
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

12-19-2022 11:00 AM

Towards Parking Lot Occupancy Assessment Using Aerial Towards Parking Lot Occupancy Assessment Using Aerial

Imagery and Computer Vision Imagery and Computer Vision

John Jewell, The University of Western Ontario

Supervisor: Yalda Mohsenzadeh, The University of Western Ontario

: Michael Bauer, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© John Jewell 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Jewell, John, "Towards Parking Lot Occupancy Assessment Using Aerial Imagery and Computer Vision"
(2022). Electronic Thesis and Dissertation Repository. 9072.
https://ir.lib.uwo.ca/etd/9072

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F9072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9072?utm_source=ir.lib.uwo.ca%2Fetd%2F9072&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
Advances in Computer Vision and Aerial Imaging have enabled countless downstream ap-

plications. To this end, aerial imagery could be leveraged to analyze the usage of parking lots.
This would enable retail centres to allocate space better and eliminate the parking oversupply
problem. With this use case in mind, the proposed research introduces a novel framework for
parking lot occupancy assessments. The framework consists of a pipeline of components that
map a sequence of image sets spanning a parking lot at different time intervals to a parking
lot turnover heatmap that encodes the frequency each parking stall was used. The pipeline of
components includes Image Stitching, Vehicle Detection and Heatmap Generation. The focus
of this work is Image Stitching and Vehicle Detection, while Heatmap Generation is left for
future work. Beyond proposing a novel framework for parking lot occupancy assessments,
several contributions are made to the Computer Vision field. In particular, a novel method for
initializing the pose of images based on the metadata from the acquisition system is introduced.
Additionally, a novel comparative study of object detection models applied to the vehicle de-
tection task is presented. Extensive experiments are used to validate the proposed contributions
on both public and private datasets.

Keywords: Object Detection, Image Stitching

i

Summary for Lay Audience
Vision is fundamental to how humans perceive and act in the world. Thus, in the pursuit of

creating intelligent systems, it is intuitive to endow computers with a similar sense of percep-
tion. This is the focus of Computer Vision - a scientific field seeking to develop systems that
analyze images and videos. In this thesis, Computer Vision is leveraged to work toward a sys-
tem that performs parking lot occupancy assessments. More specifically, the system uses aerial
images of parking lots taken across time intervals to generate a heatmap that encodes the num-
ber of times each parking stall is used. The system consists of a pipeline of three components:
Image Stitching, Vehicle Detection, and Heatmap Generation. First, Image Stitching is used
to map a set of overlapping images to a consistent mosaic. Subsequently, vehicle instances in
the mosaic are localized during Vehicle Detection. Lastly, Heatmap Generation uses the mo-
saics along with the detected vehicle instances to generate a heatmap. The focus of this work
is on Image Stitching and Vehicle Detection. However, a preliminary discussion of Heatmap
Generation is included to provide some initial direction.

ii

Acknowlegements
I want to start by expressing gratitude to my supervisor Yalda Mohsenzadeh. I have had the
pleasure of working with her since my undergraduate studies. Throughout this time, she has
helped me grow as both a researcher and a person. I will always be indebted to her for the
countless opportunities she has provided me with. Furthermore, I would like to thank Steven
Beauchemin and Michael Bauer for co-supervising me. Their thoughtful feedback was con-
structive in writing my thesis. Many thanks to my co-author and friend Vahid Reza Khazaie as
well.

I would also like to thank my loved ones - without them this work would not be possible.
In particular, thank my parents for everything they have done for me. I would be remiss if I
did not also acknowledge the tremendous support of my grandparents. Lastly, thanks to my
partner Lauren for being by my side every step of the way.

iii

Contents

Abstract i

Summary for Lay Audience ii

Acknowlegements iii

List of Figures vi

List of Tables viii

1 Introduction and Literature Review 1
1.1 Introduction . 1
1.2 Dataset . 2
1.3 Formalizing Image and Metadata . 2
1.4 Related Work . 3

1.4.1 Image Stitching . 3
1.4.2 Vehicle Detection . 4

1.5 Overview . 6

2 Background 7
2.1 Coordinate Systems . 7

2.1.1 Cartesian Coordinate System . 7
2.1.2 Homogeneous Coordinate System . 8
2.1.3 North East Down Coordinate System 9

2.2 Image Formation . 9
2.2.1 Pinhole Camera Model . 9

2.3 Deep Learning . 10
2.3.1 Deep Learning Architectures . 11
2.3.2 Neural Network Training . 12

3 Image Stitching 13
3.1 Overview . 13
3.2 Homography Estimation . 13

3.2.1 Keypoint Detection . 13
3.2.2 Keypoint Description . 14
3.2.3 Keypoint Matching . 15
3.2.4 Pairwise Transformation . 15

iv

3.3 Global Alignment . 16
3.3.1 Image Pose Initialization . 17

3.4 Optimization Procedure . 18
3.5 Implementation Details . 19
3.6 Experiments . 20

3.6.1 Hyperparameter . 20
3.6.2 Image Initialization Ablation Study 21
3.6.3 Visual Results . 21

4 Vehicle Detection 31
4.1 Overview . 31
4.2 Object Detection . 32
4.3 Architectures . 32

4.3.1 One Stage Detectors . 33
4.3.2 Two Stage Detectors . 35

4.4 Experiment . 36
4.4.1 Dataset . 36
4.4.2 Implementation Details . 37
4.4.3 Experiment Details . 37
4.4.4 Evaluation Metrics . 38
4.4.5 Results . 38
4.4.6 Conclusion . 39

4.5 Towards Heatmap Generation . 43

5 Conclusion 47
5.1 Conclusion and Discussion . 47
5.2 Limitations . 48
5.3 Future Work . 48

Bibliography 49

Curriculum Vitae 52

v

List of Figures

1.1 An example of the three main steps of the project: Image Stitching, Vehicle
Detection and Heatmap Generation. 2

1.2 A set of images at the first and last time interval for the same parking lot. . . . 3

2.1 An example of various classes of transformation being applied to an image. . . 8

3.1 An example of keypoints detected on two sample images. 14
3.2 An example of feature matches on a pair of overlapping images. 15
3.3 An example of the pairwise transformation computed between a pair of over-

lapping images. 16
3.4 Overview of the image initialization process. 19
3.5 Langley parking lot consisting of 4 images. 23
3.6 Kelowna parking lot consisting of 6 images. 24
3.7 Stockyards parking lot consisting of 8 images. 25
3.8 Result of the image stitching algorithm on the Langley image set. 26
3.9 Result of the image stitching algorithm on the Kelowna Image Set. 27
3.10 Result of the image stitching algorithm on the Stockyards Image Set. 28
3.11 Subpar image stitching results obtained in case of large mosaic. 29
3.12 Graph view of image initialization. Nodes represent image centers and edges

represent transformations between images. A pink (gray) edge indicates trans-
formations exist (don’t exist) between a pair of images. 30

3.13 Graph that shows link loss for each link in the graph. The link loss is simply
the l2 norm between points projected by the estimated relative transformation
and true relative transformation. 30

4.1 A high level illustration of deep learning based object detection methods. 33
4.2 An illustration of one stage detectors and two stage detectors. 34
4.3 Image from the Car Parking Lot (CARPK) Dataset 36
4.4 Image from the SkyDeploy (SD) Dataset . 37
4.5 Binary cross entropy (BCE) loss for training set (top) and validation set (bot-

tom) across epochs. 40
4.6 Visual Results for the Faster RCNN method on the CARPK Dataset 41
4.7 Visual Results for the Faster RCNN V2 method on the CARPK dataset 41
4.8 Visual Results for the Faster RCNN method on the SD dataset 42
4.9 Visual Results for the Faster RCNN V2 method on the SD dataset 42
4.10 An illustration of the Image Stitching step of the pipeline. 44
4.11 An illustration of the Vehicle Detection step of the pipeline. 44

vi

4.12 An illustration of the Heatmap Generation step of the pipeline. 45
4.13 An example of the Parking Lot Turnover Heatmap. 46

vii

List of Tables

3.1 The results of the Hyperparameter experiments. 22
3.2 The results of the image initialization ablation study. 23

4.1 Average Precision and Average Recall on test set for each approach 43

viii

Chapter 1

Introduction and Literature Review

1.1 Introduction

With the advent of unmanned aerial vehicles (UAV) such as dynamic remotely operated navi-
gation equipment (drones), high-resolution aerial image data has become widely available [11].
In parallel, the Computer Vision field has matured to provide a wide range of image-based al-
gorithms for tasks like scene reconstruction and object detection. This presents an opportunity
to apply recent advances in Computer Vision to aerial imagery to develop novel systems. For
example, Computer Vision algorithms can be used to map a set of images spanning a scene
to a precise 2D model wherein various objects of interest can be detected. Thus, numerous
applications in urban planning, traffic planning, surveillance and agriculture are enabled.

Specifically, within the realm of urban planning, large open-concept retail centers could
benefit from leveraging aerial image data to analyze how their parking facilities are being used.
This would allow retail centers to optimize the allocation of parking facilities, thereby increas-
ing efficiency and reducing the parking oversupply problem. With this use case in mind, the
proposed research offers a significant step towards an end-to-end framework for generating
parking lot turnover heatmaps. These heatmaps specify the amount cars parked in each park-
ing stall over the entire day. The proposed framework is a pipeline that maps a sequence of
image sets spanning a parking lot at different time intervals to a parking lot turnover heatmap.
The resulting output gives us the distribution of parking lot utilization. This is an order-of-
magnitude improvement over occupancy assessment systems that may only detect aggregate
vehicle counts.

As depicted in Figure 1.1, the framework consists of three components: Image Stitching,
Vehicle Detection and Heatmap Generation. This thesis will focus on the Image Stitching
and Vehicle Detection component while the Heatmap Generation is left for future work. To
our knowledge, this is the first work to work towards an end-to-end assessment of parking
utilization. In doing so, several novel contributions are made to Image Stitching and Vehicle
Detection. The following chapter seeks to familiarize the reader with the foundations of the
proposed research. This includes an overview of the dataset, a discussion of related work and
a look ahead to future chapters.

1

2 Chapter 1. Introduction and Literature Review

Figure 1.1: An example of the three main steps of the project: Image Stitching, Vehicle Detec-
tion and Heatmap Generation.

1.2 Dataset
The data for the parking lot utilization assessment framework is sourced from a large private
dataset of high-resolution drone images and associated metadata. Specifically, the dataset con-
tains sequences of image sets that span a particular parking lot across several time intervals
throughout the day. Each parking lot is surveyed 11 times at half-hour intervals from 12:00 to
17:00. A figure illustrating a set of images at the first and last time interval for the same park-
ing lot is available in Figure 1.2. The image set at each interval spans the parking lot and its
size can vary across time intervals. In total, there are 26 parking lots that were surveyed across
Canada using various DJI drones. As such, there is substantial variation in the characteristics
of the parking lots.

1.3 Formalizing Image and Metadata
Each image i from parking lot p at time t can be represented as a tensor Iipt ∈ R

HxWx3 where
H is the height of the image, W is the width of the image and 3 is the number of channels in a
color image. Iipt also has associated metadata tuple Mipt:

Mipt =< ψ, θ, ϕ, tx, ty, tz, fx, fy, cx, cy > (1.1)

For brevity of notation, the index ipt is omitted from components of M. ψ, θ and ϕ are
the yaw, pitch and roll for the drone, respectively. The angles are measured in degrees. tx

and ty are utm coordinates representing the easting and northing, respectively. tz is the relative
altitude of the drone. tx, ty and tz are measured in meters. fx and fy are the focal lengths of the
camera, expressed in pixel units. (cx, cy) is the coordinates of the principal point in pixel units,
which is assumed to be at the center of the image. Thus, Mipt contains several parameters that
help recover the pose of the drone in the world coordinate system when capturing Iipt. This
information can be leveraged to help build a precise 2D model of the parking lot.

1.4. RelatedWork 3

Figure 1.2: A set of images at the first and last time interval for the same parking lot.

1.4 Related Work
The related work section provides the reader with an overview of research related to the cur-
rent work. The proposed end-to-end parking utilization assessment framework is novel and no
existing research addresses this specific problem—however, sub-components of the framework
fall inside well-established fields of research in computer vision. In particular, Image Stitching
and Vehicle Detection are two popular Computer Vision tasks that are relevant to the proposed
framework. Image Stitching provides the foundation for generating mosaics from sets of im-
ages. It also provides the capability to register multiple mosaics across time. Vehicle Detection
is also a core component of the proposed framework. It is used to detect vehicle instances in
aerial images. The following sections highlight related work for Image Stitching and Vehicle
Detection, respectively.

1.4.1 Image Stitching
Image stitching involves aligning images of the same scene captured from different locations
and orientations [27]. At its core, image stitching involves two high-level steps: homography
estimation and global alignment. In the homography estimation step, the transformation that
maps one image to the coordinate system of another is estimated. In the subsequent global
alignment step, the estimated homographies from the previous step are refined jointly.

The first step of the homography estimation process involves detecting and describing the
key points for each image with a vector. The goal is to generate keypoints with descriptors
that only match the corresponding point in other images. Keypoint detectors select the points
in the image representing corners as keypoints. The rationale for selecting corners is that they
correspond to distinct parts of objects. Thus, corners are more easily identifiable across im-
ages. Subsequently, a descriptor could be generated for the keypoint using a neighbourhood of
pixels. However, this representation is not invariant transformations in the image plane. Scale

4 Chapter 1. Introduction and Literature Review

Invariant Feature Transform (SIFT) extends this simple paradigm with a more sophisticated
description algorithm that generates representations that are invariant to scaling and rotations
[20]. Additionally, Speeded-Up Robust Features (SURF) [2] and Oriented FAST and Rotated
BRIEF (ORB) [22] features are alternatives to SIFT that is more efficient to compute. Since
these features are faster to compute, they are favored in low-latency applications. However,
when the quality of keypoints is of utmost concern, SIFT features are the better choice.

Following keypoint detection and description, correspondences across images are deter-
mined via a keypoint matching algorithm. In the simplest case, a brute-force approach in-
volves computing a distance between each pair of keypoints across images. A more efficient
alternative involves approximate k-d tree matching [1]. Once keypoints have been matched, the
transformation can be determined by solving the system of equations specified by the corre-
spondences. Due to the presence of false correspondences, the system of equation is inconsis-
tent and no unique solution exists. Thus, methods like Random Sample Consensus (RANSAC)
are employed to yield an approximate global solution. RANSAC is an iterative method for
solving an overdetermined system of equations that contains outliers. In each round, a random
subset of correspondences are chosen to fit a model of the data. The model is validated across
all datapoints and the number of outliers is recorded each round. The procedure is repeated
a specified number of times and the model with the lowest number of outliers is returned. In
this way, RANSAC provides an approximate global solution for the overdetermined system of
equations. The aforementioned procedure is repeated for each pair of images in the set to yield
the pairwise relative transformations. A threshold on the number of feature matches [27] is
used to filter out pairs of images that do not overlap. This ensures that only pairs of images
that are likely to be overlapping will have transformations computed. In the subsequent global
alignment step, the estimated homographies from the previous step are refined globally, often
using a least squares solution like bundle adjustment [29].

1.4.2 Vehicle Detection
Vehicle detection involves localizing vehicle instances in aerial images. Object detection has
been a highly active area of research in recent years with the advent of deep learning and its
applications in computer vision. The research focuses on a class of deep learning models called
convolutional neural networks (CNN) [14]. CNN combines the traditionally disjointed process
of feature extraction and classification/regression, allowing the model to be optimized end-
to-end for the prediction task. Current state-of-the-art object detection approaches leveraging
deep learning have been able to achieve near-human level performance over a multitude of
benchmark datasets [13].

Traditionally, object detection has been approached using sliding window template match-
ing. Template matching involves collecting a set of templates that are small images that depict
the object that we are looking to detect. The image is divided into overlapping grid cells the
same size as templates. The template is then applied to each grid cell and the correlation is
computed. Locations of the image with high correlation are more likely to contain the object
specified by the template. A threshold is applied to the correlation map to determine actual
detection. The grid cells give us the bounding box of an object and the template gives us the
class. The template matching and sliding window approach to object detection has several lim-
itations. The search space of object instances across poses within a class is extremely large.

1.4. RelatedWork 5

Templates only characterize a single instance of an object with a specific pose. Thus, a finite
number of templates cannot adequately search the space of object instances.

Subsequently, the Viola-Jones [31] approach to object detection was proposed. This method
addressed some limitations of the sliding window template matching approach by avoiding ex-
plicitly defining object templates. The Viola-Jones detector involves two steps: feature extrac-
tion and classification. In the feature extraction step, a window is moved over the input images
and features are computed at every location. An integral image is used for efficient feature
evaluation. This involves determining which areas of the image have a high cross-correlation
with handcrafted feature templates. Each feature template is considered weak learning because
it only captures certain characteristics of an object. By using multiple feature templates, we can
define a linear model as a strong learner that maps the predictions of weak learners to a final
joint prediction. The Viola-Jones detector found moderate success in downstream tasks such
as face detection. However, the accuracy of the Viola Jones Detector is still strongly dependent
on the pose of objects. In the case of face detection, only people directly facing the camera
have their faces reliably detected.

The feature extraction and classification object detection paradigm were extended in subse-
quent works. Methods to enhance both the feature extraction and classification steps have been
proposed. In particular, Histogram of Oriented Gradient (HOG) features [4] enhanced object
detection by providing better feature detection and description. HoG features are computed by
defining a histogram over the quantized orientation of image gradients for a particular location.
A Support Vector Machine (SVM) is then trained to classify keypoints that are extracted from
a specific object class. Thus, an SVM is trained for each object class. The positive samples are
extracted from images containing the specified object class and negative samples are extracted
from images not containing a specified object class. This approach to object detection has been
shown to be more robust then the Viola Jones detector.

The seminal CNN-based object detection approach is OverFeat [24]. OverFeat uses feature
maps extracted from the intermediate layers of a pretrained backbone to classify and localize
objects in images. More specifically, the feature maps are input into the network’s classification
and localization branches to yield the objects’ detections. OverFeat is fed the input image at
multiple resolutions to account for objects at multiple resolutions. Lower-resolution inputs are
geared toward detecting large objects and high-resolution inputs are geared toward detecting
small objects. The spatial resolution of the feature maps is proportional to the size of the input
image. Thus, the classification and detection branches of the architecture must handle feature
maps with a variable spatial resolution, which is impossible in the case of fully connected lay-
ers. OverFeat uses 1x1 convolutional layers in place of fully connected layers to overcome this
constraint. The R-CNN [7] architecture for object detection was subsequently proposed and
surpassed the performance of OverFeat. R-CNN uses an auxiliary region proposal algorithm
such as Selective Search [30] to generate candidate regions of various sizes. The candidate
regions are resized to a consistent resolution and fed to a CNN for classification. Since the
candidate generation algorithm outputs the coordinates of the objects, no localization branch
of the architecture is necessary. A downside of the R-CNN architecture is that it requires a
forward pass per regional proposal which is computationally intensive. Fast R-CNN [6] im-
proves the efficiency of the R-CNN architecture by mapping the regional proposal directly to
the feature maps produced by CNN. Region of Interest (ROI) pooling was introduced to pool
features across region proposals. The feature maps are then fed to classification and localiza-

6 Chapter 1. Introduction and Literature Review

tion branches to generate the labels and coordinates of objects, respectively. Most recently,
Faster R-CNN [21] was introduced as a more efficient and accurate alternative to Fast R-CNN.
The fundamental contribution of this approach was the introduction of a CNN-based region
proposal network in place of the Selective Search algorithm.

Although object detection is a popular area of research, the application of object detec-
tion to detecting vehicles in aerial images has been explored less [12]. Out-of-the-box object
detection methods tend to generalize poorly because vehicle instances in aerial imagery are
smaller than the objects they are optimized to detect. Recent works have addressed this issue
by adapting state-of-the-art object detection architectures to deal with small object instances
using higher resolution feature maps, smaller anchor boxes and other minor adaptations [26].
Other recent approaches to detecting vehicles in aerial imagery incorporate inductive bias re-
lated to the specific object detection task into the model [15].

1.5 Overview
The chapters in the thesis are as follows: Background, Image Stitching, Vehicle Detection,
and Conclusion. The Background chapter offers an overview of the technical preliminaries
that are helpful for future chapters. The Image Stitching chapter outlines the algorithm to
map a set of images to a mosaic. First, ground truth transformations are estimated between
pairs of images using a feature alignment-based approach. In the subsequent global alignment
step, the pose of the images in the mosaic is jointly optimized to approximate the ground
truth relative transformations from the first step. In the Vehicle Detection chapter, the object
detection algorithm to detect vehicle instances in aerial images is outlined. A preliminary
discussion of Heatmap Generation and its relation to existing components of the framework
is also included. Lastly, the Conclusion chapter offers a summary of the work as well as
Limitations and Future Work.

Chapter 2

Background

2.1 Coordinate Systems
Coordinate systems are used to represent the location of points on a manifold. The points in
the space are specified using sets of coordinates that index into reference lines or curves [27].
Many different coordinate systems represent the same geometric structures, and we can often
define generic mappings between these different representations. The most common coordinate
systems are Cartesian coordinates and Homogeneous coordinates. Given a coordinate system,
we can apply transformations that map points in the space to their updated coordinates. In
Computer Vision, coordinate systems are used extensively to define a 2D (ex. image) or 3D
(ex. real world) space in which points reside. Transformations allow us to augment the pose
of a structure with respect to a space. For example, an image can have transformations ap-
plied to it, such as rotations, translation and scaling [3]. A depiction of the various classes of
transformations that can be applied to images can be found in Figure 2.1.

2.1.1 Cartesian Coordinate System
The Cartesian Coordinate system represents a n-dimensional euclidean space using n perpen-
dicular basis vectors [3]. Thus, points in the space can be addressed using an n-dimension
tuple. We can represent a generic 3D transformation consisting of rotation followed by scaling
and translation as follows:

x
′

y′

z′

 =
ax 0 0

0 ay 0
0 0 az

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

xyz
 +
tx

ty

tz

 (2.1)

P′ = ARP + t (2.2)

where P is the coordinate of the original point and P′ is the corresponding point after the
transformation has been applied. A is the scaling matrix, R is the rotation matrix and t is the
translation vector. The rotation matrix can be decomposed into three matrices, each represent-
ing the rotation around a single axis. Positive yaw, pitch and roll represent a counterclockwise
rotation around the Z, Y and X axis, respectively. Given yaw ψ, pitch θ and roll ϕ we can
decompose the series of rotations as follows:

7

8 Chapter 2. Background

Figure 2.1: An example of various classes of transformation being applied to an image.

r1,1 r1,2 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 =
cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 cos(θ) 0 sin(θ)

0 1 0
−sin(θ) 0 cos(θ)

1 0 0
0 cos(ϕ) −sin(ϕ)
0 sin(ϕ) cos(ϕ)

(2.3)

R = RψRθRϕ (2.4)

where R is the total rotation matrix, Rψ is the yaw rotation matrix, Rθ is the pitch rotation
matrix and Rϕ is the roll rotation matrix.

2.1.2 Homogeneous Coordinate System
Homogeneous coordinates are a system of coordinates used in projective geometry. In general,
they represent euclidean coordinates P ∈ RN with an equivalent parameterization P̂ ∈ RN+1 [3].
Given a 3D euclidean coordinate P ∈ R3, the equivalent homogeneous coordinates P̂ ∈ R4 as
follows:

P =

xyz
 (2.5)

P̂ = c

x
y
z
1

 (2.6)

where c is a scaling parameter. By factoring out c from the last element of P̂, we recover the
original euclidean parameterization P in the first three elements of P̂. The advantage of using

2.2. Image Formation 9

homogeneous coordinates is combining affine transformations and perspective transformations
in the same matrix. This allows us to conveniently chain transformations by taking the prod-
uct across a sequence of transformation matrices. We can represent a generic transformation
consisting of rotation followed by scaling and translation as follows:

c

x′

y′

z′

1

 =

ax 0 0 0
0 ay 0 0
0 0 az 0
0 0 0 1

r1,1 r1,2 r1,3 tx

r2,1 r2,2 r2,3 ty

r3,1 r3,2 r3,3 tz

0 0 0 1

x
y
z
1

 (2.7)

P̂′ = AT P̂ (2.8)

where P̂ is the coordinate of the original point and p̂′ the corresponding point after the
transformation has been applied. A is the scaling matrix, T is the matrix that encodes a rotation
followed by a translation.

2.1.3 North East Down Coordinate System

With a preliminary understanding of coordinate systems in place, we can define some domain-
specific conventions for coordinate systems in aerial imagery. In particular, the North East
Down Coordinate System (NED) is often used in aviation. The X, Y and Z axis point North,
East and downwards. Rotation around the X, Y and Z axis in the counterclockwise direction
represents a positive Roll, Pitch and Yaw, respectively [3].

2.2 Image Formation

With an understanding of some basic geometric primitives in place, image formation is de-
scribed in this section. At its core, the image formation process involves mapping a 3D scene
to a 2D image. The mapping is conditioned on the scene geometry, lighting conditions, surface
properties and camera optics. A camera model provides a mathematical formulation of this
process. In this way, a camera model is a fundamental building block in obtaining information
about the physical environment from images.

2.2.1 Pinhole Camera Model

Although several camera models exist based on the camera’s characteristics, the pinhole cam-
era model is often used because of its generality and simplicity. Using the parameter definitions
in Section 1.3, a pinhole camera maps a 3D point PO to its corresponding pixel location pI as
follows:

10 Chapter 2. Background

s

xy1
 =

 fx 0 cx

0 fy cy

0 0 1

r1,1 r1,2 r1,3 −tx

r2,1 r2,2 r2,3 −ty

r3,1 r3,2 r3,3 −tz

XO

YO

ZO

1

 (2.9)

pI =
IKC

[
CRO

CtO

]
PO (2.10)

pI =
IKC

C MOXO (2.11)

where IKC is the intrinsic matrix and C MO is the extrinsic matrix. The intrinsic matrix
IKc relates a camera’s internal properties to an ideal pinhole-camera model. The intrinsic
parameters include the focal lengths fx and fy as well as the principal point coordinates (cy,
cy). Alternatively, the extrinsic matrix C MO maps coordinates in the world coordinate system
PO to coordinates in the camera coordinate system PC. C MO includes a rotation matrix CRO and
a translation vector CtO. CRO is the inverse of the drone’s orientation in the world coordinate
system ORC:

ORC = RψRθRϕ (2.12)

following the definition in Equation 2.3. The translation vector CtO is the drones position
vector OtC scaled by −1.

2.3 Deep Learning
Artificial Intelligence (AI) is a long-standing field that involves developing systems to perform
tasks that generally require human intelligence. A central feature of AI-based systems is their
ability to improve performance based on collected data iteratively. Traditionally, AI-based
systems were underpinned by knowledge bases curated by in-the-loop humans. Although these
systems successfully completed tasks specified by a list of formal rules, they failed in cases
involving more intuitive reasoning. A fundamental limitation of rule-based systems is their
reliance on humans to hand engineer the knowledge base. Machine learning was introduced
as a way for systems to automate knowledge acquisition using data to extract patterns. This
enabled AI systems to tackle a broader range of problems involving intuitive reasoning.

The success of machine learning depends heavily on the features, otherwise known as rep-
resentation, input into the model. This is because the representation contains the information
we use to generate the prediction. A substantial amount of time is spent on feature engineering
to ensure the representation input into the model is optimal for the prediction task. However,
in some cases, it’s difficult to know the features that should be incorporated into the repre-
sentation. To overcome this challenge, representation learning is used. It involves learning a
mapping from raw inputs to representations with strong predicitve power. The learned repre-
sentations can then be used by machine learning models to generate predictions.

Representation learning is a difficult task, especially in the case of high-dimensional fea-
tures such as images or natural language. The high dimensional input space makes it difficult to
disentangle the factors of variation, which are essential for the prediction task. Deep learning

2.3. Deep Learning 11

surmounts this by decomposing a mapping from input features to representation into a series of
nested mappings. Generally, these mappings consist of layers that apply a nonlinear function to
a linear combination of the inputs to produce an output. By constructing a model with nested
layers, the input is iteratively refined from low-level features to a high-level representation.
The final layer is responsible for projecting the refined representation into the output space.

2.3.1 Deep Learning Architectures
The architecture of a deep learning model is a description of the operations of each layer,
along with how the layers are arranged. A multitude of deep learning architectures exists with
different characteristics. The choice of architecture depends on various factors, including the
characteristics of the input data and the prediction task at hand. Two deep learning architec-
tures relevant to this project are the Multi-Layer Perceptron (MLP) and Convolutional Neural
Network (CNN).

MLP is a deep learning architecture consisting of a series of nested, fully connected layers
that map input and output nodes. The output nodes are given by a linear combination of the
input nodes with learned coefficients followed by an activation function. The activation adds
a non-linearity that is necessary to approximate a broader class of functions. Without a non-
linear activation function, an MLP with an arbitrary amount of layers can be re-expressed as
a two-layer MLP. The number of nodes in the first and last layers equals the model input and
output dimensions, respectively. Conversely, the number of nodes in intermediate layers are
hyperparameters of the model. Although successfully applied to various prediction tasks, the
MLP has some drawbacks. Namely, the fully connected nature of MLP makes them prone to
overfitting. This is especially the case in high-dimensional input spaces such as images.

CNN have several strong inductive biases that make them suitable for image data - the
focus of this analysis. In contrast to MLP, CNN avoid overfitting through weight sharing,
which acts as regularization. At its core, the CNN consists of layers in which learned kernels
are convolved with the layer input to yield the layer output. The convolution operation in this
discrete image-space setting involves applying a 2D filter to select indices of the 2D input
signal and computing the Frobenius norm. The stride of the convolution controls how sparsely
the indices are sampled from the input signal. A nonlinear activation function is applied to the
feature map to generate the output. Max Pooling is often used at the end of the convolutional
layers. The max pooling operation involves downsampling the spatial resolution of feature
maps by only selecting the maximal activation across local regions of the feature map using a
sliding window approach.

The input to a CNN is an image that is represented 3D tensor. A series of convolutional
layers map the input image to a representation fed to the head to generate the output. Each
layer learns a set of filters that capture different elements of the input signal. The number of
convolutional filters is increased in consecutive layers. At the same time, the spatial resolution
of the feature maps is down-sampled either via Max Pooling or by increasing the stride of the
convolution operation. Thus, across layers, the spatial resolution of feature maps is decreased
while the depth is increased. Throughout this process, the feature maps are refined from low-
level to high-level features that are passed to the head.

The head of the CNN projects high-level features to the output space. The architecture of
the head depends on the prediction task. In the case of image classification, the prediction head

12 Chapter 2. Background

is a fully connected layer that maps a representation to a distribution over class labels. For the
object detection task, the architecture of the head consists of two convolutional components
that localize and classify object instances, respectively.

2.3.2 Neural Network Training
During the training phase, the neural network parameters are optimized to minimize a specified
loss function. The loss function characterizes the difference between the model’s prediction
and the corresponding ground truth labels. Several loss functions are popular, including Mean
Squared Error (MSE) and Cross Entropy Loss. MSE is often used in regression tasks and is
calculated as the average squared error between prediction and ground truth. The cross-entropy
loss is used in classification as it is a measure of divergence between two distributions.

A Stochastic Gradient Descent (SGD) based algorithm is used to optimize the parameters
of the network. SGD involves iteratively sampling batches of data from the train set and com-
puting updates that are applied to the model parameters. The model updates are computed as
the negative gradient of the loss with respect to the parameters. The size of the update is con-
trolled by a parameter called the learning rate which is multiplied to the negative gradient prior
to being applied to the parameters. This update process occurs for each batch in the train set
and is repeated for a specified number of epochs. Several variants of the SGD algorithm have
been proposed that have better convergence properties. Central among these innovations is the
inclusion of a momentum term and the introduction of adaptive learning rates.

The backpropagation algorithm is used to efficiently compute the gradient of the loss with
respect to the parameters. Backpropagation makes it tractable to train deep learning models
with potentially billions of parameters. The operations in the model are used to define a com-
putation graph. The input is mapped to the output in the forward pass through the network. The
result of each computation in the forward pass is cached in a node in the computation graph.
During the backward pass, the gradient of the objective with respect to the parameters is cal-
culated via the chain rule. To this end, the gradient is computed one layer at a time, starting
from the final layer and iterating backward. The use of reverse mode differentiating avoids the
redundant computation of intermediate terms.

Chapter 3

Image Stitching

3.1 Overview
An essential aspect of the proposed parking utilization framework is the ability to generate
mosaics given sets of input images. This is the responsibility of the image stitching component,
which is described in this section. Image stitching is a well-studied topic in computer vision
that involves aligning a set of images of the same scene captured from different locations and
orientations [27]. In this thesis, we used an image-stitching algorithm that involves two high-
level steps: homography estimation and global alignment. In the homography estimation step,
the transformations that map one image to the coordinate system of another are estimated. In
the subsequent global alignment step, the initial pose of each image in the mosaic is updated
to approximate the relative transformations determined in the homography estimation step. As
part of the global alignment step, a novel algorithm is proposed for initializing the pose of the
images in the mosaic using metadata from the drone. Specifically, the drone’s extrinsic and
intrinsic parameters are used to initialize the mosaic images effectively.

The following chapter provides a detailed overview of the image stitching algorithm. This
includes outlining the homography estimation and global alignment step. As a novel contribu-
tion, the image pose initialization algorithm is described in detail. The algorithm is assessed
in numerous experiments on the SkyDeploy dataset. These experiments seek to evaluate the
image stitching algorithm’s effectiveness and find the best setting of hyperparameters. Addi-
tionally, experiments are used to evaluate the effectiveness of the proposed image initialization
algorithm. Finally, the chapter concludes by summarizing the experiments’ quantitative and
qualitative results.

3.2 Homography Estimation

3.2.1 Keypoint Detection

The first step of the homography estimation process involves detecting and describing the key
points for each image with a vector. The goal is to generate keypoints with descriptors that
only match the corresponding point in other images. Scale Invariant Feature Transform (SIFT)
[20] is a method for robustly detecting and describing image keypoints. The location of key-

13

14 Chapter 3. Image Stitching

Figure 3.1: An example of keypoints detected on two sample images.

points are maxima and minima of the Difference of Gaussians (DoG) computed at multiple
scales. The DoG approximates the Normalized Laplacian of Gaussians (NLoG) - a second-
order method to detect edges that uses gaussian smoothing to mitigate noise. The DoG is
computed for successive gaussian blurred images with various variance scaling parameters.
With the resulting stack of DoG, the 3D space is traversed with a 3D filter that finds extrema.
These points are considered to be interest point candidates. Certain heuristics filter out weak
extrema to generate the final set of interest points. The size of the keypoint depends on the
variance of images in the gaussian scale space that was used to generate the DoG. Thus, the
DoG generated by low-variance gaussian blurred images will detect fine grain keypoints and
the DoG generated by high variance gaussian blurred images will detect large keypoints. This
allows the detection of keypoints of different sizes.

Since the objects we are trying to find correspondences across images may be of different
scales and orientations, we must have a representation invariant to these factors. Fortunately,
keypoints are detected at multiple scales to achieve scale invariance. To achieve rotational
invariance, the image gradient is computed for a neighborhood of pixels around the keypoint.
For each pixel, there is a gradient magnitude and direction. By quantizing the direction of
gradients into several bins and allocating pixels to bins according to their gradient direction,
we can obtain a histogram of gradients. The bin with the highest count is chosen to be the
principal orientation and the remaining gradient directions are expressed with respect to it.
It is important to note that the magnitude information associated with the image gradients is
not used. This is because the gradient magnitudes will be susceptible to changes in color
or brightness. Thus, the algorithm is invariant to these conditions by discarding the gradient
magnitudes and only using the gradient directions. An illustration of the keypoints detected by
the SIFT algorithm on two sample images is available in Figure 3.1.

3.2.2 Keypoint Description

The keypoint detection step generated the location, scale and orientation for a set of keypoints
in the image. Subsequently, each keypoint needs to be described by a representation known
as a descriptor. The descriptors are generated using similar techniques employed in the key-

3.2. Homography Estimation 15

Figure 3.2: An example of feature matches on a pair of overlapping images.

point detection phase. Specifically, image gradients from a neighborhood of pixels around the
keypoint are used to generate Histogram of Gradient (HOG) [4] based representations. Except
in this case, this process will be repeated across four square sub-quadrants in the neighbor-
hood of pixels surrounding the keypoint. The HOG representations of the four quadrants are
concatenated into a single vector to form the SIFT descriptor.

3.2.3 Keypoint Matching

Following keypoint detection and description, correspondences across images are determined
via a keypoint matching algorithm. In the simplest case, a brute-force approach involves com-
puting a distance between each pair of keypoints across images. The distance metric of choice
is often the L2 distance. The L2 distance is optimal, assuming the data is generated from a
Gaussian distribution. A more efficient alternative involves approximate k-d tree matching [1].
A k-d tree is a binary tree where each node represents a d-dimensional point that acts as a hy-
perplane splitting the space into two parts. As such, the k-d tree allows quick querying of the
approximate nearest neighbor of a given feature. An example of the matches generated using
approximate k-d tree matching on a pair of overlapping images is available in Figure 3.2.

3.2.4 Pairwise Transformation

Once keypoints have been matched, the transformation can be determined by solving the sys-
tem of equations specified by the correspondences. Due to the presence of false correspon-
dences, the system of equation is inconsistent and no unique solution exists. Thus, methods
like Random Sample Consensus (RANSAC) [5] is used to yield an approximate global solu-
tion. RANSAC is an iterative method for solving an over-determined system of equations that
contains outliers. Each round, a random subset of correspondences are chosen to fit a model of
the data. The model is validated across all data points and the number of outliers are recorded
each round. The procedure is repeated for a specified number of rounds and the model with
the lowest number of outliers is returned. In this way, RANSAC provides an approximate

16 Chapter 3. Image Stitching

Figure 3.3: An example of the pairwise transformation computed between a pair of overlapping
images.

global solution for the over-determined system of equations. The aforementioned procedure
is repeated for each pair of images in the set to yield the pairwise relative transformations.
To account for the situation where all images in the set may not be overlapping, a heuristic
such as specifying a minimum number of feature matches [27] between pairs of images may
be implemented. This ensures only pairs of images that are likely to be overlapping will have
transformations computed. An example of the pairwise transformation computed between a
pair of overlapping images is illustrated in 3.3.

3.3 Global Alignment
In the homography estimation stage, the relative transformations between each pair of images
are estimated using the procedure above. These will act as ground truth relative transforma-
tions between images. In the global alignment step, the parameters of each image that describe
its pose in the mosaics coordinate system are optimized so that the relative transformations
approximate the ground truth relative transformations from the homography estimation step.
A fundamental prerequisite to this procedure is the accurate initialization of the parameters
describing each image pose in the mosaic coordinate system. Fortunately, each image cap-

3.3. Global Alignment 17

tured by the drone has associated metadata, including the location, orientation, and intrinsic
parameters of the camera. By leveraging this information, each image can be initialized with
informative parameters. This ensures that the optimization procedure converges to an optimal
local minimum.

3.3.1 Image Pose Initialization
In the following section, we propose a novel algorithm to yield an initial set of parameters
that will be optimized during the global alignment step. This set of parameters describes the
location and orientation of each image in the mosaic. In particular, four parameters are used
for each image: xM, yM, ψM and sM. (xM, yM) is used to describe the location of the image
center in the mosaic coordinate system. Alternatively, ψM is the yaw and sM is the scale of the
image in the mosaics coordinate system. The image pose initialization process is illustrated
in equation 3.4. The metadata Mipt associated with each image, as specified in 1.1, is used to
generate image initializations.

First, the mapping ITO that defines each image is recovered using the camera’s extrinsic pa-
rameters and intrinsic parameters. The extrinsic parameters are used to define a transformation
from the world coordinate system to the camera coordinate system, which includes a rotation
and translation. The rotation is represented by a matrix CRO. The translation is represented by
a vector CtO. Alternatively, the intrinsic parameters relate a camera’s internal properties to an
ideal pinhole-camera model via a matrix IKc. Using the definition of the metadata in Section
1.3 and the pinhole camera model in Section 2.2.1, the mapping ITO from the world coordinate
system to the image coordinate system is defined as:

s

xy1
 =

 fx 0 cx

0 fy cy

0 0 1

r1,1 r1,2 r1,3 −tx

r2,1 r2,2 r2,3 −ty

r3,1 r3,2 r3,3 −tz

XO

YO

ZO

1

 (3.1)

pI =
IKC

[
CRO

CtO

]
PO (3.2)

pI =
IKC

C MOPO (3.3)
pI =

ITOPO (3.4)

Each image is projected into a different camera coordinate system. The images must be
expressed in a common coordinate system to account for this. We can define a virtual camera
that maps 3D points to mosaic coordinates pM:

s

xy1
 =

 fx 0 0
0 fy 0
0 0 1

1 0 0 −t̂x

0 1 0 −t̂y

0 0 1 −t̂z

XO

YO

ZO

1

 (3.5)

pM = MKV

[
VRO

V t̂O

]
PO (3.6)

pM = MKV
V MOPO (3.7)

pM = MTOPO (3.8)

18 Chapter 3. Image Stitching

The absolute orientation of the drone is chosen such that the optical axis is perpendicular to
the plane that defines the parking lot being captured. This is the case when (ψ, θ, ϕ) = (0, 0, 0).
The resulting rotation matrix VRO is the identity matrix. The virtual camera is chosen to have
V tO that is the mean across all position vectors OtC ∈ I scaled by −1. The intrinsic matrix is
parameterized by focal lengths fx and fy. The principal point is omitted since we want to have
the mosaic centered at the origin.

To obtain the mosaic coordinates pM from image coordinates pI , we must first project pI

to the 3D point corresponding to PO. To this end, pixel coordinates pI are mapped to direction
vectors p⃗I by decomposing and inverting the mapping ITO:

p⃗I =
CR−1

O K−1 pI −
CtO (3.9)

p⃗I =
ORCK−1 pI +

OtC (3.10)

These direction vectors are rays from a pixel in the image to the real-world point corre-
sponding to PO. This point can be computed as the intersection between p⃗I and the plane B,
which describes the ground of the parking lot. B is defined by a normal vector b = [0, 0, 1] and
a point that lies on plane q = [0, 0, 0]. Given B and p⃗I , the intersection point PO is trivial to
compute.

In turn, PO can be projected into the mosaic coordinate system via MTO. Correspondences
between p̂I and pM can be used to solve a system of equations that yields the affine transfor-
mation parameterized by the scale sM, the location (xM, yM) and the yaw ψM. p̂I is the pixel
coordinates pI after being translated, so the center of the image aligns with the origin of the
coordinate system. Given that there are four unknowns and each correspondence consists of
an (x, y) coordinate, at least two correspondences are needed to solve for the unknown. In
practice, the correspondences between the corners of the images are used to solve for the un-
knowns. The resulting transformation H mapping image coordinates pI to mosaic coordinates
pM is defined as follows:

s

x
′

y′

1

 =
sM cosψM − sinψM xM

sinψM sM cosψM yM

0 0 1

1 0 −w

2
0 1 −h

2
0 0 1

 (3.11)

pM = AT pI (3.12)
pM = HpI (3.13)

where T is a matrix that centers the image in the mosaics coordinate system using the
image’s width w and height h. A is an affine transformation encoding the pose of the image in
the mosaics coordinate system. This process is repeated for Ii ∈ I to obtain Hi. xM, yM, ψM and
sM parameterize Hi and are optimized over in the subsequent global alignment step.

3.4 Optimization Procedure
During the global alignment step, the initial set of parameters sM, xM, yM and ψM that encode
the pose of images in the mosaics coordinate system Hi are refined. They are optimized so

3.5. Implementation Details 19

Figure 3.4: Overview of the image initialization process.

that the relative transformations approximate the ground truth relative transformations from
the homography estimation step. In order to accomplish this, relative transformations Ei, j must
be derived for all pairs of global transformations Hi and H j in which the underlying images
overlap:

Hi pI,i = H j pI, j (3.14)
pI,i = H−1

i H j pI, j (3.15)
pI,i = Ei, j pI, j (3.16)

where pI,i is a point in Ii and pI,i is a point in I j. Let Θ ∈ R4N be a parameter vector formed
by concatenating the scale sM, location (xM, yM) and yaw ψM of each image. Thus, the objective
is to minimize the squared distance between the points projected by the ground truth relative
transformations Gi, j and the points projected by estimated relative transformations Ei, j.

min
Θ

N∑
i=1

N∑
j=1

||Ei, j pI,i −Gi, j pI,i|| (3.17)

As a differentiable function, the object is minimized using gradient descent. Gradient de-
scent involves iteratively calculating the gradients with respect to the objective and updating
the parameters in the opposite direction. The gradient of a function represents the direction
of the most rapid ascent, so iteratively updating the parameters by stepping in the opposite
direction results in convergence to a local minimum.

3.5 Implementation Details
The aforementioned Image Stitching algorithm was implemented using the Python Program-
ming Language. In particular, the OpenCV package is used extensively in the homography

20 Chapter 3. Image Stitching

estimation step to detect keypoints, compute descriptors, find correspondences between im-
ages and solve for transformations via RANSAC. In the subsequent global alignment step, the
Automatic Differentiation engine of the PyTorch package is used to perform the gradient de-
scent procedure. Other notable packages include matplotlib for plotting utilities, numpy/scipy
for scientific computing and pandas to store metadata for images in the set.

3.6 Experiments
In this section, the experiments used to test the efficacy of the image stitching algorithm are de-
scribed. The experiments are performed using a private dataset of images introduced in Chapter
1. Specifically, the dataset contains sequences of image sets that span a particular parking lot
across several time intervals throughout the day. Each parking lot is surveyed 11 times at half-
hour intervals from 12:00 to 17:00. No ground truth labels exist for the pose of images in the
mosaic. Accordingly, we developed a suite of quantitative and qualitative tools to assess the
stitched images. In the Quantitative Analysis section, experiments are conducted to evaluate
the quality of stitched images over different hyperparameters settings. These experiments aim
to find the optimal hyperparameter configuration for the image stitching algorithm. Subse-
quently, the results of the image stitching algorithm are interpreted visually in the quantitative
analysis section. This includes generating a visualization of the mosaic, image initialization,
and optimization process. The purpose of the qualitative analysis is to support the results in the
quantitative analysis and offer some interpretability.

3.6.1 Hyperparameter
This section outlines experiments that aim to discover the optimal hyperparameters for the
image stitching algorithm. Each setting of the hyperparameters is evaluated on a benchmark
image stitching task. The configuration of hyperparameters that achieves the best performance
on the benchmark is chosen as the optimal set of hyperparameters. The benchmark task in-
volves producing mosaics for a dataset of 55 sets of images sampled from the SD dataset. For
each setting of hyperparameters, the mean squared link loss is reported. The link loss measures
how consistent the pose of images in the mosaic is with the relative transformations derived
in the homography estimation step. By taking an average of the link losses across an image,
we can estimate the quality of the stitched image. A lower mean squared link loss indicates
the estimated relative transformation between pairs of images in the mosaic approximates the
relative transformations that we solved using SIFT and RANSAC. Intuitively, this translates
to a more cohesive fit among the images in the mosaic. Thus, the hyperparameters with the
lowest mean squared link loss are considered the optimal set. In essence, a grid search is being
performed across hyperparameters. A set of six hyperparameters are chosen for the grid search
that relates to the global alignment process of the algorithm. The hyperparameters involved in
the pairwise image stitching process include:

• Theta Learning Rate: The learning rate of the optimizer for the theta (yaw) parame-
ters. A higher Theta Learning Rate will lead to larger updates to the theta parameters
throughout the optimization process.

3.6. Experiments 21

• Scale Learning Rate: The learning rate of the optimizer for the scale parameters. A
higher Scale Learning Rate will lead to larger updates of the scale parameters throughout
the optimization process.

• Translation Learning Rate: The learning rate of the optimizer for the translation pa-
rameters. A higher Translation Learning Rate will lead to larger updates of the translation
parameters throughout the optimization process.

The aforementioned hyperparameters represent a set of levers that control various aspects
of the optimization procedure. For the grid search, three values per hyperparameter are spec-
ified. The values are chosen to be in the neighborhood of the default value of the hyperpa-
rameter. Specifically, the values for the theta learning rate as well as the scale learning rate
∈ {.0001, .001, .01} and the values for the translation learning rate ∈ {.005, .05, .5}. Lower
values are used for the theta and scale learning rate parameters because they are sensitive to
optimize over. In total, 33 = 27 configurations of hyperparameters will be evaluated.

The results for this experiment are available in Table 3.1. Overall, the best performance is
obtained when the theta learning rate is .0001, the scale learning rate is .001 and the translation
learning rate is .05. Furthermore, for each type of hyperparameter, the best performance on
average is obtained with the same values. In general, the median value of each hyperparameter
yields the best overall performance. This reflects the need to carefully set the learning rate low
enough to find the global minimum accurately but high enough to avoid getting stuck in local
minimums. In the case of the theta learning rate, the best performance on average is obtained
when the parameter is set to its minimum value. This can be attributed to the fact that this
parameter corresponds to an angle, which makes it a sensitive parameter to optimize over.

3.6.2 Image Initialization Ablation Study
The following section outlines an ablation study to assess the effectiveness of the proposed
image initialization algorithm. In order to do so, the algorithm’s performance on the benchmark
dataset is compared with and without using the image initialization algorithm. In the case
where it is not used, images are initialized in the center of the mosaic with constant scale
and no yaw. If using the image initialization algorithm is beneficial, it would follow that the
mean squared link loss would be lower than the baseline. The results from this experiment are
available in Table 3.2. The image initialization algorithm leads to a substantial increase in the
performance. This validates its use within wider image stitching algorithm.

3.6.3 Visual Results
The previous sections outlined quantitative experiments to optimize and validate various com-
ponents of the image stitching algorithm. The following section explores visual results from
the image stitching algorithm. Figure 3.8, 3.10 and 3.9 illustrate mosaics generated by the im-
age stitching algorithm from the corresponding image sets 3.5, 3.7, 3.6. In almost all cases, the
image stitching algorithm produces a mosaic that is geometrically consistent with the scene.
This qualitatively further validates the results in the previous sections that demonstrate the
effectiveness of the image-stitching algorithm.

22 Chapter 3. Image Stitching

Theta LR Scale LR Translation LR Mean Squared Link Loss
0.0001 0.0001 0.005 178.35
0.0001 0.0001 0.05 165.69
0.0001 0.0001 0.5 210.21
0.0001 0.001 0.005 167.42
0.0001 0.001 0.05 156.81
0.0001 0.001 0.5 210.76
0.0001 0.01 0.005 194.23
0.0001 0.01 0.05 181.09
0.0001 0.01 0.5 225.36
0.001 0.0001 0.005 199.80
0.001 0.0001 0.05 193.79
0.001 0.0001 0.5 210.73
0.001 0.001 0.005 198.04
0.001 0.001 0.05 189.12
0.001 0.001 0.5 230.68
0.001 0.01 0.005 209.35
0.001 0.01 0.05 201.28
0.001 0.01 0.5 218.95
0.01 0.0001 0.005 214.39
0.01 0.0001 0.05 205.18
0.01 0.0001 0.5 223.81
0.01 0.001 0.005 208.50
0.01 0.001 0.05 202.72
0.01 0.001 0.5 223.46
0.01 0.01 0.005 230.97
0.01 0.01 0.05 225.21
0.01 0.01 0.5 257.89

Table 3.1: The results of the Hyperparameter experiments.

In general, image stitching results are promising across different parking lots. However, in
a few cases, the algorithm may fail to produce a geometrically consistent mosaic. This occurs
when the parking lot consists of a large number of images. A prime example is the mosaic in
figure 3.11, which consists of 28 sub-images captured during poor weather conditions.

Other useful visualization utilities were developed to monitor the image stitching process.
This includes the initialization diagrams and the link loss diagram. The initialization diagrams

3.6. Experiments 23

Initialization Algorithm Mean Squared Link Loss
156.81
321.54

Table 3.2: The results of the image initialization ablation study.

Figure 3.5: Langley parking lot consisting of 4 images.

illustrate the position and orientation of images in the mosaic. An example of the Mosaic
Initialization Diagram is available in Figure 3.12. Each node in the graph represents the initial
pixel location of the centre of an image in the mosaic. The green line that emerges from each
node encodes the image’s orientation in terms of the yaw angle. Nodes connected via a pink
link denote that the underlying images overlap. Alternatively, nodes that are connected via a
grey link denote that the underlying images are not overlapping. This diagram can be used to
verify if the locations of images are initialized reasonably.

In addition to the initialization diagram, the link loss diagram is a helpful visualization for
monitoring the image stitching process. The Link Loss Diagram is generated at the end of the
global alignment step and depicts the loss between each pair of images. The loss is defined
as the sum of squared errors over the same set of points projected by the ground truth relative
transformation and the estimated relative transformation, respectively. A high loss reflects
that the estimated relative and ground truth transformations are very different. Alternatively,
a low loss reflects that the transformations are close together. This visualization can be used
to determine which pairs of images are contributing most to the inconsistencies in the mosaic.
Figure 3.13 shows an example of the link loss diagram.

24 Chapter 3. Image Stitching

Figure 3.6: Kelowna parking lot consisting of 6 images.

3.6. Experiments 25

Figure 3.7: Stockyards parking lot consisting of 8 images.

26 Chapter 3. Image Stitching

Figure 3.8: Result of the image stitching algorithm on the Langley image set.

3.6. Experiments 27

Figure 3.9: Result of the image stitching algorithm on the Kelowna Image Set.

28 Chapter 3. Image Stitching

Figure 3.10: Result of the image stitching algorithm on the Stockyards Image Set.

3.6. Experiments 29

Figure 3.11: Subpar image stitching results obtained in case of large mosaic.

30 Chapter 3. Image Stitching

Figure 3.12: Graph view of image initialization. Nodes represent image centers and edges
represent transformations between images. A pink (gray) edge indicates transformations exist
(don’t exist) between a pair of images.

Figure 3.13: Graph that shows link loss for each link in the graph. The link loss is simply
the l2 norm between points projected by the estimated relative transformation and true relative
transformation.

Chapter 4

Vehicle Detection

4.1 Overview

A critical aspect of the proposed parking utilization framework is the ability to localize vehicle
instances in aerial images. This is the responsibility of the vehicle detection component, which
is described in this section. The vehicle detection component aims to map an input image
to a series of coordinates describing the location and size of vehicle instances therein. The
vehicle detection task is an instance of the object detection task - a well-researched topic in
computer vision. Recently, a variety of state-of-the-art methods for object detection have been
proposed that leverage Convolutional Neural Networks (CNN). CNN combines the tradition-
ally disjointed process of feature extraction and classification/regression, allowing the model
to be optimized end-to-end for the prediction task. These approaches enable downstream tasks
such as vehicle detection.

This chapter will outline the experiments that benchmark state-of-the-art object detection
methods. This analysis aims to determine the best method for vehicle detection to use within
the context of our parking utilization assessment framework. The architectures involved in
the comparative study include Single Shot Detector SSD [19] RetinaNet [17], MobileNet V3
[9], Fully Convolution One Stage Object Detection (FCOS) [28], Faster Regional Convolu-
tional Neural Network (Faster RCNN). Additionally, the variants of the RetinaNet and Faster
RCNN architecture presented in [32] and [16] are included. These approaches will be denoted
RetinaNet V2 and Faster RCNN V2, respectively. The methods are evaluated on both the Sky-
Deploy Dataset (SD) and the Car Parking Lot Dataset (CARPK) [11]. The SDY dataset is a
private dataset consisting of aerial images of parking lots captured by drones. The task is to
detect vehicle instances within the images. CARPK is a similar open-source dataset that is a
popular benchmark for vehicle detection.

This is the first work to perform a comparative study on the specified object detection ap-
proaches using multiple parking lot datasets. Thus, the experiments are a valuable contribution
to the object detection literature. Researchers and practitioners can use the results of the ex-
periments to inform what architecture best fits their use case. The following will explain the
architectures, datasets and experiments involved in the vehicle detection stage. Furthermore,
a high-level discussion of heatmap generation is provided following the vehicle detection ex-
periments. This includes high-level details of how the image stitching, vehicle detection and

31

32 Chapter 4. Vehicle Detection

heatmap generation component are orchestrated to generate heatmaps.

4.2 Object Detection
The object detection task involves localizing and classifying objects in an image. An object j
in image i is characterized by a bounding box bi, j. bi, j is a tuple that describes the location and
class of an object:

bi, j = < u, v,w, h > (4.1)

where (u, v) is the pixel coordinates of the bottom left corner of bi, j. w and h are the width
and height of bi, j in pixels. Each bi, j has a corresponding label c that specifies the object’s class.
It is often represented as one hot encoding with dimension K where K is the number of classes.
The set of bounding boxes for a given image is denoted Bi and the set of corresponding labels
is denoted Ci.

Thus, an object detection method is specified as a function that maps images to a predicted
set of bounding boxes B̂i and class labels Ĉi. Object detectors are trained on a dataset and
evaluated on a held-out test set of samples. The training phase involves iteratively sampling
images with their corresponding bounding boxes and labels. The object detector generates a
predicted set of bounding boxes B̂i and labels Ĉi. Subsequently, a loss is calculated using the
ground truth labels. The total loss consists of a regression loss calculated between Bi and B̂i

as well as a classification loss between Ci and Ĉi. The total loss is back-propagated through
the object detector with respect to the learnable parameters. Throughout the training phase,
the model converges to a state where it can accurately localize and classify objects in input
images. In the testing phases, the model’s performance is assessed on samples the model has
yet to encounter. Since we are evaluating the model’s generalization performance, we do not
update the parameters during the testing phase.

4.3 Architectures
Generally, the architecture of deep learning-based approaches to object detection consist of a
backbone, neck and prediction head as depicted in 4.1. The backbone is a pretrained convo-
lutional neural network that extracts rich features from multiple resolutions. The backbone
is often ResNet [8] or VGG [25]. The features extracted from the backbone are input into
the neck module, which aggregates features across resolutions. In particular, high-resolution,
low-level features from earlier layers are supplemented with information from low-resolution,
high-level layers from later layers. This process enhances the predictive power of layers earlier
in the network. Lastly, the head produces the bounding box predictions at each resolution.
The multi-resolution approach to prediction allows for detecting an object at multiple scales.
Typically, high-resolution feature maps yield detections for small objects and low-resolution
feature maps yield detections for large objects.

Deep-learning-based approaches to object detection can be classified into one-stage and
two-stage detectors. One-stage detectors map the input image directly to a set of bounding

4.3. Architectures 33

Figure 4.1: A high level illustration of deep learning based object detection methods.

boxes B̂i. On the other hand, two-stage detectors first map an image to a set of object proposals
that localize parts of the image that are likely to contain an object. The object proposals are
then refined and classified to generate the final prediction Bi. An illustration of one-stage
detectors and two-stage detectors is available in Figure 4.2. The following sections outline the
comparative study’s one- and two-stage object detection methods.

4.3.1 One Stage Detectors
One stage object detectors map input images to bounding box coordinate B̂i and corresponding
labels Ĉi. Because of this, one-stage detectors are generally much more efficient than two-
stage detectors. The one-stage detectors explored in the vehicle detection comparative study
are the Single Shot Detector(SSD) [19], RetinaNet [17], RetinaNet V2 [32], FCOS [28] and
MobileNet V3 [9].

SSD: SSD is one of the seminal approaches to one stage object detection. It leverages a
pretrained VGG-16 [25] to extract features from input images. The output from several lay-
ers is used to generate features of multiple resolutions. Multi-resolution features facilitate the
detection of objects at multiple scales. A series of convolutional layers are used to map the fea-
tures at a given resolution to the corresponding bounding box predictions. Dilated convolutions
are used to increase the receptive field of the filters while keeping the number of parameters
constant. The number of potential outputs across resolutions is very large. This sets SSD apart
from previous one-stage detectors, which generate a limited number of outputs at a single res-
olution. SSD is trained with a loss function that is the summation of an L1 localization loss
and a classification confidence loss. Throughout the training process, data augmentation, such
as random cropping, is used and is shown to improve performance substantially.

FCOS: In [28], a fully convolutional one-stage object detector (FCOS) is proposed. FCOS

34 Chapter 4. Vehicle Detection

Figure 4.2: An illustration of one stage detectors and two stage detectors.

introduced a novel anchor-free paradigm for object detection. This is a departure from previous
anchor-based methods for object detection that produce bounding boxes by refining predefined
anchors tiled on the feature map of the input image. Instead, FCOS predicts a bounding box for
each foreground pixel in an input image. This formulation of the object detection task avoids
the pitfalls of anchor-based approaches. Namely, the complex computation and vast amount
of hyperparameters anchor boxes introduce. Experimentally, FCOS outperformed previously
proposed methods for one-stage object detection despite the simpler architecture.

RetinaNet: RetinaNet is a recently proposed one stage object detection method. Prior to
its introduction, two-stage object detectors consistently outperformed one-stage detectors in
terms of accuracy. RetinaNet demonstrated superior performance both in terms of accuracy
and efficiency when compared to leading two-stage object detection methods. The backbone
consists of a ResNet [8] and takes a standard anchor-based approach to object detection. The
primary contribution of the method is introducing a novel loss function. This stemmed from the
observation that the foreground-background class imbalance is the primary cause of the inferior
performance of one-stage object detection methods. To address this, a Focal Loss is introduced
that modifies the standard cross entropy loss function to down-weight the contribution of well-
classified samples. Thus, the loss focuses on a small set of hard examples. This prevents the
large number of easy negatives from dominating the loss term during training.

RetinaNet V2: In [32], the authors unify anchor-based and anchor-free detectors by demon-
strating that the difference in the approaches lies in the definition of positive and negative train-
ing examples. Similar results are obtained if the same sampling procedure is used across the
different classes of approaches. This result highlights the importance of the sampling proce-
dure used to obtain positive and negative samples. To this end, the authors propose an Adap-
tive Training Sample Selection (ATSS) to automate the process selection process. Positive and
negative samples are chosen according to the statistical characteristics of objects. ATSS signif-

4.3. Architectures 35

icantly increases performance for both anchor-based and anchor-free detectors. When ATSS is
applied to the RetinaNet, the resulting architecture is referred to as RetinaNetV2.

MobileNet V3: MobileNet V3 is the latest iteration of MobileNet architectures - a family
of efficient one-stage object detection methods. As the name implies, MobileNet architec-
tures are optimized for inference on mobile devices. In the first iteration of the MobileNet
architecture, [10], the standard convolution is substituted for a newly introduced depth-wise
separable convolution. The depth-wise separable convolution factorizes the standard convo-
lution operation into a depth-wise convolution followed by a point-wise convolution. The
depth-wise convolution filters information by applying a standard convolution with a separate
learned kernel for each channel in the input feature map. The point-wise convolution consists
of a 1x1 convolution that combines information across channels output from the outputs of
the depth-wise convolution operation. Although the depth-wise separable convolution filters
and combines information in the same way as the standard convolution operation, it is 8 to 9
times more efficient [9]. MobileNet V2 [23] extends MobileNet by optimizing the efficiency
of inner blocks with novel inverted residuals and linear bottlenecks. Most recently, MobileNet
V3 [9] introduced a novel architecture using complementary search techniques and a novel ar-
chitecture design. In particular, hardware-aware network architecture search and the NetAdapt
algorithm are employed.

4.3.2 Two Stage Detectors
Two-stage object detectors use region proposals to narrow the space of possible object loca-
tions. This allows the classification head to classify region proposals directly. Furthermore, the
localization head has only to refine the coordinates of existing bounding boxes. The two-stage
detector explored in the comparative vehicle detection study is Faster RCNN [21] and Faster
RCNN V2 [16].

Faster R-CNN: Faster R-CNN is a popular method for two-stage object detection. R-
CNN stands for Regional Convolutional Neural Networks, which alludes to the architecture’s
use of region proposals. Faster R-CNN outperforms the previously proposed R-CNN [7] and
Fast R-CNN [6] both in terms of accuracy and efficiency. Following Fast R-CNN, the spa-
tial coordinates of region proposals are mapped from the image to the feature map. Thus, the
region proposal features are represented as the subset of the feature map specified in the re-
gion proposal coordinates. Region of Interest (RoI) pooling is used to map region proposals
of various spatial dimensions to a uniform size that can be input into the classification and
localization head. The primary contribution of the Faster R-CNN paper is to parameterize the
region proposal algorithm as CNN. Prior works relied on algorithms such as Selective Search
[30], which are computationally inefficient. Using a CNN as the region proposal network, the
entire framework can be optimized jointly, enhancing the overall accuracy.

Faster RCNN V2: In [16], the authors propose a variety of enhancements for object de-
tection approaches such as Faster R-CNN. The enhancements to the architecture include the
addition of convolutional layers and batch normalization throughout the architecture. Namely,
the Region of Interest (RoI) classification and box regression head are modified to have four
convolutional layers followed by a fully connected layer in place of a two-layer MLP in the
original architecture. Additionally, after the convolutional layers in these modules, batch nor-
malization is included, along with the Feature Pyramid Network (FPN). Lastly, the Region

36 Chapter 4. Vehicle Detection

Figure 4.3: Image from the Car Parking Lot (CARPK) Dataset .

Proposal Network (RPN) is augmented to have two convolutional layers instead of one. Along
with enhancements to the architecture, an updated training procedure is introduced. In par-
ticular, a data augmentation technique called large-scale jitter (LSJ) is used. LSJ is shown to
prevent overfitting and improve model performance when training many epochs.

4.4 Experiment
In the experiments section, the aforementioned approaches SSD, MobileNet V3, RetinaNet,
RetinaNet V2, FCOS, Faster RCNN and Faster RCNN V2 are compared on the vehicle de-
tection task. First, the open-source dataset used for the comparative study is described. Sub-
sequently, the setup used for training and evaluation is outlined, along with implementation
details of the method. Lastly, the results of the experiments are discussed and the methods are
ranked in terms of their vehicle detection accuracy.

4.4.1 Dataset

CARPK: CARPK is a dataset that contains aerial images of parking lots captured by a DJI
Phantom 3 Professional drone. It was chosen due to its similarity to the SD dataset. The dataset
contains images and annotations for object detection and vehicle counting. In total, 989 images
with a resolution of 1280 x 720 were captured at approximately 40 meters in height. Across
the images, there are 90,000 vehicle instances from 4 parking lots. Each vehicle instance is
described by a bounding box that specifies its location and size within the context of the input
image. An example of a raw image in the CARPK dataset can be found in 4.3.

4.4. Experiment 37

Figure 4.4: Image from the SkyDeploy (SD) Dataset .

SD: The SkyDeploy dataset (SD) is a private dataset consisting of 5000 aerial images of
parking lots. The images were captured across 26 parking lots across Canada using the DJI
Phantom 3 Profession drone. Each image has a resolution of 4000 x 2250 and was captured
at a height ranging from 40 to 60 meters. At the time of the experiments, only a small subset
of 250 images are annotated with bounding boxes. The bounding boxes specify the size and
location of vehicle instances in an image. An example of a raw image in the SD dataset is
available in 4.4.

4.4.2 Implementation Details

The experiments were implemented in Python using the PyTorch Framework and conducted on
1 NVIDIA Telsa P100 GPU. The architecture for each approach is consistent with that specified
in the original papers. Each method is trained for 30 Epochs using stochastic gradient descent
with a momentum of .9, weight decay of .0005 and a learning rate of 0.005. The models are
initialized with pretrained weights from the COCO dataset [18]. Random seeds are used to
strive for consistency in evaluation and reproducible experiments.

4.4.3 Experiment Details

CARPK: The CARPK dataset is divided into training (80%), validating (10%) and testing
(10%) sets. Images are normalized using the mean and standard deviation of the Imagenet
dataset [13]. The proposed object detection models are trained on the training set, while the
validating set is used to determine stopping criteria. Lastly, the trained model is evaluated on

38 Chapter 4. Vehicle Detection

the testing set. The model with the highest performance on the validation set is used during the
testing phase.

SD: Due to the limited amount of labels, a model could not be fine-tuned from scratch
on the SD dataset. Accordingly, the experiments on the SD dataset involve evaluating the
performance of models pretrained on the CARPK dataset. Because of the similarity of the
dataset, it is reasonable to assume that model trained on the CARPK dataset will generalize to
the dataset. Images in the dataset are normalized using the mean and standard deviation of the
Imagenet dataset [13]. Images are also sliced into subimages in the preprocessing stage due to
their high resolution. Precisely, images are sliced into eight subimages of size 1125 x 1000.

Using the entire preprocessed dataset, each method is evaluated with the parameters that
yield the highest performance on the CARPK dataset across epochs.

4.4.4 Evaluation Metrics
On both datasets, the models are evaluated using the Average Precision (AP) and Average
Recall (AR). These metrics were chosen because of their popularity in the object detection
literature. To start, it is helpful to outline the set of possible outcomes when making (or not
making) a prediction for an object. In particular, the relevant outcomes are true positives, false
positives and false negatives. True positives describe the case in which an object was detected
correctly. In contrast, false negatives and false positives correspond to failing to detect an
existing object and incorrectly detecting an object that does not exist. The Intersection over
Union (IoU) metric is used to determine whether a predicted bounding box is a true positive or
a false positive. The IoU is a normalized measure of overlap between the predicted bounding
box and ground truth. Typically, an IoU of .5 or.7 is used as a threshold. With this information,
precision and recall are defined as follows:

precision =
tp

tp + f p
(4.2)

recall =
tp

tp + f n
(4.3)

where tp, f p and f n represent true positives, false positives and false negatives, respec-
tively. Intuitively, precision measures the proportion of positive predictions that are correct.
Alternatively, recall measures the proportion of correct positive predictions over all predictions
made. There is a fundamental trade-off between precision and recall. Different prediction score
thresholds yield different precision and recall values. The precision-recall curve encodes the
trade-off between precision and recall for different score thresholds. The average precision
(AP) is calculated as the area under the precision-recall curve. In contrast, The average recall
(AR) is calculated as the mean recall value across IoU thresholds. AP and AR range from 0 to
1, where a higher score represents better performance.

4.4.5 Results
The AP and AR for each method are reported in Table 4.1 for both the CARPK and SD datasets.
Due to their similarity, the relative ranking of methods remains relatively consistent across

4.4. Experiment 39

datasets. Specifically, Faster RCNN achieves the highest AR and AP on CARPK and SD.
Faster RCNN V2 and FCOS achieve slightly lower performance, followed by MobileNet V3
and RetinaNet. The worst-performing methods are SSD and RetinaNet V2 which lag in AR
and AP by a considerable margin.

In both cases, RetinaNet and Faster RCNN outperform their newer counterparts Reti-
naNetV2 and Faster RCNN V2. This result highlights the fact that the modifications to the
architecture are not beneficial in the case of the vehicle detection task. This can be attributed
to underlying differences between the generic object detection and vehicle detection tasks. The
vehicle detection task differs from the generic object detection task in that the object instances
are smaller and more numerous. As such, the introduction of additional convolutional layers,
as proposed in Faster RCNN V2 and RetinaNet V2 may result in the degradation of perfor-
mance on the vehicle detection task. This is because adding convolutional layers reduces the
spatial resolution of feature maps, making it difficult to detect small object instances. A future
study is warranted to discover the exact reason for the performance degradation of the vehicle
detection task with the Faster RCNN V2 and RetinaNet V2 architectures.

Figure 4.5 reports the training and validation performance across epochs. In general, the
BCE loss of methods decreases across epochs for the training and validation set. This reflects
that the models can iteratively improve their performance without overfitting the training data.
The train and validation loss curves look similar for all methods except for SSD. The SSD
train and validation loss curves start with large values but eventually converge to those similar
to other methods. One of the potential reasons for this discrepancy is that the SSD architecture
uses vgg16 as the backbone, whereas other methods use the ResNet backbone. The ResNet
backbone has been shown to outperform the vgg16 backbone on a wide range of computer
vision tasks, so it is conceivable that the SSD method would incur higher losses earlier in the
training process.

Visual results from the two strongest performing methods, Faster RCNN, are available
in Figure 4.6 and Figure 4.8. This is contrasted with visual results of the second strongest
performing method, Faster RCNN V2, in Figures 4.7 and 4.9. Faster RCNN and Faster RCNN
V2 demonstrate accurate vehicle detection across the CARKPK and SD datasets. In each case,
every car is detected, and only a few false positives exist. These visual results support the
quantitative results that both Faster RCNN and Faster RCNN V2 are effective methods for
vehicle detection.

4.4.6 Conclusion

This chapter presented a comparative study of object detection methods applied to the vehicle
detection task. Seven state-of-the-art methods were benchmarked in a series of experiments.
The experiments involved evaluating the approaches on both an open-source dataset (CARPK)
and a private dataset (SD). In the CARPK experiments, the models were finetuned and evalu-
ated on a held-out test set. In the subsequent experiment, the pretrained models on the CARPK
dataset are evaluated on the SD dataset. In both cases, Faster RCNN achieved the best re-
sults in terms of AP and AR. This indicates that the method is most well-suited for the vehicle
detection task.

40 Chapter 4. Vehicle Detection

Figure 4.5: Binary cross entropy (BCE) loss for training set (top) and validation set (bottom)
across epochs.

4.4. Experiment 41

Figure 4.6: Visual Results for the Faster RCNN method on the CARPK Dataset

Figure 4.7: Visual Results for the Faster RCNN V2 method on the CARPK dataset

42 Chapter 4. Vehicle Detection

Figure 4.8: Visual Results for the Faster RCNN method on the SD dataset

Figure 4.9: Visual Results for the Faster RCNN V2 method on the SD dataset

4.5. Towards Heatmap Generation 43

CARPK SD
Model AP AR AP AR
Faster RCNN 0.7792 0.8298 0.7195 0.7589
Faster RCNN V2 0.7689 0.8226 0.7147 0.7568
RetinaNet 0.7356 0.7882 0.6573 0.6925
RetinaNet V2 0.6429 0.7058 0.6043 0.6417
SSD 0.6395 0.7141 0.5981 0.6340
FCOS 0.7685 0.8256 0.7098 0.7435
MobileNet V3 0.7415 0.7479 0.7045 0.7134

Table 4.1: Average Precision and Average Recall on test set for each approach

4.5 Towards Heatmap Generation
The proposed research is a significant step towards an end-to-end framework to generate park-
ing lot turnover heatmaps. Specifically, this work focused on the Image Stitching and Vehicle
Detection component of the framework. The Heatmap Generation component is left for future
work. The Heatmap Generation step is the last component in the pipeline. It involves register-
ing mosaics across time intervals and summing the number of vehicles that are parked in each
stall. The resulting output is a heatmap showing how many times vehicles parked in various
stalls throughout the day.

In order to provide some initial direction on how to realize the proposed framework, the
end-to-end pipeline is discussed in this section. Given a sequence of image sets that span
a parking lot at different intervals, the objective is to generate a parking lot turnover heatmap
that encodes the frequency at each parking stall used. The first step in the pipeline is to generate
the mosaic for each time interval for the parking lot. The pose of the virtual camera used to
generate the mosaics should be consistent across intervals to help with the consistency across
mosaics. An illustration of this first step in the pipeline is depicted in Figure 4.10

In the subsequent vehicle detection stage, each mosaic is sliced into lower-resolution sub-
images before being fed into the vehicle detection model. This ensures that the vehicle de-
tection can efficiently perform inference without excessively downsampling the mosaic. Each
image slice is fed to the vehicle detection model to get the local of the vehicle instances. The
bounding box coordinates of the image slices can be mapped back onto the corresponding mo-
saics by considering the size and index of the image slice. An example of the resulting mosaic
annotated with detected vehicle instances is available in Figure 4.11.

In the final step of the pipeline, heatmap generation, the mosaics with vehicle annotations
are used to generate parking lot turnover heatmaps. This involves registering each mosaic with
a CAD blueprint of the parking lot that includes the parking stalls. Once a mosaic is registered
to the blueprint, each detected vehicle instance is assigned to the parking stall in the blueprint,
which has the highest overlap. This process is repeated for each mosaic, and the count of all
parking stall are computed. This process is depicted in 4.12. The final output of the heatmap
generation phase is a parking lot turnover heatmap that is shown in 4.13

44 Chapter 4. Vehicle Detection

Figure 4.10: An illustration of the Image Stitching step of the pipeline.

Figure 4.11: An illustration of the Vehicle Detection step of the pipeline.

4.5. Towards Heatmap Generation 45

Figure 4.12: An illustration of the Heatmap Generation step of the pipeline.

46 Chapter 4. Vehicle Detection

Figure 4.13: An example of the Parking Lot Turnover Heatmap.

Chapter 5

Conclusion

5.1 Conclusion and Discussion

Advances in aerial imagery and computer vision have enabled various commercial applications
in urban planning. Specifically, large open-concept retail centres could benefit from systems
to analyze parking lot usage. This would allow retail centers to optimize the design of parking
lots to efficiently utilize space and eliminate the parking oversupply problem. This research
works towards developing a framework to generate parking lot turnover heatmaps that encode
the number of vehicles parked in each stall during a given day. The proposed framework is a
pipeline of components that maps a sequence of image sets spanning a parking lot at different
time intervals to a parking lot turnover heatmap. In particular, the framework consists of three
components: Image Stitching, Vehicle Detection and Heatmap Generation. This thesis focuses
on Image Stitching and Vehicle Detection, while Heatmap Generation is left as future work.

Chapter 3 provides an overview of the algorithm to map a set of aerial images spanning a
parking lot to a mosaic. This involves first determining the pairwise transformations among
images in the set. Next, a global alignment procedure is used to optimize the pose parameters
of images in the mosaic to approximate the pairwise transformations. A novel algorithm was
introduced for initializing images using the pose of the drone and characteristics of its camera.
In experiments, the optimal set of hyperparameters for the image stitching algorithm were
determined. Additionally, an ablation study was used to show the efficacy of the novel method
for image initializations that was proposed.

The Vehicle Detection component of the framework is described in Chapter 4. Vehicle
detection is an instance of the object detection task that involves localizing and classifying
vehicle instances given input images. A comparative study of state-of-the-art object detec-
tion approaches is presented. In particular, seven methods are compared on two benchmark
datasets. These datasets contain aerial images of parking lots with corresponding annotations
of vehicle instances. The purpose of the experiments was to determine the best method for
vehicle detection. This is a novel comparative study that is useful for both researchers and
practitioners. As a result of the experiments performed, Faster RCNN achieved the best results
in terms of precision and recall.

47

48 Chapter 5. Conclusion

5.2 Limitations
Although the proposed research includes beneficial novel contributions, there are various lim-
itations. Specifically, in Chapter 2, the evaluation of image stitching algorithms is complex
because the ground truth labels do not exist. It is also nontrivial to generate them, even using
human annotation. To surmount this, the mean squared link loss is used to compare the algo-
rithm with different sets of hyperparameters. In practice, this evaluation technique worked well
and matched the visual results obtained.

There are also several limitations to the image stitching algorithm itself. Namely, the rel-
ative transformation we solve using SIFT and RANSAC is prone to false correspondences
between keypoints that may yield inaccurate relative transformations. Furthermore, the image
initialization algorithm is sensitive to sensor noise. Errors in the drone’s location, orientation
and intrinsic parameters may contribute to inaccurate initializations. Lastly, partial affine trans-
formations are used for the mappings between image coordinates. This class of mappings is
not expressive enough to accurately represent some transformations.

In Chapter 3, the vehicle detection experiments face a few minor limitations. First, some
popular object detection methods were not included in the comparative study. This is because
some object detection methods do not have proper open-source implementations available.
This is a reasonable limitation, given that a relatively large set of vehicle detection methods are
explored. Another limitation of the Vehicle Detection experiments is that the private dataset
only contained a small number of annotations. To overcome this, both a private and open
source dataset are used for evaluation.

5.3 Future Work
This work is a significant step towards an end-to-end framework for parking lot occupancy
assessments. The research focuses on developing the Image Stitching and Vehicle Detection
components of the framework. The future work includes realizing the Heatmap Generation
component. Section 4.5 provides a high-level discussion of Heatmap Generation and its inte-
gration with existing components. Further work must be done to flush out the Heatmap Gener-
ation component and the design of the end-to-end pipeline. Once the framework is complete,
it would be beneficial to build an application around it to enhance its usability.

Bibliography

[1] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu.
An optimal algorithm for approximate nearest neighbor searching fixed dimensions. Jour-
nal of the ACM (JACM), 45(6):891–923, 1998.

[2] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust
features (surf). Computer vision and image understanding, 110(3):346–359, 2008.

[3] Guowei Cai, Ben M. Chen, and Tong Heng Lee. Coordinate Systems and Transforma-
tions, pages 23–34. Springer London, London, 2011.

[4] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005.

[5] Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981.

[6] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on com-
puter vision, pages 1440–1448, 2015.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587, 2014.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[9] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 1314–1324, 2019.

[10] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

49

50 BIBLIOGRAPHY

[11] Meng-Ru Hsieh, Yen-Liang Lin, and Winston H Hsu. Drone-based object counting by
spatially regularized regional proposal network. In Proceedings of the IEEE international
conference on computer vision, pages 4145–4153, 2017.

[12] Ersin Kilic and Serkan Ozturk. An accurate car counting in aerial images based on con-
volutional neural networks. Journal of Ambient Intelligence and Humanized Computing,
pages 1–10, 2021.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing systems,
25, 2012.

[14] Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua Bengio. Object recognition with
gradient-based learning. In Shape, contour and grouping in computer vision, pages 319–
345. Springer, 1999.

[15] Qingpeng Li, Lichao Mou, Qizhi Xu, Yun Zhang, and Xiao Xiang Zhu. R 3̂-net: A deep
network for multi-oriented vehicle detection in aerial images and videos. arXiv preprint
arXiv:1808.05560, 2018.

[16] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaiming He, and Ross Girshick.
Benchmarking detection transfer learning with vision transformers. arXiv preprint
arXiv:2111.11429, 2021.

[17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In Proceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in con-
text. In European conference on computer vision, pages 740–755. Springer, 2014.

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016.

[20] David G Lowe. Distinctive image features from scale-invariant keypoints. International
journal of computer vision, 60(2):91–110, 2004.

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28, 2015.

[22] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient
alternative to sift or surf. In 2011 International conference on computer vision, pages
2564–2571. Ieee, 2011.

BIBLIOGRAPHY 51

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018.

[24] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann
LeCun. Overfeat: Integrated recognition, localization and detection using convolutional
networks. arXiv preprint arXiv:1312.6229, 2013.

[25] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[26] Lars Sommer, Tobias Schuchert, and Jürgen Beyerer. Comprehensive analysis of deep
learning-based vehicle detection in aerial images. IEEE Transactions on Circuits and
Systems for Video Technology, 29(9):2733–2747, 2018.

[27] Richard Szeliski. Computer vision algorithms and applications, 2011.

[28] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage
object detection. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019.

[29] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon. Bundle
adjustment—a modern synthesis. In International workshop on vision algorithms, pages
298–372. Springer, 1999.

[30] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gevers, and Arnold WM Smeul-
ders. Selective search for object recognition. International journal of computer vision,
104(2):154–171, 2013.

[31] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE computer society conference on computer
vision and pattern recognition. CVPR 2001, volume 1, pages I–I. Ieee, 2001.

[32] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z Li. Bridging the gap
between anchor-based and anchor-free detection via adaptive training sample selection.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 9759–9768, 2020.

Curriculum Vitae

Name: John Jewell
Post-Secondary: Bachelor of Computer Science

2016 - 2020
University of Western Ontario
London, ON

Experiences: Associate Applied Machine Learning Specialist
Vector Institute
Toronto, ON
Jan 2022 - Present

Applied Machine Learning Intern
Vector Institute
Toronto, ON
Sep 2020 - Dec 2020

Software Developer Intern
Royal Bank of Canada
Toronto, ON
May 2019 - Aug 2019

Publications:

1. Jewell, John Taylor, Vahid Reza Khazaie, and Yalda Mohsenzadeh. ”One-Class Learned
Encoder-Decoder Network with Adversarial Context Masking for Novelty Detection.”
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.
2022.

2. Khazaie, Vahid Reza, Anthony Wong, John Taylor Jewell, and Yalda Mohsenzadeh.
”Anomaly Detection with Adversarially Learned Perturbations of Latent Space.” 2022
19th Conference on Robots and Vision (CRV). IEEE, 2022.

52

	Towards Parking Lot Occupancy Assessment Using Aerial Imagery and Computer Vision
	Recommended Citation

	tmp.1671733548.pdf.ztzyV

