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FIGURE 10: Experiment 2: Test set MAPE for SBCTL and traditional ML.
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TABLE 6: Experiment 3: MAPE and MAE for initializations A and B, for each distance metrics

Traditional Euclidean Cosine Manhattan DTW3 DTW 6 DTW12 DTW24
MAPE-A 30.1% 29.7% 30.6% 27.4% 33.0% 31.9% 36.5% 34.1%
MAPE-B 30.1% 25.1% 22.8% 25.2% 25.8% 27.4% 27.9% 25.9%
MAE-A 7.662 7.661 7.652 7.596 7.553 7.714 7.732 7.737
MAE-B 7.662 7.646 7.500 7.593 7.699 7.650 7.709 7.661

FIGURE 11: Experiment 3: MAPE and MAE for different
initializations and distance metrics.

was performed with up to 30 epochs with early stopping
when the loss function did not decrease in five consecutive
epochs. This allows more epochs to achieve convergence,
and, at the same time, helps remedy overfitting and avoids
higher number of epochs if convergence is achieved earlier.

3) Result

In this experiment, transfer paths were different for the two
initialization approaches A and B. Fig. 11 compares MAPE
and MAE achieved with the two initializations for each
of the distance metrics. The traditional approach does not
have different initializations, thus accuracy for initializations
A and B is the same. In terms of MAPE, initialization B
outperformed initialization A for all distance metrics. This
is slightly different for the MAE, where the initialization A
achieved better accuracy for DTW with window of 3 time
steps (DTW3). Nevertheless, irrelevant of the metrics used,
the overall best model is with initialization B and Cosine
distance.

Table 6 shows the data from Fig. 11 for further com-
parison. It can be observed that the best SBCTL model
(initialization B with Cosine) achieved reduction of 7.3% in
average MAPE and .163 in average MAE in comparison to
traditional ML training.

The average elapsed time for all meters with the traditional
ML and SBCTL are shown in Table 7. SBCTL used only
about 2.6% of time needed to train the models in a traditional
way.

TABLE 7: Experiment 3: Average Training Time

Traditional SBCTL epoch
10 0 1 2 3 4 5

Time (s) 30.33 0 0.16 0.31 0.46 0.62 0.77
Std.Dev 10.24 0 0.01 0.03 0.04 0.05 0.06
Variance 104.78 0 0 0.001 0.002 0.003 0.004

E. DISCUSSION
In all three experiments, SBCTL achieved improved average
accuracy in comparison to traditional ML. Overall, the best
performing model was SBTCL with initialization B (from
the center) and Euclidean distance. This can be observed
from figures 8 and 11 for experiments one and two, whereas
there was no difference among SBCTL approaches in the
experiment one.

In experiments one and two, SBCTL models trained for
5 epoch achieved higher accuracy than traditional ML with
10 epoch. An exception was meter 4 in experiment two;
nevertheless, that meter achieved low accuracy irrelevant of
the approach, possibly because of high data variability. This
demonstrated that transferring weights according to SBCTL
approach is a promising direction for training a large number
of energy forecasting models.

Note that in experiment two SBCTL needed only 1 epoch
to achieve comparable results to traditional ML where it
needed 3 epochs in experiment one. Moreover, in experiment
two, even direct transfer without additional training (epoch
0) achieved good accuracy. The reason for this is a higher
similarity between meters in experiment two. In experiment
one, the lowest Euclidean distance was 135.2 (Table 2) and
the mean was 182.65. Meanwhile, the lowest Euclidean
distance in experiment two was 0.001 (Table 4) and mean
was 34.58.

In all experiments, the time to train SBCTL models was
only a fraction of time in comparison to traditional ML while
they achieved comparable accuracy. Training time reduction
depends on the number of epoch needed after the transfer
what is impacted by the similarity between meters.

SBTCL requires all smart meter data sets to have the
same sampling frequency or the data sets need to be pre-
processed to convert them to the same frequency. If there are
any missing data, they need to be imputed in the preparation
step in order to enable the similarity calculations. As SBCTL
transfers NN weights from one meter to another, and contin-
ues training from those weight, there is a possibility of the
transferred model getting stuck in a local minimum. How-
ever, the presented experiments, even the third one with 456
meters, demonstrate high accuracy in spite of a possibility of
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a local minimum.

VI. CONCLUSION
Extensive smart meter deployments have created opportuni-
ties for energy forecasting on a large scale. Machine learning-
based forecasting typically involves training the model with
historical data from a single building and then using this
model to infer consumption for the same building. As train-
ing is computationally intensive, it is not practical to train
ML models individually for many meters.

This paper proposes Similarity-Based Chained Transfer
Learning (SBCTL) to enable building neural network-based
forecasting models for a large number of smart meters. The
initial model is built in a traditional way whereas all other
models use transfer learning in a chain-like manner. SBCTL
is evaluated with three different data sets: in all experiments,
SBCTL achieves similar accuracy to traditional ML training
while taking only a fraction of time. The best results are
achieved with Euclidean distance and starting from the meter
closest to the center. As illustrated in experiments one and
two, the SBCTL time depends on the number of epochs
needed for convergence after the transfer. When meters are
more similar in terms of their energy consumption profiles,
SBCTL needs fewer epochs and thus, training time is shorter.
The third experiment demonstrates that SBCTL maintains its
high accuracy even with a data set of 456 meters.

Future work will further explore the impact of similarly
on the number of epochs needed after the transfer. Moreover,
possibility to transfer knowledge among data sets of different
duration and with different reading intervals will also be
explored.
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