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Abstract

Reinforcement Learning (RL) has seen exponential performance improvements over the
past decade, achieving super-human performance across many domains. Deep Reinforcement
Learning (DRL), the combination of RL methods with deep neural networks (DNN) as func-
tion approximators, has unlocked much of this progress. The path to generalized artificial
intelligence (GAI) will depend on deep learning (DL) and RL. However, much work is re-
quired before the technology reaches anything resembling GAI. Therefore, this thesis focuses
on a subset of areas within RL that require additional research to advance the field, specifically:
sample e�ciency, planning, and task transfer.

The first area, sample e�ciency, refers to the amount of data an algorithm requires before
converging to stable performance. Within RL, all models require immense amounts of samples
from the environment, a far cry from other sub-areas, such as supervised learning which often
require an order of magnitude fewer samples. This research proposes a method that learns to
reuse previously seen data instead of throwing it away to improve sample e�ciency by a factor
at 2x, while training 30% faster than state-of-the-art methods.

The second area is planning within RL, where planning refers to an agent using an envi-
ronment model to predict how possible actions will a↵ect its performance. Improved planning
in RL leads to increased performance as the model gains context on its next action. This thesis
proposes a model that learns how to act optimally in an environment through a dynamic plan-
ning mechanism that adapts on the fly. This dynamic planning ability gives the resulting RL
model immense flexibility as it can adapt to the demand of particular states on the environment
and outperforms related methods by 30-45%.

The final area is that of task transfer, which deals with how readily a model trained on one
task can transfer its knowledge to another related task within the same environment. RL mod-
els must be fully retrained on the new task even if the environment structure does not change.
Here, we introduce two contributions that improve an existing transfer framework known as
the Successor Features (SF). The first introduces a reward model with greater flexibility with
stronger performance and transfer abilities than baseline models; achieving nearly 2x the re-
ward on highly demanding tasks. The second contribution rephrases the SF framework as a
simple pair of supervised tasks that can dynamically induce policies, drastically simplifying
the learning problem and while matching performance.

Keywords: Reinforcement Learning, Deep Learning, Sample E�ciency, Planning, Task
Transfer, Successor Features.
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Summary For Lay Audience

In Artificial Intelligence (AI), di↵erent algorithms are used to solve problems automatically.
Some algorithms are designed to excel in di↵erent mediums, such as visual tasks, translation of
words, or exerting control over other systems. The field of Reinforcement Learning (RL) deals
with algorithms that learn to exert control over other systems; they learn to do this automatically
without any external direction besides a reward and punishment system, similar to how humans
learn. It was discovered that the performance of RL algorithms could be improved significantly
by another type of technology known as deep learning. The resulting performance increase of
these Deep Reinforcement Learning (DRL) algorithms has been so significant that they have
been able to best human experts. A well-known example of one of these algorithms is AlphaGo,
which beat grandmasters at the game of Go without any special instruction; it learned to do this
on its own by playing the game.

However, these algorithms could be more e�cient; they take a very long time to learn, use
a lot of energy and are unable to learn as well as a human from small amounts of data. It makes
sense to label these types of algorithms as quite ine�cient.

This thesis contributes new DRL algorithms to improve the e�ciency of the algorithms.
Within the thesis, we identified and introduced solutions to areas we felt had the most signifi-
cant possible impact, such as sample e�ciency, planning, and task transfer.

By improving sample e�ciency, the amount of information the algorithms need before
performing well goes down. Our proposed algorithm does this by reducing the amount of
information thrown away by the algorithms. In planning, where the algorithm can think ahead
of picking an action, this thesis proposes making another part of the algorithm learnable by
the computer, which we show helps improve its performance. Finally, in task transfer, where
an algorithm has finished learning and is moved to another related problem, we propose two
contributions: one improves the expressiveness of the algorithm while the other breaks it into
two simpler problems that are easily solved.
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Chapter 1

Introduction

1.1 Introduction & Motivation

Reinforcement Learning (RL) is the study of learning to do, that is, learning how to map situ-

ations to actions to maximize an external reward signal [1]. The field has applications across

many diverse areas, such as continuous control in robotics [2], architecture search for neural

networks [3], and financial markets [4]. Recently, RL has had tremendous advancements in

performance primarily fueled by the development of methods that stably integrate non-linear

function approximation through deep neural networks (DNN), resulting in a class of algorithms

grouped as Deep Reinforcement Learning (DRL) [5]. This breakthrough allowed the applica-

tion to high-dimensional state and action spaces while encouraging the use of exotic model

architectures from deep learning. Together, DRL methods have pushed performance in a large

swath of domains to superhuman levels with improvements in complex, and large-scale task

environments such as Atari [6], Go [7], and DOTA 2 [8]. RL has been described as the most

promising avenue towards general-purpose artificial intelligence by luminaries of the field [9].

While DRL algorithms have outperformed human experts across many benchmarks, the current

generation of algorithms lacks notable aspects of human performance.

A cursory examination of current DRL algorithms quickly shows that nearly all DRL al-

1



2 Chapter 1. Introduction

gorithms are grotesquely ine�cient compared to humans and even against Machine Learning

(ML) algorithms used in other domains. However, labeling DRL algorithms as ine�cient ig-

nores essential nuances that can be categorized to better understand the problem at hand. While

not exhaustive, one such relevant categorization would include action e�ciency, sample e�-

ciency, and task transfer. An algorithm with greater e�ciency across such a categorization will

perform better than one without. Indeed, greater e�ciency causes naturally tighter iterative

loops during research and decreases compute requirements if a model converges faster.

By observing any state-of-the-art (SOTA) RL model interacting with its environment, the

apparent errors in action choice and constant flip-flopping are easily seen. This ine�ciency in

action selection can cause sub-optimal performance. Terming this as action e�ciency, with no

analogous metric to other ML algorithms, it measures an RL model’s e↵ectiveness in selecting

the minimal number of error-free actions for which the desired output is produced. Action

e�ciency is not strictly concerned with the direct reward produced by a series of actions by an

RL model; it adds an implicit cost to the calculus of this e�ciency. The subtle di↵erence can

be made more evident if we consider a simple scenario where two RL models are optimized to

solve a multi-step puzzle task. Suppose both solve the task, but one does so in fewer bouts of

trial-and-error. In that case, we would naturally conclude that the RL model with the minimal

number of actions with fewer errors has a higher action e�ciency. This also extends to many

actions selected along longer horizons where a model must begin to avoid systematic errors in

action selection, not just the next action choice of the model.

Naturally, adding planning ability to an RL model could help improve its action e�-

ciency. Indeed planning, the refinement of the following action choice taken in the environment

through some well-defined and repeatable process, exactly fits our problem description. The

current landscape of planning architectures in RL uses a predefined planning algorithm heavily

relying on a learned state-transition model [10, 11, 12, 13]. However, this is at odds with a

reoccurring lesson within ML: it is superior to learn end-to-end instead of engineering knowl-

edge.
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While deep neural networks learn the features end-to-end, they require immense amounts

of data. The combination with the RL algorithm further compounds the data requirements,

as current RL algorithms have poor sample e�ciency, magnifying the total combined require-

ments further by a magnitude more. Here, the measure of sample e�ciency, the e�ciency with

which an algorithm can leverage each data sample, is a vital axis to improve. Indeed, if an al-

gorithm has high sample e�ciency, they need significantly fewer samples to reach a reasonable

level of performance. Comparatively, high sample e�ciency can be seen with many supervised

learning algorithms, which are significantly more e�cient on a per-sample basis. If compar-

ing two RL algorithms on the same task, the algorithm that learns to master the task quicker

is said to have greater sample e�ciency. Di↵erent classes of RL algorithms will have better

sample e�ciency than others, such as o↵-policy methods versus on-policy methods. However,

o↵-policy methods are not without their flaws. A vein of research looked to combine the types

to reap the benefits of both [14, 15, 16, 17]. Current cutting-edge implementations achieve this

but are incredibly complicated models with many moving parts [17]. Ideally, a simpler variant

could capture most of the performance.

Task transfer is an intertwined aspect of sample e�ciency, as it involves how easily a con-

verged model can transfer previously gained knowledge to another related task. In supervised

learning, fine-tuning is a standard methodology to transfer trained models between related

datasets [18]. Fine-tuning involves drastically reducing the model’s learning rate while learn-

ing on the new but related data. The intimate connection between sample e�ciency and task

transfer of a model can be made clear. If a model can transfer performance between related

tasks with few additional samples, then would be required in collecting an entirely new set,

it can be said to have higher sample e�ciency. In the longer term view of RL as a general

solution to AI, having strong task transfer ability is vital. The RL model should quickly adapt

and adjust to changing environmental conditions and perform well on related tasks. However,

transferring a learned policy of an RL agent between tasks using a similar technique, even

within the same environment, ranges from di�cult to impossible for many algorithms. As a
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result, the RL algorithm often needs to be fully retrained on the new task requiring many new

samples from the environment. Ideally, the RL agent could leverage previously learned knowl-

edge about the environment or previous task structures to accelerate the transfer to a newly

presented task.

One avenue of research, Successor Features (SF), aims to accomplish task transfer by

rephrasing the RL problem as an environment dynamics model and a reward component [19,

20]. During transfer, only the much smaller reward component is trained, making learning

faster while reusing previously learned information about the environment. However, the as-

sumptions required to separate the algorithm into separate components can limit and hinder the

final model’s performance.

1.2 Contributions

This research provides improvements along the following categorizations of e�ciency: action

e�ciency, sample e�ciency, and task transfer. Within each category, we contribute an algo-

rithm that improves over the previous state-of-the-art methods, along with metrics important

in the specific domain. In the action e�ciency domain, which we refer to as planning from

here on in, a novel algorithm is presented that can dynamically choose its planning algorithm

depending on the specific task demands. This line of work follows from the lessons learned

within deep learning, in that learning the features, in our case planning style, is superior to

manually-created features.

An algorithm was developed within the sample e�ciency category to optimize an on-policy

algorithm with o↵-policy samples using a novel application of the Gumbel noise distribution

for sample weighting.

Finally, our last area of focus was task transfer, improving on a specific framework. Within

task transfer, we present two novel algorithms, a second-order variant, and reformulation that

dynamically creates acting policies on the fly. With the second-order variant, we present a



1.2. Contributions 5

mathematical reformulation from first principles that yield a more robust reward model with

improved performance. Our dynamic variant takes a di↵erent mathematical interpretation of

the base framework. It allows us to use a purely supervised approach to the RL problem with

increased flexibility while being mathematically equivalent. Therefore, the contributions of

this research can be summarized by area as follows:

Planning

• Dynamic Planning Network (DPN): a planning architecture that creates plans with a

learned dynamic planning style.

• We show that providing a planner with the option to choose where to plan from improves

performance by reducing sub-optimal trajectories.

• A loss function for the planner policy that balances exploration and exploitation during

planning.

• DPN outperforms other planning architectures on commonly used environments in the

domain, both in performance and sample e�ciency.

Sample E�ciency

• We introduce Noisy Importance Sampling Actor-Critic (NISAC), an algorithm that can

reuse previously seen data e�ciently.

• Experimentally proves NISAC outperforms current strong baseline methods in perfor-

mance and sample e�ciency.

• NISAC training time is 40% faster than baseline methods while being significantly easier

to implement.

Task Transfer: Second-Order Successor Features
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• A novel formulation of the SF framework that uses a second-order reward function. This

formulation increases the representational power of the reward function while decreasing

the representational load on the state encoder, providing stronger performance guaran-

tees.

• Under the new reward formulation, the extra term that appears was shown to model the

future expected auto-correlation matrix of the state features.

• We provide preliminary results that show the second term can be used for guided explo-

ration during transfer instead of relying on ✏-greedy exploration.

Task Transfer: Dynamic Successor Features

• Dynamic Successor Features (DynSF): An algorithm that enables a state-transition model

to be used for state rollouts where the discount factor and policy can be set on the fly,

which is advantageous compared to common model-based approaches.

• An examination of how rollout length and policy choice a↵ect the performance of DynSF

compared to the original framework and baselines.

• Through experiments, the flexibility of DynSF is analyzed.

• Evidence is provided that DynSF performs better during task transfer than baseline meth-

ods.

1.3 Thesis Organization

This thesis is organized as follows:

• Chapter 2: Here, the essential background concepts are presented. A general intro-

duction to DL and RL is given, with a presentation of the underlying mechanics and

assumptions in the field. Finally, a brief overview of the foundational algorithms is pre-

sented.
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• Chapter 3: This chapter provides an extensive literature review of the studies pertinent

to the presented research and discusses avenues for improvement.

• Chapter 4: Here, the first piece of our work is presented and focuses on improving sam-

ple e�ciency. NISAC. NISAC is a fully o↵-policy actor-critic algorithm that learns from

stored o↵-policy trajectories. The model, experimental design, experimental results, and

analysis are presented in the chapter.

• Chapter 5: This chapter introduces DPN, a novel architecture for DRL that combines

model-based and model-free aspects for online planning. Our architecture learns to con-

struct plans dynamically using a learned state-transition model by selecting and travers-

ing between simulated states and actions to maximize information before acting. The

model, experimental design, experimental results, and analysis are presented in the chap-

ter.

• Chapter 6: This chapter presents a task transfer algorithm: Second-Order Successor

Features (S2F). S2F is a novel extension to the SF framework, where the rewards are

modeled with a second-order function. The model, experimental design, experimental

results, and analysis are presented in the chapter.

• Chapter 7: The final presented work, Dynamic Successor Features (DynSF), reformu-

lates the SF framework as two supervised learning problems. This reformulation dra-

matically improves the model’s flexibility while providing evidence of what the original

formulation learns. The model, experimental design, experimental results, and analysis

are presented in the chapter.

• Chapter 8: Finally, this chapter discusses the contributions brought by the presented

research and directions for future work.



Chapter 2

Background

This chapter covers the essential background material of the work presented in this thesis. The

first portion discusses deep learning, while the second half focuses on RL concepts.

2.1 Deep Learning

DL models are large artificial neural networks, often containing many layers. The neural net-

work component can easily be described as a directed acyclical graph, which many will rec-

ognize as a multi-layer perception network. These networks typically take input in the form

of vectors and sequentially process them through each of the layers. A network is a strong

function approximator, able to represent arbitrary functions [21, 22, 23]. DL can be seen as an

improvement on existing methods found within machine learning, which is mostly concerned

with learning a well-defined function from observed data. The primary improvement is loosen-

ing the requirements for hand engineering of features derived from the dataset, which it instead

learns automatically and for the task at hand [18]. Indeed, the general recipe required to apply

deep learning to any problem, often without the need for domain knowledge, involves a deep

network acting as an expressive function approximator, a task-specific loss function, and a way

to optimize the parameters of said function with gradient descent. This has proven to work ex-

tremely well, especially with the tremendous amount of compute and data available today, as

8
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Figure 2.1: Convolutional network. Earlier convolutional layers extract features and
build a feature hierarchy. The final layers are fully-connected units. Adapted from:
http://deeplearning.net/tutorial/lenet.html

the same recipe has produced state-of-the-art results across language modeling [24] and image

generation [25].

While DL algorithms are widely applicable to di↵erent problems, often with little mod-

ification, the data’s medium has an important consideration on the architecture of the deep

learning model. Two special model architectures are considered in the following subsections:

convolutional and recurrent.

2.1.1 Convolutional Networks

Convolutional Neural Networks [26] (CNNs) are a specialized network architecture for pro-

cessing data with a spatial component, such as images or time-series data. CNNs have had

immense success within computer vision applications [27, 28, 29] and are often considered

a hard requirement in any modern architecture that processes visual information. Convolu-

tional networks build upon a specialized linear mathematical operation called convolution [18]

between two matrices.

Fundamentally, a CNN learns many small matrices, referred to as feature maps, that capture

specific features on the input space and use the convolution operation to measure the “similar-

ity.” The same feature map is applied over the entire input space with fixed step size shifts,

repeating over several layers. The output of a convolutional layer, the result of the convolution

operation with the feature map and input, is one activation map per learned feature map. Over



10 Chapter 2. Background

Figure 2.2: A recurrent neural network with one hidden unit unrolled over time. Adapted from:
[30, LeCun, Bengio, and Hinton, 2015; Figure 5]

many convolutional layers, the network learns a hierarchy of features that build upon the lower

levels. An example would be that earlier layers learn edges or textures while later layers learn

high-level concepts such as eyes.

The learned features are used for object reasoning in later fully connected layers, as shown

in Figure 2.1. Doing so allows the features to be automatically optimized based on the task at

hand, reducing the requirement for hand engineering.

2.1.2 Recurrent Networks

Recurrent Neural Networks [31] (RNNs) are a family of networks used for processing data

with a sequential component and have had a tremendous impact in fields such as speech recog-

nition and machine translation [32, 33]. Similar to convolutional networks, in that they exploit

a unique axis of the data, RNNs process a sequence of values and use some notion of the input

order to inform output decisions. The standard approach uses an RNN to process one element

of a sequence at each time step; the RNN uses some notion of internal hidden memory to in-

corporate the sequence information for later steps. In doing so, the RNN can recall information

from previous time steps for use in its output. Mathematically, with biases omitted, a simple
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model with a single hidden unit can be expressed by the following equations:

x̄t = Uxt (2.1)

st = tanh(Wst�1 + x̄t) (2.2)

ot = V st (2.3)

where {U,W,V} are the set of learnable parameters of the model, x̄t is the transformed

input at time t, st is the new hidden state at time t, and ot is the output of the network. This

process is illustrated in Figure 2.2, where an RNN with one hidden unit consumes a sequence

of data xt�1, xt, xt+1 at each timestep. In the second step t, we see the RNN updates the previous

internal memory st�1 with the new information contained in xt, outputs a value ot, and produces

the new state of its internal memory. While the above model scales well to many additional

hidden units, which increases the memory available to the model, if the information contained

within the data was seen too much earlier or the sequence data has a high dimension, the

RNN will have issues remembering and incorporating this information. This issue is resolved

by introducing another variant of a recurrent network known as a Long-short Term Memory

(LSTM) network [34] that uses an internal memory structure better tuned for remembering

long-term dependencies. An LSTM introduces a gating mechanism that allows the network

to learn how long it should hold on to old memory, when to forget, when to incorporate new

information, and how to mix old and new information. Again, for a single hidden unit with

biases omitted, the model can be expressed mathematically as:

ft = �(Wf · [st�1, xt]) (2.4)

it = �(Wi · [st�1, xt]) (2.5)

C̃t = tanh (WC · [st�1, xt]) (2.6)



12 Chapter 2. Background

Ct = ft ⇤Ct�1 + it ⇤ C̃t (2.7)

ot = �(Wo[st�1, xt]) (2.8)

st = ot ⇤ tanh (Ct) (2.9)

where additional learning parameters {Wf ,Wi,WC,Wo} are introduced to control the forget,

input, cell, and output gates, respectively. � is the sigmoid function and ⇤ is the hadamard

product. The LSTM also introduces the notation of an additional memory referred to as the

“cell state”, denoted by Ct, and its proposal update C̃t. The gates output a value between [0, 1],

which attenuate the input based on the context of the last hidden state st�1 and current input

xt. By doing so, the LSTM can track many longer-term dependencies than a plain RNN. Both

the RNN and LSTM are trained using a backpropagation through time (BPTT) algorithm that

allows gradients to flow backgrounds through time [35].

2.2 Deep Reinforcement Learning

RL is a subarea within ML concerned with finding the optimal series of decisions to maxi-

mize an external signal. RL involves an agent acting within an environment such that at each

timestep, the agent takes action, observes a new state, and receives a reward. An RL algorithm

aims to maximize the series of received rewards within an unknown environment [1]. The

field has applications across many diverse areas, such as continuous control in robotics [2] and

financial markets [4].

DRL, the extension to RL, is the study of using RL algorithms with DNNs acting as func-

tion approximators. The application of DL to RL allowed the field to move away from using

hand-crafted linear features or tabular function approximators. It enabled algorithms to learn

features required for the task at hand automatically from data. This led to an explosion of

breakthroughs, from Mnih et al. [6], who demonstrated an agent capable of playing through

assorted games from the Atari collection from pixels using the Q-learning algorithm, to more



2.2. Deep Reinforcement Learning 13

recent work by Silver et al. [36] where an agent mastered the game of Go beating out human

experts.

2.2.1 Markov Decision Process

A Markov Decision Process (MDP) is a mathematical description of an RL agent interacting

with a stochastic environment. An MDP consists of the following components: a set of states

S, a set of actions A, a transition probability function P : S ⇥ A ! (S ! [0, 1]), and a

reward function r : S ⇥ A ! R [37]. Throughout the literature, each of these components

has had various definitions, which allow immense flexibility in how the specific task at hand

is modeled. For example, the reward function could be expressed as a deterministic function

r(s) on the state or state and action r(s, a). The end goal is to find a policy ⇡ which maps

states to actions. A policy can either be a probability distribution over actions conditioned on

states, ⇡ : S ⇥A ! [0, 1] or a mapping of the expected value of an action in a specific state,

⇡ : S⇥A! R. An agent acting within an MDP is executed as follows: at each time step t, the

agent observes the environment state st 2 S, chooses an action at 2 A from its policy ⇡(at|st)

acting with it, and finally a new state st+1 and reward rt are sampled from transition function

[37]. In this work, we are interested in the episodic reinforcement learning problem, where the

agent’s experience is broken into a series of “episodes”. An episode can be an arbitrarily long

but finite sequence of states, actions, and rewards. In this case, the previous definition of the

MDP changes slightly in that the episode ends when the transition probability function emits a

terminal state sT . In this case, the ,agent’s goal is to maximize the expected total reward of the

episode, that is Rt =
PT

t=0 rt.

2.2.2 Policies

Within this work, the definition of a policy ⇡ changes based on the particular learning algorithm

used, where it can either be a stochastic policy written as ⇡(a|s; ✓) or deterministic as ⇡(a, s; ✓).

In both cases, the policy is parameterized by a set of parameters represented by ✓, with ✓ meant
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to capture all the parameters used in the model at hand. The type of policy used will have

implicit assumptions to the activation and inference method. A stochastic policy will always

use a softmax function as we must output a valid probability distribution over all available

actions; the actions will be sampled by assuming its output forms a categorical distribution.

While the deterministic policy can either be a straight linear output, that is, with no activation

function, or one using some form of clipping.

2.2.3 Temporal Di↵erence Learning

Temporal-Di↵erence is a model-free algorithm that learns from tuples of experience, meaning

completed episodes are not required. TD methods rely on the bootstrapping method, where

targets are updated from existing estimates instead of a ground truth value. The central idea

of TD learning is to update a value function, such as the state-value function V(st; ✓) parame-

terized by ✓, towards a TD target, rt+1 + �V(st+1; ✓), which is estimated from the current set of

parameters ✓. The updates are controlled by a learning rate hyperparameter ↵:

V(st; ✓t+1) = V(st; ✓t) + ↵(rt+1 + �V(st+1; ✓t) � V(st; ✓)) (2.10)

Where � is the discount factor. Another commonly used value function is the state-action

value that estimates the value of the future state given a specific action with the update given

as:

Q(st, at; ✓t+1) = Q(st, at; ✓t) + ↵(rt+1 + �Q(st+1, a⇤t ; ✓t) � Q(st, at; ✓t)) (2.11)

The state-action value function can easily be adapted for control, as shown by Watkins

& Dayan [38], which proposes the Q-Learning algorithm. The Q-Learning algorithm makes

critical changes to how the state-action value function is used for policy evaluation and im-

provement. During policy evaluation of the state-action value function, the action is selected

by taking the largest Q value such that a⇤t = arg maxa2A Q(st, a) and applying an exploration

strategy to the output, such as ✏-greedy. With the collected data from the interaction, that is,
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the observed state st+1 and reward rt+1, the update for the state-action value function becomes:

Q(st, at; ✓t+1) = Q(st, at; ✓t) + ↵(rt+1 + � arg max
a2A

Q(st+1, a; ✓t) � Q(st, a; ✓t)) (2.12)

Q-Learning has many di↵erent implementations available, such as a tabular lookup table

for a particular state and action. However, as the action and state space grow in dimensional-

ity, this becomes intractable, so the application of function approximation techniques must be

used, such as DNNs o↵er. This leads naturally to work proposed by Mnih et al. [6] in Deep Q-

Learning Networks (DQN), where the state action-value function is approximated with a CNN

and a set of fully connected layers. However, simply applying a DNN to control with a state

action function has significant issues with stability, leading to the “deadly triad” as coined by

Sutton [39], where bootstrapping, o↵-policy learning and function approximation causes im-

mense problems with stability during learning and divergences in policy performance. To this

end, Mnih et al. [6] propose the use of three innovations: experience replay, periodical target

updates, and gradient clipping. Experience replay accumulates the necessary information for

a single Q-Learning update over many environment interactions in a large data store and ran-

domly samples during learning. This drastically improves the sample e�ciency and removes

correlations in the observation sequences. As the state action function is updated towards a

bootstrapped target value, which can vary wildly between updates, DQN proposes using a tar-

get that has slow and periodically updated weights to increase stability and reduce short-term

oscillations. Finally, DQN uses gradient clipping in its updates to avoid significant and harmful

changes to its gradients that could induce stability issues.

2.2.4 Policy Gradient Methods

In RL, the direct optimization of a stochastic policy, with parameters ✓, requires using the

policy gradient theorem [40]. The policy gradient theorem provides an expression for the

gradient of the discounted reward objectives with respect to the parameter ✓. Therefore, the
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parameters ✓ of the di↵erentiable stochastic policy ⇡✓(at|st) are updated using the following

gradient:

r✓J(✓) = E⇡[ ⇡(st, at)r✓ log ⇡✓(at|st)] (2.13)

Where  ⇡(st, at), as shown by Schulman et al. [2], can be replaced with quantities such as the

total reward of the trajectory, the temporal di↵erence residual, or the state-action value function

Q⇡(st, at). The choice of  ⇡ a↵ects the variance of the estimated gradient. A common advan-

tage function A⇡(st, at) = Q⇡(st, at)�V⇡(st), provides a relative measure of value for each action

and has been used extensively throughout the literature [41]. The advantage function helps re-

duce the gradient estimator’s variance while keeping the bias unchanged. The Asynchronous

Advantage Actor-Critic (A3C) algorithm [41] uses policy gradients with an advantage function

with many parallel actors, all trained in parallel, each interacting with a copy of the environ-

ment. The parameters of each actor are synced periodically with the global parameters. This

greatly speeds up learning and allows agents to converge quickly. A2C, the synchronous and

deterministic version, where multiple actors interact with their environment for a fixed number

of steps and then perform a global parameter update.

2.2.5 On- & O↵-Policy Algorithms

A common classification for RL algorithms is whether they are on- or o↵-policy, where the

distinction is based on the behavior and updated policies of the agent [1]. Where the classifi-

cation hints at how the algorithms are updated and collect information. On-policy algorithms

update their parameters with the same policy that interacted with the environment; that is, their

behavior and update policies must match, such as algorithms that used policy gradients [2].

O↵-policy algorithms, such as Q-Learning [39], allow the behavior and update policies to be

di↵erent. O↵-policy algorithms are often much more sample e�cient as they can reuse all the

data from the environment, even with older or di↵erent behavior policies, than what the agent

currently posses [17].
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2.3 Evolutionary Algorithms

Evolutionary Algorithms (EA) are a class of population based stochastic search algorithms

that draw inspiration from biological evolution; using terminology common to the field such

as population selection, fitness scoring, and o↵spring[42]. In general, an EA algorithm takes

a population of learners and repeatedly prunes the population according to a fitness function

and expands the remainder by recombination (o↵spring). A generation is produced from one

iteration of this process and repeats until a certain number of generations has been reached or

a stopping criterion is met. The fitness function is usually manually specified and defines how

each member of the population is performing and if it needs to be pruned. While performant on

tasks with small state spaces, EAs do not scale well with complexity, that is when the number

of parameters being optimized over increases. Within this thesis, the tasks we explore require

immense numbers of parameters, often number in the tens of millions, which is intractable

with current EA methods. Therefore in this work, we use stochastic gradient descent as the

optimization algorithm of choice.

2.4 Summary

This chapter has presented a background review of important core concepts that were founda-

tional to the contributions made within this thesis. The first section has provided a description

and definitions for core concepts within DL. The second section provided a review of DRL,

MDP, core concepts, and three foundational learning methodologies: TD learning, policy gra-

dient methods, and evolutionary methods. In the next chapter a review of the relevant academic

literature is given.
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Literature Review

This chapter provides a literature review of the foundational and relevant methods within DRL.

The review is organized around the categories focused on by this thesis: sample e�ciency,

planning, and task transfer.

3.1 Sample E�ciency

Despite its many successes, a noticeable limitation of current RL methods is the low sample

e�ciency, requiring a considerable number of samples from the environment to converge to an

appropriate solution. Sample e�ciency has improved from di↵erent paths, such as exploration

methods, improved environment modeling, or importance sample. The work within this thesis

focuses on the last pathway, which is importance sample, as we felt it had the most significant

impact via its general applicability and had the most straightforward path forward. However,

to be thorough, we provide a literature review of each of the aforementioned avenues.

Exploration Methods

Exploration methods adjust how the agent explores the environment, with basic methods in-

cluding random perturbation of the action space with methods like ✏-greedy. A better explo-

18
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ration method improves the variety of the data and, therefore, the quality of the policy such that

it generalizes better and will, on average, require fewer samples. However, these methods often

rely on adjusting the output of the agent’s action choice, which can be quite far from the current

policy. Parameter space noise has been a proposed exploration method that injects randomness

into the model via the parameter space. The intuition is that the randomness induced in the

action choice is closer to the current agent policy [43]. Indeed, Rückstiess et al. [44] show

that this is possible and has several advantages over action space noise in continuous control

tasks. More recently, Plappert et al. [45] demonstrate that parameter space noise has greater

e�ciency than action space noise in some scenarios across many standard algorithms in DRL.

Fortunato et al. [46] proposed a method that strikes a balance between the parameter and action

space noise with their NoisyNet, where noise is added to the parameters immediately preceding

the output of the agents.

Environment Modeling

An axis that DRL algorithms can be classified along is if it incorporates a model of the envi-

ronment, that is model-based or lacks one, implying it is model-free. An environment model

includes a transition function that, given an action and current state, can predict the next state

the environment transitions. Learning these transition models is a field on its own with many

variations, such as those based upon RNNs [47] or conditional feed-forward models [13]. Once

a learned environment model is available, the agent can learn from generated samples instead

of relying on expensive environment interactions. A variant of the Dyna model [48] proposed

by Holland et al. [49] does precisely this by learning an environment model to generate expe-

rience for policy training in the Atari suite. In the low data regime, Kaiser et al. [50] found that

generated samples from a learned environment model can improve the performance by order

of magnitude on some game tasks. The environment model can also selectively model por-

tions of the environment, as shown by Oh et al. [13], who use a model of rewards to augment

a model-free agent to improve learning with solid results on many games in the Atari suite.
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Variations on the environment models architecture also exist, with Ha & Schmidhuber [51]

using a variations autoencoder with an RNN to successfully simulate and evaluate the Doom

environment.

Importance Sampling

Important sampling is a widely used method that enables the usage of samples generated by

one policy to be used by another for learning. This is important, as many RL algorithms require

parameter updates from data generated by the same policy. This is referred to as an on-policy

algorithm. In contrast, an o↵-policy algorithm can use mismatched policies [52]. Intuitively,

the o↵-policy algorithm will have a higher sample e�ciency as any generated sample from an

older version of the current policy, or a completely di↵erent policy can be used [39]. As an on-

policy algorithm must have exact parity between the policies, even the samples generated one

update step apart cannot be used, implying previous data cannot be kept and must be discarded.

An on-policy algorithm can be modified with importance sampling to use samples generated

by other policies, making it o↵-policy.

Therefore, a highly performant on-policy method, such as actor-critic, could use o↵-policy

samples within its learning update through the usage of importance sampling [14, 15, 53, 54].

The actor-critic method uses the policy gradient method to compute the direction of its param-

eter updates [41]. In practice, the policy gradient is estimated from a trajectory of samples

generated by the on-policy stationary distribution ⇡(a|s). Given a trajectory of samples gener-

ated by some behaviour policy B(a|s), the policy gradient from Equation 2.13 is modified to

be:

r✓J(✓) = EB
h
⇢t 

⇡(st, at)r✓ log ⇡✓(at|st)
i

(3.1)

where ⇢ is known as the importance weight and is defined as a ratio between the current policy

⇡(a|s) and the behaviour policy B(a|s) as ⇢t =
⇡(at |st)
B(at |st)

. Unfortunately, the importance-weighted

gradient in Equation 3.1 su↵ers from high variance. To reduce variance, Wawrzyński [16] pro-



3.2. Planning 21

posed truncating each importance weight to the interval [0, c] where c is some constant.

Wang et al. [17] proposed Actor-critic with experience replay (ACER), an o↵-policy

actor-critic algorithm that uses experience replay. ACER builds upon the on-policy A3C al-

gorithm [41]. ACER proposes three changes to A3C to convert it to an o↵-policy method:

truncated importance sampling with bias correction, retrace Q-value estimation, and updates

performed with Trust Region Policy Optimization (TRPO) [55]. As the gradients from impor-

tance sampling-based updates can su↵er from high variance, the quantity is usually truncated

by a constant c as done by Wawrzyński [16]. However, this truncation introduces a bias, so

Wang et al. [17] propose a correction term. Therefore, the gradient for ACER is defined as:

r✓J(✓) = min(c, ⇢t)
�
Qret(st, at) � Vw(st)

 r✓ ln ⇡✓(at|st)

+ Ea⇠⇡[max(0,
⇢t � c
⇢t

)(Qw(st, a) � Vw(st)r✓ ln ⇡✓(a|st)]
(3.2)

where Qw and Vw are value functions predicted by the networks critic with parameters w and

Qret is the estimated Q-value given by Retrace [56]. Retrace is a return-based Q-value esti-

mation algorithm that can be used with o↵-policy data. The first term of Equation 3.2 is the

truncated importance weight which reduces variance. The second term corrects the bias in-

troduced by the first term such that ACER’s policy gradient is an unbiased estimation. ACER

showed a big improvement in sample e�ciency over the A3C algorithm while being close to

the sample e�ciency of o↵-policy algorithms.

3.2 Planning

In RL, the archetype structure in planning typically involves an agent that chooses actions given

some environment state and a planning module which contains a learned environment model

[57]. The environment model often referred to as a state-transition model in the literature,

learns the environment dynamics and is used to predict the next state st+1 given the current
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state st and current action at. Between action selection steps in the environment, through

repeated application of the state-transition model and agent policy, it is possible to roll forward

a simulated prediction, or plan, of likely paths forward. The repeated application involves

feeding in the current state st, choosing an action selected by the agent given this state at ⇠

⇡(at|st), and passing this to the state-transition model, which predicts the next state st+1 – which

is then fed back in on the next iteration. Using this internal environment model, the agent can

reason about the future, seek positive outcomes, and avoid consequences of trial-and-error in

the environment which can often result in making irreversible action choices [11]. The choice

of state-transition architecture is highly flexible with successful applications of an encoder-

decoder network [58], recurrent networks [13], or residual networks [59]. Further, the output

of the state-transition model is also open, with some works predicting the entire state st [58] or

a latent representation [10], often denoted by �t.

Modern Planning

State-transition models have been used to improve the sample e�ciency in various ways, such

as using the information gained from rollouts as inputs to the policy [11], training the model

on samples generated from the planner [60, 48], or by aiding the agents learning by improving

policy evaluation [61]. Planning is strongly related to improving sample e�ciency, as the

learned state-transition model gives the agent additional samples to learn from [60] or avoid

costly environmental trial and error [11]. Indeed, model-based algorithms such as PILCO

by Deisenroth et al. [62], which reduces model bias through explicitly incorporating model

uncertainty, have shown that it is possible to learn from orders-of-magnitude fewer samples.

Various e↵orts along this avenue combine model-free, and model-based methods, such as the

Dyna-Q algorithm [48] that learns a model of the environment and uses this model to train a

model-free policy. Initially applied in the discrete setting, Gu et al. [63] extended Dyna-Q to

continuous control.

Pascanu et al. [64] implemented a model-based architecture comprised of several individu-
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ally trained components that learn to construct and execute plans and use a separate specialized

policy. This is problematic as the policy used during planning and acting in the environment

have no guarantee of being similar, potentially causing disagreement, such that the planning

policy could explore or exploit a plan for which the acting policy cannot traverse. Vezhnevets

et al. [65] proposed a method that learns to initialize and update a plan; their work does not use

a state-transition model and maps new observations to plan updates. Guez et al. [66] proposed

MCTSnets, an approach for learning to search where they replicate the process used by MCTS.

MCTSnets replace the traditional MCTS components with neural network analogs. The modi-

fied procedure evaluates, expands, and back-ups a vector embedding instead of a scalar value.

The entire architecture is end-to-end di↵erentiable.

Sequential Planners

Value prediction networks (VPNs) by Oh et al. [67], Predictron by Silver et al. [61], and

ATreeC by Farquhar et al. [10], an expansion of VPNs, combine learning and planning by

training deep networks to plan through iterative rollouts. The Predictron predicts values by

learning an abstract state-transition function that is used to improve the evaluation of the policy

instead of directly for planning. Oh et al. [67] and Farquhar et al. [10] both construct trees

to improve value estimates using forward-only rollouts, exhaustively expanding each state’s

actions. In addition, Farquhar et al. [10] use the tree for training and acting. Farquhar proposed

two variants: ATreeC, building upon the actor-critic method, and TreeQN, building upon the

Deep Q-Learning method [6]. Both methods exhaustively expand out all states and actions and

then pick the pathway with the highest value and, therefore, the following action. However,

the expansion along all actions across the state space for a fixed depth is computationally

expensive and lacks the flexibility to adjust based on the particular state. Similarly, Francois-

Lavet et al. [68] proposed a model that combined model-free and model-based components to

plan on embedded state representations similar to TreeQN [10]. Learning on embedded state

representations eases the computational requirements of both the state-transition models and
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agent as it does not need to process high dimensional inputs.

Similarly, Weber et al. [11] proposed Imagination Augmented Agents (I2As), an architec-

ture that learns to plan using a separately trained state-transition model. Planning is accom-

plished by expanding all available actionsA of the initial state and then performingA rollouts

using a tied policy for a fixed number of steps. The authors claim that the model learns to

select pertinent information from the series of rollouts via an aggregator to inform its decision;

as state-transition models su↵er from compounding errors due to prediction errors, the aggre-

gator also serves as an interpreter. We argue this is an improvement on the work of Farquhar

et al. [10] and Oh et al. [67] as the planning step only forces breadth-first expansion on the

first step and then allows the free selection of actions according to a planning policy. However,

I2As uses a separate policy for planning step rollouts but links them together via an auxiliary

entropy loss function which helps but still does not guarantee similarity. Further, in terms of

sample e�ciency, I2As require hundreds of millions of steps to converge, with the Sokoban

environment taking roughly 800 million steps.

Within continuous control learning, a state-transition model for planning has been used in

various ways. Finn et al. [69] demonstrated using a predictive model of raw sensory observa-

tions with model-predictive control (MPC), where the model is learned entirely self-supervised.

Srinivas et al. [70] proposed using an embedded di↵erential network that performs iterative

planning through gradient descent over actions to reach a specified target goal state within a

goal-directed policy. Hena↵ et al. [71] focus on model-based planning in low-dimensional

state spaces and extend their method to perform in discrete and continuous action spaces.

Value Iteration Networks (VIN) proposed by Tamar et al. [59] is an exciting avenue of work

explored planning in an agent without an explicit state-transition model. Instead, VIN uses an

explicit di↵erentiable planning structure, implemented with convolutions, to perform approx-

imate on-the-fly value iteration. The essential contribution is using a convolutional network

as the backbone of the planning module, which can learn an equivalent approximation to the

value-iteration algorithm. However, as the planning module relies on a convolutional network,
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the architecture is only suitable for environments where spatial information is informative, such

as top-down gridworld maps.

3.3 Task Transfer

Like humans, who do not learn new tasks from a completely blank slate but continually learn to

adjust to new tasks, RL agents can significantly improve their sample e�ciency by transferring

accumulated experience. Indeed, if given a newly presented task, even if similar to a previously

mastered task, the current standard practice is to reset the agent’s parameters. Many methods

have been explored such as transfer of skills [72, 73], adaptively tuned models [74, 75], and

disentangling representations [76, 77, 78]. This thesis contributes to representation transfer but

provides a literature review of the related e↵orts.

Options Framework

In skill transfer, Sutton et al. [72] define a framework for temporally extended actions, known

as the options framework. Introducing options ⌦ into the MDP, M forms a Semi-Markov

Decision Process (SMDP) [72]. The options framework defines a set of parameterized skills

that allows temporally extended policies to be learned for specific state spaces. An SMDP

has a corresponding value function over options V⌦(s) and option-value function Q(s,!). The

option-value function is defined as:

Q(s,!) =
X

a

⇡!(a|s)Q(s,!, a) (3.3)

where Q(s,!, a) is the value of each state-option pair (s,!) and action a. This is defined

by the expected return, which depends on the policy over options, the options, and termination

functions:

Q(s,!, a) = E⇡,⌦,p,r[
P1

i=1�
i�1rt+i|st = s,!t = !, at = a] (3.4)
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Formally, an option! 2 ⌦ is defined as the triplet (I!, ⇡!, �!) where I! ✓ S is an initiation

set, ⇡! is an intra-option policy, and �! : S! [0, 1] is a termination function. The initiation set

controls when a particular option begins execution, the intra-option policy defines the behavior

for its duration, and the termination function dictates when it ends. An analogy would be how

a human learns contextually relevant skills such as chopping vegetables or riding a bike; they

have a clear initiation state, specific interactions, and a natural end.

Bacon et al. [73] proposed an option framework extension by deriving a policy gradient-

based update for options, resulting in the Option-Critic (OC) architecture. In contrast to the

options framework, the OC can learn both the internal policies and termination conditions of

options at once. They provide the following gradient-based updates, given the set of intra-

option policies {⇡!} 2 ⌦ parameterized by ✓ and set of termination functions {�!} 2 ⌦ param-

eterized by #:

r✓V(s0) =
X

s,!

⇢(s,!|s0,!0)
X

a

Q(s,!, a)r✓⇡!(a|s) (3.5)

r#V(s0) =
X

s0,!

⇢(s0,!|s1,!0)
�
Q(s0,!) � V(st+1)

 r#�!(s0) (3.6)

where ⇢ is a discounted weighting of state option pairs from s1,!0) : ⇢(s,!|s1,!0) =
P1

t=0 �
t p(st+1 = s,!t = !|s1,!0) as defined by Bacon et al. [73]. OC assumes the call-

and-return option execution model, where the option ! is picked according to the policy over

options ⇡⌦, then follows the intra-option policy ⇡! until termination, dictated by �!, at which

point this procedure is repeated.

Meta Learning

Another way to have an RL model adapt is by building the adaptability into the model itself.

This is formally known as meta-learning, where the model learns a set of parameters that can

be adapted quickly to related tasks. Wang et al. [74] proposed Deep Meta-Reinforcement

Learning, a generic framework that can adapt rapidly to new tasks. The framework requires

three components. First, the backbone of the model must be based around a recurrent network
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and trained with a deep RL algorithm, such as A3C [41]. Second, training must be done over

a distribution D of interrelated tasks where a drawn task i is held fixed for a set number of

trials T . The network’s hidden state is reset each time a new trial is sampled from the training

distribution. Furthermore, the network sees two additional inputs: the action selected and the

reward received on the previous timestep. This gives the model information on the value of its

previous action. Under these conditions, the model learns to implement a fast adapting “meta”

algorithm that is completely encapsulated in the hidden state of the recurrent network. This

enables it to adapt to unseen tasks without additional gradient updates as the model adapts to

the presented task with only updates to its hidden state. This style of meta-learning is powerful

but su↵ers from similar issues around stability common to recurrent networks. Related to this

avenue of research, Finn et al. [75] proposed a Model-Agnostic Meta-Learner (MAML), which

learns a set of parameters that, on average, perform well on a set of tasks and can be quickly

updated to specific tasks.

Successor Features

An additional avenue for transfer learning is to decouple the state features of a domain from

its reward distribution; this enables transfer between domains as long as the only di↵erence

between them is their reward distributions. SF o↵ers this decomposition of the Q-value func-

tion and has been mentioned under various names, and interpretations [19, 20, 79, 76]. This

decomposition follows from the assumption that the reward function can be approximately rep-

resented as a linear combination of learned features �(s; ✓�) extracted by a neural network with

parameters ✓� and a reward weight vector w. As such, the expected one-step reward can be

computed as r(s, a) = �(s; ✓�)>w. Following this, the Q function can be rewritten as:

Q(s, a) ⇡ E⇡

rt+1 + �rt+2 + . . . |S t = s, At = a

�

= E⇡

�(st+1; ✓�)>w + �(st+2; ✓�)>w + . . . |S t = s, At = a

�
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Q(s, a) =  ⇡(s, a)> · w

where  (s, a) are referred to as the successor features under policy ⇡. The ith component

of  (s, a) provides the expected discounted sum of �(i)
t when following policy ⇡ starting from

state s and action a. It is assumed that the features �(s; ✓�) are representative of the state s,

such that  (.) can be turned into a function  ⇡(�(st; ✓�), at). For brevity, �(st; ✓�) is referred to

simply as �t and  ⇡(s, a) as  (s, a).

The decomposition neatly separates the Q-function into two learning problems, for  ⇡ and

w: estimating the features under the current policy dynamics and estimating the reward given a

state. Because the decomposition still has the same form as the Q-function, the successor fea-

tures are computed using a Bellman equation update in which the reward function is replaced

by �t:

 ⇡(�t, at) = �t + �E

 ⇡(�t+1, at+1)

�

Such that approximate successor features can be learned using an RL method, such as Q-

Learning [80]. The approximation of the reward vector w becomes a supervised learning prob-

lem. Hansen et al. [81] introduce a Variational Intrinsic Successor Feature (VISR) that intro-

duces an unsupervised learning object to learn controllable features, which after training the

unsupervised state representation, enables adaption across tasks by solving a linear regression

problem and is evaluated on the Atari suite.

In an interesting cross between the options framework and SFs, Machado et al. [76] pro-

pose eigenoptions, which use the eigenvectors of the learned successor features to obtain op-

tions that encode di↵usive information flow in the environment. This framework leads to highly

composable options that work well in stochastic environments.
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3.4 Summary

This chapter has presented a review of academic research related to the contributions of this

thesis. Foundational and state-of-the-art methods within DRL focusing on sample e�ciency,

task transfer, and planning were reviewed. The first proposed algorithm for improving sample

e�ciency with a novel form of importance sampling is introduced in the next chapter.
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Noisy Importance Sampling Actor-Critic

This chapter presents the Noisy Important Sampling Actor-Critic (NISAC) method. NISAC

uses a noisy weighting for o↵-policy samples, enabling their use in an on-policy algorithm.

The method presented in this chapter is from the published work [82] and focuses on improving

the sample e�ciency of DRL algorithms.

The organization of this chapter is as follows: Section 4.1 presents the introduction and our

contributions, Section 4.2 covers background information, Section 4.3 describes the NISAC

algorithm, Sec. 4.4 details the experimental results, analysis, and ablations of our methodology,

and finally Sec. 4.5 provides concluding remarks.

4.1 Introduction

Recent advances in RL have enabled the extension of long-standing methods to complex and

large-scale tasks such as Atari [6], Go [83], and DOTA [84]. The key driver has been the

use of deep neural networks, a non-linear function approximator, with the combination usually

referred to as DRL [30, 6]. However, deep learning-based methods are usually data-hungry,

requiring millions of samples before the network converges to a stable solution. As such, DRL

methods are usually trained in a simulated environment where an arbitrary amount of data can

be generated.

30
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RL algorithms can be classified as either learning in an o↵-policy or on-policy setting. In

the on-policy setting, an agent learns directly from experience generated by its current policy.

In contrast, the o↵-policy setting enables the agent to learn from experience generated by its

current policy or/and other separate policies. An algorithm that learns in the o↵-policy setting

has much greater sample e�ciency as old experience from the current policy can be reused; it

also enables o↵-policy algorithms to learn an optimal policy while executing an exploration-

focused policy [52].

A famous o↵-policy method is Q-Learning [38] which learns an action-value function,

Q(s, a), that maps the value to a state s and action a pair. DQN, the marriage of Q-Learning

with deep neural networks, was popularised by Mnih et al. [6] and used various modifications,

such as experience replay, for stable convergence. Within DQN, experience replay [85] is often

motivated as a technique for reducing sample correlation. Unfortunately, action-value meth-

ods, including Q-Learning, have two significant disadvantages. First, they learn deterministic

policies, which cannot handle problems that require stochastic policies. Second, finding the

greedy action with respect to the Q function can be costly for large action spaces. To overcome

these limitations, one could use policy gradient algorithms [86], such as A2C an on-policy

actor-critic method [41], which learn in an on-policy setting at the cost of sample e�ciency.

The ideal solution would be to combine the sample e�ciency of o↵-policy algorithms with

the desirable attributes of on-policy algorithms. Work along this line has been done by using

importance sampling [14] which adjusts o↵-policy samples according to a weight ⇢, the ratio

between the current policy ⇡(a|s) and experience policy B(a|s). Where the weight is defined

as ⇢ = ⇡(a|s)
B(a|s) . NISAC modifies A2C by using additive action space noise, aggressive truncation

of importance sample weights, and large batchsizes enabling o↵-policy learning from stored

trajectories. The contributions of this work are as follows:

• We introduce Noisy Importance Sampling Actor-Critic (NISAC), a fully o↵-policy actor-

critic algorithm, that learns from stored o↵-policy trajectories.

• Experimentally prove in the Atari domain, that NISAC outperforms, in performance
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and sample e�ciency, both A2C [41] and the o↵-policy truncated importance sampling

method [16].

• Show the addition of additive action space noise, to the numerator of ⇢, changes the

distribution of weights, improves learning, and that Gumbel noise, rather than Normal or

Uniform, is most performant.

• NISAC training time is 40% faster than ACER, a SOTA o↵-policy actor-critic methods,

nears its performance on several environments, and is easier to implement.

4.2 Background

The Gumbel distribution is a probability distribution that is used to model the maximum of

value from a set of independent samples [87]. The density of this distribution is defined as:

p(x) =
1
�

exp(�z � exp(�z)) (4.1)

where z = x�µ
� and parameterized by scale � and location µ. We evaluate noise sampled from

the Gumbel distribution as a potential candidate for additive noise in NISAC. The Gumbel

distribution has several applications within machine learning, such as the Gumbel-Max [88]

and Gumbel-Softmax tricks [89]. However, our usage of the Gumbel distribution di↵ers from

the Gumbel-Max and Gumbel-Softmax in that we see Gumbel noise as perturbing the current

policy – as noise would from any other distribution.

4.3 Model

4.3.1 Model Architecture

NISAC builds o↵ the on-policy actor-critic algorithm A2C, such that direct comparison to

methods like ACER are possible. To enable o↵-policy learning NISAC uses aggressive clipping
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(a) Truncated ⇢ with current policy

(b) Truncated ⇢ with noisy policy

Figure 4.1: Histograms of importance sampling weights ⇢ during training. The x-axis is the
magnitude of ⇢̄ and the y-axis is the number of updates since start of training. Both ratios ⇢ are
truncated between [0, c], where is c the truncation value and here, c = 4. a) Using truncated
⇢ with the current policy in the numerator and b) the ratios seen during training from NISAC,
which corresponds to use of the noisy policy in the numerator. In this case noise was sampled
from a standard Gumbel distribution.

on importance sampling, additive noise, and large batches sampled from a replay memory.

Psuedo-code for NISAC is provided in Algorithm 1. We begin by defining a few quantities
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used in the importance sampling weight ⇢. In importance weighting, two policy classes exist:

the current policy ⇡(a|s; ✓) and the behaviour policy B(a|s). Because replay memory is being

used, the behaviour policy is simply the distribution over actions with an old parameter setting

✓⇤:

B(at|st) = ⇡(at|st; ✓⇤) (4.2)

NISAC introduces a third policy, the noisy policy F (a|s)1, which results from adding noise

✏ drawn from some distribution D to the normalized logits of the current policy and passing

them through a softmax:

F (at|st) = softmax(log ⇡(at|st; ✓) + ✏) (4.3)

We hypothesize that the addition of action space noise will reduce the bias of the agents

action selection throughout training against the current policy and will act as a regularizer on

the learned policy. We can see, from Figure 4.1(b), where we truncate values to some constant

c, that the addition of noise forces the ratio ⇢ into one of three modes instead of clumping

around 1. In this work we examine the di↵erence between noise drawn from Uniform, Gumbel,

and Normal distributions. One major qualitative di↵erence between these types of noise, with

respect to the distributions shape, is that additive Gumbel noise results in less mass between

modes. Further, Gumbel noise has been successfully applied to the learning of discrete samples

via gradient descent in RL [90]; making its use within this work ideal.

4.3.2 Training

Similarly to previous work, this study uses importance sampling ⇢t to weight the updates of the

loss function [16, 17, 14]. However, instead of using the current policy, ⇡(·|st), in the numerator,

1As N is typically used for Normal distributions, we used F to avoid confusion.
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it is replaced with the noisy policy F (at|st):

⇢ (i)
t =

F (a(i)
t |st)

B(a(i)
t |st)

(4.4)

The range of ⇢t is clipped to [0, c] and this clipped importance weight is referred to as ⇢̄t. Clip-

ping the upper bound prevents the product of many importance weights from exploding and

reduces the variance [16]. Wang et al. [17] notes that truncating the importance weights in this

way introduces bias to the estimator. However, the value of having an unbiased algorithm is

unclear, as shown by Thomas [91], and does not always correspond to improved performance.

The e↵ect of aggressively clipping ⇢t and using the noisy policy F (·|s) in ⇢t has an interesting

e↵ect on the way the policy updates are weighted. To understand the e↵ect of these two mod-

ifications we again refer to Figure 4.1, which shows the history during training of the ratios

⇢̄, truncated between [0, c] to a constant c, where Figure 4.1(a) is plain truncated importance

sampling and Figure 4.1(b) is truncated importance sampling with added action space noise.

From Figure 4.1(a), we notice that the majority of the importance weights ⇢̄ are centered

around 1 resulting in o↵-policy samples that are weighted approximately the same. How-

ever, by using additive action space noise, in this case from the Gumbel distribution, we can

see from Figure 4.1(b) a multi-modal distribution appears. The weights ⇢̄ form three distinct

modes around {0, 1, c}, with small amounts of additional density “smeared” between modes.

We hypothesize that the addition of noise, via the noisy policy F (a|s), has the e↵ect of stabil-

ising the updates to the network as the weighting assigned to each o↵-policy sample is near

{0, 1, c}. Interestingly, each of the modes can be grouped into cases of “agreement” or “dis-

agreement” between the noisy policy F (·|s) and behaviour policy B(·|s). Where the case of

agreement corresponds to ratios and the mode near 1 while disagreements correspond to ratios

and modes at 0 and c. More exactly, when the noisy policy disagrees with the behaviour policy,

say F (·|s) ⇡ 1 and B(·|s) ⇡ 0, the update the policy receives is at most clipped by the upper

bound of our interval: c. On the other hand, when the situation is reversed, but still in disagree-
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Algorithm 1 Pseudo-code for k-step NISAC; Highlights are additions.
Initialize parameters ✓ and ✓v.
Initialize replay memoryM with capacity N.
repeat

for i 2 {0, · · · , k} do
Perform ai according to ⇡(·|si; ✓).
Receive reward ri and new state si+1.
Store (si, ai, ri, ⇡(·|st)) inM.

end for
Sample b trajectories {s0, a0, r0,B(·|s0), · · · , sk, ak, rk,B(·|sk)} from the replay memoryM.
for i 2 {0, · · · , k} do

Sample ✏ from noise distributionD.
Compute ⇡(·|si; ✓) and F (·|si).
⇢̄i = clamp

⇣F (ai |si)
B(ai |si)

, 0, c
⌘

end for

R 
8>><
>>:

0 for terminal sk

V(sk; ✓v) otherwise
Reset gradients: d✓  0 and d✓v  0.
for i 2 {k � 1, · · · , 0} do

R 
8>><
>>:

0 for terminal si

ri + �R otherwise
Accumulate gradients d✓  d✓ + ⇢̄ir✓ logF (ai|si)

�
R � V(si; ✓v)

 

Accumulate gradients d✓v  d✓v + r✓v (R � V(si; ✓v))2

end for
Perform update of ✓ using d✓ and ✓v using d✓v.

until Max iteration or time reached.

ment, with F (·|s) ⇡ 0 and B(·|s) ⇡ 1, the policy has an importance weight of approximately

0.

Putting this all together the update equation for NISAC is as follows:

r✓J(✓) = EB[⇢̄tA(st, at)r✓ log ⇡✓(at|st)] (4.5)

However, empirically we found that using the noisy policy in place of the current policy,

in r log ⇡(at|st), produces better performance. This is empirically validated by an ablation in

Section 4.4.1. We hypothesize that the usage of the noisy policy in place of ⇡(a|s) a↵ects

three changes during learning. First, by adding action space noise the resulting policy will

tend towards a categorical distribution earlier in training which will a↵ect how strongly the

networks weights are updated. Second, as the noisy policy used in both the numerator of

⇢t and in place of the policy score use the same set of noise samples {✏i, . . . , ✏k} the updates
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synchronize such that the policy is updated maximally in agreement. And finally, we believe

the additive noise acts as strong exploration force to the policy as it can “shake-out” policies

that are near deterministic, even later in training.

4.4 Experiments

Our experiments focus on the Atari domain [92] as there exists a large amount of variety

between environments and the states are represented as raw high-dimensional pixels. The

gym software package by Brockman et al. [93] was used to conduct all the experiments.

The network architecture and hyper-parameters, for each respective algorithm, were constant

throughout all experiments.

This study used the same input pre-processing and network architecture as Mnih et al. [41].

The network architecture consists of three convolutional layers as follows: 32 8⇥ 8 filters with

stride 4, 64 4 ⇥ 4 filters with stride 2, and 32 3 ⇥ 3 filters with stride 1. The final convolutional

layer feeds into a fully-connected layer with 512 units. All layers are followed by rectified

non-linearity. Finally, the network outputs a softmax policy over actions and a state-value.

The experimental set-up used 16 threads running on a GPU equipped machine. As is stan-

dard in the Atari domain [6, 41, 17], all experiments are trained for 40 million frames. The

optimization procedure used RMSProp [94] with a learning rate of 0.0005, policy entropy reg-

ularization weight of 0.01, and a discount factor of � = 0.99. We estimate the gradient given in

Equation 4.5 by uniformly sampling b trajectories of length k from a replay memory with size

N. The advantage function A(st, at) = R(k)
t �V(st) is used, where R(k)

t is the bootstrapped k-step

return for time t. A replay memory of size N = 250000 was kept, an update was performed

every k = 5 steps in the environment, and a clamping coe�cient of c = 4 was used. We sample

b = 64 trajectories of length k = 5 for each update. Learning begins after we have collected

10, 000 samples in the replay memory. All experiments used the same hyperparameter settings

and network architecture.
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We tuned the hyperparameters and developed NISAC on the FishingDerby environment

only; the other environments can be considered “out of sample”. We use the best 3 seeds and

as standard we report the mean value of rewards achieved during training with 1 std. deviation

as shaded areas on all graphs.

Due to limited computational resources, we were only able to evaluate NISAC on a subset

of the environments and with a smaller replay memory size. Therefore, in this study, an e↵ort

was made to select environments that best showcase the performance of o↵-policy (truncated

importance sampling) and on-policy (A2C) actor-critic methods. We note that the performance

can be expected to improve with a larger replay memory, as seen with DQN and other o↵-policy

methods using replay memory. Additionally, we focused the examination of our ablations on

the Alien environment to reduce computational requirements.

The present work was compared with a SOTA o↵-policy actor-critic algorithm, ACER [17],

an on-policy actor-critic algorithm, A2C, the synchronous version of A3C [41], and an o↵-

policy actor-critic with truncated importance sampling (t-IS) [16, 14]. A2C and ACER used

the baselines package provided by OpenAI [95]. The hyperparameters of ACER and A2C are

identical to those used on the Atari environment by previous works [17] [41]. For t-IS we used

a clipping constant c = 10 and replay memory of 250000 samples.

4.4.1 Additive Noise Distribution

Within this section, we vary the noise generating distribution used in NISAC and examine

the e↵ect on performance and learning. In particular, we compare noise sampled from the

standard Gumbel distribution, the standard Normal distribution, and the Uniform distribution

[0, 1]. Our analysis looked at the performance each variant achieved on the Alien Atari game

over 40 million frames. The experiments only adjust the noise generating distribution with no

other parameter changes.

From the results in Figure 4.2(a), we see that the Gumbel and Normal distributions have the

same initial rate of improvement but diverge roughly midway through training. The Normal
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(a)

(b)

Figure 4.2: Above we compare the behaviour between Gumbel, Normal, and Uniform distri-
bution. a) Performance on the Atari game Alien under di↵erent noise distributions. b) We look
at the entropy ratio between the current policy and the noisy policy H[⇡]

H[F ] .

distribution appears to degrade in performance before becoming stable at ⇠1500. The Uniform

distribution, sampled between [0, 1], has the same convergence characteristic as the other two

distributions but instead of diverging away, similar to the Normal distribution, it continues

upward before converging at ⇠ 2000. We can see that the Gumbel distribution is the most

performant.

Next, in Figure 4.2(b), we compared the entropy H[.] of the current policy ⇡(a|s) over the

noisy policy F (a|s). This experiment helps us understand how much each policy is exploring
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relative to the other as well as how the ratios ⇢ change over time. For Uniform noise, we see

it is flat throughout training implying that the current policy and noisy policy have equivalent

entropy and therefore will “explore” at the same rate and produce importance sampling weights

which are roughly 1. However, when examining the Gumbel and Normal noise variants we

see that the noisy policy has greater entropy. When using Normal noise we see that initially

the noisy policy has +15% more entropy but this quickly decays towards the end of training,

falling below a 10% di↵erence. We would like to note the small dip of the entropy ratio roughly

coincides with the peak and draw down of the Normal variant in Figure 4.2(a). Looking towards

the Gumbel variant, we can see the noisy policy has over +40% more entropy than the current

policy and declines to about +20% towards the end of training. This implies that Gumbel

noise will tend to “explore” more throughout training with the e↵ect magnified earlier on. As

the behaviour policy B(a|s) will roughly trail behind the current policy ⇡(a|s) during training

we can expect the ratios ⇢ to be at the outer modes 0 and c. Later in training, as the entropy

ratio drops the likelihood that the policies disagree decreases which corresponds to ratios ⇢ at

roughly 1. Referring back to Figure 4.1(b), we can indeed see the two aforementioned trends

occur: ⇢ is mostly around 0 and c and then most of the ratios go to 1. The earlier stages coincide

with greater exploration as the two policies are in disagreement more often.

4.4.2 Noisy Policy Placement

Here, we examine the e↵ect of using the noisy policy F (at|st) in the importance ratio ⇢̄t and as

a replacement for the current policy ⇡(·|s) in the policy gradient update. Going forward we use

the Gumbel distribution, as by Section 4.4.1, it is the most performant. We examine di↵erent

combinations of the current or noisy policy which modify Equation 4.5 as follows:

r✓J(✓) = EB[min(c,
x

B(at|st)
)A(st, at)r✓ log y] (4.6)

with each combination specified as a tuple of the form (x, y). Specifically, we look at the
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Figure 4.3: Variations in the choice of policy x in numerator of ⇢t and the policy y used to
update the network. We see that the combination corresponding to NISAC has the highest
performance and faster convergence speed. In the legend, c corresponds to current policy ⇡
and f corresponds to the noisy policy F .

Figure 4.4: Training performance across 8 Atari games. We see the performance of NISAC
(shown in blue) against ACER (shown in green), an o↵-policy actor-critic algorithm, the on-
policy algorithm A2C (shown in red), and the o↵-policy actor-critic algorithm t-IS (shown in
orange). The graphs show the average performance over 3 seeds with 1 standard deviation
shown as the shaded region. NISAC matches or exceeds the performance of A2C and t-IS on
all environments shown; while in all cases achieving improved convergence speed.

following combinations (⇡, ⇡), (⇡,F ), (F , ⇡), and (F ,F ). The combinations specified by (⇡, ⇡)

results in t-IS, no noise, and (F ,F ) in NISAC. From Figure 4.3 where c corresponds to current

policy ⇡ and f corresponds to the noisy policy F , we see that variant (F ,F ), corresponding to
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NISAC, has the highest performance and fastest rate of convergence. This variant outperforms

(F , ⇡) showing that there is indeed some added benefit of additional noise. Finally, we note

that the lowest performing variant, (⇡,F ), uses additive noise to the policy in the importance

weight ratio. As mentioned previously and shown in Section 4.4.1, we see that the noisy policy

strongly a↵ects how the networks weights are updated during all points of training.

4.4.3 Atari Results

To test the proposed methodology, the performance of NISAC on a subset of Atari environ-

ments was examined. In particular, the following environments were investigated: Alien,

BeamRider, Boxing, FishingDerby, MsPacman, Qbert, Seaquest, and SpaceInvaders. We re-

port the average reward every 1000 episodes over 40 million frames. As mentioned previously,

environments were chosen where either the on-policy algorithms perform well or where there

is a clear di↵erence in performance between an o↵-policy and on-policy method. For NISAC,

we used noise sampled from the Gumbel distribution, validated in Section 4.4.1, and the noisy

policy in the numerator of the importance weight and the policy gradient update, as validated

in Section 4.4.2.

From Figure 4.4, we see the performance of NISAC, shown in blue, in comparison to

the o↵-policy ACER algorithm, shown in green, the on-policy A2C algorithm, shown in red,

and the t-IS algorithm, shown in orange. We see that the use of replay memory and learning

with o↵-policy samples significantly improves the sample e�ciency of both NISAC over A2C.

Qualitatively, we see that NISAC converges significantly faster than A2C while also exceeding

A2C’s performance on this subset of Atari environments.

The performance gap between t-IS and NISAC is also large, with NISAC showing both in-

creased performance and sample e�ciency. The di↵erence from NISAC to t-IS is an aggressive

truncation of the importance weights and the noisy policy F (·|s) used in both the importance

weight and policy. As seen from Figure 4.4 this gives a significant increase in performance.

We achieve similar sample e�ciency between the o↵-policy actor-critics, NISAC and ACER,
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Algorithm Wallclock Time
ACER 8h47m
NISAC 6h14m

A2C 4h53m
t-IS 4h39m

Table 4.1: Average Wallclock Time over Atari games: We can see that NISAC is 40% faster
than ACER. The other baseline methods, A2C & t-IS, are faster still but are less performant
across all Atari environments.

across each environment. We see that NISAC sees a fast initial increase in performance across

almost all environments. ACER, a SOTA algorithm, out performs NISAC on the MsPacman,

Qbert, and SpaceInvader environments. However, we note that NISAC trains 40% faster than

ACER, shown in Table 4.1, and is significantly easier to implement with fewer modifications

to the A2C algorithm, while providing better performance than both A2C and t-IS.

4.4.4 Stability

It is natural to inquire on the stability of this method, as we rely on additive noise which could

cause instability after an optimal policy has been reached. To this end, we evaluate the stability

of NISAC by increasing the number of training iterations such that 150 million frames are seen.

The Boxing and FishingDerby environments are used for this evaluation. The environments

were chosen as the policy had achieved the highest score during training, a known ceiling, and

any instability would cause a divergence to a sub-optimal policy.

From the rather uninteresting graphs, shown in Figure 4.5, we see that NISAC can con-

verge to and maintain a stable policy even with continued parameter updates. To overcome the

noise added by the Gumbel distribution requires the network to output a near one-hot-encoded

categorical distribution.
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Figure 4.5: Stability of NISAC with extended training time. NISAC is trained for 150 million
frames, ~4x longer, on the Boxing and FishingDerby environments. We see that NISAC expe-
riences little to no oscillations in performance even with continued weight updates.

4.4.5 Ablations Of Components

In this experiment, we performed ablations of NISAC to understand the importance of each

component and impact on NISAC’s performance. The results of the ablation are shown in

Figure 4.6 with the complete NISAC algorithm, that is all the components that comprised

NISAC, in blue and a stripped version as a red curve. We start with a base version, essentially



4.4. Experiments 45

Figure 4.6: Ablations of NISAC. The full NISAC algorithm is shown as the blue curve while
the stripped versions are shown in red. From left to right we gradually add the components
onto the base version until we arrive at the full NISAC algorithm, shown in the last pane. The
lines in the last pane are identical but with one graph stylized.

the truncated importance sampling algorithm (t-IS) [16], shown in the left-most panel in Figure

4.6.

From Table 4.2 we see that the base version has a performance �39.39% lower than NISAC.

The addition of a larger batchsize, from 16 sampled trajectories, to 64 as shown in the second

panel in Figure 4.6 causes an increase of +21.30% over the base version and narrows the di↵er-

ence to NISAC to �26.49%. Using an aggressive clamp of 4 instead of 10 on the importance

sampling ratio ⇢̄ improves performance by an additional +12.33%. Finally, the addition of

noise sampled closes the gap with a final increase of +21.09%. It is clearly shown that large

batchsize and additive noise contribute the most to the performance increase between stripped

versions.

%� to NISAC %� from last
Base -39.39% N/A

+Large Batchsize -26.49% +21.30%
+Aggressive Clamp -17.43% +12.33%

+Noise 0% +21.09%

Table 4.2: The table provides the percent deltas between either the stripped version to NISAC
or the current model to the last. We measure the change between the last 100 episodes.

Additionally, while di�cult to quantify, we can see from the plots that the aggressive clamp

and additive noise improve sample e�ciency the most. It is clear that all the components,

large batchsize, aggressive clamping, and additive policy space noise are crucial to NISAC’s
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aggregate performance.

4.5 Summary

This chapter has introduced Noisy Importance Sampling Actor-Critic (NISAC), a fully o↵-

policy actor-critic algorithm that learns from stored o↵-policy trajectories. We have proven,

experimentally, that NISAC improves upon the performance and sample e�ciency of A2C

[41], an on-policy actor-critic, and truncated importance sampling [16], an o↵-policy algorithm.

NISAC nears the performance of ACER [17], a SOTA o↵-policy actor-critic method, on sev-

eral environments while completing a training session in 40% less time and being significantly

easier to implement. We have analyzed the e↵ect of additive action space noise, identified the

Gumbel distribution as the most performant variant, and examined where the noisy policy can

be used within the importance sampling weight ⇢ and policy gradient update. Our analysis

shows that additive action space noise fundamentally changes the distribution of importance

sample weights ⇢ during training. Furthermore, finally, we have shown that each component in

NISAC contributes to its improved performance over the baseline methods. Even with additive

action space noise, the learned policies are stable. However, a limitation of the aforementioned

work is that it cannot be easily applied to environments with continuous action space, such as

those in robotics. This is due to how additive action space noise is injected and the choice of

distribution. In particular the Gumbel noise, which was most performant, is suited for categori-

cal distributions only. Therefore, future work is required to find a distribution that is applicable

to continuous action spaces.



Chapter 5

Dynamic Planning Networks

This chapter presents Dynamic Planning Networks (DPN), an adaptive planning method for

deep reinforcement learning. The method learns how to dynamically adjust its internal plan-

ning algorithm based on the needs of the particular task. The work presented in this chapter

is taken from the published work [96] and focuses on improving the action e�ciency of DRL

algorithms. The chapter is organized as follows: Section 5.1 presents an introduction and con-

tributions, Section 5.2 covers our architecture and training procedure, Section 5.3 details the

experimental design used to evaluate our architecture, the experimental results, and analysis,

and finally Section 5.5 provides a summary of the method.

5.1 Introduction

The central focus of RL is the selection of optimal actions to maximize the expected reward

in an environment where the agent must rapidly adapt to new and varied scenarios. Various

avenues of research have spent considerable e↵orts improving core axes of RL algorithms such

as performance, stability, and sample e�ciency. Significant progress on all fronts has been

achieved by developing agents using deep neural networks with model-free RL [6, 41, 97, 98];

showing model-free methods e�ciently scale to high-dimensional state space and complex

domains with increased compute. Unfortunately, model-free policies are often unable to gen-

47
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eralize to variances within an environment as the agent learns a policy which directly maps

environment states to actions. A favorable approach to improving generalization is to com-

bine an agent with a learned environment model, enabling it to reason about its environment.

This approach, referred to as model-based RL learns a model from past experience, where the

model usually captures state-transitions, p(st+1|st, at), and might also learn reward predictions

p(rt+1|st, at). Usage of learned state-transition models is especially valuable for planning, where

the model predicts the outcome of proposed actions, avoiding expensive trial-and-error in the

actual environment – improving performance and generalization. This contrasts with model-

free methods which are explicitly trial-and-error learners [99]. Historically, applications have

primarily focused on domains where a state-transition model can be easily learned, such as

low dimensional observation spaces [100, 62, 101], or where a perfect model was provided

[102, 83] – limiting usage.

The planning style, how the state-transition model is applied, is an important factor to

consider as it can a↵ect the e�ciency of the simulated trajectory. Typically, the planning style

is explicitly set per architecture, with various styles used such as: recursively expanding all

available actions per state for a fixed depth [98, 10], expanding all actions of the initial state

and simulating forward for a fixed number of steps with a secondary policy [11], or performing

many simulated rollouts with each stopping when a terminal state is encountered [83]. Using

a single type of planning style is limiting as various situations in an environment might call

for a dynamic planning style. For example, when the agent needs to explore the immediate

surrounding area a breadth-first search is optimal – instead of proceeding depth-first down one

trajectory. If the agent cannot adjust planning styles the resulting plan can be sub-optimal.

In typical planning architectures, the planner is unable e�ciently reverse trajectories. The

planner must undo previous actions, wasting simulation steps, before continuing down an al-

ternative path. If the planner does not have enough remaining simulation steps, to fully or

even partially undo a sub-optimal trajectory, the agent using this plan might perform poor ac-

tions. Additionally, if certain actions cannot be reversed the planner might try a nonsensical
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move, which violates environment dynamics, and produce a plan with an unrealistic prediction.

Again, this would lead the agent using this plan to incorrectly value a particular path forward.

Ideally, in both of the aforementioned cases, the planner would be able to either “reset” the

planning trajectory in one step or could “undo” the last action – bypassing the limitations im-

posed by the environment and state-transition model.

DPN aims to improve the planning e�ciency via various architectural choices. By provid-

ing DPN’s planner with a triplet of options to “reset”, “undo”, or “continue” from tracked states

during planning it can avoid sub-optimal trajectories and dead-ends. Additionally, as DPN’s

planner is based on a recurrent network and has no imposed planning structure which, together

with the tracked triplet of state, allows it to dynamically adjust planning styles depending on

the current context. The contributions of this work are as follows:

• Dynamic Planning Network (DPN): a planning architecture that create plans with a

learned dynamic planning style.

• We show that providing a planner with the option to choose where to plan from improves

performance by reducing sub-optimal trajectories.

• A loss for the planner policy that balances between exploration and exploitation during

planning.

• DPN outperforms, both in performance and sample e�ciency, other planning architec-

tures on commonly used environments in the domain.

5.2 Model

We denote steps taken in the environment with subscript t and planning steps use subscript ⌧.
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Figure 5.1: a) Network Architecture: Encoder is comprised of several convolutional layers
and a fully-connected layer (a box with 3 dots). Planning occurs for ⌧ = 1, ...,T . The result
of planning is sent to the agent which emits an action at and state-value vt. Planning uses a
fully-connected layer within the agent, outlined in green, to generate an updated hidden state.
b) A single planning step ⌧. The planner performs a step of planning using the state-transition
model. Circles containing ⇥ indicate multiplication and circles with ⇠ indicate sampling from
the Gumbel Softmax distribution.

5.2.1 Model Architecture

DPN is composed of an agent policy ⇡A, multi-step planner policy ⇡P
w,a, a state-value function

V , a learned state-transition model M, and shared state encoder. Figure 5.1(a) illustrates a

high-level diagram of the DPN architecture.

At its core, DPN extends actor-critic algorithms by adding a pathway dedicated to planning

with a learned state-transition model, similar to other planning work [11, 65, 64, 10, 103]. We

define a state-transition model as any model which predicts the next state given an action and

the current state.

Using state-transition models in environments with complex dynamics and high dimen-
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sional observation spaces has proven di�cult as state-transition models must learn from agent

experience and require significant amounts of samples and compute [104, 47, 105]. Often, it is

much more e�cient to instead learn and make predictions in a lower dimensional space [10].

Therefore, within this work we consider the state-transition model used by Farquhar et al. [10]

which predicts within the latent embedding space z; where z is produced by an encoder or the

state-transition model itself.

Planning components aim to improve the performance of a model-free agent by avoiding

costly trial and error in the environment. However the style of planning, the way a state-

transition model is used, di↵ers between architectures each with its own benefits. The planning

style can be a simple forward rollout [67, 104], enforce a particular structure [106, 10], or use

predesigned patterns [11]. In this regard, DPN’s architecture is constructed in such a way that

it learns the best planning pattern to employ. Therefore, DPN’s planner is based upon a re-

current neural network which naturally incorporates the recent history in a short-term memory,

allowing flexible planning patterns to emerge.

However, an additional issue arises regardless of the planning strategy used: what should

the planner do if the last action taken cannot be reversed? Even if, in theory a opposing action

exists, there is no guarantee that the state-transition model will produce a coherent prediction.

Assuming, temporarily, that the planner chooses an opposing action, which cannot undo the last

action but is opposing, and the state-transition model happily follows through: the resulting

predicted state would either be nonsensical or unreachable. Therefore to help alleviate this

issue, we provide DPN’s planner access to an “undo” and “reset” option. This requires tracking

a triplet of state embeddings z during planning: continue (current state) zc
⌧, previous (parent

state) zp
⌧ , and reset (root state) zr

⌧. Where the reset state is the current state of the agent within

the environment and the previous state is the last observed state during planning. Both options

allow the planner to short-circuit the state-transition model.

Figure 5.2 illustrates, in a fictional environment during a round of planning, the utility

provided by tracking and allowing the planner to select between the triplet of states. From



52 Chapter 5. Dynamic Planning Networks

the top row of Figure 5.2, we show how the planner can use a state-transition model and the

triplet of states to construct plans. Here, we interpret the plans as the dynamic expansion of

a state-action tree. While in the bottom row of Figure 5.2, show the corresponding fictional

environment where the red agent must capture the blue goals. The agent can only push the

grey obstacles which means they can become irreversible stuck as no opposing action exists.

The fictional environment illustrates how the added ability to select the “reset” or “previous”

states gives improved e�ciency to the planner.

As the planner progresses through the environment, shown in the bottom row of Figure

5.2a-d, that it pushed the grey obstacle to the left, blocking the goal. By using the “reset” state

option1, shown in the top row of Figures 5.2e, the planner can create an alternative route to the

goal, shown in the bottom row of Figures 5.2e-f.
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Figure 5.2: Tree Interpretation. Top Row: A tree interpretation of a created plan by DPN. State
selections are shown in light purple and state-transitions are shown as blue. The source state
is shown as a grey circle with a blue outline and the transitioned state as a fully blue circle.
Bottom Row: A fictional environment in which the red agent must visit blue goals and can only
push, and not pull, grey obstacles around. The faded agent is meant to signify the current state
of the agent in the environment.

If the planner did not have access to the “reset” or “previous” states, the resulting trajectory

would be sub-optimal in their predictive value or might contain incorrect information had the

state-transition model violated the environment dynamics. Additionally, even if an opposing

action did exist, in this case pull, the planner would waste planning steps to unroll this poor

decision. Planning e�ciency becomes especially important when a limited number of planning

1The “previous” state option would be a valid choice as well.
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steps are budgeted.

In DPN, our planner runs for a fixed number of planning steps T , interacting with the state-

transition modelM, before the agent selects an action at in the environment. Pseudo-code is

provided for one step of acting by DPN in Algorithm 2. The weight WA belongs to the agent

and its output, given some embedding z, captures the agent’s current view of the state in an

embedding hA. We refer to this as the “hidden state” of the agent. This is shown Figure 5.1(a)

as the bottom pathway where WA is the box with a green border.

At each planning timestep ⌧ where ⌧ 2 {1, . . . ,T }, the planner’s policy, in a two-step man-

ner, picks which state of the triplet to plan from using a sampled weighting w⇤⌧ and then selects

an appropriate action a⇤⌧ given this selected state and history. The weighting w⇤ and action a⇤

are sampled using the Gumbel-Softmax trick [89] so we can learn in an end-to-end manner.

The planner uses the state-transition modelM to predict the next state z⇤⌧+1 given the selected

state z⇤⌧ and action a⇤⌧. The triplet of embeddings are then updated.

Algorithm 2 Pseudo-code for action selection with DPN
// Given StateModel, Encoder, Planner, and Agent policy.
// Given current state xt.
hP

t,⌧=0  init hidden state of Planner
zt = Encoder(xt)
zp

t,⌧=1, z
c
t,⌧=1, z

r
t,⌧=1 = zt

for ⌧ 2 {0, · · · ,T � 1} do
hA

t,⌧ = WAzc
t,⌧

hP
t,⌧ = RNN([zp

t,⌧, zc
t,⌧, zr

t,⌧,
⌧
T , h

A
t,⌧], hP

t,⌧�1)
w⇤t,⌧ = ⇡P

w(·|hP
t,⌧) // 1-hot action

z⇤t,⌧ = [zp
t,⌧, zc

t,⌧, zr
t,⌧]T w⇤t,⌧

a⇤t,⌧ = ⇡P
a (·|hP

t,⌧; z⇤t,⌧) // 1-hot action
z⇤t,⌧+1 =M(a⇤t,⌧, z⇤t,⌧)
zc

t,⌧, z
p
t,⌧ = z⇤t,⌧+1, z

c
t,⌧

end for
hA

t = WAzt
at = ⇡A(a|hA

t , hP
t,⌧=T )

The planner is provided with a context comprised of the current triplet of embeddings, a

float indicating the planning step, and the “hidden state” of the agent. Inclusion of the agent’s

“hidden state” hA in the planner’s is detailed when we discuss training, but briefly: the planner

is partially trained to maximize the “surprise” of the agent so providing this information to the
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planner is beneficial. As the planner uses a recurrent network, we found it best if the agent’s

policy ⇡A also consumes the final hidden state hP
⌧=T produced by the planner, shown in Figure

5.1(a). Doing so forces the planner to keep a running summary of the constructed plan and

provides the agent’s policy ⇡A with additional context.

5.2.2 Architecture Components

Model-free Pathway: As seen in Figure 5.1(a), the components along the model-free path,

that is the bottom connections, are nearly identical to architectures used by actor-critic methods.

Containing an convolutional encoder, optional hidden layers, and two outputs each representing

the learned policy and state-value function. In this case the convolutional encoder processes a

2d input image xt 2 RC⇥W⇥H, with C channels and dimensions W ⇥H, to produce an embedded

representation zt 2 RZ. We refer to the parameters of the actor’s policy with ✓a and state-

value function as ✓v. As the encoder is shared, it’s parameters are a subset of all component

parameters in DPN and therefore not explicitly mentioned.

From Figure 5.1(a), we see an additional two fully-connected layers along with the plan-

ning component. The bottom layer, outlined in green, is used to represent the agents current

representation of the environment. It is used by the planner to estimate the “surprise” its plans

provide. While the fully-connected layer, along the top connecting the planner to the agent, is

used to further processes plans such that the agent can learn to extract pertinent information.

We found this helpful as the produced plans might contain inaccuracies, caused by repeated

application of the state-transition model, or contains non-actionable information. Weber et al.

[11] use a module in I2A, which they refer to as a rollout encoder, with similar functional and

purpose.

Planner: As shown in Figure 5.1(b), the planner is comprised of a RNN and two fully

connected layers. While other types of architectures are possible for the planner, such as a

Decision Transformer [107], a RNN was used for simplicity and because the learning process

is quite compute intensive and a large transformer would slow the iteration cycle. Each layer
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represents either the sub-policy used to choose a⇤ or w⇤. The weight w⇤⌧ 2 [0, 1]3 only considers

the current hidden state hP
⌧ 2 RH produced by the RNN. However, the simulated action a⇤⌧ 2

A considers both hP
⌧ and the selected embedded state z⇤⌧ 2 RZ. We refer to the collective

parameters of the planner as ✓p.

Figure 5.1(b) is primarily used to show the flow of information during one planning step ⌧.

We can clearly see how tightly coupled the interactions between the planner and state-transition

model are and how the planner is can fully manipulate the state-transition model based on the

selected state z⇤⌧ and action a⇤⌧.

State-Transition Model: The state-transition model is composed of two computation steps

with a residual connection in between. The first step is meant to compute an action agnostic

representation of the current state embedding z⌧. While the second computes the expected

change to the environment given an action ai. It is defined as follows:

z0 = z⌧ + tanh(envz⇤⌧)

z⇤⌧+1 = z0 + tanh(aiz0)
(5.1)

both env 2Z⇥Z and ai 2A⇥Z⇥Z are learnable parameters of the state-transition model and are

referred collectively to as ✓m
2. We use the same state-transition model presented by Farquhar

et al. [10] and also perform normalization of z⇤ after prediction. Doing so keeps the magnitude

of the representation more consistent after several application of the state-transition model.

5.2.3 Training

DPN is trained to maximize the expected reward and as such we train the encoder, value net-

work, and agent’s policy using the k-step synchronous version of the advantage actor-critic

algorithm (A2C) [41]. We refer to their collective loss, excluding the entropy regularization

term, as LA2C

We treat the planner’s policy as an actor, fitting into the A2C framework loss as an additive
2The action matrix is selected by multiplying a 1-hot encoding of the action.
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term, but make two adjustments. First, the planner is trained within planning trajectories only,

such that state-transitions in its “environment” are emulated by the state-transition model. This

means that for a k-step trajectory, under A2C, the planner will see k ⇥ T samples. Second, the

planner’s reward is redefined to be the composition between the state-value the agent predicts

for the next state z⌧+1 and distance between the agent’s hidden representations from states z⌧ to

z⌧+1. We term this pseudo-reward as the utility the planner provides to the agent and define it

as:

U⌧(hA
⌧+1, h

A
⌧ , z⌧+1) = V(z⌧+1; ✓v) + D[hA

⌧+1, h
A
⌧ ] (5.2)

where z⌧+1 is the state transitioned to after performing an action a⌧ in state z⌧, hA
⌧ and hA

⌧+1 are

the hidden states of the agent after perceiving the current state z⌧ and state transitioned to z⌧+1

respectively, D is a distance measure, and V(z⌧+1) is the value the agent assigns the next state

z⌧+1.

The two terms in Equation 5.2 tease between exploitation and exploration during planning.

If only state-value term V(.), analogous to the reward, where to be maximized by the planner

then the produced plans would aim to maximize the reward – exploiting what is already known.

In the opposite direction, if the planner focuses only on the distance term D, then it will chose

states producing larger di↵erences in the agent’s hidden state. More than likely, this would

correspond to states which involve some “surprise” to the agent. A similar formulation has

been proposed, outside of the planning domain, in work on intrinsic motivation; where the

agent sees an external reward rext and an internal reward rint [108]. This formulation also

balances between the notion of exploration and exploitation, as the internally generated reward

can be tangential to the reward produced by the environment. We extend this idea to the

planning domain.

A secondary choice in the design of utility in Equation 5.2 is how to combine between the

state-value and distance term. We found that an additive distance term helps useful reward

signals through, instead of being attenuated, as the reward and distance can disagree on the

usefulness of the next state; such as subsequent states with a epsilon distance but non-zero
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Algorithm 3 Pseudo-code for DPN
Initialize parameters ✓a, ✓p, ✓v, and ✓m.
repeat

for i 2 {0, · · · , k} do
Pick ai by calling Algorithm 2 with xt.
Receive reward ri and new state xi+1.

end for

R 
8>><
>>:

0 for terminal xk

V(zk; ✓v) otherwise

Reset gradients: d✓{a,o,v,m}  0.
for i 2 {k � 1, · · · , 0} do

for ⌧ 2 {0, · · · ,T � 1} do
Ui,⌧ = V(zi,⌧+1; ✓v) + D[hA

i,⌧+1, h
A
i,⌧]

d✓p  d✓p + r✓p log⇡P
w,a(·|zi,⌧; ✓p)Ui,⌧

end for

R 
8>><
>>:

0 for terminal si

ri + �R otherwise

d✓a  d✓a + ⇢̄ir✓a log ⇡(ai|si; ✓a)
�
R � V(zi; ✓v)

 

d✓v  d✓v + r✓v

�
R � V(zi; ✓v)

 2

d✓m  d✓m + r✓m

�
zi+1 �M

�
zi, ai; ✓m

� 2

end for
Perform update of ✓p using d✓p, ✓a with d✓a, ✓v with d✓v, and ✓m with d✓m.

until Max iteration or time reached.

rewards. Here, a multiplicative term can hinder learning as either quantity can be a near-zero

number, such as the reward, causing the provided utility to register as essentially zero. Addi-

tionally, in the initial stages of our work, we did indeed consider a variant with a multiplicative

distance term D but found sub-par performance when compared to an additive distance term.

We hypothesize that the aforementioned e↵ects caused the gradients to vanish, slowing learn-

ing along the planning pathway. Following from this, the planner is trained as a policy network

only, with the loss LP over the planning sequence T :

Lp =
1

T � 1

T�1X

⌧=0

r✓p log⇡P
w,a(·|z⌧; ✓p) U⌧(hA

⌧+1, h
A
⌧ , z⌧+1) (5.3)

During parameter updates to the planners parameters we block gradient computations to

the parameters belonging to the agent. In this case the state-value function and the weight WA

used to update the agent’s hidden state. We perform updates to the planner in this way as to
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stop the planner from cheating by modifying the parameters of the agent that define its reward

via the quantities in Equation 5.2. Various choices for distance functions exist, such as the

cosine or L2 distance function. In this work we use the L1 distance function, as after empirical

evaluation it was the most performant. Results of this evaluation are provided in Section 5.3.

We train the state-transition model by performing state grounding. As such, it is trained to

minimize the L2 distance between the next embedded state zt+1, produced by the encoder, and

its prediction ẑt+1. The state-transition model makes its prediction from an embedding of the

current state zt and the action taken by the agent at that resulted in zt+1 [10]:

LM =
⇢
zt+1 �M

�
zt, at; ✓m

��2
(5.4)

Combining our losses, the architecture is trained using the following gradient:

�✓ = r✓A2CLA2C + r✓pLP + �r✓MLM � �r✓{a,p}H (5.5)

where LA2C is the agent’s loss, both its policy and value function, LP is the planner loss, � is

a hyperparameter controlling the state-grounding loss, H is the entropy regularizer computed

for the agent and planner’s policies, and � is a hyperparameter tuning entropy maximization of

all policies; we used the same � value for each policy. The losses LA2C and LZ are computed

over all parameters; while LP and its entropy regularizer losses are computed with respect to

only the planner’s parameters. DPN is fully specified in Algorithm 3.

5.3 Experiments

We evaluated DPN on a Multi-Goal Gridworld environment and Push [10], a box-pushing puz-

zle environment. Push is similar to Sokoban used by Weber et al. [11] with comparable di�-

culty. Within our experiments, we evaluated our model performance against either model-free
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(a) Training Curve.

Figure 5.3: Push Environment. a) Randomly generated samples of the Push environment.
Each square’s coloring represents a di↵erent entity: the agent is shown as red, boxes as aqua,
obstacles as black, and goals as grey. The outside of the environment, not visible to the agent,
is shown as a black border around the map. b) Training curves with DPN compared to various
baselines on Push environment.
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(a) Multi-Goal Gridworld Environment Samples.

(b) Training Curve.

Figure 5.4: a) Randomly generated samples of a 16 ⇥ 16 Multi-Goal Gridworld environments.
The agent is shown as red, goals in cyan, obstacles as black, and outside of the environment,
not visible to the agent, is shown with a black border. b) Training curves with DPN compared
to various baselines on 16 ⇥ 16 Gridworld with 3 goals.

baselines (A2C, DQN, and VIN) 3 or planning baselines (TreeQN and ATreeC). The experi-

ments are designed such that a new scenario is generated across each episode, which ensures

that the solution of a single variation cannot be memorized. We are interested in understanding

how well our model can adapt to varied scenarios. Additionally, we investigate how planning

length T a↵ects model performance, how planner branching a↵ects performance, di↵erent dis-

3We tested both vanilla implementations and versions using our architecture. A version of DPN with the
planning components disabled, equivalent to an A2C model, was evaluated as well. We used the best performing
version.
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tance functions for the planner’s reward function, and planning patterns that our agent learned

in the Push environment. Full details of the environments, experimental setup, hyperparameters

are provided in the supplemental material. Unless specified otherwise, each model configura-

tion is averaged over 3 di↵erent seeds and is trained for 40 million steps. As mentioned earlier,

we use a version of A2C algorithm with 16 workers, the RMSprop optimizer [109] with a

learning rate of 5e � 4 and ✏ = 1e � 5.

5.3.1 Push

The Push environment is a box-pushing domain, where an agent must push boxes into goals

while avoiding obstacles, with samples shown at the top of Figure 5.3. Since the agent can only

push boxes, with no pull actions, poor actions within the environment can lead to irreversible

configurations. The agent is randomly placed, along with 12 boxes, 5 goals, and 6 obstacles on

the center 6x6 tiles of an 8x8 grid. Boxes cannot be pushed into each other and obstacles are

“soft” such that they do not block movement, but generate a negative reward if the agent or a

box moves onto an obstacle. Boxes are removed once pushed onto a goal. We use the open-

source implementation provided by Farquhar et al. [110]. The episode ends when the agent

collects all goals, steps o↵ the map, or goes over 75 steps. We compare our model performance

against planning baselines, TreeQN and ATreeC [10], as well as model-free baselines, DQN

[6] and A2C [41].

5.3.2 Multi-Goal Gridworld

We use a Multi-Goal Gridworld domain with randomly placed obstacles that an agent must

navigate searching for goals. The environment, randomly generated between episodes, is a

16x16 grid with 3 goals. We force a minimum distance between goals and between the agent

and goals. The agent must learn an optimal policy to solve new unseen maps. Figure 5.4(a)

shows several instances of a 16x16 Multi-Goal Gridworld. The rewards that an agent receives

are as follows: +1 for each goal captured, -1 for colliding with a wall, -1 for stepping o↵ the
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map, -0.01 for each step, and -1 for going over the step limit. An episode terminates if the

agent collides with an obstacle, collects all the goals, steps o↵ the map, or goes over 70 steps.

We evaluate our algorithm against model-free baselines such as A2C [41], variants of DQN

(recurrent and non-recurrent) [6], and Value Iteration Network (VIN) [59]. Each baseline,

with the exception of VIN, used the same encoder structure as DPN. We train for 20 million

environment steps.

5.3.3 Planner Distance Functions

We vary the distance function used by the planner’s loss defined in Equation 5.2. We examine

L1, L2, KL, and Cosine distance functions.

5.3.4 Planner Branching

We examine the a↵ect on performance of di↵erent branching options: current, reset, or all. We

also included the ATreeC-1 baseline as this corresponds to the reset branching option of our

architecture and serves as a sanity check.

5.3.5 Planning Length

Using the Push environment, we varied the parameter T , which adjusts the number of plan-

ning steps, with T = {1, 2, 3, 5} evaluated. The Push environment was chosen because the

performance is sensitive to an agent’s ability to plan e↵ectively.

5.3.6 Planning Patterns

We examine the planning patterns that our agent learns in the Push environment with T = 5.

Here we are interested in understanding what information the agent extracts from the simula-

tion as context before acting.
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5.4 Results & Discussion

5.4.1 Push Environment

Figure 5.3(a) shows DPN compared to DQN, A2C, TreeQN and ATreeC baselines 4. For

TreeQN and ATreeC, we chose tree depths which gave the best performance, corresponding

to tree depths of 3 and 1 respectively. Our model clearly outperforms both planning and non-

planning baselines: TreeQN, ATreeC, DQN, and A2C. We see that our architecture converges

at a faster rate than the other baselines, matching ATreeC-1’s final performance after roughly

20 million steps in the environment. In comparison to the other planning baselines, TreeQN

and ATreeC, require roughly 35-40 million steps: ⇠2x additional samples.

We note that the planning e�ciency of DPN is higher in terms of overall performance per

number of state-transitions. On the Push environment, with A = 4 actions, TreeQN with

tree depth of d = 3 requires
�Ad+1�1
A�1

� � 1 = 84 state-transitions. In contrast, using DPN with

a planning length of T = 3 requires only T state-transitions – a 96% reduction. Loosely

comparing to I2As, simply in terms of state-transitions, we see that I2As require A ⇥ L state-

transitions per action step, where L is the rollout length. This performance improvement is

a result of DPN learning to selectively expand actions and being able to dynamically adjust

previously simulated actions during planning.

5.4.2 Multi-Goal Gridworld

Figure 5.4(b) shows, the results of DPN compared to various model-free baselines. Within

this domain, the di↵erence in performance is clear: our model outperforms the baselines by

a significant margin. The policies that DPN learns generalizes better to new scenarios, can

e↵ectively avoid obstacles, and is able to capture multiple goals. Of the model-free baselines,

we see that the A2C baseline performs the best. We believe that the A2C baseline is able

4The data for the training curves of DQN, A2C, TreeQN, and ATreeC were provided by Farquhar et al. via
email correspondence. Each experiment was run with 12 di↵erent seeds for 40 million steps.
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(a) Distance Functions

(b) Planner Branching

(c) Planning Length

Figure 5.5: a) Distance Functions: the performance of di↵erent distance functions. Centered
on curve di↵erences. b) Planner Branching: Various branching choices for the planner. All
corresponds to the default architecture, Current results in a forward rollout, and Reset is the
same as 1-step look ahead. ATreeC-1 corresponds to 1-step look ahead as well. c) Planning
Length: Training over varying planning lengths, T = {1, 2, 3, 5}, in the Push Environment.
Centered on curve di↵erences.
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to better explore the environment due to the multiple workers running in parallel throughout

training. We trained VIN without curriculum learning for 20million steps with near identical

settings5 prescribed by Tamar et al. [59]. As seen in Figure 5.4(b), the DQN variants and

VIN fail to capture any goals and do not achieve a score higher than -1.0. It should be noted

we saw little performance improvement even when allocating the A2C and DQN baselines an

additional 2x environment steps (40 million) or, in the case of DQN models, a 2-4x longer

exploration period (8-16 million). The poor performance of the baseline models might be the

result of high variance in the environment’s configuration between episodes and sparse rewards.

We believe that DPN performs better because it captures common structure present between

all permutations of the environment by using the environment model. This allows it to exploit

the model for planning in newly generated mazes.

5.4.3 Planner Distance Functions

From 5.5(a), we see an evaluation of distance functions used in Equation 5.2. The L1 distance

function has the best performance with slightly faster convergence. While the L2, Cosine, and

KL functions have worse performance. We hypothesize that the L1 distance performed better

due to its robustness to outliers, a likely event during learning, as the distance is a function of

noisy and changing vectors from the agent and state-transition model.

5.4.4 Planner Branching

In Figure 5.5(b), we see how di↵erent branching options a↵ects the architecture performance.

Our proposed branching improves performance of the architecture as compared to the current

and reset options. Interestingly, the performance of our architecture when using the reset op-

tions is roughly the same as ATreeC-1. This is unsurprising as the reset and ATreeC-1 options

employ a similar planning strategy of a shallow 1-step look-ahead. The small discrepancy

5The original results with VIN relied on curriculum learning. To provide a fair comparison all methods are
trained without curriculum learning.
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in performance could be due to ATreeC-1 evaluating all 4 actions while DPN evaluates only

3. We see that the current branching option results in better performance and amounts to a

forward-only rollout. We hypothesize the performance di↵erence between current and reset is

from DPN being able to see the results of its actions from the first planning step over a longer

time span.

5.4.5 Planning Length

In Figure 5.5(c), we see the performance of our model over the planning lengths T = {1, 2, 3, 5}.

As seen in Figure 5.5(c), model performance increases as we add additional planning steps,

while the number of model parameters remains constant.

As the planning length increases, we see the general trend of faster model convergence.

Even a single step T = 1 of planning allows the agent to test action-hypotheses and avoid

poor choices in the environment. From Figure 5.5(c) we see that an additional planning step,

from T = 1 to T = 2, does not provide benefit until later in training. We see that both the

planning lengths T = 3 and T = 5 tie for the best performance. Similar to Farquhar et al.

[10], we hypothesize that this is due to a ceiling e↵ect in this domain. This is clear as there are

diminishing returns in performance with increased planning lengths. In terms of the shorter

planning lengths, we suspect that they do not allow the planner to learn a policy that provides

enough utility to the agent. Ideally, the architecture would be able to adjust the number of

planning steps T dynamically based on current needs. We see this expansion, similar to the

adaptive computation presented by Graves [111], as an interesting avenue for future work.

5.4.6 Planning Patterns

By watching a trained agent play through newly generated maps, we observe the possible

emergence of planning-type patterns, which are shown in Figure 5.6 for T = 5. We see what

appears to be a mixture between breadth-first search (BFS) and depth-first search (DFS). We

found the resulting patterns to be quite consistent. Furthermore, the entropy of the planner’s
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Figure 5.6: Samples of observed planning-type patterns the agent uses in the Push environment
with T = 5. The faded environments, to the right of each sample, is used to signify when the
agent is planning. Highlighted squares represent the location that the planner chose to move
towards during planning. Faded squares show where it has been during planning.

policy was quite low at the end of training, which indicates the produces planning patterns are

near-deterministic. In Figure 6(a) we see the agent does first performs a partial breadth-first

search around itself before continuing farther left. Figure 6(b) shows the agent learning to ex-

ploit the “previous” state, which is a “lazy reset” to explore the upper right corner. The agent

moves as follows: right with the current state, upward with the current state, right again with

the current state, left from the previous state, and right one last time after resetting. In Figure

6(c) we see the planner does a partial breadth first search around the agent. In this case the
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planner used the current state for the entire planning trajectory. Finally, in Figure 6(d) we see

the planner alternate between a breadth-first and depth-first search. The planner moves upward

from the root tree state, resets moving downward, picks the current state moving downward

once more, selects the previous state while moving up, and then finishes by moving left using

the current state.

5.5 Summary

This chapter has presented DPN, a new architecture for DRL that uses a planner and agent

working in tandem. The planner is optimized to maximize a pseudo-reward, the utility provided

to the agent, balancing exploitation and exploration during planning. We have demonstrated

that DPN outperforms the model-free and planning baselines in the Mutli-Goal Gridworld and

Push environments while using ⇠2x fewer environment samples. Furthermore, the ability of

DPN to learn a dynamic planning style enables it to achieve much greater e�ciency in terms

of the state transitions required; this is especially evident when comparing TreeQN, with a

fixed planning style, and DPN, with a dynamic planning style. By letting the planner learn its

planning style, we see evidence of emergent planning patterns, such as breadth-first search. In

the Push environment, we see DPN achieves greater or equal performance to TreeQN while re-

quiring 96% percent fewer applications of the state-transition model. Taken all together, DPN,

compared to other architectures, reduces the computational requirements to reach a similar

level of performance. Finally, we have shown that allowing the planner to select where to plan

from helps avoid sub-optimal trajectories. In our studies, we have provided evidence that the

triplet previous, current, reset provides the greatest performance. While DPN clearly shows

that by allowing the model to learn how to plan, there exist some limitations on the approach

due to the planner module. As the planning module depends on a recurrent network, with a

fixed memory space, the planner is limited in the amount of information it can store. This im-
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plies that using highly complex states, with large amounts of information, could overwhelm a

planner with a small memory. Using a strong memory store for the planner would unblock this

limitation by allowing it to reason about rich state spaces, but we leave this for future work.
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Second-Order Successor Features

This chapter introduces the Second-Order Successor Feature (S2F) method, which extends the

SF framework with a second-order reward function improving its robustness. The method

presented here focuses on improving the transfer e�ciency of DRL algorithms.

This chapter is organized as follows: Section 6.1 provides an introduction to the method-

ology, Section 6.2 introduces the SF framework with non-linear reward function (S2F) model

along with its training methodology, Section 6.3 details the environments used in this chapter

and the experiments carried out in each, Section 6.4 presents and discusses the results of the

experiments, and finally Section 6.5 provides a summary conclusion for the chapter.

6.1 Introduction

Recent advances in RL have enabled the extension of long-standing methods to complex and

large-scale tasks such as Atari [6], Go [83], and DOTA [84]. The main driver of these successes

has been the use of deep neural networks, which are a class of powerful non-linear function

approximators [112, 30, 113, 114]. However, this class of DRL algorithms requires immense

amounts of data within an environment for training, often ranging from tens to hundreds of mil-

lions of samples [112, 114, 115]. Furthermore, commonly used algorithms often have di�culty

in transferring a learned policy between related tasks, such as those where the environmental

70
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dynamics remain constant, but the goal changes [116, 117, 118, 119]. In this case, the model

must either be retrained completely or fine-tuned on the new task, in both cases requiring mil-

lions of additional samples. If the state dynamics are constant, but the reward structure varies

between tasks, it is wasteful to retrain the entire model.

A more pragmatic approach would be to decompose the RL agent’s policy so that separate

functions can learn the state dynamics and the reward structure; doing so enables reuse of

the dynamic model and only requires learning the reward component. SF do precisely this; a

model-free action-value function is expressed as the dot product between a vector of expected

discounted future state occupancies, the SFs, and another vector representing the immediate

reward in each of those successor states [19, 76, 120, 121, 78, 122, 123, 124]. The factorization

follows from the formulation of the reward as the dot product between a state representation

vector and a learned parameter vector, which is a linear product. Therefore, transfer to a new

task requires relearning only the reward parameters instead of the entire model and amounts

to the supervised learning problem of predicting the current state’s immediate reward. SF

have strong roots in Neuroscience, where recent studies have provided evidence for the SF

representation in the brain [125, 126]. It has also been suggested that the SF representation is

the computational substrate within humans that leads to semi-flexible decision making [127].

Because the reward function of the SF framework is linear, it is fair to question whether the

model can always accurately predict the reward. In Barreto et al. [128], an in-depth discussion

is carried out on this question and given that no assumptions are made about the state repre-

sentation, theoretically it is possible to enable perfect recovery of any reward function given a

comprehensive predictive state representation.

The state representation within the SF framework is learned end-to-end by a state encoder,

which should have enough representational power to disentangle the factors that are useful

for reward prediction by a linear model. Indeed, given a large enough set of parameters, the

encoder can perform well at both state reconstruction and reward prediction tasks. In the SF

framework, the encoder is often trained to output a dense vector representation of the state that
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helps minimize the least-squared error loss for both state reconstruction and reward prediction

[79, 128, 81, 122]. This implies that the parameters of the encoder, which output the dense

vector, must be used for both the reconstruction and prediction tasks. If the encoder learns a

sub-optimal state representation for reward prediction, for example because of a highly com-

plex environment, then the reward model may be unable to compensate in terms of reward

prediction, given the limited set of reward models parameters. Eysenbach et al. [129] and

Hansen et al. [81] have shown, within the successor feature framework, that there is no strong

guarantee that the state encoder can always learn features that enable accurate modelling of the

rewards. This has significant implications, since recent research state the importance on reward

maximisation task [130, 131].

In this chapter, S2F (Second-Order Successor Features), a novel extension to the SF frame-

work, is proposed, where the rewards are modelled with a second-order function. We show

that the second-order function, which follows naturally from the original linear variant, gives

a stronger guarantee of the model performance due to its non-linear representational structure

and extra parameters. This is especially true in cases where the encoder learns state repre-

sentations that are less than optimal and where a linear model does not have enough repre-

sentational power to compensate. In particular, the additional parameters of the reward model

should lessen the representation load of the encoder with regard to the reward task, enabling

more of its representational capacity to be dedicated to modelling the environment in a task-

agnostic manner. As explained in detail in the next sections, the new extra term in the reward

model represents the future expected auto-correlation matrix of the state features. Therefore,

this new formulation will also be key to a more comprehensive theory that addresses environ-

mental stochasticity and the ability to use directed exploration during transfer, which will be

dealt with in future works.

The contributions of this research are as follows:

• A novel formulation of the SF framework that uses a second-order reward function. This

formulation increases the representational power of the reward function while decreasing
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the representational load on the state encoder, providing stronger guarantees on perfor-

mance.

• Under the new reward formulation, the extra term that appears is shown to model the

future expected auto-correlation matrix of the state features.

• We provide preliminary results that show the second term can be used for guided explo-

ration during transfer instead of relying on ✏-greedy exploration.

6.2 Model

This section discusses the change to the SF framework, which adjusts the reward function from

a linear function, to a non-linear function. First, a discussion of the new decomposition is given

with the full derivation, after which, experimental support for this change will be presented and

carefully analyzed.

6.2.1 Non-linear Reward Function

The SF framework builds upon the functional representation of the current reward rt as a linear

combination of the current state representation �t 2 Rz and a learned reward vector w 2 Rz,

such that rt = �>t w. In this work we extend the reward model by changing this linear reward

model to one with the following form:

rt = �
>
t o + �>t A�t, (6.1)

where {�t, o} 2 Rz and A 2 Rz⇥z. Both o and A are learnable parameters modelling the reward

structure of the environment. Note that w in �>t w is replaced by o+A� and that this formulation

introduces a non-linear transformation with respect to �t.

Following from the definition of the state-action value function Q(s, a), and by also drop-

ping the conditional portion of the expectation for brevity, the adjusted reward function can be
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(a) S2F Model Overview

(b) Reward Prediction

Figure 6.1: S2F Model Overview a) The encoder transforms the raw state into an internal
state representation �t. The state representation �t is used by the decoder, ⇤t, and  t. The
decoder tries to reconstruct the raw input st from the state representation �t. ⇤t and  t produce
one output per action, with the former predicting matrices and the latter predicting vectors.
b) Reward prediction by dotting the current state �t, produced by the encoder, and the reward
weight w.

substituted to yield

Q(s, a) = E⇡[�>t+1o + �>t+1A�t+1 + ��
>
t+2o + ��>t+2A�t+2 + . . . ].

Because the expectation operation is linear, o can be pulled out from the first term:

Q(s, a) = E⇡[�t+1 + ��t+2 + . . . ]>o + E⇡[�>t+1A�t+1 + ��
>
t+2A�t+2 + . . . ]. (6.2)
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By recognizing the first expectation term as the Successor Features  t, (6.2) can be rewritten

as

Q(s, a) =  >t o + E⇡[�>t+1A�t+1 + ��
>
t+2A�t+2 + . . . ].

Because �>t A �t results in a scalar, the trace operator tr(·) can be used inside the right-hand

term, and by exploiting the fact that tr(AB) = tr(BA), the terms inside the trace function can

be swapped to yield

Q(s, a) =  >t o + E⇡[tr(A�t+1�
>
t+1) + tr(�A�t+2�

>
t+2) + . . . ].

Because both tr(·) and A are linear, they can be pulled out of the expectation, resulting in

Q(s, a) =  >t o + tr(AE⇡[�t+1�
>
t+1 + ��t+2�

>
t+2 + . . . ]).

Finally, the remaining expectation can be expressed as a function,

Q(s, a) =  >t o + �tr(A⇤t), (6.3)

where � 2 {0, 1} is a hyperparameter that controls the inclusion of the non-linear component.

The next step is to define the novel function⇤t, which appears using the shorthand notation.

The complete definition of ⇤t is given as:

⇤⇡(s, a) = E⇡[�t+1�
>
t+1 + �⇤

⇡(st+1, at+1))|S t = s, At = a], (6.4)

with the ⇤⇡(s, a) form indeed satisfying the Bellman equation [132]. Now, in addition to  t,

it is now necessary to also model ⇤t, which outputs an Rz⇥z matrix per action. Note that the

quantity �t �>t can be interpreted as an auto-correlation matrix of learned state features.
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6.2.2 Model Structure & Training

The proposed S2F model, shown in Figure 6.1(a), uses an encoder to produce a state embedding

�t, which is consumed by downstream modelling tasks. As we are tightly constrained by

the mathematical structure and assumptions of the SF framework, using models such as a

LSTM[34] or Decision Transformers [107] are not possible. Figure 6.1(b) shows how the

current reward rt is predicted using w, with w = o + A �t, and the current state representation

�t; this process is defined in (6.1). As in previous studies with SF [76, 79, 120], the structure

includes pathways for an encode-decode task and a SF prediction  t. The decoder network

ensures that the features learned by the encoder, which produces �t, contain useful information

for prediction. Furthermore, only the gradients from the state-dependent and reward prediction

tasks modify the encoder parameters, and therefore �t. An additional branch is added, by way

of the non-linear reward function, to model ⇤t. This branch output is a matrix, which di↵ers

from the vector-predicting branches  t and �t.

The encode-decode task is trained by minimizing the mean squared di↵erence between the

input st and the decoder’s reconstructed version ŝt = g(�t; ✓̂�) from �t:

Ld(st; ✓�, ✓̂�) = [st � g(�t; ✓̂�)]2,

where �t is the output of the encoder with parameters ✓� and g(�t; ✓̂�) produces the output of

the decoder with parameters ✓̂�. As mentioned previously, we train  t and ⇤t, parameterized

with ✓ and ✓⇤ respectively, using the Bellman equations to minimize the following losses:

L (st, at; ✓ ) = E[(��t + � (st+1, a⇤; ✓� ) �  (st, at; ✓ ))2],

L⇤(st, at; ✓⇤) = E[(��t �
�>
t + �⇤(st+1, a⇤; ✓�⇤) � ⇤(st, at; ✓⇤))2],

where a⇤ = maxa⇤ Q(s, a⇤) is the optimal action at the current time step according to the state-

action value function. To help stabilize learning, lagged versions of ✓�, ✓ , and ✓⇤ are used as
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was done by Mnih et al. [6]; the lagged version is denoted by the � symbol in the exponent.

(a) Axes Environment. (b) Reacher Environment.

(c) Doom Environment.

Figure 6.2: Environments a) A graphical representation of the Axes environment. The agent
must traverse to various goal locations marked by the star symbol. The eight goal locations are
split between training and testing. b) A rendering of the Reacher task. The agent controls the
robotic Sawyer arm to move the end-e↵ector to a 3D point in space. The eight goal locations
are shown as balls. Training goals are in green, and test goals are in red. d) Images of the
Doom environment where the agent must move between rooms looking for a goal location.



78 Chapter 6. Second-Order Successor Features

Unfortunately, as the dimensionality z of states and rewards grows, the number of param-

eters needed by ⇤t grows quadratically. However, by identifying the �t �>t term in ⇤t as a

symmetric matrix, it is possible to model only the upper triangular portion of the matrix1, re-

quiring about half the number of parameters. To further reduce parameters, each  t and ⇤t

pathway has two hidden layers before its outputs, as reflected in Figure 6.1(a). In this way, the

parameters are shared amongst pathways, which contrasts with other works with multiple sets

of layers per action a [79, 120]. To learn the reward parameters A and o, which are the pa-

rameters of the approximated non-linear reward function, the following squared loss function

is used:

Lr(st; o,A) = [rt � �>t o � ��>t A�t]2. (6.5)

Note that (6.5) does not adjust the feature parameters involved in the prediction of �t.

As to ⇤t, as the dimensionality of z increases, so does the number of parameters needed for

modelling matrix A 2 Rz⇥z. Therefore, in the interest of reducing the number of parameters,

a factorization is used that splits the matrix A 2 Rz⇥z into two parts with a smaller inner

dimension f , A = L · R>, where {L,R} 2 Rz⇥ f . By factoring the matrix in this way, 2 ⇥ z ⇥ f

parameters are required instead of z ⇥ z. If values for f smaller than z
2 are used, the number of

parameters required by matrix A is further reduced. A similar factorization was suggested in

the context of visual question answering [133, 134]. The factorization of A was primarily done

to reduce the total number of parameters in the proposed model.

Finally, by combining all losses, the composite loss function is the sum of the four losses

given above:

L(✓�, ✓̂�, ✓ , ✓⇤, o, A) = Ld +L + �L⇤ +Lr. (6.6)

In practice, to optimize (6.6) with respect to its parameters, (✓ , ✓⇤) and (✓�, ✓̂�), o,A are iter-

atively updated. Doing so increases the stability of the approximations learned by the model

and ensures that the branches modelling  t and ⇤t do not backpropagate gradients to a↵ect ✓�

1It would still be necessary to manipulate this matrix so that it forms a full matrix.
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[76, 120, 79]. In addition, by training in this way, the state representation �t can learn features

that are both a good predictor of the reward rt and useful in discriminating between states [79].

6.3 Experiments

This section examines Axes, a navigation task, Reacher, a robotic control task built using the

MuJoCo engine [135], and the 3D maze Doom game engine. The environments are shown

in Figure 6.2, and act as test beds for the S2F method, clearly showing that the second-order

function provides additional representation capacity to the reward model. They each contain

tasks specified by goal location and are split between training and test distributions, with the

exception of Doom. The environments were chosen to guarantee comparability and task repro-

ducibility within previous studies on SFs [128].

Figure 6.3: A graphical representation of the standard Axes environment, on the left, and its
half-random variant on the right. The spawn location of the agent is uniformly sampled from
within the green circle. The agent must traverse to a goal location, which defines the specific
task, this is visualized by the star symbols. On the right hand side the half-random variant is
shown, with the random action area shaded in blue. Within the random action area, the actions
of the the agent are randomly perturbed by a fixed probability.
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6.3.1 Axes

In this environment, shown in Figure 6.3, the agent, spawned at a uniform location within the

green circle, must traverse the map to reach a goal location using four actions: up, down, left,

and right. Eight separate goal locations exist. An episode ends when either the agent reaches

the goal or more than 25 steps have elapsed. The agent’s starting location is randomly sampled

from a grid of 3 ⇥ 3 step units, centered at (0, 0).

Within the Axes environment, two variants exist, easy and hard, where each refers to the

di�culty of using the state for reward prediction. The reward function takes the form

d(pa, pgk) =
X

k

r
⇣
p(1)

a � p(1)
gk

⌘2
+

⇣
p(2)

a � p(2)
gk

⌘2
+ · · · +

⇣
p(n)

a � p(n)
gk

⌘2
, (6.7)

where d(pa, ggk) is the distance between the agent position pa 2 Rn and each kth goal position

pgk 2 Rn within the environment. For Axes, n = 2, meaning positions are in 2D.

In the easy variant, which is commonly used within other SF studies [128], the state �t is

represented as the distance between the agent position pa and each possible goal position pgk

within the environment. Note that because the agent receives a reward equal to the negative

distance between itself and the target goal at each step, reward prediction can be easily accom-

plished by using a 1-hot encoded reward vector. Therefore, the state st is a vector of distances

between the agent and all eight available goals, such that st 2 R8.

On the other hand, in the hard variant, the state is simply the location of the agent and the

location of the current goal. Therefore, because the reward involves non-linear functions, a

square root and square powers as in (6.7), the linear variant will have trouble modelling the

reward of hard environments with a sub-optimal state representation. The state st is the agent’s

and the current active goal’s 2D coordinates, such that st 2 R4. With this state space the agent

must learn a reward function that can approximate the distance between itself and the goal

location, which is a non-linear function.
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6.3.2 Reacher

The Reacher environment also serves as a test-bed to examine the representational property of

the second-order function and represents a control task defined in the MuJoCo physics engine

[135], as shown in Figure 6.2(b). This study has used a modified version of the robotic model

provided by Metaworld [136], which has been chosen to show that the S2F model can scale to

di�cult control tasks. In this environment, the agent must move a simulated robotic arm to a

specific 3D point in space by activating four torque-controlled motors.

As in the Axes environment, the easy and hard variants exist. In both variants, the reward

function takes the form of (6.7), where for Reacher, n = 3, meaning positions are 3D. There-

fore, in the easy variant, the state st is a set of distances between the agent and all available

goals, such that st 2 R8. While in the hard variant, the state st is the agent’s and the current

active goal’s coordinates, such that st 2 R4.

In the Reacher environment, an episode ends when 150 steps have elapsed or the top of

the arm, controlled by the agent, is within 7cm of the goal. Again, the agent receives a reward

equal to the negative distance between the end-e↵ector and the current target goal at each step.

Because the models can be used only with discrete actions, we have discretized the actions

such that the agent has nine discrete actions that control the arm’s movements. Therefore, the

four-dimensional continuous action space A was discretized using two values per dimension:

the maximum positive and maximum negative torque for each actuator. An all-zero option was

included that applies zero torque along all actuators, resulting in a total of nine discrete actions.

6.3.3 Doom

To demonstrate the general applicability of the S2F model to complex environments, we eval-

uate it on a 3D navigation task in the Doom environment from raw pixels. This task is chal-

lenging because the model must learn a state representation that is adequate for both reward

prediction and for use in the SF branch from raw pixels.
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Figure 6.4: Overview of the Doom environment. Several agent views, with the agent shown as
a green circle, throughout the map. The possible goal locations are marked with ammo boxes;
while the corresponding interactable doors are marked as dark blocks leading to each colored
room.

In this environment, shown in Figures 6.4, the agent must navigate among four rooms,

trying to collect an item from one of the rooms, after which the episode ends. This setup and

map are identical to that of Kulkarni et al. [79].

The rooms are separated by doors that the agent must manually open. At each step, the

agent receives a small negative reward of -0.01, and upon finding the goal it receives +50. The

agent perceives the state and the four stacked RGB frames of shape (3, 84, 84), corresponding

to color channels, width, and height. The agent has four actions available: forward, rotate left,
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rotate right, and activate door. One di↵erence in the present implementation is that a consistent

action repeat is used across all available actions; this di↵ers from the original implementation,

where a di↵erent action repeat was used on a per-action basis, e.g., forward did not repeat, but

rotation movements repeated five times

6.3.4 Experiments

This section describes in detail the experiments used to validate and test the proposed S2F

model deployed on Axes, Reacher, and Doom.

For both the Axes and Reacher environments, the primary set of experiments focused on

examining and comparing the performance between the S2F model and baselines over the

training distribution tasks. The eight available goals were split between training and test dis-

tributions. To strongly demonstrate our claims for the improved representation capacity of the

second-order reward model, a weak encoder was purposely used for the Axes and Reacher en-

vironments, represented by a single hidden layer, which could learn only a sub-optimal state

representation.

Because transfer to related tasks is a core benefit of the SF framework, we also evaluate

how well the models transfer to unseen tasks from the test distribution on the Axes and Reacher

environments.

Finally, we use a modified version of Axes, referred to as half-random, shown on the right

side Figure 6.3, to assess and investigate the new second order term ⇤t. This version was

identical in all aspects to the base version except for a location-based conditional probability

that a↵ects the agent’s actions. If the agent was within the positive x quadrant of the map,

x > 0, then actions are randomly perturbed with a fixed probability. Otherwise, they were fully

deterministic. This experiment helped identify what ⇤t learns.

For the Doom environment, the primary set of experiments also examined the performance

di↵erences between the proposed S2F model and the baselines over the training distribution

tasks. S2F method was compared with the SF framework with a linear reward model; the
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architecture was similar to that of Kulkarni et al. [79]. This baseline was identical in all ways

to the second-order model for � = 0 in (6.3) and (6.6). More precisely, the linear baseline

and the proposed S2F model use the exact same code with only the � and z hyperparameters

adjusted.

Because this experiment was solely intended to compare the performance of the second-

order model and that of the linear baseline in the Doom environment, a train and test split was

not used; instead, the experiment relied on the randomness of the item and agent locations.

We follow by checking our assumption on the representation capacity of the S2F model by

evaluating the performance of the linear agent with an increasingly stronger encoder. Finally,

this environment was also used to understand the ⇤t term that appears after the derivation of

the proposed S2F model. We examine the learned ⇤t function to understand if it captures

environmental stochasticity and evaluate di↵erent guided exploration strategies using the ⇤t

term on new tasks.

It is important to state that as the S2F model extends the SF framework, the focus remains

on keeping the scope of comparisons to baselines, and that ✏-greedy approach was chosen,

because it is robust and presents few confounding factors.

6.4 Results & Discussion

6.4.1 Performance

The primary point of comparison was between the proposed S2F model and the original for-

mulation of the Successor Feature framework, which can be recovered by setting � = 0 in (6.3)

and (6.6) of the proposed S2F model. The result of these experiments are shown in Table 6.1

for both the Axes and Reacher environments, and reported as the average rewards over the last

1000 steps of training. Note that, in both environments, the easy task is solved by both the

linear and second-order variants. This is expected because the reward, in the case of the linear

variant, can be recovered using a 1-hot encoded reward vector, and even with a weaker state
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Figure 6.5: Performance of the baseline linear variant and variants of it where we gradually
increase the expressive strength of the state model. The average performance of the S2F model
over the last 1000 steps of training is included as a horizontal dashed line. The linear model
has a total of 343M parameters while the S2F model only has 276M, approximately 20% fewer
parameters, while showing stronger performance.

representation the linear reward model can learn to accurately predict future reward. However,

this does not hold true for the hard task, because the linear variant has weaker performance

than the second-order model.

Clearly, the second-order variant provides extra representational capacity to the reward

model so that it can compensate on its own for a non-ideal state representation, which is shown

by its better performance on the hard tasks. One explanation for this is that the linear variant

cannot appropriately model the reward structure because, the reward is a non-linear function

of the state, in this case the agent’s coordinates and the current goal location.

The earlier experiments revealed that the features learned by the encoder are insu�cient

for reward prediction. Therefore, we examine the performance of the model in the Doom

environment with additional encoder layers 2. As shown in Figure 6.5, the additional encoding

layers do indeed help improve the performance of the base model. However, even with three

2Each additional layer has the same number of parameters with z hidden units
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Axes Reacher
Easy Hard Easy Hard

Model Train Transfer Train Transfer Train Transfer Train Transfer
Random -3.43 -3.43 -3.43 -3.43 -78.48 -78.48 -78.48 -78.48

Linear SF -1.28 -1.29 -1.58 -1.61 -6.29 -6.25 -10.25 -10.15
Second-Order SF -1.3 -1.45 -1.47 -1.48 -6.31 -6.33 -6.87 -7.29

Table 6.1: Performance (average rewards) in the Axes and Reacher environments during train-
ing and transfer over the last 1000 steps. Both variants could solve the easy environment with
essentially equal performance. In the hard environment the second-order model had higher
performance than the linear model and was much closer to the easy variant score.

additional layers it could not quite match the S2F model we propose. This implies that the

second-order reward model uses parameters with greater e�ciency than the linear model.

From the result within the Doom environment, as shown in Figure 6.6, it is clear that the

proposed S2F model has outperformed the baseline SF implementation. Indeed, S2F was near

the ceiling performance of the environment, and converged rapidly. In comparison, the baseline

method has failed to achieve similar performance and converged at a much slower rate. From

the di↵erence in learning curves, one can conclude that the extra representational power of

the reward model in S2F has a dramatic impact on performance. Because both variants have

roughly equal parameters, but with the linear variant containing more, one can conclude that

the extra representational power is of better use in the reward component of the model than in

the encoder.

6.4.2 Task Transfer

An important property of the SF framework is the ability to adapt rapidly to new tasks within

the same environment. In this study, transfer to new tasks was performed only after training

has been completed. Adaptation, or transfer, is accomplished by freezing the model’s state-

dependent components, such as  t, and quickly learning just the reward parameter w [128, 79].

In practice, this is accomplished by training the reward vector w on rewards from a new

out-of-sample task using the loss in (6.5), but with respect to the parameters o and A only.

Doing so ensures that the other model parameters, such as those involved in predicting the SFs,
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Figure 6.6: Performance of the baseline linear variant and the S2F model in the Doom envi-
ronment. Each model’s mean performance is given as the average over three runs with varied
seeds. Standard deviation over all runs are represented as a shaded area. S2F model has out-
performed the baseline SF implementation and converged rapidly, while the baseline method
has failed to achieve similar performance and converged at a much slower rate.

are not updated, but instead only vector w is updated – enabling fast task adaptation.

We evaluated the transfer performance of the proposed S2F model within the Axes envi-

ronment on the hard task configuration. The environment was chosen because it was easy to

generate and switch between training and test tasks after a certain number of training steps

had been accrued. Table 6.1 includes a summary of the transfer results and Figure 6.7 provide

learning curves during training and transfer.

Figure 6.7 shows that after the abrupt change in tasks, signified by the dashed vertical line,

both baseline and S2F model performance changed sharply. Both models reached previous

levels of performance on the new tasks and did so at a faster rate than their original training

periods, doing so in under 100k steps. This implies that the models can leverage previously

learned information as transfer to the new task occurs at a faster rate than in the original training

phase. Furthermore, the additional parameters involved in the second-order reward structure
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did not hinder learning speed or performance and we see might provide a stronger basis for

transfer; as after the abrupt task change we see the S2F model had higher initial performance

than the linear variant.

Figure 6.7: Transfer performance on the Axes environments. Each model’s mean performance
is reported on all plots as the average over three runs with varied seeds, which also includes the
standard deviation over all runs as a shaded area. The additional parameters of the S2F model
do not hinder its ability to transfer. The models larger capacity appears to give a stronger prior
base, such that after abrupt task changes it retains more of its previous performance abilities.

6.4.3 ⇤

After training to convergence on the Axes half-random variant, we examine the⇤t function that

the model has learned. From (6.4) it is known that ⇤t is trained to approximate the discounted

future states of � �>, which is the auto-correlation matrix of the learned state features. Accord-

ing to the definition of the auto-correlation matrix, the diagonal terms in ⇤t are the correlations

between states, which is shown in Figure 6.8. Throughout this work, we noticed that this new

term might provide a powerful mechanism to represent the stochasticity of an environment.

From Figure 6.8, the visualizations of ⇤t on both variants of Axes show significant di↵er-

ences. In the case of no additional randomness, that is the top row of Figure 6.8, the ⇤t value



6.4. Results & Discussion 89

Figure 6.8: The learned expected future correlation of a feature along ⇤t’s diagonal is visual-
ized over the entire state space in the Axes environment. Blue and red signify the minimum
and maximum values seen. The goal the agent was trained to find is shown as a star. The first
column is the max value of ⇤t over the actions. The remaining columns, from left to right,
correspond to each action: left, up, right, and down. The top row is the ⇤ function learned over
the standard Axes environment with no randomness. The bottom row is the ⇤ function learned
over the half-random Axes environment variant.

has captured that there is lower volatility nearer to the goal and higher volatility away from the

goal. This is consistent across all possible actions. In comparison, the second row of Figure

6.8 shows the learned ⇤t value under random actions over the right side of the map. From the

bottom row of 6.8 we can clearly see the higher volatility areas, that is the “hotter” colors, are

biased to the area of Axes with high probability of random actions. This implies that the ⇤t

value is able to model the stochasticity of the environment to some degree.

6.4.4 Guided Exploration With ⇤

Here we examine whether it is possible to use the ⇤-function for guided exploration during

transfer within the Axes and Reacher environments.

The SFs can be interpreted as predicting the future expected path taken by the policy ⇡ in

an environment. Under this interpretation,  can be seen as capturing the expected features of
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(a) Axes Environment.

(b) Reacher Environment.

Figure 6.9: Guided Exploration: The ⇤ component of the proposed model is used to guide
exploration during transfer. By using ⇤ the agent explores in directions with large variance in
the state space.

the states and ⇤ the expected variance between state features along these pathways. Adding

noise to the ⇤ component would then perturb around the expected path. Therefore, instead of

using ✏-greedy exploration, it is possible to add noise to ⇤ during transfer, such that ⇤̂(s, a) =

⇤(s, a) + ✏⇤(s, a), where ✏ is sampled from some distribution. During learning, the variance

of the sampling distribution, controlled by ↵, can be annealed to some final value. The actions

are then sampled from the model at time t as:
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at = argmaxa⇤
�
 (st, a⇤)>o + tr(A⇤̂(st, a⇤))

 

From Figure 6.9, we see that using ⇤ for guided exploration is indeed a possible alternative

to ✏-greedy. Additionally, we found that using a scalar value sampled from uniform noise, that

is ✏ ⇠ U(�↵,↵) where ✏ 2 [�↵,↵], provides the best performance.

6.5 Summary

In this chapter, a novel formulation for the SF framework with a second-order non-linear reward

function has been derived, which predicts rewards as a non-linear combination of state features.

Experimentally, we have shown that the agent can perform well with the second-order reward

structure, providing extra flexibility to the reward model and empowering state representation

and policy transfer. Furthermore, the new second-order term ⇤t has been investigated and

confirmed to capture environmental dynamics closely. This result has significant implications,

given that the state representation within the original SF framework may not have enough

representational power for good state and reward reconstruction tasks, for example, in highly

complex environments.



Chapter 7

Dynamic Successor Features

This chapter introduces the Dynamic Successor Features (DynSF) model, a formulation of

the SF framework in which the RL problem can be disentangled as two supervised learning

problems greatly increasing flexibility. This chapter builds on the published work [137], and

contributes to improving task transfer e�ciency in DRL.

The chapter is arranged as follows in the sections below. Section 7.1 provides an introduc-

tion to the chapter, DynSF is introduced in Section 7.2, a brief review of the environments and

experiments used to validate the DynSF model is presented in Section 7.3, Section 7.5 contains

experimental results supporting the flexible representation of the DynSF model and a discus-

sion of these results, and finally the chapter concludes in Section 7.6 with a final discussion on

the contributions of this research and possible avenues for future work.

7.1 Introduction

The performance of RL, which consists of learning through goal-oriented interactions of an

agent with the environment, has improved by leaps and bounds over the past few years, out-

performing human experts on gaming tasks such as Go [36], Poker [138], and Atari [139, 41].

RL has also been successfully used to tackle problems in robotics [140, 141], fluid mechanics

[142, 143], energy [144, 145], chip placement [146], and other areas, extending to applications

92
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outside the computer science and engineering fields.

A central question in RL is the transfer of knowledge between tasks in an environment

when only the reward specification changes, but other environment characteristics remain fixed.

The SF framework presented by [128] computes a representation of the environment that can

be transferred across di↵erent reward functions. In the SF framework, the state-action value

function is expressed as the dot product between a vector of expected discounted future-state

occupancies (the Successor Features) and another vector representing the immediate reward

in each of those successor states [77, 147, 148, 19, 76, 120, 121, 78, 122, 123, 124]. During

transfer, the SFs are held frozen, and only the parameters from the reward component are

trained, which requires fewer samples.

The SF framework was developed to tackle task transfer, but also brings light to the math-

ematical formulation of RL by partially disentangling the environment from task-related re-

wards. By taking advantage of the SF model, this chapter explores the SF framework’s math-

ematical formulation to facilitate understanding of what is learned. The SF framework for-

mulation has been extended to yield the Dynamic Successor Feature (DynSF). The process of

doing this extension sheds light on what the original SF framework learns, showing mathemat-

ically that the original SF representation is tied to marginally learning a specific policy, which

governs the SFs under a fixed discount factor.

In fact, after training, the SFs are tied to the optimal policy learned. However, when trans-

ferring to another task, the ongoing optimal policy might not be the same [149]. For the SF

framework, a successful transfer depends on how drastically the reward function changes be-

tween tasks. If a slight change in rewards occurs, then the optimal policy change is not drastic,

and relearning can converge within a good response time. Otherwise, if a significant change

occurs, then the original SF framework can indeed fail to transfer.

In particular, it will be shown that through DynSF, SFs can be modelled using a state-

transition model. In this newly proposed model, by using rollouts of state embeddings that are

learned and output by the state-transition model, to induce a policy, it is possible to dynamically
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adjust an agent. This induced policy and the discount factor can be parameterized on the fly

during a rollout. Dynamic adjustment of the discount factors and acting policy is possible

because they are treated as functional parameters of the state-transition model. This novel

formulation makes it possible to use di↵erent policies and discount factors during training and

testing.

The proposed approach can be related to model-based RL, where an environment model

is learned to improve action e�ciency. In such model-based approaches, action e�ciency is

improved by using the environment model to simulate future actions and optimize the chosen

action [10, 12, 150]. The DynSF framework proposed in this study is most similar to this

action planning approach, but with the induced policy and discount factor being dynamically

created, which brings flexibility and e�ciency to training and transfer. The DynSF framework

combines supervised learning of a state-transition model and the reward component, enabling

several supervised machine learning techniques. As a result, the DynSF formulation improves

the fidelity of the captured state dynamics over those of SFs through a more expressive state-

transition model. Now, novel algorithms for supervised learning can be used to learn the re-

wards correctly. The aforementioned flexibility in the use of di↵erent techniques and dynamic

adjustment of parameters during learning the SFs helps illuminate another central discussion

to RL: the importance of correctly modelling the rewards. In [130], the authors claim the hy-

pothesis that intelligence arises from reward maximization. Therefore, it is critical for learning

agents to well model task-specif rewards. In the original SF framework, the encoder is often

trained to output a dense vector representation of the state that helps minimize the least-squared

error loss for both state reconstruction and reward prediction [79, 128, 81, 122]. If the encoder

learns a sub-optimal state representation for reward prediction, then the reward model may be

unable to compensate in terms of reward prediction, given the limited set of model parameters.

In contrast, the DynSF representation expands the SFs through a state-transition model, where

more degrees of freedom can be adjusted during training and novel algorithms for supervised

learning can be used to learn the rewards correctly.
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The contribution of this chapter can be summarized as follows:

• DynSF enables a state-transition model to be used for state rollouts where the discount

factor and policy can be set on the fly, which is advantageous compared to common

model-based approaches.

• The chapter examines how rollout length and policy a↵ect the performance of DynSF to

compare its performance to the original framework and baselines.

• Through experiments, the flexibility of DynSF is analyzed, where policy and discount

factors can be parameterized dynamically and where di↵erent supervised ML algorithms

can be used to learn the state transition model.

• A significant task change is used to show that DynSF performs better during task transfer

than SF. DynSF’s learned state model is shown to o↵er a lesser bias than the previously

learned policy.

7.2 Model

This section presents the proposed variant of the SF framework, which uses a state-transition

model to dynamically bootstrap the SFs.

7.2.1 Model Architecture

The definition of the SFs  ⇡t is as follows:

 ⇡t = E
⇡[�t + � �t+1 + �

2 �t+2 + . . . ], (7.1)

where the visited latent states within the expectation depend on the particular policy ⇡. From

this, (7.1) can be rewritten in terms of a chain of state transitions dictated by the stated policy.

Defining (7.1) in terms of state transitions requires access to a model of the environment that
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can predict the next latent state �t+1 given the current state �t and an action a. The assumption

is made that �t, and therefore the reward rt, are predicted solely from the current state st. This

study refers toM as the latent-state transition model and defines it as:

M : (�t 2 �) ⇥ (at 2 A) 7! (�t+1 2 �),

where � is the set of all encoded valid states in S. Following this definition, (7.1) can now be

rewritten with the latent state-transition modelM as follows:

 (s, a, ⇡̄, �) = �t + �M(�t, ⇡̄(�t)) + . . . , (7.2)

where  ⇡t now loses the superscript ⇡ because it accepts additional arguments such as any policy

⇡̄(�t), working on the latent space representation, and the discount factor �. Rewriting (7.2)

with a summation and a k-length rollout yields:

 (s, a, ⇡̄, �) = �t + �M(�t, ⇡̄(�t)) +
k�1X

j=1

� j+1M(�̂t+ j, ⇡̄(�̂t+ j)) (7.3)

where �̂t+1 = M(�t, ⇡̄(�t)) and �̂t+ j+1 = M(�̂t+ j, ⇡̄(�̂t+ j)). Equation (7.3) implies that the SFs

can be computed dynamically given a latent state-transition model, a discount factor �, and

a policy ⇡̄. The SF function  (s, a, ⇡̄, �) is bootstrapped before each step in the environment

by gradually unrolling the latent space withM, as shown in (7.3). Comparing (7.1) and (7.3)

reveals that the original function formulation of  ⇡t we see it is learning an amortized version

of this rollout under a specific policy ⇡ = ⇡̄ and discount factor �.

The final Q-Learning function can now be dynamically inferred based on ⇡̄ and the discount

factor � at each roll-out byM for k steps:

Q(s, a, ⇡̄, �) =
�
�t + �M(�t, ⇡̄(�̂t)) +

k�1X

j=1

� j+1M(�̂t+ j, ⇡̄(�̂t+ j))
 > · w. (7.4)
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This contrasts with the traditional phrasing of the SF framework, and some important con-

siderations of this new formulation are made next. It is now clearly shown that the RL problem

can be cleanly decomposed into two supervised learning tasks without explicit need for tem-

poral di↵erence learning.

Rollout Length

Given the DynSF formulation, note that the original SF function learns to combine infor-

mation about the policy, discount factor and state transitions in some marginalized form. It is

possible to claim a mathematical equivalence between the original SF framework and DynSF,

given that an equivalent fixed policy ⇡ is used throughout the rollouts in (7.4), and that the

number of rollouts matches the task state horizon. Although DynSF brings flexibility, the cho-

sen rollout length certainly a↵ects performance, as shown and discussed in Section 5.

Rollout Policy

When the SF function  (s, a, ⇡̄, �) is being dynamically computed, as described in (7.3),

an acting policy ⇡̄ is required. The policy can be passed in as a function argument, providing

immense flexibility. An experiment involving the deployment of di↵erent acting policies is

discussed in Section 5. This can have significant implications, for example, for guided and

safe exploration/ At its core is an optimization formulation in which the constraints restrict

attention to a subset of safe policies and state visitations with some well-controlled probability

[151]. However, because the final policy is derived from  (s, a, ⇡, �) after k iterations and is

dependent on the current state, it cannot be used during rollouts.

Therefore, a locally defined policy, such as random, greedy, or ✏-greedy based on the reward

component w, is used instead. Where local refers using the information available in the current

state. Here, a locally greedy policy selects the state with the greatest predicted reward using:

�>t w.
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7.2.2 Model Learning

The proposed model is composed of the following parts: an encoder E(s) : S ! �, a decoder

D(�) : �! S , a state-transition modelM(�, a), and a reward vector w.

The state-transition model is trained to predict the next latent state �t+1 given the current

state �t and action at and minimizes:

LM = E[(�t+1 �M(�t, at))2],

where the target variable �t+1 is produced by encoding the following state. State grounding,

as used by [10], is used to ensure that the latent representation �t contains meaning about the

environment and fits naturally into the framework. The reward prediction step keeps the same

form used in the SF framework, which minimizes

Lr = E[(rt � �>t w)2].

There is also a reconstruction loss where the model must learn to reconstruct the state st from

a latent representation �t using the decoder D(�t):

LED = E[(st � D(�t))2].

By summing the losses together, the following sum of mean-squared error losses is mini-

mized:

L = LM +Lr +LED.

Unlike [147], all model components together are minimized at once and end-to-end instead

of requiring interleaved updates.

Because the training formulation is quite general, any state-transition model can be dropped

into place with its respective losses. This implies the flexibility to use any supervised learning
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Figure 7.1: Visualizations of the environments used in this study. From left to right: Axes
environment, Reacher, Doom. Axes (left): The agent shown in red must traverse to the various
goals shown as colored “G”s. Reacher (center): The agent controls the robotic arm shown
and must move the arm’s end to a goal position shown by the colored circles. Doom (right):
The agent must traverse between rooms looking for a goal point. The map layout is shown on
the right, and images of the environment are on the far right.

model, which is considered, together with the acting policy and discount factor flexibility on

the fly, to be one of the advantages of this new formulation compared to other model-based

learning approaches.

7.3 Environments

This section provides the reasoning behind the choice of the environments.

The environments were chosen to guarantee comparability and research reproducibility

within previous studies on SFs [128]. The following subsection describes Axes, a navigation

task, Reacher, a robotic control task built using the MuJoCo engine [135], and the 3D maze

Doom game engine. Figure 7.1 shows these environments, which act as test beds for the DynSF

method. Each contains tasks specified by goal location and split between training and test

distributions.

7.3.1 Axes

In this environment, shown in Figure 7.1, the agent, spawned at a uniform location, must

navigate the map to reach a goal location in as few steps as possible by moving in each of the
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cardinal directions: up, down, left, and right. Four separate goal locations exist. An episode

ends when either the agent reaches the goal or moves more than 25 steps in the environment.

The agent’s initial position is randomly placed in a grid of 3 ⇥ 3 step units, centered at (0, 0).

In the commonly used version of this environment also used within other SF studies [128],

the reward the agent sees is the negative squared distance between its location and the target

goal. The reward function takes the form

�d(pa, pg) = �
r

⇣
p(1)

a � p(1)
g

⌘2
+

⇣
p(2)

a � p(2)
g

⌘2
+ · · · +

⇣
p(n)

a � p(n)
g

⌘2
, (7.5)

where d(pa, pg) is the distance between the agent position pa 2 Rn and the goal position pg 2 Rn

within the environment. For Axes, n = 2, meaning that positions are in 2D.

Note that the agent receives a reward equal to the negative distance between itself and the

goals at each step. The state space of the environment is st 2 R4, and reward prediction can be

accomplished by using a 1-hot encoded reward vector.

Given the 2D characteristic, this environment provides visual access to the state-value over

the entire state space to understand how the agent perceives the environment.

7.3.2 Reacher

This environment consists of a robotic control task defined in the MuJoCo physics engine

[135], as shown in Figure 7.1 (center). The agent must move a robotic arm to a specific point

in space by activating four torque-controlled motors. Because this is a continuous control

task, the actions were discretized so that the agent had nine discrete actions to control the

arm movements. Therefore, the four-dimensional continuous action space A was discretized

using two values per dimension: the maximum positive and maximum negative torque for each

actuator. An all-zero option that applies zero torque along all actuators was included, resulting

in a total of nine discrete actions.

As in the Axes environment, the reward function takes the form of (7.5), where for Reacher,
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n = 3, meaning that positions are 3D. Therefore, the agent receives a reward equal to the

negative distance between the end-e↵ector and the target goal. Hence, the state st is a set of

distances between the agent and the target goals, such that st 2 R4. In the Reacher environment,

an episode ends when 150 steps have elapsed or the top of the arm, controlled by the agent, is

within 7cm of the goal.

7.3.3 Doom

Doom is a 3D navigation task, shown in Figure 7.1 (right), where the agent must navigate

among four rooms, trying to collect an item from one of the rooms, after which the episode

ends.

Doors separate the rooms, which the agent must manually open. At each step, the agent

receives a small negative reward of -0.01, and upon finding the goal, it receives +50. The agent

perceives the state and the four stacked RGB frames of shape (3, 84, 84), corresponding to

color channels, width, and height. The agent has four actions available: forward, rotate left,

rotate right, and activate door.

The episode ends when the agent reaches the item or exceeds 1250 steps. This setup and

map are identical to that of [79], except that a consistent action repeat was used across all

available actions; this di↵ers from the original implementation, where a di↵erent action repeat

was used on a per-action basis, with some actions repeating once only and others several times,

e.g., forward movements did not repeat, but rotation movements repeated five times.

7.4 Experiments

This section provides details on the environments against which the proposed methodology

was tested, the reasoning behind the choice of the environments, and a description of the ex-

perimental methodology.

This section describes the experiments used to validate and test the DynSF model on Axes,
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Reacher, and Doom. Based on the original SF framework, all baseline models used in the

experiments had encoder, decoder, reward vector, and successor feature components, whereas

the DynSF agents had an encoder, decoder, reward vector, and state-transition model.

7.4.1 Rollout Policy

Through the rollout policy experiment, the model’s flexibility in using di↵erent policies for

state visitation was examined. An evaluation of the di↵erent rollout policies used during the

creation of  (s, a, ⇡̄, �) was performed, as defined in (7.3). Specifically, greedy, random, and

✏-greedy policies were evaluated in the Reacher environment.

This simple experiment supports a more comprehensive use of flexible rollout policies for

tasks such as safe RL and others on model-based environments.

7.4.2 Rollout Length

As the DynSF’s policy was created dynamically with a variable rollout, the impact of the roll-

out length on the dynamic  (s, a, ⇡̄, �) was investigated. These experiments evaluated rollout

lengths of {0, 2, 4, 8} in the Axes environment. The aim was to understand how the hyperpa-

rameters a↵ect the state-value function and whether a shorter rollout length can be used.

This analysis was performed using two variants of DynSF. The first variant used a fixed a

priori state-transition model �(s, a, ⇡̄, �), which had already captured the optimal policy, called

here Oracle DynSF. Therefore, Oracle DynSF had the perfect state transition model and had

only to learn the reward vector. The other variant was that DynSF learned end-to-end, where

either the state-transition model or the reward vector was learned. A state-value map for the

Axes environment was produced, along with the path the agent took to reach the goal position.
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7.4.3 Transfer with Significant Task Change

A significant task change was used to further assess whether the flexibility o↵ered by DynSF

can better tackle transfer between di↵erent domains. The original SF framework algorithm

and DynSF were both evaluated on the same grid world of Axes. The same reasoning was

followed as in [152], causing the reward function to change drastically by changing the task,

which meant that the goal was relocated to an opposite corner. The agent’s start location

was considered fixed for both tasks. The episode length and transfer capability of the agents

were compared. Su�cient exploration was ensured by using a di↵erent ✏-annealing approach

than the original SF algorithm to make the comparison fair and to give the agents a chance to

explore.

7.4.4 Performance Evaluation

In the Reacher and Axes environment, DynSF was compared with the Q-learning algorithm

and random baselines. In the Doom environment, the proposed DynSF was used to confirm

that the method can handle an increasingly complex environment.

7.5 Results & Discussion

This section presents the results of the experiments detailed in the previous section.

7.5.1 Rollout Policy

Figure 7.2 (left) shows the results of the various local policies evaluated on the Reacher envi-

ronment: greedy, random, and ✏-greedy. This experiment shows that the greedy and ✏-greedy

policies gave the best performance (close to 100%) in this environment. Although the random

policy performed worse than the greedy and ✏-greedy policies, it still delivered reasonable

performance on the tasks. The completely random policy can be seen as forcing additional
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exploration because the resulting  (s, a, ⇡̄, �) function does not attempt to maximize reward

during action selection. Each model’s mean performance is reported on all plots as the average

over runs with varied seeds, which also includes the standard deviation over all runs as a shaded

area. From the standard deviation bands around each curve, it is also evident that the other two

policies had a much smaller variance in performance, which could have been expected because

they attempted to select the optimal state at each step.

Because the agent was trained with a decaying exploration rate, where the action from

(7.3) was randomly selected with probability ✏, equal performance of the greedy and ✏-greedy

policies could have been expected. Both the greedy and ✏-greedy policies explored at roughly

the same rate under this scheduling. However, using an ✏-greedy policy requires less computing

because only the next latent state resulting from random actions needs to be predicted, instead

of all future proceeding states. This contrasts with the greedy policy, which expands each

future state across the actions using the state-transition model. Therefore, the ✏-greedy policy

was used for the other experiments unless stated otherwise.

This experiment showed that any policy can be chosen during training at each rollout.

Standard policies have been used here to show this flexibility. However, a policy can be tailored

to accommodate constraints, such as safe explorations.

7.5.2 Rollout Length

Figure 7.2 (right) shows the state-value maps produced by varying the rollout length k in the

Axes environment for k = {0, 2, 4, 8}. The map was created by taking the maximum value

produced by (7.3) for the k steps under a local ✏-greedy policy over all states in the Axes envi-

ronment.

The reward function produced a clean gradient on a state-value map flowing between the

agent and the goal. Note that the agent could solve the given tasks with up to k = 4 steps. After

this, noise began to dominate the state-value estimates, and the agent could no longer solve the
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Figure 7.2: Left: Learning curves on the Reacher environment with various rollout policies.
Right: State-value maps of the Axes environment. The goal is shown as the black star and the
path taken by the agent from the origin as a black line. Top row: Oracle state-transition model
and reward vector. Bottom row: Learned state-transition model and reward vector.

task. Interestingly, the learned state-transition model appears to have produced better quality

estimates in the central area of the map, as evidenced by the smoother gradient. The oracle

state-transition model did not have this smoothness around the most visited areas. Because the

reward vector was identical, the authors believe that the latent state representation produced by

the state-transition model is more resilient to the added noise of further rollout steps.

It can be concluded from these experiments that using many rollout steps might not be

required and could decrease agent performance by introducing too much additional noise. Fur-

thermore, there is a computational trade-o↵ to be made because each added step forward re-

quires additional prediction by the state-transition model. Therefore, the optimal number of

rollout steps is the smallest number that does not degrade performance.

7.5.3 Transfer with Significant Task Change

Figure 7.3 shows the performance when transferring DynSF and the original SF framework

within a substantial task change in Axes. The target goal changed drastically in location, from

North(0,1) to South(0,-1). The agent’s initial position was unchanged.

The DynSF framework achieved better results, which can be explained by analyzing the

mathematical formulation that DynSF contributes. The SF and DynSF frameworks were de-
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Figure 7.3: DynSF and SF framework compared in a drastic task change. DynSF was able
to transfer, but the original SF framework struggled to solve the new task. It is hypothesized
here that this performance is the result of a more generalized state representation learned by
the DynSF model, which has not specialized to a specific task.

rived by expanding the mathematical definition of Q-Learning. The next step is to acknowledge

that a Q-Learning agent will nearly always have fewer parameters than an SF-based agent on

the same task, implying that the Q-Learning agent must be learning some compressed form

of the task structure. Most likely, the Q-Learning model is learning a representation that is

tuned to the particular task’s reward structure, discount factor, and state dynamics, leading to

a compressed representation where important information related to task change is tracked.

This is a clear trade-o↵ because the tracked information will be useful for related tasks. This

is hypothesized here to be what leads the SF and DynSF models to generalize much better

given a task change: the learned representations from the expanded formulation of such frame-

works are much more general. The DynSF model takes this a step further by disentangling

the future discounted reward, the discount factor, the acting policy, and the state dynamics to

the task-related weights through the supervised learning state representation model, implying

much greater generalization capabilities.
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Figure 7.4: Left: Learning curves on the Axes environment of an oracle model, the origi-
nal SF formulation, and the proposed dynamic variant DynSF. Right: Learning curves in the
Reacher environment of the proposed dynamic variant DynSF compared against DQN and ran-
dom baselines.

7.5.4 Performance evaluation

Axes

Figure 7.4 (left) shows the results of DynSF against the original formulation of the SF frame-

work and an oracle. The oracle is the DynSF algorithm but with a perfect environment model,

hence the oracle label. Therefore, the rollouts will have no additive error. This shows the pos-

sible performance if DynSF learns a perfect state-transition model. The results were that all

models solved the environment, but the dynamic variant did so faster and with less variance.

Reacher

Figure 7.4 (right) shows the results of the proposed model against a DQN and a random base-

line. Both the proposed model and the DQN could solve the environment. Although both

models converged to the final solution, the proposed DynSF did so and remained very stable

after convergence.
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Figure 7.5: Learning curves on the Doom environment of the proposed dynamic variant DynSF
compared against the original SF formulation.

Doom

Figure 7.5 shows the performance of the proposed model against the original formulation of

the SF framwork in the Doom environment. Figure 7.5 illustrates that the proposed model

can successfully navigate the environment to obtain the reward and is competitive with the

original formulation of the SFs. Furthermore, it shows that the proposed method can scale up

to complex environments and can do so from raw pixels.

7.6 Summary

This chapter has derived and presented a dynamic rollout representation of the SF framework

called DynSF, which uses a state-transition model. The DynSF framework enables the setup of

dynamic policies and discount factors, which brings flexibility to the original SF framework.

Mathematically, the new formulation brings a clearer insight into what is learned by the

SF and DynSF frameworks. Experimentally, it has been shown that di↵erent rollout policies

yield di↵erent performances. This supports a further investigation on DynSF to be used for

guided exploration and Safe RL. Furthermore, the e↵ects of rollout length were analyzed.

Short rollouts are possible with reasonable performance, but lengthy rollouts can introduce
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noise to the training. With comparisons to baselines, it has been demonstrated that RL can

be performed through the DynSF framework with two supervised learning tasks, one for the

state and another for reward prediction. Finally, given a drastic change in tasks, the DynSF

framework adapts better to transfer than the original SF framework.

This result has significant implications, given that the learned state-model representation

with dynamic policies and discount factor sets up an on-the-fly flexible successor feature model

and enables better task transfer by enabling di↵erent policies.

A limitation of the DynSF approach is the need for additional forward inference steps

during the bootstrapping process of  . The is a clear trade o↵ between using a fixed amortized

functional approximation of  , as used by the classic SF framework, and our proposed method

that gains additional flexibility due to its dynamic nature.



Chapter 8

Conclusions

In the last half-decade, RL has been successfully applied to complex and large-scale tasks.

The key drivers of this success are immense amounts of computational power and DNNs as

non-linear function approximators. However, the resulting methods could be more e↵ective

across essential categories such as task transfer, action e�ciency, and sample e�ciency. While

modern approaches have been suggested, that improve on those essential categories, they them-

selves are not without issue. The research presented in this thesis provides improvements

across task transfer, action e�ciency, and sample e�ciency. This thesis proposed the S2F and

DynSF algorithms in the task transfer category. The S2F algorithm models the agents’ rewards

with a second-order function providing a stronger guarantee of the agent performance due to its

non-linear representational structure and extra parameters. The DynSF model enables the setup

of dynamic policies and discount factors, which brings flexibility to the original SF framework.

In action e�ciency, a planning-centric model, DPN, was presented. DPN uses a planner and

agent working in tandem. The planner is optimized to maximize a pseudo-reward, the utility

provided to the agent, balancing exploitation and exploration during planning.

Finally, for sample e�ciency, Noisy Importance Sampling Actor-Critic (NISAC) has been in-

troduced; a fully o↵-policy actor-critic algorithm that learns from stored o↵-policy trajectories.

Below, in Section 8.1, a final discussion of the contributions of the thesis is given. Finally,

110
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Section 8.2 presents possible directions for future work.

8.1 Contributions

8.1.1 Noisy Importance Sampling Actor-Critic

This thesis has proposed Noisy Importance Sampling Actor-Critic (NISAC), a fully o↵-policy

actor-critic algorithm that learns from stored o↵-policy trajectories. We have proven, experi-

mentally, that NISAC improves upon the performance and sample e�ciency of A2C [41], an

on-policy actor-critic, and truncated importance sampling [16], an o↵-policy algorithm. NISAC

nears the performance of ACER [17], a SOTA o↵-policy actor-critic method, on several envi-

ronments while completing a training session in 40% less time and being significantly easier

to implement. We have analyzed the e↵ect of additive action space noise, identified the Gum-

bel distribution as the most performant variant, and examined where the noisy policy can be

used within the importance sampling weight ⇢ and policy gradient update. Our analysis shows

that additive action space noise fundamentally changes the distribution of importance sample

weights ⇢ during training. Moreover, we have shown that each component in NISAC con-

tributes to its improved performance over the baseline methods, and even with additive action

space noise, the learned policies are stable.

8.1.2 Dynamic Planning Networks

This thesis has proposed DPN, a new architecture for DRL that uses a planner and agents

working in tandem. The planner is optimized to maximize a pseudo-reward, the utility provided

to the agent, balancing exploitation and exploration during planning. We have demonstrated

that DPN outperforms the model-free and planning baselines in the Multi-Goal Gridworld

and Push environments while using ⇠2x fewer environment samples. Furthermore, the ability

of DPN to learn a dynamic planning style enables it to achieve much greater e�ciency in
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terms of the state transitions required; this is especially evident when comparing TreeQN,

with a fixed planning style, and DPN, with a dynamic planning style. By letting the planner

learn its planning style, we see evidence of emergent planning patterns, such as breadth-first

search. In the Push environment, we see DPN achieves greater or equal performance to TreeQN

while requiring 96% fewer applications of the state-transition model. Taken all together, DPN,

compared to other architectures, reduces the computational requirements to reach a similar

level of performance. Finally, we have shown that allowing the planner to select where to plan

from helps avoid sub-optimal trajectories. Our studies have provided evidence that the triplet

previous, current, reset provides the greatest performance. In future work, we plan to examine

how structured memory can help improve this dynamic planning process.

8.1.3 Second-Order Successor Features

A novel formulation for the Successor Feature framework with a second-order non-linear re-

ward function has been derived, which predicts rewards as a non-linear combination of state

features. Experimentally, we have shown that the agent can perform well with the second-

order reward structure, providing extra flexibility to the reward model and empowering state

representation and policy transfer. The method also shows greater performance compared to

the baseline SF method on the Doom environment, providing strong evidence that it can scale

quickly to complex environments. Furthermore, the new second-order term ⇤t has been inves-

tigated and confirmed to capture environmental dynamics closely. This result has significant

implications, given that the state representation within the original Successor Feature frame-

work may not have enough representational power for good state and reward reconstruction

tasks, for example, in highly complex environments. Finally, we have provided evidence that

the ⇤t term can also be used for exploration by the agent during task transfer.
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8.1.4 Dynamic Successor Features

This thesis has derived and presented a functionally equivalent dynamic rollout representation

of the SF framework called DynSF, which uses a state-transition model. The DynSF framework

enables the setup of dynamic policies and discount factors, which brings greater flexibility to

the original SF framework. Indeed, with comparisons to baselines, it has been demonstrated

that through the DynSF framework, RL can be performed with two supervised learning tasks,

one for the state and another to reward prediction. The use of supervised learning in an RL

setting provides immense flexibility in the choice of each learners architecture. Experimentally,

it was shown that the DynSF model has equal performance on baseline tasks. However, given

a drastic change in tasks, the DynSF framework adapts better to transfer than the original SF

framework.

The proposed formulation brings a clearer insight into what the SF and DynSF frameworks

learn. Through experimental results, the e↵ect of di↵erent rollout policies and rollout lengths

was shown to have a tremendous impact on performance. Indeed, shorter rollouts provide good

performance, while lengthy rollouts can introduce noise to the training.

This result has significant implications, given that the learned state-model representation

with dynamic policies and discount factor sets up an on-the-fly flexible successor feature model

and enables better task transfer by enabling di↵erent policies.

8.2 Future Work

This thesis has explored various paths for improvement in DRL across sample e�ciency, plan-

ning, and task transfer on numerous environments and tasks. Directions for possible future

research related to the algorithmic improvements, organized by contribution, include:
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8.2.1 Dynamic Planning Network

The DPN architecture showed immense flexibility in its planning ability. However, the planner

has finite memory and must compress the current plan into the hidden state of the RNN. A

natural direction of improvement would involve extending the memory of the planner, simi-

lar to Neural Turing Machines [153], such that the agent has a perfect recall and can readily

read and write as needed. Information could be used across multiple bouts of planning, such

that the planner can integrate previous plan information – possibly bootstrapping subsequent

evaluations. This would allow longer planning sequences by the planner unit and access to

higher fidelity information as the plan grows. Further, if the memory system is discrete, that is

not summarized into an embedding, the planner would have access to exact state. A planner

possessing such properties would be able to generate higher quality plans and that gives greater

informational context to the acting agent, leading to greater rewards.

8.2.2 Noisy Importance Sampling Actor-Critic

Within sample e�ciency and our proposed NISAC model, an exciting future could include

evaluating suitable distributions compatible with continuous action spaces. As NISC is cur-

rently only compatible with discrete action spaces, a compatible distribution increases the ap-

plicability of the NISAC model to domains such as robotics that heavily rely on continuous

control. Further investigation into possible annealing schedules for the clamping constant c

could yield an increase in performance by respectively helping improve the speed of conver-

gence to an optimal policy and further reducing instability during learning.

8.2.3 Second-Order Successor Features

As shown in Section 6.4, the ⇤ function can capture the environment’s stochasticity. Indeed,

during transfer, it was as competitive as the standard exploration methods such as ✏-greedy. A

deeper evaluation of the learned ⇤ function could yield exciting results in future work, particu-
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larly by examining the application of di↵erent noise distributions to sample actions for directed

exploration. If an agent can exploit previously learned information, such as that learned by the

⇤ function, it could improve the convergence speed to an optimal policy. Further, by having ad-

ditional context around the current state, via the ⇤ function, the agent might be able to smartly

explore, improving the exploration-exploitation dilemma.

8.2.4 Dynamic Successor Features

The DynSF model’s flexibility, with its mathematical specification and architectural simplicity,

leaves room for natural extensions in future work.

It can be hypothesized that the induced policy’s generalization, and therefore quality, could

be significantly improved by looking to larger state-transition models such as Dreamer [154]

or other generative models [155, 156, 157]. Given its large set of parameters, such a model

could be generalized across many tasks in complex environments. Atari is an example of an

environment where the dynamics of specific tasks, such as Space Invaders and Demon Attack,

are nearly identical.

Another line of future work, in a nearly opposite direction to that described in the pre-

vious paragraph, is the exploitation of state-transition model prediction noise to enhance the

exploration ability of the agent. Indeed, the rollout length experiment described in Section

5.2 revealed that the compounding error causes the agent to explore along its path through the

environment. By doing so the exploration e�ciency could be improved, leading the agent to

require fewer samples. The hypothesis is that this noise could be further enhanced by using it

as an exploration bonus during learning, much as other studies have used state-prediction or

reconstruction as an exploration bonus for the agent [158, 159].
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[124] L. Szoke, S. Aradi, T. Bécsi, and P. Gáspár, “Skills to drive: Successor features for
autonomous highway pilot,” IEEE Transactions on Intelligent Transportation Systems,
2022.

https://proceedings.mlr.press/v139/abdolshah21a.html
https://proceedings.mlr.press/v139/abdolshah21a.html


BIBLIOGRAPHY 125

[125] S. J. Gershman, “The successor representation: its computational logic and neural sub-
strates,” Journal of Neuroscience, vol. 38, no. 33, pp. 7193–7200, 2018.

[126] W. de Cothi and C. Barry, “Neurobiological successor features for spatial navigation,”
Hippocampus, vol. 30, no. 12, pp. 1347–1355, 2020.

[127] I. Momennejad, E. M. Russek, J. H. Cheong, M. M. Botvinick, N. D. Daw, and S. J. Ger-
shman, “The successor representation in human reinforcement learning,” Nature human
behaviour, vol. 1, no. 9, pp. 680–692, 2017.

[128] A. Barreto, W. Dabney, R. Munos, J. J. Hunt, T. Schaul, H. P. van Hasselt, and D. Sil-
ver, “Successor features for transfer in reinforcement learning,” in Advances in neural
information processing systems, 2017, pp. 4055–4065.

[129] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine, “Diversity is all you need: Learning
skills without a reward function,” arXiv preprint arXiv:1802.06070, 2018.

[130] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is enough,”
Artificial Intelligence, vol. 299, p. 103535, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0004370221000862

[131] D. Borsa, B. Piot, R. Munos, and O. Pietquin, “Observational learning by reinforcement
learning,” arXiv preprint arXiv:1706.06617, 2017.

[132] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[133] Z. Yu, J. Yu, J. Fan, and D. Tao, “Multi-modal factorized bilinear pooling with co-
attention learning for visual question answering,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2017, pp. 1821–1830.

[134] A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach, “Multimodal
compact bilinear pooling for visual question answering and visual grounding,” arXiv
preprint arXiv:1606.01847, 2016.

[135] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,”
in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,
2012, pp. 5026–5033.

[136] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine, “Meta-world:
A benchmark and evaluation for multi-task and meta reinforcement learning,” arXiv
preprint arXiv:1910.10897, 2019.

[137] N. Tasfi, E. Santana, and M. Capretz, “Policy agnostic successor features,” in Advances
in Neural Information Processing Systems, 2020.
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