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Abstract

Purpose—The purpose of the current study was to assess the penetrance of NRXN1 deletions.

Methods—We compared the prevalence and genomic extent of NRXN1 deletions identified 

among 19,263 clinically referred cases to that of 15,264 controls. The burden of additional 

clinically relevant CNVs was used as a proxy to estimate the relative penetrance of NRXN1 
deletions.

Results—We identified 41 (0.21%) previously unreported exonic NRXN1 deletions ascertained 

for developmental delay/intellectual disability, significantly greater than in controls [OR=8.14 

(95% CI 2.91–22.72), p< 0.0001)]. Ten (22.7%) of these had a second clinically relevant CNV. 

Subjects with a deletion near the 3′ end of NRXN1 were significantly more likely to have a 

second rare CNV than subjects with a 5′ NRXN1 deletion [OR=7.47 (95% CI 2.36–23.61), 

p=0.0006]. The prevalence of intronic NRXN1 deletions was not statistically different between 

cases and controls (p=0.618). The majority (63.2%) of intronic NRXN1 deletion cases had a 

second rare CNV, a two-fold greater prevalence than for exonic NRXN1 deletion cases 

(p=0.0035).

Conclusions—The results support the importance of exons near the 5′ end of NRXN1 in the 

expression of neurodevelopmental disorders. Intronic NRXN1 deletions do not appear to 

substantially increase the risk for clinical phenotypes.

Keywords

NRXN1; copy number variation; genotype-phenotype; variable expression; penetrance

INTRODUCTION

Neurexins are a group of highly polymorphic presynaptic cell adhesion molecules that 

primarily bind to neuroligins.1 The three neurexin genes (NRXN1, NRXN2 and NRXN3) 

are highly conserved and undergo extensive alternative splicing2 to produce thousands of 

isoforms that appear to be both spatially and temporally regulated.3,4 The two main isoforms 

for each neurexin gene, the longer NRXN-α and the shorter NRXN-β, are transcribed from 

two independent promoter regions and give rise to proteins with similar C-terminal regions 

but different N-terminal ectodomains.5 The NRXN-α and NRXN-β isoforms both bind to 

postsynaptic neuroligins and leucine-rich repeat transmembrane proteins, however with 

varying degrees of affinity.1,6,7 NRXN-α also binds to dystroglycan and cerebellin.8,9 

NRXN1 (OMIM 600565) is the largest neurexin gene (comprising about 1.1 Mb of genetic 

sequence)2 and the one most implicated as a top candidate gene for neurodevelopmental and 

neuropsychiatric conditions (Figure 1).10

Rare exonic deletions overlapping NRXN1 on chromosome 2p16 were first identified in 

individuals with autism spectrum disorder (ASD)11,12 and developmental delay/intellectual 

disability (DD/ID).13 Subsequently, such deletions have been identified in individuals with 

various neurodevelopmental and neuropsychiatric disorders.14–20 A few exonic NRXN1 
deletions have been identified in controls and the majority of transmitting parents are 
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reported to be only mildly affected or clinically unaffected.10,14 Understanding the factors 

that contribute to this incomplete penetrance is a key goal for clinical genetics.

Exonic NRXN1 deletions are non-recurrent and are found across the entire length of this 

large gene.2,10,21,22 There is conflicting evidence to suggest that the deletion extent may 

underlie the NRXN1 phenotypic heterogeneity.10,21 A recent study found that individuals 

with ASD are significantly more likely to harbor a rare de novo mutation in exons that are 

under purifying selection (called “critical exons”) than their siblings,23 suggesting that 

certain sequences within NRXN1 may be more important for clinical expression than others. 

Also, there is accumulating evidence to suggest that non-coding regions of the genome, 

including long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), play an important 

role in the aetiology of neurodevelopmental disorders.24,25 Deletions upstream and within 

introns of NRXN1 have been identified in disease cases;14,22,26 however the pathogenicity 

of these deletions remains unclear.

As the use of genome-wide microarray technology in the prenatal setting increases,27 so too 

does the need for improved understanding of the genetic factors that impact the penetrance 

of NRXN1 deletions to inform genetic counselling and anticipatory care. We used a large 

(n=19,263) clinically ascertained cohort from southern Ontario, Canada and 15,264 

population-based controls to investigate the penetrance of NRXN1 deletions. CNV data 

from high resolution genome-wide microarrays allowed systematic evaluation of the burden 

of secondary CNVs that we used as a proxy to estimate the relative penetrance of exonic and 

intronic NRXN1 deletions.

MATERIALS AND METHODS

Exonic NRXN1 deletions: clinical cohorts examined

We searched three Province of Ontario accredited clinical cytogenetics laboratory databases 

for cases with exonic NRXN1 deletions. These included subjects submitted for clinical 

microarray testing before January 2015 at the Hospital for Sick Children (n=11,727), 

Trillium Health Partners (n=6,022), and Hamilton Health Sciences (n=1,514), all located in 

southern Ontario, Canada. All three laboratories are provincially funded to provide clinical 

constitutional microarray testing for individuals with DD/ID, ASD and/or multiple 

congenital anomalies (MCA). The NRXN1 deletion cases identified in this study therefore 

have a strong ascertainment bias for these conditions. Participating physicians completed a 

detailed clinical checklist (Table S1) for each exonic NRXN1 deletion case based on their 

own clinical assessment and lifetime chart reviews, where available. For cases without 

clinical checklist data, ascertainment and demographic data were collected from laboratory 

requisition forms. We also included three additional cases with an exonic NRXN1 deletion 

(P30, P34 and P35; Figure 1) detected by other clinical laboratories in order to increase the 

overall number of cases with genome-wide CNV data. These cases were not included in 

NRXN1 deletion prevalence calculations for the catchment area.
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Molecular methods and validation

All exonic NRXN1 deletions (chr2:50,145,643–51,259,674; hg19) in cases were identified 

by one of three microarray platforms, the Affymetrix CytoScan® HD Array, the Oxford 

Gene Technology (OGT) 4×180 CytoSure Oligonucleotide array or the Illumina (formally 

BlueGnome) 4x180K CytoChip ISCA array. The OGT and Illumina arrays are similar in 

design with approximately 200–250 oligonucleotide probes (average probe spacing 5.5–7.6 

kb) distributed across the NRXN1 gene, allowing for a minimum deletion detection of 10 kb. 

The CytoScan® HD array has approximately 650 oligonucleotide probes distributed across 

NRXN1, with similar minimum deletion detection capabilities. All genomic coordinates are 

given using the Genome Reference Consortium February 2009 build of the human genome 

(GRCh37/hg 19). Genomic coordinates for the 22 NRXN1 exons (α1 transcript; 

NM_004801.4) were obtained from the NCBI RefSeq database. Exonic NRXN1 deletions 

≥100 kb were confirmed using fluorescence in situ hybridization (FISH). Smaller deletions 

were confirmed by qPCR or by a second microarray.

Additional clinically relevant CNVs as a proxy for calculating the relative penetrance of 
NRXN1 deletions

All three clinical laboratories classified a deletion overlapping any one or more of the 22 

NRXN1 exons (NM_004801.4) as pathogenic. Therefore, we used the presence of a second 

clinically relevant CNV as a proxy for estimating the relative penetrance of the NRXN1 
deletions. As previously shown,28 CNVs with high penetrance (i.e., not identified in control 

cohorts) are less likely to harbor a second independent large rare CNV.28 The high-

resolution genome-wide CNV data from each NRXN1 deletion case was investigated for the 

presence of a second CNV that may be clinically relevant. The clinical interpretation of 

these second CNVs as pathogenic, likely pathogenic, or as a variant of unknown significance 

(VUS) was provided by one of the three experienced clinical laboratory directors using the 

American College of Medical Genetics guidelines for CNV interpretation.29 Other clinically 

relevant variants detected by different laboratory tests were not included in our statistical 

analyses.

Phenotypic data

The clinical checklist completed for each exonic NRXN1 deletion case is presented in Table 

S1. Briefly, data were collected on ascertainment features, demographic variables (age, sex), 

growth parameters (height, weight, head circumference) and growth abnormalities, 

dysmorphic features, and lifetime developmental, psychiatric, medical, and family history 

based on clinical assessment and/or lifetime medical chart reviews. If completed, previous 

clinical genetic testing results were provided. Where known, data on parental phenotypes 

were collected.

Control cohorts

To examine the prevalence of exonic and intronic NRXN1 deletions in the general 

population we used 15,264 controls with CNV data available from high-resolution genome-

wide arrays (Table S3). These controls were analyzed on several different array platforms 

with variable probe spacing. Therefore, similar to previous studies,30 we only included 
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exonic and intronic deletions identified by a minimum of two of three CNV calling 

algorithms (iPattern, PennCNV, ChAS), spanning 5 consecutive array probes and over 10 kb 

in size. Over 90% of CNVs called using this method validate using other laboratory 

methods.30

Intronic NRXN1 deletions

Trillium Health Partners was the only clinical laboratory that systematically recorded 

intronic NRXN1 deletions. These clinical cases (n=6,022) were analyzed using the Illumina 

4x180K CytoChip ISCA array which had even probe spacing across introns. We used two 

strategies to assess the pathogenicity of intronic NRXN1 deletions. First, we compared the 

prevalence of intronic NRXN1 deletions between clinically referred cases and the 15,254 

population-based controls described above. Second, we assessed the prevalence of secondary 

CNVs among the intronic NRXN1 deletion cases and compared this to the prevalence for 

exonic NRXN1 deletion cases.

Statistical analyses

Statistical analyses were performed using SAS software (version 9.2; SAS Institute, Cary, 

NC). For categorical data we used χ2 or Fishers exact test, where appropriate. For 

continuous data we used Welch’s t-test. All analyses were two tailed, with statistical 

significance defined as p<0.05. Odds ratios (OR) and 95% confidence intervals were used to 

assess the prevalence of secondary CNVs between deletions overlapping one or more of 

exons 1–4 and those overlapping exons ≥5 and the association between the NRXN1 
deletions (exonic and intronic) ascertained from the clinical diagnostic population compared 

to controls.

RESULTS

Prevalence of exonic NRXN1 deletions in cases and controls

As of January 2015, a total of 19,263 individuals were submitted for clinical microarray 

testing across the three participating cytogenetics laboratories. There were 41 (0.21%) 

unrelated, previously unpublished, probands identified to have deletions overlapping one or 

more NRXN1 exons (Figure 1). The prevalence of exonic NRXN1 deletions for the 

individual laboratories was 0.33%, 0.26%, and 0.14% (Table S4). The prevalence of exonic 

NRXN1 deletions was significantly greater in cases compared to 15,264 controls [OR=8.14 

(95% CI 2.91–22.72), p< 0.0001)] (Table S3).

Exonic NRXN1 deletions

Genomic coordinates for all 44 exonic NRXN1 deletions, including three additional cases 

with exonic NRXN1 deletions from laboratories outside the catchment area, are represented 

in Figure 1. All were non-recurrent, with sizes ranging from 29 kb to 806 kb (median=244 

kb). The majority of the deletions (n=32; 72.7%) overlapped at least one or more of exons 

1–4 (referred to as a 5′ NRXN1 deletion hereafter). Ten (22.7%) deletions overlapped exons 

≥5 (hereafter termed 3′ NRXN1 deletions). Two deletions (P28 and P30; Figure 1) that 

overlapped both the 5′ and 3′ end of NRXN1 were excluded from analyses comparing 5′ 
and 3′ NRXN1 deletions but not the descriptive statistics. This categorization of exons has 
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been used in previous publications.10,21 The 5′ NRXN1 deletions (median size=242 kb) 

were significantly larger than the 3′ NRXN1 deletions (median size=83 kb), [t(18.5)=2.55, 

p=0.019].

The 44 exonic NRXN1 deletions were inherited (11 maternal, 5 paternal) in 16 (64.0%), de 
novo in nine (36.0%) and unknown in 19 subjects. Of these, 5′ NRXN1 deletions were 

inherited in thirteen (61.9%) and de novo in 8 (38.1%) subjects; 3′ NRXN1 deletions were 

inherited in 3 (75.0%) and de novo in 1 (25.0%) subject. Of the 11 transmitting mothers, 

four were identified as clinically affected: three with mild ID and one with anxiety and 

depression. Clinical outcomes for the remaining seven transmitting mothers and five 

transmitting fathers were unknown.

Genome-wide prevalence of additional clinically relevant CNVs

Clinical microarray testing identified 10 (22.7%) exonic NRXN1 deletion cases with one or 

more additional clinically relevant CNV (n=14), ranging in size from 38 kb to whole 

chromosomal anomalies (Table 1). The prevalence of males (n=7/28; 25.0%) with a 

secondary CNV was similar to that of females (n=3/16; 18.8%). Twelve (85.7%) of these 

CNVs were classified as VUS and two as pathogenic (Table 1). The two pathogenic CNVs 

were de novo, two of the VUS were paternally inherited and the remaining 10 additional 

VUS were of unknown inheritance. The prevalence of these secondary CNVs was 

significantly higher in subjects with a 3′ NRXN1 deletion (n=7/10; 70.0%) compared to 

subjects with a 5′ NRXN1 deletion (n=3/32; 9.4%) [OR=7.47 (95% CI 2.36–23.61), 

p=0.0006] (Figure 1). Eleven (78.6%) of the fourteen secondary CNVs overlapped one or 

more genes known to be involved in central nervous system function (Table 1).

Clinical characteristics of exonic NRXN1 deletion cases

Completed clinical checklists were returned for 21 (47.7%) exonic NRXN1 deletion cases 

by referring physicians, with basic ascertainment and demographic data available for the 

other 23 cases (Table S2). As expected given the criteria for microarray testing, all of the 44 

probands (16 female, 28 male) with exonic NRXN1 deletions were ascertained for DD/ID. 

Thirty-five (79.5%) were children (median 5.2, range 1–6 years) and nine (20.5%) were 

adults (median 32.0, range 21–59 years).

There were 20 (45.5%) subjects who met diagnostic criteria for another (i.e., additional to 

DD/ID) neurodevelopmental and/or neuropsychiatric condition, often referred to as ‘dual 

diagnosis’. Including multiple features per subject, the prevalence of these conditions was: 

ASD or pervasive developmental disorder (n=14; 31.8%), epilepsy/seizures (n=6; 13.6%), 

ADHD (n=4; 9.1%), anxiety (n=3; 6.8%), Tourette’s syndrome (n=2; 4.5%) and tardive 

dyskinesia secondary to antipsychotic treatment in two adults with schizophrenia (n=2; 

4.5%). There was no significant difference in the prevalence of dual diagnosis, seizures/

epilepsy or macrocephaly between subjects with a 5′ NRXN1 deletion compared to subjects 

with a 3′ NRXN1 deletion (data not shown).

In contrast to the prominent neurodevelopmental phenotype, congenital anomalies were 

identified in only four (9.1%) cases: two with tetralogy of Fallot (TOF), one of whom also 

had a tracheoesophageal fistula and imperforate anus, a third with cryptorchidism, and a 
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fourth with a small atrial septal defect. All four of these subjects had a 5′ NRXN1 deletion 

and none were identified to have a rare second CNV. However, one TOF case was identified 

to have a RAF1 sequence mutation causing Noonan syndrome (OMIM 611553).

Eleven (25.0%) cases had additional clinical genetic testing that was found to be normal, 

including karyotype, fragile X syndrome, 22q11.2 deletion syndrome, Prader-Willi 

syndrome, muscular dystrophy gene panel and a gene panel for progressive myoclonic 

epilepsy. Two long contiguous stretches of homozygosity on chromosome 14 (identified on 

follow-up to be maternal uniparental disomy of chromosome 14) were identified in a single 

subject (P14; Figure 1).

Intronic NRXN1 deletions

We identified 19 of 6,022 (0.32%) cases submitted for clinical microarray testing and 55 of 

15,264 (0.36%) controls to have an intronic NRXN1 deletion (Figure 1). In contrast to the 

prevalence of exonic NRXN1 deletions identified in this laboratory (0.33% [OR 12.67 (95% 

CI 4.33–37.08), p<0.0001], there was no significant difference in the prevalence of intronic 

NRXN1 deletions between cases and controls [OR 0.88 (95% CI 0.52–1.48), p=0.618)]. 

These intronic NRXN1 deletions ranged in size from 11 kb to 134 kb (median=38 kb), 

significantly smaller than the 44 exonic deletions (p<0.0001). The majority (n=14; 73.7%) 

of the intronic deletions were located in the large intron 5 (Figure 1). Inheritance data are 

limited as most of the intronic deletions were not included in clinical reports; one case had 

follow-up and was found to be paternal in origin. Several of the intronic deletions were 

recurrent, including a 70.6 kb deletion in intron 5 and an 11.1 kb deletion in intron 18. 

Twelve (63.2%) of the 19 intronic NRXN1 deletion cases had a second reportable CNV on 

clinical microarray (Table 2), a significantly greater prevalence than for the exonic NRXN1 
deletion cases [OR=2.59 (95% CI 1.37–4.91); p=0.004].

Of these 19 (11 female, 8 male) unrelated cases with intronic NRXN1 deletions, 17 (89.5%) 

were children (median=5.0, range 0.5–10 years) and two were adults (Table S2). Sixteen 

(84.2%) were ascertained for DD/ID and/or ASD and three (6.8%) for MCA (n=1), CHD 

(n=1) and absent radius/thumb. Of the 16 cases with DD and/or ASD, ten (62.5%) had a 

second rare CNV that overlapped one or more genes involved in central nervous system 

function (Table 2).

DISCUSSION

This is the largest study characterizing exonic and intronic NRXN1 deletions to date. Our 

aim was to use data from a large clinical population-based sample to systematically 

investigate factors affecting the penetrance of deletions overlapping this large gene. In 

addition to confirming the predominantly neuropsychiatric phenotypic expression of 

pathogenic CNVs overlapping NRXN1, novel results support the importance of the genomic 

extent of these deletions, including the particular region involved and overlapped exons.

Penetrance of exonic NRXN1 deletions

We report on 44 novel exonic NRXN1 deletion cases ascertained for DD/ID (Table S2). We 

assessed penetrance using multiple factors, both those used previously (prevalence in cases 
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versus controls and the ratio of de novo versus inherited deletions) and those novel to this 

study (prevalence of secondary CNVs and classification as pathogenic or VUS). We found 

that the 0.21% prevalence of exonic NRXN1 deletions in this clinical population was over 8-

fold greater than in controls and that 34% of these deletions were identified to be de novo, 

supporting the relatively high penetrance of these deletions for clinically important 

phenotypes. About one in every four cases with an exonic NRXN1 deletion had one or more 

other rare CNVs reported on clinical microarray (Table 1). Their distribution amongst the 

cases indicated a relatively lower penetrance of 3′ NRXN1 deletions.

The effect of genomic position on penetrance of exonic NRXN1 deletions

Similar to previous studies,10,21,22,31 the majority of the exonic NRXN1 deletions identified 

in clinical cases overlapped the promoter and the first few exons of the NRXN1-α transcript. 

For subjects with deletions overlapping the 3′ end of NRXN1 there was an over 7-fold 

increased likelihood of having a second clinically relevant CNV compared to subjects with a 

5′ NRXN1 deletion (Figure 1). Further, none of the additional rare CNVs identified in the 

5′ NRXN1 deletion subjects were classified as pathogenic, demonstrating the relative 

importance of 5′ NRXN1 deletions over 3′ NRXN1 deletions for the expression of clinical 

phenotypes.

A potential explanation for the higher penetrance of 5′ NRXN1 deletions may be that these 

deletions directly overlap or indirectly influence the lncRNA AK127244 that is adjacent to 

the promoter of NRXN1-α (Figure 1). There is accumulating evidence to suggest that 

AK127244 may play a role in the etiology of neuropsychiatric disorders.26,32,33 This 

includes the identification of two deletions that overlap this lncRNA (and not NRXN1) in a 

child with borderline IQ and early onset schizophrenia.32 A recent report also described five 

ASD cases with deletions overlapping AK127244.26 The biological function of AK127244 

has yet to be elucidated. However, a significant proportion of lncRNAs are expressed in the 

brain and have important roles in neurodevelopmental processes.34

There was little evidence that additional phenotypic features were indicators of higher 

penetrance in individuals with exonic NRXN1 deletions in this study. This could be due in 

part to a high phenotypic floor effect present in clinically recruited subjects. It is interesting 

to note that the two adults with comorbid ID and schizophrenia in this study had deletions 

overlapping the 5′ end of NRXN1. Similarly, in the largest study of NRXN1 deletions in 

schizophrenia to date there were 10 exonic NRXN1 deletions identified, the majority of 

which overlapped the 5′ end of NRXN1.14 Also, two cases from this study had a deletion 

overlapping AK127244 but not NRXN1,14 providing support for the possible role of this 

lncRNA in the etiology of schizophrenia.

In contrast to our findings supporting the reduced penetrance of 3′ NRXN1 deletions, the 

limited number of these deletions reported in the literature had previously led to the 

hypothesis that they are associated with severe phenotypes, including prenatal lethality.31 To 

further investigate if deletions overlapping the 3′ end of NRXN1 are associated with 

prenatal lethality we examined ten studies of miscarriages and/or stillbirths (see refs 6 and 

17–26 in Rosenfeld et al.)35 for rare CNVs overlapping NRXN1. Among >900 products of 

conception there was only one paternally inherited 95 kb deletion overlapping NRXN1-α 
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(exons 2–4) identified.35 We also identified one deletion overlapping the NRXN1-β 
promoter among 15,254 controls. These data provide further support for the increased 

penetrance of 5′ relative to 3′ NRXN1 deletions.

Interpretation of intronic NRXN1 deletions

We identified 19 novel cases with an intronic NRXN1 deletion, 16 with DD/ID and/or ASD 

and three with a congenital anomaly. Our group used two strategies to assess the penetrance 

of intronic NRXN1 deletions. First, we compared the prevalence of intronic NRXN1 
deletions between cases and population-based controls and detected no significant 

difference. Indeed, 18 of the 19 intronic NRXN1 deletions identified in cases had 

breakpoints similar to those seen in controls (Figure 1). Second, we determined that intronic 

NRXN1 deletion cases were two-fold more likely to harbour a second clinically relevant 

CNV compared to exonic NRXN1 deletion cases. Therefore, intronic NRXN1 deletions 

appear unlikely to substantially increase the risk for a neurodevelopmental disorder and/or 

MCA.

However, seven (36.8%) of the intronic NRXN1 deletion cases, each with severe phenotypes 

had no additional rare CNV reported on clinical microarray. One of these seven NRXN1 
deletions overlapped intron 9 (Case I16; Figure 1), which had no corresponding deletion 

identified in controls. Using the VISTA enhancer browser (https://enhancer.lbl.gov)36 we 

identified a known enhancer element (hs1348) located 37 kb upstream of the intron 9 

deletion, which if perturbed could potentially alter the transcriptional levels of NRXN1 and 

thus increase the penetrance of this deletion.

Advantages and limitations

There are several advantages to this study. We used data from three clinical laboratories to 

compile the largest cohort of clinically referred individuals with exonic and intronic NRXN1 
deletions assembled to date. Our systematic approach to the detection and interpretation of 

additional rare CNVs allowed us to use the burden of these secondary CNVs as a proxy for 

determining the relative penetrance of NRXN1 deletions. We employed robust methods for 

CNV detection, to evaluate the prevalence of intronic NRXN1 deletions in cases and 

controls which had previously been ignored due to the use of different CNV calling 

algorithms and reporting practices across clinical laboratories.

A limitation of this study is that the prevalence of individual clinical features would 

necessarily be influenced by the ascertainment bias inherent in clinically referred cases. This 

tends to overestimate DD/ID and underestimate other features. The prevalence of NRXN1 
deletions was about an order of magnitude different between each clinical laboratory, 

reaching statistical significance between the Hospital for Sick Children (0.14%) and Trillium 

Health Partners (0.33%) [OR 2.29 (95% CI 1.19–4.39), p=0.012)] (Table S3). This may be 

due to differences in indications for referral, with the Hospital for Sick Children and 

Hamilton Health Sciences servicing children with the most severe and intractable 

neurological disorders from this catchment area. Given that some NRXN1 deletions are 

identified in control subjects,14,31 it is possible that the prevalence of these deletions is 

highest at Trillium Health Partners since it is a community-based hospital that services 
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individuals with comparatively milder clinical phenotypes. The resolution of the microarrays 

used to define the NRXN1 deletion breakpoints and detect genome-wide structural variants 

limited us to those >10 kb that could influence phenotypic expression.

Only one control cohort (OPGP; Table S3) was systematically screened for 

neurodevelopmental and/or neuropsychiatric conditions. Control subjects with NRXN1 
exonic or intronic deletions may thus have had mild and/or subclinical symptoms. This 

could have reduced the effect size of the case-control results. We did not have access to the 

individual SNP data for the NRXN1 deletion cases or the controls and as a result were 

unable to genetically confirm that each individual was unrelated to any other. However, 

given that none of the exonic NRXN1 deletions identified in cases or controls had similar 

breakpoints it is unlikely that these individuals were related. Further, only two of the eight 

control cohorts (Table S3) were ascertained from the same catchment area as our cases and 

they included adults only. This makes it unlikely that the intronic NRXN1 deletion cases 

(89% children) were the same individuals as those among the controls.

Future directions

The major challenge moving forward will be to determine how genetic and non-genetic 

factors converge to explain the variable expression and incomplete penetrance of exonic and 

intronic NRXN1 deletions. Examination of the genes overlapped by additional rare CNVs as 

well as applying next generation sequencing to detect variants within the coding and non-

coding regions of the genome in subjects with a NRXN1 deletion may serve as a key step 

towards identifying novel pathways to disease expression. Interestingly, none of the second 

rare CNVs identified in this study have been previously reported in combination with an 

exonic NRXN1 deletion,10,21,22,31 suggesting that a large NRXN1 deletion consortium may 

be required to compile enough cases to identify novel biological patterns among the 

additional variants.

Conclusions

The expression of exonic NRXN1 deletions appears to be primarily neuropsychiatric, with 

DD/ID often comorbid with another neuropsychiatric condition. The results of this study 

suggest that deletions near the 5′ end of NRXN1 have higher penetrance, potentially related 

to perturbation of the lncRNA AK127244 located adjacent to the NRXN1-α promoter. 

Subjects with a 3′ NRXN1 deletion had a 7-fold increased likelihood of having a second 

rare CNV detected by clinical microarray, supporting reduced penetrance for these deletions. 

There is insufficient evidence as yet to suggest that all intronic NRXN1 deletions are benign.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Novel exonic and intronic NRXN1 deletions identified in cases and controls
The image was modified from the Database of Genomic variants (http://dgv.tcag.ca), NCBI 

Build 37 (hg 19).37,38 The two primary NRXN1 transcripts (α1 and β1) are shown in pink; 

other transcripts are not included. The long non-coding RNA (lnRNA) AK127244 is shown 

in green. Each of the 22 exons is identified by a number according to the NM_004801.4 

transcript. The five splice site (SS 1-5) locations are represented above the NRXN1-α 
transcript. The hollow pink box denoted by a P adjacent to each transcript represents the α 
and β promoter, respectively. All exonic and intronic deletions (chr2: 50,145,643–

51,259,647; hg 19) are represented by solid red and yellow bars, respectively. Deletions with 

a black grid are subjects that were identified to have a second CNV of potential clinical 
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relevance. Inheritance status of the NRXN1 deletion is represented in brackets following the 

patient ID number (d.n., de novo; mat, maternal inheritance; pat, paternal inheritance; blank, 

unknown). P28 and P30 overlap both the 5′ and 3′ ends of NRXN1 and were not included 

in statistical analyses. P14 and P32 were identified to have maternal uniparental disomy of 

chromosome 14 and a RAF 1 mutation, respectively. The light blue box designates subjects 

with deletions overlapping exons ≥5 (3′ deletion). Case numbers were kept consistent 

throughout the manuscript, tables and supplemental documents. Cases P30, P34 and P35 

were obtained from other laboratories and are represented in bold font.
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