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ABSTRACT Dose from radiation exposure can be estimated from dicentric chromosome
(DC) frequencies in metaphase cells of peripheral blood lymphocytes. We automated DC
detection by extracting features in Giemsa-stained metaphase chromosome images and classi-
fying objects by machine learning (ML). DC detection involves (i) intensity thresholded seg-
mentation of metaphase objects, (ii) chromosome separation by watershed transformation and
elimination of inseparable chromosome clusters, fragments and staining debris using a mor-
phological decision tree filter, (iii) determination of chromosome width and centreline, (iv)
derivation of centromere candidates, and (v) distinction of DCs from monocentric chromo-
somes (MC) by ML. Centromere candidates are inferred from 14 image features input to a
Support Vector Machine (SVM). Sixteen features derived from these candidates are then sup-
plied to a Boosting classifier and a second SVM which determines whether a chromosome is
either a DC or MC. The SVM was trained with 292 DCs and 3135 MCs, and then tested
with cells exposed to either low (1 Gy) or high (2-4 Gy) radiation dose. Results were then
compared with those of 3 experts. True positive rates (TPR) and positive predictive values
(PPV) were determined for the tuning parameter, r. At larger r, PPV decreases and TPR
increases. At high dose, for r 5 1.3, TPR 5 0.52 and PPV 5 0.83, while at r 5 1.6,
the TPR 5 0.65 and PPV 5 0.72. At low dose and r 5 1.3, TPR 5 0.67 and PPV 5 0.26. The
algorithm differentiates DCs from MCs, overlapped chromosomes and other objects with
acceptable accuracy over a wide range of radiation exposures. Microsc. Res. Tech. 00:000–000,
2016. VC 2016 Wiley Periodicals, Inc.

INTRODUCTION

Clastogenic events producing dicentric chromosomes
(DC) are among the most reliable biomarkers of radia-
tion exposure. These events are infrequent relative to
the background of normal monocentric chromosomes
(MC), thereby requiring many cells for accurate dose
estimation. This has motivated efforts to automate
cytogenetic image analysis. This task has been a
longstanding challenge in computer vision research
(Bayley et al., 1991), largely because chromosome mor-
phology is incredibly variable between metaphase cells
and different preparations and laboratories. The rea-
sons include differences in chromosome structure,
staining methods, biological effects and differences in
sample preparation methods. Metaphase cell selection
strongly influences the accuracy of these analyses.
Content and classification-based methods have been
used to rank metaphase cell images based on chromo-
some number and degree of chromosome overlap
(Kobayashi et al., 2004). Nevertheless, advances in

automated karyotyping have been limited by the
accuracy of algorithms, and hidden implementation
details of commercial products.

Spurious branches produced by medial axis thinning
of irregular chromosome objects can lead to incorrect
centromere placement. We developed an algorithm to
calculate the centerline of the chromosome that
excluded spurious branches and was independent of
overall morphological differences (Subasinghe et al.,
2010, 2013). This approach spurred new strategies for
centromere detection using curvature rather than
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width to determine centromere location (Mohammaed,
2012) or artificially straightened chromosomes to cre-
ate a trellis perpendicular to the centerline (Jahani
and Setarehdan, 2012). However, these methods,
including our own, require objects with smooth chro-
mosomal boundaries. The presence of irregular con-
tours adversely impacts the centreline, and
consequently, the accuracy of features used to infer
centromere location. Centerline-based results are also
affected by chromosomes exhibiting sister chromatid
separation (SCS).

Metaphase images containing �46 individual, nono-
verlapped chromosomes without SCS will yield the
most accurate DC detection. In practice, such ideal
images are uncommon among cell preparations in bio-
dosimetry laboratories so a method of selecting appro-
priate metaphases or dealing with overlaps is
required. In this manuscript, we present a series of
image processing methods to automate detection of
DCs. The process involves selecting metaphase cells
with optimally distributed chromosomes (Kobayashi
et al., 2004) from a sample, defining the boundaries of
the remaining chromosomes, detecting centromere
candidates, and discriminating mono- from dicentric
chromosomes. When multiple chromosomes overlap or
touch in an image, these clusters are preprocessed and
separated by a watershed transform, which ensures
that valid chromosome objects are processed.

The method segments the chromosome objects using
local thresholding and draws object outlines by Gradi-
ent Vector Flow (GVF) active contours (Xu and Prince,
1998). Once the object is extracted based on the GVF
outline, the contour of the chromosome is partitioned
along the centreline using a polygonal shape simplifi-
cation algorithm called Discrete Curve Evolution
(DCE) (Bai et al., 2007; Latecki and Lak€amper, 1999).

We recently implemented a centromere localization
algorithm, which is refractory to the confounding
effects of highly bent chromosomes and SCS (Suba-
singhe et al., 2015). Since centerline-based centromere
detection tends to perform better than other
approaches, the centerline is used to partition the chro-
mosome contour into two nearly symmetric regions.
The centerline is not used to measure chromosome
width or other properties. As a result, the boundary
texture does not affect the smoothness of the width pro-
file measurements which are used to locate centromeric
constriction(s). Once the contour is partitioned and seg-
mented, an Intensity Integrated Laplacian (IIL) thick-
ness measurement algorithm (Subasinghe et al., 2013)
integrates pixel intensities, resulting in vectors traced
axially along homogenous intensity regions, analogous
to chromosome bands. Here, we derive features in chro-
mosome images to rank centromere candidates by Sup-
port Vector Machine (SVM) learning. These features
represent various aspects of the geometry and other
properties of the chromosome at the locations of the
selected candidates. A second SVM is then used to dis-
criminate monocentric and dicentric chromosomes.

MATERIALS AND METHODS

The algorithm and software separates and isolates
chromosomes, localizes centromere candidates within
each, then processes the candidates to distinguish
MCs from DCs. This is done by extracting valid chro-

mosomes from images of complete metaphase cells
using customized image-processing methods, and com-
puting quantitative features from these images as
input to pre-trained ML models that optimize identifi-
cation of DCs among a larger population of MCs.

Image Segmentation

All objects in images are first segmented and binar-
ized by local intensity thresholding (Otsu, 1979). The
foreground objects obtained are a mixture of single
chromosomes, clusters of overlapped or touching chro-
mosomes, nuclei, and staining debris. Touching and
overlapped chromosome clusters are problematic for
DC analysis as their inclusion presents multiple cen-
tromeres in one object. To separate chromosome clus-
ters into individual chromosomes, we perform a
watershed-based method. The watershed transform, a
widely used technique in image segmentation (Meyer,
1994), treats an image as a surface and consequently
finds catchment basins and ridge lines that separate
domains of the object. The transform is guided by seeds
placed by users to match possible basins on the image.
Aggressive intensity re-thresholding on foreground
pixels is calculated for all objects. New segmented
regions act as seeds in the watershed transform.
Therefore, the ridge pattern combines intensity and
positioning information, which provides a possible sep-
aration strategy for the object (Fig. 1A). However, sin-
gle chromosomes with considerable SCS or
nonuniform staining can also be broken at the site of a
ridge pattern. Fragments caused by incorrect splitting
exhibit different morphological characteristics from
complete chromosomes. We established three simple
empirical conditions based on feature length, perime-
ter and area to prevent inappropriate splitting of chro-
mosomes (Fig. 1B). Ridges that meet any of the
conditions are considered to split a single chromosome
and are therefore discarded. The two parts of an object
separated by a ridge (R) are referred to as P and Q.

Condition 1: Rlength > 0:55�min Pperimeter; Qperimeter

� �
.

Condition 2: min Parea; Final; Qarea; Final

� �
< 0:1�min

Parea; Initial; Qarea; Initial

� �
.

Condition 3: 85% of P, Q’s area are spatially symmetric
with R being the axis and Rlength > 0:3�min Pperimeter;

�

Qperimeterg.

Conditions 1 and 2 are designed to avoid breaking of
complete chromosomes. Condition 3 prevents splitting
of sister chromatids. All parameters for these condi-
tions have been heuristically chosen and validated
with large numbers of images containing touching and
overlapping chromosomes. However, separation of
these objects cannot be guaranteed.

To filter out nonchromosomal objects, we examined
the sizes, brightness, and contours after segmentation
of all objects in an image. Upper and lower thresholds
for chromosome area and average intensity have been
determined from statistical distributions of these val-
ues from analysis actual chromosomes in a set of meta-
phase cells. Chromosome fragments, nuclei, and
staining debris are eliminated if they are respectively
above or below the thresholds for either chromosome
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area (>5x the area of neighboring median object size
or <200 pixels) or intensity (>20x mean intensity of
median size objects or <40x mean intensity of median
size objects). To detect overlapping chromosomes and
other unfiltered chromosomal objects in the image, the
contour of each object was analyzed. We measure the
point-wise inner distances (Ling and Jacobs, 2007) of
the contour to estimate the maximum width of a chro-
mosome. DCE simplified contours are used, replacing
original contours to reduce computational time com-
plexity. Outliers of the estimated width in a metaphase
are removed as overlapped chromosomes.

Centromere Localization

Chromosomes are serially processed by the GVF,
DCE and the IIL algorithms (Subasinghe et al., 2013),

then candidate centromeres are selected from local
minima along the width profile of each chromosome. A
Support Vector Machine (SVM) was previously trained
on 11 image analysis features (Subasinghe et al., 2015)
to find the strongest candidate centromere with the
based on its distance to the hyperplane relative to all
others. Briefly, these features describe: (i) the local
minimal chromosome width, the pixel intensity at
each candidate; (ii) differences between a curve fit to
the width profile and the profile itself; (iii) the maximal
width adjacent to the candidate; (iv) the beginning and
end coordinates of the Intensity Integrated Laplacian
vectors, (v) the shortest distance from the candidate to
the end of the centerline; and (vi) the ratio of width at
the candidate to the average width of all points along
the centerline.

This centromere SVM identifies a single candidate
as the centromere, regardless of whether the chromo-
some is MC or DC. To identify secondary centromere
candidates, the top candidates are sorted in order of
their signed distances to the SVM hyperplane and the
two best candidates are then analyzed. The true cen-
tromere(s) are expected to be present among the candi-
dates. In the case of a MC chromosome, the two
candidates comprise a true centromere and a noncen-
tromeric region; for DC chromosomes, both candidates
would include the true centromeres. To improve the
accuracy of centromere assignment, it was necessary
to incorporate 3 additional image features (A1 – A3,
defined below) in the centromere SVM, defined as fol-
lows. For each chromosome, let ci; 1 � i � N denote
the ith point on its centerline. We introduce the follow-
ing notations:

I cið Þ refers to the image intensity value at ci.
W cið Þ and W ci; cj

� �
refer to the width profile at ci, or of

the interval ci; cj

� �
.

W’ cið Þ refer to the quadratic curve fit to the width profile
at ci.
ls cið Þ and le cið Þ refer to Laplacian start and end points
corresponding to ci.

For each centromere candidate k of the same chro-
mosome, ck, the additional features are described
below:

A1: I ckð Þ=MAX I cið Þ; i51; 2; 3 . . . Nð Þ. This is the nor-
malized intensity of the candidate.
A2: / ls ckð Þ; ck; le ckð Þð Þ. This feature is the turning
angle between the start and endpoints of the Intensity
Integrated Laplacian vector at the candidate.
A3: W’ ckð Þ2W ckð Þ. The difference of the fitted quadratic
width and the actual width of the candidate.

Feature A1 extracts intensity values at the centro-
mere candidates. Feature A2 prevents false candidates
at bending or twisting regions in a chromosome. The
width profile of a chromosome contains a set of discrete
width values with peaks in the middle and valleys at
the ends of each which are fit to a quadratic function.
Centromeres normally show significant reduction in
width due to constrictions at these contour coordi-
nates. This chromosome property can be captured by
comparing the actual width profiles at the centromere

Fig. 1. Modified watershed separation of chromosome clusters.
After the original metaphase image is binarized by intensity thresh-
old segmentation, connected chromosome clusters are formed due to
under-segmentation. Panel (A) Watershed separation operation is
applied to these clusters to prevent over-segmentation. This involves
determining the lengths of the ridges between components of the
cluster, areas of the separated regions, and the degree of symmetry of
the separated regions; (B) Constraints are applied to prevent overseg-
mentation of individual chromosomes if: (i) length of the ridge
exceeds half of the perimeter of one of the separated regions, (ii) areas
of small regions separated by the operation are less than 10% area of
the larger region, and (iii) the two separated regions exhibit highly
symmetric structures adjacent to the ridge the separates them.
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candidates to their expected widths fit to the quadratic
function. Feature A3 in the centromere SVM measures
the difference between these values. Along with the
original features, the final centromere SVM uses 14
features to select the optimal candidates used in the
detection of DCs.

DC Detection

A compound ML model was developed to discrimi-
nate MCs from DCs. The components of the model
included a second SVM trained to recognize MCs and
DCs, whose accuracy was enhanced with a Boosting
Classifier (Viola and Jones, 2001). Given the two candi-
date centromeres, the method generates a set of fea-
tures for a chromosome which characterize their
respective impacts on chromosome structure. We
developed a set of image features (F1 – F16, defined
below) to train the MC-DC SVM to distinguish
between them. In a DC, each candidate is expected to
exhibit a constriction of similar magnitude, but their
respective widths will differ in MC chromosomes. The
MC-DC SVM analyzes selected candidates in the con-
text of the chromosome. Significant variation between
the morphologies of different chromosomes required
some features to be designed to mitigate the occur-
rence of false positive DCs, which were, in fact, true
MCs. To illustrate these features, we use ci; 1 � i � N
to denote the ith point along the centerline of a chromo-
some. In addition to the expressions defined above, we
also introduce the following symbols:

E ci; cj

� �
refers to the normalized accumulated Euclidean

distance between ci and cj along the centerline.
H cið Þ refers to the distance from ci to the hyperplane in
the centromere SVM, if it is a candidate.
Ds cið Þ and De cið Þ refer to ci’s Euclidean distances to ls cið Þ
and le cið Þ.

l and r denote the mean and standard deviation,
respectively, for sample distributions.

We define the selected centromere candidates as cp

and cq, with p < q, and summarize features based on
these candidates in the MC-DC SVM below:

F1, F2: H cp

� �
and H cq

� �
. They are the likelihoods of the

candidates being true centromeres evaluated by the cen-
tromere SVM.
F3: jH cp

� �
2H cq

� �
j. DC chromosomes should have simi-

lar F1 and F2 values since both candidates are true cen-
tromeres and a smaller F3 value. By contrast, in MC
chromosomes, F3 tends to be large, as one of the candi-
dates is a false centromere.
F4: E cp; cq

� �
. This feature prevents cases where the two

candidates are so close that they actually belong to the
same centromere.
F5: min E ci; c1ð Þ; E ci; cNð Þ; E cj; c1

� �
; E cj; cN

� �� �
. This

feature prevents false positive cases where a candidate
is positioned too close to telomeres.
F6: Wmax c1; cp21

� �
1Wmax cp11; cN

� �
223W cp

� �
. This

feature is part of the centromere SVM.
F7: Wmax c1; cq21

� �
1Wmax cq11; cN

� �
223W cq

� �
. F6 and

F7 measure the contour constriction at the centromere
candidates.

F8: max Z cp

� �
; Z cq

� �� �
;where Z xð Þ5 W xð Þ2Wl cp; cq

� �� �
=

Wr cp; cq

� �
. This feature is the larger value of the z-scores

for the candidates’ width profiles. It is relatively small for
DC chromosomes, and large for MC chromosomes.
F9: min A; Bf g=}max A; Bf g, where A5 W cp

� �
2Wl

cp11;
�

cp13Þ, B5 W cq

� �
2Wl cq23; cq21

� �
. This feature

assesses the similarity of the steepness at the candidate
locations on the chromosome.
F10: jR cp

� �
2R cq

� �
j;where R xð Þ5min Ds xð Þ; De xð Þf g=

max Ds xð Þ; De xð Þf g. This feature detects false centro-
meres that are caused by chromosome bending.
F11, F12: us pð Þ and us qð Þ, where us xð Þ5/ ls cx25ð Þ;ð
ls cxð Þ; ls cx15ð ÞÞ. These features detect the contour con-
cavities of the Laplacian start points for the candidates.
F13, F14: ue pð Þ and ue qð Þ, where ue xð Þ5/ le cx25ð Þ;ð
le cxð Þ; le cx15ð ÞÞ. These features detect the contour con-
cavities of the Laplacian end points for the candidates.

Features derived from width profiles and contours
are founded on the knowledge of cytogenetic character-
istics of centromeres, which are specifically associated
with the analysis of DCs. However, the diversity of raw
intensity pixel values between different chromosomes
and images discourages the use of unprocessed fea-
tures in these supervised learning models. This prob-
lem was addressed with generalized pixel-level
features that are widely used in various recognition-
driven problems in computer vision. A Boosting Classi-
fier applied to Haar-like features in chromosome
images uses this pixel-level information to strengthen
the accuracy of centromere probability measurement
(Viola and Jones 2001). Haar-like features have been
proven to be an effective descriptor for low-level inten-
sity patterns. Pixel intensities are integrated in mov-
ing sub-windows and the integrated values are
compared within windows comprising a series of sym-
metric rectangles. This mechanism generates a com-
prehensive gray-scale descriptor for a region of
interest. In most applications, Haar-like features work
with Boosting classifiers because of the high dimension
of the feature set. A Boosting model consists of a large
number of simple classifiers that are only required to
be more accurate than a random classifier. During
training, the Boosting model iteratively adjusts
weights of its classifiers, and combines all classifier
predictions to improve accuracy. The sign of the
weighted sum of the Boosting classifiers determines
the binary classification. Haar-like features, computed
in a 21-by-21 region centered on a selected candidate,
comprise 6749 features input to the Boosting classifier.
The weighted sums of the classifier of both candidates
in a chromosome are appended to the MC-DC SVM as
additional features (F15, F16). Various Boosting con-
figurations (e.g., Ada Boost and Robust Boost) were
also tested to determine if these improved discrimina-
tion of candidate centromeres.

The performance of different kernel types, linear,
polynomial and radial basis function (RBF) kernels,
were compared for the MC-DC SVM. The centromere
SVM was previously configured to use the RBF kernel
(Subasinghe et al., 2015). Similarly, RBF was selected
for the MC-DC SVM classifier, due to its superior accu-
racy in distinguishing MCs and DCs in a curated set of
chromosomes (see Results). SVMs can produce
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multiple classifier models, each based on a unique tun-
ing parameter, r. Increasing r values effectively repre-
sents a tradeoff between increased sensitivity and
reduced specificity in DC detection. The RBF is tuned
with the r parameter, whose value monotonically
increases (1.1 – 1.8) with increased detection of DCs
(both true and false positives [TP, FP]). The optimal
results are determined by testing these values. For
example, the inferred DC distribution in a sample at
different values of r is fit to the expected Poisson dis-
tribution of DCs in irradiated lymphocytes [Interna-
tional Atomic Energy Agency 2001].

Software Organization

The algorithms were originally developed in MAT-
LAB, and the finished software has been implemented
in C11. The current version has been re-organized
from its last release, and is logically divided into four
layers. The architecture is indicated in Figure 2.

The supporting libraries layer includes third-party
libraries, as well as low-level image processing mod-
ules. Most core classes and functions are built on
OpenCV and Qt libraries. Intel Thread Building Blocks
(TBB) provides multi-threading parallel processing for
DC analysis operations. The GNU scientific (GSL) and
Qt libraries are also called by the software. The main
DC analysis is implemented in the functionalities
layer and contains three modules corresponding to the
three stages of the ADCI algorithm: image segmenta-
tion, centromere detection and ML. We create the
interface layer as an intermediate between DC analy-
sis and user interfaces. Core data structures and
classes representing metaphase images, chromosomes

and other key cytogenetic concepts are coded in this
layer.

The top tier is the applications layer, including multi-
ple applications depending on the end user require-
ments. A graphical user interface (GUI) was developed
to obtain training data for the SVMs. This GUI supports
user scoring by visually displaying the centromere can-
didates on each chromosome. These data are compared
with ground truth-scored centromeres by the training
GUI to assess performance of the SVM iterations and
feature improvements during the development process.
A version of this software application can be used to
evaluate individual DC and MC chromosomes either in
the available image gallery or supplied by the user (See
Supporting Information and legend to Fig. 3).

RESULTS
Data Sources

Unlike the normal metaphase cell images used to
derive the centromere detection procedure, most
experimental data analyzed are from cells that have
been exposed to calibrated gamma or X-ray radiation
sources. The microscopy images of metaphase cells
were generated in biodosimetry laboratories at Health
Canada (HC) and Canadian Nuclear Laboratories
(CNL). Experts in these laboratories determine the
biological level of radiation exposure in accidents and
other exercises. The datasets were comprised of multi-
ple batches of images from samples of different known
radiation exposures (from 1-4 Gy). Cytogenetic experts
collected chromosome information for routine bio-
dosimetry exercises, which have been used to develop
and test the automated methods described in this
study. Distinct datasets were used to derive the ML

Fig. 2. UML diagram of software development system. The figure
illustrates the structure of the chromosome image processing soft-
ware system in a layered structure based on functional modules
called during training and testing of the SVM components. Software
modules are displayed as boxes and the rectangles containing them
represent development layers. Light gray boxes and dark gray boxes
indicate third-party libraries and libraries developed by our team,

respectively. Software building dependencies are shown by arrows.
The layers supporting libraries, functionalities and the graphical
user interface comprise the complete automated dicentric chromo-
some identification algorithm. Any application using the algorithm
belongs to the applications layer, including our training graphical
user interface.

DETECTING DICENTRIC CHROMOSOMES BY MACHINE LEARNING 5
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models and to evaluate their performance by cross-
validation. An early version of the software was used
to record key attributes used for training, ie. 3 experts
marked all true centromeres amongst the set of candi-
dates on each DC chromosome, and denoted false posi-
tive DCs.

Cytogenetic specialists at UWO, HC, and CNL used
the graphical user interface version of the software
(Fig. 2), which provided training data for the SVM that
indicated ground truth designations of dicentric, and
in some instances, monocentric chromosomes. Chro-
mosomes were first classified by a SVM; then, users
scored chromosomes as DC or MC by confirming or cor-
recting this classification. Scoring differences resulted

from SVMs with different sigma values (1.4 vs. 1.5),
and scoring criteria adopted by different specialists.
For example, the classification of dicentric acrocentric
chromosomes depends on the length of the p arm and
the proximity of the centromere to the nearest telo-
mere. If this distance is particularly short, i.e. less
than the chromatid width, a potential DC is not
counted as dicentric, as the determination is ambigu-
ous for the software. Differences between scores were
then discussed and usually could be resolved by joint
review. Any discrepancies are reported in the final
results.

The metaphase image data were divided into
groups, according to how each was scored. Cytogenetic

Fig. 3. Classification of mono- and dicentric chromosomes. The fig-
ure displays a representative set of MCs and DCs, as well as the clas-
sification results scored by the MC-DC SVM (sigma 5 1.5). The
contour of the chromosome defined by the algorithm is color coded as
either monocentric (green) or dicentric (red). Chromosomes are
cropped from metaphase images in a sample exposed to a 3-Gy X-ray

radiation source provided by CNL. . These examples can be classified
with the centromere and MC-DC SVMs online with a software appli-
cation available at http://cytobiodose.cytognomix.com. [Color figure
can be viewed in the online issue, which is available at wileyonlineli-
brary.com.]
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experts scored all DCs in each dataset. Dataset 1 con-
tained 281 fully labeled metaphase images with cen-
tromeres marked by experts. 266 DC, and 3,222 MC
chromosomes are present in dataset 1, with all other
segmented objects being chromosome clusters, nuclei
and staining debris. In dataset 2, only true DC chromo-
somes are scored while other objects, including MC
chromosomes, are ignored. In dataset 2, we observed
531 DC chromosomes and 13,898 other objects in 612
images. Both datasets 1 and 2 are from cells exposed to
3-4 Gy (high-level) gamma radiation. The image seg-
mentation of these datasets was subjected to intensity
thresholding without application of the watershed
method. The final dataset 3 comprises a wide range of
doses and has been separated into 1 Gy (low dose) and
3-4 Gy high dose subsets. Dataset 3 was analyzed with
a version of the algorithm that included watershed
segmentation.

Image Segmentation

The watershed separation and the segmentation
components were tested with an dataset enriched in
chromosome clusters created from 60 metaphase
images from dataset 1. It contained 2,340 objects
including 1,762 single chromosomes, 349 chromosome
clusters and 229 nuclei and debris or fragmentary
objects. The watershed method separates 294 chromo-
some clusters, or 84% of the set of 349. Some single
chromosomes (n 5 48) were inappropriately broken by
the watershed method, however 1,714 (97%) remained
intact. A portion of whole nuclei, fragments and debris
objects (n 5 84) were also split by the watershed
method, however none of these were classified in sub-
sequent steps as either MC or DCs.

Centromere SVM

The centromere SVM model in our DC analysis
selected centromere candidates to provide information
to assign the type of chromosome by the MC-DC SVM.
We evaluated the performance of the centromere SVM
on the basis of selected candidates that identified true
centromeres. Only DCs were assessed, as it was very
rare that the centromere in a MC was not among the
two candidates. The detection accuracy based on the 2
most highly-ranked centromere candidates in a chro-
mosome was compared with the 4 top-ranked candi-
dates. Both centromeres in a DC were required to be
identified in either the top 2 or top 4 candidates. In
dataset 1, a 5-fold cross-validation was carried out
with 4 of 5 DCs defined as training data and the
remainder were used for testing the SVM Subse-
quently, the full centromere SVM was trained with all
DCs in dataset 1, and tested with data from dataset 2
(results are shown in Table 1).

Boosting and the MC-DC SVM

We applied several types of Boosting classifiers,
which combine different features to improve the per-
formance of weak SVMs. We compared the perform-
ance of Boosting models available in the MATLAB
Image Processing Toolkit and the C11 OpenCV
library. Boosting classifiers were trained using selected
candidates of chromosomes in dataset 1, including
6906 candidates comprising both DC and MC chromo-
somes. The Boosting models were assessed by compar-
ing results from Adaptive Boosting in OpenCV, as well
as Adaptive Boosting and Robust Boosting in MAT-
LAB. The lowest accuracy, 87%, was found using
Adaptive Boosting method in MATLAB, whereas the
Adaptive Boosting in OpenCV exhibited a slightly
higher accuracy (89%). The results demonstrate that
various Boosting models have highly similar training
accuracies and therefore, we do not discriminate
between them.

For the MC-DC SVM, we evaluate combinations of
candidate centromeres produced by the centromere
SVM for individual chromosomes. The number of TP
DCs and the number of MCs incorrectly labeled posi-
tive (FPs) by the SVM are assessed by expert review.
The PPV (also called precision) and TPR (also known
as sensitivity or recall) are used to assess the perform-
ance of the SVM at different r values. PPV indicates
the exactness of DC detection. TPR measures the frac-
tion of true DC detection. We seek feature sets and r
values that maximize PPV and TPR using the same
training data. Since the MC-DC SVM is limited by the
selections made by the preceding centromere SVM, the
centromere SVM trained with the complete dataset 1
is used to provide selected candidates. Only DC chro-
mosomes with both centromeres selected are counted
towards correct proportion of DCs classified.

The model derived from dataset 1 was evaluated by
cross-validation. The centromere SVM made correct
selections for 194 of the 266 DCs. A Boosting classifier
was trained by 5 fold cross-validation, followed by
sequential training of the MC-DC SVM with the same
cross-validation schema. The Boosting-SVM model
was then tested. Results shown in Table 2 indicate
that the r value of 1.4 achieves the highest combined
PPV and TPR.

In addition to cross-validation, we also tested data-
set 2 using a Boosting-SVM model that was trained
using dataset 1. By contrast with dataset 1, MC chro-
mosomes were not scored or labeled in dataset 2. Since

TABLE 1. Performance of centromere SVM.

Cross-validation
in dataset 1

Testing of
dataset 2

Total no. of DCs present 266 531

No. DCs detected with top 2
candidate centromeres (%)

194 (73%) 371 (70%)

No. DCs detected with top 4
candidate centromeres (%)

248 (93%) 499 (94%)

TABLE 2. Results of MC-DC SVM cross-validation on dataset 1.

Sigma TPs FPs PPV% TPR%a TPR%b

1.0 91 18 83.5 46.9 34.2
1.1 111 24 82.2 57.2 41.7
1.2 124 28 81.6 63.9 46.6
1.3 134 35 79.3 69.0 50.4
1.4 148 41 78.3 76.3 55.6
1.5 154 49 75.9 79.4 57.9
2.0 166 79 67.8 85.6 62.4

aTotal of 371 chromosomes with both centromeres correctly detected by Centro-
mere SVM.
bTotal of 531 chromosomes with all known DCs scored, regardless of results of
Centromere SVM.
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MC-DC SVM distinguish DC from non-DC objects, and
the non-DC objects comprise a mixture of MCs, intact
nuclei, debris and acentric fragments, this is actually a
more stringent evaluation than the original approach.
The centromere and MC-DC SVMs correctly selected
371 of the 531 DCs present (Table 3).

Dicentric chromosomes (FNs) missed in dataset 2
were then reclassified and appended to the DC train-
ing data as TPs, the MC-DC SVM was retrained, and
then tested on independent dataset 3. A cytogenetic
expert in our research group (JHMK) scored DCs of all
metaphase cells in dataset 3 as ground truth. Special-
ists from HC and CNL also scored a common subset of
144 of these metaphases in the high-dose subset for
comparative study. Comparison of the retrained model
with the ground truth scoring indicated retraining the
model significantly increased the PPV (approximately
20%).

In the high dose exposure subset, the software seg-
mented 14,428 objects, averaging 40 objects per meta-
phase. Our UWO expert (JHMK) designated 476
objects as DCs, with 179 in the 144 metaphase cells
scored by all experts. At low-dose (1 Gy), the software
detected 8,041 objects, an average of 38.7 objects per
image. The DC chromosomes in cells exposed to low
dose radiation are infrequent. The expert (JHMK)
found 27 DC chromosomes in the low-dose subset. The
comparison of the MC-DC SVM with ground truth and
inter-specialist comparisons are shown in Table 4. The

results are stratified according to (a) a subset of DCs
from cells exposed to high dose radiation scored by all
experts and compared those produced by the software,
(b) all high dose DCs identified by the software relative
to scoring by JHMK, and (c) DCs detected in a low
dose sample compared to JHMK’s interpretation.
Using r of 1.4 or 1.5, at high dose exposures, approxi-
mately half of DCs are detected with acceptable false
positive rates (PPV 5 71–77%). At low dose in which
fewer DCs form, sensitivity of detection is higher (66–
74%), at a cost of significantly lower specificity
(PPV 5 18–21%), the latter being related to quality of
the data and current limitations of the algorithm. Scor-
ing of DCs of different experts were minimally discord-
ant (<3%).

DISCUSSION

The overall accuracy of the DC detection algorithm
relies on the combined performance of its three compo-
nents: chromosome segmentation, centromere candi-
date assignment, and discrimination of DCs and MCs.
However, image segmentation of metaphase chromo-
somes is not a trivial task. Under-segmentation hin-
dered the performance of early releases of ADCI.
Originally, the average number of segmented chromo-
somes (DC or MC) per image in dataset 1 was 12.4
(3,488/281) and 24 (14,429/531) in dataset 2. Both val-
ues are below the 46 chromosomes expected in a nor-
mal cell. Although inseparable chromosome clusters
are eliminated by the software, reducing the TP DCs,
this was preferable to the increased FP rates that
would result from including these objects. Overlapping
normal chromosomes (50%) are misclassified as DCs
by commercial DCScore software (Metasystems; Vauri-
joux et al., 2009) due to the presence of multiple cen-
tromeres per object. Application of the modified
watershed transform largely resolved this problem for
touching chromosomes or close neighbors (but not
overlapping chromosome clusters). The watershed sep-
aration increased the average number of segmented
objects per cell to near euploid levels, i.e., 38 2 40 per
image (dataset 3). Although the modified Watershed

TABLE 4. Performance of MC-DC SVM on dataset 3 at different exposure levels: Comparison with expert scoring.

SVM r value

Source of dicentric
chromosome data Performanc criteria 1.2 1.3 1.4 1.5 1.6 1.7 1.8 HCb CNLb UWOa

High-Dose chromosome data,
commonly scoredb

TPs 71 79 90 98 102 108 110 175 176 179
FPs 13 17 33 39 46 54 66 4 3 0

PPV% 84.5 82.3 73.2 71.5 68.9 66.7 62.5 97.8 98.3 100
TPR% 39.7 44.1 50.3 54.8 57.0 60.3 61.5 97.8 98.3 100

All High-Dose chromosome datac TPs 214 250 280 301 314 327 333 N/A N/A 476
FPs 43 53 81 104 125 148 172 0

PPV% 83.3 82.5 77.6 74.3 71.5 68.8 65.9 100
TPR% 45.0 52.5 58.8 63.2 66.0 68.7 70.0 100

Low-Dose chromosome datac TPs 13 18 18 20 20 20 20 N/A N/A 27
FPs 37 51 67 90 120 136 156 0

PPV% 26.0 26.1 21.2 18.2 14.3 12.8 11.4 100
TPR% 48.2 66.7 66.7 74.1 74.1 74.1 74.1 100

aResults scored by University of Western Ontario (UWO/JHMK). DCs scored by UWO are treated as ground truth. Calculation of TPs and FPs based on comparing
scoring by SVMs, by HC, and by CNL with ground truth.
bThe DC chromosome subset commonly scored by UWO, Health Canada (HC), and Canadian Nuclear Laboratories (CNL) and by the software was exposed to high
dose radiation.
cAll data in the high-dose subset, scored by UWO and the software. This includes images that were not scored by all three experts. N/A, not applicable; TPs, true posi-
tives; FPs, false positive DCs; PPV, positive predictive value; TPR, true positive rate.

TABLE 3. Results of MC-DC SVM test on dataset 2.

r Value No. TPs No. FPs PPV% TPR%a TPR%b

0.9 173 65 72.6 46.6 32.6
1.0 210 96 68.6 56.6 39.6
1.1 240 149 61.7 64.7 45.2
1.2 264 186 58.7 71.2 49.7
1.3 279 234 54.4 75.2 52.5
1.4 286 264 52.0 77.1 53.9
1.5 294 302 49.3 79.3 55.4

aTotal of 194 with both centromeres correctly detected by Centromere SVM.
bTotal of 266 with all known DCs scored, regardless of results of Centromere
SVM.
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algorithm handles homologous metaphases chromo-
somes with fused sister chromatids, it does promote
over-segmentation in metaphase cells with severe sis-
ter chromatid separation or significant amounts of
staining debris. Gaps between sister chromatids along
the length of the chromosome create separate objects
with variable intensity patterns resembling multiple
discrete chromosome objects, which misleads water-
shed transform to produce ridges. Heuristically-
designed conditional filters have been implemented to
prevent over-segmentation (see Methods). Further-
more, the software avoids misclassification by select-
ing metaphase images by thresholding object counts
per image. Excessive sister chromatid separation pro-
duces large numbers of segmented objects (>60) corre-
sponding to individual chromatid arms rather than
whole chromosomes. Using these object count thresh-
olds, cells prone to DC misclassification due to over-
segmentation can be eliminated.

The centromere detection algorithm has been opti-
mized to reject false-negative DCs at the expense of
higher false-positive rates. The method works well for
identifying the first centromere (92% accuracy); how-
ever, detection of the second centromere based on the
two highest ranked candidates is less accurate (70%).
The candidates ranked and selected by the centromere
SVM are important for making DC assignments. Incor-
rect centromere candidates affect the correct identifi-
cation of true DCs by the MC-DC SVM. The current
approach is approximately 70% accurate using the
optimum r values. Acrocentric chromosomes with
short arms at the end of the DC or two acrocentric
chromosomes forming DCs by fusion of their short
arms are often misclassified as MCs (FNs). Centro-
mere misclassification along chromatids is also com-
mon in SCS chromosomes. However, selecting
centromeres among the 4 top-ranked candidates
increases dicentric catchment rates. However, the pre-
ferred approach to train the MC-DC SVM with 4 cen-
tromere candidates has not yet been established.

One of the challenges in developing the centro-
mere and MC-DC SVMs has been to develop image
features that discriminated correct centromeres and
DCs, independent of chromosome morphology. The
most useful features were inspired by visual con-
strictions at centromeric structures and the corre-
sponding width profiles. Other feature classes (F4
and F10) aimed at preventing or reducing FP DCs
were discovered through review of testing results. A
number of potential features in this class were ulti-
mately not incorporated because of their minimal
contribution or even adverse effect on accuracy.
Some features are loosely defined, because of a lack
of strict mathematical definitions for these biologi-
cal characteristics. Examples include the curvature
angles in F11-F15. The indexed distance of the 5-
point offset to the Laplacian point on the contour
used in the angle calculation was determined
empirically, and validated to improve the accuracy
of the MC-DC SVM through experimentation. We
found that flexibility in these calculations has little
effect on final classification results, as long as the
results are biologically sensible. For instance, the
steepness comparison of a pair of candidate width
profiles, F9, which is measured by a relative ratio,

can alternatively, be expressed as the absolute dif-
ference between these values without affecting the
performance of the SVM.

The preferred SVM tuning parameters, r, were
empirically determined. There is a tradeoff between
tuning the SVM to maximize either TPR or PPV (but
not both). Increasing r improves sensitivity, i.e., more
positive predictions of DCs, but reduces specificity.
However, the numbers of MCs will always exceed DCs,
regardless of radiation exposure. For this reason, the
SVMs have been optimized to maximize correct detec-
tion of TP. r values from 1.4 to 1.6 result in a balance
of TP and FPs and maximize PPV and TPR. At high
doses, at least, these sigma values provide satisfactory
accuracy for differentiating MCs from DCs, though
manual review by experts is more accurate when scor-
ing is consistent.

At low dose exposure (<1 Gy), the algorithm identi-
fies fewer DCs as expected. The FPR is near constant
across a range of exposure levels, however small errors
in DC detection at low dose will inflate dose estima-
tion. The FPs are comprised of monocentric chromo-
somes, noisy objects and chromosome clusters or
fragments that were not eliminated. Since there are
multiple sources of FPs, no single solution may resolve
this issue. One promising approach to reduce FPs
involves normalization of image segmentation features
of all chromosomes in a metaphase cell and using
thresholding to discriminate outlier FPs relative to
these normalized distributions.

To perform dose assessment will require construct-
ing calibration curves from automated analysis of all
DCs in a set of metaphase cells, and using these
curves to predict doses for test samples processed
using the same algorithms. Dose assessment com-
parisons between cytogenetic experts and the soft-
ware will also be critical for adoption of automated
approaches.
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Lefèvre S, Voisin P, Voisin P Roy L. 2009. Strategy for population
triage based on dicentric analysis. Radiat Res 171:541–548.

Viola P, Jones M. 2001. Rapid object detection using a boosted cascade
of simple features. IEEE Computer Soc Conf Comput Vis Pattern
Recognit 1:511–518.

Xu C, Prince JL. 1998. Snakes, shapes, and gradient vector flow.
IEEE Trans Image Processing 7:359–369.

10 Y. LI ET AL.

Microscopy Research and Technique

http://dx.doi.org/10.1101/032110

	Western University
	Scholarship@Western
	3-1-2016

	Automated discrimination of dicentric and monocentric chromosomes by machine learning-based image processing.
	Yanxin Li
	Joan H Knoll
	Ruth C Wilkins
	Farrah N Flegal
	Peter K Rogan
	Citation of this paper:


	Automated Discrimination of Dicentric and Monocentric Chromosomes by Machine Learning&#8208;Based Image Processing

