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Abstract

Massively parallel and heterogeneous systems together with their APIs have been used
for various applications. To achieve high-performance software, the programmer should
develop optimized algorithms to maximize the system’s resource utilization. However, de-
signing such algorithms is challenging and time-consuming. Therefore, optimizing compilers
are developed to take part in the programmer’s optimization burden.

Developing effective optimizing compilers is an active area of research. Specifically, because
loop nests are usually the hot spots in a program, their optimization has been the main
subject of many optimization algorithms.

This thesis aims to improve the scope and applicability of performance optimization algo-
rithms used in the compiler optimization phase. In the first two chapters, we focus on the
parts of the programs with for-loop nests. We take advantage of the polyhedral model
and the scalar evolution to develop algorithms that can automatically discover new opti-
mization opportunities in computer programs. Our functions operate at the intermediate
representation level and are implemented as part of the LLVM infrastructure. In the final
chapter, we improve the performance of the Fourier-Motzkin elimination method, which
is an underlying algorithm in the polyhedral theory.

Keywords: compiler optimization, LLVM, polyhedral model, pipelining, scalar evolution,
OpenMP, target offloading, polyhedral theory, Fourier-Motzkin elimination, bit complexity



Summary

Massively parallel and heterogeneous systems have been used for various applications. To
achieve high-performance software, the programmer should develop optimized algorithms
in order to maximize the system’s resource utilization. However, designing such algorithms
is challenging and time-consuming. Therefore, optimizing compilers are developed to take
part in the programmer’s optimization burden. Developing effective optimizing compilers
is an active area of research. Specifically, because loop nests are usually the hot spots in a
program, their optimization has been the main subject of many optimization algorithms.
This thesis aims to improve the scope and applicability of performance optimization algo-
rithms used in the compiler optimization phase.
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Chapter 1

Introduction

Developing high-performance programs has always been an essential aspect of computer
science. However, in the past decade, it has become even more crucial. As a result of
Moore’s law slowing down [4], programmers cannot rely on the increasing computational
power of one processor to improve the program’s performance. On the other hand, various
applications need to process an increasing amount of data in limited time frames, which
cannot be achieved by the maximum possible performance of single-threaded systems.
To tackle this issue, massively parallel and heterogeneous systems, such as multi-core CPUs
and GPUs, have emerged. These systems have different architectures, and utilizing their
capabilities requires various programming models. As a result, different Application
Programming Interfaces (APIs) have been developed to facilitate the programming of these
systems. For instance, OpenMP [5, 6], Massage Passing Interface (MPI) [7], and Compute
Unified Device Architecture (CUDA) [8] to name a few.

The parallel and heterogeneous systems, along with their programming APlIs, increase the
potential computational power. However, for achieving high-performance software, the
programmer should develop optimized algorithms to maximize the system’s resource uti-
lization. Designing such algorithms can be very challenging and time-consuming because
the programmer should explicitly specify parallelism while considering hardware prop-
erties, such as its execution model and memory hierarchy. Therefore, optimizing compilers
have been developed to take part in the programmer’s optimization burden. In modern
optimizing compilers, the program first goes through the compiler’s front-end. The output
of the front-end is the program in its machine-independent, intermediate representation
(IR). After that, the middle-end applies optimization to the IR. Finally, the back-end takes
the IR, applies some machine-dependent optimizations, and generates machine-dependent
code.

A modern compiler infrastructure, designed for developing optimizing compilers is LLVM
[9]. It is an open-source and industry standard compiler infrastructure, developed in
C++. It translates source programs to its own intermediate representation (LLVM-IR),
which is independent from the source language and the target architecture. LLVM also
provides libraries and tools for manipulating and optimizing LLVM-IR. It also provides
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tools for translating the IR to target-dependent machine code. Moreover, LLVM provides
procedures for utilizing and also developing Link Time Optimization (LTO) and Profile
Guided Optimization (PGO). In summary, we can say that LLVM provides a framework and
an infrastructure to easily integrate different optimization functions into the compilation
pipeline.

Developing optimizing compilers is an active area of research. The main goal of research
and development in this field is to equip different stages of the compilation pipeline with
various functions that can automatically transform the program to a more optimized ver-
sion, considering various criteria. The focus of this thesis is on the methods developed in
the middle-end of the pipeline.

Researchers have taken different approaches to developing optimizing compilers, by using
various methods to detect optimization opportunities on different levels of abstraction.
A promising method for designing performance optimization algorithms is to consider
the intermediate representation of the program. Then, describe parts of the program with
appropriate mathematical objects. Having this representation, the program transformation
can be done by manipulating the underlying object. For instance, graphs and trees are used
to represent the control flow and the domination relation between different basic blocks in
the program, respectively.

Loop nests are usually the hot spots in a program, and their optimization has been the main
subject of many optimization algorithms. Different models have been proposed to model
their attributes and facilitate optimizing them. The polyhedral model and scalar evolution are
two effective methods for this goal, which we use in this thesis.

The polyhedral model [10, 11] has proved to be adequate for describing and optimizing
for-loop nests in a program. In this technique, iterations of a for-loop nest are modeled
as integer points inside a polyhedron. By using algorithms in the polyhedral theory, the
methods based on the polyhedral model apply transformations to the programs in order to
get more optimized versions. For instance, they can improve the program’s performance by
optimizing memory usage and parallelizing the loops in for-loop nests, when it is possible.

Another optimization technique related to the for-loop nests is the scalar evolution [12]
method. This method tries to compute the values of the scalars used in a for-loop nest
as functions of the loop nest’s induction variables. Then, these functions can be used for
various optimizations.

This thesis aims to improve the scope and applicability of performance optimization algo-
rithms used in the compiler optimization phase. In Chapters 3 and 4, we focus on the parts
of the programs with for-loop nests. We take advantage of the polyhedral model and the
scalar evolution to develop algorithms that can automatically discover new optimization
opportunities in the programs. Our functions operate at the Intermediate Representation
level and are implemented as part of the LLVM infrastructure. In Chapter 5, we improve the
performance of the Fourier-Motzkin elimination method, which is an underlying algorithm
in the polyhedral theory.
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1.1 Contributions

In this section, we provide a short summary and a list of our objectives for each research
project presented in this thesis.

1.1.1 A Pipeline Detection Technique in Polly

In Chapter 3, we introduce a polyhedral-model-based analysis and scheduling algorithm
that exposes and utilizes cross-loop parallelization through tasking. This work exploits
pipeline patterns between iterations in different loop nests, and it is well suited to handle
imbalanced iterations.

The current polyhedral-model-based approaches can optimize a program by loop tiling,
loop parallelizing, and software pipelining [13, 14, 15]. Also, some works have been done
to detect pipeline pattern in the program [16, 17], but they have not been very effective for
arbitrary array access functions. In this project, we design a transformation algorithm for
detecting the pipeline parallelism between iteration blocks of different loop nests in the
program. We implement a prototype of the algorithm in the LLVM/Polly [18] pipeline
in a way that it can be applied to the programs automatically, and without programmer’s
intervention. We also design experiments to test the effectiveness of our prototype. For
future works, we plan to increase the applicability of the method by improving the code
generation phase, and make the pipeline detection to be compatible with other optimization
pattern detection techniques.

1.1.2 Automatic OpenMP-Aware Utilization of Fast GPU Memory

In Chapter 4, we develop an inter-procedural LLVM transformation to improve the perfor-
mance of OpenMP target regions by optimizing memory transactions. This transformation
pass effectively prefetches some of the read-only input data to the fast shared memory via
compile time code injection. Especially if there is reuse, accesses to shared memory far
outpace global memory accesses. Consequently, our method can significantly improve
performance if the right data is placed in shared memory.

Different methods have been developed for optimizing OpenMP program offloads to GPUs
[19]. In this project, we design an algorithm to map the locations in the GPU’s global
memory to the locations in the shared memory, as well as some heuristics to avoid bank
conflict and improve space efficiency. We leverage the infrastructure developed in [19] to
implement our algorithm as a part of the OpenMP optimization passes, inside LLVM. For
future works, we plan to add support for more general kernels, and develop a method to
find the array whose prefteching improves the performance the most.
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1.1.3 Complexity Estimates of Fourier-Motzkin Elimination

In Chapter 5, we propose an efficient method for removing all redundant inequalities
generated by Fourier-Motzkin elimination. This method is based on an improved version
of Balas” work and can also be used to remove all redundant inequalities in the input system.
Moreover, our method only uses arithmetic operations on matrices and avoids resorting to
linear programming techniques. Algebraic complexity estimates and experimental results
show that our method outperforms alternative approaches, in particular those based on
linear programming and the simplex algorithm.

Fourier-Motzkin elimination is a fundamental operation in the polyhedral theory and
computation. It is an exponential algorithm [20], however its performance can be improved
by removing redundant inequalities that are generated in the process of the algorithm.
Researchers have followed different approaches to detect and remove these redundancies.
Some methods are based on linear programming and can remove all redundancies [21],
some other methods use only matrix operations, but cannot detect all redundancies [22, 23,
24]. In this project, we design and implement a method based on the algorithm proposed
by Balas [25] that uses linear algebra algorithms to detect all redundant inequalities. We
compare the performance of our algorithm with linear programming-based methods by
comparing the running times of some experimental linear inequality systems. We also
compare the exact bit-complexity of the algorithms. For future works, we plan to develop
a heuristic method to use the properties of the input inequality system and choose the best
projection method based on that.



Chapter 2

Background

In this chapter, we provide some background information used in the rest of this thesis.
First, after explaining some basic concepts of the polyhedral theory in Section 2.1, we go
through the details of the polyhedral model in Section 2.2. Then, in Section 2.3, we explain
the LLVM compiler infrastructure, followed by detailed explanation of Polly, a sub-project of
LLVM for applying polyhedral transformations, and scalar evolution, a program analyzing
method in LLVM, in Sections 2.3.3 and 2.3.4, respectively. Finally, we conclude this chapter
by explaining some related features of OpenMP and its compilation and optimization
process in Section 2.4.

2.1 Polyhedral theory

In this section, we review some basic concepts of the polyhedral theory. We go through
definitions and related theorems of the polyhedral cone, polyhedron, and Z-polyhedron.
These concepts are expanded to more advanced topics in Section 5.1.1.

Definition 2.1.1. A set of vectors P C Q" is called a convex polyhedron if P = {¥ | AX < b 1,
for a matrix A € Q™" and a vector be Q™. Moreover, the polyhedron P is called a polytope
if P is bounded. From now on, we always use the notation P = {¥ | AX < b } to represent a
polyhedron in Q". We call the system of linear inequalities {AX < b } a representation of P.

Example A cube is a convex polyhedron in 3 dimensions.

Definition 2.1.2.  We define a d-dimensional lattice to be a subset of Z? that is defined as a
integer linear combination of linearly independent integer vectors. With this definition, we
define Z-polyhedron (Z-polytope) to be the intersection of a rational polyhedron (polytope)
with a lattice defined in the same space. In other words, it is the subset of a polyhedron,
containing all integer points inside the polyhedron.

Example Figure 2.1 shows a bounded polyhedron (polytope). The integer points inside it
(the Z-polytope) are also illustrated.
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Figure 2.1: Example of a bounded polyhedron (polytope) and Z-polytope

2.2 Polyhedral compilation

The polyhedral model [26,27,28,29,30] is a mathematical abstraction to describe for-loop nests
execution in a program. The model provides an abstract representation of the program.
This representation of for-loop nests enables us to analyze them and automatically optimize
them via different transformations. Here by transformation, we mean a wide variety of
program modifications that we can apply to the program for different kinds of optimization,
including:

1- loop tiling (blocking) for more efficient cache usage [31];

2

loop parallelizing [32];
3

including vector instructions [33];

4- partitioning the code for heterogeneous execution [34].

In the rest of this section, we explain in more detail how we can represent and optimize a
for-loop nest with the polyhedral model. Then, we describe the mathematical foundation
of this modeling and the way it is implemented in the ISL library.

2.21 Polyhedral representation and transformation

The polyhedral model can handle a program’s Static Control Parts (SCoP) [10]. They are the
parts of the program for which we can determine the control flow and memory accesses at
compile time, and all the involved expressions are affine in the loop induction variables and
program parameters. Figure 2.2 shows an example of a SCoP.

More precisely, the polyhedral model can optimize parts of the program with the following
constraints:

1- structured control flow, which includes for-loop nests with a lower-bound, an upper-
bound, and an induction variable which increases or decreases by a constant number
in each iteration, and conditional statements,
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1 for(i=0; i<2*N+5; i++){

2 for(j=0; j<=i; j++)

‘ A[i+j]1 = A[il;

1}
Figure 2.2: An example of a SCoP.

2- the loop bounds, conditions, and memory access functions should be affine expres-
sions in the induction variables and program parameters, and

3- side effect free (e.g., no use of pointers).

These conditions describe the constraints on the parts of a program supported by the
original version of the polyhedral model. Further research articles, for example [30][35],
have proposed different methods to lift some of these constraints.

After finding program parts the polyhedral model can potentially optimize, we should see
how the model describes, analyzes, and transforms them. The polyhedral model uses four
main components to represent a SCoP: 1) iteration domain, 2) access relations, 3) schedule,
and 4) dependency relations. In the rest of this part, we explain each of these components
in more details.

An essential aspect of the polyhedral model is that it represents programs and manipulates
them based on the statement instances. Outside of any loops, statement instances are similar
to the statements. Inside a for-loop nest, a statement instance is a statement with fixed values
of its surrounding loops” induction variables. For example, in Figure 2.2, A[i + j] = A[i] is
a statement. We can get the lexicographically smallest instance of it by settingi = 0, j = 0.
Therefore, the first instance of this statement that executes is A[0®] = A[0] .

Instead of listing all the points, we represent them by the constraints on their values. These
constraints come from the initial values of the induction variables of the loops surrounding
the statement and loops’ conditions. As a result of our assumption that the loop bounds are
affine expressions, these constraints form a system of linear inequalities. For instance, in
Figure 2.2, we can describe all statement instances with {(i, j) € Z2|10<i<2N+5,0< j<
i}. These inequality systems form a parametric polyhedron, and are called iteration domains.
The statement instances are the integer points in the iteration domain polyhedrons.

Furthermore, each element of the iteration domain (each statement instance) accesses some
array elements. These accesses can either be read or write. The index of these elements are
called the access relations. For example, in Figure 2.2, each element [i, j] of the iteration
domain, reads the location i of the array A, and writes in the location i + j of the same
array.

Note that the iteration domain only represents statement instances and does not provide
any information on their execution order. To specify this order, the polyhedral model uses
the notion of schedules. A schedule is a relation that maps each statement instance to an
integer vector. Then, the lexicographical order of these vectors determines the execution
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order of instances.

The polyhedral model can optimize programs by changing the schedule assigned to each
statement. However, we cannot assign any schedule to a loop nest. In fact, the new schedule
should not change the semantics of the loops. We call them valid schedules. This happens
because of the dependencies in the program. If there is an instance of an statement that uses
the result of the execution of another instance, then the instance that produces data must
execute before the instance that uses that data. All the valid schedules keep the original
order between dependent instances.

2.2.2 Mathematical foundations of the polyhedral model in the ISL library

As explained in Section 2.2.1, the polyhedral model is based on manipulating integer points
of parametric polyhedrons.

Various libraries such as ISL [36, 37, 38], Polylib [39], Piplib [40], and Omegalib [41] imple-
ment the polyhedral model’s underlying mathematical operations. For the purpose of this
thesis, we use the ISL library.

TheISLlibrary uses em set and map data structures to represent parametric Z—polyhedrons.
More accurately, the ISL library represents the integer points of a parametric polyhedron
(parametric Z—polyhedron) as a family of sets of integer tuples. Equation (2.1) shows ISL's
representation of a parametric two-dimensional Z—polytope, where the values of i and j
are bounded between 0 and the parameter n.

Set("[n]->{[i,j] : ® <i<=nand 0 < j <=n }") (2.1)

Different mathematical operations including intersection and union are also defined for
the set object in the ISL library.

In abstract algebra, A map or binary relation is a subset of the Cartesian product of two sets.
Different operations are defined on maps in the ISL library. Let M be a map. The inverse
map of M, denoted by M, is the set of the pairs ( f, 1) such that (i, f) € M The domaln
(resp. range) of M denoted by Dom(M) (resp. Range(M)) is the set of all (resp ]) such
that (z ]) e M.

We denote by lexmax(M) (resp lexmin(M)) the subset of M consisting of all pairs (1 ])
where 7 € Dom(M) and ] is the lexicographically largest (resp. smallest) ke Range(M)
such that (z, k) e M.

The composztzon of two maps M; and M, is denoted by M; (Mz) It is the set of all pairs
(z ]), such that there exists a vector k where (z k) € M, and (k ]) € M.

One construction of maps, important to the polyhedron model, is as follows. Given two
subsets S1 and S, of the same totally ordered set S, we denote by lexleset(S4, S») the set of
all (7, ]) € Sy x S, where 7 is lexicographically less or equal to ]



CHAPTER 2. BACKGROUND 9

Returning to the ISL library, and similarly to sets, maps can also be defined with parameters.
In this case, fixed values of those parameters give rise to a unique map in the sense of
abstract algebra. For example, Equation (2.2) is the representation of a map in ISL, with n
as parameter.

Map("[n]->{[i,j] -> [2+i, -1+j] : ® < i <=nand 0 < j <= n}") (2.2)

Note that ISL stores and uses sets and maps by storing the constraints on the values of
each coordinate, where the constraints are computed by algorithms in (integer) polyhedral
geometry.

Schedules are represented in the form of a tree, called schedule tree in the ISL library.
Nodes in a schedule tree have different types for representing different execution orders.
The most important ones that we are using in this article are: domain node, band node,
sequence node, mark node, and expansion node. More detailed information on the tree
representation of the schedules can be found in [37, 38].

23 LLVM

LLVM [42, 43] is a compiler infrastructure written in C++. It is an open source, industry
standard, and evolving project. The updated version of LLVM project mono-repository can
be accessed from https://github.com/11vm/11lvm-project. LLVM is an umbrella project
and many different projects are included in there. Some of these projects are:

- LLVM-core: the main part of LLVM project.

Clang [44, 45]: Clang is a C and C++ front-end of LLVM.

Flang [46]: Flang is a Fortran front-end of LLVM.

MLIR [47, 48] : MLIR is another compiler infrastructure with multi-level intermediate
representations, designed to address the challenges that LLVM cannot solve.

Polly [18]: Polly is for applying polyhedral transformations to the program.

Many other LLVM-based tools such as debugger, linker, ... .

We will explain some of these projects in more details in the rest of this thesis.

2.3.1 LLVM intermediate representation

LLVM Intermediate Representation (LLVM-IR) [49] is a Static Single Assignment (SSA) [50]
representation of a program designed to be able to represent all high-level languages. It
is a low-level programming language with RISC-like instruction set, and it is independent
from the source language and the target architecture.


https://github.com/llvm/llvm-project
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It is used through the LLVM framework, and its powerful representation allows the infras-
tructure to implement efficient compiler analysis and transformations. Figure 2.3 shows a
sample of a function written in LLVM-IR.

define i32 @bar() {
%1 = alloca i32, align
%2 = alloca i32, align
%3 = alloca i32, align
%4 alloca i32, align 4
store i32 5, i32* %1, align 4
store i32 7, i32* %2, align 4
store i32 8, i32* %3, align 4
%5 = load i32, i32* %1, align 4
load i32, i32* %3, align 4
%7 = add nsw 132 %5, %6
store i32 %7, i32* %4, align 4
%8 = load i32, i32* %4, align 4
ret 132 %8

LN

R
o3}
1

Figure 2.3: A sample of LLVM-IR.

2.3.2 LLVM compilation and optimization pipeline

In this part, we explain what happens when a C or C++ file enters the LLVM pipeline and
the different stages the file goes through.

In the first step, Clang processes the file and performs the compiler’s lexical analysis and
parsing stages . The output of this stage is the corresponding Abstract Syntax Tree (AST)
[51] of the program. In the next step, Clang generates LLVM-IR from the AST generated in
the previous step. The opt tool can optimize the LLVM-IR generated at this stage. After
that, the 11c tool generates LLVM Machine IR (MIR), optimizes it, and finally generates
machine code.

The LLVM pass framework provides a systematic way to analyze programs in LLVM-IR and
also to apply different transformations on the program. This framework supports two
kinds of passes:

1- Analysis passes, which go through the IR and gather some information, but does not
modify the program. Alias Analysis [52] and Loop Info [53] passes are examples of
analysis passes in LLVM.

2- Transformation passes, usually use the information provided by one or more of the
analysis passes and modify the IR for different purposes. Function in-lining and loop
unrolling are examples of transformation passes in LLVM.
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The code in Figure 2.4 illustrates the same function after optimization.

define i32 @bar() {
ret i32 13

5}

Figure 2.4: Optimized version of the program in Figure 2.3.

Our focus in this thesis is on optimizing the program in the LLVM-IR level. The opt tool
gets a program in LLVM-IR, applies different passes on it, and generates another LLVM-IR
program.

2.3.3 Polly

Many tools have been developed to analyze and optimize programs using the polyhedral
model. Polly [18] is one of the projects in the LLVM infrastructure for applying polyhedral
transformations on the LLVM-IR programs.

In the first step, Polly analyzes a LLVM-IR program and finds its polyhedral representation.
To this end, it first detects SCoP parts of the program. Then, it finds the polyhedral
description of the SCoPs in terms of the iteration domains, schedule, and memory accesses.
Figure 2.5 shows the result of this analysis for the program in Figure 2.2.

In Polly, transforming a SCoP is equivalent to changing its schedule. Therefore, in the next
step Polly uses the ISL library optimizer and composes new schedules for the statements in
the SCoPs. The algorithm used in the ISL library optimizer is based on the Pluto algorithm.
There is also the option for importing new schedules to the Polly’s pipeline. Moreover, we
can implement new transformation and scheduling algorithms as part of Polly to improve
its optimization capabilities.

The final step is to transform the polyhedral representation back to the LLMV-IR. After
optimizing the program by changing the schedule, Polly creates a new schedule tree object
based on the paper [37], and uses that to create an updated AST. Then. Polly uses the
new AST to generate LLVM-IR code. If required, Polly can detect parallel loops. In this
case, it uses OpenMP as its back-end for exploiting the detected parallelism. In the code
generation phase, it outlines ' the parallel loops and call the outline function through
OpenMP runtime calls.

2.3.4 Scalar evolution

Scalar evolution [54, 55, 12] is one of the fundamental analysis passes of LLVM. The main
purpose of the scalar evolution (scev) pass is to study the changes of a scalar over iterations

1QOutlining is a method to extract a region or a sequence of instructions of the code, place it in a function,
and replace the region with a call to the created function with appropriate input arguments.
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Function: main

Region: %for.cond4.preheader---%for.endl4
Max Loop Depth: 2

Invariant Accesses: {

}

Context:

[N] ->{ : -2147483648 <= N <= 2147483647 }
Assumed Context:

[N] >{ : 1}

Invalid Context:
[N] -—> { : N<= -1073741825 or N >= 1073741822 }
Defined Behavior Context:
[N] > { : -1073741824 <= N <= 1073741821 }
p0: %call
Arrays {
i32 A[*]; // Element size 4
}
Arrays (Bounds as pw_affs) {
i32 A[*]; // Element size 4

}
Alias Groups (0):
n/a
Statements {
Stmtl
Domain :=
[N] -> { Stmt1[i®, i1] : i0 <=4 + 2N and 0 <=1il <= 1i0;
Stmtl1[0, 0] : N<=-3 };
Schedule :=
[N] > { Stmt1[i®, 1i1] -> [i®, il1] : i® <=4 + 2N;
Stmtl1[0, O] > [0, O] : N<=-3 };
ReadAccess := [Reduction Type: NONE] [Scalar: 0]
[N] -> { Stmt1[i®, il1l] -> A[i0] };
MustWriteAccess := [Reduction Type: NONE] [Scalar: 0]
[N] ->{ Stmt1[i®, il1l] -> A[i® + il] };
}

Figure 2.5: Representation of SCoP of the code in Figure 2.2 in Polly.

of a loop. This pass is based on the mathematic concept of chains of recurrences [56, 57]. In
fact, it is an implementation of this method to be specifically used for analyzing for-loops.
In this part, we first briefly explain the mathematical framework of scalar evolution. After
that, we explain the scalar evolution implementation in LLVM.
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2.3.5 Chain of recurrences

We begin by defining the concept of basic recurrence (BR). This concept can be used to
represent functions using recurrences.

Having a constant value ay, a function f; : N — N, and an operator © which is an addition
or a multiplication, we represent a basic recurrence f as:

f = {a()/@/fl}-

If the operator (©) is an addition, we define the basic recurrence as a function over the
natural numbers as:

i1
f=ta0, 0, Aili) = ao+ ) fi()).
j=0
If the operator (©) is a multiplication, we define it as a function over the natural numbers
as:

i-1
f=tao,0, fiY) = a0 | | i)
j=0
An important point is that f can be defined recursively by the f(i) = f(i — 1) © fi(i)

relation.

We can apply the concept of basic recursions to analyze scalars value changes in iterations
of a loop. For instance, consider the loop in Figure 2.6.

int a = M;
for(int i=0; i<n; i++){
a = a + k;

Figure 2.6: An example of a loop for showing basic recursion used for analyzing scalar
changes.

We define function f, : N — N to map each iteration number to the value of scalar a in that
iteration. We can define f, as:

M i=0
fa= fai=1)+k i>0

Additionally, we can represent it as basic recurrence tuple with f,(i) = {M, +, k}.

We can extend the definition of basic recurrences and define the concept of chain of recur-
rences. Having k constants ay, - - - , k-1, a function f : N — N, and k operators g, - - - , Ok—1
that are either addition or multiplication, we represent the chain of recurrence F as:

F ={ao, o, -+, Ok-1, f}.
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It is defined recursively as:
F(l) = {0((), ©o, {alr O1, -, Gk—llf}}(i)‘

For example, consider the chain of recurrence F = {ko, +, {k1, +, k2}}. We can consider f; as
a BR represented as f; = {ki, +, kz}. Then, we can represent F as a BR {ko, +, fi}. The BR
f1(i) can be defined as:

) ki i=0
ﬁ“”‘{ﬁu—n+k2i>o

Using f1(i), we represent F as:

[ ko i=0
H”‘{Pu—n+ﬁa—ni>o

2.3.6 Scalar evolution pass in LLVM

As mentioned before, scev pass in LLVM uses a simplified implementation of chains
of recurrences. The goal of this pass is to analyze the scalar values and expressions in
loops and generate the scev representation (in the format of {2, ®,b}) of them. Having
expressions in this format helps other passes to apply different optimizations.

To generate scev representation of an expression, scev pass goes through the LLVM-
IR instructions. It begins with generating scev representation of each variable in the
expression. If the variable is loop invariant, the variable itself can be used as its scev
representation. On the other hand, if the variable changes in the considered loop and its
value is specified by a phi node, scev forms a CR for that.

After having the scev representation of all individual variables in the expression, scev uses
algebraic rewrite rules to combine different CRs and to create the final CR of the expression.
Table 2.1 shows these rewrite rules.

’ Expression ‘ Rewrite
C+{a,+, b} {C+a,+,b}
Cx{a,+,b} {C+a,+,C=b}
la,+,b}+1{d, +, e} la+d,+,b+e}
{a,+,b}={d,+,e} |{axd,+,axe+b+d+b=xe,+,2+b=xe}

Table 2.1: Rewrite rules for scev expressions.

24 OpenMP

OpenMP is a programming API, designed for shared memory parallelization in C, C++,
and Fortran. Programmers can specify and control parallelization using various compiler
directives. OpenMP also consists of runtime functions and some environment variables.
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The OpenMP execution model for parallelism targeting multi-core CPUs is the fork-join
model. An OpenMP program starts in the serial mode and a single thread, the master thread,
starts running the program. To write a parallel program with OpenMP, the programmer
should specify the parallel region using the pragma omp parallel pragma. Once the mas-
ter thread encounters the parallel region, the runtime system launches some additional
threads, worker threads. Then, the master thread and worker threads run the parallel region
with respect to the pattern and the constraints specified by the programmer, using different
directives. An implicit barrier exists at the end of each parallel region and synchronization
between threads happens at that point. After that point, the master thread continues the
execution of the rest of the program.

OpenMP has support for two different kinds of memory: private and shared. Each thread
has access to its own private memory. The programmer can define variable x in the private
memory of each thread by adding private(x) to the parallel region pragma. Rather than
the private memory space, all threads have access to the shared memory space. When a
variable is defined in the shared space, all threads have access to a similar memory location
for that variable.

As mentioned, a programmer can direct the API to parallelize a region with different
methods using pragmas. The complete and growing list of these directives is accessible
from the OpenMP manual. We explain the task and target directives that we employ in
this thesis in detail in Sections 3.3 and 4.2.1, respectively. In the rest of this section, we
present more information about the compilation and optimization of OpenMP programs
in LLVM.

24.1 OpenMP compilation in LLVM/Clang

In order to compile OpenMP programs, the front-end (e.g., Clang for C and C++) first parses
the OpenMP pragmas and applies semantic analysis to them. After that, for generating
LLVM-IR code, Clang first outlines the code regions specified with the pragmas. Then, it
passes the addresses of the outlined functions with their required inputs to appropriate
library runtime calls and replaces the parallel regions with the runtime function calls. For
instance, consider the code in Figure 2.7. The for loop (lines 2 and 3 of Figure 2.8) is in

#pragma omp parallel
> for(int i=1; i<N; i++)
B[i] = A[i]+A[i-1];

Figure 2.7: Example of a OpenMP program.
the parallel pragma region. As explained, in the first step, Clang outlines this region to

a function. Figure 2.8 shows the C pseudo-code of this function. Note that this operation
takes place in the IR level, but for more clear representation, we show it in C.
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void omp_par_outline(int tid, int *N, int **A, int **B){
for(int i=0; i<(*N); i++)
(*BY[i] = (*A)[il+(*A)[i-1];

return;

Figure 2.8: Pseudo-code in C of how Figure 2.7 is compiled.

In the next step, the compiler replaces the call to the outlined function with a call to an
OpenMP library runtime call for parallelism management. Figure 2.9 illustrates this call.

omp_rt_parallel (0, &omp_par_outline, &N, &A, &B)

Figure 2.9: Example of a OpenMP runtime call in a program.

Note that in Figure 2.7, the for loop is only in a parallel region. This means the runtime
system spawns some threads, and all of them will execute all iterations of the for loop. This
execution model usually is not what one expects when using OpenMP, and other pragmas
exist besides parallel pragma for exposing different parallelism patterns.

For each pragma, the compiler inserts different runtime calls. Moreover, the compiler may
need to insert code in the outlined function to handle the prescribed parallelism correctly.

For example, consider the code in Figure 2.10. In this example, lines 2 and 3 are in the
parallel for pragma. In this case, the iterations of the for loop should be divided between

#pragma omp parallel for
for(int i=1; i<N; i++)
B[i] = A[i]+A[i-1];

Figure 2.10: Another example of a OpenMP program.

threads. In other words, each thread is responsible for running its specific chunk of the
parallel for loop. To handle this case, the compiler first inserts another runtime call in the
outlined function to compute the lower bound and the upper bound of the chunk that each
thread should run. Then, for each thread, the loop in the outlined function should iterate
from the lower bound to the upper bound computed for that thread.

The Clang compiler follows the same general strategy of outlining and runtime call insertion
in the code for all of the OpenMP directives, although the details might be different.
Another component in the LLVM’s OpenMP compilation pipeline is OpenMPIRBuilder
[58], that is designed to unify the IR code generation of C/C++ and Fortran front-ends.

LLVM includes different OpenMP runtime systems (e.g., 1ibomp. so for running OpenMP
on the host, and libomptarget.so for OpenMP offloading). The runtime functions are
responsible for managing parallelization, including:
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- they spawn the right number of teams of threads at the beginning of the parallel
region,

- run the specified region in the desired pattern, considering the limitations and con-
ditions defined by pragmas and clauses,

- setup barriers to synchronize and join the threads.

As aresult of this abstraction, the program in the LLVM-IR level is not aware of any parallel
execution. Although this design has its benefits and provides flexibility, it introduces some
challenges for optimization. We explain these challenges in more details in the rest of this
section.

OpenMP-aware optimizations

As explained before, different transformation passes are developed as part of the LLVM
project to optimize programs. However, we cannot directly apply them to the programs in
the existence of OpenMP parallel regions. The reason is that the early outlining approach
taken by Clang (explained in Section 2.4.1) prevents the compiler from applying optimiza-
tions that require moving between the boundaries of the serial and parallel regions. The
paper [59] discusses optimization complications and methodologies to overcome these
challenges in parallel programs.

To handle parallel program optimization challenges, OpenMPOpt[19] pass is developed. It
is an Inter Procedural Optimization (IPO) pass in LLVM. It runs in the 01,02 and 03
optimization pipelines, and it is specifically designed for optimizing OpenMP programs.
The main goal of this pass is to apply high level, OpenMP-aware optimizations to the
program. The pass is made aware of what each OpenMP runtime calls do. It uses this
information to apply effective optimization.

In addition to optimizing OpenMP programs, the OpenMPOpt is specially equipped to
optimize device code when there exists offloading regions in the program.



Chapter 3

A Pipeline Detection Technique in
Polly

The polyhedral model has repeatedly shown how it facilitates various loop transformations,
including loop parallelization, loop tiling, and software pipelining. However, parallelism
is almost exclusively exploited on a per-loop basis without much work on detecting cross-
loop parallelization opportunities. While many problems can be scheduled such that
loop dimensions are dependence-free, the resulting loop parallelism does not necessarily
maximize concurrent execution, especially not for unbalanced problems.

In this work, we introduce a polyhedral-model-based analysis and scheduling algorithm
that exposes and utilizes cross-loop parallelization through tasking. This work exploits
pipeline patterns between iterations in different loop nests, and it is well suited to handle
imbalanced iterations.

Our LLVM/Polly-based prototype performs schedule modifications and code generation
targeting a minimal, language agnostic tasking layer. We present results using an imple-
mentation of this API with the OpenMP task construct. For different computation patterns,
we achieved speed-ups of up to 3.5 on a quad-core processor while LLVM/Polly alone
fails to exploit the parallelism.

3.1 Overview

The polyhedral model [10, 11] has proved to be very effective for optimizing loop nests
by using different methods such as loop tiling, loop parallelizing, and software pipelining
[13,14,15]. Almost all these methods optimize for-loop nests on a per-loop basis. However,
another opportunity for optimization might exist in the program, which one can exploit
by considering cross-loop parallelization; executing iteration blocks of different loop nests
in parallel when it does not violate any dependence relations. There has been some
efforts to consider this parallelization opportunity. The method proposed in [16] generates

18
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pipelined multi-thread code by interleaving iterations of some loops. Authors in [17]
propose an algorithm for detecting pipeline opportunities between iteration blocks of two
for-loop nests. Also, [60] uses cross-loop data reuse for cache optimizations. However,
we are not aware of any fully-automatic, LLVM-based method for detecting and exploiting
parallelization opportunities between iterations of different for-loop nests through tasking.

The main objective of this project is to detect the cross-loop task parallelism in a pro-
gram. We exploit this opportunity by detecting pipeline pattern between iteration blocks
of different for-loop nests; ! we call it cross-loop pipeline pattern.

Detecting cross-loop pipelining provides a building block towards exploiting the natural
data-flow parallelism. However, the existing loop optimization methods based on the
polyhedral model have a limited ability to extract cross-loop pipeline patterns.

We assume the program consists of consecutive for-loop nests. We also assume that an
iteration of a loop nest may depend on the previous iterations of the same loop nest, as well
as iterations of the loop nests before it. Detecting cross-loop task parallelism is particularly
important and effective for programs where (1) compute-intensive functions are called
inside for-loop nests, or (2) no optimization opportunities for individual for-loop nests
exist.

For instance, consider the program in Figure 3.1, where A and B are two initialized N X N
matrices. Polly[18], LLVM-based framework for applying polyhedral transformations,

for(i=0; i<N-1; i++)
for(j=0; j<N-1; j++)
S: A[i][j1=£fCA[iI[j1, A[iI[j+11, A[i+1]1[j+11);

5 for(i=0; i<N/2-1; i++)

for(j=0; j<N/2-1; j++)

R: B[il[jl=9gCA[il[2*j], B[il1[j+1], BL[i+1]1[j+1],
BLil[i1);

Figure 3.1: Example with cross-loop pipeline.

detects first level tiling, but it cannot detect parallelism for any of the for-loops in the
program. However, there is a parallelization opportunity between iteration blocks of S and
iteration blocks of R. For instance, consider the first two iterations of the second for-loop
nest for computing B[0][0] and B[0][1]. The only element of the matrix A we need for the
first iteration is A[0][0], and for the second iteration is A[0][2]. Therefore, when A[0][0] is
computed (after finishing the first iteration of the first loop nest), we can compute B[0][0]
and the following elements of the matrix A in parallel. With the same method, when A[0][2]
is computed, we can compute B[0][1] and the following elements of the matrix A in parallel.
Note that the iterations of each statement run in their sequential order.

Not be confused with software pipelining and DOACROSS loops, where a pipeline pattern exists between
different iterations of the same loop nest.
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Figures 3.2 and 3.3 illustrate this idea. The upper part, 3.2, shows the sequential execution
of the iterations of the statements S and R, where iterations of R begin after all iterations
of S are finished. The lower part, 3.3, shows the execution of the program after exploiting
cross-loop task parallelization. In this case, thread_0 runs the iteration blocks of S, and
thread_1 runs the iteration blocks of R. Thread_1 can start running an iteration of R right
after thread_0 finishes the iteration block of S that it depends on.

(s,10,0]) (5,10, 11) (S, [0, 2]) (S,1ast)(R,[0,0) (R, [0,1])  (R,last)

Figure 3.2: Sequential execution. R starts after iterations of S are finished.

S, [0,1 S, [0,3
Swa Eoal (s as0

S/ [0, ®]> <S/ [®/ ]
PN ©

(R,[0,0]) (R, [0,1]) (R, last)
thread_1 .—>‘ ...........

time

Figure 3.3: Pipeline execution. Iterations of R are overlapped with iterations of S, and R is
not part of the critical path anymore.

In this work, we detect and exploit the cross-loop pipeline pattern using the polyhedral
model. Our method is implemented as part of LLVM/Polly[18] and operates at compile
time on the LLVM-IR [9]. The main idea is to block iteration domains such that finishing
each block provides the requirements for running not only the next block in the same
iteration domain, but also blocks in other iteration domains. After computing dependence
relations between newly generated blocks, we construct an OpenMP task for each block to
exploit the detected cross-loop task parallelism.

Some parts of the background information required in this chapter are explained in Chapter
2, and the rest of this chapter is organized as follows: in Sections 3.2 and 3.3, we explain the
pipeline parallelism and tasking in OpenMP, respectively. These information provide the
foundation of our research. Then, we explain some related works and comparing them to
our research in Section 3.4. After that, we explain our transformation algorithm in Section
3.5, and we go through the details of the scheduling algorithm and code generation in
Section 4.3. We conclude this chapter with reporting on our experimental results in Section
3.7 and the future plans for continuing this project in Section 3.8.

3.2 Pipeline parallelism

Pipeline parallelism is a well-known technique [61, 62, 63, 64] for parallelizing different
applications. The main idea of pipelining is to divide a process into multiple stages. Then,
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if there exist enough hardware resources, stages of different processes can potentially run
concurrently. Whether they actually run concurrently or not depends on the dependency
relations between different stages of one process, and stages of different process. In other
words, pipelining can be used when a sequence of data items has to go through a sequence
of stages, and the input of each stage is the output of its previous stage. Concurrency
happens when a stage i can start operating on a data item d after stage i — 1 has finished
processing d, but not the whole sequence of data items.

3.3 Tasking in OpenMP

Since version 3.0, OpenMP supports task parallelism, using the omp task pragma. To
increase the applicability of task parallelism, OpenMP 4.0 introduces the depend clause.
Let M be a shared memory location. OpenMP uses the depend(in:M), depend(out:M), and
depend(inout:M) clauses to specify whether the considered task reads, writes, or both
reads and writes M. The runtime system uses this information to manage dependencies
between tasks, and decide whether a task can execute, or should wait for other tasks to
finish.

For example, consider the code in Figure 3.4 from [65]. In this example, there are three

int x = 1;
#pragma omp parallel

3 #pragma omp single

{

#pragma omp task shared(x) depend(out: x)
X = 2;
#pragma omp task shared(x) depend(in: x)
printf("%d ", x+1);
#pragma omp task shared(x) depend(in: x)
printf("%d ", x+2);
}

Figure 3.4: Example of OpenMP tasks.

tasks: the first one assigns 2 to the variable x, the second one prints the value of x + 1, and
the last one prints the value of x + 2. As a result of the dependencies to x, the first task
should finish before the second and the third tasks, but the second and third ones can run
in parallel. Therefore, the output can be both 3 4 and 4 3.

3.4 Related works

Various lines of research have been investigated on automatically detecting pipeline-related
patterns. In this section, we go through some of the papers that are related to our work.
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In [66] authors discuss the exploitation of pipeline parallelism, including use-cases, and
the critical challenge of managing dependencies between the source region and the target
region. We try to address this challenge in the case of pipelining iterations of for-loop
nests. Also, the software pipelining technique for pipelining iterations of a single loop is
discussed in [67].

The method proposed in [16] follows the same objective as our work, that is, to use the
polyhedral model and exploit pipeline parallelism opportunities between loop nests so as
to optimize (part of) programs that conventional polyhedral optimizers cannot optimize.
However, there are differences between the two approaches. Our prototype operates at the
IR level of a non-optimized program, whereas the prototype in [16] operates at the source
level of programs already optimized by Pluto and parallelized by the OpenMP API. Also,
it can detect and exploit the pipeline pattern only if (1) the considered loop nests have
identical iteration domains and chunk sizes, (2) are not associated with SIMD constructs,
and (3) are in the same parallel region. Moreover, each iteration of the target loop nest
should depend on the same or the previous iterations of its source loop nest. With these
considerations, the prototype in [16] can use the clauses ordered and nowait of OpenMP
to exploit the pipeline pattern. In our work, by using the general transformation algorithm
described in Section 3.5 , and by taking advantage of the OpenMP constructs task and
depend, we can detect and exploit pipeline patterns in loop nests of sequential programs
with arbitrary memory accesses. Also, our transformation algorithm for task detection is
independent of the OpenMP tasking layer.

The method explained in [17] detects pipeline parallelism to make machine learning mod-
els” executions more efficient on the so-called computational memory accelerators considered
in that paper. We provide more details on the algorithm of this paper in Section 3.5.

The objectives of the authors in [68] are similar to ours: they aim at exploiting parallelization
between different loop nests. However, the method of [68] and the output are different.
The authors discuss a method based on linear regression for detecting pipeline patterns in
pairs of consecutive loop nests, using run-time information.

The Pluto [13] algorithm supports a method for detecting software pipelining in the form
of DOACROSS loops applied on a program tiled by the Pluto algorithm. [69] explains a
polyhedral-model-based method for designing a compiler-runtime system to exploit task
parallelism in distributed and shared memory architectures. It uses Pluto’s tiling and
parallelization for task detection, and the runtime system coordinates the dependencies
between tasks.

The polyhedral model is used in [70] to exploit DOACROSS loops using OpenMP. Contrary
to our approach, their input program is in data-flow graph language. The work explained
in [71] optimizes programs using OpenMP tasks, where program annotations explicitly
specify the tasks. Also, [72] introduces OpenStream as a data-flow extension of OpenMP.
It can exploit pipeline and data-flow parallelism on an annotated program.

A well-studied subject closely related to our work is automatically extracting the data-flow
graph from the program to run it on data-flow architectures. For example, [73] develops an
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algorithm for automatically extracting data-flow threads from programs. In another work,
[74] develops an LLVM-based prototype to find the data-flow graph between LLVM-IR
instructions of a program.

3.5 Transformation Algorithm

In this section, we explain our algorithm for detecting the cross-loop pipeline pattern in
a program. We explain each step in detail and conclude the section with performance
analysis of the algorithm.

The algorithm proposed in [17] provides the foundation for our transformation algorithm.
The algorithm of [17] first considers two for-loop nests, called source and target, where
iterations of the source loop nest write to a shared array, and iterations of the target loop
nest read from that same shared array. Then, this algorithm finds a relation that maps
the index of each write in the shared array to the maximum iteration of the target that
can safely execute. Finally, using the specifications of the so-called computational memory
accelerator studied in that paper, this map coordinates different pipeline stages between
iteration blocks of the two considered for-loop nests.

The pipeline map computed by our algorithm (Section 3.5.1) considers iteration blocks of
the source and the target for-loop nests for coordinating different stages of the pipeline.
Moreover, contrary to the method in [17], our algorithm does not stop after finding the
pipeline relations between pairs of for-loop nests. By computing pipeline blocking maps
of iteration domains (Section 3.5.2), we extend the algorithm of [17] to detect the pipeline
pattern between all dependent loop nests in the program. In addition, we compute pipeline
dependency maps (Section 3.5.3) to determine dependence relations between tasks at compile
time and make them suitable for generating task-parallel OpenMP program in the next
phase.

3.5.1 Pipeline Map

Consider two statements S and T with respective iteration domains 7 and J. Also, assume
the iterations of S write in a set of memory locations M, and the iterations of T read from
M. We define the pipeline map between S and T to be the relation 7s1( — J), where
(17), ]_)) € 75,1 if and only if:

1- after running all iterations of S up to i, we can safely run all iterations of T up to f,

2- {is the smallest (lexicographically) vector and f is the largest (lexicographically) vector
with Property (1).

This map is called the pipeline map; because for every pair (?, f ) in 75,7, we can run iterations
of T up to j and iterations of S after i, in parallel. Repeating this pattern creates a pipeline
among iteration blocks of the loop nests.
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To compute the pipeline map, we take a similar approach as the one used in [17]. Let
Wr(Z — M) be the write relation of S, that is, the set of the pairs (?, m) € I X M such that
location m is written at iteration 7. Similarly, let Rd(J — M) be the read relation of T, that
is, the set of the pairs ( f, m) € J x M such that location m is read at iteration f Also,
assume that there is no over-write, that is, Wr is injective.

Using Wr and Rd, we define P(J — I), as the composition of Wr~! by Rd to relate the
two iteration domains:
P = Wr ' (Rd).

Note that ( ]_), 17)) € P means that iteration f reads the same memory location that iteration i
writes.

Then, we find the domain of #, Dp. By mapping each member of Dy to all other members
of the same iteration domain () that are lexicographically less than or equal to it, we get

the map D'(J — J).
After that, we find the relation H(J — 1) defined by:

H = lexmax(P(D")).

Relation H maps each read iteration f of the target statement to the lexicographically largest
write iteration i of the source statement that j and its previous iterations depend on.

The final step to get the pipeline map is to find H~!(Z7 — ), and deduce the pipeline map
Ts,r as:
Ts1 = lexmax(H™1). (3.1)

Having @, f) € H~! means that after running iteration  of the source statement, we can
run iteration f of the target, and every iteration before that. Note that if @, f ) € H™!, then
i ]71) e H™!, forall ]71 that are lexicographically less than f As a result, one iteration of the
source statement may be mapped to multiple iterations of the target statement. Therefore,
we use the operation lexmax in 3.1 to get the maximum one.

As an example, consider Figure 3.1 with N=20. The pipeline map between statements S and
Ris:
{Slio, i1] =Rlog, 01] : A(eo = [(i1)/2] :
00=1Ig N2 =11 AN20; =11 AN20; <1+14
ANig=0Aig<8Ai1 >20Ai; £16)}.
This should be read as the set of all ((ig, i), (0g,01)) where (iy, i1) is an iteration of the
source loop and (0g, 01) is an iteration of the target loop such that

00=1IgAN2e =11 AN201 =211 N201 S 14+i1ANig=0Aig<8Ai; >0A1; <16,

where ¢g = [ (i1)/2].

In the next step, we use the pipeline maps to partition the iteration domain of each statement
to get the iteration blocks that are in pipeline relation. For a statement S and a pipeline map
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7, if Sis the source (resp. target) statement, we first partition its iteration domain, 7, such
that each element of Dom(7") (resp. Range(7)) is the lexicographically largest member
of its part. Then, by mapping each member of each part to the lexicographically largest
member of that part, we get a source blocking map Vs(I — 1) (resp. a target blocking map
Ys(I — 1)).

To compute these maps, let 8 = Dom(7") if S is the source in the pipeline map 7~ (resp.
B = Range(7") if S is the target in the pipeline map 7). We compute B’ as:

B’ = lexleset(I, B).

Operation lexleset between two sets S| and Sy, maps each element of S; to all other elements
in S, that are less than or equal to the considered element.

After computing the map $’, the source blocking map, Vs(I — I) (resp. the target
blocking map Ys(I — 1)) is as:
lexmin(B7-). (3.2)

If there are no iterations of T depending on the final iterations of S, then those last iterations
of S do not appear in 75 1; therefore, they do not appear in the source blocking map. To
handle this case, we add a block consisting of all remaining iterations by mapping them to
the lexicographically maximum iteration of the iteration domain.

Continuing with the example of the Figure 3.1, one part of the source blocking map is:

d(ep = [(01)/2] : 00 =ig A2ep =01 Nig =0 ANig < 8A

i1>20A01<16A01 201 A0y <1 +1p).
Therefore, some elements of the map are:

{S[1,1] — s[1,2], 8[1,2] — S[1,2],
S[1,3] — S[1,4],S[1,4] — S[1,4]}.

This means that iterations [1, 1]and [1, 2] are in one block, and [1, 3] and [1, 4] are in another
block.

3.5.2 Pipeline Blocking Maps of Iteration Domains

It is important to note that for each statement, there are several pipeline maps. As a result,
there are several source and target blocking maps. For instance, consider Figure 3.5, which
adds a for-loop nest to Figure 3.1. There are two source blocking maps for the statement S;
one for the pipeline map between S and R, and one for the pipeline map between S and U.
For the statement R, there is one target blocking map for the pipeline map between S and
R, and one source blocking map for the pipeline map between R and U. For the statement U,
there are two target blocking maps; for the pipeline maps between S and U, and between R
and U.
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for(i=0; i<N-1; i++)
for(j=0; j<N-1; j++)
S: A[i][j1=£fCA[iI[j1, A[iI[j+11, A[i+1]1[j+11);

5 for(i=0; i<N/2-1; i++)

for(j=0; j<N/2-1; j++)
R: B[il[jl=g(CA[il[2*j], B[il[j+1]1, B[i+1]1[j+1],
BLil[il);

for(i=0; i<N/2-1; i++)
for(j=0; j<N/2-1; j++)
U: C[il[jl=h(A[2*i][2*j], B[il[jl, C[il[j+1],
CLi+11[j+11, CLilC31);

Figure 3.5: Example with 3 loop nests.

However, we need to have a single pipeline blocking map of iteration domain per statement,
where each pipeline block can be considered an atomic task. Therefore, for each statement,
we should integrate all its source and target blocking maps such that we can establish a
pipeline relation between all blocks of all statements. We also need to choose these blocks
to maximize the number of blocks of different loops that can execute in parallel to get the
best possible performance at the end. To satisfy both conditions, we minimize the size of
the blocks as much as possible and construct the optimal blocks from all blocking maps
associated with each statement. In fact, for each statement, we compute the lexmin of the
union of all source and target pipeline blocking maps:

&s = lexmin((|_J V) u (@) (33)
j i

In this equation, Y{ (resp. (Vsj ) goes over the target (resp. source) blocking maps of S
with respect to the pipeline maps between S and other statements that S depends on (resp.
statements that depend on S).

From this point on, for two vectors iand 7 in the iteration domain of S, if &g (?) = &Es( ]_)) = {7,
we say that i and f are in the same block, and we call this block . With this definition,
we can say that Equation 3.3 assigns to each iteration the smallest block that it belongs to,
among all source and target blocking maps.

To illustrate the effectiveness of choosing optimal blocks for correctness and efficiency,
consider Figure 3.7. In this example, statements S; and S, are sources of the statement S3,
and S3 is the source for statement S4. Figure 3.6 shows the dependencies and the pipeline
maps associated with each of them.

We want to find the first pipeline block of S3 after ﬁ). In other words, we are looking for the
lexicographical maximum vector of the first block after jj.

After finishing the execution of S; up to iteration ﬂ, the dependencies to S; are satisfied
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Figure 3.6: Dependency relations graph between statements and the corresponding
pipeline maps.

for iterations of Sz up to ]?1. The same holds for iterations of S, up to i; and iterations of S3
up to ]'Z. On the other hand, after finishing iterations of S3 up to ]73, we can run iterations
of S4 up to ;3 As a result, after finishing iterations of S; up to 17, and iterations of S, up
to i, we can safely run S3 up to iteration ]_; Therefore, considering any vector between ]76
and ]z maintains the correct execution of S;. However, by choosing jz, the optimal block
computed by Equation 3.3, we maximize the number of blocks of different statements that
can run in parallel, because S4 can also start running right after ]2 is finished.

i S, iterations

Sl

i S, iterations

o i3 2 i1 S5 iterations
S (T |

i S, iterations

Figure 3.7: Choosing ]—; as the first pipeline block after ﬁ) maintains correctness and maxi-
mizes the number of blocks of different statements that can run in parallel.

3.5.3 Pipeline Dependency Relations

Up to this point, we have found the pipeline blocking maps of the iteration domain of
each statement. These blocks of iterations are considered as the tasks (pipeline stages).
However, to have a correct task-parallel program, we also need to compute the dependence
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relations between different tasks so that they can be used to coordinate OpenMP tasks.
Therefore, after computing pipeline blocking maps of all statements, in the next step, we
find the requirements of each block. By requirements of a block, we mean the blocks of
its source statements it needs to execute safely. This part explains how to find pipeline
dependency relations, which are maps between each block and its requirements. These maps
will be used as in-dependencies (depend(in:)) of the OpenMP tasks we create in the next
phase.

To find pipeline dependency relations of a statement S, consider a specific pipeline map 7;
and its corresponding target blocking map, ;. First, for every block of S, that is, for each
element of Range(&s), we compute the block of Y; that it belongs to. Then, we can get the
last required block using 7;. Considering all target blocking maps of S, we get an array of
maps showing the requirements of the blocks of S. We show this array with Qs, and each
index of it with Q.. Equation 3.4 shows the computation of each map Q..

QL = 7,7 (Y:(Range(Es))). (3.4)

In Equation 3.4, 7; goes over all pipeline maps that S is considered as their target statement,
and Y, is the target blocking map corresponds to 7;.

Furthermore, running each block of a statement S provides the requirements for some
blocks of the statements that are dependent on S. This only depends on the last executed
iteration of S. We can get this relation from the identity map of Range(&s), and we call it
Q5. This maps will be used as the out-dependency (depend(out:)) of the OpenMP tasks
we create in the next phase.

The final algorithm for finding the cross-loop pipeline relation of a SCoP is summarized in
Algorithm 1.

3.5.4 Algorithm Correctness and Efficiency

In this part, we show that the algorithm presented in this section is correct (the transforma-
tion does not change the semantics of the program). Also, we show that in the general case
of the algorithm, the best performance we can get from cross-loop pipelining is constrained
by the most time-consuming loop nest. We also explain that with our transformation algo-
rithm, we can automatically get the ideal speedup (ignoring the overhead related to task
creation).

Correctness

Considering minimal blocks as computed in Section 3.5.2 and the dependencies computed
in 3.5.3 ensures the correctness of the transformation. Consider a statement that depends
on multiple other statements. By considering optimal blocks as tasks with dependencies
described in 3.5.3, we know that dependencies to all other statements are satisfied when
the task is running. Moreover, by considering optimal blocks, we can run every task as
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Algorithm 1: Pipeline detection algorithm

Input : SCoP in its polyhedral representation
Output: SCoP with pipeline information

for all statement pairs S and T of the SCoP do

if T depends on S then

Ts,t = pipeline map(s, T);

Vs 1 = source blocking map(S, 7s 1);
Yr s = target blocking map(T, 7s 1);

Es =8EsUVs;

Er=ErUMrgs;

for all statements S of the SCoP do
Es = lexmin(&Es);
| Qg = identity map(Range(&s));

for all pipeline maps 7sr do
| Qr = append(7g; (Yrs(Range(&n)), Qr);

for all statements S of the SCoP do
| add &s, Qs, Q; to the SCoP;

return SCoP;

soon as its dependencies are stratified. This increases the potential number of tasks that
can run concurrently.

Efficiency

Assume that the input program consists of N for-loop nests Ly, - - - , Ly. We want to compare
the total running time of the pipelined execution and the sequential execution.

We have to run all iterations of all loops, and since we do not consider any other form
of parallelism in the general case, we do not reduce the running time of individual for-
loop nests. The performance improvement comes from the places that we can overlap the
execution of iteration blocks of different for-loop nests. Therefore, the performance of the
pipelined program is limited to the loop nest with the maximum running time, L;,,x, and we have
the following formula for the running time of the pipelined program:

time(Lyqx) < time(pipeline) < time(sequential) (3.5)

The lower bound happens when the first loop nest has the maximum running time and
the execution of all other for-loop nests can be covered by that. The average case is when
the i*" loop nest has the maximum running time. Also, we usually cannot assume that
the running time of all loop nests after the maximum loop can be covered. For instance,
consider Figure 3.8.
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Figure 3.8: Average case performance of pipelined program, where the third loop has the
maximum running time.

As a result, we can compute the total running time of the pipelined program with Equation
3.6.
time(pipeline) = starting time + time(L,4x) + finishing time (3.6)

In Equation 3.6, starting time is the duration between the beginning of the program and
beginning of the L4y, and finishing time is the duration between the termination of Ly,
and the termination of the program.

With the assumption that we have enough hardware resources, because each tasks starts
running as soon as its requirements are satisfied, we minimize the starting and finishing
times, and we get the maximum possible overlap between the iteration blocks of different
for-loop nests.

3.6 Implementation

We implemented a prototype ? of the algorithm explained in Section 3.5 as a part of Polly
[18] and use the ISL library [36] for polyhedral computation. We modify Polly passes in
the analysis, transformation, and code generation phases to add support for the pipeline
pattern detection and code generation. For exploiting the detected parallelism, we use
OpenMP task constructs.

3.6.1 Analysis

In the analysis passes, we extend the definition of the SCoP to include information needed
for pipelining. We use the iteration domains and memory access relations and compute
the maps &g, Qs, and Q; for every statement in the SCoP, by using Algorithm 1.

2https://github.com/dtalaashrafi/polly-pipeline
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3.6.2 Transformation and Scheduling

In this step, we use the pipeline information of the SCoP to find the new schedule tree. For
each statement S, we transform its schedule to separate the loops iterating over the blocks
determined by &s, from the ones iterating inside each block. The reason is that each block
is an atomic task, with its dependencies computed in Qs array of maps.

We define the pipeline loop to be the inner-most loop that iterates over blocks. The critical
property of a pipeline loop is that its body iterates inside the blocks. Therefore, each of its
iterations is a single task. To summarize, our goal is to construct a new schedule tree that:

1- blocks iteration domains,
2- finds pipeline loops, and
3- attaches dependency information to each task.

To begin with, we want the pipeline dependency relations to be defined as functions of the
induction variables of the loops iterating over blocks. Therefore, for each statement S, we
construct a pw_multi_aff list from the maps in Qs and a pw_multi_aff from the map
Q. After that, we create a mark node from them to add to the schedule tree.

To construct the final schedule, we begin by creating two separate schedule trees: one for
iterating over blocks and one for iterating inside each block. Then, we expand the first
schedule tree with the second one.

Let Dg, and Rg, be the domain and the range of Es, respectively. We first create a schedule
domain node from Rg,. Then, we get the partial schedule of the identity map of Rg,
and add the corresponding band node to the created domain node. This schedule tree
iterates over the blocks in lexicographical order. The next step is to construct the expansion
schedule tree for iterating inside the blocks. This time, we repeat the same process as above,
and we use Dg, (instead of Rg,) for creating the domain node and the partial schedule. At
this step, we add the mark node containing pipeline dependency information. Note that
this mark node is located before the band node iterating inside the block, and it can be
used for finding the pipeline loop. To complete the expansion process, we need to provide
the contraction function for mapping domain elements of the original schedule and domain
elements of the expansion schedule. For this purpose, we use the map Es, as it defines this
relation by definition.

To summarize, Algorithm 2 is our final scheduling method.

3.6.3 AST Generation

In the AST generation phase, we use the schedule tree to create the AST. Specifically, we
use the mark nodes in the schedule tree to annotate the AST. Figure 3.9 shows parts of the
AST of the transformed program of Figure 3.5. In Figure 3.9, there exists a for-loop nest
corresponding to each loop nest in the original program. The comments in lines 3, 11, and
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Algorithm 2: Computing schedule tree

Input : Pipeline information of statements in SCoP
Output: Updated schedule tree

for all statements S in SCoP do

Deg, = Domain(Es), Re, = Range(Es);

psi = partial schedule(identity map(Rs;));
ps2 = partial schedule(identity map(Dkg;));
m = mark node( Qs, Q% );

node; = domain node(Rsg;);

sch = insert partial schedule(ps;, node;);
node, = domain node(9Dg;,);

schy = insert partial schedule(ps,, nodey);
schy = insert mark node(m, node,);
contraction = union_pw_multi_aff(&Es));
schs = expand(schy, sch,, contraction);

sch = sequence(schysescop);
return sch

16 are representatives of the AST annotations. They show that the for loops in lines 2, 10,
and 15 are the pipeline loop in their loop nest. They also contain the pipeline dependency
information for the block that follows them.

3.6.4 Code Generation

The main idea for the code generation phase is to extract the tasks, which are the bodies
of pipeline loops, to function calls. Then by passing the extracted function along with its
dependency information to a high-level function implemented in a framework capable of
task parallelism, we can utilize the detected parallelism. In this prototype, we can generate
code for programs with for-loop nests of depth at most two, with only one task annotation
per loop nest. However, considering loops in the general case is feasible, and it is a matter
of further developing our code generation function.

To get the pipeline dependency information, we use the annotations of the AST and con-
vert them to the format needed by the framework we are using. In this work, we use
OpenMP task constructs with depend clauses. Remember that the annotation assigns a
pw_multi_aff list and a pw_multi_aff to each task. Using OpenMP terms, each mem-
ber of the pw_multi_aff_list is an in-dependency of the task, and the pw_multi_aff is
its out-dependency. To find pipeline dependency information of each task, we compute
unique integer values from each in-dependencies and the out-dependency. Each piece is a
vector that we convert to an integer. We multiply each dimension to a large enough integer
and add them all to get a single integer. To distinguish between each pw_multi_affs, we pair
an index with the integer we got in the previous step.
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for(c0=0; cO<N; cO®+=1)
for(cl=0; cl1<N; cl+=1) {
// task
S(cOd,cl)
}
if (»=2) {
for (c0=0; cO<N/2; cO+=1)
for (cl1l=0; cl<N/2; cl+=1) {
// task
R(cO®, cl);
}
for (c0=0; cO<N/2; cO+=1)
for (cl1=0; cl<N/2; cl+=1) {
// task
U(c®, cl);
}

Figure 3.9: Example of the AST of a pipelined program.

In the final step, we extract all loop nests that we want to pipeline in another function. This
function is called in omp parallel and omp single pragmas to launch and initialize the
tasks.

3.6.5 OpenMP Tasks

In the final step, we design a high-level OpenMP function for exploiting the detected task
parallelism.

Each task is defined as a function pointer with its input arguments integrated into a
structure. We use the in-dependencies and out-dependencies of the tasks as computed
in Section 3.6.4. We also need the size of the input argument and the total number of
statements that a task depends on them. Figure 3.10 shows the signature of this high-level
function.

void CreateTask(void (*f) (void *), void *input,
int outDepend, int outlIdx,

int *inDepend, int *inIdx,
int inputSize, int dependNum)

Figure 3.10: Signature of the function for creating tasks.

To coordinate between tasks, we define a global integer pointer dependArr and initialize
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it with NULL. We treat this pointer as a linearized two-dimensional array, where each
column corresponds for each statement, and each row is for a specific iteration block of
that statement. We also define a variable, writeNum to keep the number of loop-nests
in the program that are sources of other loop-nests. With these assumptions, each task
writes in the location [writeNumber*outDepend+outIdx] and reads from the locations
[writeNumber*inDepend[i]+inIdx[i]] of dependArr. Also, based on Equation 3.1 and
the definition of pipeline maps, for maintaining the correctness of the program, blocks of
the same for-loop nest should run in order. To add this in-dependency, we use the fact that
all tasks created from iterations of the same for-loop nest have the same function pointer.
Therefore, we keep track of the number of tasks created from each loop nest in a global
array, funcCount, and use the function pointer of each task to coordinate different blocks
of that task. The code in Figure 3.11 illustrates the creation of a task in the general case.

void *taskInput = malloc(inputSize);
memcpy (taskInput, input, inputSize);

3 int *self = (int *) f£f;

#pragma omp task

5 depend(out:dependArr[writeNum*outDepend+outIdx])

v depend(iterator (i=0:dependNum),in:dependArr

[writeNum*inDepend[i]+inIdx[i]])
depend(in:self[funcCount[outIdx]-1])
depend (out:self[funcCount[outIdx]])

{
f(taskInput);
free(taskInput);

Figure 3.11: Function for creating tasks in OpenMP.

3.7 Evaluation

We explained in Section 3.1 that cross-loop pipelining is especially important for the pro-
grams that compute-intensive functions are called in for-loop nests. For the evaluation of
our algorithm and prototype, we use two benchmark sets, where programs are compiled
using the Clang compiler with the 03 option, and all tests run on an x86_64 Intel quad-core
processor with two threads per core, clocks at 2900.000 MHz.

In the first benchmark set, we want to show the improvements that cross-loop pipelining
can make to the programs it is designed for; programs consist of a sequence of compute-
intensive serial for-loop nests. For this benchmark, we simulate compute-intensive kernels
by using the next_prime function of the GMP library [75]. The basic data structure,
gmp_data, is an array of mpz (data structure for multi-precision integer in the GMP library),
and it has SIZE elements. Allloop nests have depth two, and the i/ loop nest of the program



CuHAPTER 3. A PreerLINE DeTECTION TECHNIQUE IN POLLY 35

updates elements of the matrix A; by calling a function that adds its input arguments
element-wise and finds the numfh prime number after that (with next_prime function).
The A;s are two dimensional N X N matrices of gmp_data. Kernels are designed such that
Polly cannot parallelize the loops (loops are sequential) and the running time of the version
optimized with Polly is comparable with the sequential version. Table 3.1 shows the
properties of our experimental data. The Specification column shows the number of loop
nests and the values of num;s. The Memory access column shows the read access of each
statement from the arrays written in the previous loop nests (lower and upper bounds of
the loops are set accordingly). In this column, Si is the statement in the i*" loop nest. The
access patterns of the test P3 is similar to the patterns in the factorization algorithm.

Recall that blocks of one for-loop nest should run sequentially. Therefore, for a program
with 7 loop nests, there can be at most n tasks running in parallel. Figure 3.12 shows the
pipelined program’s speed-up compared with the sequential program for different values
of Nand SIZE. From Table 3.1 and Figure 3.12, we can see that cross-loop pipelining always
gains speed-up; however the amount of it depends on the loops access patterns.

speed-up per size

P14171 179 182 188 186 1.89 186 186 192 1.93 3.5
P2 4154 156 157 131 129 128 139 139 158 1.6
P3 4239 249 252 273 271 275 275 278 277 2.64 - 3.0
P44135 136 136 139 142 141 14 141 128 13

P54301 31 313 352 344 35 352 348 337 3.34

- 2.5
P6 1157 157 158 195 195 197 201 2.01 194 1.87
P74 19 189 192 201 201 202 21 21 212 21

- 2.0
P8 43.056 314 32 351 352 359 351 357 339 3.32
P9 4188 192 194 246 247 245 262 2.65 251 2.34

- 1.5

pP104174 179 178 158 16 1.6 157 157 135 1.29

D OSSOSO S S

QY QY Q \X Q¢
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Figure 3.12: Speed-up of different test cases, considering different values for N and SIZE,
comparing sequential version and pipelined version.
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In the second benchmark set, we use different variants of a sequence of matrix multiplica-
tion, the 2mm and 3mm benchmarks of Polybench [76] followed by the similar kernel 4mm. To
be able to generate code and also to make it a more suitable application of our framework,
we consider matrix multiplication as consecutive vector-matrix multiplications. Our goal
in this benchmark is to illustrate the advantages and disadvantages of cross-loop pipelining
compared to Polly (Pluto’s scheduling algorithm). For n=2, 3, 4, the nmm and nmmt kernels
are n consecutive matrix multiplications; in nmmt kernels, the second matrix is transposed
beforehand. Similarly, the ngmm and ngmmt kernels are generalized matrix multiplication,
wherein the loop nest, each element of the result matrix (e.g., C[i]1[j]) is multiplied by
the addition of the element of the result matrix (C) in the same column of the next row
(C[i+11[j]) and the element in the same row of the previous column (C[i] [j-1]). Figure
3.13 shows the speed-ups of the programs generated by applying cross-loop pipelining
(pipeline), Polly running with all available threads (polly8), and Polly running with n
threads (n is the number of loop nests) (polly), with respect to the sequential version.

Bl pipeline
EEl polly8
BN polly

19.5
18.5 1
17.5 1
16.5 1
15.5 1
14.5 1
13.5 A
12.5
11.5 1
10.5 1
9.5 1
8.5 1
7.5 4
6.5
5.5 1
4.5 1
3.5 1
2.5 4
1.5 A

Figure 3.13: Comparing speed-up gains of Polly running by all available threads, Polly
running by n threads (n is the number of loop nests), and cross-loop pipelining for variants
of generalized matrix multiplication.

As Figure 3.13 shows, the speed-up we gain by using Polly is more than the gain by applying
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cross-loop pipelining in the nmm and nmmt. For these kernels, Polly can optimize locality by
tiling, and it also parallelizes all loop nests. However, in the gnmm and gnmmt kernels, Polly
cannot detect any optimization, but by using cross-loop pipelining, we can gain speed-up.

3.8 Conclusion and Future Works

In this work, we developed a polyhedral model-based algorithm for detecting cross-loop
task parallelism. We implemented our algorithm as part of LLVM/Polly. With this pro-
totype, we can detect parallelization opportunities that conventional polyhedral optimiz-
ers cannot detect. We exploit the detected parallelism using OpenMP task constructs.
We tested our prototype on kernels with compute-intensive function calls inside for-loop
nests and reported the speed-ups considering different sizes and different memory access
patterns. We also considered kernels with variants of a sequence of generalized matrix
multiplications and compared the speed-ups of cross-loop pipelining and Polly.

We plan to generalize our code generation phase to generate code for loops with arbitrary
depth and also arbitrary number of tasks per loop. After this generalization, we can
experiment with more complicated algorithms.

Also, as mentioned in Section 3.5, we assume that the write functions are injective; we
want to study the possibilities of extending the transformation algorithm to relax this
assumption. Moreover, we would like to extend both the transformation algorithm and
the prototype to work correctly with the algorithms that detect DOACROSS parallelism in
loops.

An essential factor in the performance of the final program is the granularity of the tasks.
An interesting idea would be to develop an algorithm to choose a good task granularity
when there are multiple choices.

In the current version, the tasking layer is independent of creating and scheduling the task.
Therefore, we expect to be able to change the tasking layer from the OpenMP task to other
platforms with minimal changes. For future works, we would like to experiment with this
idea and have results in both performance improvements of different tasking platforms
and how easy it is to use our method and make it compatible with other platforms.

In the current version of this work, when using the cross-loop tasking, we do not take
advantage of other parallelization opportunities. We would like to know the effect of the
cross-loop pipelining on the other patterns and study the results of possible combinations
of this method with other optimization techniques on the performance improvements.
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Name | Specifications Memory access

P1 2 for-loop
num;, = 1 S2 « Aq[i][]]

P2 2 for-loop
num; = 2 S2 — A[2*i][2 * §]
num, = 6

P3 3 for-loop S2,S3 « Aq[i][3]
num;»3 = 1 S3 « A;[1][]]

P4 3 for-loop S2 « Aq[i+ jll3]
num;p =2 S3 «— Ag[2 %1+ j][2 * ]]
num; = 8 S3 « Ap[2+1i][2%]]

P5 4 for-loop S2,S3,54 « Aq[i][]]
num1,2,3,4 =1 53, S4 « Az[l][_]]

S4 « A3[i][]]

P6 4 for-loop S2,S3,54 « Aq[i + jl[]]
num; = 1 S3,S4 « Ay[i][j]
num, = 8 S4 « A3[i][j]
nums 4 = 32

P7 4 for-loop S2,S3 «— Aq[2#%1][2 % ]]
num; = 1 S3 «— Ay[2+1][2*]]
numy 34 = 8 S4 «— Aq[i][]]

S4 « A[i][]]

P8 4 for-loop S2,S3 « Aq[i][3]
num; 534 = 1 S4 « Az[i][]]

P9 4 for-loop S2,S4 «— A{[i][2 * j]
num; 34 = 1 S3 « Aq[i][]]

S3 « Ay[i][2 * j]
S4 « A[i][]]

P10 | 4 for-loop S2 « Aq[i + jll3]
num; = 1 S3 « Aq[i][]]
num; 34 = 2 S4 «— Ap[i][]]
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Table 3.1: Properties of the experimental data. The Specification column shows the number
of loop nests and values of num;s. The Memory access column shows the read accesses of
each statement.



Chapter 4

Towards Automatic OpenMP-Aware
Utilization of Fast GPU Memory

OpenMP has supported target offloading since version 4.0, and LLVM/Clang supports
its compilation and optimization. There have been several optimizing transformations in
LLVM aiming to improve the performance of the offloaded region, especially for targeting
GPUs. Although using the memory efficiently is essential for high performance on a GPU,
there has not been much work done to automatically optimize memory transactions inside
the target region at compile time.

In this work, we develop an inter-procedural LLVM transformation to improve the perfor-
mance of OpenMP target regions by optimizing memory transactions. This transformation
pass effectively prefetches some of the read-only input data to the fast shared memory via
compile time code injection. Especially if there is reuse, accesses to shared memory far
outpace global memory accesses. Consequently, our method can significantly improve
performance if the right data is placed in shared memory:.

4.1 Overview

On modern GPUs, the global memory is off-chip with high access latency. Therefore,
using the global memory efficiently and reducing the number of transactions to/from it
is essential to maximize a GPU’s computation capability utilization. An alternative to
global memory is shared memory which is limited on-chip and fast memory space. The
shared memory is allocated for each block (or team in OpenMP terminology), and it can
be used for optimizing a program in different ways, including prefetching. For prefetching,
a programmer first utilizes the threads in a team to copy (most often read-only) global
memory content into a shared memory buffer. Then, all accesses to these locations in
the global memory are replaced with accesses to the prefetched data in the faster shared
memory. This method is especially beneficial if the data is reused multiple times as each
access is sped up while the initial copy costs are fixed.

39



CuAaPTER 4. TowarDs AutoMATIC OPENMDP-AwARE UTiLiZATION OF Fast GPU MEMORY 40

In this work, we develop a compiler optimization technique to improve the performance of
OpenMP programs containing device offloading regions by automatically prefetching parts
of the required data to the shared memory through code injected at compile time. In the current
version of OpenMP, runtime functions and directives exist to explicitly allocate and use
memory in the shared space [6]. Also, the OpenMPOpt pass [19], developed as a part of
the LLVM framework [42], implements different OpenMP-aware optimization techniques
that utilize shared memory. These have proven to effectively improve the performance
of a program’s target regions. We leverage the OpenMPOpt pass infrastructure and the
LLVM/OpenMP GPU runtime functions for allocating (dynamic) shared memory for our
own optimization. By identifying suitable candidate memory regions and prefetching them
into the shared memory buffer automatically, we can improve the program’s performance
as each original load from the global memory is now significantly faster served from shared
memory instead.

The rest of this chapter is organized as follows: We first introduce background information
related to this work in Section 4.2. Then, we detail our method and implementation in
Section 4.3. Further optimization techniques are described in Section 4.4. Our experimental
results are reported and discussed in Sections 4.5 and 4.6, before we conclude the chapter
in Section 4.7.

4.2 Background

In this section, we briefly explain some of the topics related to OpenMP target offloading
and GPU programming models relevant to our work. In the context of this part of the
work, and without loss of generality, we assume our target device is an NVIDIA GPU.

421 OpenMP target offloading support in LLVM/Clang

OpenMP has supported device offloading since version 4.0 [77], using the target direc-
tive. Compiling and optimizing OpenMP programs with target offload regions has been
supported by LLVM/Clang since version 11 [78]. The primary approach for compiling
programs with OpenMP constructs is outlining [79]. We explained the process in details
in Section 2.4.1.

LLVM/OpenMP GPU execution model

When there is a target region in a an OpenMP program the host (CPU) is responsible for
managing kernels, the functions to be executed on the device (GPU). In other words, the
host schedules and coordinates kernels, allocates memory, and also transfers data from the
host memory to the device memory.
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The teams directive creates a league of teams. Each team begins running a single thread,
main thread. The parallel directive makes the main thread to spawn some worker threads.
Moreover, by using the distribute for directives, we can distribute iterations of a loop
between teams and threads in each team.

In the compilation process of OpenMP programs with offloading regions, we can map each
team to an streaming multiprocessor(SM) of the GPU (similar to the blocks in CUDA), and
each thread in the team to hardware threads inside the SMs.

OpenMP target offloading compilation in LLVM/Clang

The compiler takes some extra stages to handle device offloading. This process has two
passes:

1- The first pass is a regular compilation of the host part of the program. Also, the
compiler finds the offloading regions and replaces them with calls to the host run-
time library functions with appropriate arguments (consisting of the kernel function
identifier and its arguments). Moreover, a fallback code of the offloaded region is
generated for the cases where the target does not exist or offloading fails at runtime.
In this case, the offloaded region will run in the host.

2- The second pass uses the information on the offloaded regions gathered in the first
pass and generates target dependent code for the device. It generates kernel functions
for each target region, device functions, some necessary global variables, and also
target dependent metadata. Also, the OpenMP runtime library is linked to the
program.

In other words, the compiler first generates two separate modules, the host module for
regions of the program running on the host and the device module for the offloaded region
to run on the device. Therefore, the compilation flow of OpenMP programs with target
offloading regions is different from the programs with other constructs. For more details
on the complete compilation flow of an OpenMP program with target offloading and GPU
runtime, refer to [80, 81, 82, 83].

In this work, we only need to manipulate the device module. Moreover, we focus on
the single program multiple data (SPMD) execution mode and do not consider the generic
mode [19].

To compile an OpenMP program with the omp target pragma, the Clang compiler outlines
the target region to a kernel function and uses OpenMP runtime functions to call the kernel
from the host module. Parallel loops in an OpenMP program are handled similarly. Clang
tirst outlines the body of the parallel loop, the parallel region, to a function. We call this
outlined function the parallel region function. Then, the compiler replaces the parallel for
pragma with the call to an OpenMP runtime function, e.g., kmpc_parallel. This function
takes a pointer to the parallel region function and all variables needed for the execution
as inputs. The work-sharing loop logic is explicitly generated through more runtime calls
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placed inside the parallel region function. Distribution of iterations is based on the thread
Id initialized by the parallel region.

As explained in Section 4.1, we only consider kernels that expose two levels of parallelism
on the outer-most loop level. To handle these kernels, Clang first distributes the iterations
of the “distribute component” between teams based on the number of threads in each
team. Then, it parallelizes the execution of all iterations in each chunk assigned to a team
by utilizing the team’s threads.

void target_region(/* inputs */)

kmpc_distribute_init(/* loop bounds */);

// begining of the distribute region

foreach chunk { //<- distribute loop
// parallel region (par_region) with enclosed
// workshare (=for) loop executed by all threads
kmpc_parallel (par_region, ...);

}

// end of the distribute region

Figure 4.1: Compiler view of the kernels we consider in this paper.

Figure 4.1 shows the high-level structure of the kernel created for a target region with a
single distribute parallel for. The compiler first inserts a call to the runtime function
kmpc_distribute_init in the kernel to determine the lower and upper bounds of the
chunks assigned to the team. After that, the compiler inserts a for loop in the kernel to
iterate over the chunks. We call this loop the distribute loop. The compiler then inserts a call
to the kmpc_parallel function in the distribute loop to distribute the iterations between
threads of the teams. The inputs to this runtime call are the pointer to the parallel region
function and its inputs, and the chunk of the work-sharing loop specified by each iteration
of the distribute loop. For easier reference, we call the region of the kernel after the call to
the kmpc_distribute_static_init function the distribute region.

As explained in details in 2.4.1, OpenMPOpt is an inter-procedural optimization (IPO) pass
in LLVM, which is implemented for optimizing OpenMP GPU execution. This pass is
enabled by default since LLVM 11 when compiling with 02 and 03 options. It first runs on
the module and later it runs on the call graph of the program. It uses domain knowledge
about OpenMP runtime calls to better optimize the LLVM-IR of the program.

4.2.2 CUDA Memory hierarchy

While executing, GPU threads can have access to different memory spaces. All threads
across all teams have access to the global memory. Each team of threads has access to the
shared memory. Finally, all threads have private local memory.

In this work, our focus is on the shared memory. Shared memory is an on-chip memory;
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therefore, it is faster than global memory. There are two kinds of shared memory: static
and dynamic. Static shared memory is used when the required size of the shared memory
is known at compile time, and dynamic shared memory is used when this size is unknown
at compile time.

A challenge while using the GPU’s shared memory is to avoid bank conflict. The shared
memory is managed in modules of equal size or memory banks. Different memory banks
can be accessed simultaneously. However, multiple threads cannot access different loca-
tions in the same bank in parallel. Therefore, having multiple threads accessing the same
memory bank causes the bank conflict problem, and the accesses will be serialized. More
detailed information can be found in [84, 85].

In OpenMP, #pragma omp allocate(X)allocator(omp_pteam_mem_alloc) is for allocat-
ing static shared memory, where X should be replaced by the variable’s name in the shared
memory.

With LLVM, the function 11vm_omp_target_dynamic_shared_alloc returns a pointer to
the beginning of the dynamic shared memory. This dynamic shared space is “allocated”
with the LIBOMPTARGET_SHARED_MEMORY_SIZE environment variable.

4.3 Implementation

This section explains the method we use and our implementation ! details. We first explain
the problem we are solving in more detail in Section 4.3.1. After that, Sections 4.3.2, 4.3.3,
and 4.3.4 explain our method and implementation phases for prefetching and retrieving
the memory locations correctly and efficiently. Finally, in Section 4.3.5, we discuss an
application of our method to load input arrays of small sizes to the static shared memory.

4.3.1 Problem statement

As stated in Section 4.1, our goal is to improve the performance of the target region by
prefetching some required data to the shared memory by code generation at compile time.
However, the shared memory space is limited, and we cannot prefetch all the input data.

Considering the arrays accessed in the parallel region, we can categorize their access
relations in two cases: (1) they are a function of the work-sharing loop’s induction variable,
and (2) they do not depend on this variable. The former case is more challenging for
prefetching because different teams access different locations of the input array. We propose
a solution for prefetching an input array in the first case under some conditions; however,
the method and the implementation can be extended to relax these limitations and also to
handle the second case.

Thttps://github.com/dtalaashrafi/kernel-mem-opt
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This work considers one of the input arrays to the kernel that is read in the parallel region
in a loop for prefetching. In other words, we consider the first input two dimensional array
which its rows or its columns are read in the kernel. That means the read access instruction
is surrounded by a loop-nest of the depth of at least two, where the outer-most loop is
the work-sharing loop. Also, the array’s access relation is a function of the work-sharing
loop’s induction variable and the induction variable of one of the inner loops. We call
that inner loop the access loop. Note that the access loop can be nested in other loops, but
their induction variables cannot be present in the access function. Figure 4.2 shows the
work-sharing loop, the access loop, and an eligible read access for prefetching (v1). We
#pragma omp target teams map(to:v1[0:N*M])

#pragma omp distribute parallel for
for (int i=0; i<N; i++) //—>work-sharing loop
for(int j=0; j<N; j++)
for(int k=0; k<M; k++) //—>access loop
sum += v1[i*M+k] * 3;
// /\—>eligible access for prefetching
}

Figure 4.2: Example of the supported read access.

also assume there are no conditional branches in the target region, and the total number
of available threads (number of teams multiplied by the number of threads per team) is
equal to the number of iterations of the work-sharing loop. Furthermore, we assume the
amount of shared memory usage per team does not exceed the shared space allocated for
the program.

We perform shared memory prefetching in the distribute region before the distribute loop
(before entering the parallel region). This way, we can prefetch those locations needed
in each team to the shared memory before the threads begin computation. After that,
in the parallel region, we access those locations from the shared memory instead of the
global memory. We implement this procedure as a part of OpenMPOpt pass of LLVM, and
if activated, it executes as a part of the 03 compiler optimization passes.

4.3.2 Finding memory locations to prefetch

The first step is to find the memory locations that we want to prefetch for each team. In
fact, our goal in this phase is to find all the global memory locations of the considered array
that are read by the threads of each team in the input program. To find these memory
locations, we need to have (1) the chunks of the work-sharing loop assigned to each team
and (2) the memory locations accessed in each iteration of the chunks. Then, we get all the
accessed locations by iterating over all locations in each iteration assigned to the team.

As we explained in Section 4.1, the compiler inserts a call to a runtime function 2 in the
kernel to get the lower (team_LB) and upper (team_UB) bounds of the chunks of the work-

2The function is: kmpc_distribute_init
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sharing loop assigned to each team. Therefore, we can access their values after this function
call in the kernel (after line 3 in Figure 4.1).

For each team, we want to find the locations accessed in all iterations i of the work-sharing
loop, where i is between team_LB and team_UB. For the kernels we consider, we can find
these memory locations by having the integer values of the first location of the array that is
accessed in iteration i (Base;), the distance between two consecutive accesses in iteration
i (Step;), and the number of accessed locations by iteration i (Number;). Having these
numbers, we can find all the accessed memory locations in iteration i by computing;:

(Basej + k X Step;),® < k < Number;. 4.1)

The thread that executes iteration i of the work-sharing loop reads Number; locations of the
array, starting from Base;, and the difference between two indexes it accesses consecutively
is Step;. For example, consider the pseudo-code in Figure 4.3.

//distribute parallel loop
for(i=0; i<6; i++)
for(j=0; j<3; j++)
= A[il[31;

Figure 4.3: Example pseudo-code.

Figure 4.4 illustrates the memory locations accessed by threads in the teams, and also
values of Base;. We assume that the kernel is launched with three teams, each of them
with two threads. Same colors shows the accesses in each team, and different shades are
used to show accesses of various threads in the same team.

200 | 201 | a02
01310 | all | al2
P 7220 | a21 | a32
%4330 a31 | a32
Paseil 340 | a4l | a42
Ba%¢s 1 a50 | a51 | a52

Figure 4.4: Illustration of locations accessed by each team.

We apply the LLVM scalar evolution (scev) [12] analysis pass to the parallel region function
to get these values. Using the result of scev analysis, we can get the required information
as objects of the LLVM Value class [86]. To be more precise, we begin by getting the
result of scalar evolution of the array’s access relation (using the getSCEV function) in
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the parallel region function and casting it to SCEVAddRecExpr [87]. After that, we call the
getStart and getStepRecurrence functions of the result of the previous step. The outputs
of these functions are objects of the SCEV class, and we call them BaseSCEV and StepSCEV,
respectively. In the next step, we use an object of the SCEVExpander class [88] to expand
code for BaseSCEV and StepSCEV.

The code expanded for the BaseSCEV is an instruction that computes the Base; values
corresponding to each iteration i of the work-sharing loop. Because of the kernel’s structure,
the value of Base; is a function of i and the input parameters of the kernel. If the expanded
instruction has any operands resulting from other instructions, we get those instructions
and store them in a stack. We repeat this operation on the newly added instructions to
the stack until we reach an instruction that all its operands are either integer numbers, the
variable i, or the input parameters. Then, the instructions in the stack make the instruction
sequence that, given the iteration number i, computes the corresponding value of Base;.

The code expanded for the StepSCEV is an object of the LLVM Value class. It is the value
of Step; and can be inserted into the program as an integer number.

Moreover, we can get the access loop from the SCEVAddRecExpr object we got in the first
step. The value of Number; is the number of iterations of the access loop, and we can get it
as an object of the LLVM Value class using the bounds of the loop. Then, it can be inserted
into the program as an integer value or as a kernel input parameter. Note that the values
of Step; and Number; are equal for all iterations and we can drop the i subscript.

For example, in the kernel of Figure 4.2, the code expanded for Base; is (M*1i), the Step is
the integer 1, and the Number is the kernel input parameter M.

Up to this point, we have generated code for computing Base;, Step, and Number. Based
on Equation 4.1, to have access to all the locations we want to prefetch, we need to generate
code for iterating over the values of Base; corresponding to the iterations assigned to
each team. Therefore, we create a loop iterating from team_LB to team_UB, and insert the
instruction sequence for computing the Base; value in the body of this loop. We call this
loop the base computing loop. We insert the base computing loop in the distribute region
before the distribute loop. In the following steps, we will explain how to use the generated
Base; values to prefetch their corresponding memory locations.

Notice that the function parameters in the instruction sequence for computing the Base;
value and in the instruction for Number are the ones in the parallel region function. There-
fore, to keep the program’s semantic correctness, the next step is to replace the parameters
with their correspondences in the distribute region. Also, the work-sharing loop’s iteration
number variable (for example, variable i in the instruction for computing Base for Figure
4.2) should be replaced with the induction variable of the base computing loop to compute
Base; for the team’s iteration chunk.
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4.3.3 Loading data to the shared memory

After generating code for iterating over values of Base; for i iterating over the team’s
chunk, and also for Step and Number, the next step is to prefetch their corresponding
locations from the global memory to consecutive locations in the shared memory. For
this purpose, we develop a high-level function called copy_to_shared_mem. This function
prefetches memory locations accessed in one iteration of the work-sharing loop. As a result,
to prefetch all the locations of the considered array read by each team, we should call this
function in the base computing loop. This function gets the lower bound of the team’s
chunk (team_LB), the iteration number of the work-sharing loop (the induction variable
of the base computing loop i), a pointer to the array we want to prefetch (V), the value
of Basej, and the values of Step and Number as its inputs. Therefore, after inserting the
instruction sequence for computing Base; in the base computing loop, we have all the input
values and we can insert a call to the copy_to_shared_mem function. Figure 4.5 shows the
call to this function in the transformed kernel.

void kernel(/* inputs */)

kmpc_distribute(/* loop bounds */);
for(int i=team_LB; i<team_UB; i++) //—>base computing loop
//instruction sequence for computing Base_i
copy_to_shared_mem(team_LB, i, V, Base_i, Step, Number);
// distribute region
}

Figure 4.5: Call to the copy_to_shared_mem function in the transformed kernel.

The first global memory location accessed by each team is V[Basej], for i =team_LB,
and it should be stored in location 0 of the shared buffer. The global memory loca-
tions accessed in iteration i are V[(Base; + k X Step)], for k between 0 and Number. The
copy_to_shared_mem function stores these locations in consecutive indexes of the shared
buffer beginning from S; to S; + Number, where S; is the starting storing location com-
puted for iteration i. To avoid over-writing already prefetched data, S; is equal to the
total number of the locations prefetched in the previous iterations of the base comput-
ing loop, and it is equal to (i-team_LB)XNumber. With these relations, each team re-
quires (team_UB-team_LB)xNumber X B bits of the shared space, where B is the size of the
prefetched array’s type. Continuing on the pseudo-code in Figure 4.3, Figure 4.6 illustrates
the locations of each team in the shared buffer.

Moreover, we want to prefetch data in the shared memory in parallel to get better per-
formance. The function is called in the target region outside the parallel region. There-
fore, we distribute the work between threads based on their ids. Figure 4.7 shows the
copy_to_shared_mem function for prefetching an integer array into the shared memory.
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0 1 2 3 4 5
a00 a0l |a02|al®|all|al2

0 1 2 3 4 5
a20 | a2l |a22|a30 | a3l |a32

0 1 2 3 4 5
a40 | a4l | a42 | a50 | a51|ab52

Figure 4.6: Memory locations prefeched.

1 void copy_to_shared_mem(int team_Lb, int i, int *V,
2 int Base_i, int Step, int Number)
3 {
y int Tid = get_thread_id();
int *DataBuf = (int*) get_dynamic_shared();
6 int bufOff = (i-teamlLb)*Number+Tid;
7 int stride = omp_get_max_threads();
8 for(int k=0; k<num; k+=stride)
9 DataBuf[bufOff+k] = V[Base_i+Tid*Step+k*Step];

Figure 4.7: The implementation of copy_to_shared_mem function.

4.3.4 Retrieving data from the shared memory

The final step is to generate code for replacing accesses to the global memory with their
corresponding accesses in the shared memory in the parallel region function.

Based on the explanation in Section 4.3.3 and line 9 of Figure 4.7, the index (Base; + k X Step)
of the considered array in the global memory is stored in index (i—team_LB)XNumber + k
of the shared buffer. In these relations k iterates from 0 to Number and it is the induction
variable of the access loop.

To access the shared memory locations, we first generate code for getting the pointer to
the dynamic shared memory in the parallel region function. Then, we use the values of
team_LB and induction variable of the access loop in the the parallel region function and
generate code for the access relation to the shared memory. Finally, we replace the access
to the global memory with the (newly generated) access to the shared memory.

4.3.5 Static shared memory prefetching

We can take advantage of the method explained in the previous parts to prefetch input
arrays of small sizes to the static shared memory. In this case, we prefetch the whole
considered arrays into the shared memory for all teams. We first select input arrays that fit
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in the shared memory. Then, we use the approach of inserting a high-level copy function
in the distribute region and replacing read instructions from the global memory with read
instructions from the shared memory in the parallel region function to prefetch them.

4.4 Optimization

In this section we explain two optimization methods that can be applied at compile time for
some special cases to improve the performance and applicability of the method explained
in Section 4.3 in these cases.

4.4.1 Space optimization

The method explained in Section 4.3 stores every read location in the team to the shared
memory. Although this method works correctly for all the cases, its time and space usage is
not efficient if some iterations in the chunks assigned to each team read the same locations.
In other words, if Base; is equal for some values of i ranging from team_LB to team_UB, the
corresponding iterations of the base computing loop prefetch redundant data.

We extend the method of Section 4.3 to more efficiently handle the special case that all 3
iterations of the team’s chunk read the exact same locations. For this purpose, we add an
option that can be set at compile time to different, or to same. The different option is
the default one and works as explained in Section 4.3. The same option can be used when it
is known in advance that all iterations assigned to each team read the exact same locations.
In this case, the base computing loop is unnecessary, and we can load all the required
data for a team by finding Base; for i=team_LB and call the copy_to_shared_mem function
only once. In this case, the global memory locations are prefetched in the shared buffer
from index @ to Number-1 and we can retrieve them in the parallel region by the induction
variable of the access loop.

4.4.2 Reducing bank conflict

We explained in Section 4.2.2 that bank conflict might happen when a kernel uses GPU’s
shared memory. In the kernels we consider, the number of accesses with bank conflict
depends on the value of Number. In the worst case, where Number is a multiple of 32 almost
all of the accesses have bank conflict and we get slowdown by prefetching. The reason is
that each iteration of the base computing loop (calls to the copy_to_shared_mem function)
starts storing data to the bank 0 of the shared memory. This causes all threads requesting
from the same memory bank when retrieving data.

3]t is better to use the default option for cases where some (but not all) of the team’s chunk iterations
read the same locations. The reason is that avoiding prefetching redundant data in these cases complicates
the copy_to_shared_mem function in different ways (e.g., adds conditional branches to it) that degrades the
performance.
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To solve this problem, we use the padding technique. More specifically, if the value of
Number is a multiple of 32, we store one invalid data in the shared memory by altering
the copy_to_shared_mem function. We can apply this modification by changing line 4 of
Figure 4.7 to bufOff=(i-teamLb) X (Number+1)+Tid. Also, to ignore the invalid location,
we add 1 to the Number when retrieving data in the parallel region function.

4.5 Evaluation

In this section, we evaluate the method explained in Section 4.3 and the optimization
techniques proposed in Section 4.4. We evaluate our method in terms of running time
improvements. We compile all the programs with the Clang compiler, along with -03 and
-openmp-opt-inline-device options. We run the experiments on an NVIDIA GeForce
MX150 GPU of sm=6.0. For the shared memory experiments, we allocate enough space of
dynamic shared memory for the kernel. We do this by setting the value of the environment
variable LIBOMPTARGET_SHARED_MEMORY_SIZE to the appropriate number. This number
varies based on the size of the experiment.

For evaluation, we use the rectangular matrix multiplication kernel, and consider multiply-
ing matrices with different number of rows and columns. We compare the running times of
the kernel (reported by NVIDIA profiler, nvprof) with and without prefetching and report
the speedups based on the multiplier’s size. Figures 4.8 and 4.9 show the speedup we get
when multiplying two matrices by prefetching rows of the multiplier, and Figures 4.9 and
4.11 show the speedup we get when we multiply transposes of two matrices and prefetch
columns of the multiplier.

In both of these sets of experiments, the outermost loop is considered the work-sharing
loop with distribute parallel for pragma, the number of threads we use is 32, and the
number of teams is the number of iterations of the work-sharing loop (the number of rows in
the first case, and the number of columns in the second case) divided by 32. Also, locations
read by each thread in each team are different and we cannot apply the space optimization
from Section 4.4.1 on these kernels (compile them with the default (different) option).

To examine the effect of bank conflict and padding method’s effectiveness explained in
Section 4.4.2, Figures 4.8 and 4.10 show the speedup we get without applying the padding
method, and Figures 4.9 and 4.11 shows the speedup when we apply the padding method
when prefetching data.

To test the space optimization of Section 4.4.1, we again consider the matrix multiplication
kernel and we add the collapse(2) construct to the outermost loop. We set the number of
teams and the number of threads per team equal to the number of rows of the multiplier.
For these examples, the locations used by all threads in a team are similar and we compile
them with the same option. Figure 4.12 shows the speedups we get by prefetching. In the
final evaluation, we consider the XSBench [89] with small size. For different grid types
(Nuclide, Unionized, Hash) the input data structure has three small size arrays that we
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Figure 4.8: Prefetching speedup of the matrix multiplication by prefetching without
padding.

can prefetch to the static shared memory, as explained in Section 4.3.5.

Figure 4.1 shows the speedup and also the total number of global memory load requests
(Id_req) with and without prefetching, reported by nvprof. The maximum speedup is 5
percent, and the number of load requests from the global memory decreased by prefetching.

4.6 Analysis of the experiments

In the experiments represented in Figures 4.8, 4.9, 4.10, and 4.11, there are reuses of the
multiplier’s rows and columns in each team of threads, respectively. As a result, by
applying the prefetching technique, we reduce the number of global memory accesses,
which improves the performance of the kernels in most cases. However, as shown in
4.8 and 4.10, the kernels get slowdown when the number of rows in Figure 4.8 and the
number of columns in Figure 4.10 is 32, because of shared memory bank conflict. We can
improve the performance in these cases by applying the padding method, as explained in
Section 4.4.2. The effectiveness of the padding method is shown in Figures 4.9 and 4.11.
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Figure 4.9: Prefetching speedup of the matrix multiplication by prefetching with padding.

Similarly, in the experiment represented in Figure 4.12, there are reuses of the same row of
the multiplier in each team of threads. By prefetching and applying the space optimization
explained in Section 4.4.1 the kernels gain speedup in all cases.

In our experiment with XSBench, represented in Figure 4.1, accessing the prefetched arrays
is not time-consuming compared to the other steps of the algorithms. Although prefetching
works as expected and reduces the number of load requests from the global memory, the
kernels do not gain significant speedup.

4.7 Conclusion and future works

In this work, we used the infrastructure of the OpenMPOpt pass to develop an LLVM pass
to optimize offloaded regions of OpenMP when targeting GPUs by prefetching data to the
shared memory. The method can be applied on the kernels with some properties (ref.
Section 4.3.1) and we show that it improves the performance of these kernels. We also
propose solutions for more efficient use of shared space and for avoiding bank conflicts.
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Figure 4.10: Prefetching speedup of the matrix multiplication by prefetching without
padding.

For future works, we plan to improve the applicability of the method by supporting more
general kernels and by relaxing the limitations explained before. For instance, we want
to improve our process to handle functions that use other OpenMP constructs. Moreover,
in the current version, we only prefetch one of the read-only arrays. An interesting idea
is to improve the algorithm to prefetch more than one array or choose the best one for
prefetching.
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Figure 4.11: Prefetching speedup of the matrix transpose multiplication by applying
prefetching with padding.

grid type | speedup 1d_req 1d_req with prefetching
Nuclide 1.05 1885268743 1754280336
Unionized 1.03 1066897410 935422655
Hash 1.05 1331110977 1199 607 982

Table 4.1: Prefetching speedup and comparing number of global memory load requests in
XSBench.
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Figure 4.12: Prefetching speedup of matrix multiplication with collapsed loops.



Chapter 5

Complexity Estimates for
Fourier-Motzkin Elimination

In this work, we propose an efficient method for removing all redundant inequalities
generated by Fourier-Motzkin elimination. This method is based on an improved version
of Balas” work and can also be used to remove all redundant inequalities in the input system.
Moreover, our method only uses arithmetic operations on matrices and avoids resorting to
linear programming techniques. Algebraic complexity estimates and experimental results
show that our method outperforms alternative approaches, in particular those based on
linear programming and the simplex algorithm.

5.1 Introduction

Polyhedral sets play an important role in computational sciences. For instance, they are
used to model, analyze, transform and schedule for-loops of computer programs; we refer
to the articles [90, 91, 92,93, 94, 95, 96]. Of prime importance are the following operations on
polyhedral sets: conversion between H-representation and V-representation (performed,
for instance, by the double description method); and projection, as performed by Fourier-
Motzkin elimination.

Fourier-Motzkin elimination is an algorithmic tool for projecting a polyhedral set onto a
linear subspace. It was proposed independently by Joseph Fourier and Theodore Motzkin,
respectively in 1827 and 1936. See the paper [97] of George Danzing and Section 12.2 of
the book [98] of Alexander Schrijver, for a presentation of Fourier-Motzkin elimination.
As an example, for eliminating variable t; from the inequality system 5.1, one step of the
Fourier-Motzkin elimination algorithm finds a positive linear combination of the inequality
a; with the inequality 2, and the inequality a3, such that the coefficient of t; is zero in the

56
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result inequality. The output is the inequality system 5.2.

ay 3t =2, +t3 <7

A=19ay: -2t +2t) —t3 <12 (5.1)
ay: =4ty +tr,+3t3 < 15
2t) —t3 <50
Ar=17700 (5.2)
—5t, —13t3 <73

The original version of this algorithm produces large amounts of redundant inequalities
and has a double exponential algebraic complexity. Removing all these redundancies is
equivalent to giving the so-called minimal representation of the projection of a polyhedron.
Leonid Khachiyan explained in [99] how linear programming (LP) could be used to remove
all redundant inequalities, thereby reducing the cost of Fourier-Motzkin elimination to a
number of machine word operations singly exponential in the dimension of the ambient
space. However, Khachiyan did not state a more precise running time estimate taking into
account the characteristics of the polyhedron being projected, such as the number of its
facets.

As we shall prove in this work, rather than using linear programming one may use only
matrix arithmetic, increasing the theoretical and practical efficiency of Fourier-Motzkin
elimination while still producing an irredundant representation of the projected polyhe-
dron.

Other algorithms for projecting polyhedral sets remove some (but not all) redundant in-
equalities with the help of extreme rays: see the work of David A. Kohler [22]. As observed
by Jean-Louis Imbert in [23], the method he proposed in that paper and that of Sergei N.
Chernikov in [24] are equivalent. On the topic of finding extreme rays of a polyhedral
set in H-representation, see Nataija V. Chernikova [100], Hervé Le Verge [101] and Komei
Fukuda [21]. These methods are very effective in practice, but none of them can remove all
redundant inequalities generated by Fourier-Motzkin elimination.

Fourier-Motzkin elimination is well suited for projecting a polyhedron, described by its
facets (given by linear inequalities), onto different sub-spaces. Our work is about projecting
polyhedral sets to lower dimensions, eliminating one variable after another, thanks to the
Fourier-Motzkin elimination algorithm as described in Schrijver’s book [98]. In fact, our
goal is to find the minimal representations of all of the successive projections of a given
polyhedron (in H-representation, thus given by linear inequalities), by eliminating variables
one after another, using the Fourier-Motzkin elimination algorithm.

5.1.1 Polyhedral cones and polyhedral sets

We explained some basic concepts and definitions related to the polyhedral sets in Section
2.1. In this subsection, we explain more advanced subjects and theorems associated with
the polyhedral theory, that are required for presenting the ideas in this work.
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In this Chapter, we use bold letters, e.g. v, to denote vectors and we use capital letters, e.g.
A, to denote matrices. Also, we assume that vectors are column vectors. For row vectors,
we use the transposition notation, as in A for the transposition of a matrix A. For a matrix
A and an integer k, Ay is the row of index k in A. Also, if K is a set of integers, Ax denotes
the sub-matrix of A with row indices in K.

We begin this section with the fundamental theorem of linear inequalities.

Theorem 5.1.1 ([98]) Let ay, - -, a,, be a set of linearly independent vectors in Q". Also, let b be
a vector in Q". Then, exactly one of the following holds:

(i) the vector b is a non-negative linear combination of ay, ..., a,. In other words, there exist
positive numbers yy, ..., Yy such that we haveb = Y\ | y;a;, or,

(ii) there exists a vector d € Q", such that both d'b < 0 and d'a; > 0 hold forall 1 < i < m.

Definition 5.1.1. A subset of points C C Q" is called a cone if for each x € C and each real
number A > 0 we have Ax € C. A cone C C Q" is called convex if for all x,y € C, we have
x+y € C. If C € Q" is a convex cone, then its elements are called the rays of C. For two
rays r and r’ of C, we write r’ ~ r whenever there exists A > 0 such that we have r’ = Ar.

Definition 5.1.2. A subset H C Q" is called a hyperplane if H = {x € Q" | a’x = 0} for some
non-zero vector a € Q".

Definition 5.1.3. A half-space is a set of the form {x € Q" | a’x < 0} for a some vector
acQ".

Definition 5.1.4. A cone C C Q" is a polyhedral cone if it is the intersection of finitely many
half-spaces, that is, C = {x € Q" | Ax < 0} for some matrix A € Q"*".

Definition 5.1.5. Let {xi,..., Xy} be a set of vectors in Q". The cone generated by
{x1,...,xy}, denoted by Cone(xy,---,Xy), is the smallest convex cone containing those
vectors. In other words, we have Cone(xy, ..., X)) = {1 x1+- -+ Apxyu | A1 20,..., A, =
0}. A cone obtained in this way is called a finitely generated cone. With the following lemma,
which is a consequence of the fundamental Theorem of linear inequalities, we can say that
the two concepts of polyhedral cones and finitely generated cones are equivalent, see [98].

Theorem 5.1.2 (Minkowski-Weyl theorem) A convex cone is polyhedral if and only if it is
finitely generated.

Definition 5.1.6. For two subsets P and Q of Q", their Minkowski sum, denoted by P + Q,
is the subset of Q" defined as {p + ¢ | (p,q) € P x Q}.

The following lemma, which is another consequence of the fundamental theorem of linear
inequalities, helps us to determine the relation between polytopes and polyhedra. The
proof can be found in [98]

Lemma 5.1.3 (Decomposition theorem for convex polyhedra) A subset P of Q" is a convex
polyhedron if and only if it can be written as the Minkowski sum of a finitely generated cone and a

polytope.
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Another consequence of the fundamental theorem of inequalities, is the famous Farkas
lemma. This lemma has different variants. Here we only mention a variant from [98].

Lemma 5.1.4 (Farkas’ lemma) Let A € Q™" be a matrix and b € Q™ be a vector. Then, there
exists a vector t € Q", t > 0 satisfying At = b if and only if y'b > 0 holds for each vector y € Q™
such that we have y*A > 0.

A consequence of Farkas’ lemma is the following criterion for testing whether an inequality
¢/x < ¢ is redundant w.r.t. a polyhedron representation Ax < b, that is, whether ¢'x < ¢ is
implied by Ax < b.

Lemma 5.1.5 (Redundancy test criterion) Let ¢ € Q", co € Q, A € Q" " and b € Q™. Then,
the inequality ¢'x < ¢ is redundant w.r.t. the system of inequalities Ax < b if and only if there
exists a vector t > 0 and a number A > 0 satisfying ¢! = t'A and ¢y = t'b + A.

Definition 5.1.7.  An inequality a’x < b (witha € Q" and b € Q) is an implicit equation
of the inequality system Ax < b if a’x = b holds for all x satisfiying the inequality system.

Definition 5.1.8. A representation of a polyhedron is minimal if no inequality of that
representation is implied by the other inequalities of that representation.

Definition 5.1.9. The characteristic cone of P is the polyhedral cone denoted by CharCone(P)
and defined by CharCone(P) :={y € Q" |[x+y e P, Vx € P} = {y | Ay < 0}.

Definition 5.1.10.  The linearity space of the polyhedron P is the linear space denoted
by LinearSpace(P) and defined as CharCone(P) N —CharCone(P) = {y | Ay = 0}, where
—CharCone(P) is the set of the —y for y € CharCone(P). The polyhedron P is pointed if its
linearity space is {0}.

Lemma 5.1.6 The polyhedron P is pointed if and only if the matrix A is full column rank.

Definition 5.1.11. The dimension of the polyhedron P, denoted by dim(P), is n —r,
where 7 is dimension! of the ambient space (that is, Q") and r is the maximum number of
implicit equations defined by linearly independent vectors. We say that P is full-dimensional
whenever dim(P) = n holds. In another words, P is full-dimensional if and only if it does
not have any implicit equations.

Definition 5.1.12. A subset F of the polyhedron P is called a face of P if F equals
{x € P | AsupX = bgyp} for a sub-matrix Agy, of A and a sub-vector by, of b.

Remark 5.1.7 It is obvious that every face of a polyhedron is also a polyhedron. Moreover, the
intersection of two faces Fy and F; of P is another face F, which is either Fy, or F,, or a face with a
dimension less than min(dim(F;), dim(F,)). Note that P and the empty set are faces of P.

Definition 5.1.13. A face of P, distinct from P and of maximal dimension is called a facet
of P.

10f course, this notion of dimension coincides with the topological one, that is, the maximum dimension
of a ball contained in P.
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Remark 5.1.8 It follows from the previous remark that P has at least one facet and that the dimension
of any facet of P is equal to dim(P) — 1. When P is full-dimensional, there is a one-to-one
correspondence between the inequalities in a minimal representation of P and the facets of P. From
this latter observation, we deduce that the minimal representation of a full dimensional polyhedron
is unique up to multiplying each of the defining inequalities by a positive constant.

Definition 5.1.14. A non-empty face that does not contain any other face of a polyhedron
is called a minimal face of that polyhedron. Specifically, if the polyhedron P is pointed, each
minimal face of P is just a point and is called an extreme point or vertex of P.

Definition 5.1.15. Let C be a cone such that dim(LinearSpace(C)) = t. Then, a face of C of
dimension f + 1 is called a minimal proper face of C. In the special case of a pointed cone,
that is, whenever t = 0 holds, the dimension of a minimal proper face is 1 and such a face
is called an extreme ray . We call an extreme ray of the polyhedron P any extreme ray of its
characteristic cone CharCone(P). We say that two extreme rays r and r’ of the polyhedron
P are equivalent, and denote it by r ~ r’, if one is a positive multiple of the other. When we
consider the set of all extreme rays of the polyhedron P (or the polyhedral cone C) we will
only consider one ray from each equivalence class.

Lemma 5.1.9 (Generating a cone from its extreme rays) A pointed cone C can be generated
by its extreme rays, that is, we have C = {x € Q" | (¢ > 0) x = Re}, where the columns of R are
the extreme rays of C.

Remark 5.1.10 From the previous definitions and lemmas, we derive the following observations:
1. the number of extreme rays of each cone is finite,
2. the set of all extreme rays is unique up to multiplication by a scalar, and,
3. all members of a cone are positive linear combination of extreme rays.

We denote by ExtremeRays(C) the set of extreme rays of the cone C. Recall that all cones
considered here are polyhedral.

The following, see [102, 103], is helpful in the analysis of algorithms manipulating extreme
rays of cones and polyhedra.

Lemma 5.1.11 (Maximum number of extreme rays) Let E(C) be the number of extreme rays
of a polyhedral cone C € Q" with m facets. Then, we have:

_ | ntl | n+2
E(C) < (mmL_i J)+(mmL_Tzl J) < ml3l. (5.3)

From Remark 5.1.10, it appears that extreme rays are important characteristics of polyhedral
cones. Therefore, two algorithms have been developed in [21] to check whether a member
of a cone is an extreme ray or not. For explaining these algorithms, we need the following
definition.

Definition 5.1.16. Foracone C = {x € Q" | Ax < 0} and t € C, we define the zero
set C4(t) as the set of row indices i such that A;t = 0, where A; is the i-th row of A. For
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simplicity, we use ((t) instead of C4(t) when there is no ambiguity. Consider a cone
C={xeQ"|Ax=0, A”x < 0} where A’ and A” are two matrices such that the system
A”x < 0 hasno implicit equations. The proofs of the following lemmas are straightforward
and can be found in [21] and [103].

Lemma 5.1.12 (Algebraic test for extreme rays) Let r € C. Then, the ray r is an extreme ray

’
)zn— 1.
c(r)

Lemma 5.1.13 (Combinatorial test for extreme rays) Let r € C. Then, the ray r is an extreme
ray of C if and only if for any ray ¥’ of C such that C(r) € C(x’) holds we have r’ ~r.

of C if and only if we have rank ([

Definition 5.1.17.  For the given polyhedral cone C € Q", the polar cone induced by C is
denoted C* and given by:

C'={yeQ"|y'x<0,Vx e C}.

The following lemma shows an important property of the polar cone of a polyhedral cone.
The proof can be found in [98].

Lemma 5.1.14 (Polarity property) Fora given cone C € Q", there is a one-to-one correspondence
between the faces of C of dimension k and the faces of C* of dimension n — k. In particular, there is
a one-to-one correspondence between the facets of C and the extreme rays of C*.

Each polyhedron P can be embedded in a higher-dimensional cone, called the homogenized
cone associated with P.

Definition 5.1.18. The homogenized cone of the polyhedron P = {x € Q" | Ax < b} is
denoted by HomCone(P) and defined by:

HomCone(P) = {(X, X1ast) € Qn+1 | C[Xt/ xlast]t <0},

A -b
=l 7

where

isan (m + 1) X (n + 1)-matrix, if A is an (m X n)-matrix.

Lemma 5.1.15 (H-representation correspondence) An inequality A;x < b; is redundant in P
if and only if the corresponding inequality A;X — b;iX1ac < 0 is redundant in HomCone(P).

Theorem 5.1.16 (Extreme rays of the homogenized cone) Every extreme ray of the homoge-
nized cone HomCone(P) associated with the polyhedron P is either of the form (x,0) where X is an
extreme ray of P, or (X, 1) where X is an extreme point of P.

5.1.2 Polyhedral computations

In this section, we review two of the most important algorithms for polyhedral computa-
tions: the double description algorithm (DD for short) and the Fourier-Motzkin elimination
algorithm (FME for short).
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A polyhedral cone C can be represented either as an intersection of finitely many half-
spaces (thus using the so-called H-representation of C) or as by its extreme rays (thus using
the so-called V-representation of C); the DD algorithm produces one representation from
the other. We shall explain the version of the DD algorithm which takes as input the
H-representation of C and returns as output the V-representation of C.

The FME algorithm performs a standard projection of a polyhedral set to lower dimension
subspace. In algebraic terms, this algorithm takes as input a polyhedron P given by a system
of linear inequalities (thus an H-representation of P) in n variables x; < x, < --- < x,, and
computes the H-representation of the projection of P on x| < --- < x4 for some 1 < k < n.

The double description method

by finitely many vectors, say {xi,...,x;} € Q". Moreover, from 5.1.9 we know that if
C is pointed, then it can be generated by its extreme rays, that is, C = Cone(R) where
R = [xi,...,x4]. Therefore, we have two possible representations for the pointed polyhedral
cone C:

We know from 5.1.2 that any polyhedral cone C = {x € Q" |Ax < 0} can be generated

H-representation: as the intersection of finitely many half-spaces, or equivalently, with a
system of linear inequalities Ax < 0;

V-representation: asalinear combination of finitely many vectors, namely Cone(R), where
R is a matrix, the columns of which are the extreme rays of C.

We say that the pair (A, R) is a Double Description Pair or simply a DD pair of C. We call A
a representation matrix of C and R a generating matrix of C. We call R (resp. A) a minimal
generating (resp. representing) matrix when no proper sub-matrix of R (resp. A) is generating
(resp. representing) C.

It is important to notice that, for some queries in polyhedral computations, the output
can be calculated in polynomial time using one representation (either a representation
matrix or a generating matrix) while it would require exponential time using the other
representation.

For example, we can compute in polynomial time the intersection of two cones when they
are in H-representation but the same problem would be harder to solve when the same
cones are in V-representation. Therefore, it is important to have a procedure to convert
between these two representations, which is the focus of the articles [100] and [103].

We will explain this procedure, which is known as the double description method as well as
Chernikova’s algorithm. This algorithm takes a cone in H-representation as input and returns
a V-representation of the same cone as output. In other words, this procedure finds the
extreme rays of a polyhedral cone, given by its representation matrix. It has been proven
that this procedure runs in single exponential time. To the best of our knowledge, the
most practically efficient variant of this procedure has been proposed by Fukuda in [21]
and is implemented in the CDD library. We shall explain his approach here and analyze
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its algebraic complexity. Before presenting Fukuda’s algorithm, we need a few more
definitions and results. In this section, we assume that the input cone C is pointed.

The double description method works in an incremental manner. Denoting by Hy, ..., Hy,
the half-spaces corresponding to the inequalities of the H-representation of C, we have
C=H;N---N Hy. Let1 <i < m and assume that we have computed the extreme rays
of the cone C'~! := H; N --- N H;_;. Then the i-th iteration of the DD method deduces the
extreme rays of C' from those of C'~! and H;.

Assume that the half-spaces Hj, ..., H;, are numbered such that H; is given by A;x < 0,
where A; is the i-th row of the representing matrix A. We consider the following partition

of Q":
H;“z{er”|Aix>0},H?:{er”IAiX:O}andHl.‘z{XEQ”IAiX<O}.

Assume that we have found the DD-pair (A'"!, R'™!) of C'~!. Let ] be the set of the column
indices of R™"!. We use the above partition {H;, HY, H;} to partition | as follows:

i
L-+={j€]|rj€H+},I?={j€]|rjEHO}andL_:{]'EIII‘jGH_}, '
where {r; | j € J}is the set of the columns of Ri7! hence the set of the extreme rays of ci—1

For future reference, let us denote by partition(J, A;) the function which returns J*, | 0] as
defined above. The proof can be found in [21].

Lemma 5.1.17 (Double description method) Let J' := J* U JO U (J* x J7). Let R be the
(n X |J'|)-matrix consisting of

o the columns of R'=! with index in J* U J°, followed by
* the vectors x'(j iy for (j, j') € (J* X |J7), where
v = (Airjry — (Airj)rj,
Then, the pair (A?, R') is a DD pair of C'.
The most efficient way to start the incremental process is to choose the largest sub-matrix
of A with linearly independent rows; we call this matrix A?. Indeed, denoting by C° the

cone with A° as representation matrix, the matrix A is invertible and its inverse gives the
extreme rays of CY, that is:

ExtremeRays(C?) = (A%) .

Therefore, the first DD-pair that the above incremental step should take as input is
(A°, (A7,

The next key point towards a practically efficient DD method is to observe that most of the
vectors r’(j j» in Lemma 5.1.17 are redundant. Indeed, Lemma 5.1.17 leads to a construction
of a generating matrix of C (in fact, this would be Algorithm 4 where Lines 13 and 16 are
suppressed) producing a double exponential number of rays (w.r.t. the ambient dimension
n) whereas Lemma 5.1.11 guarantees that the number of extreme rays of a polyhedral cone
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is singly exponential in its ambient dimension. To deal with this issue of redundancy, we
need the notion of adjacent extreme rays.

Definition 5.1.19. Adjacent extreme rays Two distinct extreme rays r and r’ of the
polyhedral cone C are called adjacent if they span a 2-dimensional face of C. 2

The following lemma shows how we can test whether two extreme rays are adjacent or not.
The proof can be found in [21].

Lemma 5.1.18 (Adjacency test) Let r and v’ be two distinct rays of C. Then, the following
statements are equivalent:

1. rand v’ are adjacent extreme rays,
2. rand v’ are extreme rays and rank(A¢yncey) =1 — 2,
3. ifr” is a ray of C with C(r) N C(x") C C(x”), then x” is a positive multiple of either r or r’.

It should be noted that the second statement is related to algebraic test for extreme rays while the
third one is related to the combinatorial test.

Based on Lemma 5.1.18, we have Algorithm 3 for testing whether two extreme rays are
adjacent or not.

Algorithm 3: Adjacency Test algorithm.

Input :(A,r,r’), where A € Q™" is the representation matrix of cone C, r and r’ are two
extreme rays of C.
Output: true if r and r’ are adjacent, false otherwise
s:= Ar, s’ := Ar/;
let C(r) and C(r") be set of indices of zeros in s and s’ respectively;
C:=C(r)NC(r');
if rank(A¢) =n -2;
then
L return true;

else
L return false;

The following lemma explains how to obtain (A1, RY) from (A"™!, R1), where A~} (resp.
A') is the sub-matrix of A consisting of its first i — 1 (resp. i) rows. The double description
method is a direct application of this lemma, see [21] for details.

Lemma 5.1.19 As above, let (A'=!, Ri=1) be a DD-pair and denote by | be the set of indices of the
columns of Ri=. Assume that rank(A*=") = n holds. Let ]’ := ]~ U J° U Adj, where Adj is the set
of'the pairs (j, j') € J* X ]~ such thgt rj, and rj are adjacent as extreme rays of C'~', the cone with
A1 as representing matrix. Let R be the (n X |]'|)-matrix consisting of

o the columns of R'=! with index in ]~ U J°, followed by

2We do not use the minimal face, as it used in the main reference because it makes confusion.
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* the vectors x'(j iy for (j, j') € (J* X |7), where
l"(]',]'/) = (Al'r]')l']‘r - (Air;.)r]',
Then, the pair (A*, R") is a DD pair of C'. Furthermore, if R'=" is a minimal generating matrix for

the representation matrix A'~", then R' is also a minimal generating matrix for the representation
matrix A

Using Lemmas 5.1.18 and 5.1.19, we can obtain Algorithm 4 for computing the extreme
rays of a cone. Note that in this algorithm, A’ shows the representation matrix in step i

Algorithm 4: DDmethod

Input : a matrix A € Q™" defining the H-representation of a pointed cone C
Output: a matrix R defining the V-representation of C

1 let K be the set of indices of A’s independent rows;

N

O© 0w N S U e W

10
11
12
13

14

15

A= Ag;
RO := (A9
let | be set of column indices of RY;
while K # {1,--- ,m} do
select a A-row index i ¢ K;
J*, J°, ]~ = partition(], A;);
add vectors with indices in J* and J° as columns to R’;
forp € [* do
forn € [~ do
if AdjacencyTest(A™"!,r,, 1) = true then
L Tnew = (Aitp)ty = (Aity)ry;
add rpew as columns to R;

| let ] be set of indices in Ri;

return R = R™

Fourier-Motzkin elimination

Definition 5.1.20. Projection of a polyhedron Let A € Q™" and B € Q"7 be matrices.
Let ¢ € Q" be a vector. Consider the polyhedron P C QF* defined by P = {(u,x) €
Q"*1| Au+ Bx < ¢}. We denote by proj(P; x) the projection of P on x, that is, the subset of Q7
defined by

proj(P;x) = {x € Q7 | Ju e Q?, (u,x) € P}.

Fourier-Motzkin elimination (FME for short) is an algorithm computing the projection
proj(P;x) of the polyhedron of P by successively eliminating the u-variables from the
inequality system Au + Bx < c¢. This process shows that proj(P;x) is also a polyhedron.

Definition 5.1.21. Inequality combination Let {;, {; be twoinequalities: ajx|+---+a,x, <
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diand byx+---+b,x, < dy. Let1 < i < nsuch that the coefficients a; and b; of x; in £; and
{, are respectively positive and negative. The combination of {; and ¢, w.r.t. x;, denoted by
Combine(fl, 52, xi), is:

=bi(aix1+---+apx,) +ai(byxy+---+byx,) < =bidy +a;d,.

Theorem 5.1.20 shows how to compute proj(P;x) when u consists of a single variable x;.
When u consists of several variables, FME obtains the projection proj(P;x) by repeated
applications of Theorem 5.1.20.

Theorem 5.1.20 (Fourier-Motzkin theorem [22]) Let A € Q™" be a matrix and let b € Q™
be a vector. Consider the polyhedron P = {x € Q" | Ax < b}. Let S be the set of inequalities defined
by Ax < b. Also, let 1 < i < n. We partition S according to the sign of the coefficient of x;: S* =
{€ €S |coeff(£,x;) >0},S" ={€eS|coeff(£,x;) <0}and S° = {€ € S| coeff (¢, x;) = 0).
We construct the following system of linear inequalities:

S’ = {Combine(sy, sn, xi) | (sp,5,) € ST xS~} U SO,
Then, S is a representation of proj(P; x \ {x;}).

With the notations of Theorem 5.1.20, assume that each of S* and S~ counts % inequalities.
Then, the set S’ counts (%)? inequalities. After eliminating p variables, the projection
would be given by O((%)zp) inequalities. Thus, FME is double exponential in p.

On the other hand, from [104] and [105], we know that the maximum number of facets of
the projection on Q""" of a polyhedron in Q" with m facets is O(m!"/?]). Hence, it can be
concluded that most of the generated inequalities by FME are redundant. Eliminating these
redundancies is the main subject of the subsequent sections.

5.1.3 Cost model

We use the notion of height of an algebraic number as defined by Michel Waldschmidt in
Chapter 3 of [106]. In particular, for any rational number 7, thus with b # 0, we define the
height of 7, denoted as height(%), as log max(|a|, |b|).

For a given matrix A € Q"™ let ||A|| denote the infinity norm of A, that is, the maximum
absolute value of a coefficient in A. We define the height of A, denoted by height(A) :=
height(||A]|), as the maximal height of a coefficient in A. For the rest of this section, our main
reference is the PhD thesis of Arne Storjohann [107]. Let k be a non-negative integer. We
denote by M(k) an upper bound for the number of bit operations required for performing
any of the basic operations (addition, multiplication, and division with remainder) on input
a,b € Z with |al,|b| < 2F. Using the multiplication algorithm of Arnold Schénhage and
Volker Strassen [108] one can choose M(k) € O(klogkloglogk).

We also need complexity estimates for some matrix operations. For positive integers a, b, c,
let us denote by MM(a, b, c) an upper bound for the number of arithmetic operations (on
the coefficients) required for multiplying an (a X b)-matrix by an (b X ¢)-matrix. In the
case of square matrices of order 1, we simply write MM (n) instead of MM (n,n,n). We
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denote by 0 the exponent of linear algebra, that is, the smallest real positive number such
that MM (n) € O(n9).

In the following, we give complexity estimates in terms of M(k) € O(klogkloglogk)
and B(k) = M(k)logk € O(k(logk)*loglogk). We replace every term of the form
(log k)? (loglog k)7 (logloglog k)", (where p, q, r are positive real numbers) with O (k¢) where
€ is a (positive) infinitesimal. Furthermore, in the complexity estimates of algorithms op-
erating on matrices and vectors over Z, we use a parameter 3, which is a bound on the
magnitude of the integers occurring during the algorithm. Our complexity estimates are
measured in terms of machine word operations. Let A € Z™" and B € Z"?. Then, the prod-
uct of A by B can be computed within O(MM(m, n, p)(log ) + (mn + np + mp)B(logf))
word operations, where = n ||Al| ||B]| and [|A|| (resp. ||B||) denotes the maximum absolute
value of a coefficient in A (resp. B). Neglecting logarithmic factors, this estimate becomes
O(max(m, n,p)e max(ha, hp)) where hy = height(A) and hp = height(B). For a matrix A €
Z™"  a cost estimate of Gauss-Jordan transform is O(nmr®2(log B) + nm(logr)B(logp))
word operations, where 7 is the rank of the input matrix A and g = (Vr||All)". Let h be
the height of A, for a matrix A € Z™*", with height h, the rank of A is computed within
O(mn9+p'+€) word operations, and the inverse of A (when this matrix is invertible over
Q and m = n) is computed within O(m?"1*€11*€) word operations. Let A € Z"™" be an
integer matrix, which is invertible over Q. Then, the absolute value of any coefficient in
A~ (inverse of A) can be bounded up to (Vn — 1||A||"~D).

5.2 Revisiting Balas’ method

Asrecalled, FME produces a representation of the projection of a polyhedron by eliminating
one variable at a time. However, this procedure generates lots of redundant inequalities
limiting its use in practice to polyhedral sets with a handful of variables only. In this
section, we propose an efficient algorithm which generates the minimal representation of
a full-dimensional pointed polyhedron, as well as its projections. Throughout this section,
we use Q to denote a full-dimensional pointed polyhedron in Q", where

Q={(u,x)eQ’ xQ7|Au+Bx <c¢c}, (5.4)

with A € Q™, B € Q™7 and ¢ € Q™. Thus, Q has no implicit equations in its represen-
tation and the coefficient matrix [A, B] has full column rank. Our goal in this section is to
compute the minimal representation of the projection proj(Q;x) given by

proj(Q; x) := {x| Ju,s.t.(u,x) € Q}. (5.5)
We call the cone
C:={yeQ"|y’A=0 and y > 0} (5.6)

the projection cone of Q w.r.t.u. When there is no ambiguity, we simply call C the projection
cone of Q. Using the following so-called projection lemma, we can compute a representation
for the projection proj(Q; x):
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Lemma 5.2.1 ([24]) The projection proj(Q; x) of the polyhedron Q can be represented by
S := {y'Bx < y'c, Vy € ExtremeRays(C)},

where C is the projection cone of Q defined by Equation (5.6).

Lemma 5.2.1 provides the main idea of the block elimination method. However, the rep-
resention produced in this way may have redundant inequalities. The following example
from [109] shows this point.

Example Let P be the polyhedron represented by

12x; +x2 —3x3+x4 <1
—36x1 —2xp + 18x3 — 11x4 < =2
—18x1 —xp +9x3 —Tx4 < —1

p:= (5.7)
45x1 +4xy — 18x3 + 13x4 <

The projection cone of P w.r.t. u := {xy, xp} is

12y; —36y2 — 18y3 +45y4 =0,
C:= Y1 -2y - Y3 +4ys =0, (5.8)
y120,1220,y3 20,y4 2 0.

The extreme rays of the cone C are:
0,0,5,2,0,3),(3,0,2,0,0, 1),(0,0,0,1,45,4),(1,0,0,0,12,1), (0,5,0,4,0,6), (3,1,0,0,0, 1).

These extreme rays generate a representation of proj(P; {x3, x4}):

(5.9)

3x3—3x4 <1, 9x3—-11x4 <1, 6x3 —x4 <2,
—3x3+x4 <1, —18x3+13x4 <4, 9x3—8x4 < 1.

One can check that, in the above system of linear inequalities, the inequality 3x3 —3x4 < 1
is redundant.

In [25], Balas observed that if the matrix B is invertible, then we can find a cone such that
its extreme rays are in one-to-one correspondence with the facets of the projection of the
polyhedron (the proof of this fact is similar to the proof of our Theorem 5.2.3). Using this
fact, Balas developed an algorithm to find all redundant inequalities for all cases, including
the cases where B is singular.

In this section, we will explain Balas” algorithm 2 in detail. To achieve this, we lift the
polyhedron Q to a space in higher dimension by constructing the following objects.

3 It should be noted that, although we are using his idea, we have found a flaw in Balas’ paper. In fact, the
last inequality in representation of W9 is written as equality that paper.
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Construction of By. Assume that the first g rows of B, denoted as B;, are independent.
Denote the last m — g rows of B as B;. Add m — g columns, €g+1,---,€n, 0B, where e; is the
i-th vector in the canonical basis of Q", thus with 1 in the i-th position and 0’s anywhere

else. The matrix By has the following form:

By 0
By Iug|

To maintain consistency in the notation, let Ag = A and ¢y = c.

By =

Construction of Q°. We define:

QO = {(u,x') EQPXQW |A0u+BoX’ <¢, Xge1 =" =X :0}-

From now on, we use x’ to represent the vector x € Q7, augmented with m — g variables
(Xg+1,--+,Xm). Since the extra variables (x;+1,...,Xy) are assigned to zero, we note that
proj(Q; x) and proj(QY%; x’) are “isomorphic” by means of the bijection ®:
proj(Q;x) — proj(Q% x’)
(x1,...,x9) > (x1,...,%4,0,...,0)

In the following, we will treat proj(Q;x) and proj(Q% x’) as the same polyhedron when
there is no ambiguity.

Construction of W°. Define W to be the set of all (v, w, vp) € Q7 x Q"7 x Q satisfying

WO = {(Vr w, UO) | [thwt]B(;lAO = O/ [thwt]B(;l = O/ (5 10)

- [Vt,wt]Balco + vg = 0}. '
Similar to the discussion in Balas” work, the extreme rays of the cone proj(W?; {v, vo}) are
used to construct the minimal representation of the projection proj(Q;x). To prove this
relation, we need a preliminary observation.

Lemma 5.2.2 The operations “computing the characteristic cone” and “computing projections”
commute. To be precise, we have:

CharCone(proj(Q;x)) = proj(CharCone(Q); x).

Proof By the definition of the characteristic cone, we have CharCone(Q) = {(u,x) | Au +
Bx < 0}, whose representation has the same left-hand side as the one of Q. The lemma is
valid if we can show that the representation of proj(CharCone(Q); x) has the same left-hand
side as proj(Q;x). This is obvious with the Fourier-Motzkin elimination procedure.

Theorem 5.2.3 shows that extreme rays of the cone proj(W?; {v, vo}), which is defined as

proj(WO; {v, vo}) := {(v, —v0) | (v, vg) € proj(W? {v, vo})},

are in one-to-one correspondence with the facets of the homogenized cone of proj(Q; x). Asa
result its extreme rays can be used to find the minimal representation of HomCone(proj(Q; x)).
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Theorem 5.2.3 The polar cone of HomCone(proj(Q;x)) is equal to proj(WO; {v, vo}).

Proof By definition, the polar cone (HomCone(proj(Q;x))" is equal to

(¥, y0) | Iy, yollx', x1ast]” <0,V (X, x1a5) € HomCone(proj(Q;x))}.

This claim follows immediately from: (HomCone(proj(Q;x))* = proj(W?; {v, vo}). We prove
this latter equality in two steps.

(2) For any (v,-7vg) € proj(WO; {v,vo}), we need to show that v, —Tol[x!, Xt < 0
holds when (x, xj,5t) € HomCone(proj(Q;x)). Remember that Q is pointed. As a result,
HomCone(proj(Q;x)) is also pointed. Therefore, we only need to verify the desired prop-
erty for the extreme rays of HomCone(proj(Q; x)), which either have the form (s, 1) or (s, 0)
(Theorem 5.1.16). Before continuing, we should notice that since (v, vg) € proj(W?; {v, vo}),
there exists w such that [v', W', 7y] € WO, Cases 1 and 2 below conclude that (v,-1vp) €
HomCone(proj(Q;x))* holds.

Case 1: For the form (s, 1), we have s € proj(Q;x). Indeed, s is an extreme point of
proj(Q;x). Hence, there exists u € Q”, such that we have Au + Bs < ¢. By construction
of Q% we have Agu + Bys’ < ¢, where s’ = [s',5541,...,5m] with sgpy = --- =5, = 0.
Therefore, we have: [Vt,Wt]Bo‘leﬁ + [Vt,Wt]BalBos’ < [Vt,Wt]Balco. This leads us to
vis=[v,ws < [Vt,Wt]Bg l¢g < Tg. Therefore, we have [V, =0][s!, x1as]’ < 0, as desired.

Case 2: For the form (s, 0), we have s € CharCone(proj(Q;x)) = proj(CharCone(Q);x). Thus,
there exists u € QF such that Au + Bs < 0. Similarly to Case 1, we have [Vt,Wt]Ba TAou +
[Vt,Wt]BalBos’ < [Vt,Wt]Bal(). Therefore, we have v's = [V, wW']s’ < [Vt,Wt]Bam = 0, and
thus, we have [V, —To][s, x1ast]’ < 0, as desired.

(S) For any (¥, 7,) € HomCone(proj(Q; x))*, we have [§, 7, 1[x!, X1ast]* < 0 for all (X, X1as) €

HomCone(proj(Q;x)). For any X € proj(Q;x), we have iti < =Y, The reason is that

(X,1) € HomCone(proj(Q;x)). Therefore, we have y'x < —¥,, for all x € proj(Q;x), which
makes the inequality ¥'x < -, redundant in the system {Au + Bx < ¢}. By Farkas’ Lemma
(see Lemma 5.1.5), there exists p > 0,p € Q" and A > 0 such that p’A = 0,y = p'B,
Yo = p'c+ A. Remember that Ay = A, By = [B, B’], ¢y = ¢. Here B’ is the last m — q columns
of By consisting of e;41,...,€,. Letw = p'B’. We then have

{p'Ag =0, [¥',w1=p'By,—7, > p'co,p > 0},
which is equivalent to
p' =1, W1B;', [y, W1B;'Ag = 0,

~ 7o > [¥,W1B; e, [¥, W 1B;" > 0}

Therefore, (¥, W, —7,) € W, and (y,-7,) € proj(W’ {v, vo}). From this, we deduce that
(¥, Vo) € proj(W? {v, vo}) holds.
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Theorem 5.2.4 The minimal representation of proj(Q;x) is given exactly by
{vix < vg | (v, v9) € ExtremeRays(proj(W’; (v, v9))) \ {(0,1)}}.

Proof By Theorem 5.2.3, we know that the minimal representation of the homogenized
cone HomCone(proj(Q; x)) is given exactly by:

(VX — Dox1ast < 0] (v, v9) € ExtremeRays(proj(W?; (v, v9)))}.

Using Lemma 5.1.15, any minimal representation of HomCone(proj(Q;x)) has at most
one more inequality than any minimal representation of proj(Q;x). This extra inequality
is Xt > 0 and, in this case, proj(W%; (v,v)) will have the extreme ray (0,1), which
can be detected easily. Therefore, the minimal representation of proj(Q;x) is given by
{vlx < vy | (v, v9) € ExtremeRays(proj(W?; (v, v0))) \ {(0,1)}}.

For simplicity, we call the cone proj(WO; {v, vo}) the redundancy test cone of Q w.rt. u
and denote it by P,(Q). When u is empty, we define P(Q) := Pu(Q) and we call it the
initial redundancy test cone. If there is no ambiguity, we use only #, and # to denote the
redundancy test cone and the initial redundancy test cone, respectively.

It should be noted that (Q) can be used to detect redundant inequalities in the input
system, as it is shown in Algorithm 7.

5.3 Minimal representation of the projected polyhedron

In this section, we present our algorithm for removing all the redundant inequalities gener-
ated during Fourier-Motzkin elimination. Our algorithm detects and eliminates redundant
inequalities, right after their generation, using the redundancy test cone introduced in Sec-
tion 5.2. Intuitively, we need to construct the cone W and obtain a representation of the
redundancy test cone, $,(Q), where u is the vector of eliminated variables, each time we
eliminate a variable during FME. This method is time consuming because it requires to
compute the projection of WO onto {v, vy} space at each step. However, as we prove in
5.3.2, we only need to compute the initial redundancy test cone, using Algorithm 5, and the
redundancy test cones, used in the subsequent variable eliminations, can be found incre-
mentally without any extra cost. After generating the redundancy test cone, the algorithm
uses Algorithm 6, and keeps the newly generated inequality only if it is an extreme ray of
the redundancy test cone.

Note that a byproduct of this process is a minimal projected representation of the input
system, according to the specified variable ordering. This representation is useful for
finding solutions of linear inequality systems. The notion of projected representation was
introduced in [110, 105] and will be reviewed later in this chapter.

For convenience, we rewrite the input polyhedron Q definedin5.4as: Q = {y € Q" | Ay < ¢},
where A = [A,B] € Q"",n =p+gandy = [u},x']' € Q". We assume the first n rows of
A are linearly independent.
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Algorithm 5: Generate initial redundancy test cone

Input :S = {Ay < ¢}, a representation of the input polyhedron Q

Output: P, a representation of the initial redundancy test cone

Construct A in the same way we constructed B, that is, A¢ := [A, A’], where
A’ = [en+1, - .., €y] with e; being the i-th vector of the canonical basis of Q™;

Let W := {(v,w,09) € Q" x Q" ™" x Q| —[v,w'Aj e+ vy > 0, [v}, w]AS! > 0};

P = projW; {v, vo};

return P;

Remark 5.3.1 There are two important points about the Algorithm 5. First, we only need a
representation of the initial redundancy test cone. This representation does not need to be minimal.
Therefore, calling Algorithm 5 in Algorithm 7 (which computes a minimal projected representation
of a polyhedron) does not lead to a recursive call to Algorithm 7. Second, to compute the projection
proj(W; {v, vo}), we need to eliminate m —n variables from m + 1 inequalities. The block elimination
method is applied to achieve this. As it is shown in 5.2.1, the block elimination method requires to
compute the extreme rays of the projection cone (denoted by C), which contains m + 1 inequalities
and m + 1 variables. However, considering the structural properties of the coefficient matrix of the
representation of C, we can see that computing the extreme rays of C is equivalent to computing the
extreme rays of another simpler cone, which still has m + 1 inequalities but only n + 1 variables.

Lemma 5.3.2 A representation of the redundancy test cone Py(Q) can be obtained from P (Q) by
setting coefficients of the corresponding p eliminated variables to O in the representation of P (Q).

Proof To distinguish from the construction of (Q), we rename the variables v, w, vy as
Vu, Wu, Uy, When constructing W9 and computing the test cone $,(Q).

That is, we have Py (Q) = proj(W; {vy, v4}), where W is the set of all (v, Wu, 7a) € Q7 X
Q"1 xQ satisfying {(Vu, Wu, vu) | [Vh, Wh1B1A = 0, —[v}, wi1Bj e +vy > 0, [vh, wh1B;! > 0},

while we have P (Q) = proj(W; {v, vg}) where W is the set of all (v, w,vy) € Q" x Q""" xQ
satisfying {(v, w,vo) | — [v!, w/]Aj'c + 0o > 0, [v, w']A;! > 0},

By Step 1 of Algorithm 5, [Vt,wt]AalA = v! holds for all (v,w,vg) € W. We can rewrite
vas vl = [v],v}], where v| and v, are the first p and last n — p variables of v. Then, we
have [v/, w']A;'A = v! and [v/,w/']A;'B = v}. Similarly, we have [v}, wi]B;'A = 0 and
[v, wh1B;'B = v}, for all (vy, Wy, v4) € WP. This lemma holds if we can show Py = Ply, .

We prove this in two steps:

(C) For any (Vy4,Ty) € Pu(Q), there exists wy, € Q"77, such that (Vy, Wy, 0y) € WP, Let
[V, W'] := [V, WelB; Ao, where V' = [¥],V4] (Vi € Q/,¥, € Q"7, and W € Q""). Then,
because (Vy, Wu, 7u) € W?, we have Vﬁ = [Vf,,Wfl]BglA =0and Vé = [Vf,,WfJ]Bng =V, Let
Tp = Uy, it is easy to verify that (v, w,vg) € W. Therefore, (0, Vy, vy) = (Vv,09) € P(Q).

(2) For any (0,v2,79) € P(Q), there exists w € Q"™", such that (0,v,,w,79) € W. Let
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[Va, Wyl := [0,¥5, W 1A;'By. We have ¥, = [0,¥5, W 1A;'B = V,. Let Ty = Ty, it is easy to

verify that (vy, Wy, Uu) € WO. Therefore, (V2,7g) = (Vu, Tu) € Pu(Q).

Consider again the polyhedron Q = {y € Q" | Ay < ¢}, where A=[A,Bl€e Q""" , n=p+gq
and y = [u!,x']" € Q". Fix a variable ordering, say y; > --- > y,, For | < i < n, we denote
by AW the inequalities in the representation Ay < ¢ of Q whose largest variable is ;. We
denote by ProjRep(Q;y; > --- > y,) the linear system A" if n = 1 and the conjunction
of AWV and ProjRep(proj(Q;y2); y2 > -+ > y,) otherwise, where y» = (y2,...,Y,). Of
course, ProjRep(Q; y1 > -+ > y,) depends on the representation which is used of Q.

Definition 5.3.1. Projected representation For the polyhedron Q C Q", we call projected
representation of Q w.r.t. the variable order y; > --- > y, any linear system of the form
ProjRep(Q;y1 > -+ > y,). We say that such a linear system P is a minimal projected
representation of Q if, for all 1 < k < n, every inequality of P, with y; as largest variable, is
not redundant among all the inequalities of P with variables among vy, ..., ¥x.

Algorithm 7 generates a minimal projected representation of a polyhedron, w.r.t. an specific
variable ordering.

Algorithm 6: Extreme ray test

Input : (P, £), where P := {(v,v9) € Q" X Q | M[v}, v]" < 0} with M € Q"*("*D,
t:aly<cwithaeQ"andceQ
Output: true if [a, c]’ is an extreme ray of P, false otherwise
Let M be the coefficient matrix of P;
Lets := M[al, c]};
Let C(s) be the index set of the zero coefficients of s;
if rank(Mc(s)) = n then
t return frue;

6 else

L return false;

5.4 Complexity estimates

In this section, we analyze the computational complexity of Algorithm 7, which computes a
minimal projected representation of a given polyhedron. This computation is equivalent to
eliminating all variables, one after another, in Fourier-Motzkin elimination. We prove that
using our algorithm, finding a minimal projected representation of a polyhedron is singly
exponential in the dimension 7 of the ambient space. The most consuming procedure in
Algorithm 7 is finding the initial redundancy test cone. This operation requires another
polyhedron projection in higher dimension. As it is shown in Remark 5.3.1, we can use
block elimination method to perform this task efficiently. This requires the computation of
the extreme rays of the projection cone. The double description method is an efficient way
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Algorithm 7: Minimal Projected Representation of Q

Input :S = {Ay < c¢}: a representation of the input polyhedron Q
Output: A minimal projected representation of Q
Generate the initial redundancy test cone # by Algorithm 5S¢ := { };
for i from 1 to m do
Let f be the result of applying 6 with the inputs  and A;y < ¢;;
if f = true then
t So:=SoU{Ajy < ci};

P :=Plo=0;
forifrom0ton —1do
Sivi =1}
for {05 € S; with positive coefficient of y;y1 do
for l, € S; with negative coefficient of y;+1 do
Chew = Combine(fpos, fneg/ yi+1);
Let f be the result of applying 6 with the inputs £ and {yew;
if f = true then
t Siv1:=S5i41 U {gnew}}

for ¢ € S; with zero coefficient of y;y1 do
Let f be the result of applying 6 with the inputs # and ¢ ;
if f = true then
t Siy1 = Sis1 U{L);
B P = 7)|vi+1:0;
return S US; U---US,;

to solve this problem. We begin this section by computing the bit complexity of the double
description algorithm.

Lemma 5.4.1 (Coefficient bound of extreme rays) Let S = {x € Q" | Ax < 0} be a minimal
representation of a cone C C Q", where A € Q™*". Then, the absolute value of a coefficient in any
extreme ray of C is bounded over by (n — 1)"||A||>"=D,

Proof From the properties of extreme rays, see Section 5.1.1, we know that when r is an
extreme ray, there exists a sub-matrix A’ € Q""" of A, such that A’r = 0. This means
that r is in the null-space of A’. Thus, the claim follows by proposition 6.6 of [107].

Lemma 5.4.2 Let S = {x € Q" | Ax < 0} be the minimal representation of a cone C C Q", where
A € Q"*". The double description method, as specified in Algorithm 4, requires O (m"2n0+€p1+€)
bit operations, where h is the height of the matrix A.

Proof The cost of Algorithm 4 during the processing of the first n inequalities (Line 4) is
negligible (in comparison to the subsequent computations) since it is equivalent to find the
inverse of an n X n matrix. Therefore, to analyze the complexity of the DD method, we focus



CuAPTER 5. ComMpLEXITY EsTIMATES FOR FOURIER-MOTZKIN ELIMINATION 75

on the while-loop located at Line 5. After adding ¢ inequalities, with n < t < m, the first
step is to partition the extreme rays at the ¢ — 1-iteration, with respect to the newly added
inequality (Line 8). Note that we have at most (f — 1)L2) extreme rays whose coefficients
can be bounded over by (n —1)" |A|I>"~D (Lemma 5.4.1) at the t — I-iteration. Hence, this
step needs at most C := (t — 1)L2) x n x M(log((n — D"||A|[2*D)) < O(tL5In?*+eh!+€) bit
operations. After partitioning the vectors, the next step is to check adjacency for each pair
of vectors (Line 11). The cost of this step is equivalent to computing the rank of a sub-matrix
A’ € QU7X of A, This should be done for % pairs of vectors. This step needs at most
Cy == L x O((t = Dnf*en'*¢) < O(t"*+'n9+¢K1+€) bit operations. We know there are at
most tL21 pairs of adjacent extreme rays. The next step is to combine every pair of adjacent
vectors in order to obtain a new extreme ray (Line 12). This step consists of n multiplications
in Q of coefficients with absolute value bounded over by (n — 1)" |A|I>*~D (Lemma 5.4.1)
and this should be done for at most t12! vectors. Therefore, the bit complexity of this step,
is no more than Cz := t13] x n x M(log((n — D"||A[?®~D)) < O(tl2In**¢h'+€). Finally,
the complexity of iteration ¢ of the while loop is C := C; + C, + C3. The claim follows after
simplifying m x C.

Lemma 5.4.3 (Complexity of constructing the initial redundancy test cone) Let h be the max-
imum height of A and c in the input system, then generating the initial redundancy test cone (Al-
gorithm 5) requires at most O(m"+3*€(n + 1)9+€h1*€) bit operations. Moreover, proj(W; {v, vo})
can be represented by O(m ) inequalities, each with a height bound of O (mn**<h).

Proof We analyze Algorithm 5 step by step.

Step 1: construction of A from A. The cost of this step can be neglected. However, it should
be noticed that the matrix A has a special structure. Without loss of generality, we can
assume that the first n rows of A are linearly independent. The matrix A¢ has the following

A 0

structure Ag = ( ), where A is a full rank matrix in Q" and A, € QU"=™*",

2 Im—n
Step 2: construction of the cone W. Using the structure of the matrix Ay, its inverse can be
AN 0
—AATY Loy
Therefore, [|AS'[| < "' [|A|l", and A el| < n"5 | Al|"[lell+(m—n)llc]l. Thatis, height(A;") €
O(n'*¢h) and height(A;'c) € O(m® +n'*¢h). As aresult, height of coefficients of W can be

bounded over by O (m€ + n'*¢h).

expressed as Aal = ( ) Also, from 5.1.3 we have ||A1'1|| < (Vn-=1]|A DL

To estimate the bit complexity, we need the following consecutive steps:
- Computing A;', which requires
O(n?* 1 ¢R1€) + O((m — n)n> M(max(height(A,), height(AT'))))
<O(mn?1*€p1+€) bit operations;

- Constructing W := {(v,w,v9) | — [V}, w/']Aj'c + 9 > 0, [v!, w']AS! > 0} requires at

most
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Cy :=0(m"*enf+1¥ep1+ey 1 O(mnM(height(4;', ¢)))
+O((m — n)h) < O(m' P+ 1L14€) bit operations.

Step 3: projecting W and finding the initial redundancy test cone. Following Lemma 5.2.1, we
obtain a representation of proj(W; {v, vo}) through finding extreme rays of the correspond-
ing projection cone.

Let E = (~AA7)! € Q™= and g' be the last m — n elements of (Aj'e)!. Then, the
projection cone can be represented by:

E
C={yeQ™'|y!| ¢g'[=0y=0}.
Im_n

Note that y,42, ..., ym+1 can be solved from the system of equations in the representation
of C. We substitute them in the inequalities and obtain a representation of the cone C’,
given by:

E
C’ = {yr e Qn+1 Iylt<gt> < O’yl > 0}

In order to find the extreme rays of the cone C, we can find the extreme rays of the
cone C” and then back-substitute them into the equations to find the extreme rays of C.
Applying the double description algorithm to C’, we can obtain all extreme rays of C’,
and subsequently, the extreme rays of C. The cost estimate of this step is bounded over
by the complexity of the double description algorithm with C’ as input. This operation
requires at most C; := O(m"*3(n +1)9+¢ max(height(E, g'))!*¢) < O(m"*3*¢(n+1)9%¢p1+e)
bit operations. The overall complexity of the algorithm can be bounded over by: C; +C; <
O(m"*3*€¢(n + 1)9*€p1*€). Also, by 5.4.1 and 5.4.2, we know that the cone C has at most
O(anTHJ) distinct extreme rays, each with height no more than O(m¢n?*¢h). That is,
proj(W?; {v, vo}) can be represented by at most O (m L%J) inequalities, each with a height
bound of O(m€n?*€h).

Lemma 5.4.4 Algorithm 6 runs within O(m?2n%+€h'*€) bit operations.

Proof The first step is to multiply the matrix M and the vector (t, to). Let dpr and cpr be the
number of rows and columns of M, respectively. Thus, M € QdM XM We know that M is the
coefficient matrix of proj(W?, {v, vy}). Therefore, after eliminating p variables cpr = q + 1,
where g = n —p and dy < m?2. Also, we have height(M) € O(m¢n**€h). With these
specifications, the multiplication step and the rank computation step need O (3 n?*€h!+€)

and O(m? (q+1)9+€h'*€) bit operations, respectively. The claim follows after simplification.

Using Algorithms 5 and 6, we can find the minimal projected representation of a polyhedron
in singly exponential time w.r.t. the number of variables .

Theorem 5.4.5 Algorithm 7 is correct. Moreover, a minimal projected representation of Q can be
produced within O (m’* nO*1*€p1+€) bit operations.

Proof The correctness of the algorithm follows from Theorem 5.2.4 and Lemma 5.3.2.
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By [23, 22], we know that after eliminating p variables, the projection of the polyhedron has
at most mP*! facets. For eliminating the next variable, there will be at most (%ﬂ)2 pairs of
inequalities to be considered and each of the pairs generate a new inequality which should
be checked for redundancy. Therefore, the overall complexity of the algorithm is:

O(mn+3+6(n + 1)6+6h1+€) + ZZ:O m2p+20(m%n6+eh1+e) — O(m%n9+l+ehl+€).

5.5 Experimentation

In this section we report on our software implementation of the algorithms presented
in the previous sections. Our implementation as well as our test cases are part of the
BPAS library, available at www.bpaslib.org/. In our experiments, we report on serial
and parallel implementation of the Minimal Projected Representation (MPR) algorithm,
in terms of effectiveness for removing redundant inequalities and also in comparing with
the Project command of the PolyhedralSets package of Maple 2017 and the famous CDD
library (version 2018), we have been able to solve our test cases more efficiently. We believe
that this is the result of using a more effective algorithm and an efficient implementation
in C.

As test cases we use 16 consistent linear inequality systems. The first 9 test cases, (t1 to t9)
are linear inequality systems that are randomly generated. The systems S24 and S35 are
24-simplex and 35-simplex polytopes. The systems C56 and C510 are cyclic polytopes in
dimension five with six and ten vertices. The system C68 is a cyclic polytope in dimension
six with eight vertices, C1011 is cyclic polytope in dimension ten with eleven vertices, and,
Cro6 is the cross polytope in 6 dimension [111]. The test column of Table 5.1 shows these
systems along with the number of variables and the number of inequalities for each of
them.

We implemented the MPR algorithm with two different approaches: one iterative following
closely Algorithm 7, and the other reorganization that algorithm by means of a divide and
conquer scheme. In both implementations, we use a dense representation for the linear
inequalities. In the first approach, we use unrolled linked lists to encode linear inequality
systems. Indeed, using this data structure, we are able to store an array of inequalities in
each node of a linked list and we can improve data locality. However, we use simple linked
lists in the divide and conquer version to save time on dividing and joining lists. Although
both these approaches have shown quite similar and promising results in terms of running
time, we anticipate to get better results if we combine unrolled linked lists with the divide
and conquer scheme while using a varying threshold for recursion as the algorithm goes
on.

Columns MPR-itr and MPR-rec of Table 5.1 give the running time (in milliseconds) of these
implementations on a configuration with Intel-i7-7700T (4 cores, 8 threads, clocking at 3.8
GHz). Also, columns CDD, Maple, and Maple-MPR are corresponding to running times of
the Fourier algorithm in the CDD library, which uses LP for redundancy elimination, the
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Test (var,ineq) ‘ MPR-itr ‘ MPR-rec ‘ CDD ‘ Maple ‘ Maple-MPR

S24 (24,25) 46 41 411 6485 3040
S35 (35,36) 205 177 2169 57992 | 9840
Crob (6,64) 28 29 329 246750 | 8610
C56 (5,6) 1 1 13 825 140
C68 (6,16) 4 4 866 20154 | 650
C1011 (10,11) | 95 92 >1h >1h >1h
C510 (5,42) 23 22 7674 6173 6070
T1 (5,10) 7 7 142 7974 1400
T2 (10,12) 109 112 122245 | 3321217 | 13330
T3 (7,10) 26 26 8207 117021 | 2900
T4 (10,12) 368 370 1177807 | >1h 26650
T5 (5,11) 7 7 75 8229 1650
T6 (10,20) 26591 | 26156 >1h >1h >1h
T7 (9,19) 162628 | 158569 | >1h >1h >1h
T8 (8,19) 21411 | 20915 >1h >1h >1h
T9 (6,18) 1281 1263 77372 | >1h 267920

Table 5.1: Running time (in milliseconds) table for a set of examples, varying in the number
of variables and inequalities, collected on a system with Intel-i7-7700T 4-core processor,
clocking at 3.8 GHz.

function PolyhedralSets:-Project of Maple, and, an implementation of our algorithm in
the Maple programming language, on the same system, respectively.

Using the divide and conquer scheme, we have been able to parallelize our program with
Cilk [112]. We call this algorithm Parallel Minimal Projected Representation (PMPR).

Table 5.2 presents the running time (in milliseconds) and speedup of the multi-core version
of the algorithm. The columns PMPR-1, PMPR-4, PMPR-8, and PMPR-12 demonstrate the
running time of the multi-core program on a system with Intel-Xeon-X5650 (12 cores, 24
threads, clocking at 2.6GHz), using 1, 4, 8, and 12 Cilk workers, respectively. The numbers
in brackets show the speedup we gain using multi-threading.

5.6 Related works and concluding remarks

As we previously discussed, removing redundant inequalities during the execution of
Fourier-Motzkin elimination is the central issue towards efficiency. Different algorithms
have been developed to solve this problem. They also have been implemented in the
various software libraries, including but not limited to: CDD[113], VPL[114], PPL[115], and
Polymake[116] In this section, we briefly review some of these works.

In [24], Chernikov proposed a redundancy test with little added work, which greatly im-
proves the practical efficiency of Fourier-Motzkin elimination. Kohler proposed a method
in [22] which only uses matrix arithmetic operations to test the redundancy of inequalities.
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| Test | PMPR-1 | PMPR-4 | PMPR-8 | PMPR-12 |
S24 67 71 0.9x) | 73 (09x) | 83 (0.8 x)
S35 291 308 (09x) 310 (09x) 375  (0.7x%)
Cro6 | 54 45 (12x) | 36 (15x) | 34 (1.5 x)
C56 |2 3 0.6x) |3 0.6x) | 12 (0.1 x)
C68 |8 7 (11x) | 7 (1.1x) | 19 (0.4 x)
C1011 | 176 62 (2.8x) | 47 (3.7x) | 53 (3.3 x)
C510 | 38 33 (1.1x) | 34 (1.1x) | 40 (0.9 x)
T1 13 8 (1.6x) | 9 (14x) | 17 (0.7 x)
T2 205 67 (3.0x) | 55 (3.7x) | 57 (3.5 x)
T3 48 20 (24x) | 18 (2.6 x) | 20 (2.4 x)
T4 685 207  (33x) | 141 (48x) | 126 (54x)
T5 14 9 (15x) | 10 (1.3x) | 11 (1.2 x)
T6 44262 | 12995 (3.4x) | 6785 (65x) | 5163  (8.5x)
T7 282721 | 78176 (3.6x) | 48048 (5.8x) | 35901 (7.8 x)
T8 41067 | 10669 (3.8x) | 5689 (7.2x) | 4471  (9.1x)
T9 2407 742 (3.2x) | 491 < (48x) | 448  (5.3x)

Table 5.2: Running time (in milliseconds) table for our set of examples, with different
number of Cilk workers, collected on a system Intel-Xeon-X5650 and 12 CPU cores, clocking
at 2.6GHz.

As observed by Imbert in his work [23], the method he proposed in his paper as well
as those of Chernikov and Kohler are essentially equivalent. Even though these works
are effective in practice, none of them can remove all redundant inequalities generated by
Fourier-Motzkin elimination.

Besides Fourier-Motzkin elimination, block elimination is another algorithmic tool to
project polyhedra on a lower dimensional subspace. This method relies on the extreme
rays of the so-called projection cone. Although there exist efficient methods to enumerate
the extreme rays of this projection cone, like the double description method [21] (also known
as Chernikova’s algorithm [100, 101]), this method can not remove all the redundant in-
equalities.

In [25], Balas shows that if certain inconvertibility conditions are satisfied, then the extreme
rays of the redundancy test cone exactly defines a minimal representation of the projection
of a polyhedron. As Balas mentioned in his paper, this method can be extended to any
polyhedron.

A drawback of Balas” work is the necessity of enumerating the extreme rays of the redun-
dancy test cone (so as to produce a minimal representation of the projection proj(Q;x))
which is time consuming. Our algorithm tests the redundancy of the inequality ax < ¢ by
checking whether (a, ¢) is an extreme ray of the redundancy test cone or not.

Another related topic to our work is the concept of subsumption cone, as defined in [109].
Consider the polyhedron Q given in Equation (5.4), define T := {(A, a, B) | A'A = a!, Afe <
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B, A > 0}, where A and a are vectors of dimension m and n respectively, and f is a variable.
The subsumption cone of Q is obtained by eliminating A in T, that is, proj(T; {«a, f}). We
proved that considering a full-dimensional, pointed polyhedron, where the first n rows of
the coefficient matrix are linearly independent, the initial redundancy test cone and the
subsumption cone are equivalent.

Based on the improved version of Balas” methods, we obtain an algorithm to remove all
the redundant inequalities produced by Fourier-Motzkin elimination. Even though this
algorithm still has exponential complexity, which is expected, it is very effective in practice,
as we have shown before.

The projection of polyhedra is a useful tool to solve problem instances in parametric linear
programming, which plays an important role in the analysis, transformation and schedul-
ing of for-loops of computer programs, see for instance [117, 118, 119].

Given a V-representation of a polyhedron P, one can obtain the V-representation of any pro-
jection of P*. The double description method turns the V-representation of the projection
to its H-representation. Most existing software libraries dealing with polyhedral sets store
a polyhedron with these two representations, like the Parma Polyhedra Library (PPL). In this
case, it is convenient to compute the projection using the block elimination method. When
we are only given the H-representation, the first thing is to compute the V-representation,
which is equivalent to the procedure of computing the initial test cone in our method.
When we need to perform successive projections, it is well-known that Fourier-Motzkin
elimination performs better than repeated applications of the double description method.

Recently, the verified polyhedron library (VPL) takes advantage of parametric linear pro-
gramming to project a polyhedron. Like PPL, VPL may not beat Fourier-Motzkin elimina-
tion when we need to perform successive projections. In VPL, the authors rely on raytracing
to remove redundant inequalities. This is an efficient way of removing redundancies, but
this cannot remove them all, thus Linear Programming (LP) is still needed. As pointed
out in [120], ray tracing is effective when there are not many redundancies; unfortunately,
Fourier-Motzkin elimination typically generates lots of redundancies.

Another modern library dealing with polyhedral sets computation is the Normaliz library.
In this library, Fourier-Motzkin Elimination is used for conversion between different de-
scriptions of polyhedral sets. This is a different strategy than the one of our paper. As
discussed in the introduction, we are motivated here by performing successive projections
as required in the analysis, scheduling and transformation of for loop nests of computer
programs.

As explained before, projecting a polyhedral set using the FME method is a well-studied
subject, and the method proposed in this chapter is one of many methods for solving this
problem. Specifically, many algorithms are suggested to make the Simplex-based methods
more efficient. Although our experiments show that our method outperforms some other

‘for example, P is generated by {(1,2,3, Mt (2,3,4,5)1,(2,3,7,9)}, the projection of P onto the last two
coordinates is generated by {(3,4)f, (4,5), (7,9)!}
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methods, we believe it may not be the case for all inequality systems. The method used for
the projection should be chosen based on the properties of the input system (e.g., sparsity).
For future works, we plan to experiment with a broader range of inequality systems and
projection methods and find a heuristic to choose the best projection method based on the
input inequality system. Also, we want to extend the proposed method to relax the mild
assumptions that we make on the input system.



Chapter 6

Conclusion

In this thesis, we suggested techniques to improve the scope and applicability of compiler
optimization methods.

We first went through our motivation and objectives in Chapter 1. Then we provided the
necessary background information on the polyhedral theory, LLVM compiler infrastruc-
ture, some compiler optimization techniques, and program parallelization via OpenMP in
Chapter 2.

In Chapter 3, we developed and implemented a method for detecting pipeline patterns
between iteration blocks of different for-loop nests in a program. This method uses the
polyhedral model techniques to block the iteration domains in a way that each block can
be considered as an atomic task. It then finds the dependency relations between the tasks.
For implementation, we extended and modified analysis, transformation, scheduling, and
code generation passes in LLVM/Polly. After that, we rely on the task directive and the
depend clause of OpenMP for exploiting the detecting parallelism. With this improvement,
Polly can detect parallelism in programs that its conventional methods cannot. Also, the
new methods provides a way to find the dataflow between different loop nests.

In Chapter 4, we developed a compiler technique to improve the performance of OpenMP
programs with offloading regions by automatically prefetching data to the GPU’s shared
memory. In this project, we use scalar evolution to find the memory locations accessed
in each team of threads, and we prefetch them into consecutive locations of the shared
memory. In case there are multiple reads from the same locations, the method improves
the program’s performance by reducing the number of accesses to the high-latency global
memory. We also extended our approach to handling bank conflict and extra share memory
usage. It is implemented as part of the OpenMPOpt pass in LLVM. With this new pass,
OpenMP programs with offloading regions can automatically take advantage of the GPU’s
memory hierarchy.

In Chapter 5, we developed and analyzed an algorithm to detect and remove redundant
inequalities generated in the process of the Fourier-Motzkin elimination, a fundamental
algorithm in the polyhedral theory. Our method is based on the research of Egon Balas.
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It only uses matrix operations and can detect redundant inequalities right after their gen-
eration. We then analyzed the bit complexity of the method. This improved algorithm
increases the performance of the Fourier-Motzkin elimination process, and as a result, it
improves the performance of other algorithms that require Fourier-Motzkin elimination.

There are many ways to improve the applicability of the methods we developed for future
works. Some ideas are listed below for each project:

e For the pipeline detection method explained in Chapter 3, we can improve the de-
tection algorithm and code generation phases to optimize more general programs by
relaxing some assumptions we made.

e For the memory prefetching method developed in Chapter 4, we can improve the
inter-procedural optimization pass to be able to work correctly with different OpenMP
pragmas.

e For the improved version of the Fourier-Motzkin elimination algorithm developed in
Chapter 5, we can improve the applicability by extending the algorithm to relax our
assumptions on the input system.

Moreover, we believe that the effectiveness of the methods we developed could be improved
in many ways. Some ideas are listed below for each project:

e The method in Chapter 3 can be more effective if it considers other optimization
methods. Also, it can be more effective if it can choose a good task granularity and
reduce task generation overhead.

e The method in Chapter 4 can be more effective if it can find the most advantageous
array to prefetch by considering the number of reads from the same location and the
coalescence of the accesses.

e The method in Chapter 4 can be more effective if it can decide on the optimized
algorithm for removing redundant inequalities.
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