance of the proposed inflow-
generation method is compared with existing techniques in the literature. The main findings
from this study are noted below:

• Comparison of one-point and two-point statistics of the turbulence generated using the
proposed method with the experimental data reveals that the proposed approach renders
an accurate representation of velocity spectra, coherency function, and spatial correla-
tion. Taking the experimental data as a target, the method properly captured the co-
herency function and spatial correlation of the lateral and vertical components of the
velocity owing to the robust capability of the spectral representation method to model
two-point statistics accurately.

• Applying the DFSR method and the implemented ground roughness model to LES of
ABL flow in open, suburban, and urban exposure conditions, it was shown that the mean
velocity, turbulence intensity, and integral length scale profiles are in satisfactory agree-
ment with the experimentally measured wind profiles. Similarly, the incident velocity
spectra show reasonable agreement with the target von Karman spectra as well as exper-
imental measurements. Compared to a commonly used method in the literature, it has
been shown that accurate modeling of spatial correlation has resulted in a reduction of
turbulence decay downstream of the inflow plane, particularly in the lateral and vertical
directions.

• Furthermore, due to divergence-free operation, the DFSR method also showed a reduc-
tion in the artificial pressure fluctuation in the computational domain. This makes the
developed method particularly useful for LES-based wind load evaluation studies, which
are sensitive to pressure fluctuations.

One of the main contributions of this work is the development of a new inflow turbulence
with explicitly defined two-point statistics that is well-suited to many CWE applications. Par-
ticularly, the method can be of practical use to LES-based wind load evaluation on high-rise
and low-rise buildings, as well as other studies requiring modeling of ABL turbulence. The
proposed method was implemented in OpenFOAM and distributed open-source to foster col-
laboration with other researchers in the CWE community.

7.2. Modeling of approaching ABL turbulence 175

7.2.2 Chapter 3: Computationally efficient inflow turbulence generation
using a low-rank matrix decomposition

One of the challenges of generating flow turbulence using the spectral representation method
(SRM) is the computational cost of decomposing/factorizing the CPSD matrix at multiple fre-
quencies. This particularly becomes a significant bottleneck for a computational domain with
a large number of points at the inlet because the cost of factorizing the CPSD matrix inher-
ently scales cubically with the number of points used in the simulation. In this chapter, first,
the fundamentals of the spectral representation method were revised. Then, a computation-
ally efficient method that employs a low-rank representation of the CPSD matrix is developed.
The proposed technique employs Nyström method to efficiently factorize the CPSD matrix
by sampling only a small subset of informative points from the inlet plane. Factors affecting
the compromise between accuracy and computational efficiency, which includes the sampling
scheme used and the number of points sampled, were systematically investigated using numer-
ical examples. The following specific observations were noted from this study:

• It was evident that the proposed method can predict the first few eigenvalues with a high
level of accuracy for the range of frequencies studied. Considering that the first few
eigenvalues carry a significant portion of the total energy makes Nyström method clearly
advantageous in reducing the computational cost of the spectral representation method.

• The accuracy of the proposed method greatly depends on the sampling technique used to
construct informative points for the low-rank representation of the CPSD matrix. From
all six sampling methods tested, the clustered scheme yielded the highest numerical ac-
curacy.

• The trade-off between accuracy and computational efficiency is marginal. For instance,
to generate inflow turbulence, using only 25% of the points sampled at the inlet, the
proposed procedure takes less than 7% of the total CPU time required to decompose the
CPSD matrix formed using all points. While the average error introduced in the standard
deviation of the generated turbulence is only 7.9%, compared to the 6.6% error of the
original formulation.

The most notable contribution of this study is that the proposed method can achieve re-
markable computational efficiency with a minimal compromise in numerical accuracy. This
will speed up the generation of inflow turbulence for high-resolution LES of ABL flows by
significantly lowering the CPU and memory cost associated with the spectral representation
method. Furthermore, the application of the Nyström method to the SRM proposed by Shi-

176 Chapter 7. Summary, conclusions, contributions, and future research directions

nozuka and Jan (1972) is unique. To the best of the authors’ knowledge, it was the first time
the method was applied to speed up the stochastic simulation of any random field.

7.3 LES-based wind load and response evaluation on tall build-
ings

Under this theme of the study, the capabilities of the techniques developed in previous chapters
are demonstrated using two validation studies. First, in Chapter 4, the potential of the LES for
estimating wind loads and response is illustrated using an isolated generic tall building located
downstream of open country exposure. Then, in Chapter 5, the LES-based wind load evaluation
procedure is demonstrated using a more realistic case involving a tall building located in a
complex urban environment.

7.3.1 Chapter 4: LES for predicting wind loads and responses of a stan-
dard tall building: prospect for wind-resistant tall building design

This chapter investigates cladding and overall loads and responses of a standard tall build-
ing using LES. In addition, the study addresses the main challenges of LES-based wind load
prediction, including mesh generation, specification of boundary conditions, wall treatment,
and sub-grid scale modeling. Using the dynamic properties of a 60-storey reinforced con-
crete building, this study also investigates the capabilities and limitations of LES for the wind-
resistant design of tall buildings. Finally, the LES predictions are validated in detail using
wind tunnel measurements stage by stage. A summary of the main findings from this study is
provided below:

• Using the DFSR method coupled with an implicit ground roughness model, it was possi-
ble to reproduce the experimentally measured approaching flow characteristics in terms
of the mean velocity, turbulence intensity, integral length, and velocity spectra at the
incident location.

• Overall, the cladding loads predicted using LES were in satisfactory agreement with the
wind tunnel measurement. Averaging across all wind directions, the normalized mean
absolute error of the mean, RMS, and peak pressure coefficients are roughly within 5%
deviation when compared to the experimental data.

• The mean integrated base aerodynamic loads are estimated within a 6% error range,
while for the RMS values, the maximum deviation is well within a 10% margin.

7.3. LES-based wind load and response evaluation on tall buildings 177

• The LES models predicted the low-frequency background displacement response with
high accuracy compared to the resonant part for all wind directions considered. Also,
the numerical estimate of the resultant peak acceleration is encouraging. On average, the
peak acceleration from the LES roughly showed a 15% deviation from the experiment.

The main contribution of this study is the development and application of a high-fidelity
LES model for estimating wind loads and wind-induced responses of a standard tall building.
The challenges of modeling turbulent separated flows for wind load prediction were addressed,
and practical recommendations for LES were provided. Also, this study establishes the most
important step towards the development of a fluid-structure interaction framework for a more
accurate and direct estimation of the wind-induced response of tall buildings.

7.3.2 Chapter 5: LES-based wind load evaluation on a tall building lo-
cated in a city center: comparison with experimental data

This chapter aims to demonstrate and further validate the LES-based wind load evaluation pro-
cedure using a 278m tall building located in a city center with complex surroundings. The
approaching wind characteristics for suburban exposure conditions were simulated using the
DFSR method. Important considerations for simulating wind loads in a complex urban envi-
ronment, such as geometric modeling and computational grid design, were addressed. Finally,
the results from the LES model were compared with wind tunnel data for four wind directions.
Here are some of the observations from this study:

• The wind profiles and velocity spectra were reproduced in empty domain simulation.
Compared to the wind tunnel profiles, the stream-wise mean velocity and turbulence
intensity profiles from LES showed an absolute relative deviation of approximately 2.7%
and 6.75%, respectively.

• In most cases, the base load spectra estimated from LES models are in satisfactory agree-
ment with the experimental measurements, indicating that the LES model was able to
capture various aerodynamic loading mechanisms.

• Averaging over all wind direction, the mean and RMS base force and moment coef-
ficients predicting by LES deviate by about ±10% from the experiment. Whereas, in
some of the simulated cases, the maximum difference between the LES and experimen-
tal becomes 24%.

A notable contribution of this study is the illustration of the LES-based wind-load evalua-
tion framework using a realistic validation case. Furthermore, the procedure developed in this

178 Chapter 7. Summary, conclusions, contributions, and future research directions

study is of practical importance to wind engineers, structural engineers, architects, and con-
tractors to address the fundamental wind engineering challenges of tall building design early in
the project life-cycle. Given the current capability of LES, it is getting ever closer to fulfilling
its promise to become a practical wind engineering tool.

7.4 Fluid-structure interaction for aeroelastic modeling

In this part of the thesis, a high-fidelity fluid-structure structure (FSI) framework tailored to
wind engineering applications named windFSI was developed. The mathematical formulation,
software implementation, and application examples are detailed in Chapter 6. Here the brief
summary, main findings, and contribution of the proposed FSI framework are highlighted.

7.4.1 Chapter 6: Fluid-structure interaction framework for computa-
tional aeroelastic modeling of tall buildings

In this study, a partitioned fluid-structure structure framework is developed for computational
aeroelastic modeling of tall buildings. For modeling the wind flow, the Navier–Stokes equa-
tions were solved in an Arbitrary Lagrangian–Eulerian (ALE) frame of reference on a mov-
ing mesh. The building structure is represented using the multi-degree-of-freedom system.
Two coupling algorithms, namely Conventional Serial Staggered (CSS) and Fixed-point Itera-
tion (FPI) methods were investigated. The framework was implemented employing an object-
oriented programming paradigm with C++ language. Since the FSI simulations are generally
demanding, the overall software architecture is designed to support parallel execution.

At the end of the chapter (see Section 6.4), the FSI framework is demonstrated using two
numerical examples. The first numerical example involves a low-damped vortex-induced cross-
wind oscillation of a long circular cylinder with uniform flow conditions. This example is
intended to show the importance of incorporating the motion-induced (aeroelastic) effects using
FSI simulation. The second numerical example investigates the wind-induced vibration of a
standard tall building. In this second example, the most important capabilities of the proposed
framework are demonstrated. For the building structure, the dynamic properties of 60-storey
building with non-linear mode shapes were employed. For the wind flow simulation, the LES
model described in Chapter 4 was adopted. The main findings from this study are:

• For aeroelastic simulations that involve rigid-body structural motion, the developed FSI
solver produces similar results to the benchmark FSI solver, as demonstrated using the
first numerical example.

7.5. Future research directions 179

• The spectral analysis of the dynamic response of the structure showed that both the CSS
and FPI coupling algorithms have comparable performance. Noting that the FPI cou-
pling algorithm is expensive, the CSS method becomes an economical alternative for
aeroelastic applications with heavy and stiff structures.

• Comparing the lift forces coefficients estimated using one-way and two-way coupled
simulations, it was observed that the motion-dependent forces (aeroelastic effects) were
significant for the structures vibrating substantially, as demonstrated in the first numerical
example.

• The proposed framework is successfully applied to simulate the aeroelastic response of
60-storey standard tall building. The FSI simulations were able to capture the response
of the structure in its fundamental and higher modes of vibration. Compared to the
cross-wind oscillation of a circular cylinder, the dynamic response of the building does
not show significant aeroelastic effects. However, this study clearly showed the capabil-
ities of the developed FSI framework for simulating the wind-induced response of tall
buildings directly, including aeroelastic effects such as aerodynamics damping.

The key contribution of this study was the development of a high-fidelity fluid-structure
interaction framework for the computational aeroelastic modeling of tall buildings. The de-
veloped framework is named windFSI and operates seamlessly with the existing software ar-
chitecture of OpenFOAM. The software architecture is versatile and can easily be extended
to simulate various wind-structure interaction phenomena with complex vibration modes and
non-linear material properties, which can be challenging to do experimentally. Also, the in-
put to windFSI framework is highly flexible to enable the user to easily modify properties of
the wind and structure sub-systems for parametric study. Overall, being in the age of high-
performance computing, computational frameworks of this kind enable us to tackle complex
wind-structure interaction problems in an efficient and integrated manner.

7.5 Future research directions

Although the proposed framework is primarily developed and validated for tall buildings, it
can generally be applied to simulate wind loads on other structures. Especially the inflow
turbulence generation method presented in Chapters 2 and 3 is broadly applicable to many
CWE studies that require modeling of ABL turbulence. Also, the FSI framework developed
for tall buildings in Chapter 6 can be extended (with little effort) for the aeroelastic modeling of
structures that experience significant motion-induced forces (e.g., long-span bridges, flexible
roof systems, and cooling towers).

180 Chapter 7. Summary, conclusions, contributions, and future research directions

After all, it is important to note that the studies presented in this thesis are not without
limitations. The most noteworthy limitations, potential improvements, and possible extensions
of the present study include the following:

• One of the main challenges of using synthetic inflow generation methods is related to
turbulence decay associated with the downstream evolution of the flow. Since repro-
ducing the phase information (eddy structure) of the target ABL flow is challenging for
synthetic methods, the turbulence applied at the inlet experiences some decay. Especially
for lateral and vertical components of the velocity, the decay can be relatively significant.
This challenge is noted in Sections 2.5 and 4.5.1. In the current study, to compensate
for this decay, the turbulence intensities at the inlet were iteratively adjusted by a height-
dependent factor until the target incident profiles were matched. The iterative adjustment
is made using a trial-and-error approach. In the future, more efficient inflow optimization
methods can be incorporated to address this problem. This will reduce the wind profile
optimization iterations that require running empty domain simulations multiple times.

• Furthermore, it is expected that the eddy structure of the upcoming turbulent flow can in-
fluence the wind loads on the building. Future research efforts that compare higher-order
velocity correlations and coherent structures of the approaching flow may be required to
determine whether the flow structures observed in the boundary layer wind tunnels are
accurately reproduced by the LES model. Note that validation of the LES at this level
of detail always needs to be accompanied by advanced experimental flow measurement
techniques often used in the field of experimental fluid dynamics.

• In Chapters 4 and 5, for the large eddy simulation of the wind loads, the standard
Smagorinsky subgrid-scale stress (SGS) model is primarily used. For bluff body aero-
dynamics, the behavior of the separated shear layers and attendant reattachment depend
on small-scale turbulence structures, which can be affected by the SGS model employed.
Thus, future research needs to systematically evaluate the performance of different SGS
models for wind load evaluation. This investigation must also be supported by detailed
experimental flow field measurements such as Particle Image Velocimetry (PIV) in a
boundary layer wind tunnel.

• In Section 6.2.1.2 of the proposed FSI framework, the structure is modeled employing
simplified modal representation. For buildings with complex structural configurations,
the structural model used in the FSI framework should be upgraded with a full finite
element model. Thus, incorporating more sophisticated open-source structural solvers

7.5. Future research directions 181

routinely used in the structural engineering community like OpenSees (McKenna, 1997)
constitutes future research direction.

• For FSI validation cases presented in Section 6.4, the time step of the aeroelastic simula-
tion is often dictated by the fluid subsystem. This entails the time step for the structural
solver to be very small; hence, the structure undergoes only small deformation in a single
time step. As a result, solving the structure and computing the dynamic mesh around it at
every time step increases the overall computational cost of the FSI simulation. Thus, the
computational efficiency of the proposed framework can be improved using unequal time
steps (i.e., setting sub-cycling option) for the fluid and structure subsystems according to
their respective numerical stability and accuracy requirements.

Bibliography

Aas-Jakobsen, K., Strømmen, E., 2001. Time domain buffeting response calculations of slender
structures. Journal of Wind Engineering and Industrial Aerodynamics 89, 341–364.

Abdi, D., Bitsuamlak, G.T., 2014a. Numerical evaluation of the effect of multiple roughness
changes. Wind and Structures 19, 585–601.

Abdi, D.S., Bitsuamlak, G.T., 2014b. Wind flow simulations on idealized and real complex
terrain using various turbulence models. Advances in Engineering Software 75, 30–41.

Aboshosha, H., Bitsuamlak, G., El Damatty, A., 2015a. Les of abl flow in the built-environment
using roughness modeled by fractal surfaces. Sustainable Cities and Society 19, 46–60.

Aboshosha, H., Bitsuamlak, G., El Damatty, A., 2015b. Turbulence characterization of down-
bursts using les. Journal of Wind Engineering and Industrial Aerodynamics 136, 44–61.

Aboshosha, H., Elshaer, A., Bitsuamlak, G.T., El Damatty, A., 2015c. Consistent inflow tur-
bulence generator for les evaluation of wind-induced responses for tall buildings. Journal of
Wind Engineering and Industrial Aerodynamics 142, 198–216.

Adamek, K., Vasan, N., Elshaer, A., English, E., Bitsuamlak, G., 2017. Pedestrian level wind
assessment through city development: A study of the financial district in toronto. Sustainable
cities and society 35, 178–190.

Affandi, R.H., Kulesza, A., Fox, E., Taskar, B., 2013. Nystrom approximation for large-scale
determinantal processes, in: Artificial Intelligence and Statistics, PMLR. pp. 85–98.

Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., et al., 1999a. LAPACK Users’ guide.
SIAM.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J.,
Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D., 1999b. LAPACK Users’
Guide. Third ed., Society for Industrial and Applied Mathematics, Philadelphia, PA.

182

BIBLIOGRAPHY 183

Arcolano, N., Wolfe, P.J., 2010. Nyström approximation of wishart matrices, in: 2010 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, IEEE. pp. 3606–3609.

Armero, F., Simo, J., 1992. A new unconditionally stable fractional step method for non-
linear coupled thermomechanical problems. International Journal for numerical methods in
Engineering 35, 737–766.

ASCE-49-21, 2022. Wind tunnel testing for buildings and other structures, in: ASCE-7, Amer-
ican Society of Civil Engineers. pp. 48–49.

Baker, C.T., 1977. The numerical treatment of integral equations. Oxford University Press.

Bazilevs, Y., Calo, V.M., Hughes, T.J., Zhang, Y., 2008. Isogeometric fluid-structure interac-
tion: theory, algorithms, and computations. Computational mechanics 43, 3–37.

Belabbas, M.A., Wolfe, P.J., 2009. Spectral methods in machine learning and new strategies
for very large datasets. Proceedings of the National Academy of Sciences 106, 369–374.

Belloli, M., Giappino, S., Muggiasca, S., Zasso, A., 2012. Force and wake analysis on a single
circular cylinder subjected to vortex induced vibrations at high mass ratio and high reynolds
number. Journal of wind engineering and industrial aerodynamics 103, 96–106.

Benjamin, T.K.J., Hesse, H., Wang, P.C., 2021. Wing-tail interaction under forced harmonic
pitch, in: AIAA AVIATION 2021 FORUM, p. 2517.

Benowitz, B.A., Deodatis, G., 2015. Simulation of wind velocities on long span structures: A
novel stochastic wave based model. Journal of wind engineering and industrial aerodynamics
147, 154–163.

Birhane, T., Bitsuamlak, G., King, J., 2017. A computational framework for the aerodynamic
shape optimization of long-span bridge decks, in: Structures Congress 2017, pp. 223–239.

Blocken, B., 2014a. 50 years of computational wind engineering: past, present and future.
Journal of wind engineering and industrial aerodynamics 129, 69–102.

Blocken, B., 2014b. 50 years of computational wind engineering: past, present and future.
Journal of Wind Engineering and Industrial Aerodynamics 129, 69–102.

Blocken, B., Carmeliet, J., 2004. A review of wind-driven rain research in building science.
Journal of wind engineering and industrial aerodynamics 92, 1079–1130.

184 BIBLIOGRAPHY

BLWTL, 2007. Wind tunnel testing: a general outline. Technical Report. The Boundary
Layer Wind Tunnel Laboratory, The University of Western Ontario, Faculty of Engineering
Science. London, Ontario, Canada. URL: www.blwtl.uwo.ca.

Boggs, D.W., 1991. Wind loading and response of tall structures using aerodynamic models.
Colorado State University.

Bou-Zeid, E., Meneveau, C., Parlange, M., 2005. A scale-dependent lagrangian dynamic model
for large eddy simulation of complex turbulent flows. Physics of fluids 17, 025105.

Braun, A.L., Awruch, A.M., 2009. Aerodynamic and aeroelastic analyses on the caarc standard
tall building model using numerical simulation. Computers & Structures 87, 564–581.

Cao, Y., Xiang, H., Zhou, Y., 2000. Simulation of stochastic wind velocity field on long-span
bridges. Journal of Engineering Mechanics 126, 1–6.

Carassale, L., Solari, G., 2002. Wind modes for structural dynamics: a continuous approach.
Probabilistic Engineering Mechanics 17, 157–166.

Carassale, L., Solari, G., 2006. Monte carlo simulation of wind velocity fields on complex
structures. Journal of Wind Engineering and Industrial Aerodynamics 94, 323–339.

Caretto, L., Curr, R., Spalding, D., 1972. Two numerical methods for three-dimensional bound-
ary layers. Computer Methods in Applied Mechanics and Engineering 1, 39–57.

Carmo, B.S., Sherwin, S.J., Bearman, P.W., Willden, R., 2011. Flow-induced vibration of a
circular cylinder subjected to wake interference at low reynolds number. Journal of Fluids
and Structures 27, 503–522.

Castro, H.G., Paz, R.R., 2013. A time and space correlated turbulence synthesis method for
large eddy simulations. Journal of Computational Physics 235, 742–763.

Castro, H.G., Paz, R.R., Mroginski, J.L., Storti, M.A., 2017. Evaluation of the proper coher-
ence representation in random flow generation based methods. Journal of Wind Engineering
and Industrial Aerodynamics 168, 211–227.

Cesur, A., Carlsson, C., Feymark, A., Fuchs, L., Revstedt, J., 2014. Analysis of the wake
dynamics of stiff and flexible cantilever beams using pod and dmd. Computers & Fluids
101, 27–41.

Chen, H., Christensen, E.D., 2018. Simulating the hydrodynamic response of a floater–net
system in current and waves. Journal of Fluids and Structures 79, 50–75.

www.blwtl.uwo.ca

BIBLIOGRAPHY 185

Chen, J., Song, Y., Peng, Y., Spanos, P.D., 2018. Simulation of homogeneous fluctuating wind
field in two spatial dimensions via a joint wave number–frequency power spectrum. Journal
of Engineering Mechanics 144, 04018100.

Chen, X., 2008. Analysis of alongwind tall building response to transient nonstationary winds.
Journal of structural engineering 134, 782–791.

Chen, X., Kareem, A., 2005. Proper orthogonal decomposition-based modeling, analysis, and
simulation of dynamic wind load effects on structures. Journal of Engineering Mechanics
131, 325–339.

Cheng, W.C., Porté-Agel, F., 2013. Evaluation of subgrid-scale models in large-eddy simula-
tion of flow past a two-dimensional block. International journal of heat and fluid flow 44,
301–311.

Chopra, A.K., 2007. Dynamics of structures. Pearson Education India.

Churchfield, M.J., Vijayakumar, G., Brasseur, J.G., Moriarty, P.J., 2010. Wind energy-related
atmospheric boundary layer large-eddy simulation using OpenFOAM. Technical Report.
National Renewable Energy Lab.(NREL), Golden, CO (United States).

Cochran, L., Derickson, R., 2011. A physical modeler’s view of computational wind engineer-
ing. Journal of Wind Engineering and Industrial Aerodynamics 99, 139–153.

Cook, N., Mayne, J., 1979. A novel working approach to the assessment of wind loads for
equivalent static design. Journal of Wind Engineering and Industrial Aerodynamics 4, 149–
164.

Cook, N.J., 1997. The deaves and harris abl model applied to heterogeneous terrain. Journal
of wind engineering and industrial aerodynamics 66, 197–214.

Dagnew, A., Bitsuamlak, G.T., 2013. Computational evaluation of wind loads on buildings: a
review. Wind Struct 16, 629–660.

Dagnew, A.K., Bitsuamlak, G.T., 2014. Computational evaluation of wind loads on a standard
tall building using les. Wind and Structures 18, 567–598.

Dalgliesh, W.A., 1975. Comparison of model/full-scale wind pressures on a high-rise building.
Journal of Wind Engineering and Industrial Aerodynamics 1, 55–66.

Daniels, S.J., Castro, I.P., Xie, Z.T., 2013. Peak loading and surface pressure fluctuations of a
tall model building. Journal of wind engineering and industrial aerodynamics 120, 19–28.

186 BIBLIOGRAPHY

Davenport, A., 1971. The response of six building shapes to turbulent wind. Philosophical
Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences
269, 385–394.

Davenport, A., 1988. The response of supertall buildings to wind. second century of the
skyscraper (edited by cs beedle), council on tall buildings and the urban habitat.

Davenport, A.G., 1961a. The application of statistical concepts to the wind loading of struc-
tures. Proceedings of the Institution of Civil Engineers 19, 449–472.

Davenport, A.G., 1961b. The spectrum of horizontal gustiness near the ground in high winds.
Quarterly Journal of the Royal Meteorological Society 87, 194–211.

Davenport, A.G., 1964. Note on the distribution of the largest value of a random function with
application to gust loading. Proceedings of the Institution of Civil Engineers 28, 187–196.

Davenport, A.G., 1965. The buffeting of structures by gusts, in: Proc. of Conference on’Wind
Effects on Structures’, NPL, 1965 (ICWE-1), HMSO. p. 1.

Davenport, A.G., 1967. Gust loading factors. Journal of the Structural Division 93, 11–34.

Davenport, A.G., Isyumov, N., 1967. The application of the boundary layer wind tunnel to the
prediction of wind loading, in: Proceedings of the International Research Seminar: Wind
Effects on Buildings and Structures. Ottawa, Canada. September, pp. 11–15.

De Silva, V., Tenenbaum, J.B., 2004. Sparse multidimensional scaling using landmark points.
Technical Report. technical report, Stanford University.

Deaves, D., Harris, R., 1978. A mathematical model of the structure of strong winds. CIRIA
Report 76, Const. Ind. Research and Inf. Assoc. .

Degroote, J., Bathe, K.J., Vierendeels, J., 2009. Performance of a new partitioned procedure
versus a monolithic procedure in fluid–structure interaction. Computers & Structures 87,
793–801.

Demirdžić, I., Perić, M., 1988. Space conservation law in finite volume calculations of fluid
flow. International journal for numerical methods in fluids 8, 1037–1050.

Demirdžić, I., Perić, M., 1990. Finite volume method for prediction of fluid flow in arbitrarily
shaped domains with moving boundaries. International journal for numerical methods in
fluids 10, 771–790.

BIBLIOGRAPHY 187

Deodatis, G., 1996a. Non-stationary stochastic vector processes: seismic ground motion ap-
plications. Probabilistic Engineering Mechanics 11, 149–167.

Deodatis, G., 1996b. Simulation of ergodic multivariate stochastic processes. Journal of engi-
neering mechanics 122, 778–787.

Deparis, S., Fernández, M.A., Formaggia, L., 2003. Acceleration of a fixed point algorithm for
fluid-structure interaction using transpiration conditions. ESAIM: Mathematical Modelling
and Numerical Analysis 37, 601–616.

Dhamankar, N.S., Blaisdell, G.A., Lyrintzis, A.S., 2018. Overview of turbulent inflow bound-
ary conditions for large-eddy simulations. Aiaa Journal 56, 1317–1334.

Di Mare, L., Klein, M., Jones, W., Janicka, J., 2006. Synthetic turbulence inflow conditions
for large-eddy simulation. Physics of Fluids 18, 025107.

Di Paola, M., 1998. Digital simulation of wind field velocity. Journal of Wind Engineering
and Industrial Aerodynamics 74, 91–109.

Di Paola, M., Gullo, I., 2001. Digital generation of multivariate wind field processes. Proba-
bilistic Engineering Mechanics 16, 1–10.

Ding, Q., Zhu, L., Xiang, H., 2006. Simulation of stationary gaussian stochastic wind velocity
field. Wind and Structures 9, 231–243.

Ding, Q., Zhu, L., Xiang, H., 2011. An efficient ergodic simulation of multivariate stochastic
processes with spectral representation. Probabilistic Engineering Mechanics 26, 350–356.

Dowell, E.H., Curtiss, H., Scanlan, R.H., Sisto, F., 2021. A modern course in aeroelasticity.
Springer.

Driest, E.V., 1956. On turbulent flow near a wall. Journal of the aeronautical sciences 23,
1007–1011.

Elshaer, A., Aboshosha, H., Bitsuamlak, G., El Damatty, A., Dagnew, A., 2016. Les evalua-
tion of wind-induced responses for an isolated and a surrounded tall building. Engineering
Structures 115, 179–195.

Elshaer, A., Bitsuamlak, G., 2018. Multiobjective aerodynamic optimization of tall building
openings for wind-induced load reduction. Journal of Structural Engineering 144, 04018198.

Elshaer, A., Bitsuamlak, G., El Damatty, A., 2017a. Enhancing wind performance of tall
buildings using corner aerodynamic optimization. Engineering Structures 136, 133–148.

188 BIBLIOGRAPHY

Elshaer, A., Gairola, A., Adamek, K., Bitsuamlak, G., 2017b. Variations in wind load on tall
buildings due to urban development. Sustainable cities and society 34, 264–277.

ESDU, 2001a. Strong winds in the atmospheric boundary layer. part 1: hourly-mean wind
speeds. Data Item 82026 1.

ESDU, 2001b. Strong winds in the atmospheric boundary layer. part 2: discrete gust speeds.
Data Item 83045 1.

ESDU-85020, 2001. Characteristics of atmospheric turbulence near the ground. Part II: single
point data for strong winds (neutral atmosphere).. volume 1.

Farhat, C., Lesoinne, M., 2000. Two efficient staggered algorithms for the serial and parallel
solution of three-dimensional nonlinear transient aeroelastic problems. Computer methods
in applied mechanics and engineering 182, 499–515.

Farhat, C., Park, K., Dubois-Pelerin, Y., 1991. An unconditionally stable staggered algorithm
for transient finite element analysis of coupled thermoelastic problems. Computer methods
in applied mechanics and engineering 85, 349–365.

Farhat, C., Van der Zee, K.G., Geuzaine, P., 2006. Provably second-order time-accurate
loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity.
Computer methods in applied mechanics and engineering 195, 1973–2001.

Felippa, C.A., Park, K.C., 1980. Staggered transient analysis procedures for coupled mechan-
ical systems: formulation. Computer Methods in Applied Mechanics and Engineering 24,
61–111.

Felippa, C.A., Park, K.C., Farhat, C., 2001. Partitioned analysis of coupled mechanical sys-
tems. Computer methods in applied mechanics and engineering 190, 3247–3270.

Ferziger, J.H., Peric, M., 2012. Computational methods for fluid dynamics. Springer Science
& Business Media.

Ferziger, J.H., Perić, M., Street, R.L., 2002. Computational methods for fluid dynamics. vol-
ume 3. Springer.

Franke, J., 2006. Recommendations of the cost action c14 on the use of cfd in predicting
pedestrian wind environment, in: The fourth international symposium on computational
wind engineering, Yokohama, Japan, pp. 529–532.

BIBLIOGRAPHY 189

Franke, J., Hellsten, A., Schlunzen, K.H., Carissimo, B., 2011. The cost 732 best practice
guideline for cfd simulation of flows in the urban environment: a summary. International
Journal of Environment and Pollution 44, 419–427.

Frigo, M., Johnson, S.G., 2005a. The design and implementation of FFTW3. Proceedings of
the IEEE 93, 216–231. Special issue on “Program Generation, Optimization, and Platform
Adaptation”.

Frigo, M., Johnson, S.G., 2005b. The design and implementation of fftw3. Proceedings of the
IEEE 93, 216–231.

Fureby, C., 2008. Towards the use of large eddy simulation in engineering. Progress in
Aerospace Sciences 44, 381–396.

Gairola, A., Bitsuamlak, G., 2019. Numerical tornado modeling for common interpretation of
experimental simulators. Journal of Wind Engineering and Industrial Aerodynamics 186,
32–48.

Gallinger, T., Kupzok, A., Israel, U., Bletzinger, K., Wüchner, R., 2009. A computational
environment for membrane-wind interaction, in: International Workshop on Fluid-Structure
Interaction. Theory, Numerics and Applications, kassel university press GmbH. p. 97.

Gao, Y., Wu, Y., Li, D., Liu, H., Zhang, N., 2012. An improved approximation for the spectral
representation method in the simulation of spatially varying ground motions. Probabilistic
Engineering Mechanics 29, 7–15.

Gerbeau, J.F., Vidrascu, M., Frey, P., 2005. Fluid–structure interaction in blood flows on
geometries based on medical imaging. Computers & Structures 83, 155–165.

Gousseau, P., Blocken, B., Stathopoulos, T., Van Heijst, G., 2011. Cfd simulation of near-field
pollutant dispersion on a high-resolution grid: a case study by les and rans for a building
group in downtown montreal. Atmospheric Environment 45, 428–438.

Greenshields, C., Weller, H., 2022a. Notes on Computational Fluid Dynamics: General Prin-
ciples. CFD Direct Ltd, Reading, UK.

Greenshields, C., Weller, H., 2022b. Notes on computational fluid dynamics: General princi-
ples. CFD Direct Ltd.: Reading, UK .

Greenshields, C.J., et al., 2015. Openfoam user guide. OpenFOAM Foundation Ltd, version
3, 47.

190 BIBLIOGRAPHY

Gresho, P.M., Sani, R.L., 1987. On pressure boundary conditions for the incompressible navier-
stokes equations. International Journal for Numerical Methods in Fluids 7, 1111–1145.

Grötzbach, 1987. Direct numerical and large eddy simulation of turbulent channel flows. In
Encyclopedia of Fluid Mechanics 1, 1337–1391.

Gungor, A., Sillero, J., Jiménez, J., 2012. Pressure statistics from direct simulation of turbulent
boundary layer, in: Seventh int conf compt fluid dyn (Hawaii), Citeseer. pp. 1–6.

Halton, J.H., 1960. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numerische Mathematik 2, 84–90.

Hammersley, J.M., 1960. Monte carlo methods for solving multivariable problems. Annals of
the New York Academy of Sciences 86, 844–874.

He, L., Zhang, H., 2018. Kernel k-means sampling for nyström approximation. IEEE Trans-
actions on Image Processing 27, 2108–2120.

Hémon, P., Santi, F., 2007. Simulation of a spatially correlated turbulent velocity field using
biorthogonal decomposition. Journal of wind engineering and industrial aerodynamics 95,
21–29.

Hewitt, S., Margetts, L., Revell, A., Pankaj, P., Levrero-Florencio, F., 2019. Openfpci: A par-
allel fluid–structure interaction framework. Computer Physics Communications 244, 469–
482.

Ho, T., Surry, D., Morrish, D., Kopp, G., 2005. The uwo contribution to the nist aerodynamic
database for wind loads on low buildings: Part 1. archiving format and basic aerodynamic
data. Journal of Wind Engineering and Industrial Aerodynamics 93, 1–30.

Holmes, J., 1975. Pressure fluctuations on a large building and along-wind structural loading.
Journal of Wind Engineering and Industrial Aerodynamics 1, 249–278.

Holmes, J.D., 2007. Wind loading of structures. CRC press.

Hou, G., Wang, J., Layton, A., 2012. Numerical methods for fluid-structure interaction—a
review. Communications in Computational Physics 12, 337–377.

Huang, G., Liao, H., Li, M., 2013. New formulation of cholesky decomposition and applica-
tions in stochastic simulation. Probabilistic Engineering Mechanics 34, 40–47.

Huang, S., Li, Q., Wu, J., 2010. A general inflow turbulence generator for large eddy simula-
tion. Journal of Wind Engineering and Industrial Aerodynamics 98, 600–617.

BIBLIOGRAPHY 191

Huang, S., Li, Q.S., Xu, S., 2007. Numerical evaluation of wind effects on a tall steel building
by cfd. Journal of Constructional Steel Research 63, 612–627.

Hübner, B., Walhorn, E., Dinkler, D., 2004. A monolithic approach to fluid–structure in-
teraction using space–time finite elements. Computer methods in applied mechanics and
engineering 193, 2087–2104.

Hughes, T.J., Liu, W.K., Zimmermann, T.K., 1981. Lagrangian-eulerian finite element for-
mulation for incompressible viscous flows. Computer methods in applied mechanics and
engineering 29, 329–349.

Irwin, P., 1982. Model studies of the dynamic response of tall buildings to wind, in: Canadian
Society for Civil Engineering Annual Conference,, Edmonton, Alberta, pp. 285–302.

Irwin, P., Denoon, R., Scott, D., 2013. Wind tunnel testing of high-rise buildings. Routledge.

Irwin, P.A., 2009. Wind engineering challenges of the new generation of super-tall buildings.
Journal of Wind Engineering and Industrial Aerodynamics 97, 328–334.

Issa, R.I., 1986. Solution of the implicitly discretised fluid flow equations by operator-splitting.
Journal of computational physics 62, 40–65.

Isymov, N., 1982. The aeroelastic modeling of tall buildings. Wind tunnel modeling for civil
engineering applications , 373–456.

Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R., 2006. A synthetic-eddy-method for
generating inflow conditions for large-eddy simulations. International Journal of Heat and
Fluid Flow 27, 585–593.

Jasak, H., 1996. Error analysis and estimation for the finite volume method with applications
to fluid flows. Ph.D. thesis. Imperial College London (University of London).

Jasak, H., 2009. Dynamic mesh handling in openfoam, in: 47th AIAA aerospace sciences
meeting including the new horizons forum and aerospace exposition, p. 341.

Jasak, H., Tukovic, Z., 2006. Automatic mesh motion for the unstructured finite volume
method. Transactions of FAMENA 30, 1–20.

Jasak, H., Tuković, Ž., 2010. Dynamic mesh handling in openfoam applied to fluid-structure
interaction simulations, in: Proceedings of the V European Conference on Computational
Fluid Dynamics ECCOMAS CFD 2010, pp. 1–19.

192 BIBLIOGRAPHY

Jørgensen, N.G., Koss, H., Bennetsen, J.C., 2012. Embedded-les and experiment of turbulent
boundary layer flow around a floor-mounted cube, in: The Seventh International Colloquium
on Bluff Body Aerodynamics and Applications, pp. 1–10.

Kahsay, M.T., Bitsuamlak, G.T., Tariku, F., 2021. Thermal zoning and window optimization
framework for high-rise buildings. Applied Energy 292, 116894.

Kakimpa, B., Hargreaves, D., Owen, J., Martinez-Vazquez, P., Baker, C., Sterling, M., Quinn,
A., 2010. Cfd modelling of free-flight and auto-rotation of plate type debris. Wind and
Structures 13, 169.

Kareem, A., 2008. Numerical simulation of wind effects: a probabilistic perspective. Journal
of Wind Engineering and Industrial Aerodynamics 96, 1472–1497.

Kim, J.W., Haeri, S., 2015. An advanced synthetic eddy method for the computation of
aerofoil–turbulence interaction noise. Journal of Computational Physics 287, 1–17.

Kim, Y., Castro, I.P., Xie, Z.T., 2013. Divergence-free turbulence inflow conditions for large-
eddy simulations with incompressible flow solvers. Computers & Fluids 84, 56–68.

Klein, M., Sadiki, A., Janicka, J., 2003. A digital filter based generation of inflow data for
spatially developing direct numerical or large eddy simulations. Journal of computational
Physics 186, 652–665.

Kondo, K., Murakami, S., Mochida, A., 1997. Generation of velocity fluctuations for inflow
boundary condition of les. Journal of Wind Engineering and Industrial Aerodynamics 67,
51–64.

Kornev, N., Hassel, E., 2007. Method of random spots for generation of synthetic inhomoge-
neous turbulent fields with prescribed autocorrelation functions. Communications in numer-
ical methods in engineering 23, 35–43.

Kornev, N., Kröger, H., Hassel, E., 2008. Synthesis of homogeneous anisotropic turbulent
fields with prescribed second-order statistics by the random spots method. Communications
in numerical methods in engineering 24, 875–877.

Kraichnan, R.H., 1970. Diffusion by a random velocity field. The physics of fluids 13, 22–31.

Kröger, H., Kornev, N., 2018. Generation of divergence free synthetic inflow turbulence with
arbitrary anisotropy. Computers & Fluids 165, 78–88.

BIBLIOGRAPHY 193

Kumar, S., Mohri, M., Talwalkar, A., 2009. Sampling techniques for the nystrom method, in:
Artificial Intelligence and Statistics, pp. 304–311.

Kumar, S., Mohri, M., Talwalkar, A., 2012. Sampling methods for the nyström method. The
Journal of Machine Learning Research 13, 981–1006.

Küttler, U., Wall, W.A., 2008. Fixed-point fluid–structure interaction solvers with dynamic
relaxation. Computational mechanics 43, 61–72.

Lamberti, G., Garcı́a-Sánchez, C., Sousa, J., Gorlé, C., 2018. Optimizing turbulent inflow
conditions for large-eddy simulations of the atmospheric boundary layer. Journal of Wind
Engineering and Industrial Aerodynamics 177, 32–44.

Lamberti, G., Gorlé, C., 2020. Sensitivity of les predictions of wind loading on a high-rise
building to the inflow boundary condition. Journal of Wind Engineering and Industrial Aero-
dynamics 206, 104370.

Lamberti, G., Gorlé, C., 2021. A multi-fidelity machine learning framework to predict wind
loads on buildings. Journal of Wind Engineering and Industrial Aerodynamics 214, 104647.

Lee, S., Lele, S.K., Moin, P., 1992. Simulation of spatially evolving turbulence and the appli-
cability of taylor’s hypothesis in compressible flow. Physics of Fluids A: Fluid Dynamics 4,
1521–1530.

Lewellen, W., Lewellen, D., Sykes, R., 1997. Large-eddy simulation of a tornado’s interaction
with the surface. Journal of the atmospheric sciences 54, 581–605.

Li, J., Li, C., Chen, S., 2011. Spline-interpolation-based fft approach to fast simulation of
multivariate stochastic processes. Mathematical Problems in Engineering 2011.

Li, Y., Kareem, A., 1991. Simulation of multivariate nonstationary random processes by fft.
Journal of Engineering Mechanics 117, 1037–1058.

Li, Y., Kareem, A., 1993. Simulation of multivariate random processes: Hybrid dft and digital
filtering approach. Journal of Engineering Mechanics 119, 1078–1098.

Li, Y., Kareem, A., 1995. Stochastic decomposition and application to probabilistic dynamics.
Journal of engineering mechanics 121, 162–174.

Li, Y.C., Cheng, C.M., Lo, Y.L., Fang, F.M., Zheng, D.q., 2015. Simulation of turbulent
flows around a prism in suburban terrain inflow based on random flow generation method
simulation. Journal of Wind Engineering and Industrial Aerodynamics 146, 51–58.

194 BIBLIOGRAPHY

Lieblein, J., 1976. Efficient methods of extreme-value methodology. Technical Report. Tech-
nical Analysis Div., Institute for Applied Technology, National Bureau: of Standards, Wash-
ington, D.C. (United States).

Lilly, D.K., 1967. The representation of small-scale turbulence in numerical simulation exper-
iments. IBM Form , 195–210.

Liu, R., Jain, V., Zhang, H., 2006. Sub-sampling for efficient spectral mesh processing, in:
Computer Graphics International Conference, Springer. pp. 172–184.

Lu, C., Li, Q., Huang, S., Chen, F., Fu, X., 2012. Large eddy simulation of wind effects on a
long-span complex roof structure. Journal of Wind Engineering and Industrial Aerodynam-
ics 100, 1–18.

Lumley, J., Panofsky, H., 1964. The structure of atmospheric turbulence, intersci. Monogr.
Texts Phys. Astron 12, 19–23.

Lund, T.S., Wu, X., Squires, K.D., 1998. Generation of turbulent inflow data for spatially-
developing boundary layer simulations. Journal of computational physics 140, 233–258.

Mahaffy, J., Chung, B., Song, C., Dubois, F., Graffard, E., Ducros, F., Heitsch, M., Scheuerer,
M., Henriksson, M., Komen, E., et al., 2007. Best practice guidelines for the use of CFD
in nuclear reactor safety applications. Technical Report. Organisation for Economic Co-
Operation and Development.

Mann, J., 1998. Wind field simulation. Probabilistic engineering mechanics 13, 269–282.

Marshall, J., Imregun, M., 1996. An analysis of the aeroelastic behaviour of a typical fan-blade
with emphasis on the flutter mechanism. volume 78767. American Society of Mechanical
Engineers.

Mathey, F., Cokljat, D., Bertoglio, J.P., Sergent, E., 2006. Assessment of the vortex method
for large eddy simulation inlet conditions. Progress in Computational Fluid Dynamics, An
International Journal 6, 58–67.

McKenna, F.T., 1997. Object-oriented finite element programming: frameworks for analysis,
algorithms and parallel computing. University of California, Berkeley.

Melaku, A., Bitsuamlak, G., Elshaer, A., Aboshosha, H., 2017. Synthetic inflow turbulence
generation methods for les study of tall building aerodynamics, in: 13th Americas Confer-
ence on Wind Engineering, pp. 1–16.

BIBLIOGRAPHY 195

Melaku, A.F., Bitsuamlak, G.T., 2021. A divergence-free inflow turbulence generator using
spectral representation method for large-eddy simulation of abl flows. Journal of Wind
Engineering and Industrial Aerodynamics 212, 104580.

Melaku, A.F., Doddipatla, L.S., Bitsuamlak, G.T., 2022. Large-eddy simulation of wind loads
on a roof-mounted cube: application for interpolation of experimental aerodynamic data.
Journal of Wind Engineering and Industrial Aerodynamics 231, 105230.

Melbourne, W., 1980. Comparison of measurements on the caarc standard tall building model
in simulated model wind flows. Journal of Wind Engineering and Industrial Aerodynamics
6, 73–88.

Moeng, C.H., Wyngaard, J.C., 1988. Spectral analysis of large-eddy simulations of the con-
vective boundary layer. Journal of Atmospheric Sciences 45, 3573–3587.

Morokoff, W.J., Caflisch, R.E., 1994. Quasi-random sequences and their discrepancies. SIAM
Journal on Scientific Computing 15, 1251–1279.

Morooka, C.K., Yokoo, I.H., et al., 1997. Numerical simulation and spectral analysis of irreg-
ular sea waves. International Journal of Offshore and Polar Engineering 7.

Murakami, S., 1990. Computational wind engineering. Journal of wind engineering and in-
dustrial aerodynamics 36, 517–538.

Murakami, S., 1993. Comparison of various turbulence models applied to a bluff body, in:
Computational Wind Engineering 1. Elsevier, pp. 21–36.

Murakami, S., 1998. Overview of turbulence models applied in cwe–1997. Journal of Wind
Engineering and Industrial Aerodynamics 74, 1–24.

Newberry, C.W., 1967. The nature of gust loading on tall building, in: Proc. 2nd International
Conf. on Wind Effects on Buildings and Structures, pp. 399–428.

Newmark, N.M., 1959. A method of computation for structural dynamics. Journal of the
engineering mechanics division 85, 67–94.

Nicoud, F., Ducros, F., 1999. Subgrid-scale stress modelling based on the square of the velocity
gradient tensor. Flow, turbulence and Combustion 62, 183–200.

Nozawa, K., Tamura, T., 2002. Large eddy simulation of the flow around a low-rise build-
ing immersed in a rough-wall turbulent boundary layer. Journal of Wind Engineering and
Industrial Aerodynamics 90, 1151–1162.

196 BIBLIOGRAPHY

Nozu, T., Tamura, T., Okuda, Y., Sanada, S., 2008. Les of the flow and building wall pressures
in the center of tokyo. Journal of Wind Engineering and Industrial Aerodynamics 96, 1762–
1773.

Nozu, T., Tamura, T., Takeshi, K., Akira, K., 2015. Mesh-adaptive les for wind load estimation
of a high-rise building in a city. Journal of Wind Engineering and Industrial Aerodynamics
144, 62–69.

Obasaju, E., 1992. Measurement of forces and base overturning moments on the caarc tall
building model in a simulated atmospheric boundary layer. Journal of Wind Engineering
and Industrial Aerodynamics 40, 103–126.

Oberkampf, W.L., Trucano, T.G., 2002. Verification and validation in computational fluid
dynamics. Progress in aerospace sciences 38, 209–272.

Pamiès, M., Weiss, P.E., Garnier, E., Deck, S., Sagaut, P., 2009. Generation of synthetic
turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows.
Physics of Fluids 21, 045103.

Park, S., Park, S., Yeo, D., 2018. Introductory tutorial for DAD: Design examples of high-
rise building for wind. US Department of Commerce, National Institute of Standards and
Technology.

Patruno, L., de Miranda, S., 2020. Unsteady inflow conditions: A variationally based solution
to the insurgence of pressure fluctuations. Computer Methods in Applied Mechanics and
Engineering 363, 112894.

Patruno, L., Ricci, M., 2018. A systematic approach to the generation of synthetic turbulence
using spectral methods. Computer Methods in Applied Mechanics and Engineering 340,
881–904.

Pellegrini, F., 1994. Static mapping by dual recursive bipartitioning of process architecture
graphs, in: Proceedings of IEEE Scalable High Performance Computing Conference, IEEE.
pp. 486–493.

Peng, L., Huang, G., Kareem, A., Li, Y., 2016. An efficient space–time based simulation
approach of wind velocity field with embedded conditional interpolation for unevenly spaced
locations. Probabilistic Engineering Mechanics 43, 156–168.

Piomelli, U., 1999. Large-eddy simulation: achievements and challenges. Progress in
aerospace sciences 35, 335–362.

BIBLIOGRAPHY 197

Piomelli, U., Balaras, E., 2002. Wall-layer models for large-eddy simulations. Annual review
of fluid mechanics 34, 349–374.

Piperno, S., Farhat, C., 2001. Partitioned procedures for the transient solution of coupled
aeroelastic problems–part ii: energy transfer analysis and three-dimensional applications.
Computer methods in applied mechanics and engineering 190, 3147–3170.

Piperno, S., Farhat, C., Larrouturou, B., 1995. Partitioned procedures for the transient so-
lution of coupled aroelastic problems part i: Model problem, theory and two-dimensional
application. Computer methods in applied mechanics and engineering 124, 79–112.

Poletto, R., Craft, T., Revell, A., 2013. A new divergence free synthetic eddy method for the
reproduction of inlet flow conditions for les. Flow, turbulence and combustion 91, 519–539.

Poletto, R., Revell, A., Craft, T.J., Jarrin, N., 2011. Divergence free synthetic eddy method for
embedded les inflow boundary conditions, in: TSFP Digital Library Online, Begel House
Inc.. pp. 1–6.

Porté-Agel, F., Wu, Y.T., Lu, H., Conzemius, R.J., 2011. Large-eddy simulation of atmospheric
boundary layer flow through wind turbines and wind farms. Journal of Wind Engineering
and Industrial Aerodynamics 99, 154–168.

Priestley, M.B., 1981. Spectral analysis and time series: probability and mathematical statis-
tics. ACADEMIC PRESS, INC.

Razak, A.A., Hagishima, A., Ikegaya, N., Tanimoto, J., 2013. Analysis of airflow over building
arrays for assessment of urban wind environment. Building and Environment 59, 56–65.

Ricci, M., Patruno, L., De Miranda, S., 2017. Wind loads and structural response: benchmark-
ing les on a low-rise building. Engineering Structures 144, 26–42.

Ricci, M., Patruno, L., Kalkman, I., de Miranda, S., Blocken, B., 2018. Towards les as a
design tool: Wind loads assessment on a high-rise building. Journal of Wind Engineering
and Industrial Aerodynamics 180, 1–18.

Romero, A., Galvı́n, P., Domı́nguez, J., 2013. 3d non-linear time domain fem–bem approach
to soil–structure interaction problems. Engineering Analysis with Boundary Elements 37,
501–512.

Rosenblueth, E., 1951. A basis for aseismic design.

198 BIBLIOGRAPHY

Ryzhakov, P., Rossi, R., Idelsohn, S., Onate, E., 2010. A monolithic lagrangian approach for
fluid–structure interaction problems. Computational mechanics 46, 883–899.

Sagaut, P., Deck, S., 2009. Large eddy simulation for aerodynamics: status and perspectives.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 367, 2849–2860.

Schumann, U., 1975. Subgrid scale model for finite difference simulations of turbulent flows
in plane channels and annuli. Journal of computational physics 18, 376–404.

Shah, K.B., Ferziger, J.H., 1997. A fluid mechanicians view of wind engineering: Large
eddy simulation of flow past a cubic obstacle. Journal of wind engineering and industrial
aerodynamics 67, 211–224.

Shinozuka, M., 1971. Simulation of multivariate and multidimensional random processes. The
Journal of the Acoustical Society of America 49, 357–368.

Shinozuka, M., Deodatis, G., 1988. Stochastic process models for earthquake ground motion.
Probabilistic engineering mechanics 3, 114–123.

Shinozuka, M., Deodatis, G., 1991a. Simulation of stochastic processes by spectral represen-
tation. Applied Mechanics Reviews .

Shinozuka, M., Deodatis, G., 1991b. Stochastic wave models for stationary and homogeneous
seismic ground motion. Structural Safety 10, 235–246.

Shinozuka, M., Jan, C.M., 1972. Digital simulation of random processes and its applications.
Journal of sound and vibration 25, 111–128.

Shinozuka, M., Yun, C.B., Seya, H., 1990. Stochastic methods in wind engineering. Journal
of Wind Engineering and Industrial Aerodynamics 36, 829–843.

Silva, V., Tenenbaum, J., 2002. Global versus local methods in nonlinear dimensionality re-
duction. Advances in neural information processing systems 15.

Simiu, E., Gabbai, R.D., Fritz, W.P., 2008. Wind-induced tall building response: a time-domain
approach. Wind & structures 11, 427–440.

Simiu, E., Scanlan, R.H., 1996. Wind effects on structures: Fundamentals and application to
design. Book published by John Willey & Sons Inc 605.

Slone, A., Pericleous, K., Bailey, C., Cross, M., 2002. Dynamic fluid–structure interaction
using finite volume unstructured mesh procedures. Computers & structures 80, 371–390.

BIBLIOGRAPHY 199

Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. the
basic experiment. Monthly weather review 91, 99–164.

Smirnov, A., Shi, S., Celik, I., 2001. Random flow generation technique for large eddy simu-
lations and particle-dynamics modeling. Journal of fluids engineering 123, 359–371.

Sobol, I.M., 1967. On the distribution of points in a cube and the approximate evaluation of
integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7, 784–802.

Solari, G., Carassale, L., 2000. Modal transformation tools in structural dynamics and wind
engineering. Wind and Structures 3, 221–241.

Solari, G., Piccardo, G., 2001. Probabilistic 3-d turbulence modeling for gust buffeting of
structures. Probabilistic Engineering Mechanics 16, 73–86.

Solari, G., Tubino, F., 2002. A turbulence model based on principal components. Probabilistic
engineering mechanics 17, 327–335.

Song, Y., Chen, J., Peng, Y., Spanos, P.D., Li, J., 2018. Simulation of nonhomogeneous fluctu-
ating wind speed field in two-spatial dimensions via an evolutionary wavenumber-frequency
joint power spectrum. Journal of Wind Engineering and Industrial Aerodynamics 179, 250–
259.

Spalding, D., 1961. A single formula for the law of the wall. Journal of Applied Mechanics
28, 455–458.

Spanos, P., Zeldin, B., 1998. Monte carlo treatment of random fields: a broad perspective.
Applied Mechanics Reviews 51, 219–237.

Stathopoulos, T., 1997. Computational wind engineering: Past achievements and future chal-
lenges. Journal of Wind Engineering and Industrial Aerodynamics 67, 509–532.

Stein, K., Benney, R., Kalro, V., Tezduyar, T.E., Leonard, J., Accorsi, M., 2000. Parachute
fluid–structure interactions: 3-d computation. Computer Methods in Applied Mechanics
and Engineering 190, 373–386.

Sullivan, P.P., McWilliams, J.C., Moeng, C.H., 1994. A subgrid-scale model for large-eddy
simulation of planetary boundary-layer flows. Boundary-Layer Meteorology 71, 247–276.

Tabor, G.R., Baba-Ahmadi, M., 2010. Inlet conditions for large eddy simulation: A review.
Computers & Fluids 39, 553–567.

200 BIBLIOGRAPHY

Tamura, T., 2008. Towards practical use of les in wind engineering. Journal of Wind Engineer-
ing and Industrial Aerodynamics 96, 1451–1471.

Tamura, T., Kawai, H., Bale, R., Onishi, K., Tsubokura, M., Kondo, K., Nozu, T., 2015.
Analysis of wind turbulence in canopy layer at large urban area using hpc database, in:
ICUC9-9th International Conference on Urban Climate Jointly with 12th Symposium on the
Urban Environment, pp. 1–6.

Tamura, T., Kondo, K., Kataoka, H., Ono, Y., Kawai, H., 2017. Application of les to wind load-
ing estimation on buildings, in: 9th Asia Pacific Conference on Wind Engineering, APCWE
2017, The University of Auckland. pp. 1–4.

Tamura, T., Nozawa, K., Kondo, K., 2008. Aij guide for numerical prediction of wind loads
on buildings. Journal of Wind Engineering and Industrial Aerodynamics 96, 1974–1984.

Tamura, T., Okuda, Y., Kishida, T., Nakamura, O., Miyashita, K., Katsumura, A., Tamari,
M., 2010. Les for aerodynamic characteristics of a tall building inside a dense city district.
CWE2010, pp1-8 5.

Tamura, T., Ono, Y., 2003. Les analysis on aeroelastic instability of prisms in turbulent flow.
Journal of wind engineering and industrial aerodynamics 91, 1827–1846.

Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M., Kim, Y.C., Bandi, E.K., 2013. Aerodynamic
and flow characteristics of tall buildings with various unconventional configurations. Inter-
national Journal of High-Rise Buildings 2, 213–228.

Tao, T., Wang, H., Yao, C., He, X., Kareem, A., 2017. Efficacy of interpolation-enhanced
schemes in random wind field simulation over long-span bridges. Journal of Bridge Engi-
neering 23, 04017147.

Tao, T., Wang, H., Yao, C., He, X., Kareem, A., 2018. Efficacy of interpolation-enhanced
schemes in random wind field simulation over long-span bridges. Journal of Bridge Engi-
neering 23, 04017147.

Taylor, G.I., 1938. The spectrum of turbulence. Proceedings of the Royal Society of London.
Series A-Mathematical and Physical Sciences 164, 476–490.

Tennekes, H., 1973. The logarithmic wind profile. Journal of the Atmospheric Sciences 30,
234–238.

ASCE 7-16, 2017. Minimum design loads and associated criteria for buildings and other struc-
tures, in: ASCE/SEI 7-16, American Society of Civil Engineers, Reston, VA.. pp. 245–387.

BIBLIOGRAPHY 201

Tezduyar, T.E., Sathe, S., Schwaab, M., Pausewang, J., Christopher, J., Crabtree, J., 2008.
Fluid–structure interaction modeling of ringsail parachutes. Computational Mechanics 43,
133–142.

Thomas, P., Lombard, C., 1979. Geometric conservation law and its application to flow com-
putations on moving grids. AIAA journal 17, 1030–1037.

Thomas, T., Williams, J., 1999. Generating a wind environment for large eddy simulation of
bluff body flows. Journal of Wind Engineering and Industrial Aerodynamics 82, 189–208.

Thordal, M.S., Bennetsen, J.C., Koss, H.H.H., 2019. Review for practical application of cfd
for the determination of wind load on high-rise buildings. Journal of Wind Engineering and
Industrial Aerodynamics 186, 155–168.

Tomas, J., Pourquie, M., Jonker, H., 2015. The influence of an obstacle on flow and pollutant
dispersion in neutral and stable boundary layers. Atmospheric Environment 113, 236–246.

Tominaga, Y., Mochida, A., Murakami, S., Sawaki, S., 2008a. Comparison of various revised
k–ε models and les applied to flow around a high-rise building model with 1: 1: 2 shape
placed within the surface boundary layer. Journal of Wind Engineering and Industrial Aero-
dynamics 96, 389–411.

Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., Shirasawa,
T., 2008b. Aij guidelines for practical applications of cfd to pedestrian wind environment
around buildings. Journal of wind engineering and industrial aerodynamics 96, 1749–1761.

Tominaga, Y., Stathopoulos, T., 2011. Cfd modeling of pollution dispersion in a street canyon:
Comparison between les and rans. Journal of Wind Engineering and Industrial Aerodynam-
ics 99, 340–348.

Tubino, F., Solari, G., 2005. Double proper orthogonal decomposition for representing and
simulating turbulence fields. Journal of engineering mechanics 131, 1302–1312.

Tucker, M., Challenor, P.G., Carter, D., 1984. Numerical simulation of a random sea: a com-
mon error and its effect upon wave group statistics. Applied ocean research 6, 118–122.

Tucker, P.G., Lardeau, S., 2009. Applied large eddy simulation.

UNDESA, 2018. 68% of the world population projected to live in urban areas
by 2050 says un. United Nations Department of Economic and Social Affairs
(UNDESA) URL: https://www.un.org/development/desa/en/news/population/
2018-revision-of-world-urbanization-prospects.html.

https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html

202 BIBLIOGRAPHY

Van Driest, E.R., 1956. On turbulent flow near a wall. Journal of the aeronautical sciences 23,
1007–1011.

Van Leer, B., 1979. Towards the ultimate conservative difference scheme. v. a second-order
sequel to godunov’s method. Journal of computational Physics 32, 101–136.

Vanmarcke, E., 2010. Random fields: analysis and synthesis. World Scientific.

Vasaturo, R., Kalkman, I., Blocken, B., van Wesemael, P., 2018. Large eddy simulation of
the neutral atmospheric boundary layer: performance evaluation of three inflow methods for
terrains with different roughness. Journal of Wind Engineering and Industrial Aerodynamics
173, 241–261.

Vermeire, B.C., Orf, L.G., Savory, E., 2011. A parametric study of downburst line near-surface
outflows. Journal of wind engineering and industrial aerodynamics 99, 226–238.

Vickery, B.J., 1990. Experimental techniques for the determination of the dynamic responses
of structures to wind. Meccanica 25, 147–158.

de Villiers, E., 2006. The Potential of Large Eddy Simulation for the Modelling of Wall
Bounded Flows. Ph.D. thesis. Imperial College London.

Vuorinen, V., Chaudhari, A., Keskinen, J.P., 2015. Large-eddy simulation in a complex hill
terrain enabled by a compact fractional step openfoam® solver. Advances in Engineering
Software 79, 70–80.

Wang, H., Zhou, Y., 2009. The finite-length square cylinder near wake. Journal of Fluid
Mechanics 638, 453–490.

Wang, S., Zhang, Z., 2013. Improving cur matrix decomposition and the nyström approxima-
tion via adaptive sampling. The Journal of Machine Learning Research 14, 2729–2769.

Wang, Y., Chen, X., 2020. Simulation of approaching boundary layer flow and wind loads
on high-rise buildings by wall-modeled les. Journal of Wind Engineering and Industrial
Aerodynamics 207, 104410.

Warsido, W.P., 2013. Reducing uncertainties in estimation of wind effects on tall buildings
using aerodynamic wind tunnel tests. Ph.D. thesis. Florida International University.

Warsido, W.P., Bitsuamlak, G.T., 2015. Synthesis of wind tunnel and climatological data for
estimating design wind effects: A copula based approach. Structural Safety 57, 8–17.

BIBLIOGRAPHY 203

Weller, H.G., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational
continuum mechanics using object-oriented techniques. Computers in physics 12, 620–631.

Willcox, K., Paduano, J., Peraire, J., Hall, K., 1999. Low order aerodynamic models for aeroe-
lastic control of turbomachines, in: 40th Structures, Structural Dynamics, and Materials
Conference and Exhibit, p. 1467.

Williams, C.K., Seeger, M., 2001. Using the nyström method to speed up kernel machines, in:
Advances in neural information processing systems, pp. 682–688.

Wilson, E., Habibullah, A., 1987. Static and dynamic analysis of multi-story buildings, includ-
ing p-delta effects. Earthquake spectra 3, 289–298.

Wu, J., Liu, P., Li, Q., 2007. Effects of amplitude-dependent damping and time constant on
wind-induced responses of super tall building. Computers & structures 85, 1165–1176.

Wu, X., 2017. Inflow turbulence generation methods. Annual Review of Fluid Mechanics 49,
23–49.

Wüchner, R., Kupzok, A., Bletzinger, K.U., 2007. A framework for stabilized partitioned
analysis of thin membrane–wind interaction. International journal for numerical methods in
fluids 54, 945–963.

Xie, Z.T., Castro, I.P., 2008. Efficient generation of inflow conditions for large eddy simulation
of street-scale flows. Flow, turbulence and combustion 81, 449–470.

Xie, Z.T., Castro, I.P., 2009. Large-eddy simulation for flow and dispersion in urban streets.
Atmospheric Environment 43, 2174–2185.

Yamada, T., Hong, G., Kataoka, S., Yoshimura, S., 2016. Parallel partitioned coupling analysis
system for large-scale incompressible viscous fluid–structure interaction problems. Com-
puters & Fluids 141, 259–268.

Yan, B., Li, Q., 2015. Inflow turbulence generation methods with large eddy simulation for
wind effects on tall buildings. Computers & Fluids 116, 158–175.

Yan, B., Li, Q., 2016. Large-eddy simulation of wind effects on a super-tall building in urban
environment conditions. Structure and Infrastructure Engineering 12, 765–785.

Yang, J.N., 1972. Simulation of random envelope processes. Journal of Sound and Vibration
21, 73–85.

204 BIBLIOGRAPHY

Yang, J.N., 1973. On the normality and accuracy of simulated random processes. Journal of
Sound and Vibration 26, 417–428.

Yang, W., Chang, T., Chang, C., 1997. An efficient wind field simulation technique for bridges.
Journal of Wind Engineering and Industrial Aerodynamics 67, 697–708.

Yazdchi, M., Khalili, N., Valliappan, S., 1999. Dynamic soil–structure interaction analysis
via coupled finite-element–boundary-element method. Soil Dynamics and Earthquake En-
gineering 18, 499–517.

Yeo, D., Simiu, E., 2011. High-rise reinforced concrete structures: Database-assisted design
for wind. Journal of Structural Engineering 137, 1340–1349.

Yoshikawa, M., Tamura, T., 2015. Cfd wind-resistant design of tall building in actual urban
area using unstructured-grid les, in: IABSE Conference: Elegance in structures, Nara, Japan,
13-15 May 2015, pp. 486–487.

Yoshizawa, A., 1986. Statistical theory for compressible turbulent shear flows, with the appli-
cation to subgrid modeling. The Physics of fluids 29, 2152–2164.

Yu, Y., Yang, Y., Xie, Z., 2018. A new inflow turbulence generator for large eddy simulation
evaluation of wind effects on a standard high-rise building. Building and Environment 138,
300–313.

Yuan, C., Norford, L., Britter, R., Ng, E., 2016. A modelling-mapping approach for fine-scale
assessment of pedestrian-level wind in high-density cities. Building and Environment 97,
152–165.

Zhang, K., Kwok, J.T., 2010. Clustered nyström method for large scale manifold learning and
dimension reduction. IEEE Transactions on Neural Networks 21, 1576–1587.

Zhang, L.l., Li, J., Peng, Y., 2008. Dynamic response and reliability analysis of tall buildings
subject to wind loading. Journal of Wind Engineering and Industrial Aerodynamics 96,
25–40.

Zhang, X., Wegner, J., Haddow, J., 1999. Three-dimensional dynamic soil–structure interaction
analysis in the time domain. Earthquake engineering & structural dynamics 28, 1501–1524.

Zhang, Y., Cao, S., Cao, J., 2022. An improved consistent inflow turbulence generator for les
evaluation of wind effects on buildings. Building and Environment , 109459.

BIBLIOGRAPHY 205

Zhang, Y., Habashi, W., Khurram, R., RANS, H., 2012. Les method for fsi simulations of tall
buildings, in: World Congress on Advances in Civil, Environmental, and Materials Research
(ACEM12), pp. 3048–3059.

Zhang, Y., Habashi, W.G., Khurram, R.A., 2015. Predicting wind-induced vibrations of high-
rise buildings using unsteady cfd and modal analysis. Journal of Wind Engineering and
Industrial Aerodynamics 136, 165–179.

Appendix A

Numerical implementation of DFSR and
CDRFG methods

In the current study, the codes for the DFSR and CDRFG methods were implemented in C++.
For faster execution, parts of the code that can be executed concurrently for both methods are
written in parallel utilizing the Open MPI (Message Passing Interface) library. Parallelizing
the CDRFG method is seamless because the generation of the velocity time-series at one point
is independent of the other. For the DFSR method, however, performing the Cholesky fac-
torization of the CPSD matrix in parallel is challenging; therefore, the code is divided into
two pieces: serial and parallel parts. The serial part of the code performs the Cholesky fac-
torization of the CPSD matrix to get the Hui(ω) matrix in Eq.(2.9). Once the Hui(ω) matrix is
computed, the parallel part of the code is invoked to generate the velocity time-series using the
FFT algorithm. The Cholesky factorization of the CPSD matrix given in Eq.(2.9) is performed
by a highly optimized linear algebra package LAPACK (Anderson et al., 1999b). Similarly,
to perform the FFT given in Eq.(2.12), the Fastest Fourier Transform in the West (FFTW)
package developed by Frigo and Johnson (2005a) is adopted providing the aforementioned
O(N log N) speed gain. Finally, the generated velocity field is exported into an OpenFOAM
readable inflow data for LES use. The implemented code for the DFSR method is available
at https://github.com/GBitsuamlak/DFSR together with an illustrative example showing
how to use it for LES in OpenFOAM.

Figure A.1 compares the computational cost of DFSR and CDRFG methods for different
durations with 104 points at ∆t = 0.002. The number of the frequency intervals (N) is set to
4096 for both DFSR and CDRFG techniques. The simulations are run on 32 processors with a
Xeon(R) CPU E5-4620 @ 2.2 GHz device having 128GB of memory. For the DFSR method,
the execution time shown in Figure A.1 includes the time consumed in performing both the
interpolated Cholesky factorization with Ñ = 30 frequencies and wind field generation using

206

https://github.com/GBitsuamlak/DFSR

207

the FFT technique. In Figure A.1 the time taken for the Cholesky factorization is shown with
a dotted line. As depicted in Figure A.1, for a shorter duration, the CDRFG method takes less
CPU time compared to the DFSR method. However, when the duration gets longer, the DFSR
method becomes more efficient because of the FFT technique. It should be noted that the CPU
hours shown in Figure A.1 are execution times using 32 processors.

0 10 20 30 40 50 60

Duration(s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

C
P

U
T

im
e(

h
ou

r)

CDRFG

DFSR

DFSR(Cholesky)

Figure A.1: Comparison of execution times for different duration using 32 processors.

Appendix B

Upper bound of the Nyström
approximation error

As seen in Eq. (3.31), the approximation error for Nyström method results from the recon-
struction error of the block CPSD matrix S22(ω), and can be expressed in Frobenius norm as
(Arcolano and Wolfe, 2010):

∥S0(ω) − S̃(ω)∥F = ∥S22(ω) − S21(ω)W†(ω)ST
21(ω)∥F , (B.1)

where the matrices W†(ω) and S21 are defined in Eq. (3.25). The expression on the right
hand of Eq. (B.1) is often referred to as Schur-complement of the block matrix W(ω), and the
approximation error is entirely characterized by it.

Now, let us appeal to the special structure of the CPSD matrix, i.e., it has low coherence for
high frequencies. This makes the relative reconstruction error for the CPSD matrix maximum
at the high-frequency end. Then, when ω → ∞, the matrix S0(ω) becomes nearly a diagonal
matrix holding only the auto-PSD functions, and the block matrix S21(ω) approaches a zero
matrix since it is formed from the off-diagonal entries of S0(ω). Hence, the reconstruction
error in Eq. (B.1) is bounded by

∥S0(ω) − S̃(ω)∥F ≤ ∥S22(ω)∥F ≈

√√
n−c∑
i=1

[S22(ω)]2
ii , (B.2)

For simplicity, if we assume homogeneous turbulence, we have the same auto-PSD functions
along the diagonal of the CPSD matrix. Finally, an upper limit to the relative reconstruction

208

209

error is given by

ϵnys(ω) =
∥S0(ω) − S̃(ω)∥F
∥S0(ω)∥F

≤
∥S22(ω)∥F
∥S0(ω)∥F

≈

√
(n − c)

n
(B.3)

Actually, this error bound is generally crude for most cases of practical interest, especially
when considering the entire frequency range. However, it clearly serves as a weak proof for
the convergence of the Nyström approximation of the CPSD matrix.

Appendix C

Numerical implementation of NY-POD
method

The simulation procedure was implemented in C++. For the eigen-decomposition of the CPSD
and for all matrix-related computations, we used the LAPACK (Anderson et al., 1999a) pack-
age. The velocity time series is simulated using the FFTW (Frigo and Johnson, 2005b) library.
Parts of the implemented C++ code that take significant computing time were multi-threaded
using OpenMP (Open Multi-Processing). Listing C.1 provides the implemented source code.

/*---*\

This code generates velocity time history using spectral representation for

a stationary Gaussian multivariate stochastic process. The cross-power spectral

matrix is approximated using the Nystrom method. The simulation process is not

ergodic, and a random-phase-angle approach is utilized. The time history of

each component of the process is computed using the FFT technique. The generated

field is saved to a file with rows representing time and columns for the points.

---/

#ifndef SRM_H

#define SRM_H

#include <iostream >

#include <vector>

#include <string>

#include "dictionary.h"

using namespace std;

const double pi=3.141592653589793;

class SRM

{

//Private data

private:

//Number points in the simulation

int npoints;

//Number of columns to sample for Nystrom approx

int ncols;

//Number of modes for the POD time series simulation

//Should always be less than or equal to m or n

int nmodes;

210

211

//Number of frequency intervals

int N;

//Number of time steps

int Nt;

//Upper cut-off frequency

double fmax;

//Time step

double dt;

//Frequency step

double df;

//Period of the simulation

double T;

//Seed for the random number generator

int seed;

//Number of sample functions to generate for

//time-series generation

int nsamples;

//Max number of threads

int max_num_threads;

//Coherency decay coefficients for u-component of the velocity

vector<double> Cu;

//Point coordinates

vector<vector<double>> points;

//Mean velocity profile

vector<double> Uav;

//Turbulence intensity profile

vector<double> I;

//Integral length scale profile

vector<double> L;

//Number of columns to be sampled for NY-POD

vector<vector<int>> cols;

//Simulation type

string sim_type;

//Sampling type

string sample_type;

//FFT simulation type

string ergodic;

//Name of the case simulated.

string case_name;

//Add mean or not

string add_mean;

//Column average

string avg_columns;

public:

//Constructor

SRM(dictionary& dict);

//Reads point data and Uav, I , L from a file stream

void read_point_data();

212 Chapter C. Numerical implementation of NY-POD method

//Reads indices of sampled points

//Used only for 2D case

void read_sample_points();

//Prints a given matrix

void print_matrix(int nrow, int ncol, double* matrix);

//Prints a vector

void print_vector(int nrow, double* vect);

//Return the von Karman spectrum for the longitudinal component of the velocity.

double von_k_spectrum(double freq, double Uav, double I, double L);

//Calculates the coherency function for any given two point p1 and p2.

double coherency(double freq, double Uav, vector<double >& p1, vector<double >& p2);

//Calculate the PSD at all points for a given frequency.

void calc_psd_all(double freq, double* S0);

// Calculates the cross-power spectrum matrix for a given frequency.

// Computes only the lower part of the matrix because it is symmetric

void calc_xpsd_matrix(double freq, double* S);

//Subtract two given matrices

void matrix_sub(int nrow, int ncol, double* m1, double* m2, double* result);

//Add two given matrices

void matrix_add(int nrow, int ncol, double* m1, double* m2, double* result);

//Geometrically uniform column sampling for 1D case

//n: number of points (total number of points)

//m: number of columns to be sampled

void uniform_sample_1D(int n, int m);

//Geometrically uniform column sampling for 2D case

//n: number of points (total number of points)

//m: number of columns to be sampled

void uniform_sample_2D(int n, int m);

//Random column sampling

//n: number of points (total number of points)

//m: number of columns to be sampled

void random_sample(int n, int m);

//Check sampling method and sample columns for NY-POD

//n: number of points (total number of points)

//m: number of columns to be sampled

void sample_columns(int n, int m);

//Sample the column and intersection matrix for Nystrom approximation

//n: number of points or dim of S

//m: number of columns to be sampled

//S: XPSD matrix with dimension [n x n]

//C: Sampled column matrix (dim = [n x m])

//W: Sampled interesection matrix with dim [m x m]

void sample_xpsd_matrix(int n, int m, double* S, double *C, double* W);

//Performs eigen-decomposition of the cross-spectral density matrix.

// n : matrix dim

// D : diagonal matrix

// V : eigenvector

// S : XPSD matrix

void eigen_decompose(int n, double*S, double*V, double*D);

//Returns the eigen-decomposition H = Dˆ{1/2}*V using eigen decomposition.

// n : matrix dim

// k : rank of approximation

// S : [n x n] XPSD matrix

// H : [n x k] the decomposed matrix H = Dˆ{1/2}*V

void eigen_decompose_H(int n, int k, double*S, double*H);

//Returns the cholesky decomposition of S = H*HˆT using eigen decomposition.

// n : matrix dim

// S : [n x n] XPSD matrix

213

// H : [n x n] the decomposed matrix H = H*HˆT

void cholesky_decompose_H(int n, double*S, double*H);

//Performs k-rank approximation of the CPSD matrix.

//V: eigenvectors of the matrix [n x m]

//D: eigenvalues of the matrix [m]

//k: rank of the approximation.

//Sk: k-rank approximation of the CPSD matrix [n x n]

void low_rank_approx(int n, int m, int k, double*V, double*D, double*Sk);

//Calculate the decomposion S = H*HˆT. Where H = VDˆ(1/2).

//V: eigenvectors of the matrix [n x m]

//D: eigenvalues of the matrix [m]

//H: matrix [n x m]

void get_H(int n, int m, double*V, double*D, double*H);

//Returns the approximate eigenvectors and eigenvalues for CPSD matrix using Nystrom approximation.

//Here m stands for the number of columns to be sampled.

//Dm is the approximate eigenvalues

//Vm is the approximate eigenvector

//S is the full CPSD matrix

void nystrom_approx(int n, int m, double*S, double*Vm, double*Dm);

//Returns the approximate matrix H = C*V*Dˆ{-1/2} using Nystrom approximation.

//n: number of points or size of S.

//m: number of columns to be sampled.

//k: rank of the approximation.

//S: [n x n] the full CPSD matrix

//H: [n x k] the decomposed matrix H = C*V*Dˆ{-1/2}

void nystrom_approx_H(int n, int m, int k, double* S, double* H);

//Calculates the Frobenius/Eculidian norm of the error given the original matrix and

//the low-rank approximation of the same matrix

double frobenius_norm(int n, double* S, double* Sk);

//Generate matrix of random phase angles from uniform distribution

//Range: [0, 2*pi]

//k: number of columns

//Phi is [k by N] matrix

void generate_phi(int k, double* phi);

//Writes the decomposed matrix data for all frequencies for ’POD’ based simulation

// -eigenvalues

// -eigenvectors

void write_pod_data();

//Writes the decomposed matrix data for all frequencies for Nystrom based simulation

// -eigenvalues

// -eigenvectors

void write_nys_data();

//Writes the intermediat data.

void write_matrix_data();

//Writes a given 1D matrix into a file

//row-major format. ’nrow’ represents the number of rows of rows.

void write_1D_data(const char* fname, int nrow, vector<double >& data);

//Writes a one dimentional integer data

void write_1D_data(const char* fname, int nrow, vector<int>& data);

//Writes a given 2D matrix into a file

//row major format. ’nrow’ and ’ncol’ represent the number of rows

//and columns, respectively.

void write_2D_data(const char* fname, int nrow, int ncol, vector<double*>& data);

//Writes a given 2D matrix into a file

//row major format. ’nrow’ and ’ncol’ represent the number of rows

//and columns, respectively.

void write_2D_data(const char* fname, int nrow, int ncol, double* data);

//Writes a given 3D matrix into a file

//nf: Number of idividual 2D slices

//row major format. ’nrow’ and ’ncol’ represent the number of rows

214 Chapter C. Numerical implementation of NY-POD method

//and columns individual 2D slices, respectively.

void write_3D_data(const char* fname, int nf, int nrow, int ncol, vector<double*>& data);

//Writes a given 3D matrix into a file

//nf: Number of individual 2D slices

//row major format. ’nrow’ and ’ncol’ represent the number of rows

//and columns individual 2D slices, respectively.

void write_3D_data_compact(const char* fname, int nf, int m, int nrow, int ncol, vector<double*>& data);

//Generates velocity time-series for a given H matrix as ergodic time series

//with a double indexed frequency

//n: number of points

//k: number of modes to consider

//H: decomposed matrix for each frequency

//U: Array that will hold the velocity time series

void fft_U_ergodic(int n, int k, vector<double*>& H, double* U);

//Generates nonergodic velocity time-series for a given H matrix

//n: number of points

//k: number of modes to consider

//H: decomposed matrix for each frequency

//U: Array that will hold the velocity time series

void fft_U(int n, int k, vector<double*>& H, double* U);

//Test the cpsd matrix at a selected frequency

void test_cpsd_matrix();

//Reconstrcuts the cpsd matrix for each frequency and

//calculate the reconstruction L2-norm of the error

void write_reconst_error(int n_modes, int delta_k);

//Calculates the spectral reconstruction error

void write_spectral_error(int m, int k);

//Generates the final velocity field

void generate_velocity();

//Generates the final velocity field

//m: number of columns to sample

//k: number of modes

//sim: type of the simulation (POD or NY-POD)

// void generate_velocity(int m, int k, string sim);

//Sets m, k, sime_type parameters.

void set_params(int m, int k, string sim);

//A function to generate sample velocity time-series at each story

//for tall building buffeting analysis.

//The following parameters are changed to generate different sampels.

// -velocity at roof height

// -turbulence intensity

// -Length scale

// -Seed used to generate the phase anngles

void generate_velocity_tall_building();

};

/**/

/*---*\

Source file: SRM.cpp

---/

#include <iostream >

#include <string>

#include <fstream>

#include <sstream>

#include <cstring>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <chrono>

#include <time.h>

#include <random>

#include "mkl.h"

215

#include "fftw3.h"

#include "SRM.h"

#include "dictionary.h"

using namespace std;

using namespace std::chrono;

SRM::SRM(dictionary& dict)

{

npoints = dict.read_int_entry("nPoints");

ncols = dict.read_int_entry("nColumns");

nmodes = dict.read_int_entry("nModes");

N = dict.read_int_entry("N");

seed = dict.read_int_entry("seed");

nsamples = dict.read_int_entry("nSamples");

fmax = dict.read_scalar_entry("fMax");

T = dict.read_scalar_entry("T");

Cu.resize(3, 0.0);

Cu[0] = dict.read_scalar_entry("Cux");

Cu[1] = dict.read_scalar_entry("Cuy");

Cu[2] = dict.read_scalar_entry("Cuz");

case_name = dict.read_string_entry("caseName");

sim_type = dict.read_string_entry("simType");

sample_type = dict.read_string_entry("sampleType");

ergodic = dict.read_string_entry("ergodic");

max_num_threads = dict.read_int_entry("numThreads");

add_mean = dict.read_string_entry("addMean");

avg_columns = dict.read_string_entry("avgColumns");

dt = 1.0/(2.0*fmax);

df = fmax/N;

Nt = T/dt;

read_point_data();

//Print input params

cout << "\n"<< endl;

cout << "==================Input␣Parameters=================\n"<< endl;

cout << "Case␣name␣=␣" << case_name << endl;

cout << "Number␣of␣points(n)␣=␣" << npoints << endl;

cout << "Number␣of␣columns␣sampled(m)␣=␣" << ncols << endl;

cout << "Number␣of␣modes(K)␣=␣" << nmodes << endl;

cout << "Number␣of␣frequency␣intervals(N)␣=␣" << N << endl;

cout << "Number␣of␣time␣steps␣=␣" << Nt << endl;

cout << "Max.␣frequency(fMax)␣=␣" << fmax << endl;

cout << "Time␣step(dt)␣=␣" << dt << endl;

cout << "Frequency␣step(df)␣=␣" << df << endl;

cout << "Simulation␣duration(T)␣=␣" << T << endl;

cout << "Simulation␣period(T0)␣=␣" << 2.0/df << endl;

cout << "Coherency␣decay␣coeff(Cy)␣=␣" << Cu[1] << endl;

cout << "Coherency␣decay␣coeff(Cz)␣=␣" << Cu[2] << endl;

cout << "Simulation␣type␣=␣" << sim_type << endl;

cout << "Sampling␣method␣=␣" << sample_type << endl;

cout << "Ergodic␣time-series␣=␣" << ergodic << endl;

cout << "Add␣mean␣=␣" << add_mean << endl;

cout << "Average␣columns␣=␣" << avg_columns << endl;

cout << "Random␣number␣seed␣=␣" << seed << endl;

cout << "Number␣of␣sample␣functions␣=␣" << nsamples << endl;

cout << "Max.␣number␣of␣OpenMP␣threads␣=␣" << max_num_threads << endl;

cout << "\n==="<< endl;

sample_columns(npoints, ncols);

//Set number of threads

// mkl_set_num_threads_local(max_num_threads);

mkl_set_num_threads(max_num_threads);

}

void SRM::read_point_data()

{

216 Chapter C. Numerical implementation of NY-POD method

ifstream point_data;

string file_name = "input/points_n" + to_string(npoints);

point_data.open (file_name);

vector<double> pointi;

pointi.resize(3, 0.0);

double Uavi, Ii, Li;

if(point_data.is_open())

{

cout << "Reading␣point␣data␣and␣ABL␣profile␣from:␣" << file_name << endl;

// printf("x(m)\t\ty(m)\t\tz(m)\t\tU(m/s)\t\tI(%%)\t\tL(m)\n");

while(point_data >> pointi[0] >> pointi[1] >> pointi[2] >> Uavi >> Ii >> Li)

{

points.push_back(pointi);

Uav.push_back(Uavi);

I.push_back(Ii);

L.push_back(Li);

}

if(npoints != points.size())

{

printf("Number␣of␣points␣do␣not␣match.\n");

exit(EXIT_FAILURE);

}

npoints = points.size();

point_data.close(); // close file

}

else

{

// fp null means no file to read from

printf("Cannot␣read␣the␣input␣file.\n");

exit(EXIT_FAILURE);

}

}

void SRM::read_sample_points()

{

ifstream sample_data;

string file_name = "input/samples_n" + to_string(npoints) + "_m" + to_string(ncols);

sample_data.open(file_name);

cols.clear();

int pointi;

string line;

if(sample_data.is_open())

{

cout<< "Reading␣indexes␣of␣sampled␣points␣from:␣" << file_name << endl;

while(getline(sample_data , line, ’\n’))

{

//create a temporary vector that will contain all the columns

std::vector<int> avg_points;

std::istringstream ss(line);

//read int by int

while(ss >> pointi)

{

avg_points.push_back(pointi);

// cout << pointi << "\t";

}

//add each row to the main array

cols.push_back(avg_points);

217

// cout << endl;

}

if(ncols != cols.size())

{

printf("Number␣of␣columns␣sampled␣do␣not␣match.\n");

exit(EXIT_FAILURE);

}

cout << "Number␣of␣samples:␣" << ncols << endl;

cout << "Number␣of␣averaging␣columns:␣" << cols[0].size() << endl;

sample_data.close(); // close file

}

else

{

// fp null means no file to read from

printf("Cannot␣read␣the␣sampled␣points␣file.\n");

exit(EXIT_FAILURE);

}

}

void SRM::print_matrix(int nrow, int ncol, double* matrix)

{

for (int i=0; i<nrow; i++)

{

for(int j=0; j<ncol; j++)

{

printf("%.3f\t",matrix[i*ncol + j]);

}

printf("\n");

}

}

void SRM::print_vector(int nrow, double* vect)

{

for (int i=0; i<nrow; i++)

{

printf("%.3f\t",vect[i]);

printf("\n");

}

}

double SRM::von_k_spectrum(double freq, double Uav, double I, double L)

{

return 4.0*pow(I*Uav, 2.0)*(L/Uav) / pow(1.0 + 70.8*pow(freq*L/Uav, 2.0), 5.0/6.0);

}

double SRM::coherency(double freq, double Uav, vector<double >& p1, vector<double >& p2)

{

return exp(-freq*sqrt(pow(Cu[0]*(p2[0] - p1[0]), 2.0) + pow(Cu[1]*(p2[1] - p1[1]), 2.0) + pow(Cu[2]*(p2[2] - p1[2]), 2.0))/

Uav);

}

void SRM::calc_psd_all(double freq, double* S0)

{

for(int i=0; i < npoints; i++)

{

S0[i] = von_k_spectrum(freq, Uav[i], I[i], L[i]);

}

}

void SRM::calc_xpsd_matrix(double freq, double*S)

{

double s1, s2;

for (int i = 0; i < npoints; i++)

{

s1 = von_k_spectrum(freq, Uav[i], I[i], L[i]);

for (int j = 0; j <= i; j++)

{

s2 = von_k_spectrum(freq, Uav[j], I[j], L[j]);

S[i*npoints +j] = sqrt(s1*s2)*coherency(freq, 0.5*(Uav[i] + Uav[j]), points[i], points[j]);

218 Chapter C. Numerical implementation of NY-POD method

S[j*npoints +i] = S[i*npoints +j];

}

}

}

void SRM::matrix_sub(int nrow, int ncol, double* m1, double* m2, double* result)

{

for(int i=0; i<nrow; i++)

{

for(int j=0; j<ncol; j++)

{

result[i*ncol + j] = m1[i*ncol + j] - m2[i*ncol + j];

}

}

}

void SRM::matrix_add(int nrow, int ncol, double* m1, double* m2, double* result)

{

for(int i=0; i<nrow; i++)

{

for(int j=0; j<ncol; j++)

{

result[i*ncol + j] = m1[i*ncol + j] + m2[i*ncol + j];

}

}

}

void SRM::uniform_sample_1D(int n, int m)

{

double dn = (n + 0.00001)/m;

cols.clear();

for (int i = 0; i < m; i++)

{

vector<int> index(1,int(dn*(i + 0.5)));

cols.push_back(index);

// printf("Column = %i\n", cols[i] + 1);

}

}

void SRM::uniform_sample_2D(int n, int m)

{

int nx = int(sqrt(n + 1.0e-6));

int ns = int(sqrt(m + 1.0e-6));

double ds = (nx + 1.0e-6)/ns;

int idx = -1;

int idy = -1;

cols.clear();

for (int i = 0; i < ns; i++)

{

for (int j = 0; j < ns; j++)

{

idx = int((i + 0.4999999)*ds);

idy = int((j + 0.4999999)*ds);

vector<int> index(1, idx*nx + idy) ;

cols.push_back(index);

// printf("Column = %i\n", idx*nx + idy + 1);

}

}

// exit(0);

}

void SRM::random_sample(int n, int m)

{

//Seed the random number generator

srand(seed);

219

cols.resize(m, vector<int>(1,-1));

//Select the columns to be sampled from a uniform distribution

for (int i = 0; i < m; i++)

{

int rand_col = rand() % n;

bool checked = false;

while (!checked)

{

bool repeated = false;

for(int j = 0; j<i ;j++)

{

if(rand_col == cols[j][0])

{

repeated = true;

break;

}

}

if (repeated)

{

rand_col = rand()%n;

}

else

{

vector<int> index(1, rand_col);

cols[i] = index ;

checked = true;

}

}

}

int temp = 0;

//Sort the columns in ascending order

for (int i = 0; i < m; ++i)

{

for (int j = i + 1; j < m; ++j)

{

if (cols[i][0]> cols[j][0])

{

temp = cols[i][0];

cols[i][0] = cols[j][0];

cols[j][0] = temp;

}

}

// printf("Column = %i\n", cols[i] + 1);

}

}

void SRM::sample_columns(int n, int m)

{

if(sim_type == "NYPOD")

{

//Sample random

if(sample_type=="R")

{

random_sample(n, m);

}

//Sample uniform

else if(sample_type=="U")

{

read_sample_points();

}

else

{

// exit if not ’R’ or ’U

cout<<"Sampling␣type:␣" << sample_type << "is␣unknown!" << endl;

exit(EXIT_FAILURE);

}

}

}

220 Chapter C. Numerical implementation of NY-POD method

void SRM::eigen_decompose(int n, double* S, double* V, double* D)

{

double ErrTol = 1.0e-6;

int* m = (int *)calloc(n, sizeof(int));

int* is = (int *)calloc(2*n, sizeof(int));

double* S_copy = (double *)calloc(n*n, sizeof(double));

//Copy the CPSD, S matrix because the LAPACKE_dsyevr function modifies

//it if the original array is passed in the argument.

for(int i = 0; i < n; i++)

{

for(int j = 0; j <=i; j++)

{

S_copy[i*n + j] = S[i*n + j];

}

}

mkl_set_num_threads(max_num_threads);

int infoEig = LAPACKE_dsyevr(LAPACK_ROW_MAJOR , ’V’, ’I’, ’L’, n, S_copy, n, 0.0, 1.0, 1, n, ErrTol, m, D, V, n, is);

if(infoEig != 0)

{

printf("The␣algorithm␣failed␣to␣compute␣eigenvalue␣decomposition\n");

exit(EXIT_FAILURE);

}

//Free-up memory

free(m);

free(S_copy);

free(is);

}

void SRM::eigen_decompose_H(int n, int k, double* S, double* H)

{

double ErrTol = 1.0e-6;

int* m_s = (int *)calloc(n, sizeof(int));

int* is = (int *)calloc(2*n, sizeof(int));

double* S_copy = (double *)calloc(n*n, sizeof(double));

double* V = (double *)calloc(n*n, sizeof(double));

double* D = (double *)calloc(n, sizeof(double));

mkl_set_num_threads(max_num_threads);

//Copy the CPSD, S matrix because the LAPACKE_dsyevr function modifies

//it if the original array is passed in the argument.

for(int i = 0; i < n; i++)

{

for(int j = 0; j <=i; j++)

{

S_copy[i*n + j] = S[i*n + j];

}

}

int infoEig = LAPACKE_dsyevr(LAPACK_ROW_MAJOR , ’V’, ’I’, ’L’, n, S_copy, n, 0.0, 1.0, 1, n, ErrTol, m_s, D, V, n, is);

if(infoEig != 0)

{

printf("The␣algorithm␣failed␣to␣compute␣eigenvalue␣decomposition\n");

exit(EXIT_FAILURE);

}

double sqrtD = 0.0;

for(int j = n-1; j >= n-k; j--)

{

//Discard those with negative eigen value (usually very small)

//For the time-being only absolute value is taken but in the future

//they can explicitly set to zero.

sqrtD = sqrt(fabs(D[j]));

for(int i = 0; i < n; i++)

{

H[i*k + (n-1-j)] = V[i*n + j]*sqrtD;

}

}

221

//Free-up memory

free(m_s);

free(is);

free(S_copy);

free(V);

free(D);

}

void SRM::cholesky_decompose_H(int n, double* S, double* H)

{

double* S_copy = (double *)calloc(n*(n + 1)/2, sizeof(double));

mkl_set_num_threads(max_num_threads);

//Copy the CPSD to a packed storage S_copy matrix for LAPACKE_dpptrf function

for(int i = 0; i < n; i++)

{

for(int j = 0; j <=i; j++)

{

S_copy[j + i*(i + 1)/2] = S[i*n + j];

}

}

int infoChol = LAPACKE_dpptrf(LAPACK_ROW_MAJOR , ’L’, n , S_copy);

if(infoChol != 0)

{

printf("The␣algorithm␣failed␣to␣compute␣Cholesky␣decomposition\n");

exit(EXIT_FAILURE);

}

for(int i = 0; i < n; i++)

{

for(int j = 0; j <= i; j++)

{

H[i*n + j] = S_copy[j + i*(i + 1)/2];

}

}

//Free-up memory

free(S_copy);

}

void SRM::low_rank_approx(int n, int m, int k, double* V, double* D, double* Sk)

{

if(k > m)

{

printf("k␣cannot␣be␣greater␣than␣m␣for␣low-rank␣approximation!\n");

exit(EXIT_FAILURE);

}

//Temporary matrix products to reconstruct the matrix

double *P = (double *)calloc(n*m, sizeof(double));

//Calculate P = Vk*Dk

//Multiply each column by corresponding eigen value.

for(int i = 0; i < n; i++)

{

for(int j = m-k; j < m; j++)

{

P[i*m + j] = V[i*m + j]*D[j];

}

}

mkl_set_num_threads(max_num_threads);

//Calculate Sk -> P*VkˆT

cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasTrans , n, n, m, 1.0, P, m, V, m, 0.0, Sk, n);

//Free-up memory

free(P);

}

void SRM::get_H(int n, int m, double* V, double* D, double* H)

{

222 Chapter C. Numerical implementation of NY-POD method

double sqrtD = 0.0;

for(int j = 0; j < m; j++)

{

sqrtD = sqrt(fabs(D[j]));

for(int i = 0; i < n; i++)

{

H[i*m + j] = sqrtD*V[i*m + j];

}

}

}

void SRM::nystrom_approx(int n, int m, double* S, double* Vm, double* Dm)

{

//Matrix formed by selected columns

double *C = (double *)calloc(n*m, sizeof(double));

//Matrix formed by the intersection of selected columns

//with the corresponding rows.

double *W = (double *)calloc(m*m, sizeof(double));

//Sample cpsd matrix

sample_xpsd_matrix(n, m, S, C, W);

// print_matrix(m, m, W);

// print_matrix(n, m, C);

//eigenvalues and eigenvectors of matrix A.

double *D = (double *)calloc(m, sizeof(double));

double *Q = (double *)calloc(m*m, sizeof(double));

int* m_w = (int *)calloc(m, sizeof(int));

int* is = (int *)calloc(2*m, sizeof(int));

double ErrTol = 1.0e-6;

mkl_set_num_threads(max_num_threads);

int infoEig = LAPACKE_dsyevr(LAPACK_ROW_MAJOR , ’V’, ’I’, ’L’, m, W, m, 0.0, 1.0, 1, m, ErrTol, m_w, D, Q, m, is);

if(infoEig != 0)

{

printf("The␣algorithm␣failed␣to␣compute␣eigenvalue␣decomposition\n");

exit(EXIT_FAILURE);

}

//Form a diagonal matrix as inverse of D

double *D_inv = (double *)calloc(m*m, sizeof(double)); //kˆth rank diagonal matrix containing eigenvalues on the diagonal.

double scale = (n + 1e-20)/m;

//Calculate the diagonal matrix D_inv as inverse of D

for(int i = 0; i < m; i++)

{

D_inv[i*m + i] = 1.0/D[i];

Dm[i] = scale*D[i];

}

//Temporary matrix to hold products

double *P = (double *)calloc(m*m, sizeof(double));

//Calculate P -> Q*D_inv

cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans , m, m, m, 1.0, Q, m, D_inv, m, 0.0, P, m);

//Calculate Vm -> C*P

cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans , n, m, m, sqrt(1.0/scale), C, m, P, m, 0.0, Vm, m);

//Free-up memory

free(C);

free(W);

free(D_inv);

free(D);

free(Q);

free(m_w);

free(is);

free(P);

223

}

void SRM::nystrom_approx_H(int n, int m, int k, double* S, double* H)

{

//Matrix formed by selected columns

double *C = (double *)calloc(n*m, sizeof(double));

//Matrix formed by the intersection of selected columns

//with the corresponding rows.

double *W = (double *)calloc(m*m, sizeof(double));

//Sample cpsd matrix

sample_xpsd_matrix(n, m, S, C, W);

// print_matrix(m, m, W);

// print_matrix(n, m, C);

//eigenvalues and eigenvectors of matrix A.

double *D = (double *)calloc(m, sizeof(double));

double *Q = (double *)calloc(m*m, sizeof(double));

int* m_w = (int *)calloc(m, sizeof(int));

int* is = (int *)calloc(2*m, sizeof(int));

double ErrTol = 1.0e-6;

mkl_set_num_threads(max_num_threads);

int infoEig = LAPACKE_dsyevr(LAPACK_ROW_MAJOR , ’V’, ’I’, ’L’, m, W, m, 0.0, 1.0, 1, m, ErrTol, m_w, D, Q, m, is);

if(infoEig != 0)

{

printf("The␣algorithm␣failed␣to␣compute␣eigenvalue␣decomposition\n");

exit(EXIT_FAILURE);

}

//Temporary matrix to hold products

double *P = (double *)calloc(n*m, sizeof(double));

//Calculate P -> C*Q

cblas_dgemm(CblasRowMajor , CblasNoTrans , CblasNoTrans , n, m, m, 1.0, C, m, Q, m, 0.0, P, m);

double sqrtD_inv = 0.0;

for(int j = m-1; j >= m-k; j--)

{

//Avoid the negative eigenvalues taking abs

//Since the matrix is PSD matrix this values are very close to zero

sqrtD_inv = 1.0/sqrt(fabs(D[j]));

for(int i = 0; i < n; i++)

{

H[i*k + (m-1-j)] = P[i*m + j]*sqrtD_inv;

}

}

//Free-up memory

free(C);

free(W);

free(D);

free(Q);

free(m_w);

free(is);

free(P);

}

void SRM::sample_xpsd_matrix(int n, int m, double* S, double *C, double* W)

{

double sum_spec = 0.0;

//Form elements of matrix C

if(avg_columns=="on")

{

for(int i = 0; i < n; i++)

{

for(int j = 0; j < m; j++)

{

224 Chapter C. Numerical implementation of NY-POD method

sum_spec = 0.0;

//Take average of the columns

for(int ci=0; ci < cols[j].size(); ci++)

{

sum_spec += S[i*n + cols[j][ci]];

}

C[i*m + j] = sum_spec/cols[j].size();

}

}

}

else

{

for(int i = 0; i < n; i++)

{

for(int j = 0; j < m; j++)

{

C[i*m + j] = S[i*n + cols[j][0]];

}

}

}

//Form elements of matrix W

for(int i = 0; i < m; i++)

{

for(int j = 0; j < m; j++)

{

W[i*m + j] = C[cols[i][0]*m + j];

}

}

}

double SRM::frobenius_norm(int n, double* S, double* Sk)

{

//Stores the error matrix.

double *S_err = (double *)calloc(n*n, sizeof(double));

//Calculates the error matrix

for (int i = 0; i < n; i++)

{

for (int j = 0; j < n; j++)

{

S_err[i*n + j] = S[i*n + j] - Sk[i*n + j];

}

}

//Lapack subroutine to compute the Frobenius or Eculidian norm.

return LAPACKE_dlange(LAPACK_ROW_MAJOR , ’F’, n, n, S_err, n);

//Free-up memory

free(S_err);

}

void SRM::generate_phi(int k, double* phi)

{

//Seed the random number generator

std::default_random_engine generator(seed);

std::uniform_real_distribution <double> distribution(0.0, 1.0);

for(int j = 0; j < k; j++)

{

for(int l = 0; l < N; l++)

{

phi[j*N + l] = 2.0*pi*distribution(generator);

//printf("phi = %f\n", phi[i*N + l]);

}

}

}

void SRM::fft_U(int n, int k, vector<double*>& H, double* U)

{

double sqrt2df = sqrt(2.0*df);

double Hij = 0.0;

225

double pidfdt = 2.0*pi*dt*df/2.0;

int M = 2*N;

fftw_complex* B = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * M);

fftw_complex* C = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * M);

fftw_plan pln;

double *phi = (double*) calloc(k*N, sizeof(double));

double *cosPhi = (double*) calloc(k*N, sizeof(double));

double *sinPhi = (double*) calloc(k*N, sizeof(double));

double *cost = (double*) calloc(Nt, sizeof(double));

double *sint = (double*) calloc(Nt, sizeof(double));

for(int t = 0; t < Nt; t++)

{

cost[t] = cos(t*pidfdt);

sint[t] = sin(t*pidfdt);

}

//Generate the phase angels

generate_phi(k, phi);

for(int j = 0; j < k; j++)

{

for(int l = 0; l < N; l++)

{

cosPhi[j*N + l] = sqrt2df*cos(phi[j*N + l]);

sinPhi[j*N + l] = sqrt2df*sin(phi[j*N + l]);

}

}

for(int i = 0; i < n; i++)

{

for(int j = 0; j < k; j++)

{

for(int l = 0; l < N; l++)

{

// Hij = fabs(H[l][i*k + j]);

Hij = H[l][i*k + j];

B[l][0] = Hij*cosPhi[j*N + l];

B[l][1] = Hij*sinPhi[j*N + l];

}

for(int l = N; l < M; l++)

{

B[l][0] = 0.0;

B[l][1] = 0.0;

}

pln = fftw_plan_dft_1d(M, B, C, FFTW_BACKWARD , FFTW_ESTIMATE);

fftw_execute(pln);

fftw_destroy_plan(pln);

//It’s assumed that Nt < M*N

for(int t = 0; t < Nt; t++)

{

U[t*n + i] += (C[t%M][0]*cost[t] - C[t%M][1]*sint[t]);

}

}

// cout << "Generation completed for " << (i + 1) << " points out of " << n << endl;

}

fftw_free(B);

fftw_free(C);

free(phi);

free(cosPhi);

free(sinPhi);

free(cost);

free(sint);

}

226 Chapter C. Numerical implementation of NY-POD method

void SRM::fft_U_ergodic(int n, int k, vector<double*> & H, double* U)

{

double sqrt2df = sqrt(2.0*df);

double Hij = 0.0;

double freq = 0.0;

int M = 2*N;

fftw_complex* B = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * M);

fftw_complex* C = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * M);

fftw_plan pln = NULL;

double *phi = (double*) calloc(k*N, sizeof(double));

double *cosPhi = (double*) calloc(k*N, sizeof(double));

double *sinPhi = (double*) calloc(k*N, sizeof(double));

//Generate the phase angels

generate_phi(k, phi);

for(int j = 0; j < k; j++)

{

for(int l = 0; l < N; l++)

{

cosPhi[j*N + l] = sqrt2df*cos(phi[j*N + l]);

sinPhi[j*N + l] = sqrt2df*sin(phi[j*N + l]);

}

}

for(int i = 0; i < n; i++)

{

for(int j = 0; j < k; j++)

{

for(int l = 0; l < N; l++)

{

Hij = H[l][i*k + j];

B[l][0] = Hij*cosPhi[j*N + l];

B[l][1] = Hij*sinPhi[j*N + l];

}

for(int l = N; l < M; l++)

{

B[l][0] = 0.0;

B[l][1] = 0.0;

}

pln = fftw_plan_dft_1d(M, B, C, FFTW_BACKWARD , FFTW_ESTIMATE);

fftw_execute(pln);

fftw_destroy_plan(pln);

freq = 2.0*pi*dt*(j + 1.0)*df/n;

//It’s assumed that Nt < M*N

for(int t = 0; t < Nt; t++)

{

U[t*n + i] += (C[t%M][0]*cos(t*freq) - C[t%M][1]*sin(t*freq));

}

}

cout << "Generation␣completed␣for␣" << (i + 1) << "␣points␣out␣of␣" << n << endl;

}

fftw_free(B);

fftw_free(C);

free(phi);

free(cosPhi);

free(sinPhi);

}

void SRM::write_1D_data(const char* fname, int nrow, vector<double >& data)

{

cout << "Writing␣file␣to:␣" << fname << endl;

FILE *output_file = fopen(fname,"w");

for(int i = 0; i < nrow; i++)

227

{

fprintf(output_file ,"%.6e\n", data[i]);

}

fclose(output_file);

}

void SRM::write_1D_data(const char* fname, int nrow, vector<int>& data)

{

cout << "Writing␣file␣to:␣" << fname << endl;

FILE *output_file = fopen(fname,"w");

for(int i = 0; i < nrow; i++)

{

fprintf(output_file ,"%i\n", data[i]);

}

fclose(output_file);

}

void SRM::write_2D_data(const char* fname, int nrow, int ncol, vector<double*>& data)

{

cout << "Writing␣file␣to:␣" << fname << endl;

FILE *output_file = fopen(fname,"w");

for(int i = 0; i < nrow; i++)

{

for(int j = 0; j < ncol; j++)

{

fprintf(output_file ,"%.6e\t", data[i][j]);

}

fprintf(output_file ,"\n");

}

fclose(output_file);

}

void SRM::write_2D_data(const char* fname, int nrow, int ncol, double* data)

{

cout << "Writing␣file␣to:␣" << fname << endl;

FILE *output_file = fopen(fname,"w");

for(int i = 0; i < nrow; i++)

{

for(int j = 0; j < ncol; j++)

{

fprintf(output_file ,"%.6e\t", data[i*ncol + j]);

}

fprintf(output_file ,"\n");

}

fclose(output_file);

}

void SRM::write_3D_data(const char* fname, int nf, int nrow, int ncol, vector<double*>& data)

{

cout << "Writing␣file␣to:␣" << fname << endl;

FILE *output_file = fopen(fname,"w");

for(int f = 0; f < nf; f++)

{

for(int i = 0; i < nrow; i++)

{

for(int j = 0; j < ncol; j++)

{

fprintf(output_file ,"%.6e\t", data[f][i*ncol + j]);

}

fprintf(output_file ,"\n");

}

fprintf(output_file ,"\n");

228 Chapter C. Numerical implementation of NY-POD method

}

fclose(output_file);

}

void SRM::write_3D_data_compact(const char* fname, int nf, int m, int nrow, int ncol, vector<double*>& data)

{

cout << "Writing␣file␣to:␣" << fname << endl;

FILE *output_file = fopen(fname,"w");

for(int f = 0; f < nf; f++)

{

for(int i = 0; i < nrow; i++)

{

for(int j = ncol-m; j < ncol; j++)

{

fprintf(output_file ,"%.6e\t", data[f][i*ncol + j]);

}

fprintf(output_file ,"\n");

}

fprintf(output_file ,"\n");

}

fclose(output_file);

}

void SRM::write_pod_data()

{

int n = npoints;

int m = ncols;

vector<double>F(N, 0.0); //Array of frequency

vector<double*>S0(N); //Array of XPSD matrix

vector<double*>Dpod(N); //Array of eigen values

vector<double*>Vpod(N); //Array of eigen vectors

double* S = (double*) calloc(n*n, sizeof(double));

for(int f = 0; f < N; f++)

{

F[f] = df*(f + 0.5);

S0[f] = (double*) calloc(n, sizeof(double));

Dpod[f] = (double*) calloc(n, sizeof(double));

Vpod[f] = (double*) calloc(n*n, sizeof(double));

calc_psd_all(F[f], S0[f]);

calc_xpsd_matrix(F[f], S);

eigen_decompose(n, S, Vpod[f], Dpod[f]);

cout << "Completed␣for␣f␣=␣" << F[f] << endl;

}

write_1D_data(("output/F_" + case_name).c_str(), N, F);

write_2D_data(("output/S0_" + case_name).c_str(), N, n, S0);

write_2D_data(("output/D_pod_m" + to_string(m) + "_" + case_name).c_str(), N, n, Dpod);

write_3D_data_compact(("output/V_pod_m" + to_string(m) + "_" + case_name).c_str(), N, m, n, n, Vpod);

//Free-up memory

free(S);

}

void SRM::write_nys_data()

{

int n = npoints;

int m = ncols;

vector<double>F(N,0.0); //Array of frequency

vector<double*>S0(N); //Array of XPSD matrix

vector<double*>Dnys(N); //Array of eigen values

vector<double*>Vnys(N); //Array of eigen vectors

229

double* S = (double*) calloc(n*n, sizeof(double));

for(int f = 0; f < N; f++)

{

F[f] = df*(f + 0.5);

S0[f] = (double*) calloc(n, sizeof(double));

Dnys[f] = (double*) calloc(n, sizeof(double));

Vnys[f] = (double*) calloc(n*n, sizeof(double));

calc_psd_all(F[f], S0[f]);

calc_xpsd_matrix(F[f], S);

nystrom_approx(n, m, S, Vnys[f], Dnys[f]);

cout << "Completed␣for␣f␣=␣" << F[f] << endl;

}

write_1D_data(("output/F_" + case_name).c_str(), N, F);

write_2D_data(("output/S0_" + case_name).c_str(), N, n, S0);

write_2D_data(("output/D_nys_m" + to_string(m) + "_" + case_name).c_str(), N, m, Dnys);

write_3D_data_compact(("output/V_nys_m" + to_string(m) + "_" + case_name).c_str(), N, m, n, m, Vnys);

//Free-up memory

free(S);

}

void SRM::write_matrix_data()

{

if(sim_type=="POD")

{

write_pod_data();

}

else if(sim_type == "NYPOD")

{

write_nys_data();

}

}

void SRM::write_reconst_error(int n_modes, int delta_k)

{

int n = npoints;

int m = ncols;

vector<int>modes(n_modes, 0);

for(int i = 0; i < n_modes; i++)

{

modes[i] = (i + 1)*delta_k;

}

vector<double>F(N,0.0); //Array of frequency

vector<double*>Norm_pod(N); //Array Frobinues norm of k-rank approx for POD

vector<double*>Norm_nys(N); //Array Frobinues norm of k-rank approx for NY-POD

vector<double>Norm_S(N); //Frobinues norm of the whole XPSD matrix at each frequency

double* S = (double*) calloc(n*n, sizeof(double));

//Zero matrix

double* S_zero = (double*) calloc(n*n, sizeof(double));

//Reconstructed matrix

double* Sk_pod = (double*) calloc(n*n, sizeof(double));

double* Sk_nys = (double*) calloc(n*n, sizeof(double));

//Eigen decomposition

double *Dpod = (double*) calloc(n, sizeof(double));

double *Vpod = (double*) calloc(n*n, sizeof(double));

double *Dnys = (double*) calloc(m, sizeof(double));

double *Vnys = (double*) calloc(n*m, sizeof(double));

for(int f = 0; f < N; f++)

230 Chapter C. Numerical implementation of NY-POD method

{

F[f] = df*(f + 0.5);

calc_xpsd_matrix(F[f], S);

eigen_decompose(n, S, Vpod, Dpod);

nystrom_approx(n, m, S, Vnys, Dnys);

Norm_pod[f] = (double*) calloc(n_modes, sizeof(double));

Norm_nys[f] = (double*) calloc(n_modes, sizeof(double));

Norm_S[f] = frobenius_norm(n, S, S_zero);

for(int i = 0; i < n_modes; i++)

{

low_rank_approx(n, n, modes[i], Vpod, Dpod, Sk_pod);

low_rank_approx(n, m, modes[i], Vnys, Dnys, Sk_nys);

Norm_pod[f][i] = frobenius_norm(n, S, Sk_pod);

Norm_nys[f][i] = frobenius_norm(n, S, Sk_nys);

}

cout << "Completed␣for␣f␣=␣" << F[f] << endl;

}

write_1D_data(("output/modes_" + case_name).c_str(), n_modes, modes);

write_1D_data(("output/Norm_S0_" + case_name).c_str(), N, Norm_S);

write_2D_data(("output/Norm_pod_m" + to_string(m) + "_" + case_name).c_str(), N, n_modes, Norm_pod);

write_2D_data(("output/Norm_nys_m" + to_string(m) + "_" + case_name).c_str(), N, n_modes, Norm_nys);

//Free-up memory

free(S);

free(Sk_pod);

free(Sk_nys);

free(S_zero);

free(Dpod);

free(Vpod);

free(Dnys);

free(Vnys);

}

void SRM::write_spectral_error(int m, int k)

{

int n = npoints;

// int m = ncols;

// int k = nmodes;

ncols = m;

nmodes = k;

// cout << "k = " << k << "\tm = " << m << endl;

vector<double>F(N,0.0); //Array of frequency

double* S = (double*) calloc(n*n, sizeof(double));

//Reconstructed matrix

double* Sk_pod = (double*) calloc(n*n, sizeof(double));

double* Sk_nys = (double*) calloc(n*n, sizeof(double));

double* Sk_area_pod = (double*) calloc(n*n, sizeof(double));

double* Sk_area_nys = (double*) calloc(n*n, sizeof(double));

double* S_area = (double*) calloc(n*n, sizeof(double));

//Eigen decomposition

double *Dpod = (double*) calloc(n, sizeof(double));

double *Vpod = (double*) calloc(n*n, sizeof(double));

double *Dnys = (double*) calloc(m, sizeof(double));

double *Vnys = (double*) calloc(n*m, sizeof(double));

for(int f = 0; f < N; f++)

{

F[f] = df*(f + 0.5);

231

//Calculate the XPSD matrix

calc_xpsd_matrix(F[f], S);

matrix_add(n, n, S, S_area, S_area);

//Eigen decompose

eigen_decompose(n, S, Vpod, Dpod);

low_rank_approx(n, n, k, Vpod, Dpod, Sk_pod);

matrix_add(n, n, Sk_pod, Sk_area_pod , Sk_area_pod);

//Nystrom approx

nystrom_approx(n, m, S, Vnys, Dnys);

low_rank_approx(n, m, k, Vnys, Dnys, Sk_nys);

matrix_add(n, n, Sk_nys, Sk_area_nys , Sk_area_nys);

cout << "Completed␣for␣f␣=␣" << F[f] << endl;

}

write_2D_data(("output/S_area_pod_m" + to_string(m) + "_k" + to_string(k) + "_" + case_name).c_str(), n, n, Sk_area_pod);

write_2D_data(("output/S_area_nys_m" + to_string(m) + "_k" + to_string(k) + "_" + case_name).c_str(), n, n, Sk_area_nys);

write_2D_data(("output/S_area_" + case_name).c_str(), n, n, S_area);

//Free-up memory

free(S);

free(Sk_pod);

free(Sk_nys);

free(Sk_area_pod);

free(Sk_area_nys);

free(Dpod);

free(Vpod);

free(Dnys);

free(Vnys);

}

void SRM::generate_velocity()

{

int n = npoints;

int m = ncols;

int k = nmodes;

cout << "m␣=␣" << m << endl;

cout << "k␣=␣" << k << endl;

cout << "sim␣type␣=␣" << sim_type << endl;

if (sim_type=="CHO")

{

m = n;

k = n;

}

double decomp_time = 0.0;

double fft_time = 0.0;

vector<double*>H(N);

//CPSD matrix

double* S = (double*) calloc(n*n, sizeof(double));

//Decompose for each frequency

for(int f = 0; f < N; f++)

{

H[f] = (double*) calloc(n*k, sizeof(double));

calc_xpsd_matrix(df*(f + 0.5), S);

auto start_decomp = high_resolution_clock::now();

if(sim_type=="POD")

{

eigen_decompose_H(n, k, S, H[f]);

}

else if(sim_type=="NYPOD")

{

nystrom_approx_H(n, m, k, S, H[f]);

}

232 Chapter C. Numerical implementation of NY-POD method

else if(sim_type=="CHO")

{

cholesky_decompose_H(n, S, H[f]);

}

else

{

printf("Simulation␣type␣is␣not␣known!\n");

exit(EXIT_FAILURE);

}

auto end_decomp = high_resolution_clock::now();

decomp_time += 1.0e-6*duration_cast <microseconds >(end_decomp - start_decomp).count();

cout << "Completed␣for␣f␣=␣" << df*(f + 0.5)

<<",␣" << 100.0*(f + 1.0)/N

<< "%,␣CPU␣time:␣" << decomp_time << endl;

}

cout << "Decomposition␣elapsed␣time␣=␣" << decomp_time << endl;

srand(seed);

//Loop to generate sample functions with different realization.

for(int si=0; si < nsamples; si++)

{

auto start_fft = high_resolution_clock::now();

//Velocity time series data

double* U = (double*) calloc(Nt*n, sizeof(double));

//Have a different seed number for each realization.

seed = rand();

//Generate the time-series using IFFT

if(ergodic=="off")

{

fft_U(n, k, H, U); //non-ergodic

}

else if(ergodic=="on")

{

//This function need to checked further(not fully ergodic!)

fft_U_ergodic(n, k, H, U); //ergodic

}

auto end_fft = high_resolution_clock::now();

fft_time = 1.0e-6*duration_cast <microseconds >(end_fft - start_fft).count();

cout << "FFT␣elapsed␣time␣=␣" << fft_time << endl;

cout << "Total␣elapsed␣time␣=␣" << decomp_time + fft_time << endl;

//Add mean

if (add_mean=="on")

{

for(int i=0; i < n; i++)

{

for(int t=0; t < Nt; t++)

{

U[t*n + i] += Uav[i];

}

}

}

//Write the data

if(sim_type=="POD")

{

write_2D_data(("output/U_pod_k" + to_string(k) + "_" + case_name + to_string(si)).c_str(), Nt, n, U);

}

else if(sim_type=="NYPOD")

{

write_2D_data(("output/U_nys_m" + to_string(m) + "_k" + to_string(k) + "_" + case_name + to_string(si)).c_str(), Nt, n,

U);

233

}

else if(sim_type=="CHO")

{

write_2D_data(("output/U_cho_k" + to_string(k) + "_" + case_name + to_string(si)).c_str(), Nt, n, U);

}

free(U);

}

for(int f = 0; f < N; f++)

{

free(H[f]);

}

free(S);

}

void SRM::test_cpsd_matrix()

{

int n = npoints;

int m = ncols;

int k = nmodes;

double *S = (double*) calloc(n*n, sizeof(double)); //XPSD matrix.

double *D = (double*) calloc(n, sizeof(double));

double *V = (double*) calloc(n*n, sizeof(double));

double *Dm = (double*) calloc(m, sizeof(double));

double *Vm = (double*) calloc(n*m, sizeof(double));

double *Sk = (double*) calloc(n*n, sizeof(double));

double *Sm = (double*) calloc(n*n, sizeof(double));

double *H = (double*) calloc(n*n, sizeof(double));

double *Hm = (double*) calloc(n*m, sizeof(double));

double *Hk_pod = (double*) calloc(n*k, sizeof(double));

double *Hk_nys = (double*) calloc(n*k, sizeof(double));

double freq = 1.0;

//Form the XPSD matrix

calc_xpsd_matrix(freq, S);

//Print the original matrix

cout << "\nXPSD␣matrix␣at␣f␣=␣" << freq << endl;

print_matrix(n, n, S);

write_2D_data(("output/S0_f" + to_string(freq) + "_" + case_name).c_str(), n, n, S);

//Perform eigendecomposition

eigen_decompose(n, S, V, D);

//Get low rank approximation from

//Eigen decomposition

low_rank_approx(n, n, m, V, D, Sk);

//Print eigen-low rank approx

cout << "\nEigen␣decompositon" << endl;

cout << "Eigen␣vectors:" << endl;

print_matrix(n, n, Sk);

printf("Error␣norm␣␣=␣%lf\n", frobenius_norm(n, S, Sk));

cout << "Eigen␣values:" << endl;

print_vector(n, D);

cout << "\nH-matrix␣:" << endl;

get_H(n, n, V, D, H);

eigen_decompose_H(n, k, S, Hk_pod);

cout << "\nMethod␣1" << endl;

print_matrix(n, n, H);

cout << "\nMethod␣2" << endl;

print_matrix(n, k, Hk_pod);

//Get nystrom approx of the eigen decomp

nystrom_approx(n, m, S, Vm, Dm);

234 Chapter C. Numerical implementation of NY-POD method

//Get low rank based on nystrom

low_rank_approx(n, m, m, Vm, Dm, Sm);

//Print nystrom approx of the xpsd

cout << "\nNystrom␣decompositon" << endl;

cout << "Eigen␣vectors:" << endl;

print_matrix(n, n, Sm);

printf("Error␣norm␣␣=␣%lf\n", frobenius_norm(n, S, Sm));

cout << "Eigen␣values:" << endl;

print_vector(m, Dm);

//Perform Nystrom approximation of H matrix

get_H(n, m, Vm, Dm, Hm);

nystrom_approx_H(n, m, k, S, Hk_nys);

cout << "\nNystrom␣approximation␣of␣H␣matrix" << endl;

cout << "\nApprox␣1" << endl;

print_matrix(n, k, Hk_nys);

cout << "\nApprox␣2" << endl;

print_matrix(n, m, Hm);

}

//Sets m, k, sime_type parameters.

void SRM::set_params(int m, int k, string sim)

{

ncols = m;

nmodes = k;

sim_type = sim;

sample_columns(npoints, ncols);

}

void SRM::generate_velocity_tall_building()

{

//Copy wind profiles originals

vector<double> UavOrig;

vector<double> IuOrig;

vector<double> LuOrig;

UavOrig.resize(npoints, 0.0);

IuOrig.resize(npoints, 0.0);

LuOrig.resize(npoints, 0.0);

for(int p=0; p < npoints; p++)

{

UavOrig[p] = Uav[p];

IuOrig[p] = I[p];

LuOrig[p] = L[p];

}

std::default_random_engine generator(seed);

const int nUav = 1;

const int nIu = 1;

const int nLu = 1;

double scaleUav , scaleIu, scaleLu;

const double coefVar = 0.1;

//Specify mean and std of the profiles

std::normal_distribution <double> distUav(1.0, coefVar);

std::normal_distribution <double> distIu(1.0, coefVar);

std::normal_distribution <double> distLu(1.0, 2.0*coefVar);

std::uniform_int_distribution <> distSeed(0, 1000000);

int count = 1;

for(int i=0; i<nUav; i++)

{

for(int j=0; j<nIu; j++)

{

for(int k=0; k<nLu; k++)

235

{

do

{

scaleUav = distUav(generator);

scaleIu = distIu(generator);

scaleLu = distLu(generator);

}

while(scaleUav < 0.2 || scaleIu < 0.2 || scaleLu < 0.2);

for(int p=0; p < npoints; p++)

{

Uav[p] = scaleUav*UavOrig[p];

I[p] = scaleIu*IuOrig[p];

L[p] = scaleLu*LuOrig[p];

}

seed = distSeed(generator);

case_name = "Sample" + to_string(count);

cout <<"Case␣name:␣" << case_name << endl;

cout <<"Seed␣:␣" << seed << endl;

cout <<"scaleUav␣:␣" << scaleUav << endl;

cout <<"scaleIu␣:␣" << scaleIu << endl;

cout <<"scaleLu␣:␣" << scaleLu << endl;

generate_velocity();

count++;

cout <<"\n++\n" << endl;

}

}

}

Uav = UavOrig;

I = IuOrig;

L = LuOrig;

}

Listing C.1: Selected source code of NY-POD and POD methods

Appendix D

Source code of the windFSI framework

Here sample header files from the implemented framework are given in Listings D.1, D.2,
D.3. The full C++ source code for the windFSI framework will be made available at https:
//github.com/GBitsuamlak/windFSI. The GitHub repository contains detailed documen-
tation and installation instructions. Also, the OpenFOAM tutorial case files used to set up the
wind-induced vibration of a tall building will be provided. The source code is organized into
three core components corresponding to the structural, fluid, and dynamic mesh subsystems.

D.1 Structural subsystem

/*

Class

Foam::structuralMotion

Description

A multi-degree of freedom(MDOF) motion for a deformable body. The structural deformation has a Lagrangian reference frame.

The deformation of the structure is always measured from an undeformed state. At each time step, the displacement of

the structure is applied to the mesh. The time-integrator for the motion is run-time selectable with options for

Newmark-Beta(implicit), and 4-th order Runge-Kutta schemes.

*/

namespace Foam

{

namespace FSI

{

class structuralSolver;

class structuralMotion

{

friend class structuralSolver;

structuralProperties strProps_;

structuralMotionState motionState0_;

structuralMotionState motionState_;

vectorField floorCenters_;

vectorField displacement_;

vectorField velocity_;

vectorField acceleration_;

point origin_;

vector strDir_;

Switch report_;

autoPtr<structuralSolver > solver_;

void updateStructuralMotion();

236

https://github.com/GBitsuamlak/windFSI
https://github.com/GBitsuamlak/windFSI

D.1. Structural subsystem 237

inline const scalarField& gd() const;

inline const scalarField& gv() const;

inline const scalarField& ga() const;

inline const scalarField& gF() const;

inline scalarField& gd();

inline scalarField& gv();

inline scalarField& ga();

inline scalarField& gF();

public:

TypeName("structuralMotion");

structuralMotion();

structuralMotion(const dictionary& dict, const dictionary& stateDict);

structuralMotion(const dictionary& dict);

structuralMotion(const structuralMotion&);

virtual ˜structuralMotion();

inline const structuralMotionState& state() const;

inline const structuralMotionState& state0() const;

inline const fileName& dataPath() const;

inline const point& origin() const;

inline const point centerOfRotation() const;

inline const vector& strDir() const;

inline label nStorey() const;

inline label nMode() const;

inline label nModeUsed() const;

inline const scalarField& storeyHeights() const;

inline const vectorField& floorCenters() const;

inline const vectorField& masses() const;

inline const List<vectorField >& modeShapes() const;

inline const vectorField& displacement() const;

inline const vectorField& velocity() const;

inline const vectorField& acceleration() const;

inline bool report() const;

void update(bool firstIter ,const vectorField& fGlobal,scalar deltaT,scalar deltaT0);

void status() const;

inline point transform(const point& initialPoints) const;

tmp<pointField > transform(const pointField& initialPoints) const;

tmp<pointField > transform(const pointField& initialPoints ,const scalarField& scale) const;

void write(Ostream&) const;

bool read(const dictionary& dict);

};

}

}

/**/

/*---*\

Source file: structuralMotion.C

---/

#include "structuralMotion.H"

#include "structuralSolver.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace FSI

{

defineTypeNameAndDebug(structuralMotion , 0);

}

}

// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //

void Foam::FSI::structuralMotion::updateStructuralMotion()

{

displacement_ = Zero;

velocity_ = Zero;

acceleration_ = Zero;

forAll(displacement_ , i)

{

for(label m=0; m < nMode(); m++)

{

displacement_[i] += modeShapes()[m][i]*gd()[m];

velocity_[i] += modeShapes()[m][i]*gv()[m];

238 Chapter D. Source code of the windFSI framework

acceleration_[i] += modeShapes()[m][i]*ga()[m];

}

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::FSI::structuralMotion::structuralMotion()

:

strProps_(),

motionState0_(0),

motionState_(0),

floorCenters_(0),

displacement_(0),

velocity_(0),

acceleration_(0),

origin_(vector::zero),

strDir_(vector::zero),

report_(false),

solver_(nullptr)

{}

Foam::FSI::structuralMotion::structuralMotion

(

const dictionary& dict

)

:

strProps_(dict.subDict("structuralProperties")),

motionState0_(strProps_.nMode()),

motionState_(strProps_.nMode()),

floorCenters_(strProps_.nStorey(), vector::zero),

displacement_(strProps_.nStorey(), vector::zero),

velocity_(strProps_.nStorey(), vector::zero),

acceleration_(strProps_.nStorey(), vector::zero),

origin_(dict.lookupOrDefault("origin", vector::zero)),

strDir_(dict.lookupOrDefault("strDir", vector(0.0, 0.0, 1.0))),

report_(dict.lookupOrDefault <Switch >("report", false)),

solver_(structuralSolver::New(dict.subDict("structuralSolver"), *this))

{

floorCenters_ = storeyHeights()*strDir_/mag(strDir_);

updateStructuralMotion();

}

Foam::FSI::structuralMotion::structuralMotion

(

const dictionary& dict,

const dictionary& stateDict

)

:

strProps_(dict.subDict("structuralProperties")),

motionState0_(stateDict , strProps_.nMode()),

motionState_(stateDict , strProps_.nMode()),

floorCenters_(strProps_.nStorey(), vector::zero),

displacement_(strProps_.nStorey(), vector::zero),

velocity_(strProps_.nStorey(), vector::zero),

acceleration_(strProps_.nStorey(), vector::zero),

origin_(dict.lookupOrDefault("origin", vector::zero)),

strDir_(dict.lookupOrDefault("strDir", vector(0.0, 0.0, 1.0))),

report_(dict.lookupOrDefault <Switch >("report", false)),

solver_(structuralSolver::New(dict.subDict("solver"), *this))

{

floorCenters_ = storeyHeights()*strDir_/mag(strDir_) + origin();

updateStructuralMotion();

}

Foam::FSI::structuralMotion::structuralMotion

(

const structuralMotion& sM

)

D.1. Structural subsystem 239

:

strProps_(sM.strProps_),

motionState0_(sM.motionState0_),

motionState_(sM.motionState_),

floorCenters_(sM.floorCenters_),

displacement_(sM.displacement_),

velocity_(sM.velocity_),

acceleration_(sM.acceleration_),

origin_(sM.origin_),

strDir_(sM.strDir_),

report_(sM.report_)

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::FSI::structuralMotion::˜structuralMotion()

{}

// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

void Foam::FSI::structuralMotion::update

(

bool firstIter ,

const vectorField& fGlobal,

scalar deltaT,

scalar deltaT0

)

{

// Save the old-time motion state for the first time step(outer iteration)

if(firstIter)

{

motionState0_ = motionState_;

}

//Store the inner iteration values for convergence check

motionState_.gd0() = motionState_.gd();

//Solve the structure only on the master processor.

if (Pstream::master())

{

solver_->solve(fGlobal, deltaT, deltaT0);

}

//Scatter modal displacements

Pstream::scatter(motionState_);

//Calculate the structural responses in Global co-ord system.

updateStructuralMotion();

if(report_)

{

status();

}

}

void Foam::FSI::structuralMotion::status() const

{

Info<< "Structural␣response␣at␣the␣tip:" << nl

<< "␣␣␣␣Displacement:␣" << displacement().last() << nl

<< "␣␣␣␣Velocity:␣" << velocity().last() << nl

<< "␣␣␣␣Acceleration:␣" << acceleration().last() << nl

<< endl;

}

Foam::tmp<Foam::pointField > Foam::FSI::structuralMotion::transform

(

const pointField& initialPoints

) const

{

240 Chapter D. Source code of the windFSI framework

tmp<pointField > tpoints(new pointField(initialPoints));

pointField& points = tpoints.ref();

vector dispi(vector::zero);

forAll(points, pointi)

{

//Interpolate translation and rotation for a point using storey data

dispi = interpolateXY <vector>

(

initialPoints[pointi] & strDir_,

storeyHeights(),

displacement_

);

// Calculate the transformation septernion from the initial state

septernion s

(

vector(dispi.x(), dispi.y(), 0.0),

quaternion(strDir_, dispi.z())

);

//Calculate the transformation

//invTransformPoint works counter-clock-wise

points[pointi] = s.invTransformPoint(initialPoints[pointi]);

}

return tpoints;

}

Foam::tmp<Foam::pointField > Foam::FSI::structuralMotion::transform

(

const pointField& initialPoints ,

const scalarField& scale

) const

{

tmp<pointField > tpoints(new pointField(initialPoints));

pointField& points = tpoints.ref();

vector dispi(vector::zero);

forAll(points, pointi)

{

// Move non-stationary points

if (scale[pointi] > small)

{

// Use solid-body motion where scale = 1

if (scale[pointi] > 1 - small)

{

points[pointi] = transform(initialPoints[pointi]);

}

// Slerp septernion interpolation

else

{

dispi = interpolateXY <vector>

(

initialPoints[pointi] & strDir_,

storeyHeights(),

displacement_

);

// Calculate the transformation septernion given current state

septernion s

(

vector(dispi.x(), dispi.y(), 0.0),

quaternion(strDir_, dispi.z())

);

septernion ss(slerp(septernion::I, s, scale[pointi]));

D.1. Structural subsystem 241

points[pointi] = ss.invTransformPoint(initialPoints[pointi]);

}

}

}

return tpoints;

}

/**/

/*

Class:

Foam::structuralProperties

Description:

This class holds the structural properties of the building model. For this version of the code, the structure is assumed

to be just a multi-story building. The masses are concentrated on each floor, and the floors are assumed to be a

rigid diaphragm. Only properties that are relevant for modal analysis are stored.

*/

namespace Foam

{

namespace FSI

{

class structuralProperties

{

private:

fileName dataDir_;

label nStorey_;

const label nStoreyDOF_ = 3;

label nDOF_;

label nMode_;

label nModeUsed_;

scalarField storeyHeights_;

vectorField masses_;

scalarField modalFrequencies_;

scalarField modalDampingRatios_;

List<vectorField > modeShapes_;

tensor orientation_;

scalarField gM_;

scalarField gC_;

scalarField gK_;

word freqUnit_;

scalar massScale_;

scalar freqScale_;

void calcGeneralizedProperties();

public:

inline const fileName& dataDir() const;

inline label nStorey() const;

inline label nDOF() const;

inline label nStoreyDOF() const;

inline label nMode() const;

inline label nModeUsed() const;

inline const scalarField& storeyHeights() const;

inline const vectorField& masses() const;

inline const scalarField& modalFrequencies() const;

inline const scalarField& modalDampingRatios() const;

inline const List<vectorField >& modeShapes() const;

inline const scalarField& gM() const;

inline const scalarField& gC() const;

inline const scalarField& gK() const;

inline const word& freqUnit() const;

TypeName("structuralProperties");

structuralProperties();

structuralProperties(const dictionary& dict);

virtual ˜structuralProperties();

bool read(const dictionary& dict);

void write(Ostream& os) const;

};

242 Chapter D. Source code of the windFSI framework

}

}

/**/

/*---*\

Source file: structuralProperties.C

---/

#include "structuralProperties.H"

#include "mathematicalConstants.H"

namespace Foam

{

namespace FSI

{

defineTypeNameAndDebug(structuralProperties , 0);

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::FSI::structuralProperties::structuralProperties()

:

dataDir_("constant/structuralData"),

nStorey_(0),

nDOF_(0),

nMode_(0),

nModeUsed_(0),

storeyHeights_(0),

masses_(0),

modalFrequencies_(0),

modalDampingRatios_(0),

modeShapes_(0),

orientation_(tensor::I),

freqUnit_(),

massScale_(1.0),

freqScale_(1.0)

{

}

Foam::FSI::structuralProperties::structuralProperties(const dictionary& dict)

:

dataDir_(dict.lookupOrDefault <word>("dataDir", "constant/structuralData")),

nStorey_(dict.lookup<label>("nStorey")),

nDOF_(nStorey_*nStoreyDOF_),

nMode_(dict.lookup<label>("nMode")),

nModeUsed_(dict.lookupOrDefault <label>("nModeUsed",nMode_)),

storeyHeights_(IFstream(dataDir_/"storeyHeights")()),

masses_(IFstream(dataDir_/"masses")()),

modalFrequencies_(IFstream(dataDir_/"modalFrequencies")()),

modalDampingRatios_(IFstream(dataDir_/"modalDampingRatios")()),

modeShapes_(IFstream(dataDir_/"modeShapes")()),

orientation_(dict.lookupOrDefault("orientation", tensor::I)),

freqUnit_(dict.lookupOrDefault <word>("freqUnit", "Hz")),

massScale_(dict.lookupOrDefault <scalar >("massScale", 1.0)),

freqScale_(dict.lookupOrDefault <scalar >("freqScale", 1.0))

{

if

(

nStorey_ != storeyHeights_.size() ||

nStorey_ != masses_.size() ||

nMode_ != modalFrequencies_.size() ||

nMode_ != modalDampingRatios_.size() ||

nMode_ != modeShapes_.size()

)

{

FatalErrorInFunction

<< "Dimensions␣do␣not␣match!␣Check␣the␣inputs␣in:␣" << dict.name()

<< exit(FatalError);

}

Info << "\n****************␣Structural␣Properties␣****************\n" << nl;

D.1. Structural subsystem 243

Info << "Structural␣data␣path:␣" << dataDir_ << nl;

Info << "Number␣of␣DOFs␣per␣storey:␣" << nStoreyDOF_ << nl;

Info << "Number␣of␣storeys:␣" << nStorey_ << nl;

Info << "Total␣number␣of␣DOFs␣:␣" << nDOF_ << nl;

Info << "Number␣of␣modes:␣" << nMode_ << nl;

Info << "Modal␣truncation:␣" << nModeUsed_ << nl;

Info << "Modal␣frequencies:␣" << modalFrequencies_ << nl;

Info << "Orientation␣of␣the␣structure:␣" << orientation_ << nl;

Info << "Frequency␣unit:␣" << freqUnit_ << nl;

Info << "Modal␣damping␣ratios:␣" << modalDampingRatios_ << nl;

Info << "Mass␣scaling␣factor:␣" << massScale_ << nl;

Info << "Frequency␣scaling␣factor:␣" << freqScale_ << nl;

//Calculate structural properties

calcGeneralizedProperties();

//Generalized properties

Info <<"Generalized␣masses:␣" << gM_ << nl;

Info <<"Generalized␣damping:␣" << gC_ << nl;

Info <<"Generalized␣stiffness:␣" << gK_ << nl;

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::FSI::structuralProperties::˜structuralProperties()

{}

// * * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * //

void Foam::FSI::structuralProperties::calcGeneralizedProperties()

{

//Initialize generalized properties

gM_ = scalarField(nMode_, 0.0);

gC_ = scalarField(nMode_, 0.0);

gK_ = scalarField(nMode_, 0.0);

//- Calculate the generalized structural properties

scalar HzToRad = 1.0;

if(freqUnit_=="Hz")

{

HzToRad = constant::mathematical::twoPi;

}

for(label i=0; i < nMode_; i++)

{

for(label j=0; j < nStorey_; j++)

{

//Transform the mode shapes with the orientation tensor

//This feature could be used to simulate different wind directions

modeShapes_[i][j] = orientation_ & modeShapes_[i][j];

for(label k=0; k < nStoreyDOF_; k++)

{

gM_[i] += masses_[j][k]*Foam::pow(modeShapes_[i][j][k], 2.0);

}

}

gM_[i]*=massScale_;

}

gC_ = 2.0*modalDampingRatios_*(freqScale_*modalFrequencies_*HzToRad)*gM_;

gK_ = gM_*Foam::pow(freqScale_*modalFrequencies_*HzToRad, 2.0);

}

/**/

/*

Class

Foam::structuralSolver

244 Chapter D. Source code of the windFSI framework

Description

An abstract class that represents a structure solver. This solver is based on modal analysis. Only the generalized modal

coordinates are used for the solution. The solver advances the solution by a one-time step for a given force vector

.

*/

namespace Foam

{

namespace FSI

{

class structuralSolver

{

protected:

structuralMotion& body_;

scalar relaxationFactor_;

inline scalarField& gd();

inline scalarField& gv();

inline scalarField& ga();

inline scalarField& gF();

inline scalarField& gd0();

inline scalarField& gv0();

inline scalarField& ga0();

inline scalarField& gF0();

inline const scalarField& gM() const;

inline const scalarField& gC() const;

inline const scalarField& gK() const;

inline const List<vectorField >& modeShapes() const;

inline label nMode() const;

inline label nStoreyDOF() const;

inline scalar calcAcceleration(scalar d, scalar v, scalar f, label mode);

inline scalar calcGeneralizedForce (const vectorField& fGlobal, label mode);

public:

TypeName("structuralSolver");

declareRunTimeSelectionTable

(

autoPtr,

structuralSolver ,

dictionary ,

(

const dictionary& dict,

structuralMotion& body

),

(dict, body)

);

structuralSolver(const dictionary& dict, structuralMotion& body);

virtual ˜structuralSolver();

static autoPtr<structuralSolver > New(const dictionary& dict,structuralMotion& body);

virtual void solve(const vectorField& fGlobal, scalar deltaT, scalar deltaT0) = 0;

};

}

}

/**/

/*---*\

Source file: structuralSolver.C

---/

#include "structuralSolver.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace FSI

{

defineTypeNameAndDebug(structuralSolver , 0);

defineRunTimeSelectionTable(structuralSolver , dictionary);

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

D.1. Structural subsystem 245

Foam::FSI::structuralSolver::structuralSolver(const dictionary& dict, structuralMotion& body)

:

body_(body),

relaxationFactor_(dict.lookupOrDefault <scalar >("relaxationFactor", 1.0))

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::FSI::structuralSolver::˜structuralSolver()

{}

/**/

/*

Class

Foam::structuralSolvers::NewmarkBeta

Description

NewmarkBeta 2nd-order time-integrator for structural deformation motion.

Example specification in dynamicMeshDict:

solver

{

type NewmarkBeta;

gamma 0.5;

beta 0.25;

}

*/

namespace Foam

{

namespace FSI

{

namespace structuralSolvers

{

class NewmarkBeta

:

public structuralSolver

{

private:

const scalar beta_;

const scalar gamma_;

public:

TypeName("NewmarkBeta");

NewmarkBeta (const dictionary& dict, structuralMotion& body);

virtual ˜NewmarkBeta();

virtual void solve (const vectorField& fGlobal, scalar deltaT, scalar deltaT0);

};

}

}

}

/**/

/*---*\

Source file: NewmarkBeta.C

---/

#include "NewmarkBeta.H"

#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace FSI

{

namespace structuralSolvers

{

defineTypeNameAndDebug(NewmarkBeta , 0);

addToRunTimeSelectionTable(structuralSolver , NewmarkBeta , dictionary);

246 Chapter D. Source code of the windFSI framework

}

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::FSI::structuralSolvers::NewmarkBeta::NewmarkBeta

(

const dictionary& dict,

structuralMotion& body

)

:

structuralSolver(dict, body),

beta_(dict.lookupOrDefault <scalar >("beta", 0.25)),

gamma_(dict.lookupOrDefault <scalar >("gamma", 0.5))

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::FSI::structuralSolvers::NewmarkBeta::˜NewmarkBeta()

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::FSI::structuralSolvers::NewmarkBeta::solve

(

const vectorField& fGlobal,

scalar deltaT,

scalar deltaT0

)

{

//Taken from Chopra third edition

scalar gfNew, kHat, a, b, pHat, dd, dv, da, dNew, vNew, aNew;

for(label i=0; i < nMode(); i++)

{

//Calculate generalized force for the new time step

gfNew = calcGeneralizedForce(fGlobal, i);

kHat = gK()[i] + gamma_*gC()[i]/(beta_*deltaT) + gM()[i]/(beta_*deltaT*deltaT);

a = gM()[i]/(beta_*deltaT) + gamma_*gC()[i]/beta_;

b = gM()[i]/(2.0*beta_) + deltaT*gC()[i]*(gamma_/(2.0*beta_)-1.0);

pHat = gfNew - gF0()[i] + a*gv0()[i] + b*ga0()[i];

dd = pHat/kHat;

dv = dd*gamma_/(beta_*deltaT) - gamma_*gv0()[i]/beta_ + deltaT*ga0()[i]*(1.0- gamma_/(2.0*beta_));

da = dd/(beta_*deltaT*deltaT) - gv0()[i]/(beta_*deltaT) - ga0()[i]/(2.0*beta_);

//Calculate the next time step

dNew = gd0()[i] + dd;

vNew = gv0()[i] + dv;

aNew = ga0()[i] + da;

//Apply relaxation to the new values

gd()[i] = gd()[i] + relaxationFactor_*(dNew - gd()[i]);

gv()[i] = gv()[i] + relaxationFactor_*(vNew - gv()[i]);

ga()[i] = ga()[i] + relaxationFactor_*(aNew - ga()[i]);

gF()[i] = gfNew;

}

}

/**/

/*

D.1. Structural subsystem 247

Class

Foam::structuralSolvers::RungeKutta

Description

4th-Order Runge-Kutta methods(explicit method).

Example specification in dynamicMeshDict:

solver

{

type RungeKutta;

}

*/

namespace Foam

{

namespace FSI

{

namespace structuralSolvers

{

class RungeKutta

:

public structuralSolver

{

public:

TypeName("RungeKutta");

RungeKutta (const dictionary& dict, structuralMotion& body);

virtual ˜RungeKutta();

virtual void solve (const vectorField& fGlobal, scalar deltaT, scalar deltaT0);

};

}

}

}

/**/

/*---*\

Source file: RungeKutta.C

---/

#include "RungeKutta.H"

#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace FSI

{

namespace structuralSolvers

{

defineTypeNameAndDebug(RungeKutta , 0);

addToRunTimeSelectionTable(structuralSolver , RungeKutta , dictionary);

}

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::FSI::structuralSolvers::RungeKutta::RungeKutta

(

const dictionary& dict,

structuralMotion& body

)

:

structuralSolver(dict, body)

{}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::FSI::structuralSolvers::RungeKutta::˜RungeKutta()

{}

248 Chapter D. Source code of the windFSI framework

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::FSI::structuralSolvers::RungeKutta::solve

(

const vectorField& fGlobal,

scalar deltaT,

scalar deltaT0

)

{

//Algorithm taken from:

//https://www.compadre.org/PICUP/resources/Numerical -Integration/

scalar gfAvg, gfNew, k1d, k2d, k3d, k4d, k1v, k2v, k3v, k4v, dNew, vNew;

for(label i=0; i < nMode(); i++)

{

//Calculate generalized force for the new time step

gfNew = calcGeneralizedForce(fGlobal,i);

gfAvg = 0.5*(gF0()[i] + gfNew);

k1v = calcAcceleration(gd0()[i], gv0()[i], gF0()[i],i)*deltaT;

k1d = gv0()[i]*deltaT;

k2v = calcAcceleration(gd0()[i] + 0.5*k1d, gv0()[i] + 0.5*k1v, gfAvg, i)*deltaT;

k2d = (gv0()[i] + 0.5*k1v)*deltaT;

k3v = calcAcceleration(gd0()[i] + 0.5*k2d, gv0()[i] + 0.5*k2v, gfAvg, i)*deltaT;

k3d = (gv0()[i] + 0.5*k2v)*deltaT;

k4v = calcAcceleration(gd0()[i] + k3d, gv0()[i] + k3v, gfNew, i)*deltaT;

k4d = (gv0()[i] + k3v)*deltaT;

//Calculate the next time step

dNew = gd0()[i] + (k1d + 2.0*k2d + 2.0*k3d +k4d)/6.0;

vNew = gv0()[i] + (k1v + 2.0*k2v + 2.0*k3v +k4v)/6.0;

//Apply relaxation to the previous iteration(or time step)

gd()[i] = gd()[i] + relaxationFactor_*(dNew - gd()[i]);

gv()[i] = gv()[i] + relaxationFactor_*(vNew - gv()[i]);

//Solve acceleration from equilibrium

ga()[i] = calcAcceleration(gd()[i], gv()[i], gfNew, i);

gF()[i] = gfNew;

}

}

/**/

/*

Class

Foam::functionObjects::structuralResponseState

Description

Writes the structural response state.

Example of function object specification:

structuralResponseState

{

type structuralResponseState;

libs ("libstructuralResponseState.so");

}

*/

namespace Foam

{

namespace FSI

{

class structuralMotion;

}

namespace functionObjects

{

using namespace Foam::FSI;

D.1. Structural subsystem 249

class structuralResponseState

:

public fvMeshFunctionObject ,

public logFiles

{

private:

const structuralMotion& motion() const;

protected:

virtual void writeFileHeader(const label i = 0);

public:

TypeName("structuralResponseState");

structuralResponseState(const word& name, const Time& runTime, const dictionary& dict);

structuralResponseState(const structuralResponseState&) = delete;

virtual ˜structuralResponseState();

virtual bool read(const dictionary&);

virtual bool execute();

virtual bool write();

void operator=(const structuralResponseState&) = delete;

};

}

}

/**/

/*---*\

Source file: structuralResponseState.C

---/

#include "structuralResponseState.H"

#include "dynamicMotionSolverFvMesh.H"

#include "structuralMotionMeshSolver.H"

#include "unitConversion.H"

#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace functionObjects

{

defineTypeNameAndDebug(structuralResponseState , 0);

addToRunTimeSelectionTable

(

functionObject ,

structuralResponseState ,

dictionary

);

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::functionObjects::structuralResponseState::structuralResponseState

(

const word& name,

const Time& runTime,

const dictionary& dict

)

:

fvMeshFunctionObject(name, runTime, dict),

logFiles(obr_, name)

{

read(dict);

resetName(typeName);

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::functionObjects::structuralResponseState::˜structuralResponseState()

250 Chapter D. Source code of the windFSI framework

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

bool Foam::functionObjects::structuralResponseState::read(const dictionary& dict)

{

fvMeshFunctionObject::read(dict);

// angleFormat_ = dict.lookupOrDefault <word>("angleFormat", "radians");

return true;

}

void Foam::functionObjects::structuralResponseState::writeFileHeader(const label)

{

OFstream& file = this->file();

writeHeader(file, "Structural␣Response␣State");

const vectorField& storeyPoints = motion().floorCenters();

label nStorey = storeyPoints.size();

writeHeaderValue(file, "storeys", nStorey);

writeCommented(file, "x␣co-ords␣␣:");

forAll(storeyPoints , pointi)

{

file << tab << storeyPoints[pointi].x();

}

file << nl;

writeCommented(file, "y␣co-ords␣␣:");

forAll(storeyPoints , pointi)

{

file << tab << storeyPoints[pointi].y();

}

file << nl;

writeCommented(file, "z␣co-ords␣␣:");

forAll(storeyPoints , pointi)

{

file << tab << storeyPoints[pointi].z();

}

file << nl;

writeCommented(file, "Time");

const word storeyResponseTypes("[displacement ,velocity ,acceleration]");

for (label j = 0; j < nStorey; j++)

{

const word jn(’(’ + Foam::name(j) + ’)’);

const word f("storeyResponse" + jn + storeyResponseTypes);

file << tab << f;

}

}

bool Foam::functionObjects::structuralResponseState::execute()

{

return true;

}

const Foam::FSI::structuralMotion&

Foam::functionObjects::structuralResponseState::motion() const

{

const dynamicMotionSolverFvMesh& mesh =

refCast<const dynamicMotionSolverFvMesh >(obr_);

D.2. Fluid subsystem 251

return (refCast<const structuralMotion >(mesh.motion()));

}

bool Foam::functionObjects::structuralResponseState::write()

{

logFiles::write();

if (Pstream::master())

{

const structuralMotion& strMotion = this->motion();

const vectorField& disp = strMotion.displacement();

const vectorField& vel = strMotion.velocity();

const vectorField& acc = strMotion.acceleration();

writeTime(file());

forAll(disp, i)

{

file()

<< tab << setw(1) << ’(’

<< disp[i] << setw(1) << ’␣’

<< vel[i] << setw(1) << ’␣’

<< acc[i] << setw(3) << ’)’;

}

file() << endl;

}

return true;

}

/**/

Listing D.1: Selected source code of windFSI framework for the structural subsystem

D.2 Fluid subsystem

/**/

/*

Class

Foam::fsiControl

Description

FSI control class to supply convergence information/checks for the FSI loop. Used for controlling the fluid, dynamic mesh

and structural subsystems

*/

namespace Foam

{

namespace FSI

{

class structuralMotion;

enum class fsiCouplingAlgorithms

{

CSS, // Conventional Serial Staggered algorithm

FPI // Fixed point iteration algorithm

};

extern const NamedEnum <fsiCouplingAlgorithms , 2> fsiCouplingAlgorithmNames;

extern const fsiCouplingAlgorithms defaultFsiCouplingAlgorithm;

252 Chapter D. Source code of the windFSI framework

class fsiControl

:

public regIOobject

{

private:

const structuralMotion& motion() const;

protected:

label maxFsiIter_;

label fsiIter_;

fsiCouplingAlgorithms algorithm_;

scalar tolerance_;

scalar relativeError_;

scalar referenceDisplacement_;

virtual bool writeData(Ostream&) const;

void calcFsiError();

public:

TypeName("fsiControl");

fsiControl(const objectRegistry& registry , const Time& time, const dictionary& dict);

virtual ˜fsiControl();

virtual bool read(const dictionary& dict);

inline label maxFsiIter() const;

inline bool firstFsiIter() const;

inline bool finalFsiIter() const;

bool run();

bool loop();

};

}

}

/**/

/*---*\

Source file: fsiControl.C

---/

#include "fsiControl.H"

#include "dynamicMotionSolverFvMesh.H"

#include "structuralMotionMeshSolver.H"

// * //

template <>

const char* Foam::NamedEnum

<

Foam::FSI::fsiCouplingAlgorithms ,

2

>::names[] =

{

"CSS",

"FPI"

};

const Foam::NamedEnum <Foam::FSI::fsiCouplingAlgorithms , 2>

Foam::FSI::fsiCouplingAlgorithmNames;

const Foam::FSI::fsiCouplingAlgorithms

Foam::FSI::defaultFsiCouplingAlgorithm

(

Foam::FSI::fsiCouplingAlgorithms::CSS

);

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace FSI

{

defineTypeNameAndDebug(fsiControl , 0);

}

}

D.2. Fluid subsystem 253

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

bool Foam::FSI::fsiControl::writeData(Ostream&) const

{

NotImplemented;

return false;

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::FSI::fsiControl::fsiControl

(

const objectRegistry& registry ,

const Time& time,

const dictionary& dict

)

:

regIOobject

(

IOobject

(

typeName ,

time.timeName(),

registry ,

IOobject::NO_READ,

IOobject::NO_WRITE

)

),

maxFsiIter_(-1),

fsiIter_(0),

algorithm_(),

tolerance_(1e-6),

relativeError_(1.0),

referenceDisplacement_(1.0)

{

read(dict);

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::FSI::fsiControl::˜fsiControl()

{}

// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //

const Foam::FSI::structuralMotion&

Foam::FSI::fsiControl::motion() const

{

const dynamicMotionSolverFvMesh& mesh =

refCast<const dynamicMotionSolverFvMesh >(this->db());

return (refCast<const structuralMotion >(mesh.motion()));

}

bool Foam::FSI::fsiControl::loop()

{

if(firstFsiIter())

{

fsiIter_++;

return true;

}

else

{

calcFsiError();

if(finalFsiIter())

{

fsiIter_ = 0;

return false;

}

if(relativeError_ < tolerance_)

{

254 Chapter D. Source code of the windFSI framework

fsiIter_ = 0;

return false;

}

fsiIter_++;

return true;

}

}

bool Foam::FSI::fsiControl::read(const dictionary& dict)

{

maxFsiIter_ = dict.lookupOrDefault <label >("maxFsiIteration", 5);

algorithm_ = fsiCouplingAlgorithmNames

[

dict.lookupOrDefault

(

"couplingAlgorithm",

word(fsiCouplingAlgorithmNames[defaultFsiCouplingAlgorithm])

)

];

if(algorithm_ == fsiCouplingAlgorithms::CSS)

{

maxFsiIter_ = 1;

}

tolerance_ = dict.lookupOrDefault <scalar >("fsiTolerance", 1e-6);

referenceDisplacement_ = dict.lookupOrDefault <scalar >("referenceDisplacement", 1.0);

fsiIter_ = 0;

return true;

}

void Foam::FSI::fsiControl::calcFsiError()

{

//Calculate the relative error norm

const structuralMotion & motion = this->motion();

relativeError_ = sum(mag(motion.state().gd() - motion.state().gd0()));

relativeError_ /= referenceDisplacement_;

Info << "FSI␣relative␣error:␣sum␣of␣all␣generalized␣displacements␣=␣"

<< relativeError_ << endl;

}

/**/

Application

pimpleFsiFoam

Description

Transient FSI solver for incompressible , turbulent flow of Newtonian fluids

and small displacement structural deformation with moving mesh.

Turbulence modeling is generic, i.e. laminar, RAS or LES may be selected.

---/

#include "fvCFD.H"

#include "dynamicFvMesh.H"

#include "singlePhaseTransportModel.H"

#include "kinematicMomentumTransportModel.H"

#include "pimpleControl.H"

#include "fsiControl.H"

#include "CorrectPhi.H"

#include "fvOptions.H"

#include "localEulerDdtScheme.H"

#include "fvcSmooth.H"

#include "dynamicMotionSolverFvMesh.H"

D.2. Fluid subsystem 255

#include "displacementMotionSolver.H"

// * //

using namespace Foam::FSI;

int main(int argc, char *argv[])

{

#include "postProcess.H"

#include "setRootCaseLists.H"

#include "createTime.H"

#include "createDynamicFvMesh.H"

#include "initContinuityErrs.H"

#include "createDyMControls.H"

#include "createFsiControls.H"

#include "createFields.H"

#include "createUfIfPresent.H"

turbulence ->validate();

if (!LTS)

{

#include "CourantNo.H"

#include "setInitialDeltaT.H"

}

// * //

Info<< "\nStarting␣time␣loop\n" << endl;

while (pimple.run(runTime))

{

#include "readDyMControls.H"

if (LTS)

{

#include "setRDeltaT.H"

}

else

{

#include "CourantNo.H"

#include "setDeltaT.H"

}

runTime++;

Info<< "Time␣=␣" << runTime.timeName() << nl << endl;

while(fsi.loop())

{

//Solve the structure and move the mesh

mesh.update();

//Correct flux if the mesh is moving

if (mesh.changing())

{

MRF.update();

if (correctPhi)

{

// Calculate absolute flux

// from the mapped surface velocity

phi = mesh.Sf() & Uf();

#include "correctPhi.H"

// Make the flux relative to the mesh motion

fvc::makeRelative(phi, U);

}

if (checkMeshCourantNo)

{

#include "meshCourantNo.H"

256 Chapter D. Source code of the windFSI framework

}

}

// --- Pressure -velocity PIMPLE corrector loop

while (pimple.loop())

{

#include "UEqn.H"

// --- Pressure corrector loop

while (pimple.correct())

{

#include "pEqn.H"

}

if (pimple.turbCorr())

{

laminarTransport.correct();

turbulence ->correct();

}

}

}

runTime.write();

Info<< "ExecutionTime␣=␣" << runTime.elapsedCpuTime() << "␣s"

<< "␣␣ClockTime␣=␣" << runTime.elapsedClockTime() << "␣s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

}

/**/

/*

Class

Foam::functionObjects::storeyForces

Description

Calculates the storey forces and moments by integrating the pressure and skin-friction storey forces over a given list of

patches (structural surface).

Example of function object specification:

storeyForces1

{

type storeyForces;

libs ("libforces.so");

...

log yes;

patches (building);

storeyData

{

nStorey 60;

direction (0 0 1);

}

}

*/

namespace Foam

{

namespace functionObjects

{

class storeyForces

:

public fvMeshFunctionObject ,

public logFiles

{

protected:

enum class fileID

{

D.2. Fluid subsystem 257

mainFile = 0,

storeysFile = 1

};

List<Field<vector>> force_;

List<Field<vector>> storeyForce_;

List<Field<vector>> moment_;

labelHashSet patchSet_;

word pName_;

word UName_;

word rhoName_;

Switch directForceDensity_;

word fDName_;

scalar rhoRef_;

scalar pRef_;

coordinateSystem coordSys_;

bool localSystem_;

bool porosity_;

label nStorey_;

Switch readStoreyHeights_;

List<scalar> storeyHeights_;

vector storeyDir_;

scalar storeyDx_;

scalar storeyMin_;

List<point> storeyPoints_;

bool initialised_;

using logFiles::file;

Ostream& file(const fileID fid)

{

return logFiles::file(label(fid));

}

wordList createFileNames(const dictionary& dict) const;

virtual void writeFileHeader(const label i);

void initialise();

tmp<volSymmTensorField > devTau() const;

tmp<volScalarField > mu() const;

tmp<volScalarField > rho() const;

scalar rho(const volScalarField& p) const;

void calcStoreyForces (const vectorField& Md, const vectorField& fN, const vectorField& fT, const vectorField

& fP, const vectorField& d);

void writeForces();

void writeStoreyForces();

public:

TypeName("storeyForces");

storeyForces (const word& name, const Time& runTime, const dictionary& dict);

storeyForces (const word& name, const objectRegistry& obr, const dictionary&);

storeyForces(const storeyForces&) = delete;

virtual ˜storeyForces();

virtual bool read(const dictionary&);

virtual void calcStoreyForcesMoments();

virtual vector forceEff() const;

virtual vector momentEff() const;

virtual vectorField storeyForcesEff() const;

virtual bool execute();

virtual bool write();

void operator=(const storeyForces&) = delete;

};

}

}

/**/

/*---*\

Source file: storeyForces.C

---/

#include "storeyForces.H"

#include "fvcGrad.H"

#include "porosityModel.H"

#include "kinematicMomentumTransportModel.H"

#include "fluidThermoMomentumTransportModel.H"

258 Chapter D. Source code of the windFSI framework

#include "addToRunTimeSelectionTable.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace functionObjects

{

defineTypeNameAndDebug(storeyForces , 0);

addToRunTimeSelectionTable(functionObject , storeyForces , dictionary);

}

}

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

Foam::wordList Foam::functionObjects::storeyForces::createFileNames

(

const dictionary& dict

) const

{

DynamicList <word> names(1);

const word forceType(dict.lookup("type"));

// Name for file(fileID::mainFile=0)

names.append(forceType+ "_base");

const dictionary& storeyDict(dict.subDict("storeyData"));

label nb = storeyDict.lookup<label>("nStorey");

if (nb > 0)

{

// Name for file(fileID::storeysFile=1)

names.append(forceType + "_storey");

}

return move(names);

}

void Foam::functionObjects::storeyForces::writeFileHeader(const label i)

{

switch (fileID(i))

{

case fileID::mainFile:

{

// force data

writeHeader(file(i), "Forces");

writeHeaderValue(file(i), "CofR", coordSys_.origin());

writeCommented(file(i), "Time");

const word forceTypes("(pressure␣viscous␣porous)");

file(i)

<< "storeyForces" << forceTypes << tab

<< "storeyMoments" << forceTypes;

if (localSystem_)

{

file(i)

<< tab

<< "localForces" << forceTypes << tab

<< "localMoments" << forceTypes;

}

break;

}

case fileID::storeysFile:

{

// storey data

writeHeader(file(i), "Storey␣forces");

writeHeaderValue(file(i), "storeys", nStorey_);

D.2. Fluid subsystem 259

writeHeaderValue(file(i), "start", storeyMin_);

writeHeaderValue(file(i), "delta", storeyDx_);

writeHeaderValue(file(i), "direction", storeyDir_);

vectorField storeyPoints(nStorey_);

writeCommented(file(i), "x␣co-ords␣␣:");

forAll(storeyPoints , pointi)

{

// storeyPoints[pointi] = (storeyMin_ + (pointi + 1)*storeyDx_)*storeyDir_;

storeyPoints[pointi] = (storeyMin_ + pointi*storeyDx_)*storeyDir_;

file(i) << tab << storeyPoints[pointi].x();

}

file(i) << nl;

writeCommented(file(i), "y␣co-ords␣␣:");

forAll(storeyPoints , pointi)

{

file(i) << tab << storeyPoints[pointi].y();

}

file(i) << nl;

writeCommented(file(i), "z␣co-ords␣␣:");

forAll(storeyPoints , pointi)

{

file(i) << tab << storeyPoints[pointi].z();

}

file(i) << nl;

writeCommented(file(i), "Time");

const word storeyForceTypes("[pressure ,viscous,porous]");

for (label j = 0; j < nStorey_; j++)

{

const word jn(’(’ + Foam::name(j) + ’)’);

const word f("storeyForces" + jn + storeyForceTypes);

// const word m("storeyMoments" + jn + storeyForceTypes);

file(i)<< tab << f;

}

if (localSystem_)

{

for (label j = 0; j < nStorey_; j++)

{

const word jn(’(’ + Foam::name(j) + ’)’);

const word f("localForces" + jn + storeyForceTypes);

// const word m("localMoments" + jn + storeyForceTypes);

file(i)<< tab << f;

}

}

break;

}

default:

{

FatalErrorInFunction

<< "Unhandled␣file␣index:␣" << i

<< abort(FatalError);

}

}

file(i)<< endl;

}

void Foam::functionObjects::storeyForces::initialise()

{

if (initialised_)

{

return;

}

if (directForceDensity_)

{

260 Chapter D. Source code of the windFSI framework

if (!obr_.foundObject <volVectorField >(fDName_))

{

FatalErrorInFunction

<< "Could␣not␣find␣" << fDName_ << "␣in␣database."

<< exit(FatalError);

}

}

else

{

if

(

!obr_.foundObject <volVectorField >(UName_)

|| !obr_.foundObject <volScalarField >(pName_)

)

{

FatalErrorInFunction

<< "Could␣not␣find␣" << UName_ << ",␣" << pName_

<< exit(FatalError);

}

if

(

rhoName_ != "rhoInf"

&& !obr_.foundObject <volScalarField >(rhoName_)

)

{

FatalErrorInFunction

<< "Could␣not␣find␣" << rhoName_

<< exit(FatalError);

}

}

initialised_ = true;

}

Foam::tmp<Foam::volSymmTensorField >

Foam::functionObjects::storeyForces::devTau() const

{

typedef compressible::momentumTransportModel cmpTurbModel;

typedef incompressible::momentumTransportModel icoTurbModel;

if (obr_.foundObject <cmpTurbModel >(momentumTransportModel::typeName))

{

const cmpTurbModel& turb =

obr_.lookupObject <cmpTurbModel >(momentumTransportModel::typeName);

return turb.devTau();

}

else if (obr_.foundObject <icoTurbModel >(momentumTransportModel::typeName))

{

const incompressible::momentumTransportModel& turb =

obr_.lookupObject <icoTurbModel >(momentumTransportModel::typeName);

return rho()*turb.devSigma();

}

else if (obr_.foundObject <fluidThermo >(fluidThermo::dictName))

{

const fluidThermo& thermo =

obr_.lookupObject <fluidThermo >(fluidThermo::dictName);

const volVectorField& U = obr_.lookupObject <volVectorField >(UName_);

return -thermo.mu()*dev(twoSymm(fvc::grad(U)));

}

else if

(

obr_.foundObject <transportModel >("transportProperties")

)

{

const transportModel& laminarT =

obr_.lookupObject <transportModel >("transportProperties");

D.2. Fluid subsystem 261

const volVectorField& U = obr_.lookupObject <volVectorField >(UName_);

return -rho()*laminarT.nu()*dev(twoSymm(fvc::grad(U)));

}

else if (obr_.foundObject <dictionary >("transportProperties"))

{

const dictionary& transportProperties =

obr_.lookupObject <dictionary >("transportProperties");

dimensionedScalar nu

(

"nu",

dimViscosity ,

transportProperties.lookup("nu")

);

const volVectorField& U = obr_.lookupObject <volVectorField >(UName_);

return -rho()*nu*dev(twoSymm(fvc::grad(U)));

}

else

{

FatalErrorInFunction

<< "No␣valid␣model␣for␣viscous␣stress␣calculation"

<< exit(FatalError);

return volSymmTensorField::null();

}

}

Foam::tmp<Foam::volScalarField > Foam::functionObjects::storeyForces::mu() const

{

if (obr_.foundObject <fluidThermo >(basicThermo::dictName))

{

const fluidThermo& thermo =

obr_.lookupObject <fluidThermo >(basicThermo::dictName);

return thermo.mu();

}

else if

(

obr_.foundObject <transportModel >("transportProperties")

)

{

const transportModel& laminarT =

obr_.lookupObject <transportModel >("transportProperties");

return rho()*laminarT.nu();

}

else if (obr_.foundObject <dictionary >("transportProperties"))

{

const dictionary& transportProperties =

obr_.lookupObject <dictionary >("transportProperties");

dimensionedScalar nu

(

"nu",

dimViscosity ,

transportProperties.lookup("nu")

);

return rho()*nu;

}

else

{

FatalErrorInFunction

<< "No␣valid␣model␣for␣dynamic␣viscosity␣calculation"

<< exit(FatalError);

return volScalarField::null();

}

}

262 Chapter D. Source code of the windFSI framework

Foam::tmp<Foam::volScalarField > Foam::functionObjects::storeyForces::rho() const

{

if (rhoName_ == "rhoInf")

{

return volScalarField::New

(

"rho",

mesh_,

dimensionedScalar(dimDensity , rhoRef_)

);

}

else

{

return(obr_.lookupObject <volScalarField >(rhoName_));

}

}

Foam::scalar Foam::functionObjects::storeyForces::rho(const volScalarField& p) const

{

if (p.dimensions() == dimPressure)

{

return 1.0;

}

else

{

if (rhoName_ != "rhoInf")

{

FatalErrorInFunction

<< "Dynamic␣pressure␣is␣expected␣but␣kinematic␣is␣provided."

<< exit(FatalError);

}

return rhoRef_;

}

}

void Foam::functionObjects::storeyForces::calcStoreyForces

(

const vectorField& Md,

const vectorField& fN,

const vectorField& fT,

const vectorField& fP,

const vectorField& d

)

{

if (nStorey_ == 1)

{

force_[0][0] += sum(fN);

force_[1][0] += sum(fT);

force_[2][0] += sum(fP);

moment_[0][0] += sum(MdˆfN);

moment_[1][0] += sum(MdˆfT);

moment_[2][0] += sum(MdˆfP);

}

else

{

scalarField dd((d & storeyDir_) - storeyMin_);

forAll(dd, i)

{

// label storeyi = min(max(floor(dd[i]/storeyDx_), 0), force_[0].size() - 1);

//Make the floors the center of application

label storeyi = min(max(floor((dd[i] + storeyDx_/2.0)/storeyDx_), 0), force_[0].size() - 1);

//Exclude the bottom half of the first floor

// if (dd[i] > storeyDx_/2.0)

force_[0][storeyi] += fN[i];

force_[1][storeyi] += fT[i];

force_[2][storeyi] += fP[i];

D.2. Fluid subsystem 263

moment_[0][storeyi] += Md[i]ˆfN[i];

moment_[1][storeyi] += Md[i]ˆfT[i];

moment_[2][storeyi] += Md[i]ˆfP[i];

}

}

}

void Foam::functionObjects::storeyForces::writeForces()

{

Log << type() << "␣" << name() << "␣write:" << nl

<< "␣␣␣␣sum␣of␣storey␣forces:" << nl

<< "␣␣␣␣␣␣␣␣pressure␣:␣" << sum(storeyForce_[0]) << nl

<< "␣␣␣␣␣␣␣␣viscous␣␣:␣" << sum(storeyForce_[1]) << nl

<< "␣␣␣␣␣␣␣␣porous␣␣␣:␣" << sum(storeyForce_[2]) << nl

<< endl;

writeTime(file(fileID::mainFile));

file(fileID::mainFile) << tab << setw(1) << ’(’

<< sum(storeyForce_[0]) << setw(1) << ’␣’

<< sum(storeyForce_[1]) << setw(1) << ’␣’

<< sum(storeyForce_[2]) << setw(3) << ’)’;

if (localSystem_)

{

vectorField localForceN(coordSys_.localVector(storeyForce_[0]));

vectorField localForceT(coordSys_.localVector(storeyForce_[1]));

vectorField localForceP(coordSys_.localVector(storeyForce_[2]));

file(fileID::mainFile) << tab << setw(1) << ’(’

<< sum(localForceN) << setw(1) << ’␣’

<< sum(localForceT) << setw(1) << ’␣’

<< sum(localForceP) << setw(3) << ’)’;

}

file(fileID::mainFile) << endl;

}

void Foam::functionObjects::storeyForces::writeStoreyForces()

{

if (nStorey_ == 1)

{

return;

}

writeTime(file(fileID::storeysFile));

forAll(storeyForce_[0], i)

{

file(fileID::storeysFile)

<< tab << setw(1) << ’(’

<< storeyForce_[0][i] << setw(1) << ’␣’

<< storeyForce_[1][i] << setw(1) << ’␣’

<< storeyForce_[2][i] << setw(3) << ’)’;

}

if (localSystem_)

{

List<Field<vector>> lf(3);

lf[0] = coordSys_.localVector(storeyForce_[0]);

lf[1] = coordSys_.localVector(storeyForce_[1]);

lf[2] = coordSys_.localVector(storeyForce_[2]);

forAll(lf[0], i)

{

file(fileID::storeysFile)

<< tab << setw(1) << ’(’

<< lf[0][i] << setw(1) << ’␣’

<< lf[1][i] << setw(1) << ’␣’

<< lf[2][i] << setw(3) << ’)’;

}

}

264 Chapter D. Source code of the windFSI framework

file(fileID::storeysFile) << endl;

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::functionObjects::storeyForces::storeyForces

(

const word& name,

const Time& runTime,

const dictionary& dict

)

:

fvMeshFunctionObject(name, runTime, dict),

logFiles(obr_, name),

force_(3),

storeyForce_(3),

moment_(3),

patchSet_(),

pName_(word::null),

UName_(word::null),

rhoName_(word::null),

directForceDensity_(false),

fDName_(""),

rhoRef_(vGreat),

pRef_(0),

coordSys_(),

localSystem_(false),

porosity_(false),

nStorey_(1),

readStoreyHeights_(false),

storeyHeights_(0),

storeyDir_(Zero),

storeyDx_(0.0),

storeyMin_(great),

storeyPoints_(),

initialised_(false)

{

read(dict);

resetNames(createFileNames(dict));

}

Foam::functionObjects::storeyForces::storeyForces

(

const word& name,

const objectRegistry& obr,

const dictionary& dict

)

:

fvMeshFunctionObject(name, obr, dict),

logFiles(obr_, name),

force_(3),

storeyForce_(3),

moment_(3),

patchSet_(),

pName_(word::null),

UName_(word::null),

rhoName_(word::null),

directForceDensity_(false),

fDName_(""),

rhoRef_(vGreat),

pRef_(0),

coordSys_(),

localSystem_(false),

porosity_(false),

nStorey_(1),

readStoreyHeights_(false),

storeyHeights_(0),

storeyDir_(Zero),

storeyDx_(0.0),

storeyMin_(great),

storeyPoints_(),

initialised_(false)

D.2. Fluid subsystem 265

{

read(dict);

resetNames(createFileNames(dict));

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::functionObjects::storeyForces::˜storeyForces()

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

bool Foam::functionObjects::storeyForces::read(const dictionary& dict)

{

fvMeshFunctionObject::read(dict);

initialised_ = false;

Log << type() << "␣" << name() << ":" << nl;

directForceDensity_ = dict.lookupOrDefault("directForceDensity", false);

const polyBoundaryMesh& pbm = mesh_.boundaryMesh();

patchSet_ = pbm.patchSet(wordReList(dict.lookup("patches")));

if (directForceDensity_)

{

// Optional entry for fDName

fDName_ = dict.lookupOrDefault <word>("fD", "fD");

}

else

{

// Optional entries U and p

pName_ = dict.lookupOrDefault <word>("p", "p");

UName_ = dict.lookupOrDefault <word>("U", "U");

rhoName_ = dict.lookupOrDefault <word>("rho", "rho");

// Reference density needed for incompressible calculations

if (rhoName_ == "rhoInf")

{

dict.lookup("rhoInf") >> rhoRef_;

}

// Reference pressure , 0 by default

pRef_ = dict.lookupOrDefault <scalar >("pRef", 0.0);

}

coordSys_.clear();

// Centre of rotation for moment calculations

// specified directly , from coordinate system, or implicitly (0 0 0)

if (!dict.readIfPresent <point>("CofR", coordSys_.origin()))

{

coordSys_ = coordinateSystem(obr_, dict);

localSystem_ = true;

}

dict.readIfPresent("porosity", porosity_);

if (porosity_)

{

Log << "␣␣␣␣Including␣porosity␣effects" << endl;

}

else

{

Log << "␣␣␣␣Not␣including␣porosity␣effects" << endl;

}

if (dict.found("storeyData"))

{

const dictionary& storeyDict(dict.subDict("storeyData"));

storeyDict.lookup("nStorey") >> nStorey_;

266 Chapter D. Source code of the windFSI framework

readStoreyHeights_ = storeyDict.lookupOrDefault <Switch >("readStoreyData","off");

if(readStoreyHeights_)

{

// storeyDict.lookup("storeyDataPath") >> storeyDataPath_;

storeyDict.lookup("storeyHeights") >> storeyHeights_;

// IFstream storeyFile(storeyDataPath_/"storeyHeights")

// storeyFile >> storeyHeights_;

if(storeyHeights_.size() != nStorey_)

{

FatalIOErrorInFunction(dict)

<< "Number␣of␣storeys␣do␣not␣match!"

<< exit(FatalIOError);

}

}

if (nStorey_ < 0)

{

FatalIOErrorInFunction(dict)

<< "Number␣of␣storeys␣(nStorey)␣must␣be␣zero␣or␣greater"

<< exit(FatalIOError);

}

else if ((nStorey_ == 0) || (nStorey_ == 1))

{

nStorey_ = 1;

forAll(force_, i)

{

force_[i].setSize(1);

storeyForce_[i].setSize(1);

moment_[i].setSize(1);

}

}

if (nStorey_ > 1)

{

storeyDict.lookup("direction") >> storeyDir_;

storeyDir_ /= mag(storeyDir_);

storeyMin_ = great;

scalar storeyMax = -great;

forAllConstIter(labelHashSet , patchSet_ , iter)

{

label patchi = iter.key();

const polyPatch& pp = pbm[patchi];

// scalarField d(pp.faceCentres() & storeyDir_);

scalarField d(pp.localPoints() & storeyDir_); //use patch points

storeyMin_ = min(min(d), storeyMin_);

storeyMax = max(max(d), storeyMax);

}

reduce(storeyMin_ , minOp<scalar >());

reduce(storeyMax , maxOp<scalar >());

// slightly boost storeyMax so that region of interest is fully

// within bounds

storeyMax = 1.0001*(storeyMax - storeyMin_) + storeyMin_;

//Here the nStorey is treated as number of floor levels of the bldg

//including the ground and roof. So we subtract 1

storeyDx_ = (storeyMax - storeyMin_)/scalar(nStorey_ -1);

// create the storey points used for writing

storeyPoints_.setSize(nStorey_);

forAll(storeyPoints_ , i)

{

// storeyPoints_[i] = (i + 0.5)*storeyDir_*storeyDx_;

storeyPoints_[i] = i*storeyDir_*storeyDx_;

}

D.2. Fluid subsystem 267

// check if the storey heights are within the bound and

// update storeyPoints_ with the storey height information

if(readStoreyHeights_)

{

if(storeyHeights_[nStorey_ -1] > (storeyMax - storeyMin_))

{

FatalIOErrorInFunction(dict)

<< "To␣top␣storey␣is␣beyond␣the␣patch␣point␣bound!"

<< exit(FatalIOError);

}

storeyPoints_= storeyDir_*storeyHeights_;

}

// allocate storage for forces and moments

forAll(force_, i)

{

force_[i].setSize(nStorey_);

storeyForce_[i].setSize(nStorey_);

moment_[i].setSize(nStorey_);

}

}

}

if (nStorey_ == 1)

{

// allocate storage for storeyForces and moments

force_[0].setSize(1);

force_[1].setSize(1);

force_[2].setSize(1);

storeyForce_[0].setSize(1);

storeyForce_[1].setSize(1);

storeyForce_[2].setSize(1);

moment_[0].setSize(1);

moment_[1].setSize(1);

moment_[2].setSize(1);

}

return true;

}

void Foam::functionObjects::storeyForces::calcStoreyForcesMoments()

{

initialise();

force_[0] = Zero;

force_[1] = Zero;

force_[2] = Zero;

storeyForce_[0] = Zero;

storeyForce_[1] = Zero;

storeyForce_[2] = Zero;

moment_[0] = Zero;

moment_[1] = Zero;

moment_[2] = Zero;

if (directForceDensity_)

{

const volVectorField& fD = obr_.lookupObject <volVectorField >(fDName_);

const surfaceVectorField::Boundary& Sfb =

mesh_.Sf().boundaryField();

forAllConstIter(labelHashSet , patchSet_ , iter)

{

label patchi = iter.key();

vectorField Md

(

mesh_.C().boundaryField()[patchi] - coordSys_.origin()

);

scalarField sA(mag(Sfb[patchi]));

268 Chapter D. Source code of the windFSI framework

// Normal force = surfaceUnitNormal*(surfaceNormal & forceDensity)

vectorField fN

(

Sfb[patchi]/sA

*(

Sfb[patchi] & fD.boundaryField()[patchi]

)

);

// Tangential force (total force minus normal fN)

vectorField fT(sA*fD.boundaryField()[patchi] - fN);

//- Porous force

vectorField fP(Md.size(), Zero);

calcStoreyForces(Md, fN, fT, fP, mesh_.C().boundaryField()[patchi]);

}

}

else

{

const volScalarField& p = obr_.lookupObject <volScalarField >(pName_);

const surfaceVectorField::Boundary& Sfb =

mesh_.Sf().boundaryField();

tmp<volSymmTensorField > tdevTau = devTau();

const volSymmTensorField::Boundary& devTaub

= tdevTau().boundaryField();

// Scale pRef by density for incompressible simulations

scalar pRef = pRef_/rho(p);

forAllConstIter(labelHashSet , patchSet_ , iter)

{

label patchi = iter.key();

vectorField Md

(

mesh_.C().boundaryField()[patchi] - coordSys_.origin()

);

vectorField fN

(

rho(p)*Sfb[patchi]*(p.boundaryField()[patchi] - pRef)

);

vectorField fT(Sfb[patchi] & devTaub[patchi]);

vectorField fP(Md.size(), Zero);

calcStoreyForces(Md, fN, fT, fP, mesh_.C().boundaryField()[patchi]);

}

}

if (porosity_)

{

const volVectorField& U = obr_.lookupObject <volVectorField >(UName_);

const volScalarField rho(this->rho());

const volScalarField mu(this->mu());

const HashTable <const porosityModel*> models =

obr_.lookupClass <porosityModel >();

if (models.empty())

{

WarningInFunction

<< "Porosity␣effects␣requested ,␣but␣no␣porosity␣models␣found␣"

<< "in␣the␣database"

<< endl;

}

forAllConstIter(HashTable <const porosityModel*>, models, iter)

{

D.2. Fluid subsystem 269

// non-const access required if mesh is changing

porosityModel& pm = const_cast <porosityModel&>(*iter());

vectorField fPTot(pm.force(U, rho, mu));

const labelList& cellZoneIDs = pm.cellZoneIDs();

forAll(cellZoneIDs , i)

{

label zoneI = cellZoneIDs[i];

const cellZone& cZone = mesh_.cellZones()[zoneI];

const vectorField d(mesh_.C(), cZone);

const vectorField fP(fPTot, cZone);

const vectorField Md(d - coordSys_.origin());

const vectorField fDummy(Md.size(), Zero);

calcStoreyForces(Md, fDummy, fDummy, fP, d);

}

}

}

Pstream::listCombineGather(force_, plusEqOp<vectorField >());

Pstream::listCombineGather(moment_, plusEqOp<vectorField >());

Pstream::listCombineScatter(force_);

Pstream::listCombineScatter(moment_);

forAll(force_, i)

{

storeyForce_[i] = force_[i];

forAll(force_[i], j)

{

//Store the storey forces(Fx, Fy, Mz)

storeyForce_[i][j].z() = moment_[i][j] & storeyDir_;

}

}

}

//I added this, do not exist before

Foam::vectorField Foam::functionObjects::storeyForces::storeyForcesEff() const

{

//You may need only pressure forces

// Everything: pressure + viscous + porous

return storeyForce_[0] + storeyForce_[1] + storeyForce_[2];

}

Foam::vector Foam::functionObjects::storeyForces::forceEff() const

{

return sum(force_[0]) + sum(force_[1]) + sum(force_[2]);

}

Foam::vector Foam::functionObjects::storeyForces::momentEff() const

{

return sum(moment_[0]) + sum(moment_[1]) + sum(moment_[2]);

}

bool Foam::functionObjects::storeyForces::execute()

{

return true;

}

bool Foam::functionObjects::storeyForces::write()

{

calcStoreyForcesMoments();

if (Pstream::master())

{

logFiles::write();

270 Chapter D. Source code of the windFSI framework

writeForces();

writeStoreyForces();

Log << endl;

}

return true;

}

// *** //

/**/

Listing D.2: Selected source code of windFSI framework for the fluid subsystem

D.3 Dynamic mesh subsystem

/*

Class

Foam::structuralMotionMeshSolver

Description

Structurally deformable -body mesh motion solver for fvMesh. Applies SLERP interpolation of movement as a function of

distance to the object surface.

SourceFiles

structuralMotionMeshSolver.C

*/

namespace Foam

{

namespace FSI

{

class structuralMotionMeshSolver

:

public displacementMotionSolver ,

public structuralMotion

{

private:

wordReList patches_;

const labelHashSet patchSet_;

const scalar di_;

const scalar do_;

Switch test_;

Switch twoWayCoupled_;

scalar rhoInf_;

word rhoName_;

pointScalarField scale_;

label curTimeIndex_;

mutable volVectorField cellDisplacement_;

public:

TypeName("structuralMotionMeshSolver");

structuralMotionMeshSolver(const polyMesh&, const dictionary& dict);

structuralMotionMeshSolver(const structuralMotionMeshSolver&);

˜structuralMotionMeshSolver();

const structuralMotion& motion() const;

virtual tmp<pointField > curPoints() const;

virtual void solve();

virtual bool write() const;

void operator=(const structuralMotionMeshSolver&) = delete;

};

}

D.3. Dynamic mesh subsystem 271

}

/**/

/*---*\

Source file: structuralMotionMeshSolver.C

---/

#include "structuralMotionMeshSolver.H"

#include "pointVolInterpolation.H"

#include "addToRunTimeSelectionTable.H"

#include "polyMesh.H"

#include "vectorField.H"

#include "pointPatchDist.H"

#include "pointConstraints.H"

#include "uniformDimensionedFields.H"

#include "storeyForces.H"

#include "mathematicalConstants.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam

{

namespace FSI

{

defineTypeNameAndDebug(structuralMotionMeshSolver , 0);

addToRunTimeSelectionTable

(

motionSolver ,

structuralMotionMeshSolver ,

dictionary

);

}

}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::FSI::structuralMotionMeshSolver::structuralMotionMeshSolver

(

const polyMesh& mesh,

const dictionary& dict

)

:

displacementMotionSolver(mesh, dict, typeName),

structuralMotion

(

coeffDict(),

IOobject

(

"structuralMotionState",

mesh.time().timeName(),

"uniform",

mesh

).typeHeaderOk <IOdictionary >(true)

? IOdictionary

(

IOobject

(

"structuralMotionState",

mesh.time().timeName(),

"uniform",

mesh,

IOobject::READ_IF_PRESENT ,

IOobject::NO_WRITE ,

false

)

)

: coeffDict() //Otherwise use initial disp from dynamicDict

),

patches_(wordReList(coeffDict().lookup("patches"))),

272 Chapter D. Source code of the windFSI framework

patchSet_(mesh.boundaryMesh().patchSet(patches_)),

di_(coeffDict().lookup<scalar >("innerDistance")),

do_(coeffDict().lookup<scalar >("outerDistance")),

test_(coeffDict().lookupOrDefault <Switch >("test", false)),

twoWayCoupled_(coeffDict().lookupOrDefault <Switch >("twoWayCoupled", true)),

rhoInf_(1.0),

rhoName_(coeffDict().lookupOrDefault <word>("rho", "rho")),

scale_

(

IOobject

(

"motionScale",

mesh.time().timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE ,

false

),

pointMesh::New(mesh),

dimensionedScalar(dimless, 0)

),

curTimeIndex_(-1),

cellDisplacement_

(

IOobject

(

"cellDisplacement",

mesh.time().timeName(),

mesh,

IOobject::NO_READ,

IOobject::NO_WRITE

),

refCast<const fvMesh >(mesh.thisDb()),

dimensionedVector("cellDisplacement", dimLength , vector::zero),

pointDisplacement().boundaryField().types()

)

{

if (rhoName_ == "rhoInf")

{

rhoInf_ = coeffDict().lookup<scalar >("rhoInf");

}

// Calculate scaling factor everywhere

// ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

{

const pointMesh& pMesh = pointMesh::New(mesh);

pointPatchDist pDist(pMesh, patchSet_ , points0());

// Scaling: 1 up to di then linear down to 0 at do away from patches

scale_.primitiveFieldRef() =

min

(

max

(

(do_ - pDist.primitiveField())/(do_ - di_),

scalar(0)

),

scalar(1)

);

// Convert the scale function to a cosine

scale_.primitiveFieldRef() =

min

(

max

(

0.5

- 0.5

*cos(scale_.primitiveField()

*Foam::constant::mathematical::pi),

scalar(0)

D.3. Dynamic mesh subsystem 273

),

scalar(1)

);

pointConstraints::New(pMesh).constrain(scale_);

scale_.write();

}

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::FSI::structuralMotionMeshSolver::˜structuralMotionMeshSolver()

{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

Foam::tmp<Foam::pointField >

Foam::FSI::structuralMotionMeshSolver::curPoints() const

{

return points0() + pointDisplacement_.primitiveField();

}

void Foam::FSI::structuralMotionMeshSolver::solve()

{

const Time& t = mesh().time();

if (mesh().nPoints() != points0().size())

{

FatalErrorInFunction

<< "The␣number␣of␣points␣in␣the␣mesh␣seems␣to␣have␣changed." << endl

<< "In␣constant/polyMesh␣there␣are␣" << points0().size()

<< "␣points;␣in␣the␣current␣mesh␣there␣are␣" << mesh().nPoints()

<< "␣points." << exit(FatalError);

}

// Store the motion state at the beginning of the time-step

bool firstIter = false;

if (curTimeIndex_ != t.timeIndex())

{

// newTime(); //might be necessary (assigns state0 -> state)

curTimeIndex_ = t.timeIndex();

firstIter = true;

}

dimensionedVector g("g", dimAcceleration , Zero);

if (mesh().foundObject <uniformDimensionedVectorField >("g"))

{

g = mesh().lookupObject <uniformDimensionedVectorField >("g");

}

else if (coeffDict().found("g"))

{

coeffDict().lookup("g") >> g;

}

// scalar ramp = min(max((t.value() - 5)/10, 0), 1);

scalar ramp = 1.0;

if (test_)

{

//Test with a lateral force equivalent to self-weight

// const vector g = coeffDict().lookup<vector >("g");

update

(

firstIter ,

ramp*cmptMultiply(masses(), g.value()),

t.deltaTValue(),

t.deltaT0Value()

);

274 Chapter D. Source code of the windFSI framework

}

else

{

dictionary storeyForcesDict;

storeyForcesDict.add("type", functionObjects::storeyForces::typeName);

storeyForcesDict.add("patches", patches_);

storeyForcesDict.add("rhoInf", rhoInf_);

storeyForcesDict.add("rho", rhoName_);

//If it’s coupled, the origin shifts with the object

if (twoWayCoupled_)

{

storeyForcesDict.add("CofR", centerOfRotation());

}

else

{

storeyForcesDict.add("CofR", origin());

}

// Info << "Center of rotation: " << centerOfRotation() << endl;

// Info << "Origin: " << origin() << endl;

dictionary storeySubDict;

storeySubDict.add("nStorey", nStorey());

storeySubDict.add("direction", strDir());

storeySubDict.add("cumulative", "no");

//Add the storey subdict

storeyForcesDict.add("storeyData", storeySubDict);

functionObjects::storeyForces f("storeyForces", t, storeyForcesDict);

f.calcStoreyForcesMoments();

update

(

firstIter ,

ramp*(f.storeyForcesEff() + cmptMultiply(masses(), g.value())),

t.deltaTValue(),

t.deltaT0Value()

);

}

if(twoWayCoupled_)

{

// Update the displacements

pointDisplacement_.primitiveFieldRef() =

transform(points0(), scale_) - points0();

// Displacement has changed. Update boundary conditions

pointConstraints::New

(

pointDisplacement_.mesh()

).constrainDisplacement(pointDisplacement_);

}

// Interpolate cellDisplacement from pointDisplacement

const pointMesh& pMsh = pointMesh::New(mesh());

const fvMesh& fvMsh = refCast<const fvMesh >(mesh().thisDb());

pointVolInterpolation pvi(pMsh, fvMsh);

cellDisplacement_ = pvi.interpolate(pointDisplacement_);

}

bool Foam::FSI::structuralMotionMeshSolver::write() const

{

IOdictionary dict

(

IOobject

(

D.3. Dynamic mesh subsystem 275

"structuralMotionState",

mesh().time().timeName(),

"uniform",

mesh(),

IOobject::NO_READ,

IOobject::NO_WRITE ,

false

)

);

state().write(dict);

return

dict.regIOobject::writeObject

(

IOstream::ASCII,

IOstream::currentVersion ,

mesh().time().writeCompression(),

true

)

&& displacementMotionSolver::write();

}

Listing D.3: Selected source code of windFSI framework for the moving mesh subsystem

Appendix E

Usage of the windFSI framework

Since the pimpleFsiFoam solver is developed as a standard OpenFOAM application, it offers
all the functionalities of a typical transient solver, including parallel execution. However, here
we focus on input parameters specific to the FSI framework. Most of the input parameters are
specified in constant/dynamicMeshDict.

1 /*--------------------------------*- C++ -*------------------------*\

2 ========= |

3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox

4 \\ / O peration | Website: https://openfoam.org

5 \\ / A nd | Version: 8

6 \\/ M anipulation |

7 *--*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii;

12 class dictionary;

13 object dynamicMeshDict;

14 }

15 // * //

16
17 dynamicFvMesh dynamicMotionSolverFvMesh;

18 motionSolverLibs ("libwindFSI.so");

19 motionSolver structuralMotionMeshSolver;

20
21 patches (CAARC);

22 origin (0 0 0);

23 innerDistance 45.0;

24 outerDistance 180.0;

25

276

277

26 rho rhoInf;

27 rhoInf 1.225;

28 report on;

29 twoWayCoupled on;

30
31 structuralSolver

32 {

33 type NewmarkBeta;

34 beta 0.25;

35 gamma 0.5;

36 relaxationFactor 1.0;

37 }

38
39 structuralProperties

40 {

41 dataDir "constant/structuralData"

42 nStorey 60;

43 nMode 6;

44 nModeUsed 6;

45 orientation (1 0 0 0 1 0 0 0 1);

46 freqUnit Hz;

47 }

48
49 fsiControl

50 {

51 couplingAlgorithm CSS;

52 tolerance 1e-7;

53 referenceDisplacement 45.0;

54 maxFsiIteration 5;

55 }

Listing E.1: Sample definition of dynamicMeshDict dictionary for aeroelastic modeling of
tall buildings

Listing E.1 shows a sample dynamicMeshDict file used to set up an aeroelastic simulation
of a tall building. The compiled FSI library is loaded as a shared object library specifying
"libwindFSI.so". Then, for the mesh motion solver, we select structuralMotionMeshSolver.
Parameters related to the structural solver are defined in structuralSolver sub-dictionary.
The modal properties of the structure, such as the elevation of each storey, mass distribution,
natural frequencies, damping ratios, and mode shape vectors, are read from text files located
in constant/structuralData directory. Finally, parameters that control the FSI iterations,
including the type of coupling algorithm, error tolerance, and maximum FSI iteration, are

278 Chapter E. Usage of the windFSI framework

specified in fsiControl sub-dictionary given in Listing E.1. Regarding the fluid solver, all
parameters used to control pimpleFoam solver are equally applicable for the FSI simulation
too. Finally, once the input parameters are specified, the FSI simulation can be run in parallel
by calling:

mpirun -np <nProc> pimpleFsiFoam -parallel

279

Curriculum Vitae

Name: Abiy Fantaye Melaku

Post-Secondary University of Western Ontario
Education and London, Canada
Year: 2016 - 2022
Degrees: Ph.D in Wind Engineering and Scientific Computing

Chungbuk National University
Cheongju-si, South Korea
2014 - 2016
M.Sc in Computational Structural Engineering

Adama Science and Technology University
Adama, Ethiopia
2008 - 2013
B.Sc in Civil Engineering

Honours and Ontario Trillium Scholarship
Awards: 2016-2020

Related Work Teaching Assistant
Experience: The University of Western Ontario

2016-2022

Research Intern
FM Global Research, Norwood, Massachusetts, USA
Sept. 2017 - Dec. 2017

Publications:

Journal papers published:

1. Melaku, A. F. & Bitsuamlak, G. T. (2021). A divergence-free inflow turbulence genera-
tor using spectral representation method for large-eddy simulation of ABL flows. Jour-

nal of Wind Engineering and Industrial Aerodynamics.

2. Melaku, A. F. , Doddipatla L. S. & Bitsuamlak, G. T. (2022). Large-eddy simulation
of wind loads on a roof-mounted cube: application for interpolation of experimental
aerodynamic data. Journal of Wind Engineering and Industrial Aerodynamics.

280

3. Melaku, A. F. & Jung, K. S. (2017). Evaluation of welded joints of vertical stiffener to
web under fatigue load by hotspot stress method. International Journal of Steel Struc-

tures.

4. Melaku, A. F., Geleta, T. N. & Jung, K. S. (2015). Application of object-oriented fi-
nite element method in structural mechanics. Journal of the Institute of Construction

Technology.

Journal papers under review:

1. Melaku, A. F., & Bitsuamlak, G. T. LES for predicting wind loads and responses:
prospect for wind-resistant tall building design. Journal of Wind Engineering and In-

dustrial Aerodynamics.

2. Melaku, A. F. & Bitsuamlak, G. T. Computationally efficient simulation of multivariate
wind velocity field using a low-rank representation of the cross-power spectral density
matrix. Journal of Engineering Mechanics.

Journal papers in preparation:

1. Melaku, A. F., Jansse J. & Bitsuamlak, G. T. Wall-modeled large-eddy simulation for
evaluating wind loads on a tall building located in a city center: comparison with exper-
imental data. In preparation for Engineering Structures.

2. Melaku, A. F. & Bitsuamlak, G. T. windFSI: An open-source fluid-structure interaction
framework for aeroelastic modeling of flexible structures. In preparation for Advances

in Engineering Software.

Conference publications and presentations:

1. Melaku, A. F., & Bitsuamlak G. T. (2022). A high-fidelity fluid-structure interaction
framework for computational aeroelastic modeling of flexible structures. In 2022 Sim-

Center Symposium, Texas Advanced Computing Center(TACC), The University of Texas
at Austin, Texas, USA.

2. Melaku, A. F., Janssen J., McDonald P., Sundholm N. & Bitsuamlak G. T. (2022).
Large-eddy simulation of wind loads on a tall building located in a city center: com-
parison with experimental data In Engineering Mechanics Institute Conference 2022,
Johns Hopkins University, Baltimore, Maryland, USA.

281

3. Melaku, A. F. & Bitsuamlak G. T. (2022). Predicting the dynamic response of a tall
building using large-eddy simulation and time-domain analysis In The 14th Americas

Conference on Wind Engineering, Texas Tech University , Lubbock, Texas, USA.

4. Melaku, A. F. & Bitsuamlak G. T. (2022). Computationally efficient large-scale wind
velocity field simulation using Nyström based spectral decomposition In The 14th Amer-

icas Conference on Wind Engineering, Texas Tech University , Lubbock, Texas, USA.

5. Geleta, T. N., Melaku, A. F.,Doddipatla, L. S. & Bitsuamlak G. T. (2022). Compari-
son of surface pressure and near-surface flow field of TTU building between LES and
PIV measurements In The 14th Americas Conference on Wind Engineering, Texas Tech
University , Lubbock, Texas, USA.

6. Melaku, A. F., Doddipatla, L. S. & Bitsuamlak G. T. (2021). Large-eddy Simulation
of Wind Loads on a Roof-mounted Cube: A Means to Interpolate Experimental Data
In The 6th American Association for Wind Engineering Workshop, Clemson University,
Clemson, SC, USA.

7. Geleta, T. N., Elshaer, A., Melaku, A. F. & Bitsuamlak, G. T. (2018). Computational
wind load evaluation of low-rise buildings with complex roofs using LES. In The 7th

International Symposium on Computational Wind Engineering 2018., Seoul, Republic
of Korea.

8. Melaku, A. F., Bitsuamlak, G. T., Elshaer & A., Aboshosha, H. (2017). Synthetic inflow
turbulence generation methods for LES study of tall building aerodynamics. In The 13th

Americas Conference on Wind Engineering (13ACWE), Gainesville, Florida, USA.

9. Adamek K., Melaku, A. F., Bitsuamlak, G. T. & Sadeghpour, F. (2017). Wind safety as-
sessment during high rise building construction. In Annual Conference of the Canadian

Society for Civil Engineering (CSCE), Vancouver, BC, Canada.

	A Computational Framework for Aerodynamic and Aeroelastic Modeling of Wind Loads on Tall Buildings
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowledgments
	Co-Authorship Statement
	List of Figures
	List of Tables
	List of Appendices
	List of Abbreviations
	Introduction
	Background and motivation
	Research objectives
	Outline of the thesis
	Modeling of the approaching ABL turbulence
	LES-based wind load and response evaluation on tall buildings
	Fluid-structure interaction for aeroelastic modeling

	Inflow turbulence generation using spectral representation method
	Introduction
	Numerical procedure
	Proposed inflow generation method
	Time series generation using Fast Fourier Transform (FFT)

	Divergence-free modification
	Treatment of ground roughness boundary condition

	Experimental measurements
	Validation of the generated velocity field
	Evaluation of one-point statistics
	Evaluation of two-point statistics

	Application of DFSR for LES of neutrally stratified ABL flow
	Computational domain and grid generation
	Boundary conditions
	Numerical method
	Results and comparative discussion
	Comparison of ABL wind profiles
	Comparison of the velocity spectra
	Wind pressure flactuations

	Conclusions

	Computationally efficient generation of inflow turbulence
	Introduction
	Wind field simulation using POD-based SRM
	Proposed method
	The Nyström method for simulating random process over a linear domain
	Approximate Eigen decomposition of the CPSD matrix using Nyström Method
	Error estimate of the Nyström method
	Column sampling schemes

	Numerical examples
	Wind characteristics
	Example 1: Homogeneous wind field simulation over a line
	Comparison of the generated velocity field

	Example 2: Inflow generation for large-eddy simulation of ABL flow

	Summary and conclusion

	LES for predicting wind loads and responses of a standard tall building
	Introduction
	Boundary layer wind tunnel experiment for LES validation
	Target atmospheric boundary layer flow
	High-frequency pressure integration model

	LES modeling
	Governing equations
	Dimensions of the computational domain
	Mesh generation
	Boundary Conditions
	Inflow turbulence generation
	Ground surface roughness modeling
	Building surface

	Numerical setup

	Structural model
	Equations of motion
	Structural properties of the CAARC building
	Wind load transfer scheme

	Results and discussion
	Incident flow characteristics
	Flow structure around the building
	Pressure coefficients
	Comparison of mean, RMS and Peak
	Comparison of Skewness and Kurtosis
	Grid sensitivity study
	Sensitivity to SGS modeling

	Global wind loads
	Base force and moment coefficients

	Structural responses
	Displacement response
	Acceleration response

	Conclusion and summary

	LES for predicting wind loads on a tall building located in a city center
	Introduction
	Reference wind tunnel measurement
	Characteristics of the simulated terrain

	Numerical model
	Size of the computational domain
	Geometric modeling
	Computational grid generation
	Inflow boundary condition
	Other boundary and initial conditions
	Numerical setup

	Results and discussion
	Incident flow characteristics
	Wind flow field
	Comparison of global aerodynamic loads
	Validation metric
	Base force coefficients
	Base moment coefficients

	Summary and conclusion

	Fluid-structure interaction for aeroelastic modeling of tall buildings
	Introduction
	Formulations of the fluid-structure interaction framework
	Governing equations
	Fluid domain
	Structural domain
	Dynamic mesh

	Compatibility requirements
	Numerical schemes
	Fluid solver
	Structural solver

	FSI coupling algorithm
	Conventional serial staggered algorithm
	Fixed-point iteration coupling algorithm

	Software implementations
	Overall software architecture
	Implementation of the structural subsystem
	Implementation of the dynamic mesh
	Implementation of the FSI Solver

	Numerical examples and validation
	Vortex induced oscillation of a circular cylinder
	Numerical model
	Results

	Wind induced vibration of a tall building
	Modeling of the wind flow
	Modeling of the building structure
	Results

	Conclusions and outlook

	Summary, conclusions, contributions, and future research directions
	Overview
	Modeling of approaching ABL turbulence
	Chapter 2: Synthetic inflow turbulence generator for large-eddy simulation of ABL flows using spectral representation method
	Chapter 3: Computationally efficient inflow turbulence generation using a low-rank matrix decomposition

	LES-based wind load and response evaluation on tall buildings
	Chapter 4: LES for predicting wind loads and responses of a standard tall building: prospect for wind-resistant tall building design
	Chapter 5: LES-based wind load evaluation on a tall building located in a city center: comparison with experimental data

	Fluid-structure interaction for aeroelastic modeling
	Chapter 6: Fluid-structure interaction framework for computational aeroelastic modeling of tall buildings

	Future research directions

	Bibliography
	Numerical implementation of DFSR and CDRFG methods
	Upper bound of the Nyström approximation error
	Numerical implementation of NY-POD method
	Source code of the windFSI framework
	Structural subsystem
	Fluid subsystem
	Dynamic mesh subsystem

	Usage of the windFSI framework
	Curriculum Vitae

