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Abstract 

Our brains are proficient in learning recurring structures in the environment, in order 

to optimize perceptual inferences based on relevant information in a stochastic input. Sensory 

information is multi-dimensional, and the relationship between sound dimensions may be, in 

itself, a source of information. Many sounds in our environment covary dynamically, and 

these covariances may be learned, and therefore shape our perception, through exposure to 

them in our natural environment. In the present study we investigate how natural (long term), 

and experimental (short term), learning of statistical regularities in sounds may shape our 

ability to categorize them (Experiment 1) and to perceptually segregate them more easily 

from target speech (Experiment 2). Our results indicate that sounds that obey naturalistic 

pitch-speed relationships are more easily categorized than those that violate these 

expectations. However, these benefits did not translate into greater segregability of these 

naturalistic patterns from speech, although my method may have not been sufficiently 

sensitive to such effects. These findings highlight the ways in which long-term life 

experience may influence our auditory perception. 
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Summary for Lay Audience 

We live in a very complex sensory world. All around us, we are constantly exposed to a 

variety of sights and sounds that compete for our attention. And yet, even if we don’t notice 

it, our brains are excellent at identifying patterns to help us better make sense of our 

environment: Light usually comes from above, so dark patches in the ground are often 

shadows; and if you hear loud thunder, the storm is probably pretty close! Not only that, but 

many properties of a stimulus may vary together (or covary) over time. For instance, many 

sounds in our environment seem to show a positive covariance between pitch and speed: As 

machines ‘power up’ and their parts move faster, they sound higher pitched, and faster 

speech is usually higher pitched. The relationship between these sound properties is quite 

strong and can even result in illusory effects where sounds that are played at a higher pitch 

tend to also sound ‘faster’ even when that is not physically true. Learning these covariances 

may be a valuable tool for providing extra ‘redundancy’ in environmental information, 

allowing us to infer additional information about sounds even in noisy or ambiguous 

listening conditions. 

My project aims to investigate how sound patterns that are learned over time influence our 

perception. More specifically, here we look at how this long-term familiarity with positive 

pitch-speed covariances may result in: (1) more accurate and faster categorization of sounds 

that obey these rules; and (2) more effective segregation of noise that matches these rules 

from target sounds, allowing us to better pay attention to more relevant information. 

This project will ultimately contribute to better understanding of the ways in which long-term 

life experiences may shape our perception of the world around. 
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Chapter 1  

1 Introduction 
As we venture through our daily lives, we are constantly immersed in rich sensory 

environments. And yet, we are impressively proficient at deconstructing the complex 

input we receive from all around us into neatly organized sensory objects. When I look 

though my desk in front of me, I don’t see a solid mass of colors and luminance; instead, 

I can quite clearly identify my monitor, a water bottle, and quite a few other objects 

(perhaps more than there should be!).  Although this process tends to be more intuitive 

when thinking about visual information, our auditory system is perhaps even more 

impressive in its capacity to parse information from a complex input of competing 

sources.  To highlight the impressiveness of this feat, Plack (2018) compares the 

accomplishments of our auditory system to that of a person who can determine how many 

swimmers there are in a lake, and which stroke they are each using, only by the pattern of 

ripples in the water that arrive at the shore.  

To make matters even more complicated, the output from the various components of our 

sensory landscapes may interact in intricately complex manners, resulting in a stochastic 

combination beyond the sum of its parts: The light from my monitor may bounce off my 

water bottle, and the ripples produced by the swimmers may collide before reaching the 

shore. Fortunately for us, our brains are extremely sensitive to environmental statistics, 

allowing us to exploit redundancies and contextual cues in both prior and current 

experiences to aid in our understanding of our sensory scene: I usually keep my water 

bottle to my left, and swimmers using a butterfly stroke tend to produce larger splashes in 

the water. 

Understanding how our brain captures and makes use of statistical information in the 

environment is an important topic in Psychology and Neuroscience (Batterink et al., 

2019, Turk-Browne., 2012), with extensive implications for a better understanding of 

sensory-processing mechanisms, and of memory formation and consolidation (Henin et 

al., 2021; Conway, 2020; Schapiro et al., 2016). Most of the literature on this topic, 
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however, focuses on experiments that evaluate how the capacity of humans to learn short-

term regularities results in improvement of performance on behavioral tasks (Turk-

Browne., 2012). However, there are many types of regularities that extend to a much 

larger scale, being present for our entire lives. The present work aims to investigate the 

relationships between these short-term regularities and those potentially learned over a 

longer term (like a whole lifetime), and how both may aid in our ability to organize 

auditory sensory information. 

1.1 Auditory Scene Analysis and Perceptual Organization 
To adequately process incoming auditory information, our brains must first be able to 

perceptually organize this input into different streams of sounds from different sources in 

the environment, in a process known as ‘Auditory Scene Analysis’ (ASA) (Bregman, 

1990). Picture yourself in a crowded restaurant, seated across from a friend and having a 

casual conversation. At this moment, you are receiving auditory information from all 

around you, with the babble of multiple people speaking, cutlery clinking on plates, and 

music in the background. And yet, you can both identify discrete events in this input, 

such a glass breaking, and group the sequence of sounds that comprise your friend’s 

speech into a meaningful stream of words. These processes of streaming discrete and 

sequential sounds are respectively defined by Bregman (1990) as “simultaneous” and 

“sequential” grouping. 

Much of the literature on ASA has focused on the classical ‘ABA’ or ‘Horse-Morse’ 

paradigm, as a simplified example of sequential grouping (Carlyon, 2004; van Noorden, 

1975). In this design, a repeating cycle of pure tones is formed by interleaving two 

isochronous sequences of tone pips one of lower (A), and one of higher (B) frequency. 

Depending on manipulations made to these tones and their presentation patterns, listeners 

may shift between perceiving them as a singular stream resembling a ‘galloping’ sound 

or two concurrent streams that are reminiscent of morse code. The most typical 

manipulation of the tones is done by increasing the speed of the alternation of tones 

(Carlyon, 2004; van Noorden, 1975). Still, studies have also been done manipulating 

other cues that have been shown to be influential in sequential grouping, such as pitch 

differences between the two tones (Grimault, 2000), their timbre (Cusak & Roberts, 
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2000, and amplitude modulation (Dolležal et al., 2012). This phenomenon can be 

considered analogous to that observed by Gestalt psychologists in vision (Bregman, 

1994), where the location of sensory components leads to their organization into distinct 

clusters. Take this assortment of circles for example: 

OOO                  OOO 

Although there are multiple circles present, we would tend to perceptually identify two 

‘clusters’ of circles because of their physical distribution in space. Although in this case 

we are dealing with a physical distance between stimuli, this process extends to any form 

of distance in a ‘perceptual space’. This ‘perceptual distance’ is defined as d, and in the 

case of the ABA paradigm is defined by the differences between A and B across any of 

several acoustic dimensions (frequency, time, spatial location…). Not all acoustic 

dimensions have the same perceptual weight on grouping, however, and so we also say 

that d is a weighted combination of differences between A and B. 

Although the formation of sensory streams of information is a crucial concept for the 

perceptual organization of sound, another important concept the definition of an Auditory 

Perceptual Object. While an ‘auditory stream’ refers to a phenomenological unit of sound 

organization that is primarily characterized by its separability from other components, an 

Auditory Perceptual Object is a predictive representation, constructed from feature 

regularities extracted from auditory sensory input (Winkler, 2009; also see Griffiths & 

Warren, 2004). The emphasis of this definition as a pattern with predictable components 

expands upon the original concept of an auditory stream, highlighting the importance of 

top-down processes that guide grouping decisions through contextual information. 

Incorporating this concept will aid us in bridging the literature discussed in this section 

with the rest of the work. 

 

1.2 Statistical Learning 
Our brains are proficient at capturing regularities in the environment, making use of the 

recurrent nature of certain patterns in space and time to highlight important information 
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in a stochastic input. Studies investigating the extraction of stimulus statistics are 

commonly associated with the concept of Statistical Learning (SL; Saffran et al., 1996). 

In cognitive neuroscience and psychology, SL refers to the extraction of regularities in 

the environment over space and/or time (Turk-Browne, 2012). This concept was first 

introduced by Saffran et al. (1996) in their work on infant language acquisition, where 8-

month-old infants were shown to be able to extract word boundaries from a continuous 

stream of speech based solely on the statistical relationships between neighboring sounds. 

Over the past two decades, the field of SL has been expanded through a variety of 

experimental designs, across many sensory modalities, from vision (Seriés & Seitz, 2013; 

Bertels et al. 2012; Turk-Browne et al., 2009), to touch (Conway & Christiansen, 2005), 

to spatial orientation (Graves et al., 2022; Graves et al., 2020). In auditory neuroscience, 

it has been observed in studies involving both artificial, highly controlled sounds (Bianco 

et al., 2020; Woods & McDermott, 2018) as well as more naturalistic stimuli such as 

speech (Lehet & Holt, 2020; Stilp & Assgari, 2019; Lehet & Holt, 2017) and music 

(Pearce, 2018). An important aspect of SL that makes it such a crucial process for 

perception as whole is how it allows the brain to extract sensory objects from the 

combined undifferentiated input of the environment, overcoming variability through 

pooling of sensory data into statistical summaries (McWalter & McDermott, 2018). The 

concept of an auditory perceptual object discussed in the previous section, is relevant 

here since it is possible that SL may directly aid in the segregation of these predictive 

representations from the environment by facilitating isolating objects in a continuous 

stream of information. Together, these processes help us both extract important 

information from sensory input, and group it into organized perceptual objects. 

 According to Turk-Browne and colleagues (2012), statistical learning is defined by three 

criteria: (1) Can operate over undifferentiated input (streams of information without clear 

boundaries between stimuli), (2) occurs incidentally as a by-product of perception 

without intention or awareness of the subject and (3) is concerned with extracting how 

particular features and objects co-occur, which results in knowledge about specific 

stimuli. Although the present work owes much of its inspiration and theoretical 

background to this field of research, it is not designed to fulfill these conceptual criteria. 
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Therefore, although the extraction and learning of environmental and stimulus statistics 

will be often discussed as ‘learning of statistics’, this is not synonymous with the 

classical concept of ‘Statistical Learning’. 

Although much of the discussion surrounding extraction and learning of statistical 

regularities in the environment of these classical SL studies is particularly focused on 

how our perceptual systems respond to short-term regularities, these are intended to 

simulate long-term regularities that may be learned a similar way. 

1.3 Learning of long-term environmental regularities 

Even though complex and inevitably stochastic, our acoustic environment is by no means 

random. Indeed, many properties of our sensory landscape tend to respect distinct 

patterns, due to the laws of physics that govern our world. For instance, when we notice 

something about to roll off a table, our immediate reaction is to reach down to try to grasp 

it mid-air. It would be quite a striking scene to see someone grasp above their heads in 

response to a pen falling off a desk. 

It seems perfectly reasonable, therefore, that in a world filled with patterns, the ability to 

extract and somehow store these patterns to improve both speed and accuracy of 

perception would provide a distinct evolutionary advantage. The logical next step to this 

questioning would be to determine whether sensitivity to these patterns is a result of 

experience or a genetic predisposition. As is often seen in matters of the famous question 

of nature versus nurture, we have evidence for both. For instance, human infants have 

been shown to prefer listening to speech as opposed to samples of synthetic sine-wave 

analogs of speech (Vouloumanos & Werker, 2004, 2007), warbled tones (Samples & 

Franklin, 1978), or filtered speech (Spence & DeCasper, 1987). A study by Voulomanos 

and Werker (2007) demonstrated that this bias of human infants for speech could be 

present even in neonates, who adjusted their high amplitude sucking to preferentially 

listen to speech, compared to highly controlled non-speech analogues. These studies 

could potentially indicate that our brains are particularly tuned to certain preferred, 

expected, patterns –such as properties characteristic of speech –from birth. 
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On the other hand, the evidence for our sensory perception being shaped by experience is 

also plentiful, with much of it coming from studies investigating language learning and 

perceptual differences of native versus foreign speakers of a language. Speech is complex 

and highly variable, being comprised of multiple interacting acoustic dimensions that 

together define phonetic categories. Indeed, listeners are known to be more sensitive to 

statistical patterns within their native language compared to those found in an unfamiliar 

language (Maye et al., 2008, Maye, Werker & Gerken, 2002). Furthermore, the 

perceptual benefits related to long-term familiarity with the target talker are also well 

known in the literature (Johnsrude et al., 2013; Barker & Newman, 2004; Magnuson, 

Yamada & Nusbaum, 1995).  

These experience-related benefits, however, do not only reflect long-term experience, but 

can also arise through short-term exposure in experimental settings. Listeners can adapt 

to novel speech statistics that violate patterns that reflect the phonetic system of their 

native language, providing benefits to phoneme categorization (Liu and Holt, 2016; 

Idemaru and Holt, 2011), intelligibility (Bradlow & Bent, 2008), and decreased listening 

effort (Brown et al., 2020). Similarly, previous works in the literature have also 

highlighted how the perceptual benefits related to voice familiarity can also arise through 

short-term exposure (Holmes et al., 2020; Kreitewolf et al., 2017). 

A different way to look at the topic of learning of long-term statistics in through the 

perspective of Bayesian frameworks for human perception. These frameworks propose 

that sensory input is often ambiguous, and that perception is a process of unconscious 

inference, in which prior knowledge is used to resolve this ambiguity (Helmholtz 1867; 

R.L. Gregory, 1963; Skoe et al., 2015; Kersten et al., 2004; Mamassian et al., 2002). This 

knowledge, in the form of probabilistic Bayesian priors, is thought to be constantly 

integrated with sensory information in order to effectively perceive a dynamic sensory 

world. A classic example of how priors may shape our perception can be seen in Figure 

1, where due to our consistent experience with an environment where light tends to come 

from above (Sun, J. & Perona, 1998), by manipulating the position of the shading in the 

circle, we can create a visual illusion that shifts our perception between concave and 

convex shapes even on a two-dimensional image (Adams et al., 2004). 
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Figure 1: Example of the ‘light-from-above’ prior, where patches that are brighter 

at the top tend to be seen as convex, while those that are brighter below tend to be 

seen as concave. (Adams et al., 2004). 

 

Taken together, we now have discussed how our brains act to perceptually organize an 

auditory scene into objects, and how this process can be aided by learning statistical 

regularities that can range both from short-term novel information presented in an 

experimental setting to long-term regularities learned throughout an individual’s lifetime. 

In the next section we will discuss how these concepts relate to interactions between 

components of multi-dimensional stimuli. 

1.4 How we learn what to expect 

Even within a single sensory domain, stimulus ‘objects’ consist of many different 

dimensions that may change dynamically, and somewhat independently (Garner, 1976; 

Idemaru & Holt, 2011.). Auditory perception depends on a variety of acoustic properties 

such as envelope and spectral composition, which in turn give rise to perceptual features 

of sound such as pitch and timbre. Nevertheless, important environmental information is 

not only carried by individual dimensional properties themselves, but by how they relate 

to each other.  
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Many sounds in our environment may display patterns of covariance where certain 

acoustic dimensions tend to change together in a similar fashion. It could be expected, 

therefore, that our auditory system has several priors that relate to patterns of change in 

acoustic dimensions of naturalistic stimuli (e.g., speech, music, animal calls, and 

mechanical sounds). These patterns would be related to redundant attributes of sounds:  

sounds created by natural/real structures, such as musical instruments and vocal tracts, 

may have an inherent coherence between certain acoustic dimensions in accordance with 

physical laws governing sound-producing sources (Stilp et al., 2010).   

For instance, music and speech tend to be perceived as faster (Collier & Hubbard, 2001; 

Boltz, 1998; Bond & Feldstein, 1982) and louder (Neuhoff, 2004; Neuhoff et al., 1999) 

when either pitch or sound intensity increases. The degree to which these covariances are 

learned, and shape our perceptions, is probably related to our exposure to them in our 

environment. For example, sounds that have positive covariance in amplitude modulation 

rate and pitch (Black, 1961; Broze & Huron, 2013), and between intensity and pitch 

(Neuhoff, 2004), seem to be more common in our natural acoustic environment than 

sounds with negative covariance. For instance, as machines such as a helicopter ‘power-

up’ they produce higher pitched sounds as they spin faster. These expectations can even 

produce illusory effects in perception, where increases in pitch may lead to higher 

perceived intensity (Neuhoff, 2004; Neuhoff et al., 1999) or speed (Hermann et al., 2020; 

Hermann & Johnsrude, 2018). Although this illusory effect on perception may initially 

seem disadvantageous, this mechanism could be a result of an adaptive process of 

perception. Environmental information is often redundant, and covariance in stimulus 

dimensions may aid perceptual decisions, especially in noisy and ambiguous listening 

conditions (Hermann & Johnsrude, 2018). 

 

1.5 Objectives 

As I have highlighted so far, previous literature has demonstrated that our brains capture 

short-term statistical information in auditory stimuli. However, our life experience is also 
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filled with recurrent structures in sounds that may also enable learning of long-term 

regularities in how sounds are produced and propagate in our natural acoustic 

environments. In this regard, multiple works in the past have highlighted how listeners 

are sensitive to statistics of their native language (Hillenbrand et al., 2000; Dorman et al., 

1977; Whalen et al., 1993), but others still have shown how listeners may also adapt to 

novel regularities in speech with a foreign or artificial accent (Liu and Holt, 2015; 

Idemaru & Holt, 2011).  Nevertheless, fewer studies have looked into the effects of long-

term expectations on more fundamental properties of simpler stimuli. A recent work by 

Roark and Holt (2022), for instance, showed that participants had better categorization 

performance when distinguishing between stimuli that conformed to perceptual priors 

thought to derive from the shared neural encoding of the two informative acoustic 

dimensions for the categorization boundaries. These effects were robust and resilient 

even to short-term passive exposure to sounds that violated these prior expectations. It is 

unclear, however, if similarly robust effects would also be observed for prior expectations 

derived from long-term life experience with the relationship between the informative 

dimensions, nor if these perceptual benefits extend to aspects of perceptual organization 

of this auditory information. Finally, previous works have mainly investigated the 

learning of time-invariant properties, as well as correlations between stable, unchanging 

properties. However, as we have mentioned in previous sections, patterns of dynamic 

change over time may very well provide important cues for our acoustic perception.  

The present work aims to investigate how long-term priors and short-term learning of 

statistical regularities may shape auditory perceptual organization and categorization for 

dynamic features of sound. Here, I present two studies. The first experiment is designed 

to test whether long-term perceptual priors related to how sounds change over time may 

provide benefits in perceptual categorization of auditory stimuli. We employ stimuli 

whose categories are defined by covariance relationships in changes over time in the 

dimensions of amplitude modulation (AM; that is, how ‘fast’ stimuli are modulated over 

time) and carrier frequency modulation (CFM; how stimuli shift from high to low or low 

to high over time) thus, we create stimuli that are comprised of mostly identical acoustic 

properties, only differing by the direction of change in these dimensions over time.  
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I will: (1) Investigate how perceptual priors may act over stimuli with dimensions that are 

difficult to attend selectively and that differ solely in their covariance patterns; (2) Test 

priors that are, presumably, primarily related to learned relationships through daily 

exposure in our environment (structures tend to produce higher pitched sounds as they 

‘speed up’). Indeed, during piloting of our categories, participants commented on 

mnemonic devices used to aid them in the categorization task by saying that a certain 

category sounded like ‘a helicopter speeding up’ or ‘a machine powering down’ 

suggesting that these covariance rules do tap into empirical experiences of the individuals 

to some extent.  

The second experiment will investigate whether long-term perceptual priors may provide 

benefits to perceptual organization of sounds, and whether learning of short-term 

statistical regularities may conflict with these long-term priors. This experiment 

introduces a novel design wherein participants will first go through active exposure 

where they will be trained only on sounds that either conform to, or violate, the same 

long-term priors tested on the first experiment, followed by testing of their ability to 

segregate target speech from maskers that belong to both categories. Previous work done 

by our research group has shown that learned acoustic cues associated with familiarity 

with voices can be exploited by listeners to both better segregate this familiar voice from 

competing masker speech as well as to better ignore it when attending to novel target 

speech targets (Johnsrude et al., 2013). Similarly, we hypothesize that sounds that are 

congruent with long-term perceptual priors will provide benefits to perceptual 

organization, and therefore be easier to segregate from the target speech. In addition, as 

has also been previously observed in the literature regarding adaptation to novel sound 

statistics (Liu and Holt, 2015; Idemaru & Holt, 2011), we also expect that short-term 

experience with sounds incongruent with prior expectations during a preceding 

familiarization task will result in more efficient segregation of this category relative to 

participants who were not familiarized with these sounds beforehand.  
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Chapter 2  

2 Experiment 1 

The first experiment aimed at investigating the behavioral effects of long-term priors on 

how sounds change over time in a categorization task. 

2.1 Methods 

2.1.1 Participants 

Participants were recruited from Amazon’s Mechanical Turk online participant pool 

(https://www.mturk.com) using the premium Cloud Research tool for sourcing 

participants (Litman et al., 2017). Data were collected from individuals ages 18-35 

residing in the United States who were native English speakers with normal hearing.  

In order to further guarantee that participants recruited would comply with these criteria, 

only CloudResearch approved participants were used for this study, which refines 

recruited participants to a select group who have passed a series of attention and 

engagement measures. Making use of such filtering tools by CloudResearch has been 

shown to provide reliable and high-quality data (Eyal et al. 2021). 

The study was approved by Western University’s Non-Medical Research Ethics Board 

(Project ID 112574; Appendix B). 

In total, data from 192 participants were collected for Experiment 1. 

2.1.2 Stimuli 

Stimuli were generated and root mean-square (RMS) normalized via MATLAB 

(MathWorks, Inc., Natick, MA, USA) using custom functions. Stimuli consist of 

complex AM sounds of 150 components with 3s duration. Sounds varied in AM rate 

(AMr), carrier frequency (CFM), and spectral composition (timbre), with the first two 

jointly signaling stimulus category while timbre is an orthogonal dimension irrelevant to 

the categorization process, serving to increase task difficulty. Stimuli consisted of sounds 
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with amplitude modulation rate and frequency of components linearly increasing or 

decreasing over time (Fig 2).  In this design, AM rate and frequency can either have 

positive covariance (with both increasing or decreasing simultaneously), or negative 

covariance (when one increases, the other decreases). The manipulation of the carrier 

frequency range of the complex tones was orthogonal to the categorization task and 

served to increase stimuli variety and task difficulty by varying the third dimension of 

timbre across stimuli.  

  Stimuli were generated by permuting across modulation and frequency range parameters 

(Figure 3). Amplitude was modulated at a depth of 0.7, varying over time with a 

minimum rate of 2 Hz, while the highest value reached throughout the stimulus varied 

between equally spaced steps on a range from 8 Hz to 12 Hz. Carrier frequency 

manipulation was proportional to starting values, with the base frequency values of 

components being the lowest possible point, and the highest point varying across stimuli 

in equally spaced values in the range from 1.5 to 2 times the base value. The base 

frequency range of components had a minimum value of 50 to 4000 and a maximum 

value of 40 to 4800 and was also varied by equally spaced steps along this range. 

 

Figure 2: Spectrogram for an exemplar of the pCO category of stimuli. 
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In total, 192 stimuli were generated for Experiment 1 and 256 for Experiment 2. These 

could be classified into one of two categories, further divided into four total subcategories 

depending on how the relationships between AM rate and frequency dimensions vary 

over time:  

- pCO_I: Increase in AM and increase in frequency over time. 

- pCO_II: Decrease in AM and decrease in frequency over time. 

- nCO_I: Decrease in AM, and increase in frequency over time 

- nCO_II: Increase in AM and decrease in frequency over time. 

 

Figure 3: Distribution of generated stimuli across the two informative dimensions. 

Changes in timbre are not present here and would further result in more variations 

of stimuli. AMr = Amplitude modulation rate (Hz change over stimulus); CFM = 

Carrier frequency modulation (as proportion of initial value). 
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2.2 Procedure 

Participants were instructed to wear headphones, and experiments were preceded by a 

screening procedure as designed by Chait et al. (2021) to ensure these instructions are 

followed, and the equipment is functioning adequately. 

Participants took part in a categorization task structured in the form of a game where the 

objective is to correctly identify which “alien” is about to appear, based on the sounds 

they produce. There are four different aliens, distinguishable by shape and color (Fig 3), 

and each alien is pseudo-randomly assigned to a category based on sound statistics. 

Sound stimuli are designed in a way to signal alien categories based on covariances in the 

sound dimensions of AM rate and pure-tone frequency change over time. 

The categorization task consisted of 192 trials in total, which were divided in eight blocks 

(24 trials per block). Each block was further subdivided into 6 smaller four-trial 

‘blocklets’ consisting of one exemplar of each sub-category. Both block and ‘blocklet’ 

order were randomized across participants.  

Each trial consisted of three stages: First, a sound clip was played. Next, a prompt 

appeared for participants to indicate an alien category by pressing one of four keys (<Q>, 

<W>, <E>, <R>).  Finally, the corresponding alien appeared on the screen, allowing the 

participant to know if they responded correctly. Participants were instructed to respond as 

quickly as possible while still being accurate. Through this design, learning of the 

relationships between category and sound can be measured over the entire task. 

 

Figure 4: Four ‘Aliens’ used during the categorization tasks. 
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During four of the eight experimental blocks, one catch trial was randomly added to the 

block. During these catch trials, instead of the usual stimuli, participants would hear a 

pre-recorded computer-generated voice asking them to press the <SPACEBAR> instead 

of the usual response keys. Participants who failed to accurately respond in more than 

one of the catch trials had their data excluded from further analysis. 

Following the experimental task, participants were forwarded to an online survey 

(Qualtrics, Provo, UT, https://www.qualtrics.com) where they reported on their 

qualitative experience with the task as well as providing demographical information, as 

well as reports on their experience with the task. 

 

2.3 Data analysis 

2.3.1 Pre-Processing 

Participants who self-reported hearing or neurological issues had their data excluded 

from any statistical analysis, as well as participants who reported technical difficulties 

during the experimental task. Furthermore, data from participants who failed more than 

half of the headphone screening trials, or who reported not wearing headphones during 

the experiment were excluded from the statistical analysis (excluded N = 53 for Expt 1).  

Participants who missed two or more of the catch trials were excluded from further data 

analysis (N = 2). For analysis of the reaction time data, we further excluded trials based 

on the following criteria in the following order: (1) Trials in which participant’s response 

was incorrect (40%); (2) Reaction times that diverged more than three standard 

deviations from the mean of their category (0.52%) as recommended by Berger & Kiefer 

(2021). After this filtering process, 59.44% of our trials remained for subsequent analysis. 

This resulted in a total of 137 participants for Experiment 1.  Which was confirmed a 

sufficient sample size for testing our hypothesis based on a power analysis. 
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2.3.2 Analytical approach 

Due to the data being structured in the form of repeated measures contained within the 

same individual over time, a multi-level modeling approach was appropriate. The use of 

multilevel models is advantageous when compared to traditional ANOVA frameworks 

that would employ a repeated-measures ANOVA as it allows for (i) higher sensitivity for 

the detection of effects due to the use of trial-level outcomes, and (ii) analysis of data that 

does not follow a normal distribution. 

Furthermore, in order to obtain better resolution for the detection of effects, we elected to 

create models using an outcome variable at the level of trial. This took the form of the 

binary outcome of correct/incorrect alien categorization,  

All analyses and manipulations were run using R version 4.1.2 (R Core Team, 2021), and 

all models were built using the “lme4” package version 1.30.1 (Bates et al., 2015). 

Models were fit using maximum likelihood estimation based on the Laplace 

approximation and the bound optimization by quadratic approximation (BOBYQA) 

algorithm (Powell, 2009). Model fit and model comparison was assessed by comparing 

differences in deviance statistics between models, as well as via likelihood ratio tests 

using the “anova” function of the “stats” package (R Core Team, 2021). 

Inspection of the effect of predictor variables on the model was done via a 

combination of (i) chi-square likelihood ratio comparisons done via the “drop1” function 

of the “lme4” package (ii) Pseudo-R2 estimations using the “MuMIn” package version 

“1.46.0” (Bartoń, 2009) based on Nakagawa et al.’s (2017) delta method (iii) profiled 

confidence intervals obtained by using the “confint.merMod” function of the “lme4” 

package. When not possible to compute profile confidence intervals, or when the 

Likelihood Ratio Test for the effect had a p-value too close to the alpha cut-off level, we 

computed bootstrapped confidence intervals instead, which can be more reliable at the 

cost of being much more computationally intensive.  Post hoc analyses were done 
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through pairwise comparisons of estimated marginal means (Searle et al., 1980) by using 

the “emmeans” function from the “emmeans” package Version 1.8.1 (Russell V. Lenth, 

2022). 

2.3.3 Model building approach 

For all models, we allowed the intercepts of fixed effects to vary by participant. 

Following the procedures of Barr et al. (2012) for determining the inclusion of random 

slopes in the final model, random slopes were added for each of the fixed effects in the 

model but were dropped in the final reported model in case they were shown to be not 

significant through a likelihood ratio test. 

Throughout our analysis, we built both models containing solely main effects as well as 

models containing interaction terms. Unless otherwise stated, the reported main effects 

were appraised by inspection of the main-effects models while only interactions are 

reported from interaction models. In all interaction models, we still included constitutive 

terms for the interactions as recommended by Thomas Brambor et al. (2006). 

2.3.3.1 Categorization Accuracy 

In order to test the effects of learning and stimulus category on categorization 

performance, we built logistic regression models with the binary outcome variable of 

correct categorization on a given trial as the predicted variable of interest. Our models 

included the predictor variables of time, as defined by the experimental block in the task, 

and stimulus category, with intercepts being allowed to vary by participant. Only the 

random slopes for experimental block were shown to be significant, and therefore the 

random slopes of stimulus category were dropped in the final model.  

The second model we built aimed at investigating the effects on performance of the 

direction of change in individual dimensions. To this end, we dissected the stimulus 

category variable into two new categorical variables that informed the direction of change 

for AMr and CFM (AMr up/down; CFM up/down). These were included in a model as 

fixed effects and allowed to vary both in slope and intercept with respect to participant. 
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In addition to the main effects models, we also built an interaction model with the goal of 

investigating the effect of the interaction between time and stimulus category. This was 

done in order to assess whether the differences in performance towards stimulus category 

would change over the course of the experiment. 

2.3.3.2 Reaction time 

The models aiming at investigating the effects of stimulus category on reaction time of 

response were built using a gamma distribution, which we initially attempted to fit using 

the identity link function, as recommended by Lo & Andrews (2015), in order to avoid 

log-transforming the reaction-time data and preserve the variability in responses. 

However, this resulted in non-convergence of the model, and we resorted to employing a 

log link function instead. Similarly to what was done for models of categorization 

accuracy, we included the fixed effects of time and stimulus category, allowed intercepts 

to vary across participants, and included random slopes for the time variable. 

2.4 Results 

2.4.1 Category Learning 

We observed a significant effect of stimulus category on categorization accuracy (Figure 

5). The summary of the output of the three multilevel models built for this step can be 

seen on Appendix A - Table 1.  
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Figure 5: Mean accuracy in each categorization block during Expt 1 as a function of 

time (x axis) and stimulus category (line color). Error bars represent SE. 

 

In the first model, we observed an effect of both stimulus category, as well as 

time on categorization accuracy. These effects were both confirmed significant through a 

likelihood ratio test comparing models where the predictor variables for time (χ2 (1) = 

47.282, p < .0001) and category (χ2 (1) = 17,439, p < .0001) were individually dropped.  

There was a strong unconditional effect of time on the predicted probability of a 

participant accurately categorizing the sound on any given trial (b = 0.212, 95% CI 

[0.151, 0.270]). On average, the effect for stimulus category appears to be consistent, 

with positive covariances (pCO) being more accurately categorized than negative 

covariances (nCO), although variability between participants is considerable and so 95% 

confidence intervals are wide (b= 0.225, 95% CI [0.116, 0.344], SE = 0.052, z = -4.305, p 

< .0001) This means that, on average, trials in which participants categorized pCO stimuli 

had 25% higher odds of being accurately categorized.  The variables included in the 

model accounted for 34% of the variance (R2) across participants in categorization 

performance. 
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The interaction model showed that the interaction between time and category is 

on average greater for the positive covariance stimuli than negative covariance (Figure 

6). However, the interaction effects are small (b = 0.040), 95% CI [0.006, 0.3071], 

although addition of the interaction term does meaningfully improve the model 

(explaining 38% of the variance compared to the 34% explained by the original model) 

according to a likelihood ratio test (χ2 (1) = 5.8179, p =.015). These results indicate that 

on average, for each successive block, the odds of participants more accurately 

categorizing pCO stimuli than nCO stimuli increased by 4%. When dissecting the 

category predictor variable in the second model, we observed no effect of CFM (b= 

0.015, 95% CI [-0.124, 0.144]) nor AMr (b= 0.073, 95% CI [-0.026, 0.188]) modulation 

direction, and these predictor variables were not significant in a likelihood ratio test 

(CFM Direction: χ2 (1) = 0.059, p =.807; AMr Direction: χ2 (1) = 1.967, p =.161). 

2.4.2 Reaction times 

We observed a small effect of category on reaction time (RT, Figure 6). Results from the 

reaction time models are summarized in Appendix A - Table 2. 
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Figure 6:Mean RT in each categorization block during Expt 1 as a function of time 

(x axis) and stimulus category (line color). Error bars represent SE. 

The unconditional main category model shows an average minor reduction in reaction 

times when categorizing pCO stimuli, although the CIs for this predictor coefficient 

border zero. (b = -0.070, 95% CI = [-0.132, -0.09]). Furthermore, the inclusion of the 

categorical predictor meaningfully improving the model (χ2 (1) = 8.8558, p =.003). 

Experimental block was also a significant predictor of RT reduction throughout the 

experiment (b = -0.042, 95% CI = [-0.064, -0.021]; χ2 (1) = 16.2663, p <.001). 

On the interaction model, observed a marginally significant effect of the inclusion of the 

interaction between time and category on a likelihood ratio test (χ2 (1) = 1.8348, p =.176) 

where increases in block would be correlated with better performance towards pCO 

categorization speed. However, these results were not significant, and the CIs for the 

coefficient of the interaction included zero (b = -0.013, 95% CI = [-0.034, 0.007]). 

On the dissected model, we observed a significant effect of AMr direction of reaction 

time change (χ2 (1) = 12.3678, p =.0004), where increases in AM over time were 

associated with slower reaction times (b = 0.099, 95% CI = [0.030, 0.159]). This effect 

was not seen for CFM direction, and the inclusion of this predictor did not meaningfully 

improve the model (χ2 (1) = 2.0119, p =.156). 
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Chapter 3  

3 Experiment 2 

The second experiment was aimed at investigating the effects of long-term experience on 

perceptual organization of sounds, as well as if these effects could be enhanced or 

overruled due to short-term training with sounds that either conform or violate these 

priors. The experiment was therefore divided into two main tasks.  

The first task consisted of a familiarization task that was presented as a simplified version 

of the categorization task done during Experiment 1, with only two stimuli categories 

present instead of four. 

The second task was a speech in noise task where participants reported words from the 5-

word BUG sentences masked by novel complex AM sounds following the pattern of 

those used during experiment one and the first part of Experiment 2. 

3.1 Methods 

3.1.1 Participants 

Participant recruitment followed the same procedures as for Experiment 1. In total, 189 

participants were collected for Experiment 2. 

3.1.2 Stimuli 

3.1.2.1 Experimental stimuli 

Stimuli generation for the amplitude modulated broadband noise stimuli used in this 

experiment followed the same procedures as for Experiment 1, with the exception that we 

generated more of them overall, for a total of 256 unique stimuli. 

3.1.2.2 Speech stimuli 

The speech stimuli used in Experiment 2 consisted of sentences constructed from the 

“Boston University Gerald” speech corpus (BUG; Kidd, Best, & Mason, 2008), which 
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adhere to the form “<Name> <past tense verb> <number> <adjective> <noun>” (e.g., 

“Bob bought five green bags”) and where all words are monosyllables. Words were 

spoken in citation form, without articulation between them, allowing for permuting 

across all pre-recorded exemplars to form full sentences. While the full corpus contains 

around 24 different speakers (12 stereotypically female voices, and 12 stereotypically 

male voices), only one female and one male voice were used during this experiment. 

Sentences were created by RMS normalizing and applying a low-pass filter at 4kHz with 

a 24dB roll off to the individual pre-recorded words for these speakers, and then semi-

randomly permuting across the 8 words for each of the five components of the sentence, 

to have each speaker and word be equally likely to appear, with no sentence being 

repeated throughout the experiment. As part of the sentence construction process, inter-

word interval was fixed at 100ms, and sentences were zero-padded at start and finish to 

have each audio clip be exactly 3s long. 

This process was repeated for eight sentence sets divided into belonging to one of four 

main sets (A, B, C, and D). For each main set, half of the sentences were RMS 

normalized at an SNR of -3dB in relation to the ‘alien’ sounds (‘easy’ SNR) while the 

other half were normalized at a level of -7dB (‘hard’ SNR). This process was done two 

times, to counterbalance across the sentence-SNR pair by having each sentence exist as 

an easy and hard SNR version. 

 

3.1.3 Procedure 

3.1.3.1 Familiarization task 

Stimuli for the familiarization task were generated in the same way as those used in 

Experiment 1, following the methods described in section 2.2.1. The familiarization task 

consisted of 128 trials divided into four blocks, which were further divided into two 

practice and two validation blocks which were assigned to one of two stimuli sets each. 

The two stimulus sets consisted of 32 exemplars of either solely pCO stimuli or nCO 

stimuli. Each exemplar was presented twice within its own stimulus set.   
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The task structure was nearly identical to the categorization task in Experiment 1, with 

the exception that each participant would either only categorize stimuli as belonging to 

one of two pCO sub-categories or between the two nCO sub-categories. Participants were 

randomly assigned to one of the two familiarization conditions, with stimulus sets 

counterbalanced between practice or validation blocks. 

The separation between training and validation blocks was done to establish a criterion of 

learning so that participants who performed significantly worse than others within their 

familiarization group during the validation blocks would be excluded from further data 

analysis. This allows us to be more confident of the active engagement of participants 

with the task when accessing the effects of short-term familiarization on perceptual 

segregation during the speech matrix task. 

3.1.3.2 Speech matrix task 

Participants were instructed to disregard the masker sounds and concentrate on the words 

being spoken by the male and female voices. On any given trial, participants could click a 

button on the screen to play both the target speech and masker sounds simultaneously. 

After listening to the audio clip, participants were then prompted to click buttons on the 

screen to report the words they heard during the trial. Buttons were arranged in the form 

of a 5x8 matrix were each of the five columns represented one of the sentence 

components as following the form “<Name> <verb> <number> <adjective> <noun>” 

(Figure 7). The eight rows in the matrix consisted of the options for each of the words 

that could be spoken in each sentence.  The buttons lit up in order, so as to have 

participants be questioned for each of the sentence components in order (First the 

possible names heard would light up, then the verbs, and so on...). Pilot studies were run 

to ensure that the masking effect would provide suitable challenge during the speech-in-

noise task while being off floor and ceiling in performance. 

Similarly to Experiment 1, following the experimental task, participants were forwarded 

to an online survey where they reported on their qualitative experience with the task and 

provided demographic information. 



25 

 

 

 

Figure 7: Screen capture showing the speech matrix design where participants input 

the words heard during the trial. Buttons lit up in sequence starting from the 'Play' 

button to hear the sentence and masker and then followed by each component of the 

sentence. 

 

3.2 Data Analysis 

3.2.1 Pre-processing 

Participants who self-reported hearing or neurological issues had their data excluded 

from any statistical analysis, as well as participants who reported technical difficulties 

during the experimental task (Excluded N = 60). Furthermore, data from participants 

whose categorization performance during the validation block of the first task diverged 

by more than three standard deviations from the mean of their group were excluded from 

further analysis both for the first and second tasks (N = 4). 

This resulted in a total of 125 participants for Experiment 2. 
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3.2.2 Analytical approach 

Data analysis procedures followed a multilevel modeling approach as in Experiment 1.  

For analyzing the speech matrix task data, we aggregated across trials with the same 

conditions under a block to compute an outcome variable of proportion of correctly 

identified words in a block. We chose to exclude the first and last words in the sentence 

as those would fall during moments most variable modulation, both in frequency and 

amplitude, and therefore any potential alterations to the masking effects of the stimulus 

from the psychoacoustic characteristics of it would be at their highest. By looking only at 

the three middle words we observe the changes in intelligibility while manipulation in 

both dimensions is around its 'middle point’. 

3.2.3 Model building approach 

3.2.3.1 Categorization accuracy 

Models for comparing categorization performance across the two familiarization groups 

were similar to those used to evaluate categorization performance in Experiment 1, but 

the interpretation of the output differed somewhat since each participant group was 

trained on only one of the stimulus categories. As for in the first experiment, only the 

random slopes for Category were shown to be significant and therefore included in the 

final model. 

Furthermore, as this task was divided into training and validations blocks which 

contained different stimulus sets, with the latter serving to assess learning, we opted to 

include only the two validation blocks in the analysis of these models. This would allow 

us to compare participant’s performance once the rules for categorization have been 

learned. 

3.2.3.2 Intelligibility scores 

Intelligibility was measured by computing the proportion of correct word identifications 

within a block, which was fit as the dependent variable for multilevel binomial models. 

Predictor variables included in these models were the experimental block, masker 
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category, speaker, familiarization group the participant belonged to and the SNR of the 

trial in the form of a categorical variable distinguishing easy (-3dB) from hard (-7dB) 

trials. 

Our next step was to build an interaction model where we included an interaction term 

between the stimulus category, SNR, and familiarization group.  This three-way 

interaction was included to investigate if short-term learning with a specific stimulus 

category during the familiarization task would result in different intelligibility 

performances depending on masker category (i.e., higher intelligibility when masker 

matched familiarization stimuli), as well as to model if these improvements would only 

meaningfully be manifested during trials with more difficult SNR. Similarly, to our 

approach in Experiment 1. In a separate analysis, we modelled the effects of stimulus-

change direction (up or down) on performance. 

Finally, since our masker stimuli varied over time, with the extreme points of both 

manipulated dimensions occurring during the first and last words of the sentence, we 

conducted separate two-way ANOVAs to investigate the effect of both acoustic 

dimension manipulations on the first and last words of a sentence.  This was done in 

order to assess if any effects observed on modulation direction were due to their change 

over time or the co-occurrence of the peaks in modulation with specific portions of the 

sentence. 

 

3.3 Results 

3.3.1 Familiarization task 

Categorization performance in the familiarization task was consistent with what was 

observed in Experiment 1, showing increased performance for pCO stimuli, even with 

performance differences towards stimulus categorization being now investigated through 

a between-subjects design (Figure 8). The summary of results for the familiarization task 

models can be seen on Appendix A – Table 3. 
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Figure 8: Mean accuracy in each categorization block during the familiarization 

task of Expt 2 as a function of time (x axis) and familiarization group (line color). 

Error bars represent SE. Blocks 1 and 2 of each participant are the training blocks, 

while block 

 

In accordance with what was observed in Experiment 1, the first model indicates that 

participants who categorized pCO stimuli had an on average better unconditional 

performance on the validation blocks than those who categorized nCO sounds during 

familiarization (b = 1.343, 95% CI = [0.570, 2.247], SE = 0.39, z = -3.447, p = .0006). 

This effect was also confirmed through a likelihood ratio test (χ2 (1) = 12.3135, p 

=.0004). The time predictor variable did not show any significant effect with respect to 

differences between the two validation blocks and did not significantly improve the 

explanatory power of the model (χ2 (1) = 0.425, p =.51), this is likely due to this analysis 

only containing the two validation blocks after the first two of initial categorization 

learning. Consequently, the addition of the interaction term between time and category in 

the second model also did not further meaningfully improve the model (χ2 (1) = 0.008, p 

=.93). 
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3.3.2 Speech matrix task 

Contrary to what was initially expected, we did not observe significant effects of stimulus 

category nor familiarization group on intelligibility performance (Figure 9). The 

summary output of models for this task can be seen on Appendix A- Table 4. 

 

Figure 9: Mean accuracy (% of middle words accurately reported) in each block 

during the speech matrix task as a function of time (x-axis), stimulus category (line 

color), and trial SNR (symbols), faceted by each familiarization group. Error bars 

represent SE. 

 

Through likelihood ratio tests, we confirmed the significance of the fixed effects of Block 

(χ2 (1) = 104.021, p <.0001), SNR (χ2 (1) = 315.498, p <.0001), and talker (χ2 (1) = 

70.4122, p <.0001). There was significant observed effect for the effect of time in the 

form of mean performance increasing alongside experimental blocks (b = 0.113, 95% CI 

= [0.095, 0.131]). Trials in which sentences were presented at an easy SNR (b = -0.834, 

95% CI = [-0.880, -0.788], SE = 0.0234, z = 35.677, p < .0001) or spoken by a 

stereotypically male voice (b = 0.590, 95% CI = [0.536, 0.645], SE = 0.0277, z = -
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21.324, p < .0001) resulted on higher odds of accurately identifying words.  The masker 

category did not exhibit significant unconditional effects on intelligibility scores and was 

not a meaningful predictor of performance (χ2 (1) = 0.630, p = .4311). Finally, the 

familiarization group did not unconditionally show differences in performance and was 

not a significant predictor in the model (χ2 (1) = 1.625, p =.2024). 

The interaction model investigating the effect of a three-way interaction between 

Category, Familiarization group, and SNR showed that this interaction was not 

significant. Including the interaction between the familiarization group and category (b = 

0.024, 95% CI = [-0.061, 0.110]). Furthermore, the inclusion of the three-way interaction 

term (familiarization group, category, SNR) did not meaningfully improve the model (χ2 

(1) = 0.027, p =.8697).  

The third model shows the effect of the dissected stimulus dimensions on intelligibility 

scores. Contrary to what was observed for the categorization tasks, there was a strong 

effect of CFM direction on performance, with trials where CFM increased over time 

being associated with higher odds of accurate identification (b= 0.138, 95% CI = 

[0.110,0.166]) which was further confirmed by a likelihood ratio test (χ2 (1) = 69.7177, p 

<.0001). However, AMr direction exhibited the opposite effect, where increases over 

time were associated with lower performance, although with a smaller effect than that 

observed for CFM (b = -0.040, 95% CI = [-0.068, -0.011], χ2 (1) = 7.4988, p =.006). 

Finally, we wanted to investigate if this effect of individual dimensions on intelligibility 

stems from the effect of the change in the dimension over time or due to an effect of the 

greater amount of modulation in a certain dimension occurring at the beginning or end of 

a sentence. To this end, we filtered data from the easy SNR trials, expecting any effects 

of the modulation to be more evident on the harder trials, and averaged participant's 

accuracy across all blocks in order to conduct two-way ANOVAs looking at the effects of 

AM direction and CFM direction on accuracy for each word position.  

Looking at mean accuracy for the first word in the sentence, we observed a significant 

effect for AMr Direction (F (1,544) = 14.098, p = .002), increases over time (and 

consequently, modulation being at its lowest during the first word) were associated with 
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lower performance (mean difference = -0.055, 95% CI = [-0.083, -0.026]). Alternatively, 

CFM Direction was also shown to significantly affect mean accuracy (F (1,544) = 

20.966, p < .0001), with increases over time associated with higher performance (mean 

difference = 0.067, 95% CI = [0.038, 0.095]). However, there was no significant effect of 

an interaction between these two dimensions (F (1,544) = 0.772, p = .38), further 

confirming that covariance relationships did not influence performance.  

Results comparing performance on the last word of the sentence showed no significant 

effect of either AMr (F (1,544) = 0.094, p = .759) nor CFM (F (1,544) = 2.144, p = .144) 

direction of mean accuracy. However, although not statistically significant, the effect of 

both manipulations was trending in the opposite direction as that observed for the first 

word. 
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Chapter 4  

4 Discussion 

The current project investigated the effect of prior experience with short and long-term 

covariance patterns of stimulus statistics on perception. In Experiment 1, participants 

grouped stimuli into categories defined by the relationship between the two dimensions 

of AMr and CFM. Because of long-term prior knowledge, we predicted that people 

would categorize pCO sounds (both dimensions increasing or decreasing) more 

accurately than nCO sounds. In Experiment 2, participants were first familiarized with 

either pCO or nCO exemplars, and then reported words they heard from target speech 

masked by novel pCO and nCO exemplars. We predicted that people would be more 

successful at reporting words masked by sounds with a familiar covariance structure. 

Overall, results from the categorization tasks were congruent with our hypothesis that 

sounds that present pitch-speed relationships consistent with naturalistic sound 

production and propagation would be more easily categorized. Participants were better at 

categorizing when presented stimuli presented positive covariance between AMr and 

CFM. This result was consistent across both Experiment 1 and the familiarization task in 

Experiment 2. Contrary to what we expected, whether maskers were learned or not did 

not change the effectiveness of the masker on the Speech Matrix task. This was true both 

for the effect on short-term familiarity with one of the covariance categories, as well as 

for an overall lack of effect for the maskers congruent with naturalistic covariance 

patterns. 

4.1 Categorization performance was improved by positive 

covariance stimuli 

Consistent with my predictions, participants performed more accurately on the 

categorization task in trials where the amplitude modulation rate and carrier frequency 

covaried positively. These improvements were apparent as a within-subjects effect in 

Experiment 1, as well as a between-subjects effect in Experiment 2.  Reaction time 
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analysis in Experiment 1 showed that there was a minor effect of stimulus category on 

reaction time, although these effects were very small.   

We also built models where both AMr and CFM were included as separate predictors to 

assess if any of these dimensions were more meaningfully informative than the other. In 

the models that dissected the effects of each informative dimension separately, we 

observed a significant individual effect of AMr on reaction time reduction, which may 

indicate that changes in this dimension may be more immediately apparent to 

participants. However, we did not observe an effect of either AMr or CFM on 

categorization accuracy. This further assures us that any improvements to categorization 

performance were generally consistent across both subcategories of pCO stimuli, and that 

the main informative criteria used by participants for categorization decisions were 

related to the interaction between the two dimensions.  

Here we argue that these results are a consequence of a greater familiarity with stimuli 

that obey positive covariance patterns. This familiarity might be derived from life 

experience with naturalistic sound sources that obey consistent rules in sound production. 

Other authors have previously conjectured that changes in auditory dimensions may 

correlate in naturalistic sound sources. A well-documented example of this interaction is 

the relationship between the dimensions of pitch and loudness. Neuhoff (2004) argues, 

for instance, that many examples of sounds in our auditory environment such as speech, 

animal calls, and machinery noise covary in frequency and intensity, that is, as sounds 

increase in pitch, they also get louder. These relationships can be quite strong, and even 

result in illusory effects of perception where in experimental designs where only one of 

these dimensions is changed, the other is also perceived to increase or decrease 

accordingly (Neuhoff et al., 1999). Of greater relevance to the present study, we can also 

find examples of the interaction between the subjective perception of ‘speed’ and pitch of 

a sound, where listener’s tend to perceive a sounds modulation rate as slowing down 

when carrier frequency decreases (Hermann et al., 2020; Hermann & Johnsrude, 2018) 

Similar illusory changes have also been observed in the perception of musical tempo 

when the pitch of a musical composition is manipulated (Boltz, 2011).  
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Interestingly, music itself provides a valuable window through which to observe patterns 

and correlations between acoustic dimensions that may be recurrent in our environment. 

Music, much like language, may also act as a communication system (Aiello, 1994), and 

the structures of our communication may be correlated with our experiences in our 

environment. Indeed, both our perception and production of music and the arts may be 

highly influenced by our emotional and subjective judgments of their meaning. For 

instance, in both music and speech, lower energy states may be associated with lower 

pitch frequencies, loudness, and a slower tempo (Black, 1961), and tonal sequences that 

are higher and ascending in pitch are rated by listeners as happier, brighter, and faster 

than those that were lower and/or descending in pitch (Collier & Hubbard, 2001). These 

subjective attributions are also observed not only in how these compositions are 

perceived, but also produced, with musicians who were asked to perform a same musical 

piece with different emotional tones interpreting ‘happy’ performances with higher 

octaves and faster tempi (Gabrielsson, 1995).  Interestingly, these associations seem to be 

quite consistent in the greater sum of Western music, with Broze and Huron (2013) 

conducting multiple approaches to an examination of Western musical compositions that 

suggested a distinct relationship between pitch and speed. The authors further highlight 

multiple possible causes for this observation, including associations derived from the 

physics of sound production, the human movements involved in vocal and instrumental 

performances, and our sensory and perceptual limitations and associations of the 

interaction between these dimensions (Broze & Huron, 2013). 

The present work expands upon this discussion by further providing experimental 

evidence that this pitch-speed relationship of sounds is indeed somewhat special to our 

perceptual systems, and that these prior expectations may be exploited to aid in 

perceptual decisions in a categorization task. Indeed, stimuli that conformed to prior 

expectations that are congruent with naturalistic pitch-speed covariance patterns were 

often associated by participants during our debriefing questionnaire with real-world 

equivalents and examples (helicopters, machines powering up/down, and objects 

spinning....). More importantly, they were also more accurately categorized than those 

that were characterized by violations to said expectations. Our results are consistent with 

previous works in the literature that have shown that performance on a categorization 
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task can benefit from both short-term learning (Idemaru & Holt, 2015, Liu and Holt, 

2014) and long-term prior experiences (Roark & Holt, 2020) with patterns of correlation 

between acoustic dimensions. Our design further distinguishes itself from others in the 

literature, however, by highlighting how these perceptual benefits may also arise in 

associations on how acoustic dimensions change over time, as the four simultaneous 

categories presented to participants could only be completely separated by further 

accounting by how they change throughout their presentation. 

4.2 Masker category did not affect speech segregation 
Contrary to our initial expectation that well learned maskers would be easier to segregate 

from the target speech, we did not observe a significant effect of either short or long-term 

familiarity with covariance categories on intelligibility performance during Experiment 2. 

In our main effects models, the stimulus category did not meaningfully improve the 

model performance, indicating that, unlike in Experiment 1, maskers that belonged to 

positive covariance categories were not better segregated from the targets, compared to 

negative-covariance maskers. Next, we turned to our full interaction model to investigate 

the effect of the masker category both at different levels of SNR, as well as in different 

familiarization groups. We expected to see a larger effect of the masker category on more 

challenging SNR trials, as well as an interaction between the familiarization group and 

category, which would indicate that short-term learning was able to influence 

performance. However, neither of these two interactions meaningfully improves 

predicted intelligibility performance. 

On the other hand, our models to examine the effects of direction of movement in the two 

auditory dimensions indicated an individual effect for both AMr and CFM direction. We 

questioned if this would indicate a differential masking effect resulting from the change 

over time or merely the overlap of modulation levels and each word. To assess the origin 

of this effect, we also compared the effect of the direction of change in the two 

dimensions specifically for intelligibility of the first and last words in the sentence. 

Results for this comparison showed a significant effect of AMr and CFM direction only 

for the first word. Namely, an increase of AMr over time (and therefore with AM rate at 

its lowest during the first word) was associated with lower performance, while for CFM 
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we observed the opposite effect, with increases over time in this dimension being 

associated with higher performance. Although modulation direction for both dimensions 

was not significant for the last word in the sentence, possibly due to listener’s having had 

more time to segregate the talker from the masker, or simply due to differences related to 

the spectral and temporal composition of the words themselves, the trend in performance 

was the inverse of that for the first word. That is, the periods of highest AMr trended 

towards better performance, while those of highest CFM trended for lower performance. 

This may indicate that potentially reduced masking effect arising from specific acoustic 

dimension properties may overrule potential benefits stemming from familiarization with 

the masker itself in our design.  

The capacity for listeners to decompose complex auditory scenes in order to isolate and 

track a specific informative sound source is a widely researched topic. Commonly 

associated with the “cocktail party problem” (Cherry, 1953), investigating how listeners 

can selectively attend to one voice amidst other competing sounds is an important avenue 

for deciphering the acoustic cues used by our auditory system to organize information. 

Typically, research on segregating auditory streams is associated with identifying the 

physical acoustic characteristics that serve as cues for listeners to segregate the target 

source (Bregman, 1990; Darwin & Carlyon, 1995). Previous works in the literature have 

also highlighted the influence of experience and learning on these tasks, such as knowing 

the content of the target speech (Bregman, 1990), and familiarity with the talker (Holmes 

et al., 2020; Domingo et al., 2020; Johnsrude et al., 2013, Barker & Newman, 2004; 

Magnuson, Yamada & Nusbaum, 1995). However, the effects of experience with the 

masker, instead of the target, are still seldom explored. Our research group has previously 

demonstrated how familiarity with a speaker can provide knowledge that can be exploited 

to better ignore the highly familiar voice in order to attend to target speech from a 

stranger (Johnsrude et al., 2013). Here in this project, we expected similar intelligibility 

benefits to also arise from experience with the complex amplitude-modulated noise 

makers that conformed to prior expectations from life experience, however, no such 

effects were observed.   
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As we have previously conjectured, it is possible that physical acoustic properties 

inherent to amplitude-modulated makers may provide avenues for listeners to piece out 

information from target speech to a degree that obfuscates any possible benefits arising 

from experience in helping segregate the target. Previous works have shown how 

modulation may be an important cue for stream segregation (Dolležal et al., 2012), and 

Gustafsson & Arlinger (1993) have shown how listeners may make use of the dips or 

‘valleys’ in modulation to capture information on the target speech. Although we were 

aware of these limitations when designing this experiment, we had expected that by 

reducing the modulation depth while also decreasing the SNR between target and masker, 

we would still be able to observe an effect of prior experience on performance, perhaps 

because participants would better predict when the modulation ‘dips’ would occur to aid 

in intelligibility. Nonetheless, it is possible that we inadvertently created a design that did 

not incentivize segregation of the masker. 

4.3 Limitations and future directions 

The stimuli used during this project were highly controlled computer-generated noise that 

although are ideal for investigating effects of experience on fundamental acoustic 

properties of sounds, are inevitably somewhat distant from the day-to-day acoustic 

landscape we are consistently immersed in. Future studies aiming to highlight covariance 

and/or statistical patterns on more naturalistic stimuli such as speech or animal sounds, 

may provide even greater evidence for the perceptual changes towards stimuli that 

conform to long-term expectations.  

In addition, the lack of observable effects for both short and long-term experience on 

intelligibility performance in the speech matrix task also encourage both considerations 

for limitations with our experimental design as well as future approaches that seek to 

confirm our observations. This project aimed to simultaneously investigate both the prior 

expectations related to naturalistic pitch-speed relationships, as well as the perceptual 

benefits arising from these prior representations for both stimuli categorization as well as 

segregation, leaving us somewhat constrained on the manipulations that could be done to 

our stimuli. It is possible that the spectral overlap between target and masker resulting 
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from our usage of broad-band noise as maskers that near completely overlapped with the 

spectral composition of our target made it impossible for listeners to segregate masker 

from target during moments outside of the dips in modulation. The greater intelligibility 

during moments of higher amplitude modulation would suggest that the faster occurring 

dips might have allowed for more opportunity to segregate the target during moments of 

lower intensity of the masker. Similarly, better performance during moments of lower 

frequency modulation were associated with narrower spectral bands of masking which, 

although still had great overlap with the target speech, may have let more information 

leak through some of the highest frequency bands of the speech. Although we piloted 

many parameters for the maskers until settling on the ones we ultimately used to make 

sure performance was still off floor and ceiling during the task, it is possible that we have 

yet to find a ‘sweet spot’ that creates both a good masking effect while still allowing for 

sufficient acoustic cues that allow listeners to segregate the target speech.  There are still 

many open questions about the way in which our brains can exploit experience-based 

cues with a masker to better segregate it from target sounds. Future research manipulating 

different acoustic dimensions of maskers that have potentially less interference with 

stimuli masking properties, for instance, may provide answers to these questions. 

4.4 Conclusions 

The present work found consistent benefits of positive pitch-speed covariance 

relationships on performance in a categorization task. This is consistent with previous 

works that have shown how prior expectations may influence performance in a 

categorization task (Roark & Holt 2020), as well as evidence for a strong relationship 

between pitch and speed for the human auditory system (Hermann, Augereau & 

Johnsrude, 2020; Hermann & Johnsrude, 2018). At the same time, it extends prior work 

to show that our auditory system is able to exploit these long-learned relationships on 

specific patterns of change over time within acoustic dimensions in order to aid 

perception. Still, contrary to what was initially expected, similar benefits were not 

observed regarding perceptual organization of sounds and facilitation on segregating 

familiar maskers from target speech. 
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The ways in which our brains can navigate and process information from such a rich and 

complex world around us is by no means a simple feat. Finding the threads that connect 

the patterns from which our intricately stochastic sensory landscape is formed is essential 

for being able to respond to our environment in an appropriate and timely manner. Thus, 

our ability to shape our perceptual systems in response to the statistics of the environment 

is a crucial component for how we interact with the world around us.  Here we highlight 

that covariance structures between acoustic dimensions are one such source of valuable 

information that helps us adequately perceive and categorize auditory information. 
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Appendix 

Appendix A: Multilevel Model Summary Tables 
In this table and in all following under this appendix, numbers represent beta values, with 

the values between parentheses corresponding to 95% CI. 

Table 1 
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