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Abstract 

Wastewater is water that has already been used and requires treatment before releasing it into 

natural water bodies like lakes and rivers. Wastewater treatment is the process of removing 

impurities from wastewater. In this treatment process, the impurities are removed and converted 

to effluent. This effluent is returned to the water cycle with minimum impact on the environment. 

Conventional treatment plants consist of three stages: primary, secondary, and tertiary treatment. 

Treatment of wastewater is quite complicated because of the number of stages involved in this 

process. Most wastewater treatment plants are operated manually therefore at times it becomes 

difficult for operators to maintain desired effluent quality. Modeling and simulation technique is 

suggested to improve and predict the performance of the plant. 

Mechanistic models involve fundamental equations to model the process, since wastewater 

treatment is a complicated process artificial neural network is suggested to model the process. This 

is a data-driven approach that identifies patterns between input and output data. This type of 

technique is called black-box modeling. The past four years' data is analyzed and used to predict 

the effluent quality of the plant. The effluent quality is measured in terms of four major pollutants 

namely biochemical oxygen demand, suspended solids, total phosphorus, and ammonia. 70% of 

the total data was used for training purposes and 30% was used for validation purposes. The 

correlation coefficient between the modeled values and actual values was around 0.97. 

To minimize the concentration of the pollutants in the effluent stream multi-objective optimization 

is suggested. A genetic algorithm is used to solve multi-objective optimization of the treatment 

plant. An equalization tank or buffer system is suggested to counterbalance the fluctuating flow 

and composition of influent to the treatment plant. The decision variables associated with this 

process are the temperature of the influent stream, total sewage flow, biochemical oxygen demand, 

suspended solids, pH, total phosphorus, and ammonia of the influent stream. The optimizer was 

able to minimize the concentration of pollutants in the effluent stream and comply with the strict 

effluent regulations. 

Keywords: Wastewater treatment, Modeling, Multi-objective optimization 
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Summary For Lay Audience 

The purpose of wastewater treatment is to remove the impurities before discharging them back 

into the environment. Untreated wastewater is harmful to both humankind and the environment. 

Improper operation of WWTP can cause environmental and various health issues like cholera and 

dysentery. The optimal operation of WWTP can improve efficiency and reduce the costs 

associated with various processes. In this research work, a multi-objective optimization approach 

has been used to minimize the concentration of pollutants in the effluent stream instead of a single-

optimization approach. In the real world, multi-objective problems with conflicting objectives are 

frequently encountered. In this case, a set of equally good solutions is generated, also known as 

the Pareto set. Though sometimes it becomes difficult for the decision maker to choose a single 

optimal solution from a set of optimal solutions. 

Wastewater treatment is a complex system, and it is difficult to explore various design ideas on a 

pilot plant. Modeling helps in understanding how a system would behave in various conditions 

without experimentation. A WWTP model is a representation of physical and chemical processes 

involved in the purification of wastewater. In my research work, a black-box modeling approach 

has been employed to model WWTP. This type of modeling is based on the input-output behavior 

of the process in contrast to physical modeling which is time-consuming. A model based on ANN 

was developed to predict the quality of effluent stream. 

To minimize the concentration of the pollutants in the effluent stream multi-objective optimization 

is suggested. A genetic algorithm is used to solve multi-objective optimization of the treatment 

plant. An equalization tank or buffer system is suggested to counterbalance the fluctuating flow 

and composition of influent to the treatment plant. The decision variables associated with this 

process are the temperature of the influent stream, total sewage flow, biochemical oxygen demand, 

suspended solids, pH, total phosphorus, and ammonia of the influent stream. The optimizer was 

able to minimize the concentration of pollutants in the effluent stream and comply with the strict 

effluent regulations. 
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Chapter 1 

1 Introduction 

Water is essential to all forms of life and makes up about 70% of the human body. The availability 

and quality of water play an important role in determining the quality of life. Effluents from 

industries are disposed into streams without proper treatment, which severely affects the quality 

of receiving streams. Wastewater treatment is the process of removing impurities from wastewater 

before they reach natural water bodies such as lakes, rivers, estuaries, and oceans. In this process, 

the impurities are removed and converted to effluent. This effluent is returned to the water cycle 

with minimum impact on the environment. Freshwater is a limited environmental resource because 

freshwater sources have become polluted due to human activity: wastewater produced from 

agriculture and industrial processes has been discarded into freshwater resources. By treating 

wastewater, water-borne diseases can be controlled. The conventional treatment plants consist of 

three stages(US EPA, 1998): primary, secondary, and tertiary treatment. During primary treatment, 

large particles and coarse material are removed. Secondary treatment (also called biological 

treatment) degrades organic matter using microorganisms. The tertiary treatment removes 

pathogens and microorganisms, to meet stringent effluent quality standards.  

Table 1-1: Various constituents of wastewater 

Microorganisms Virus, bacteria 

Biodegradable organic matter  

Other organic material  Oil and grease, fat, detergents, Pesticides 

Nutrients  Nitrogen, Phosphorus, Ammonium 

Metals Hg, Pb, Cd, Cr, Cu 

Inorganic material Acids, bases 

Odor Hydrogen sulfide 
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Radioactivity  

 

Wastewater treatment plants are major consumers of energy. They consume 7% of electrical 

energy worldwide (Plappally & Lienhard V, 2012). Generally, wastewater treatment plants are 

operated based on experience and small-scale experiments. Therefore, plants are not operated 

optimally. The growing population and restricted effluent emission rights mean that the existing 

process needs to be looked at in terms of optimization. Optimization is the selection of the best 

element from a set of available alternatives. 

 

Figure 1.1 Study Area 

https://london.ca/projects/adelaide-wastewater-treatment-plant-climate-change-resiliency-environmental-assessment 
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1.1 Introduction to modeling and simulation 

Simulation is the process of designing a model of a real system and conducting experiments with 

this model. The main objective of the simulation is to gain a thorough understanding of the 

behaviour of the system. It also involves the evaluation of various alternative strategies. Broadly 

a model is a representation of reality. For instance, a blueprint is a model of a building and is a 

two-dimensional model of a three-dimensional reality. 

Various types of models: 

1. Physical models resemble the system being studied e.g., flight simulator 

2. Scaled models also represent the system under study, but at a different size e.g., a scaled-

up model of an atom.  

3. Mathematical models have relationships represented by mathematical functions. These are 

generalized and oversimplified models. 

4. A heuristic model is a collection of decision rules, usually computer-based and is not 

limited by physical or mathematical boundaries.  

Every model employs abstraction which is an important characteristic of modeling. A model alters 

reality to some degree as a model can be larger, slower, or faster. Therefore, a model is a simpler 

version of a real-world system. Since physical modeling is a time-consuming process, the black 

box model is suggested to overcome this problem. In the black box model, a set of inputs is mapped 

to a set of outputs through a transformation.  

 

 

 

 

 

Transform Input Output 

Figure 1.2 Black box model 
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1.1.1 Types of simulation models 

1. The static model represents a system at a particular point in time. A static model is trained 

offline. 

2. The dynamic model represents systems as they change over time. A dynamic model is 

trained online. e.g., simulation of a banking system 

3. The stochastic model has one or more random variables as inputs. Random inputs lead to 

random outputs. e.g., the simulation of a bank involves random interarrival and service 

time. 

4. The deterministic model has defined results for a known set of inputs and has no 

randomness associated with it e.g., the arrival of patients to the dentist at the scheduled 

appointment time. 

5. Discrete-event simulation involves changes to the system at a discrete set of points in time 

e.g., a manufacturing system with parts entering and leaving at specific times. 

6. A continuous model involves changes to the system continuously over time e.g., water 

flowing in and out of a reservoir. 

7. The mixed model contains both discrete and continuous elements e.g., a refinery with 

continuously changing pressure inside the vessel and discreetly occurring shutdowns. 

Modeling and simulation increase the understanding of very complex systems. This reduces the 

risks and costs of experimentation. The likely outcomes of all the alternatives can be estimated 

before building the actual system. A simulation is a powerful approach for making evidence-based 

decisions and improving efficiency and profitability. For example, in a transportation system how 

a new bus or rail line can affect people’s lives in terms of travelling times can be estimated. 

Therefore, with the help of a simulation model performance and improvements can be easily 

evaluated before constructing a new line in a transportation system. Every model is limited by the 

assumptions that created it, even the best models don’t predict the future accurately (Maria, 1997). 

Applications of modeling and simulation can be found in various fields like economics, financial 

industry, engineering, biological transportation, and epidemiology. Epidemiology is the study of 
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epidemics and in the situation of the COVID-19 outbreak, mathematical modeling has played a 

vital role in understanding the dynamics and predicting the curves and behavior of virus spread.  

1.1.2 Steps in the simulation study 

1. Define the system intended to simulate. 

2. Identify and collect data: collect data on system specifications, input variables, output 

variables, and performance of the system. 

3. Formulate and develop model: A computer program is designed where a set of inputs give 

a set of outputs. To understand the performance of the computer program verification is 

done. Verification techniques include varying the input parameters and comparing the 

outputs and tracing intermediate results with actual outcomes. 

4. Validate the simulation: Comparing the model’s performance under known conditions with 

the performance of the actual system. 

5. Analyze the results of the simulation and recommend further courses of action. 

6. Document model for future use (Maria, 1997). 

1.2 Introduction to Optimization 

Optimization is the process of making the best use of a situation or resource. It is choosing the best 

element from a set of alternatives according to some criterion. A mathematical programming 

problem is one that typically maximizes or minimizes a function (called an objective function) for 

a set of criteria, called the constraints. For example, minimizing the cost of transportation of goods, 

maximizing the profit of a company, etc.  

                          𝑀𝑎𝑥 𝑀𝑖𝑛    𝑓(𝑥)⁄   ← 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛                                                             (1.1) 

                                                                  𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

                                             𝑔𝑗 ≤ 0 ,   𝑗 ∈ 1,2,3 … 𝑚 
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There are broadly two types of programming problems: 

Linear programming problem(LPP)-where the objective function and constraints are both linear 

functions of decision variables. For example, Min x+y, s/t x≥ 2, 𝑦 ≥ 4 is an LPP as both the 

objectives and the constraints are linear functions of x and y. 

Non-linear programming problem(NLPP)-where either the objective function or constraints or 

both are non-linear functions of the decision variables. For example: Max x2+y2 s/t x+y ≤ 10, x, 

y≥ 0 is an NLP as the objective function is non-linear function of x and y. 

1.2.1 Optimization techniques 

Mathematical programming techniques based on geometric properties of the problem 

1. Simplex algorithm  2. interior point method 

Simplex Algorithm 

The simplex method is a commonly used algorithm to solve LPP (Dantzig, 1990). This method 

uses slack variables and pivot variables to find the optimal solution. The steps involved in simplex 

method are as follows: 

1. Standard form-In order to perform the simplex algorithm problem must be formulated 

appropriately and consistently.  

2. Slack variables-They are introduced to replace inequality constraints with an equality 

constraint and a non-negative constraint. 

3. Find the initial feasible solution-This can be done by setting all non-basic variables to 0. 

4. Perform iteration of the simplex algorithm. 

Metaheuristic techniques 

Meta means a high-level methodology, while heuristics means art in finding new strategies for 

solving a problem (Gunantara & Nurweda Putra, 2019). Examples of metaheuristic methods based 

on population are:- 
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1. Genetic algorithm 

2. Ant colony optimization 

3. Particle Swarm optimization 

A genetic algorithm(GA) is a search-based optimization technique based on the principles of 

natural selection. It is frequently used to find the optimal solution to difficult problems which 

otherwise would take a lifetime to solve. This algorithm is based on Darwin’s principle of natural 

selection and uses operations such as crossover and mutation (Haldurai et al., 2016). GA is a 

population-based random search technique and every individual in the population corresponds to 

a possible solution. 

               

 
110010
010101
101010

 

 

In GA every solution is characterized by a set of parameters known as genes. Genes are joined 

together to form a chromosome(solution). The first step of GA is to generate an initial population 

and calculate the fitness of each solution. Fitness is the value objective function in the optimization 

problem. The fitness function determines the ability of an individual to compete with other 

individuals. Based on the value of the objective function fitness score is assigned to everyone. The 

individuals with higher fitness scores will be selected for recombination and mutation to form a 

new generation. Each solution is represented by a bit string as shown above. 

Crossover 

In a crossover, a mating pair is selected randomly from a population. The crossover operator is 

used to create new solutions from the existing solutions. This operator exchanges the gene 

information between two parents and as a result, two offspring solutions are produced. The 

crossover point is chosen using a random number generator, generating an integer between 1 and 

L. Where L is the length of the chromosome. Various crossover operations are single-point 

Population set of 

chromosomes 

010101 chromosome 

Gene 
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crossover, two-point crossover, uniform crossover, and multi-point crossover. Single point 

crossover is shown below and genes after the crossover point are swapped between parents. 

  
0│001 0010

        1│010   → 1001
 

Only good strings get propagated and less good ones slowly die during the copying process. Not 

all good strings in the mating pool undergo crossover, if crossover probability is Pc then 100(1-

Pc)% of strings continue unchanged to the next generation. 

Mutation 

The purpose of the mutation operator is to introduce new features into the solution string of 

population to maintain diversity. This is analogous to biological mutation. The mutation operator 

is used to avoid convergence to local minima by preventing the population of chromosomes from 

becoming identical to each other. For example, the first position of the strings shown below can 

never become 1 by crossover.  

0110 …
0011 …
0001 …

 

Since GA is an iterative process and the algorithm stops when the population is no longer able to 

generate better individuals. 

Ant colony optimization(ACO) is inspired by the behavior of a colony of ants. Communication 

between ants is based on the use of a chemical compound called pheromone (Gunantara & 

Nurweda Putra, 2019). The main motive behind ACO is to minimize the path and power 

consumption in finding the optimal solution analogous to how ants search for food. Ants lay down 

pheromone while searching for food and way back to their colony. If other ants find this path, they 

are likely to follow the same path and eventually reach their objective of finding food. However, 

the pheromone trail starts to evaporate with time. Ants are more likely to choose a path with a 

higher pheromone and therefore the probability of choosing the shortest path is more. When one 

ant finds a shorter path, other ants are likely to follow that path. This kind of positive feedback 

eventually leads to all ants following the shortest path.  
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Particle swarm optimization(PSO) was proposed by Kennedy and Eberhart in 1995. The basis of 

this algorithm is that when a flock of birds move in a group, they share their discovery and help 

the entire flock get the best hunt. PSO mimics the phenomenon of the flocking of birds or a school 

of fish. It is a direct search method and does not require any gradient information. Each member 

in the swarm learns from their experience and other members for changing the search pattern to 

locate the food.  

PSO algorithm 

1. PSO is initialized with a group of random particles or solutions and searches for an optimal 

solution by updating generations 

2. Particles move through the solution space and are evaluated according to some fitness 

criteria after each step. In every iteration, each particle is updated by two best values. 

3. The first one is the best solution a particle has achieved so far. This value is referred to as 

the pbest. 

4. Another best value is the best value obtained so far by any particle in the population. This 

value is called the global best or gbest. The particles work independently and keep track of 

the pattern of other members to find the optimal solution to a problem. 

5. Each particle tries to update its current position and velocity according to the distance 

between its current position and pbest and the distance between its current position and 

gbest. 

The position of the particle is updated according to the following equation 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝑣𝑖
(𝑡+1)

                                                                                                                              (1.2) 

𝑣𝑖
(𝑡+1)

=  𝑣𝑖
(𝑡)

+ 𝑐1𝑟1 (𝑝(𝑖,𝑙𝑏)
(𝑡)

− 𝑥𝑖
(𝑡)

) + 𝑐2𝑟2(𝑝𝑔𝑏
(𝑡)

− 𝑥𝑖
(𝑡)

)                                                                (1.3) 

Where:- 

 i is the ith particle 
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t is generation counter 

c1 and c2 are the acceleration coefficients 

r1 and r2 are random numbers 

pt
(i,lb) is the local best of ith particle 

pt
(gb) is the global best 

1.2.2 Introduction to Multi-objective optimization 

Multi-objective optimization(MOO) problems involve more than one objective function to be 

maximized or minimized simultaneously. This results in trade-off decision-making as there is no 

single best solution for problems with more than one objective function (Deb, 2011). For example, 

while buying any commodity price and quality are constantly being compared. As it is hard to 

minimize price and maximize the quality of a commodity. A single objective function has a single 

optimal solution but in the real world, it is hard to find problems that involve only one objective 

function.  

There are three components of any objective function 

1. Objectives 

minimize or maximize 𝑓𝑖(𝑥1, 𝑥2, … … . 𝑥𝑛), 𝑖 = 1,2 … . . 𝑚  

2. Constraints 

Subject to 𝑔𝑗(𝑥1, 𝑥2, … … . 𝑥𝑛), 𝑗 = 1,2, … … . . 𝑙 

3. Design variables 

𝑥𝑘  , 𝑘 = 1,2, … … . 𝑚                                                                             

Pareto optimality 

A state is said to be Pareto optimal if there is no other state dominating the state for a set of 

objective functions. A state X dominates a state Y if X is better than Y in at least one objective 
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function and not worse with respect to all other objective functions. This concept gives a set of 

solutions and not a single solution. This idea was first proposed by Goldberg in 1989 (Ngatchou 

et al., 2005). 

 

1.2.2.1 Classic MOO methods 

Weighted sum method 

In the weighted sum method, a set of objectives is combined into a single objective function by 

adding each objective pre-multiplied by a user-defined weight. The weight of an objective is 

chosen in proportion to the relative importance of the objective (Marler & Arora, 2010). A 

disadvantage of the weighted sum method is that it is difficult to set the weight vector to obtain a 

Pareto-optimal solution in the desired region. 

                                               Minimize 𝐹(𝑥) = ∑ 𝑤𝑚𝑓𝑚(𝑥)𝑀
𝑚=1  

                                              Subject to 𝑔𝑗(𝑥) ≥ 0,      𝑗 = 1,2, … … … … 𝐽                                (1.4) 

                          ℎ𝑘(𝑥) = 0,      𝑘 = 1,2, … … … 𝐾 

                             𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
𝑈, 𝑖 = 1,2, … … … . 𝑛 

 

ϵ-Constraint Method 

the ϵ-constraint method is a classical method for handling multi-objective optimization problems 

by converting them to a single objective optimization problem. In this method, only one objective 

is kept, and the rest of the objectives are restricted by user-specified values (Ngatchou et al., 2005). 

                                                Minimize𝑓𝜇(𝑥) 

                                                Subject to 𝑓𝑚(𝑥) ≤ 𝜖𝑚, 𝑚 = 1,2, … … … . . 𝑀 𝑎𝑛𝑑 𝑚 ≠ 𝜇 

                                                                           𝑔𝑗(𝑥) ≥ 0,      𝑗 = 1,2, … … … … 𝐽                                (1.5)           
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                               ℎ𝑘(𝑥) = 0,      𝑘 = 1,2, … … … 𝐾 

                                  𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
𝑈, 𝑖 = 1,2, … … … . 𝑛 

1.2.2.2 Multi-objective Genetic Algorithm 

This approach consists of a scheme in which the rank of an individual corresponds to the number 

of individuals in the current population by which it is dominated. It maintains diversity in the non-

dominated solutions. The first step of a multi-objective genetic algorithm(MOGA) is to sort the 

population according to rank. Rank 1 is given to the individuals with the best fitness. All non-

dominated individuals are assigned rank 1. Fitness is assigned to individuals based on a linear 

function. Non-dominated sorting genetic algorithm(NSGA) is a modified version of MOGA 

proposed by Srinivas and Deb in 1994 (Coello et al., 2007). In this algorithm, before selection is 

performed, the population is ranked based on domination. All non-dominated individuals are 

classified into one category. Then this group of classified individuals is removed from the 

population and another layer of non-dominated individuals is considered. This process continues 

until all the individuals in the population are classified. Since the individuals in the first front have 

the maximum fitness value, they will get more copies than the rest of the population. This allows 

to search for non-dominated regions and eventually results in convergence. 

NSGA-II is a commonly used MOO technique and in this algorithm, individuals are selected based 

on rank and crowding distance (Deb et al., 2002) 

The key process steps of NSGA-II are: - 

1) Start with a random population of solutions(P) encoded in binary form(chromosomes)  

2) Create a child population (Q) through crossover and mutation.  

3) Combine P&Q and score for all objectives 

4) Identify the first Pareto front (F1) 

5) If F1 is larger than the maximum permitted solution, then reduce the size of F1 by crowding 

distance. 

6) If F1 is smaller than the required population size, then repeat the Pareto selection. This new 

set of solutions is F2. 

7) Repeat Pareto selection until the required population is reached.  
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8) Repeat from step 2 for the required number of generations or until stop criterion is reached. 

 

 

Figure 1.3 Schematic of NSGA-II procedure 

1.3 Summary 

The motivation behind wastewater treatment and the various stages involved in wastewater 

treatment is discussed in this chapter. Wastewater treatment plants are major consumers of energy. 

Therefore, it is important to operate them optimally. Various optimization techniques such as the 

simplex method, GA, ACO, and PSO have been briefly discussed in this chapter. In this study, 

multi-objective optimization is performed using GA to minimize the concentration of pollutants 

in the effluent stream. Pareto optimality and MOGA are explained in this chapter.  
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Chapter 2 

2 Literature Review 

2.1 Background 

Modeling helps in understanding how a system would behave in various conditions without 

experimentation. For complex systems like wastewater treatment, it is difficult to explore various 

design ideas on a pilot plant. A wastewater treatment plant model is a representation of the physical 

and biochemical processes involved in the purification of wastewater. The biochemical process 

involves the conversion of organic material and nutrients into carbon dioxide, nitrogen, and 

particulate fraction. This particulate fraction is further removed from water through physical 

separation. The “state-of-the-art models” for activated sludge processes are activated sludge model 

1(ASM1)-Activate sludge model 3(ASM3) models developed by the international water 

association (IWA) task group. These models incorporate oxidation of organic matter, nitrification, 

and denitrification. ASM2d also describes biological and chemical phosphorus removal. The ASM 

models have been updated several times. ASM1 has been considered as the reference model. 

ASM3 was developed to include additional processes that were missing in the ASM1 model. 

ASM1 and ASM 3 were developed for domestic water and hence cannot be used for industrial 

wastewater. These models are developed for a temperature range of 8-23°C. A significant error 

can occur if these models are applied beyond the suggested temperature range (Szilveszter et al., 

2010). To overcome these limitations black-box modeling is suggested. In this type of modeling 

input enters a system and output comes out of the system, but the process by which that input is 

considered to generate the output is not fully understood. An artificial neural network black-box 

modeling approach was used to predict the performance of the Doha West wastewater treatment 

plant (Mjalli et al., 2007). The model provided accurate predictions of the effluent stream in terms 

of biochemical oxygen demand (BOD), chemical oxygen demand (COD), and total suspended 

solids (TSS). 
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The purpose of wastewater treatment is to protect clean water. Approximately 330 km3 of 

municipal wastewater is generated globally per year. Wastewater treatment plants(WWTP) are 

energy-intensive (Zhang et al., 2016). Major electrical energy consumers in the wastewater 

treatment process are pumps and aeration systems. Electrical energy consumption depends on the 

size and design of the plant. Moreover, wastewater treatment plants are highly dynamic, which 

leads to fluctuations in the influent characteristics. Optimization can reduce both capital and 

operating costs. The activated sludge process is one of the main wastewater treatment processes. 

It converts organic waste to stable inorganic forms or cellular mass. In this process soluble and 

colloidal organic material left after primary sedimentation is metabolized by a group of 

microorganisms to carbon dioxide and water. The activated sludge process is a part of biological 

wastewater treatment systems. In this process, the air is added to a liquid or substance. Insufficient 

aeration can lead to violation of discharge permits. Oxygen is required by microorganisms to 

biodegrade organic materials. Dissolved oxygen (DO) should be maintained at a proper level to 

keep the microorganisms alive. Dissolved oxygen concentration is an important parameter for 

controlling the activated sludge process. Several research papers have been published on how to 

control and model WWTP. Oxygen is also required for the removal of nitrogen. Nitrogen is 

removed in two steps. Firstly, ammonium is oxidized to nitrate in the presence of oxygen. Then 

under anoxic conditions nitrate is converted to nitrogen gas. The nitrification and denitrification 

processes depend on the concentration of oxygen. Efficient operation of wastewater treatment 

improves the performance of the plant while meeting strict effluent norms set by the pollution 

control board. Optimization of a wastewater treatment plant involves adjustment of various process 

variables such as chemical dosing rate, air supply, solid retention time and hydraulic loading rate. 

In the past several optimization studies have been carried out to efficiently operate wastewater 

treatment plants. Aerobic and anaerobic conditions are alternately carried out in an aeration tank. 

Optimization of aeration profile using sequential quadratic programming (SQP) technique can 

reduce electrical energy consumption by 30% without compromising the effluent quality 

(Chachuat et al., 2000). To maintain effluent quality higher aeration rate is required. Various 

studies on minimization of aeration in activated sludge have been reported in the past. To avoid 

the effect of upstream disturbances due to fluctuations in the flow and variable characteristics of 

municipal wastewater, aeration rate is kept higher than the required. Electrical energy consumption 
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was reduced by more than 60% while maintaining effluent quality using genetic algorithm (Ozturk 

et al., 2016).  

Oxygen transfer dynamics and growth rate function are both non-linear and there is a huge 

potential for saving electrical energy by optimal use of DO profile to avoid zones with unnecessary 

high aeration rates. Each aeration zone can have a separate DO probe instead of having only two 

probes in the first and last tank. This control strategy was able to reduce total airflow by 18% 

(Thunberg et al., 2009). A larger reduction of the airflows in the first zone was replaced by a 

smaller increase in the last zones. 

Nowadays, the focus is not only on improving the performance of WWTPs but also to reduce the 

impact on the environment. Greenhouse gases cause the greenhouse effect. Greenhouse gases are 

the compounds that are responsible for keeping the earth's surface warmer by trapping heat in the 

atmosphere. Greenhouse gases, carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) can 

all be produced in wastewater treatment operations (Gupta & Singh, 2012). N2O gas is an 

intermediate of biological processes such as heterotrophic denitrification and nitrification (Campos 

et al., 2016). Carbon dioxide is generated from the combustion of fossil fuels and the oxidation of 

organic matter. Methane gas is produced during the decomposition of organic matter under 

anaerobic conditions. Mathematical modelling helps in evaluating various scenarios. There are 

three ways to minimize greenhouse gases emission: (1) change of operational conditions (2) 

treatment of gaseous streams (3) prevention by applying the new configuration (Campos et al., 

2016). Treatment of gaseous streams is not a feasible option as it involves huge capital costs. 

Change of configuration by using microalgae or partial nitration process instead of conventional 

nitrification-denitrification can reduce greenhouse gas emissions but currently not much 

information is available about this process. Therefore, the most economical way to minimize 

greenhouse gases is through modification of the operational conditions of WWTPs units.  

2.2 Optimization 

Sewage sludge is the solid, semisolid or slurry residual material that is produced as a by-product 

of the wastewater treatment process. This residue is classified as primary and secondary sludge. 

Primary sludge is generated from sedimentation, chemical precipitation, and various primary 

processes. Secondary sludge is a waste resulting from biological treatments. Treatment of sewage 
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sludge includes thickening, digestion, and dewatering. Aerobic digestion is a process that occurs 

in the presence of oxygen. The objective of autothermal thermophilic aerobic digestion (ATAD) 

is to stabilize and pasteurize the sludge (Rojas & Zhelev, 2012). Conventional systems make use 

of invariable air supply regardless of the strong variations of bacterial activity during the reaction. 

Continuous and invariable rate of aeration leads to higher consumption of energy. A dynamic 

optimization approach can minimize the energy requirement of ATAD (Rojas & Zhelev, 2012). 

2.2.1 Multi-variable optimization 

Single variable optimization has been widely studied especially for dissolved oxygen 

concentration, to improve the optimal performance multi-variable optimization strategies are 

proposed (Qiao & Zhang, 2018; Egea & Gracia, 2013). Most studies have focused on the 

optimization of specific units that comprise a wastewater treatment plant. The results fail to 

represent true optimal conditions because of a lack of interactions with other unit operations (Asce 

et al., 1983). Moreover, optimal design and operation of a wastewater treatment plant requires 

several conflicting objectives to be optimized simultaneously. 

Effluent quality and energy consumption, two contradicting objective functions were studied by 

(Béraud et al., 2007). The goal was to find a global solution because wastewater systems are highly 

complex and non-linear. Optimization for the reduction of operational greenhouse gas emissions 

from the wastewater treatment plant in a cost-effective manner can be done using control strategy 

(Sweetapple et al., 2014) . Multi-objective optimization can facilitate a significant reduction in 

greenhouse gas emissions without the need for plant redesign. Another study focused on 

simultaneous minimizing operating cost, greenhouse gas emissions and maximizing effluent 

quality (Kim et al., 2015). Multi-objective optimization improved the effluent quality by 2%, and 

reduced greenhouse gas emission and operating costs by 31% and 11% respectively. Optimization 

done using the simplex method was quite time-consuming and efforts should be made to reduce 

the computational time (D. Kim et al., 2015). Data-mining approach can minimize energy 

consumption and maximize the pumped wastewater flow rate (Zhang et al. 2016). The 

optimization model was solved by an artificial immune network algorithm. The results indicated 

that the efficiency of the pumping system can be increased by using optimal pump speeds. 
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2.2.2 Dynamic multi-objective optimization 

The WWTP is a non-linear dynamic system with many fluctuations, such as influent flow, 

pollutant concentration and weather variations. Multi-objective optimization provides a group of 

equally excellent Pareto optimal solutions. One of the challenges modelling and optimization of 

wastewater treatment faces is that sometimes data is noisy, uncertain, and incomplete. Another 

challenge is the optimization of the process model. Models are usually non-linear and dynamic 

therefore evolutionary computational algorithm is proposed for this research work. A dynamic 

multi-objective optimization, to reflect the dynamic characteristic of WWTP MOO was 

constructed by a neural network (Qiao & Zhang, 2018).  

Mechanistic models have been used for modelling biological wastewater treatment systems. 

However, in these models’ many empirical parameters are difficult to estimate and many chemical 

and biological species are lumped into one model component. To overcome this problem machine 

learning and computational intelligence can be used. Wastewater treatment plants are highly 

complex therefore single simulation can take hours to complete. To reduce computation time 

surrogate models are used, as they can replicate the behavior of a simulation model. Surrogate 

modelling has been used in various fields of engineering due to its use in computationally 

expensive such as Monte Carlo based global sensitivity analysis and process design optimization 

(Al et al., 2018). The potential of surrogate modelling in multi-objective optimization was explored 

to evaluate the efficiency of this method, results were compared with NSGA-II (Fu et al., 2009). 

The objective functions chosen for study were maximization of dissolved oxygen and 

minimization of ammonium concentration. Comparing the results, it was clear that ParEGO a 

surrogate-based method had lesser objective evaluations.  

2.2.3 Prediction of influent quality 

Estimation of influent flow rate is important for selecting pump configurations and their speed 

settings. A few main sewers are equipped with sensors. Therefore, it is difficult to determine the 

influent flow rate to WWTP based on data from these sensors. Extreme weather events pose one 

of the major threats to drinking water treatment plants (Whitehead et al., 2009). When precipitation 

falls onto impervious surfaces it drains as stormwater runoff. Extreme rainfall and wet weather 

events can generate large quantities of stormwater. High flow rates can impact the performance of 
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the treatment plant if they exceed the capacity of the treatment facility. Sewage treatment plants 

are designed to treat 2-6 times the average dry weather flow. The total potential inflow into the 

combined sewer system is higher than its design flow during wet weather. The maximum capacity 

of the plant can be reached even at an early stage of a storm. Improper operation of wastewater 

treatment plants may bring about serious environmental and public health problems (Hamed et al., 

2004). The high cost involved in the operation of wastewater treatment facilities has led to the use 

of simulation models to optimize the performance. Accurate prediction of water quality will 

provide knowledge for intelligent decision-making regarding ecological conservation. Moreover, 

the early prediction will ensure the smooth operation of the treatment plant. 

Global growth of population and industrial development has led to an increase in daily water 

consumption. Wastewater treatment plants are energy intensive. For instance, higher biochemical 

oxygen demand (BOD) concentration requires longer aeration. Therefore, for managing 

wastewater treatment plants and maintaining effluent quality prediction of influent flow is 

suggested. Forecasting of influent flow is useful in the optimum operation of wastewater devices 

and pumps. The influent flow rate estimated by plant operators based on experience and weather 

forecast is not accurate. Knowing the amount of influent flow a few hours or even days ahead can 

reduce the impact of diurnal flow.  

Influent flow rate is a combination of the contribution of households, industry, rainfall, and 

infiltration. Rainfall contributes to the total flow rate in two ways: 1. Major portion of rainfall is 

directly transported to the sewer 2. Rainfall on permeable surfaces will influence groundwater 

level. The cold and warm season modifies the amount of infiltration therefore a seasonal correction 

factor will be combined with the rainfall falling on permeable surfaces. The net contribution of 

infiltration will be combined with the overall flow rate resulting from households, industry and 

flow contribution from rainfall on impermeable surfaces (Flores-Alsina et al., 2011). During the 

cold season, the groundwater level is high resulting in high infiltration into the sewer system. 

Various approaches for generating influent data are phenomenological models, models based on 

harmonic functions, and data-driven methods based on creating databases with monitoring and 

experimental data. Phenomenological models are detailed influent models, that give a 

phenomenological representation of dynamics of WWTP influent, including weekend, seasonal 
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and holiday variations. Phenomenological approach was applied for the generation of dynamic 

influent flow rate (Gernaey et al., 2005). Despite being a promising model cannot reproduce the 

dynamics in WWTP during wet weather due to poor representation of the buildup and wash-off of 

pollutants (Martin & Vanrolleghem, 2014). Models based on harmonic functions are well suited 

for dry weather conditions and less for wet weather flow(WWF) situations (Martin & 

Vanrolleghem, 2014).  

2.3 Data mining 

Data mining is a promising approach for building prediction models. As this method does not 

require a physical understanding of the system to be modelled. In the past several techniques have 

been applied to predict influent flow which includes the time series model. Time series models are 

categorized into two types: statistical methods, e.g., Autoregression, Moving Average, 

Autoregressive moving average (ARMA), and Autoregressive integrated moving average. The 

second type includes AI methods such as support vector machine (SVM), artificial neural 

networks, etc. Autoregressive Integrated moving average (ARIMA) is a statistical analysis model 

that uses time series data to better understand the data set and predict future trends. Influent flow 

was forecasted using AIRMA (Boyd et al., 2019). RMSE, MAPE and R-squared were used to 

analyze the results. The results from this study were found to be acceptable in predicting influent 

flow, though it was suggested that hybrid models can be used to improve the accuracy of results. 

Four data mining methods namely Random forests (RF), support vector machines (SVM), Kernel 

regression(K) and k-nearest neighbor(k-NN) were applied to predict the inflow of wastewater into 

the Rzeszow city plant (Szelag et al., 2017). A k-NN algorithm was used to predict influent flow 

rate, chemical oxygen demand (COD), suspended solid (SS), total nitrogen(TN) and total 

phosphorus(TP) (Kim et al., 2016). In another study ARIMA, NAR, and SVM were used to predict 

the inflow of sewage treatment plants (Ansari et al., 2018).  

2.3.1 Applications of ANN 

Traditional methods of modelling require rate constants of various physical, chemical and 

biological processes, which depend largely on space and time (Emamgholizadeh et al., 2014). In 

recent years several pieces of research have been conducted on forecasting water quality using 

non-linear models such as artificial neural network, and adaptive neuro-fuzzy inference systems. 
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The ANN model was used to compute COD and BOD levels in the Gomti river, India (Singh et 

al., 2009). It was successfully demonstrated in a research that ANN can predict influent water 

quality parameters with a correlation coefficient between observed and predicted output values 

reaching up to 0.93 (Aminabad et al., 2014). Statistical-based water quality models assume a linear 

relationship between input and output. ANN works well when the diversity of data is large and the 

relationship between variables is not clearly understood or is difficult to describe with conventional 

approaches (Singh et al., 2009). A NN based model was developed for predicting WWTP 

performance (Hamed et al., 2004). In one study a MLP based model was selected to build a 

prediction model of influent flow rate (Wei et al., 2013). The model was able to predict influent 

flow rate up to 180 min ahead, however, MAE and MSE increased with a longer time horizon. To 

overcome this problem one study proposed a dynamic neural network(DNN) with an online 

corrector (Wei & Kusiak, 2015). This method was able to provide good prediction up to 300 min 

ahead with 85% accuracy. 

Sewers are prone to corrosion due to the production of hydrogen sulfide generated in sewage under 

anaerobic conditions (Jiang et al., 2009). To minimize the formation of hydrogen sulfide, 

chemicals such as oxygen, nitrate, magnesium hydroxide and iron salts are added. The main dosing 

strategies commonly used are (1) constant dosing: In this, the dosing rate is maintained at a 

constant value without considering variations of the wastewater characteristics. (2) flow-passed 

dosing: the chemical dosing rate is proportional to the sewage flow rate. (3) profiled dosing: dosing 

rate is according to a predefined profile. Real-time prediction of sewage flow is necessary for 

optimal addition of chemicals (Li et al., 2019) 

An autoregressive moving average was developed for real-time prediction of future flow in sewers 

(Chen et al., 2014). The model was able to predict future flow rates with good accuracy under 

different weather conditions. However, the prediction accuracy for wet weather conditions was 

lower as compared to dry weather conditions. The autoregressive with exogenous inputs (ARX) 

model had better prediction accuracy as compared to the autoregressive model for real-time 

prediction of sewage flow (Li et al., 2019). Generally, models do not consider the additional flow 

to sanitary systems during rainfall. Due to this additional flow error between the predicted and 

actual flow occurs. Models based on hydrology require detailed knowledge of the system and rely 

on a large number of parameters, which are difficult to determine (El-Din & Smith, 2002). In this 



 

 

22 

 

research, the ANN model will be used to make a long-term prediction of the wastewater inflow 

rate to the plant. 

2.4 Summary 

Wastewater treatment is a complex system, and it is difficult to explore various design ideas on a 

pilot plant. Modeling helps in understanding how a system would behave in various conditions 

without experimentation. A WWTP model is a representation of physical and chemical processes 

involved in the purification of wastewater. This chapter presents the work of researchers in the 

area of modeling and simulation of wastewater treatment. Most of the work done in the past 

employs first principle methods to model the treatment plant and not much work has been done 

which utilizes machine learning and black-box modeling. WWTPs exhibit non-linear behaviour 

and therefore becomes difficult to describe with first principle methods. In my research work, a 

black-box modeling approach has been employed to model WWTP and predict the performance 

of the plant. This type of modeling is based on the input-output behaviour of the process in contrast 

to physical modeling which is time-consuming.  
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Chapter 3 

3 Description of plant and statistical analysis 

3.1 Introduction 

The operators of wastewater treatment plants are constantly facing challenges due to stricter 

regulations and aging infrastructure. To address the increasing environmental issues WWTPs 

should be operated properly, and effluent quality should be continuously monitored. Data 

generated from wastewater treatment plants(WWTPs) can be utilized to improve the quality of 

effluent discharge. The risk involved in proper management of the system can be reduced by data 

analysis and constant monitoring of the plant. Analysing historical and real-time data can help in 

better management and decision-making of the plant.  

3.2 Description of plant 

Adelaide WWTP is located at 1157 Adelaide Street North and treats about 15% of the total 

wastewater produced in London. The plant capacity of Adelaide WWTP is 36,650 cubic metres 

per day and the approved peak flow rate is 59,000 m3/d. The wastewater enters the treatment plant 

through screens where grit removal takes place in a vortex-type grit removal chamber. After 

preliminary treatment wastewater enters primary treatment tanks (clarifiers). Solids are removed 

in the primary clarifier this process is also called primary settling. The treated water flows to 

aeration tanks for secondary treatment. Air is pumped into the aeration tanks to provide oxygen 

for the bacteria to grow. Secondary treatment involves the conversion of organic compounds into 

carbon dioxide and water. The treated wastewater is then pumped to secondary settling tanks to 

allow solids to settle down. These solids are called activated sludge and mostly consist of active 

bacteria. A portion of this activated sludge is returned to the aeration tanks, and this is termed as 

returned activated sludge. 

The purpose of tertiary treatment is to improve the quality of wastewater before discharging it into 

the environment. As water passes through the UV unit, an ultraviolet range of light inactivates 

harmful bacteria, particularly E.coli. After proper treatment of wastewater, it is important to test 

the quality of effluent in terms of dissolved oxygen, pH level, suspended solids, total phosphorous 

and ammonia.  
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Contamination of freshwater sources by nutrients induces excessive growth of algae and reduces 

oxygen levels in the water. This lack of oxygen also known as eutrophication suffocates plants and 

animals and can create dead zones. Major nutrients that contribute to algal bloom are carbon, 

nitrogen, and phosphorus. Excess nutrient concentration in water bodies can lead to depletion of 

oxygen thereby making it inhospitable for aquatic life.  

The main source of nitrogen in water are fertilizers that contain ammonia, ammonium, urea, nitrate, 

and amines. Phosphorous is a natural component of biological tissue. Detergents and personal care 

products are also major contributors to phosphorus in wastewater. Ammonia is commonly used in 

various cleaning solutions, and fertilizers and is also a component of human and animal waste. A 

high concentration of ammonia in freshwater bodies can lead to algal bloom. Conversion of 

ammonia to nitrate in the presence of bacteria causes depletion of dissolved oxygen levels in the 

water. 
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Figure 3.1 Schematic diagram of WWTP 
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Measurement of water quality Indicator 

Biochemical oxygen demand(BOD) 

BOD indirectly measures the amount of organic matter contained in a water sample. It is a measure 

of the amount of oxygen consumed by heterotrophic bacteria for the oxidation of organic matter. 

𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 + 𝑚𝑖𝑐𝑟𝑜𝑜𝑟𝑔. + 𝑂2  + 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠 →  𝐶𝑂2 ↑  + 𝐻2𝑂 + 𝑚𝑖𝑐𝑟𝑜𝑜𝑟𝑔.  

Hence, BOD is expressed in mg O2/L and the higher the amount of organic matter in wastewater 

the higher the BOD value. BOD measures the aerobic degradation of organic matter and chemical 

oxidation of inorganic matter. It is measured by comparing the dissolved oxygen concentration 

before and after a 5-day incubation period.  The test method uses 5 days incubation period because 

after 5 days most of the organic matter degrades. The test sample is continuously agitated in the 

absence of light and a sensor measures the decline in pressure caused by the consumption of 

oxygen. 

Table 3-1:BOD values 

BOD level in mg/L Water quality 

1-2 Very Good: Not much organic matter is 

present 

3-5 Fair: Moderately Clean 

6-9 Poor: Somewhat Polluted 

100 or more Very Poor: Polluted  

Suspended Solids(SS) 

Suspended solids in water are due to fine particles of soil or organic material such as algae. 

Suspended solids are visible if they are present in substantial quantities. When the concentration 

of suspended solids exceeds a certain limit, can be harmful to the aquatic organisms. A high 
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concentration of suspended solids can block light from reaching submerged vegetation. As the 

amount of light passing through the water is reduced, photosynthesis slows down and causes less 

dissolved oxygen to be released into the water by plants. A higher concentration of suspended 

solids can also cause an increase in surface temperature because suspended solids absorb heat from 

the sunlight. This can cause dissolved oxygen levels to fall even further because warmer waters 

hold less dissolved oxygen.  

The concentration of suspended solids is measured in laboratories by filtering a known volume of 

sample, the filter will capture the suspended solids and let the water pass through. Then, the filter 

is dried in an oven to remove the moisture. The weight of the suspended solids is evaluated by 

calculating the difference in the weight of the filter with suspended solids and the weight of the 

filter.  

𝑆𝑆 (
𝑚𝑔

𝐿
) = (𝑊𝑓𝑠𝑠 − 𝑊𝑓)/𝑉𝑠 

Where: 

Wfss:-weight of the filter with suspended solids after drying in mg 

Wf:- the weight of filter in mg 

Vs:- Volume of sample in L 

Suspended solids in a sample affect the light scattering properties of the sample. The light 

scattering is proportional to the concentration of suspended solids in the sample. Installing a sensor 

that measures the concentration of suspended solids can give instantaneous information about the 

sample at that location, unlike the above method which takes around 2 hours to complete. Online 

measurement is a continuous method of monitoring the quality of the sample. Suspended solids 

sensors are calibrated in unit’s mg/L and diatomaceous earth(DE), primarily composed of silicon 

dioxide is used as a standard for turbidity calibrations. 
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Ammonia 

Ammonia is a critical nutrient in wastewater that causes water pollution. This is an essential 

nutrient that is consumed by bacteria to break down organic compounds. Insufficient availability 

of ammonia will cause production of excessive filaments and hence will interfere with the 

compaction of sludge. Presence of nutrients is important for removal of BOD and deficiency of 

nutrients will make it difficult for bacteria to grow. Online monitoring of ammonia ensures that 

overloading of ammonia is avoided. However, for laboratory testing ammonia-sensitive electrode 

is used which uses hydrophobic gas-permeable membrane. This membrane separates the sample 

solution from internal solution of ammonium chloride. Ammonia diffuses through the membrane 

and changes the pH of internal solution. This change in pH is sensed by a pH electrode and 

concentration of ammonia is proportional to change in pH. Salicylate method is useful for 

determination of  small quantities of ammonia in the sample. In this method the ammonia present 

is converted to intense blue indophenol, which is then quantified by UV-visible spectrometry 

(Giner-Sanz et al., 2020). 

Total Phosphorus 

Phosphorus is a nutrient that is essential for plant, animal, and human growth. However, an 

increase in the concentration of phosphorus in water bodies can accelerate plant growth, algal 

bloom, and low dissolved oxygen thus affecting aquatic life. Phosphorus entering the treatment 

plant is removed by primary and secondary treatment. In a treatment plant phosphorus comes in 

either soluble form or particulate form and the goal is to convert the phosphorus into particulate 

form. There are two techniques of removal of phosphorus one is chemical treatment and the second 

is biological treatment. Chemical treatment for phosphorus removal involves the addition of metal 

salts to react with soluble phosphate to form precipitates. These precipitates are then removed by 

physical separation processes such as filtration and clarification. The commonly used metal salts 

are alum(aluminium sulphate), ferric chloride and ferrous chloride. The basic reaction involved in 

chemical phosphorus removal is a reaction between metal ions and phosphate that is dissolved in 

water leading to metal phosphate that is insoluble in water and acid as a by-product.  

𝑀𝑒𝑡𝑎𝑙 𝑖𝑜𝑛𝑠 + 𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 → 𝑀𝑒𝑡𝑎𝑙 𝑃ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 + 𝐴𝑐𝑖𝑑 
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Enhanced biological phosphorus removal(EBPR) is accomplished by microorganisms and these 

organisms are called phosphorus accumulating organisms(PAOs).  

3.3 Materials and Methods 

The methodology of data analysis for wastewater treatment process is shown in figure 3.2.  
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Figure 3.2 Flow Chart of Data Analytics 

Figure 3.2 Flow Chart of Data Analytics 
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3.3.1 Data collection and preprocessing 

The data of Adelaide WWTP was collected and carefully analysed for the years 2015, 2016, 2017 

and 2018. Data collection is one of the most important steps in building machine learning models. 

The quality of data can influence the usability and relevance of machine learning models. Data 

preprocessing is the process of converting raw data into a suitable form. The purpose of data 

preprocessing is to clean the raw data set and remove missing data, and other inconsistencies. 

Every day data of Adelaide WWTP for a period of four years was analysed and if for a particular 

day information about a particular variable (e.g. BOD5, SS, TP, etc.) was missing that data entry 

was discarded. After analysis 1460(365x4) data points, some of the variables were missing and 

was left with dataset of 280 data points. A dataset(10 data points) of Adelaide WWTP is shown in 

Table 3.2. 

Table 3-2: A dataset of Adelaide WWTP 

Influent 

Temp 

(°C) 

Effluen

t Temp 

(°C) 

Total 

sewag

e flow 

ML/D 

Influen

t BOD5 

mg/L 

Effluent 

BOD5 

mg/L 

Influent 

SS 

mg/L 

Effluent 

SS 

mg/L 

Influent 

TP 

mg/L 

Effluent 

TP 

mg/L 

Influent 

NH3 

mg/L 

Effluent 

NH3 

mg/L 

17 15 23.62 196 2 343 4 10.3 0.26 18.1 0.1 

15 14.7 21.63 147 4 123 6 5.4 0.42 24.6 0.62 

20 21.1 22.75 166 1 205 1 8.1 0.56 34.4 0.1 

21 21.5 21.93 210 2 273 1 6.3 0.72 24.7 0.1 

20 19.9 18.77 286 3 349 6 7.7 0.54 26.1 1.37 

19 20.6 29.87 169 1 289 2 5.1 0.22 27.3 0.1 
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20 20.3 26.18 154 1 333 2 4.3 0.28 18.5 0.12 

21 21.4 27.79 211 2 417 3 7.2 0.38 22.3 0.14 

18 17.8 38.47 301 1 325 4 11.2 0.69 32.9 0.96 

17 17.7 31.27 282 1 256 2 6.3 0.26 20.8 0.65 

Table 3-2: A dataset of Adelaide WWTP (contd.) 

Data point Influent pH Effluent pH Effluent DO 

mg/L 

1. 7.4 7.3 7.9 

2. 7.4 6.9 7.3 

3. 7.5 7.2 5.5 

4. 7.2 6.9 7.5 

5. 7.4 6.9 7 

6. 7.6 7.2 7 

7. 7.7 7.4 7.9 

8. 7.5 7.3 7.5 

9. 7.7 7.5 5.8 
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10. 7.6 7.4 7 

 

3.3.2 Data mining 

Data mining is the process of extracting useful information from raw data by identifying patterns 

and relationships between variables. In this research work total of fourteen variables were 

analysed. The influent stream is characterized by seven parameters (Temperature, BOD, SS, pH, 

TP and NH3) and the effluent stream is characterized by seven parameters (Temperature, BOD, 

SS, pH, TP, NH3 and DO).  

3.4 Results 

3.4.1 Data visualization 

Data visualization is the graphical representation of data. The scatter plot of parameters 

temperature, biological oxygen demand(BOD), suspended solids(SS), total phosphorous(TP), and 

ammonia(NH3) in the influent and effluent stream of Adelaide WWTP are shown in figures 3.3-

3.7. 
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Figure 3.3 Scatter plot of temperature in influent and effluent stream 

 

 

 

Figure 3.4 Scatter plot of BOD in the influent and effluent stream 
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Figure 3.5 Scatter plot of suspended solids in the influent and effluent stream 

 

 

Figure 3.6 Scatter plot of total phosphorous in the influent and effluent stream 
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Figure 3.7 Scatter plot of ammonia in the influent and effluent stream 

 

Figure 3.8 Scatter plot of pH in the influent and effluent stream 
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Figure 3.9 Scatter plot of DO in the effluent stream 

 

3.5 Discussion 

Data mining involves the use of statistical methods to identify patterns in data and help predict 

future trends and behaviour. It focuses on finding relevant information and data sets which can be 

used for analytics and predictive modeling. Statistical analysis is the collection and interpretation 

of data. Identifying patterns from historical data will help in better management and decision-

making of wastewater treatment plants. The efficiency of the plant can be increased by applying 

data analytics and optimizing plant operations. 

Table 3.2 -Statistical Analysis of Adelaide WWTP data 

 unit Minimum Maximum standard 

deviation 

 Temperature 

sewage raw 

°C 11 22 2.93 

Total sewage flow ML/D 16.4 69.5 5.6 
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BOD 5 day Raw  mg/L 76 619 90.8 

Suspended solids 

Raw  

mg/L 53 950 137.8 

pH Raw - 7.1 8.2 0.16 

Total Phosphorus 

raw 

mg/L 2.9 25 2.4 

NH3 raw mg/L 9.4 41.8 5.9 

Temp UV °C 10.4 23.1 3.2 

BOD5 UV 

channel 

mg/L 1 5 0.89 

Suspended solids 

UV channel 

mg/L 1 22 2.5 

pH UV channel - 6.2 8.4 0.18 

Total Phosphorus 

UV 

mg/L 0.1 0.98 0.16 

NH3 UV mg/L 0.1 8.78 0.85 

DO plant effluent mg/L 4 9.3 1.1 

     

     

3.5.1 Correlation coefficient 

The correlation coefficient is used to understand the relationship between two variables. The most 

used correlation coefficient is Pearson product-moment correlation. It is calculated by dividing the 
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sample covariance by the product of their sample standard deviation. It measures the strength and 

direction of the linear relationship between two variables. The value of the correlation coefficient 

ranges from -1 to +1. A positive correlation coefficient close to 1 indicates a strong linear 

relationship between the variables, zero correlation indicates no relation and negative correlation 

indicates linear correlation in opposite direction. However, the Pearson correlation coefficient does 

not indicate any non-linearity between the variables. Table 3.2 shows the correlation between 

seven parameters in the influent stream and seven parameters in the effluent stream. The maximum 

correlation exists between BOD in the influent stream and SS in the influent stream. There is a 

strong correlation between temperature in the influent stream and temperature in the effluent 

stream. Suspended solids in the influent stream have a strong correlation with BOD and TP in the 

influent stream. 

Table 3-3: Correlation coefficients matrix 

 Tempi Flowi BODi SSi pHi TPi NH3i Tempe BODe SSe pHe TPe NH3e DOe 

Tempi 1              

Flowi -0.38 1             

BODi 0.16 -0.16 1            

SSi 0.215 -0.097 0.752 1           

pHi -0.265 0.061 -0.328 -0.403 1          

TPi 0.313 -0.162 0.541 0.667 -0.257 1         

NH3i 0.436 -0.384 0.137 0.000 0.392 0.195 1        

Tempe 0.906 -0.292 0.117 0.220 -0.212 0.291 0.402 1       

BODe -0.159 -0.003 0.181 0.015 -0.008 -0.072 0.000 -0.225 1      

SSe -0.041 -0.069 0.020 -0.050 0.023 -0.009 0.048 -0.071 0.147 1     

pHe -0.075 0.123 0.044 -0.099 0.178 -0.098 -0.047 -0.067 -0.017 0.06 1    

TPe 0.21 -0.202 0.037 -0.019 -0.086 0.111 0.210 0.197 0.138 0.03 -0.046 1   
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NH3e -0.177 0.143 -0.011 -0.104 -0.003 -0.029 -0.136 -0.243 0.250 0.20 0.103 -0.033 1  

DOe -0.060 -0.220 0.150 0.041 -0.016 -0.084 -0.049 -0.159 0.134 0.00 0.006 -0.075 -0.005 1 

3.6 Summary and conclusions 

In this chapter Adelaide wastewater treatment plant is briefly discussed and data obtained from 

plant is analysed. The purpose of this research is to model the wastewater treatment plant and 

predict its performance in terms of effluent quality. The data set used to build a model was 

collected and analysed. The performance of a model is dependent on the preparation of data. 

Various steps involved in the preparation of data are:-gathering the data, handling missing data, 

deciding which key factors are important, and splitting the data into training and validation set. 

The measurements of influent flow rate, temperature, BOD, SS, pH, TP,NH3 in the influent stream 

and effluent stream were collected and analysed over four-year period. 
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Chapter 4 

4 Prediction of effluent quality using Artificial Neural 
Network(ANN) 

4.1 Introduction 

Modeling helps in understanding how a system would behave in various conditions. For complex 

systems like wastewater treatment, it is difficult to explore various design ideas on a pilot plant. A 

wastewater treatment plant model describes the physical and biochemical processes involved in 

the purification of wastewater. The application of mechanistic models relies on material and 

energy balances as well as empirical correlations. The wastewater treatment system involves 

several such equations and correlations. As the complexity of the model increases, the accuracy of 

mechanistic modeling decreases. To overcome these difficulties black box modeling is suggested.   

4.2 Methodology 

4.2.1 Structure of ANN 

The first step toward a neural network took place in 1943 when Warren McCulloch and Walter 

Pitts modeled a neural network with electrical circuits. A neural network derives its origin from 

the human brain. The human brain is a complex, non-linear and parallel computer that can do tasks 

in a very small amount of time. This inspired researchers to mimic the working of a brain. A neural 

network can learn and produce outputs for inputs that were not encountered during the training 

phase. Compared to mechanistic models neuron-based modeling has better accuracy(Mjalli et al., 

2007).   

ANN has several neurons arranged in a series of layers. Neurons are the core processing unit of 

the algorithm. These artificial neurons model the neurons present in the human brain. Like a 

biological brain, each artificial neuron receives a signal process it and transmits the signal to other 

neurons connected to it. The signal flows from the input layer to the output layer. Neurons of one 

layer are connected to neurons of the next layer through channels. Each of these channels is 

assigned a numerical value known as weights. The inputs are multiplied by the corresponding 

weights and their sum is sent as input to the neurons of the next layer. Each neuron is associated 
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with a specific value called bias. Bias is then added to the input sum, this value is then passed 

through a threshold function called the activation function.  

The result of the activation function determines if the neuron will get activated or not. The 

activated neuron will transmit data to the neurons of the next layer. This transmission of data 

through layers is known as forward propagation. A commonly used activation function is sigmoid. 

If the input value to a sigmoid function is negative, then it will transform the input value close to 

0. The sigmoid function will transform a positive number into a value close to 1. Input value close 

to 0 will be transformed into a value between 0 and 1. 

Artificial neural networks are trained by processing input and output data. The predicted output is 

compared with the actual output to determine the error in prediction. This information is 

propagated back to the network and based on this information weights are adjusted. The cycle of 

forward propagation and backward propagation is iteratively performed with multiple input and 

output data. This process continues until weights are assigned such that the predicted output is 

close to the target output. 

For training and testing purposes the data should be divided into two data sets. The two data sets 

are called the training set and validation set. The training set is used to train the model, during each 

epoch the model will be trained to learn about the features of this dataset. A validation set is a set 

of data separate from the training set and used to validate the model. The performance of the trained 

network is evaluated from the error function of the validation set. 
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Input layer                                               Hidden layer                                         Output layer 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To select the architecture of a neural network it is important to decide the number of hidden 

layers and the number of neurons in each hidden layer.  
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Figure 4.2 Schematic of ANN 

Figure 4.1 Schematic of ANN 
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4.3 Modeling Results 

The artificial neural network is used to model the Adelaide WWTP. In this study, MATLAB 2019a 

is used to model and optimize the WWTP. The goal of this research work is to predict the quality 

of effluent in terms of four major pollutants namely BOD, SS, TP, and NH3. To predict the 

pollutants in the effluent stream, the model is trained using seven parameters in the influent stream. 

The preprocessed data is divided into two set one is the training set and the second is the validation 

set. The complete data set consists of 280 data points. The data set is divided in the ratio of 7:3 for 

training and validation.  

The network structure consists of three layers input, hidden and output layers. There are 7, 10, and 

7 neurons in the input, hidden, and output layers respectively. The number of neurons in the input 

layer is equivalent to the number of variables in the influent stream. The seven variables in the 

influent stream are temperature, flow rate, BOD, SS, pH, TP, and ammonia. Similarly, the number 

of neurons in the output layer is equivalent to the number of variables in the effluent stream. The 

seven variables in the effluent stream are temperature, BOD, SS, pH, TP, ammonia, and DO. The 

number of neurons in the hidden layer is decided based on the mean square error(MSE) between 

the predicted and actual values.  

Inputs Neural Network 

Architecture 

Output 

Error 

Calculation 

 

Feedback 
Adjust weights/ 

architecture 

Target 

Figure 4.2 Framework of feedback neural network 
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To reach suitable network architecture, several trials were conducted to attain a suitable learning 

rate, number of hidden layers and number of neurons per each hidden layer. TRAINLM training 

function is used for optimization. This updates weights and bias values according to Levenberg-

Marquardt optimization (Gavin, 2020). This is the fastest backpropagation algorithm and is highly 

recommended as a first-choice supervised algorithm. The two activation functions used for this 

architecture are the tan-sigmoidal and linear functions.  

4.3.1 Training  

The 70% of the data is used for training purposes. The performance of the model is evaluated 

from regression analysis. The overall R-value for the training dataset is close to 1. Comparisons 

between modeled values and actual values are shown in figure 4.3-4.9. 

 

 

Figure 4.3 Regression analysis of actual versus ANN-modeled BOD concentration in 

effluent stream 

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

M
o

d
el

ed
 (

m
g/

L)

Actual (mg/L)

BOD (Training)



 

 

44 

 

 

Figure 4.4 Regression analysis of actual versus ANN-modeled SS concentration in effluent 

stream 

 

Figure 4.5 Regression analysis of actual versus ANN-modeled TP concentration in effluent 

stream 
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Figure 4.6 Regression analysis of actual versus ANN-modeled NH3 concentration in 

effluent stream 

 

Figure 4.7 Regression analysis of actual versus ANN-modeled pH values in effluent stream 
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Figure 4.8 Regression analysis of actual versus ANN-modeled DO concentration in effluent 

stream 

 

 

Figure 4.9 Regression analysis of actual versus ANN-modeled temperature values in 

effluent stream 
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Validation (30% of data used for validation) 

 

Figure 4.10 Regression analysis of actual versus ANN-modeled BOD concentration in the 

effluent stream  

 

Figure 4.11 Regression analysis of actual versus ANN-modeled SS concentration in the 

effluent stream 
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Figure 4.12 Regression analysis of actual versus ANN-modeled TP concentration in the 

effluent stream 

 

Figure 4.13 Regression analysis of actual versus ANN-modeled NH3 concentration in the 

effluent stream 
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Figure 4.14 Regression analysis of actual versus ANN-modeled pH values in effluent stream 

 

Figure 4.15 Regression analysis of actual versus ANN-modeled DO concentration in 

effluent stream 
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Figure 4.16 Regression analysis of actual versus ANN-modeled temperature values in 

effluent stream 

4.3.2 Discussion of results and limitations 

The graphs for model predictions are shown in figure 4.3-4.9 for the training set. It is observed 

that the correlation coefficient for the training set of variable BOD is 0.36. A negative slope on the 

parity plot can be observed in figure 4.3. The SS concentration in the effluent stream cannot be 

predicted by the model beyond 5 mg/L although actual values vary till 20 mg/L as seen in figure 

4.4. The modeled TP concentration in the effluent stream varies between 0.2-0.6 mg/L whereas 

the actual TP concentration varies between 0-1 mg/L. The range of output values is narrow as 

compared to the input values. The model is not able to capture the variation of NH3 concentration 

in the effluent stream and is underestimating its values as seen in figure 4.6.  

From table 4.1 it is observed that a maximum correlation exists between the predicted temperature 

of the effluent stream for both the training and validation set. The least correlation coefficient for 

the training set exists for TP concentration in the effluent stream as observed in figure 4.5. The 

least correlation coefficient for the validation set exists for SS and NH3 concentration in the 

effluent stream as observed in Figures 4.11 and 4.13 respectively. Since the correlation coefficient 

for the training set varies between 0.2 to 0.9 therefore the variables with low correlation can further 

impact the optimization of the system. The model can be further improved by incorporating more 
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information about the operating conditions(e.g., chemical dosage). The incorporation of more data 

can improve the predictive capability of the network. 

Table 4-1 Correlation coefficient of training and validation set 

 Training set Validation set 

Temp UV 0.92 0.91 

BOD UV 0.36 0.30 

SS UV 0.38 0.06 

pH UV 0.24 0.20 

TP UV 0.21 0.26 

NH3 UV 0.38 0.16 

DO UV 0.48 0.29 
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Figure 4.17 Architecture of ANN 
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Figure 4.18 Regression analysis 

4.4 Sensitivity analysis 

Sensitivity analysis is a tool to analyze and assess how multiple independent variables affect 

dependent variables. Sensitivity analysis is also known as ‘what-if analysis’ or simulation analysis. 
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The biggest advantage of sensitivity analysis is to understand which variables have a lot of say in 

the result. It identifies the most significant variable and prepares for a less favorable scenario. 

There are two methods for performing sensitivity analysis: local sensitivity analysis and global 

sensitivity analysis. The term local refers to the fact that the derivatives are calculated at a 

particular location. This method works well for simple cost functions but is not practical for 

complex models. Global sensitivity analysis explores the design space using Monte Carlo methods. 

Sensitivity analysis is done to gain insight into the interaction between plant input and output. In 

this case, one variable is changed by 10% while keeping other variables at their baseline values. 

From table 4.1 it is evident that suspended solids and ammonia in the effluent are most sensitive 

to temperature and pH. 

Table 4-2:Sensitivity analysis 

   BODeff 

mg/L 

SSeff   

mg/L 

TPeff   

mg/L 

NH3eff 

mg/L 

 unit Reference 

values 

1.9704 1.7685 0.4656 0.1316 

Temperature °C 18 -3% -55% 11% 119% 

Flow rate ML/D 23.8 -90% 9% 1% 41% 

BODinf mg/L 440 6% 1% 2% 62% 

SSinf mg/L 652 -5% -21% -6% -116% 

pHinf    - 7.4 35% -254% -38% -431% 

TPinf mg/L 13.5 2% -17% -1% 31% 



 

 

55 

 

NH3inf mg/L 20.9 -4% 23% 2% 14% 

4.5 Summary and conclusions 

In this chapter model based on ANN was developed to predict the quality of effluent stream. The 

purpose of ANN model was to identify the pattern between various parameters in the influent and 

effluent stream. In this research work the seven variables that define the influent stream are 

temperature, flow rate, BOD, SS, pH, TP, and NH3 and seven variables that define the effluent 

stream are temperature, BOD, SS, pH, TP, NH3 and DO. The effluent quality is measured in terms 

of four major pollutants namely BOD, SS, TP, and NH3. The complete data set is divided in 7:3 

ratio for training and validation. The results indicate that ANN can predict the quality of effluent 

stream as the correlation coefficient between the actual values and the predicted values is close to 

0.98. In conclusion ANN is an effective tool for predicting the performance of non-linear and 

complex WWTP.  
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Chapter 5 

5 Multi-objective optimization in WWTP  

One approach to reducing nutrient loading is the use of enhanced treatment systems. But this 

approach can be expensive so to reduce the expenses optimisation approach is suggested in this 

research work. Optimization in WWTP is a challenging issue because of the complexity of the 

process. In the past several studies have examined energy optimization in WWTP to increase the 

treatment efficiency and comply with the discharge limits.  

5.1 Introduction 

In single objective function optimization, one attempts to find the best solution, which is usually 

the global minimum (or maximum). However, most real-world problems involve the simultaneous 

optimization of multiple objective functions (a vector). Such problems are conceptually different 

from single objective function problems. In multiple objective function optimization, there may 

not exist a solution that is the best (global optimum) with respect to all objectives. Instead, there 

could exist a complete set of optimal solutions that are equally good. These solutions are known 

as Pareto-optimal (or non-dominated) solutions. A Pareto set, for example, for a two-objective 

function problem is described by a set of points such that when one moves from one point to any 

other, one objective function improves, while the other worsens. Thus, one cannot say that any one 

of these points is superior (or dominant) to any other. Since none of the non-dominated solutions 

in the Pareto set is superior to any other, any one of them is an acceptable solution. The choice of 

one solution over the other requires additional knowledge of the problem, and often, this 

knowledge is intuitive and non-quantifiable. The Pareto set, however, is extremely useful since it 

narrows down the choices and helps to guide a decision-maker in selecting a desired operating 

point (called the preferred solution) from among the (restricted) set of Pareto-optimal points, rather 

than from a much larger number of possibilities. One real-life example of multi-objective 

optimisation is minimizing fuel consumption and maximizing the performance of a vehicle.  

The Pareto front is a set of non-dominated solutions that are equally optimal. If there are two 

objectives f1(to be maximized) and f2(to be minimized) as shown in figure 5.1. Solution 1 

dominates solution 2 because for point 1 the value of the first objective is higher as compared to 
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the value of point 2 and for objective 2 also point 1 has a better value as compared to point 2. 

Similarly, from the figure, it can be observed that point 3 is better than point 1. Point 3 and point 

5 are non-dominated because for objective 1 point 5 has a better value as compared to point 3 but 

for objective 2 points 3 has a better value as compared to point 5, hence point 3 and point 5 can 

not be compared. Points 3, 5 and 6 are non-dominated points and visualised as the non-domination 

front. Furthermore, choosing one solution from a set of optimal solutions requires higher-level 

information (Deb, 2011). 

 

Figure 5.1: Pareto Front 

In earlier years, multi-objective optimization problems were usually solved using a single scalar 

objective function, which was a weighted average of the several objectives (‘scalarization’ of the 

vector objective function). This process allows a simpler algorithm to be used, but unfortunately, 

the solution obtained depends largely on the values assigned to the weighting factors used, which 

is done quite arbitrarily. An even more important disadvantage of the scalarization of the several 

objectives is that the algorithm may miss some optimal solutions, which can never be found, 

regardless of the weighting factors chosen. Several methods are available to solve multi-objective 

optimization problems, e.g., the ε-constraint method, goal attainment method and the non-

dominated sorting genetic algorithm (NSGA). In this study, we use NSGA to obtain the Pareto set. 

This technique offers several advantages, as for example: 

1. its efficiency is relatively insensitive to the shape of the Pareto optimal front. 
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2. problems with uncertainties, stochasticities, and with discrete search spaces can be handled 

efficiently. 

3. the ‘spread’ of the Pareto set obtained is excellent (in contrast, the efficiency of other 

optimization methods decides the spread of the solutions obtained). 

4. it involves a single application to obtain the entire Pareto set (in contrast to other methods, e.g., 

the ε-constraint method, which needs to be applied several times over). 

5.2 Materials and Methods 

5.2.1 Genetic Algorithm 

A genetic algorithm is an optimization technique used to solve the nonlinear and nondifferentiable 

optimization problems. The genetic algorithm is inspired by Charles Darwin’s theory of natural 

evolution to search for a global optimum value. 

Firstly, GA is initialized, and a random population is generated, this randomly generated 

population is also known as the solutions. Each solution is represented as a string of 0s and 1s. For 

every solution, the value of the objective function is evaluated. This value is called the fitness 

value and represents the quality of the solution. Individuals are selected based on the quality of the 

solution.  

Crossover results in combining good components of a string to yield an even better string. This 

new population is called the offspring population and the previous population is called the parent 

population. The size of the parent population and the offspring population is the same. Therefore, 

in every iteration, the size of the population remains the same. The purpose of mutation and 

crossover is to create a better set of the population as compared to the previous population and 

move towards the optimal solution. After the creation of a new population, the objective function 

is again evaluated. If the termination criterion specified by the user has been met, then the 

algorithm can be terminated. But if the termination criterion is not satisfied then step 2 is repeated.  
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5.2.2 Effluent Regulations 

Wastewater contains pollutants, chemicals and pathogens which are harmful to human health and 

environment. In Canada to reduce the harmful effects on humans and the environment effluent 

regulations are imposed under the Fisheries Act. Wastewater management is a collaborative 

responsibility of federal, provincial, and municipal governments. The federal government specifies 

limits on wastewater effluents and the provincial government issues permits to operate under those 

Initialize population 

Fitness Evaluation 

Termination 

Criterion? 

   Select Population 

Output Optimal Results 

Crossover  

Mutation 

Yes No 

Figure 5.2: Structure of Genetic Algorithm 
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regulations. The municipal government is responsible for the management and operation of 

wastewater systems. 

Table 5-1:Wastewater effluent quality regulations 

Effluent parameter Regulation 

BOD5 10 mg/L 

SS 10 mg/L 

NH3 3 mg/L 

TP 0.5 mg/L 

 

5.2.3 Problem formulation 

A genetic algorithm is used to solve the multi-objective optimization problems. An equalization 

tank or buffer system is suggested to counterbalance the fluctuating flow and composition of 

influent to the treatment plant. The purpose of equalization is to pretreat the wastewater and 

equalization tanks are located after the primary clarification and before the aeration tank. 

5.2.3.1 Decision Variables 

For optimal operation of a wastewater treatment plant number of conflicting objectives needs to 

be dealt with. The purpose of this study is to minimize the concentration of four major pollutants 

in the effluent stream and satisfy the restrictions on the effluent stream. For proper operation of 

the wastewater treatment, four cases of multi-objective optimization are formulated. The system 

includes an equalization tank therefore the decision variables associated with this process are the 

temperature of the influent stream, total sewage flow, BOD, SS, pH, TP, and NH3 of the influent 

stream. 
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5.3 Multi-Objective Optimization using Genetic Algorithm 

5.3.1 Optimization Problem 

For case 1 two objectives are minimized, BOD and TP concentration in the effluent stream (BODeff 

and TPeff). It is important to minimize the concentration of the pollutants (BOD and TP) in the 

effluent stream and meet environmental regulations. The constraints to be satisfied in this problem 

are the limits imposed on the effluent quality by the regulatory bodies. To comply with the 

regulatory requirements, the concentration of NH3 in the effluent stream (NH3eff) should be below 

3 mg/L and the concentration of SS in the effluent stream (SSeff) should be below 10 mg/L. Since 

the concentration of the pollutants cannot be a negative number therefore the concentration of all 

four pollutants should be greater than zero. The decision variables involved in this process are the 

temperature of the influent stream, total sewage flow, BOD inf, SS inf, pH inf, TP inf, and NH3inf. The 

upper and lower bounds of the decision variables are chosen based on the industrial values as 

shown in Table 5.2. 

In this case of minimizing BODeff and TPeff concentration, the solution is violating the fourth 

constraint. As the value of concentration cannot be negative so to overcome this problem penalty 

term is added to the objective function. The purpose of the penalty function is to penalize the 

objective function in case of constraint violation by adding a penalty to it.  In the case of a 

minimization problem, a penalty is added to the objective function. So that the infeasible solution 

will be penalized. On the other hand, if the maximization problem is being solved penalty is 

subtracted from the objective function. Various types of penalty functions are the death penalty, 

static penalty, dynamic penalty and adaptive penalty (Yeniay, 2005).  

Case1 

                    Objective 1: Min BOD
 eff  

                     Objective 2: Min TP
 eff +0.1 (where 0.1 is the penalty function) 

                    Constraint 1                0 <NH3 eff <3 (mg/L) 

                    Constraint 2                 0 <SS
 eff <10 (mg/L) 
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                    Constraint 3                 0 < BOD
 eff 

                    Constraint 4                 0 < TP
 eff 

To find the optimal values of (7 Parameters) 

1. Temperature of the influent stream (°C)       (x1) 

2. Total sewage flow  (ML/D)                           (x2) 

3. BOD inf (mg/L )                                             (x3) 

4. SS inf (mg/L )                                                 (x4) 

5. pH inf                                                             (x5) 

6. TP inf (mg/L )                                                 (x6) 

7. NH3inf (mg/L )                                               (x7) 

Where Y=f(X)           Y = [ BODeff TPeff] 

Table 5-2: Bounds on decision variables(X) for case 1 

Decision Variable Lower Bound Upper Bound 

Temperature(°C) 11 22 

Total sewage flow (ML/D) 16.3 59 

BOD inf (mg/L) 76 619 

SS inf (mg/L) 53 950 

pH inf 7.1 8.2 

TP inf (mg/L) 2.9 25 

NH3inf (mg/L) 9.0 41.8 
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Figure 5.3: Pareto front for case 1 

  

Figure 5.4 Optimal variation of temp and 

total flow rate with BODeff for case 1 
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Figure 5.5 Optimal variation of BODinf and 

SSinf with BODeff for case 1 

 

 

 

Figure 5.6 Optimal variation of pHinf and 

TPinf with BODeff for case 1 
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Figure 5.7 Optimal variation of NH3inf with BODeff for case 1 

 

 

5.4 Results and discussions 

A genetic algorithm(GA) is used to solve the multi-objective optimization problem. The two 

objectives that are simultaneously minimized in case 1 are BOD and TP concentration in the 

effluent stream. The optimal values of the decision variables are hence evaluated. For evaluation 

of the optimum values of the decision variables, every data was collected and analysed for a period 

of four years. The upper bound and lower bounds of the decision variable are decided based on the 
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 Figure 5.8 Variation of SSeff and NH3eff with BODeff for case 1 
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system capacity and historical data. The computation time taken for optimizing seven decision 

variables was less than 10 minutes on 8GB RAM and a 1.8 GHz processor. The population size 

specifies the number of individuals in each generation and the number of generations specifies the 

maximum number of iterations the genetic algorithm performs. The maximum number of 

generations specified for case 1 is 1400(200 x 7). It was observed that after the 122th generation 

there was no improvement in the Pareto optimal front. The Pareto optimal front of BOD and TP 

concentration in the effluent stream is shown in figure 5.3. The function tolerance used in case 1 

is 1 x 10-4 and the significance of the tolerance function is that if the weighted average change in 

the spread of Pareto solutions over the previous generations is less than function tolerance and the 

spread is smaller than the average spread over the last generations then the algorithm stops. The 

constraint tolerance used for case 1 is 1 x 10-3 and is the tolerance for linear constraint violations. 

Table 5-3: GA parameters for Case 1 

Population size 200 x 7 

Maximum number of generations 200 x 7 

Crossover fraction 0.8 

Pareto fraction 0.35 

Constraint tolerance 1 x 10-3 

Function tolerance 1 x 10-4 

The optimal variation of the decision variables corresponding to BODeff is shown in figures 5.4-

5.7. The optimal values of temperature of the influent stream lie towards the lower bound. This 

suggests that to minimize the concentration of BODeff and TPeff, the temperature should be kept 

around 12°C.  The total flow rate of influent wastewater lies towards the upper bound value of 60 

ML/D. It is observed from figure 5.4 that the optimal values of total flow of influent wastewater 

increase from 50 to 60 ML/D as BODeff increases from 0 to 0.1 mg/L. From figure 5.5 it is observed 

that BODeff increases with an increase in BODinf. Therefore, the optimal range of BODinf is from 

175 to 475 mg/L. The optimal value of SSinf is around 850 mg/L and not much variation in the 



 

 

67 

 

optimal values can be observed in figure 5.5. Similarly, the optimal values of pHinf remain constant 

around the upper bound value of 8.2 as observed in figure 5.6. As the optimal value of TPinf 

increases from 7 to 19 mg/L as the concentration of BODeff also increases from 0 to 0.7 mg/L as 

shown in figure 5.6. The optimal range of NH3inf lies towards the upper bound value of 39 mg/L 

and ranges between 34-39 mg/L as observed in figure 5.7. Since in case 1 the objective is to 

minimize the concentration of BOD and TP in the effluent stream it is also important to evaluate 

the concentration of SS and NH3 in the effluent stream.  From figure 5.8 it is observed that the 

value of SSeff and NH3eff is less than 4 mg/L and 0.1 mg/L respectively, thereby meeting the 

regulatory requirements.  

Case 2 is a multi-objective optimization problem which involves seven decision variables and two 

objectives. The two objectives that are simultaneously being minimized are BOD and SS 

concentration in the effluent stream. This problem is solved using a Genetic Algorithm.  

Case2 

                     Objective 1: Min BOD
 eff 

                     Objective 2: Min SS
 eff 

                    Constraint 1                0 <NH3 eff <3 (mg/L) 

                    Constraint 2                 0 <TP
 eff <0.5 (mg/L) 

                    Constraint 3                 0 < BOD
 eff 

                    Constraint 4                 0 < SS
 eff 
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Table 5-4: Bounds on decision variables(X) for case 2 

Decision Variable Lower Bound Upper Bound 

Temperature(°C) 11 22 

Total sewage flow (ML/D) 16.3 59 

BOD inf (mg/L) 76 619 

SS inf (mg/L) 53 950 

pH inf 7.1 8.2 

TP inf (mg/L) 2.9 25 

NH3inf (mg/L) 9. 41.8 

 

 

Figure 5.9 Pareto front of BODeff and SSeff for case 2 
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Figure 5.11 Optimal variation of BODinf 

and SSinf with BODeff for case 2 
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Figure 5.10 Optimal variation of temp and total flow rate with BODeff for case 2 
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Figure 5.13 Optimal variation of NH3inf with BODeff for case 2 
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Figure 5.14 Variation of NH3eff and TPeff 

with BODeff for case 2 

 

Table 5-5: GA parameters for case 2 

Population size 200 x 7 

Maximum number of generations 200 x 7 

Crossover fraction 0.8 

Pareto fraction 0.35 

Constraint tolerance 1 x 10-3 

Function tolerance 1 x 10-4 

The computational time taken for optimizing seven decision variables of case 2 was 12 minutes 

on an 8GB RAM and 1.8 GHz processor. It was observed that after the 173rd generation there was 

no improvement in the Pareto optimal front. The Pareto optimal front of BODeff and SSeff is shown 

in figure 5.9. The population size and the maximum number of generations for case 2 are the same 
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fraction of 1 means that all the solutions other than the best individuals are crossover solutions. 

While the crossover fraction of 0 represents that all the solutions are generated after mutation. The 

Pareto fraction chosen for case 1 and case 2 is 0.35. This specifies that fraction of the population 

on the best Pareto frontier is to be kept on the optimal Pareto front. In this case, population size of 

each generation is 200, therefore the number of solutions kept on the optimal Pareto front is 200 x 

0.35=70.  

The optimal variation of decision variables corresponding to BODeff for case 2 is shown in figures 

5.10-5.13. The optimal values of temperature of the influent stream lie towards the lower bound 

value of 12°C. From figure 5.10 it is observed that the optimal value of temperature decreases with 

an increase in BODeff concentration. There is not much variation in the optimal values of total 

flowinf with change in BODeff. The optimal value of total flowinf is close to 45 ML/D as shown in 

figure 5.10. The optimal value of BODinf is around 225 mg/L and there is no variation in the 

optimal values of BODinf as observed in figure 5.11. The optimal values of SSinf lie close to its 

upper bound value of 850 mg/L. Like the BODinf values, the optimal values of SSinf also remain 

constant corresponding to BODeff values. The optimal values of pH remain close to upper bound 

values of 8.2 as shown in figure 5.12. The optimal values of TPinf increase with an increase in 

BODeff as observed in figure 5.12. The optimal value of NH3inf lies towards the upper bound value 

of 45 mg/L and there is not much variation in NH3inf values as observed in figure 5.13.  

In case 3 two objectives that are simultaneously being minimized are TPeff and SSeff. The limits 

imposed on the concentration of pollutants in the effluent stream is per the regulatory requirements. 

Therefore, NH3eff should be less than 3 mg/L and the concentration of BODeff should be less than 

10 mg/L. Since the concentration of the pollutants cannot be a negative number therefore the 

concentration of all four pollutants should be greater than zero. The decision variables involved in 

this process are tempinf, total sewage flow, BOD inf, SS inf, pH inf, TP inf, and NH3inf. The upper and 

lower bounds of the decision variables are chosen based on the industrial values as shown in Table 

5.6. 
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Case3 

                     Objective 1: Min TP
 eff + 0.1 

                     Objective 2: Min SS
 eff + 0.1 (where 0.1 is penalty function) 

                    Constraint 1                0 <NH3 eff <3 

                    Constraint 2                 0 <BOD
 eff <10 

                    Constraint 3                 0 < TP
 eff 

                    Constraint 4                 0 < SS
 eff 

 

Table 5-6: Bounds on decision variables(X) for case 3 

Decision Variable Lower Bound Upper Bound 

Temperature 11 22 

Total sewage flow (ML/D) 16.3 59 

BOD inf (mg/L) 76 619 

SS inf (mg/L) 53 950 

pH inf 7.1 8.2 

TP inf (mg/L) 2.9 25 

NH3inf (mg/L) 9. 41.8 

This multi-objective optimization problem is solved using GA. Initially, the MATLAB code was 

run without a penalty function, but it was observed that some solutions on the Pareto front were 

negative. Therefore, to overcome this issue static penalty function of 0.1 was added to both 

objectives. The computation time taken for optimizing seven decision variables was 12 minutes 
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on 8GB RAM and a 1.8 GHz processor. After the 202nd iteration there was no improvement in the 

Pareto optimal front. The Pareto optimal front of TPeff and SSeff is shown in figure 5.15. From 

figure 5.15 it is observed that there is no variation in SSeff concentration with respect to the TPeff 

concentration.  

 

Figure 5.15 Pareto front of case 3 
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Figure 5.16 Optimal variation of temp and total flow with TPeff for case 3 
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Figure 5.17 Optimal variation of BODinf and SSinf with TPeff for case 3 
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Figure 5.18 Optimal variation of pHinf and TPinf with TPeff for case 3 

  

 

Figure 5.19 Optimal variation of NH3inf with TPeff for case 3 
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Figure 5.20 Variation of NH3eff and BODeff 

with TPeff for case 3 

 

 

Table 5-7: GA parameters for case 3 

Population size 200 x 7 

Maximum number of generations 200 x 7 

Crossover fraction 0.8 

Pareto fraction 0.35 

Constraint tolerance 1 x 10-3 

Function tolerance 1 x 10-4 
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The optimal variation of the seven decision variables corresponding to TPeff is shown in Figures 

5.16-5.19. As compared to case 1 and case 2 not much variation in the optimized values of the 

decision variables can be observed. The optimal values of tempinf lie close to lower bound values 

similar to case 1 and case 2. Therefore, to minimize the concentration of TPeff  and SSeff 

temperature should be kept around 12°C as shown in figure 5.16. The optimized values of the total 

flow of wastewater lie towards the upper bound value similar to case 1. From figure 5.16 it is 

observed that the optimal value of the total flow are around 55 ML/D. The reason for constant 

values of the decision variables corresponding to the optimal Pareto front could be the narrow 

range of TPeff on the Pareto front. The results are satisfactory because TPeff concentration can’t 

exceed the limit of 0.5 mg/L as per effluent regulations mentioned in table 5.1. The optimal value 

of BODeff are around 375 mg/L as shown in figure 5.17. The optimal values of SSeff lie towards 

the upper value of 850 mg/L similar to case 1 and case 2 as shown in figure 5.17.  

The optimal value of pHinf are around 7.8 and this value is lower as compared to case 1 and case 

2. From figure 5.18 it is observed that the optimal value of TPinf is around 20 mg/L and is close to 

the upper bound value of 25 mg/L. The optimal values of TPinf for case 3 are higher as compared 

to case 2. The optimal values of NH3inf for case 3 remain constant at around 20 mg/L as TPeff 

concentration varies from 0.1-0.12 mg/L as shown in figure 5.19. As case 3 involves minimization 

of TPeff and SSeff to understand the variation of the other two pollutants(BODeff and NH3eff) is also 

important. Variation of NH3eff and BODeff corresponding to the optimal Pareto front is shown in 

figure 5.20. It is observed that there is no violation of the regulatory norms.  

In case 4 three objectives are simultaneously minimized, which include: (i) TPeff (ii) BODeff (iii) 

SSeff. The constraints to be satisfied in this problem are the limits imposed on the effluent quality 

by the regulatory bodies. To comply with the regulatory requirements, NH3eff should be less than 

3 mg/L. Since the concentration of the pollutants cannot be a negative number therefore the 

concentration of all four pollutants should be greater than zero. The decision variables involved in 

this process are the temperature of the influent stream, total sewage flow, BOD inf, SS inf, pH inf, TP 

inf, and NH3inf. The upper and lower bounds of the decision variables are chosen based on the 

industrial values as shown in Table 5.8. 
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Case 4 

                   Objective 1: Min TP
 eff + 0.1 (where 0.1 is the penalty function) 

                   Objective 2: Min BOD
 eff 

                    Objective 3: Min SS
 eff + 0.1 (where 0.1 is the penalty function) 

                    Constraint 1                0 <NH3 eff <3 (mg/L) 

                    Constraint 2                 0 <BOD
 eff 

                    Constraint 3                 0 < TP
 eff 

                    Constraint 4                 0 < SS
 eff 

 

Table 5-8: Bounds on decision variables(X) for case 4 

Decision Variable Lower Bound Upper Bound 

Temperature 11 22 

Total sewage flow (ML/D) 16.3 59 

BOD inf (mg/L) 76 619 

SS inf (mg/L) 53 950 

pH inf 7.1 8.2 

TP inf (mg/L) 2.9 25 

NH3inf (mg/L) 9. 41.8 
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Figure 5.21  3-D Pareto front of case 4 
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Figure 5.22  2-D plot of Pareto front of case 4 
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Figure 5.23 Optimal variation of temp and total flow with TPeff for case 4 
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Figure 5.24 Optimal variation of BODinf and SSinf with TPeff for case 4 
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Figure 5.26 Optimal variation of NH3inf with TPeff for case 4 
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Figure 5.25 Optimal variation of pHinf and TPinf with TPeff for case 4 
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Figure 5.27 Variation of NH3eff with TPeff for case 4 

To visualize the variation of seven decision variables the optimal values of the decision variables 

are plotted against TPeff (one of the objectives that are being minimized in case 4). From figures 

5.23-5.26 it is observed that the graphs are more scattered as compared to cases 1-3. This is due to 

the addition of a third objective function. The optimal values of temperature range between 14-

20°C as shown in figure 5.23. Like case 1 the optimal values of total flow lie close to the upper 

bound value and range between 35-55 ML/D as TPeff concentration varies between 0-0.6 mg/L as 

observed in figure 5.23. From figure 5.24 it is observed that the optimal values of BODinf vary 

between 175-475 mg/L like in case 1. The optimal values of SSinf lie close to upper bound value 

of 850 mg/L like cases 1, 2, and 3. For case 4 the optimal variation of SSinf is least compared to 

six other decision variables. The optimal values of pHinf range between 7.8-8.1 as shown in figure 

5.25. From figure 5.26 it is observed that the optimal values of NH3inf vary between 20-40 mg/L. 

Figure 5.27 represents the variation of NH3eff with respect to TPeff and there is no violation of the 

effluent regulations is terms of NH3eff as the effluent concentration is less than 3 mg/L. 

The computation time taken for optimizing seven decision variables was 8 minutes on 8GB RAM 

and a 1.8 GHz processor. After the 109th iteration, there was no improvement in the Pareto optimal 

front. 
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Table 5-9: GA parameters for case 4 

Population size 200 x 7 

Maximum number of generations 200 x 7 

Crossover fraction 0.8 

Pareto fraction 0.35 

Constraint tolerance 1 x 10-3 

Function tolerance 1 x 10-4 

 

5.5 Summary and conclusions 

In this chapter multi-objective optimization in WWTP is proposed to minimize the concentration 

of pollutants in the effluent stream. Multi-objective optimization problems are commonly 

encountered in real word as compared to single-objective optimization. When the goal is to 

improve the effluent quality, minimizing BOD in the effluent stream only might deteriorate SS 

and TP removal from the wastewater. In case of multi-objective optimization there is no single 

best solution but a set of solutions, also known as Pareto set. In this section of research GA is 

employed to minimize the concentration of BOD, SS, TP, and NH3 in the effluent stream. Three 

cases of multi-objective optimization are formulated with two objectives each for better 

visualization of the Pareto curve. In fourth case three objectives have been minimized 

simultaneously which includes BOD, SS, and TP.  

The goal of this research work is to find the optimum values of the decision variables and satisfy 

the objectives and constraints. The decision variables involved in this process are the temperature 

of the influent stream, total sewage flow, BOD inf, SS inf, pH inf, TP inf, and NH3inf. The constraints 

imposed are in accordance with the regulatory requirements of effluent quality of treated 

wastewater. 
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Chapter 6 

6 Modeling of activated sludge process 

6.1 Introduction 

An activated sludge process in an integral process of wastewater treatment. It is conventionally 

used across the world in sewage treatment plants. In an aeration tank, the organic compounds 

present in the wastewater are stabilized by microorganisms such as bacteria. In the presence of 

oxygen, microorganisms convert organic matter to carbon dioxide, ammonia, and new 

microorganisms. The oxygen keeps the contents of the aeration tank in a mixed state and allows 

bacteria to grow in suspension hence called a suspended growth system.  

The activated sludge process consists of two separate chambers, an aeration tank and secondary 

sedimentation tank. In aeration tank microbes feed on organic, forming flocs which settle down 

easily. In a secondary sedimentation tank, which is also known as a secondary settling tank or 

secondary clarifier, where biological cell mass is separated from the effluent. The activated sludge 

which is also known as mixed liquor volatile suspended solids settles at the bottom of the tank 

while the effluent finds its way from the top. The recirculation of activated sludge is essential to 

maintain the concentration of microorganisms at a certain level. The sludge from the bottom of the 

secondary clarifier is recirculated back to the aeration tank. 

Aeration conditions in the aeration tank are achieved using diffused or mechanical aerators. The 

diffused aeration takes place from the bottom of the tank whereas mechanical aeration occurs at 

the bottom. A diffused aeration system normally operates vertically. Compressed air is pumped 

through pipes and filters into the water through the diffusers, which creates small bubbles. As the 

bubbles rise, they create a spiral flow pattern. Thus, transferring oxygen into the water help bacteria 

in degrading organic material. The two main types of diffused aeration systems are fine bubble 

and coarse bubble aerators. Fine bubble aerators improve aeration and efficiency, whereas coarse 

bubble aerators have enhanced mixing and increased the level of dissolved oxygen. 

A conventional mechanical aeration system operates horizontally. It consists of a pump and a 

motor that turns a propeller. This system churns up water and creates a current which in turn 
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provides a mixing of wastewater. The equipment mixes aerated water with the rest of the water in 

the tank and brings in more air for aeration and mixing. Mechanical aerators provide stronger 

localized mixing, whereas diffused aerators provide complete mixing throughout the tank. In 

diffused aeration systems the bubbles originate from the bottom and rise upwards, hence mixing 

the whole tank. This avoids the chances of dead zones, in contrast, mechanical aerators cannot 

always reach the bottom of deep tanks. Therefore, diffused aerators provide more air to the 

wastewater system per unit of power. 

6.2 Influent characterization 

Influent characterization is important for development of good model as influent drives the rest of 

the model. Organic matter in wastewater can be broadly divided into two categories biodegradable 

and non-biodegradable(inert) material. Non-biodegradable organics are not degraded under any 

conditions. 
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Non-biodegradable organics are further sub-divided into soluble and particulate compounds. 

Particulate compounds form a significant part of primary sludge and impacts plant sludge 

production. Readily biodegradable organic material consists of small molecules and 

microorganisms that rapidly take up and consume. Slowly biodegradable organic material consists 

of larger molecules that require extracellular breakdown before the uptake of organic matter. 

6.3 Activated sludge models 

Activated sludge models are used to study the biological reactions in aeration tanks which consists 

of wastewater and microbes. In 1983 International water association (IWA) was formed to 

coordinate the modeling of the activated sludge process. The goal of IWA was to develop a simple 

model that could accurately predict biological processes. In 1987 ASM1 was developed to describe 

carbon oxidation, nitrification, and denitrification (Henze et al., 1987). In 1995 ASM2 was 

introduced that incorporated the removal of phosphorus by phosphorus-accumulating organisms 

(PAOs).  ASM2 was further extended to ASM2d which included simultaneous phosphorus 

removal and denitrification by PAOs.  

Various reactions involved in ASM1 are: - 

1. Aerobic growth of heterotrophs 

𝜌1 = 𝜇𝐻 (
𝑆𝑠

𝐾𝑆 + 𝑆𝑠
) (

𝑆𝑜

𝐾𝑜,𝐻 + 𝑆𝑜
) 𝑋𝐵,𝐻 

2. Anoxic growth of heterotrophs 

𝜌2 = 𝜇𝐻 (
𝑆𝑠

𝐾𝑆 + 𝑆𝑠
) (

𝐾𝑜,𝐻

𝐾𝑜,𝐻 + 𝑆𝑜
) (

𝑆𝑁𝑂

𝐾𝑁𝑂 + 𝑆𝑁𝑂
) 𝑋𝐵,𝐻ƞ𝑔 

 

3. Aerobic growth of autotrophs 

𝜌3 = 𝜇𝐴 (
𝑆𝑁𝐻

𝐾𝑁𝐻 + 𝑆𝑁𝐻
) (

𝑆𝑜

𝐾𝑜,𝐴 + 𝑆𝑜
) 𝑋𝐵,𝐻 
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4. Decay of heterotrophs 

𝜌4 = 𝑏𝐻𝑋𝐵,𝐻 

5. Decay of autotrophs 

𝜌5 = 𝑏𝐴𝑋𝐵,𝐴 

 

6. Ammonification of soluble organic nitrogen 

𝜌6 = 𝐾𝑎𝑆𝑁𝐷𝑋𝐵,𝐻 

7. Hydrolysis of entrapped organics 

𝜌7 = 𝐾ℎ

𝑋𝑠
𝑋𝐵,𝐻

⁄

𝐾𝑋 +
𝑋𝑠

𝑋𝐵,𝐻
⁄

[(
𝑆𝑜

𝐾𝑜,𝐻 + 𝑆𝑜
) + ƞ𝑔 ((

𝐾𝑜,𝐻

𝐾𝑜,𝐻 + 𝑆𝑜
) (

𝑆𝑁𝑂

𝐾𝑁𝑂 + 𝑆𝑁𝑂
))] 𝑋𝐵,𝐻 

8. Hydrolysis of entrapped organic nitrogen 

𝜌8𝑋𝑁𝐷/𝑋𝑆 

Table 6-1 Parameters and characteristics 

Symbol Name 

SNO Soluble nitrate nitrogen concentration in water 

SNH Soluble ammonia nitrogen concentration in water 

SS Concentration of readily biodegradable COD in water 

µA Maximum specific growth rate of autotrophic biomass 
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KNH Ammonia half saturation coefficient of autotrophic biomass 

bH Decay coefficient for heterotrophic biomass 

Xs Slowly biodegradable organic matter concentration 

Ƞg Correction factor for µH under anoxic conditions 

ȠH Correction factor for hydrolysis under anoxic conditions 

µH Maximum specific growth rate for heterotrophic biomass 

KS Half saturation coefficient for heterotrophic biomass 

kh Maximum specific hydrolysis rate 

KX Half-saturation coefficient for hydrolysis of slowly biodegradable 

KA Ammonification rate 

KO,H Oxygen half saturation coefficient for heterotrophic biomass 

 

6.4 Methodology 

In this study, GPS-X software by the company Hydromantis is used for the modeling and 

simulation of the wastewater treatment plant. Mantis2 a comprehensive model including 

biological, physical, and chemical processes in WWTP was developed by GPS-X. This model 

includes carbon, nitrogen, and phosphorus removal with an integrated anaerobic digestion process. 

The model considers a two-step nitrification and two-step denitrification process. 
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Various processes included in Mantis2 model are: - 

1. Adsorption of colloidal COD: Adsorbed COD is considered slowly biodegradable COD 

and requires hydrolysis before its uptake.  

2. Aerobic hydrolysis: Heterotrophic microorganisms hydrolysis slowly biodegradable 

substrate XS to soluble substrate (SS). 

𝜌2 = 𝐾ℎ.
𝑆𝑂2

𝐾𝑂2
+ 𝑆𝑂2

.

𝑋𝑠
𝑋𝐻

⁄

𝐾𝑋 +
𝑋𝑠

𝑋𝐻
⁄

. 𝑋𝐻 

3. Anoxic hydrolysis: This process occurs under anoxic conditions. The oxygen saturation 

term in aerobic hydrolysis rate expression is replaced by an oxygen inhibition term. The 

specific hydrolysis rate is reduced by anoxic hydrolysis reduction factor(ƞNOx) 

𝜌3 = 𝐾ℎƞ𝑁𝑂3

𝐾𝑂2

𝐾𝑂2
+ 𝑆𝑂2

.
𝑆𝑁𝑂3

𝐾𝑁𝑂3
+ 𝑆𝑁𝑂3

.

𝑋𝑠
𝑋𝐻

⁄

𝐾𝑋 +
𝑋𝑠

𝑋𝐻
⁄

. 𝑋𝐻 

4. Anaerobic hydrolysis: This process occurs under anaerobic conditions. Anaerobic 

conditions mean that the process occurs in the absence of oxygen and electron acceptors 

such as nitrate. The specific hydrolysis rate is reduced by anaerobic hydrolysis reduction 

factor(ƞanaer) 

𝜌4 = 𝐾ℎƞ𝑎𝑛𝑎𝑒𝑟

𝐾𝑂2

𝐾𝑂2
+ 𝑆𝑂2

.
𝐾𝑁𝑂3

𝐾𝑁𝑂3
+ 𝑆𝑁𝑂3

.

𝑋𝑠
𝑋𝐻

⁄

𝐾𝑋 +
𝑋𝑠

𝑋𝐻
⁄

. 𝑋𝐻 

 

5. Ammonification: In this process, soluble organic nitrogen is converted to ammonia 

nitrogen. 

𝜌5 = 𝐾𝐴𝑆𝑁𝐷𝑋𝐵𝐻 

6. Decay of heterotrophs: This process is described by the following equation 
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𝜌6 = 𝑏𝐻𝑋𝐵𝐻 

6.4.1 Model Calibration 

Calibration is the process of adjusting model parameters to improve the fit between predicted and 

actual data.  First step towards model calibration is to assess the data. In this research influent and 

effluent data is collected from Adelaide wastewater treatment plant. The influent data is collected 

before primary treatment and is characterized in terms of temperature, flowrate, BOD, TSS, NH3, 

and TP. The effluent data is collected after UV disinfection and is characterized in terms of 

temperature, BOD, TSS, NH3, and TP. Table 6.1 shows average monthly influent and effluent 

quality parameters used for this study.  

 

Table 6-2 Influent and effluent parameters of WWTP for study 

case 1 2 3 4 

Parameter Influent Effluent Influent Effluent Influent Effluent Influent Effluent 

Flow(103m3/L) 26.24  36.32  27.04  20.4  

BOD (mg/L) 199 2 171 1 238 1 342 2 

TSS (mg/L) 264 4 225 2 306 4 374 4 

NH3 (mg/L) 25 0.16 31 0.10 34 0.41 37 0.47 

TP (mg/L) 10 0.46 11 0.47 13 0.46 15 0.54 
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6.4.2 Modeling and Simulation in GPS-X 

Various steps involved in modeling and simulation are: - 

1. Collection of data required for modeling 

2. Construction of WWTP layout in GPS-X environment. 

3. Characterization of influent wastewater quality parameters (such as BOD, TSS, NH3, and 

TP) 

4. Adjusting influent fractionation of organic and nitrogen compounds which are difficult to 

measure directly, using GPS-X influent advisor. 

5. Running the model and calibration via adjusting kinetic, stoichiometric, and other 

parameters to fit the model.  

6. Validate the calibrated data using a different set of data. 

6.5 Results and discussions 

In this section of the study, steady-state simulations were performed for model calibration and 

validation. Four sets of data were used to calibrate and validate the predicted results. Case 1 was 

used for calibration and Cases 2-4 were used for the validation of results. The kinetic parameters 

of activated sludge model were adjusted to match actual data. The performance of the model was 

measured in terms of effluent quality. In case 1 GPS-X default values were used for model 

calibration. The default values of GPS-X were not able to predict TSS and TP concentrations in 

the effluent stream as shown in figure 6.2. The kinetic parameters (µmax, H KSS, KOH, KNH4, Kh, Kx, 

and KA) were changed from 3.2, 5.0, 0.2, 0.05, 3, 0.1, and 0.08 to 7, 0.3, 0.15, 0.2, 12, 0.3, and 0.4 

as shown in Table 6.3. From figure 6.2 it is observed that TSS concentration in the effluent stream 

was predicted best for case 3. However, this model fails to predict the TP concentration in the 

effluent stream. 
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Figure 6.2 Calibration and validation data  

 

Table 6-3 Influent parameters based on GPS-X influent advisor 
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VSS/TSS 

ratio 

gVSS/gTSS 0.53 0.48 0.48 0.55 

Soluble inert 

material 

gCOD/m3 17.5 16.7 23.3 33.5 

Readily 

degradable 

soluble 

substrate 

gCOD/m3 59.9 65 102.8 160.8 

Particulate 

inert material 

gCOD/m3 6.07 5.8 8.07 11.6 

Heterotrophic 

biomass 

gCOD/m3 0 0.2 0.2 0.2 

 

Table 6-4 Kinetic parameters for calibration and validation data 

Parameter Unit Case 1 Case 2 Case 3 Case 4 

µmax, H 1/d 3.2 7 7 7 

KSS mgCOD/L 5 0.3 0.3 0.3 

KOH mgO2/L 0.2 0.15 0.15 0.15 

KNH4 mgN/L 0.05 0.2 0.2 0.2 

Kh 1/d 3 12 12 12 
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Kx gCOD/gCOD 0.1 0.3 0.3 0.3 

KA m3/gCOD/d 0.08 0.4 0.4 0.4 

 

6.6 Summary and conclusions 

In this chapter modeling and simulation of WWTP using GPS-X are discussed. In this study, four 

sets of data for influent and effluent quality parameters were used for the calibration and validation 

of data sets. The modeling results showed that BOD, TSS, and NH3 concentrations in the effluent 

stream were well predicted by the model but failed to capture TP concentration in the effluent 

stream. The model can be further improved to predict the TP concentration in the effluent stream. 

The volume of the aeration tank can be minimized using the optimization tool in GPS-X. 
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Chapter 7 

7 Conclusion and Future Work 

The purpose of wastewater treatment is to remove the impurities before discharging them back 

into the environment. Untreated wastewater is harmful to both humankind and the environment. 

Improper operation of WWTP can cause environmental and various health issues like cholera and 

dysentery. The optimal operation of WWTP can improve efficiency and reduce the costs 

associated with various processes. In this research work, a multi-objective optimization approach 

has been used to minimize the concentration of pollutants in the effluent stream instead of a single-

optimization approach. In the real world, multi-objective problems with conflicting objectives are 

frequently encountered. In this case, a set of equally good solutions is generated, also known as 

the Pareto set. Though sometimes it becomes difficult for the decision maker to choose a single 

optimal solution from a set of optimal solutions.  

The motivation behind wastewater treatment and the various stages involved in wastewater 

treatment is discussed in chapter 1. Wastewater treatment plants are major consumers of energy. 

Therefore, it is important to operate them optimally. Various optimization techniques such as the 

simplex method, GA, ACO, and PSO have been briefly discussed in this chapter. In this study, 

multi-objective optimization is performed using GA to minimize the concentration of pollutants 

in the effluent stream. Pareto optimality and MOGA are explained in Chapter 1.  

Wastewater treatment is a complex system, and it is difficult to explore various design ideas on a 

pilot plant. Modeling helps in understanding how a system would behave in various conditions 

without experimentation. A WWTP model is a representation of physical and chemical processes 

involved in the purification of wastewater. Chapter 2 presents the work of researchers in the area 

of modeling and simulation of wastewater treatment. In my research work, a black-box modeling 

approach has been employed to model WWTP. This type of modeling is based on the input-output 

behaviour of the process in contrast to physical modeling which is time-consuming.  

In chapter 3 Adelaide WWTP is briefly discussed and data obtained from plant is analysed. The 

purpose of this research is to model the WWTP and predict its performance in terms of effluent 

quality. In first section of this research ANN has been used to model the WWTP. The data set used 
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to build a model was (temp, flowrate, BOD, SS, pH, TP, and NH3 of influent and effluent stream) 

collected and analysed. The performance of a model is dependent on the preparation of data. 

Various steps involved in the preparation of data are:-gathering the data, handling missing data, 

deciding which key factors are important, and splitting the data into training and validation set. 

The measurements of influent flow rate, temperature, BOD, SS, pH, TP,NH3 in the influent stream 

and effluent stream were collected and analysed over four-year period. 

In chapter 4 model based on ANN was developed to predict the quality of effluent stream. The 

purpose of ANN model was to identify the pattern between various parameters in the influent and 

effluent stream. In this research work the seven variables that define the influent stream are 

temperature, flow rate, BOD, SS, pH, TP, and NH3 and seven variables that define the effluent 

stream are temperature, BOD, SS, pH, TP, NH3 and DO. The effluent quality is measured in terms 

of four major pollutants namely BOD, SS, TP, and NH3. The complete data set is divided in 7:3 

ratio for training and validation. The results indicate that ANN can predict the quality of effluent 

stream as the correlation coefficient between the actual values and the predicted values is close to 

0.98. In conclusion ANN is an effective tool for predicting the performance of non-linear and 

complex WWTP.  

In chapter 5 GA is employed to minimize the concentration of BOD, SS, TP, and NH3 in the 

effluent stream. Three cases of multi-objective optimization are formulated with two objectives 

each for better visualization of the Pareto curve. In fourth case three objectives have been 

minimized simultaneously which includes BOD, SS, and TP.  

Chapter 6 focuses on modeling and simulation of WWTP using GPS-X are discussed. In this study, 

four sets of data for influent and effluent quality parameters were used for the calibration and 

validation of data sets. The modeling results showed that BOD, TSS, and NH3 concentrations in 

the effluent stream were well predicted by the model but failed to capture TP concentration in the 

effluent stream. The model can be further improved to predict the TP concentration in the effluent 

stream. The volume of the aeration tank can be minimized using the optimization tool in GPS-X. 
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Future work 

The results reported in this research work were accurate in prediction of the effluent quality. 

Implementation of optimization techniques as described in chapter 5 can increase the performance 

of the plant and reduce the operating cost by running the plant at optimum conditions. Future 

research work should focus on prediction of influent flow and the quality of influent stream. This 

information can provide useful insight to the operators and help them in better management of the 

plant. The research can further be extended to dynamic modeling of WWTP. Dynamic modeling 

will help to simulate the plant operation precisely and this will take into the account of hourly, 

daily, and monthly variation of influent flow and quality of influent stream. 

Aeration tanks are important components of wastewater treatment and significant amount of 

energy is consumed in aeration of the tanks. Future work should focus on optimization of aeration 

energy consumption. This will improve the efficiency of the treatment plant. The optimum design 

of aeration tanks can reduce the fixed capital investment. 
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8 Appendices 

Table 1 - Dataset of Adelaide WWTP (Influent stream) 

Data 

point 

Temperature 

sewage Raw 

(°C) 

Total 

sewage 

flow 

(ML/D) 

BOD5 Raw 

(mg/L) 

Suspended 

solids Raw 

(mg/L) 

pH 

Raw 

Total 

Phosphorus 

Raw 

(mg/L) 

Ammonia 

(mg/L) 

1. 17 23.62 196 343 7.4 10.3 18.1 

2. 15 21.15 87 68 7.4 3.9 22.2 

3. 15 21.63 147 123 7.4 5.4 24.6 

4. 13 29.23 76 53 7.5 2.9 14.6 

5. 15 27.8 194 265 7.5 5.6 14.1 

6. 13 33.36 158 198 7.4 4.7 20.9 

7. 19 23.61 428 574 7.1 9.4 21.3 

8. 20 23.41 151 156 7.6 6.6 34.7 

9. 20 22.75 166 205 7.5 8.1 34.4 

10. 20 24.57 385 815 7.1 12.4 21.7 

11. 20 22.62 215 358 7.3 12.8 20.7 

12. 20 22.45 242 323 7.3 8.1 20.8 
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13. 21 21.93 210 273 7.2 6.3 24.7 

14. 21 24.53 138 152 7.5 6.5 30.3 

15. 21 24.85 350 232 7.2 8.8 22.4 

16. 21 23.83 341 379 7.3 9.4 24 

17. 21 17.61 209 363 7.2 7.6 26.2 

18. 21 18.6 196 263 7.4 6.8 23.6 

19. 21 22.87 308 436 7.3 8.5 25.6 

20. 20 24.33 276 242 7.4 7.9 28.5 

21. 20 20.64 174 178 7.7 6.8 36.3 

22. 20 21.31 108 84 7.5 5.2 27.4 

23. 20 18.67 316 439 7.4 9.2 25.7 

24. 20 18.77 286 349 7.4 7.7 26.1 

25. 20 18.52 330 439 7.4 8.5 29.6 

26. 19 23.85 294 349 7.4 6.8 19.8 

27. 20 24.18 269 355 7.5 7.4 24.7 

28. 19 25.42 271 376 7.5 10.8 27.1 
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29. 19 25.39 316 408 7.5 9.6 25.2 

30.  19 26.41 168 153 7.3 5.7 26.8 

31. 19 24.76 169 200 7.7 7.4 27.8 

32. 19 24.91 361 549 7.5 12.4 24.3 

33. 18 25.93 358 566 7.4 11.9 23.6 

34. 18 24.59 609 950 7.4 11.4 24.6 

35. 19 23.22 288 357 7.5 9 26.6 

36. 19 23.15 132 121 7.9 5.7 31.8 

37. 19 22.58 145 111 7.6 5.2 27.3 

38. 19 23.40 296 418 7.4 10.8 25.3 

39. 18 23.14 311 372 7.5 8.2 21 

40. 18 30.02 131 118 7.7 4.9 26.2 

41. 13 24.75 158 331 7.5 7.8 25.7 

42. 13 25.60 202 191 7.6 6.2 20.6 

43. 14 25.07 292 266 7.6 5.4 21.5 

44. 15 23.76 252 293 7.5 8.4 20.6 



 

 

103 

 

45. 15 23.37 224 320 7.5 7.8 24.1 

46. 16 23.07 225 199 7.5 6 22.8 

47. 15 26.61 246 288 7.5 9.2 16.4 

48. 16 24.63 343 188 7.5 5.9 19.9 

49. 14 24.33 163 180 8.2 6.3 38.4 

50. 14 28.66 140 174 8 5 27.8 

51. 13 33.73 132 121 7.6 3.6 15.1 

52. 14 29.23 467 825 7.4 11.1 17.5 

53. 13 27.35 201 271 7.8 6.3 23.9 

54. 14 28.62 296 525 7.5 8.3 19.1 

55. 14 37.78 167 242 7.6 4.2 10.7 

56. 13 32.78 157 238 7.6 4.4 13.9 

57. 14 30.44 271 504 7.6 9 18.4 

58. 16 28.72 230 396 7.5 7.7 16.1 

59. 14 30.11 191 257 7.5 6.8 19.3 

60. 14 27.42 199 284 7.5 6.6 17.9 
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61. 16 26.22 243 352 7.5 9.7 18.8 

62. 14 25.86 509 706 7.2 13.4 19.7 

63. 14 26.14 144 101 7.5 5.5 20.7 

64. 17 29.27 161 137 7.5 5.4 20.8 

65. 17 21.84 307 482 7.5 11.6 21.1 

66. 17 23.21 217 403 7.5 8.8 17.8 

67. 18 23.13 253 402 7.5 9.5 19.8 

68. 18 23.8 440 652 7.4 13.5 20.9 

69. 18 24.44 211 271 7.8 8.4 36 

70. 21 23.94 397 564 7.4 12.7 28.7 

71. 21 24.65 242 393 7.5 9.2 27.6 

72. 21 27.44 108 150 7.6 4.5 18 

73. 21 24.54 138 220 7.7 7 26.1 

74. 21 20.99 140 227 7.5 8.2 23.2 

75. 22 21.77 237 325 7.4 7.6 20.5 

76. 21 25.85 329 675 7.3 11 15.4 
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77. 21 28.2 286 364 7.3 8.3 18.4 

78. 21 33.39 146 265 7.4 6.7 18.8 

79. 21 29.82 112 99 7.5 3.8 17.4 

80. 21 26.38 144 211 7.5 6 23.5 

81. 21 38.39 224 254 7.6 6.8 27.4 

82. 21 26.95 238 333 7.4 6.5 17.8 

83. 21 26.97 123 141 7.5 5.3 20.1 

84. 22 27.46 214 232 7.4 6.9 18.2 

85. 21 26.11 266 378 7.4 7.9 20 

86. 20 26.85 286 416 7.4 8.5 22.9 

87. 20 25.17 365 375 7.4 9.7 24.8 

88. 19 27.18 251 399 7.5 10.1 22.8 

89. 19 27.59 125 88 7.5 4.3 24.1 

90. 19 21.55 249 388 7.4 9 21.9 

91. 18 21.24 240 429 7.4 8.4 25 

92. 17 20.10 269 383 7.5 9 25.1 
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93. 18 21.19 283 358 7.5 9.1 25.5 

94. 17 20.69 184 244 7.5 7.4 20 

95. 17 20.94 223 248 7.6 6.8 26.5 

96. 17 21.25 259 316 7.5 7.1 20.3 

97. 17 21.17 305 434 7.5 9 25.5 

98. 16 20.34 231 326 7.5 7.3 21.9 

99. 16 27.32 177 247 7.9 6 20.8 

100. 15 31.65 138 155 7.9 5.7 25 

101. 15 26.76 257 309 7.5 6.8 18 

102. 13 38.03 202 248 7.5 5.7 16.5 

103. 13 31.04 174 261 7.5 5.8 15.4 

104. 14 25.91 176 255 7.5 5.3 15.4 

105. 14 24.59 171 225 7.5 5.7 15.8 

106. 14 25.13 208 208 7.6 5.7 15.4 

107. 13 24.1 247 362 7.5 8.5 17.2 

108. 13 23.12 147 173 8 7 28.6 
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109. 13 32.72 269 477 7.5 10 18.5 

110. 13 29.56 201 219 7.5 5.4 17.6 

111. 13 25.97 180 262 7.5 5.1 15.5 

112. 13 24.63 231 266 7.5 5.4 17.8 

113. 13 25.61 241 281 7.5 5.4 17.9 

114. 14 27.21 257 314 7.4 5.5 17.2 

115. 13 37.52 272 343 7.5 6.9 16.8 

116. 12 34.41 171 232 7.5 4.7 9.4 

117. 13 35.38 199 255 7.4 6 16.8 

118. 12 26.8 137 174 7.5 4.4 16.8 

119. 12 24.41 168 240 7.5 5.5 18.1 

120. 12 25.64 135 195 7.5 5 19.1 

121. 14 26.42 176 270 7.6 7.5 21.6 

122. 13 26.36 195 267 7.5 4.7 20.3 

123. 13 27.1 118 123 8.2 5.7 31.8 

124. 13 38.57 111 263 7.5 8.2 17.6 
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125. 13 43.25 109 188 7.4 5.5 17.3 

126. 14 30.15 192 236 7.5 7.6 19.6 

127. 13 46.94 234 211 7.5 6.6 19.2 

128. 13 31.7 160 125 7.5 4.6 16.7 

129. 14 34 240 340 7.5 9.1 18.1 

130. 13 35.28 219 366 7.5 6.2 12.7 

131. 13 34.71 367 404 7.5 7.6 12.7 

132. 14 30.2 278 465 7.4 9.1 18 

133. 15 28.46 226 409 7.4 9.7 16.8 

134. 15 37.96 179 231 7.7 7.2 25 

135. 15 29.73 170 234 7.6 25 15.5 

136. 15 28.52 124 156 7.9 5.9 29.1 

137. 16 29.04 169 201 7.4 6.4 17.5 

138. 16 27.24 232 258 7.4 6.4 17.4 

139. 17 26.25 179 296 7.5 17.5 17.5 

140. 17 24.91 183 141 7.5 6.3 20.7 
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141. 17 24.85 180 225 7.4 6.9 17.6 

142. 17 25.18 236 243 7.5 7.3 22.2 

143. 18 24.84 189 192 7.4 6.5 21.1 

144. 18 26.65 230 215 7.5 7.4 22.1 

145. 18 25.47 397 482 7.3 10.1 33.7 

146. 19 26.81 99 237 7.5 8.1 21.8 

147. 19 26.81 354 494 7.4 11.4 21.7 

148. 19 28.55 202 245 7.4 7.2 22.2 

149. 19 26.77 102 283 7.5 8.8 22.9 

150. 20 26.08 248 380 7.5 10.3 21.7 

151. 19 25.97 236 163 7.5 6.7 24 

152. 21 25.92 221 333 7.4 9.8 23.3 

153. 20 26.5 268 409 7.5 10.1 22.9 

154. 20 26.05 202 324 7.6 8.7 34.5 

155. 21 25.62 263 378 7.6 6.4 27.2 

156. 20 24.87 124 122 8 6.1 37.3 
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157. 20 26.17 306 419 7.5 9.3 29.8 

158. 20 25.86 259 427 7.4 10.2 28.2 

159. 20 26.04 163 151 7.8 7.8 37.1 

160. 21 22.88 254 375 7.4 9.9 28.1 

161. 21 23.15 222 286 7.5 7.8 29.4 

162. 21 21.72 357 387 7.4 9 29.1 

163. 21 19.88 215 195 7.5 7.1 26.8 

164. 20 18.53 337 399 7.4 10 29.3 

165. 20 19.61 226 276 7.6 10 37 

166. 20 20.72 396 511 7.3 10.4 29.5 

167. 20 19.80 561 441 7.4 11.7 29.7 

168. 20 19.28 358 425 7.4 9.9 30.2 

169. 20 19.63 298 289 7.4 9 29.2 

170. 20 18.98 416 605 7.4 11.1 26.5 

171. 19 19.12 234 187 7.4 5.5 26.1 

172. 19 18.06 256 236 7.4 6.7 29.1 
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173. 18 25.73 336 131 7.4 6.1 24.5 

174. 18 21.17 248 353 7.5 9.1 24.3 

175. 19 20.20 254 299 7.5 5.9 24.2 

176. 18 19.91 236 266 7.5 7.3 28 

177. 18 20.45 371 354 7.4 8.4 25.3 

178. 18 24.76 240 298 7.6 7.3 23.2 

179. 18 20.39 243 209 7.6 5.3 22.9 

180. 17 20.69 339 415 7.5 8.4 26.5 

181. 17 21.08 227 219 7.5 5.7 25.8 

182. 17 20.46 240 221 7.6 6.2 26.9 

183. 17 19.43 232 155 7.5 5.7 24.9 

184. 16 19.73 199 210 7.8 6.9 37 

185. 16 18.31 260 220 7.5 6 28.7 

186. 14 16.38 264 229 7.7 7.1 40.2 

187. 15 18.83 416 437 7.5 9.6 29.6 

188. 15 18.78 336 260 7.6 7.4 29.7 
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189. 15 18.38 379 518 7.4 9.9 28.2 

190. 13 56.48 322 293 7.5 7.7 26 

191. 13 22.05 252 253 7.6 6.2 19.6 

192. 14 20.42 202 143 7.6 5.1 19.5 

193. 13 44.22 222 240 7.5 8.6 15.7 

194. 14 21.31 237 195 7.6 6.4 21 

195. 14 22.49 270 243 7.6 6 21.7 

196. 14 32.82 307 310 7.6 8.6 24.1 

197. 14 21.62 391 338 7.5 8.1 26.3 

198. 13 32.69 182 145 7.5 4.5 19.6 

199. 11 69.51 226 282 7.4 4.7 14.8 

200. 12 29.98 280 193 7.6 4.6 15.7 

201. 13 26.62 218 179 7.6 4.3 17.5 

202. 13 24.38 160 263 7.6 4.3 19 

203. 13 25.14 529 479 7.5 7.7 19.4 

204. 11 22.99 229 232 7.5 5.7 19.7 
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205. 12 22.24 249 102 7.6 4.6 20.6 

206. 13 22.19 236 247 7.6 6.4 21.8 

207. 13 22.03 265 263 7.6 6.4 22.8 

208. 13 24.81 334 566 7.6 13.1 26.3 

209. 13 33.68 228 259 7.5 6.1 18.6 

210. 12 29.18 196 168 7.6 4.4 15.3 

211. 13 25.66 282 258 7.6 6.5 19.1 

212. 13 25.22 253 148 7.5 9.3 20.2 

213. 12 35.4 165 245 7.6 5 11.2 

214. 12 33.41 215 102 7.6 4.1 12.6 

215. 13 30.73 310 321 7.6 7.1 17.7 

216. 13 29.66 175 199 7.5 4.3 16.3 

217. 15 31.17 312 415 7.5 9.7 18.4 

218. 14 29.37 178 197 7.7 6.9 28.5 

219. 14 27.88 198 376 7.5 5.9 19.6 

220. 14 25.32 256 212 8.1 7.9 36.4 
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221. 15 29.91 169 241 7.4 5.7 17.6 

222. 15 27.44 190 205 8.1 6.2 35 

223. 15 25.19 168 191 7.9 6.8 35 

224. 15 24.65 264 407 7.5 7.1 22 

225. 17 28.76 227 304 7.5 6.9 20.6 

226. 16 28.64 253 326 7.5 7 22.4 

227. 16 24.01 223 275 7.5 9.3 24.6 

228. 16 25.21 302 283 7.5 6.4 23.7 

229. 17 25.41 266 362 7.5 9.1 23.9 

230. 16 25.26 177 186 8.2 6.4 39.9 

231. 18 28.74 143 170 8 5.5 32.6 

232. 18 25.42 619 893 7.6 15.9 35.9 

233. 17 25.18 311 364 7.5 8 22.3 

234. 18 25.26 297 365 7.5 7.1 23.6 

235. 18 26.37 246 357 7.4 6.9 21.5 

236. 19 35.59 512 541 7.5 8.7 22.5 
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237. 19 26.28 214 377 7.6 7.7 25.1 

238. 18 25.63 392 537 7.4 9.7 31.2 

239. 19 29.52 238 413 7.4 8.1 22.7 

240. 19 27.68 619 580 7.4 10.6 23.3 

241. 20 23.72 214 398 7.5 9.3 21.8 

242. 20 22.14 392 572 7.5 10.5 22.7 

243. 20 24 269 394 7.4 7.3 26.1 

244. 19 23.46 298 283 7.8 7.7 36.9 

245. 20 24.59 417 495 7.4 10.9 26.6 

246. 20 25.63 133 134 7.5 6 25.3 

247. 19 29.87 169 289 7.6 5.1 27.3 

248. 20 26.18 154 333 7.7 4.3 18.5 

249. 21 27.79 211 417 7.5 7.2 22.3 

250. 20 26.39 349 350 7.5 8.1 22.2 

251. 21 27.72 295 472 7.4 8.5 25.5 

252. 21 26.4 256 276 7.5 9.3 26.2 
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253. 20 23.83 300 361 7.6 9.9 41.2 

254. 20 26.01 251 148 7.5 8.2 28.5 

255. 20 24.45 132 444 7.3 8.1 26.2 

256. 20 23 267 374 7.2 8.5 27.9 

257. 20 21.75 242 312 7.4 9 26.6 

258. 20 26.98 283 210 7.5 7.7 23.4 

259. 20 23.81 287 263 7.6 6.8 23.3 

260. 20 27.74 206 249 7.8 7.9 41.8 

261. 20 25.95 244 159 7.8 6.6 35.9 

262. 19 23.58 325 395 7.4 9.7 26.2 

263. 19 22.67 227 177 7.5 6.4 25.6 

264. 19 22.58 365 315 7.5 10.6 29.1 

265. 19 22.22 297 385 7.5 7.6 24.5 

266. 18 26.57 139 404 7.7 7.2 27.5 

267. 18 38.46 301 325 7.7 11.2 32.9 

268. 17 31.26 282 256 7.6 6.3 20.8 
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269. 17 23.81 238 257 7.6 5.7 21.9 

270. 16 23.03 366 346 7.9 9.3 41 

271. 17 22.40 231 301 7.7 7 21.9 

272. 17 21.65 350 236 7.6 6.2 24.5 

273. 16 27.00 194 253 7.6 5.3 15.7 

274. 15 26.17 272 218 7.6 4.6 20 

275. 16 26.72 224 655 7.5 8.6 11.8 

276. 15 24.97 398 338 7.6 6.2 20.8 

277. 15 24.57 332 423 7.5 9.3 22.2 

278. 15 24.87 294 332 7.5 7.1 21.9 

279. 15 23.19 105 253 7.5 6.9 22.1 

280. 14 23.92 224 258 7.5 7.8 24.8 
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Table 2 - Dataset of Adelaide WWTP (Effluent stream) 
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MATLAB Code for modeling WWTP using ANN 

i=Inputandoutputdata(:,1:7); 

o=Inputandoutputdata(:,8:14); 

hiddenlayersize=10; 

net=fitnet(hiddenlayersize); 

net.divideParam.trainRatio=70/100; 

net.divideParam.valRatio=30/100; 

net.divideParam.testRatio=0/100; 

[net,tr]=train(net,it,ot); 

  

iTrain=it(:,tr.trainInd); 

iVal=it(:,tr.valInd); 

oTrain=net(it(:,tr.trainInd)); 

oTrainTrue=ot(:,tr.trainInd); 

oValTrue=ot(:,tr.valInd); 

oVal=net(it(:,tr.valInd)); 

oValTruet=oValTrue'; 

oValt=oVal'; 

sum(sqrt(mean((oValt-oValTruet).^2))) 

%omin=oValt(:,2:5); 

%Extracting weights 

w1=net.IW(1,1); 

w2=net.Lw(2,1); 

b1=net.b(1); 

b2=net.b(2); 

save('Trained-Network.mat') 

%end 
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W1 (Weights) 

 10 – neurons in hidden layer  7 – neurons in input layer  

2.253922 1.012001 0.776434 -0.76715 -0.30355 1.518476 -0.25827 

0.108927 2.51738 -0.51042 -0.57277 -0.27406 0.574018 -0.82383 

-0.62377 -0.1403 0.557544 -0.98586 0.870841 0.538559 -0.43542 

1.355239 -0.08942 0.392527 -0.63427 0.996416 -0.29188 -0.45111 

0.1643 1.310789 -0.36146 -0.78076 -1.38619 -0.48319 0.432218 

0.480692 0.644446 -0.59926 0.778919 -1.59881 0.326442 1.639477 

-0.77806 -1.31416 0.641651 0.191947 -0.16566 1.39329 -0.47019 

0.190104 -0.29839 0.949314 -1.48205 0.837722 0.086483 -0.97314 

1.810092 0.115601 -0.58561 1.348571 1.10291 -0.16102 -0.80061 

0.947126 0.391462 -0.94071 -0.59502 -0.29847 -1.55539 0.086428 

 

W2 (Weights) 

10 – neurons in hidden layer  7 – neurons in output layer 

0.23957 -0.31176 -0.08818 0.498041 0.184522 -0.004 0.123773 -0.34742 0.319021 0.211791 

-0.13407 0.71778 0.016002 0.341452 0.140406 0.010841 0.476699 0.113107 -0.3365 0.22181 

-0.24538 0.277369 -0.30762 -0.47931 -0.34014 0.460775 -0.41579 0.884604 0.043217 -0.58364 

0.217608 -0.21141 0.436445 0.364821 0.221385 -0.23608 0.2643 -0.55732 0.029908 0.683168 

-0.08001 0.62341 -0.45555 -0.15021 -0.17874 0.481181 -0.08369 0.89001 -0.27152 0.277857 

0.072898 0.446614 -0.05111 -0.18507 -0.0756 0.147128 -0.13035 0.32896 -0.02287 -0.12603 

-0.06786 -0.39208 -0.85468 0.15253 -0.39986 -0.27746 0.046166 0.473178 -0.59217 -0.73152 

 

b1     (bias)                                    b2                                                    

-0.93089   -0.15493 

-2.2919   0.176487 

0.329838   -0.70683 

-0.43255   -0.45933 

-0.24852   0.028225 

0.068391   -0.4663 

-0.5646   0.520238 

0.147647    

1.426659    

2.260947    
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Case 1 

Objective function for minimization of 2 objectives 

 

function effconc=objfcn(x) 

load('Trained-Network.mat'); 

y=sim(net,x'); 

effconc(1)=y(2)'; 

if y(5)<0 

effconc(2)=y(5)'+0.1; 

end 

if y(5)>0 

effconc(2)=y(5)'; 

end 

 

function [C Ceq]=nonlinear_constraints(x) 

load('Trained-Network.mat'); 

y=sim(net,x'); 

C(1)=-y(2); 

C(2)=y(6)-3; 

C(3)=-y(6); 

C(4)=-y(5); 

C(5)=-y(3); 

C(6)=y(3)-10; 

Ceq=[]; 
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Case 2 

Objective function for minimization of 2 objectives 

 

function effconc=objfcn(x) 

load('Trained-Network.mat'); 

y=sim(net,x'); 

effconc(1)=y(2)'; 

effconc(2)=y(3)'; 

 

function [C Ceq]=nonlinear_constraints(x) 

load('Trained-Network.mat'); 

y=sim(net,x'); 

C(1)=-y(2); 

C(2)=y(6)-3; 

C(3)=-y(6); 

C(4)=-y(5); 

C(5)=y(5)-0.5; 

C(6)=-y(3); 

Ceq=[]; 
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Case 3 

Objective function for minimization of 2 objectives 

 

function effconc=objfcn(x) 

load('Trained-Network.mat'); 

y=sim(net,x'); 

if y(3)>0 

effconc(1)=y(3)'; 

end 

if y(3)<0 

effconc(1)=y(3)'+0.1; 

end 

if y(5)>0 

effconc(2)=y(5)'; 

end 

if y(5)<0 

effconc(2)=y(5)'+0.1; 

end 

 

 

function [C Ceq]=nonlinear_constraints(x) 

load('Trained-Network.mat'); 

y=sim(net,x'); 

C(1)=-y(2); 

C(2)=y(2)-10; 

C(3)=y(6)-3; 

C(4)=-y(6); 

C(5)=-y(5); 

C(6)=-y(3); 

Ceq=[]; 
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Case 4 

Objective function for minimization of 3 objectives 

 

function effconc=objfcn(x) 

load('Trained-Network.mat'); 

y=sim(net,x'); 

if y(5)<0 

effconc(1)=y(5)'+0.1; 

end 

if y(5)>0 

effconc(1)=y(5)'; 

end 

effconc(2)=y(2)'; 

if y(3)<0 

effconc(3)=y(3)'+0.1; 

end 

if y(3)>0 

effconc(3)=y(3)'; 

end 

 

 
function [C Ceq]=nonlinear_constraints(x) 

load('Trained-Network.mat'); 

y=sim(net,x'); 

C(1)=-y(2); 

C(2)=y(6)-3; 

C(3)=-y(6); 

C(4)=-y(5); 

C(5)=-y(3); 

Ceq=[]; 

 

 

MATLAB code for plotting three objectives 
 

x=paretofrontplot(:,1); 

y=paretofrontplot(:,2); 

z=paretofrontplot(:,3); 

%plot3(x,y,z) 

figure 

%[X,Y,Z]=meshgrid(x,y,z); 

scatter3(x,y,z) 

xlabel('TP(mg/L)'); 

ylabel('BOD(mg/L)'); 

zlabel('SS(mg/L)'); 
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Kinetics and stoichiometry for ASM1(Henze et al., 1987) 
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