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Abstract 

The presence of a stiff obstruction in the path of fluid causes the creation of a boundary layer 

over and around the obstruction. The flow over an idealized, two-dimensional series of blocks 

is numerically investigated to determine how statistical blocks height variation, such as 

standard deviation, mean, and skewness, influence pressure drop and heat flux. These data sets 

serve as a foundation for developing models for estimating the heat transfer coefficient of each 

block using machine learning (ML) methods. The results show that the pressure drop increased 

by 60% when the standard deviation of heights of blocks increased from 0.1 to 0.4 due to 

promoting turbulent mixing over the blocks, hence boosting pressure drop and heat flux. 

Furthermore, the ML model has great potential for predicting the Convective heat transfer 

coefficient (CHTC) of an individual block given the heights of a few nearby obstacles. 
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Summary for Lay Audience 

 

In nature, the presence of obstacles in the path of a fluid, such as a group of nearby plants in 

the way of water flow, a forest, or a group of buildings in the way of wind, results in a distinct 

fluid behaviour over and around the obstacle, with the flow going over the obstacle and slowing 

down near it. Due to the extensive industrial applications and environmental impacts of barriers 

on flow behaviour, it is vital to understand the flow near obstructions. This investigation uses 

idealized simulations to examine the influence of height variation within a single cluster of 

obstacles. The obstruction might symbolize a vegetation canopy, an urban canopy, or urban 

structures. Previous research on this topic focuses on groups of blocks that follow a pattern. In 

this study, the effect of random variation of height is investigated. The height of the 14 blocks 

for each set of simulations is assumed to be random, and they are generated by defining the 

average height and the variation of heights. Each of these parameters' effect on the total heat 

flux and pressure drop are investigated. Additionally, the effect of the qualitative flow regimes 

is explored. Using simulation-generated data, a machine learning model for predicting the heat 

transfer coefficient of blocks has been developed. The feature importance analysis in machine 

learning indicates that only data for a few neighbouring blocks are required to calculate the 

heat transfer coefficient. 
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Chapter 1  

1 Introduction 

1.1  Motivation 

The presence of a porous surface or rigid obstacle results in the formation of a boundary 

layer in flow over and around an obstacle. Numerous examples of this phenomenon exist 

in nature and engineering, including flows past aquatic and terrestrial vegetation, 

atmospheric boundary layers forming over forests, tall buildings in cities, and wind/tidal 

farms, which consist of arrays of wind/tidal turbines. The formation of a boundary layer 

over an urban area and a submerged canopy is shown in Figure 1-1 and Figure 1-2. These 

impediments have a substantial impact on the flow momentum and energy transfer process 

near and downstream of the obstacles. Aquatic vegetation, for instance, offers shielding [1] 

and impacts sediment production, erosion [2]–[5],  and carbon sequestration in coastal 

habitats [6]. Urban Buildings and canopies cause multi-scale turbulent motions in the 

atmospheric boundary layer [7], [8], which governs flow mixing, momentum, and heat and 

mass exchange within the layer, including pollutants and other chemical compounds [9], 

[10]. 

Considering the vast industrial uses and environmental effects of obstacles on flow 

behaviour, it is necessary to comprehend the flow near impediments. This study carries out 

idealized simulations that will enable us to study the effect of height variation within a 

single cluster of obstacles. The obstacle may represent a vegetation canopy, urban canopy 

or urban buildings. The Introduction chapter is organized as follows. First, the significance 

of studying the flow over the vegetation canopy will be discussed. Then, an introduction 

to atmospheric flow and its applications on buildings is provided.  
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Figure 1-1: Schematic of the urban boundary layers (adapted from Piringer et al. 

2002) (Planetary Boundary Layer, Urban Boundary Layer, Urban Canopy Layer)  

 

Figure 1-2: schematic of submerged canopy boundary layer (adapted from 

Beudin[11]) 
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1.2 Canopy Literature Review 

Coastal regions are crucial for economic development, international connectivity, and 

political communication [1]. In addition, they are one of the most frequent human activity 

zones. This creates significant demand for beach development for housing, recreational 

amenities, and coast protection from storms and overflowing waves. Waves, tides, and 

storm surges have a tremendous influence on the construction of ports, canals, and coastal 

structures and are essential in determining the coastline's geometry. Due to the inherent 

benefits of utilizing natural protection measures to safeguard coastlines, protection 

strategies are shifting from structural reinforcement to natural ones. Hirashi and Harada [2] 

conducted an experimental study to determine how well the coastal green belt protected 

against tsunami waves using observational data from the occurred tsunami. They 

discovered that vegetation outperformed structural obstacles in terms of both cost and force 

reduction. Coastal vegetation is regarded as a kind of biological control and plays a 

significant role in developing and preserving ecosystems. Vegetation generates an extra 

drag force that alters the mean and turbulent velocity profiles [3]–[6], which in turn affects 

sediment transport and channel morphology [7]–[9]. Aquatic canopies can be classed as 

submerged, emergent, or suspended based on their growth characteristics. In this study, the 

idealized simulation best represents the submerged canopy. 

 

Figure 1-3: Canopy classification showing emergent, submerged and suspended 

(floating) canopies (adapted from Walter [12]) 
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Additionally, the vegetation canopy dampens waves, stabilizes the seafloor, and improves 

local water quality by filtering nutrients from the water. In particular, velocity dissipation 

inside the canopy region results in sediment deposition [10], greater light transmission [11], 

and nutrient retention, which creates a favourable habitat for invertebrate larvae and other 

species [12]–[14]. The flood plain vegetation can lower the local velocity by 20–44 percent 

compared to the main channel, resulting in less erosion and better sediment retention [15], 

[16]. 

Wave attenuation by coastal forests depends on plant properties such as geometry and 

structure, submergence ratio, density, stiffness, and local arrangement, as well as wave 

circumstances, including incident wave height, period, and direction [1]. Numerous studies 

have investigated vegetation characteristics' effect on various properties, including wave 

attenuation, pressure drop, etc. Etminan [17] analyzes the mechanisms that influence 

canopy flow resistance, such as canopy drag, including blockage, sheltering, and delayed 

separation, and presents a new model for estimating canopy drag coefficients within 

emerging canopies using the LES method in OpenFoam. Etminan discovered that 

sheltering and delayed separation fractionally reduce the drag of extremely sparse 

canopies, whereas blockage significantly increases the drag of dense canopies. He 

modelled canopies as arrays of rigid circular cylinders, which is standard practice for 

approximating an aquatic canopy due to the complexity of modelling the geometry of real 

natural canopies [18], [19]. Chen [20] presents the transition from open channel flow to 

flow through submerged vegetation in a two-box model using velocity measurements. In 

Chen's work, wooden arrays of rigid circular cylinders of varied densities and depths of 

submergence in the staggered pattern were used to study submerged canopies and flow 

adjustment experimentally. He discusses the steps of flow adjustment and concludes that 

canopy length has no effect on flow adjustment. Thang [21] developed empirical formulas 

for the drag coefficient of an isolated cylinder and an array of cylinders, as well as the 

vertically distributed or local drag coefficient of the submerged canopy in an open channel 

flow, based on the experimental results for a wide range of Reynolds number. Using a 

model of a mangrove forest, Shan [22] experimentally evaluated the influence of tree 

layout (random versus aligned) and tree density on drag forces and velocity. In each tree 

model, an aerial root system was included. He found that a tree within a randomly 
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distributed forest may feel a larger or smaller force than a tree at the leading edge, and the 

variance in drag force increases with tree density, whereas for a tree within an aligned 

distributed forest, the force on an individual tree within the forest was always less 

compared to a tree at the leading edge. Using the finite element approach and quadratic 

shape functions, Sabokrouhiyeh [23] used a two-dimensional depth-averaged model to 

simulate flow, mass transport, and contaminant removal in a conceptual free-water surface 

with heterogeneous vegetation patterns in order to investigate the effect of various 

vegetation patterns on reducing pollutant load and identify optimal vegetation distributions 

that maximize contaminant removal. Simulations demonstrate that concentration reduction 

effectiveness improves monotonically with average stem density, but mass removal peaks 

at an intermediate average stem density value. Xu [24] studied velocity and force on 

individual plants inside an emergent canopy with real plant shapes and developed a model 

to predict vertical profiles of velocity and turbulent kinetic energy. By describing the link 

between the integral length scale and plant shape, he adapted a turbulence model for 

random arrays of rigid cylinders in order to forecast both the vertical distribution and the 

channel average of TKE.  

 Lou [25] conducted an experiment and mathematical studies to examine the effects of 

submerged rigid vegetation on sediment suspension under waves, currents, and combined 

wave-current flows. Lou imitated a canopy from the wooden cylinder in three 

configurations: sparse, dense, and density that varies vertically. He discovered that lower 

velocity and more turbulence increase sediment suspension, demonstrating the significance 

of vegetation-induced turbulence in sediment suspension. 

Density and varied vegetation heights exhibited substantial impacts on flow velocity and 

turbulence, which altered bed shear stress and turbulent diffusivity. For instance, Lou [25] 

considers the effect of various heights of vegetation in natural ecosystems with four 

specific heights. However, there is a need to research the effect of random vegetation height 

on the flow.  The result of this study indicates whether the height variation of the vegetation 

within a single canopy may have a significant effect on the flow. 
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1.3 Urban Building Literature Review 

The rising trend in urbanization [13], [14], energy consumption [15]–[19] and climate 

change [20], [21] have become one of the most significant issues facing society. Increased 

human-made urban structures have drastically altered the surface energy balance of the 

metropolitan area, resulting in a distinct urban climate different from adjacent rural areas 

[22], [23] in terms of ventilation and warmer ambient temperature known as an urban heat 

island [24]–[28]. The urban heat island effect causes urban areas to have higher 

temperatures and slower wind speeds due to the wind shielding effect. In addition, climate 

change puts lots of species in danger. Extreme heat has increased in frequency and intensity 

over most land regions, which is identified as one of the main contributors to heat-related 

fatalities [29]–[34].  

Moreover, more than 70% of the world’s population is anticipated to reside in cities by 

2050; therefore, various research has been done in the field of urban microclimates. It is 

crucial to understand the urban microclimate since it is essential for a variety of 

applications. For instance, accurate results for building energy models must be obtained, 

which requires reliable microclimatic data at the construction site. City planners also 

require finely resolved climate data in order to improve the thermal comfort of existing 

urban areas or to construct new urban zones with a high level of thermal comfort. 

Numerous studies have found that the urban microclimate environment has a major impact 

on building energy consumption patterns [35], [36]. For example, raising the ambient 

temperature by 1 K may lead to an increase in building energy usage for summer cooling 

by 5–10% [37]. Buildings provide a wind sheltering and shading effect in an actual urban 

context, which can reduce local wind speed patterns and sometimes lower building surface 

temperatures due to the shading effect [38], [39], which becomes a key factor influencing 

building energy consumption. According to Liu et al. [40], the local microclimate, 

measured by exterior surface convective heat transfer coefficients (CHTCs), has a 4 percent 

impact on total cooling energy usage. Mirsadeghi [41] examined the external CHTC 

models used by building energy simulation (BES) programs. They demonstrated that the 

uncertainties in the different correlations might result in more than 30% deviations in the 

yearly cooling energy demand and 14% in the hourly peak cooling energy demand of an 
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isolated cubic structure. An essential metric for determining the flow and energy exchange 

between a street unit and the surrounding air at the microscale is the convective heat 

transfer coefficient (CHTC) of buildings [42], [43], 

𝐶𝐻𝑇𝐶 =
𝑞

𝑇𝑊𝑎𝑙𝑙 − 𝑇𝑅𝑒𝑓
 (1-1) 

1-1 

In the equation 1-1, q is the convective heat transfer normal to the wall surfaces, TRef is the 

reference temperature of the air far from the buildings, and TWall is the wall surface 

temperature. The CHTC is used to characterize the thermal resistance of the fluid layer 

near the surface. In most cases, it is determined by means of controlled experiments or 

numerical simulations with a heat flux and temperature difference that are explicitly stated. 

In the literature, convective heat transfer has been studied using analytical solutions [44], 

[45], outdoor full-scale measurements [46]–[48], wind tunnel [49]–[55] and water tank 

experiments [56], and numerical simulations (Computational Fluid Dynamic(CFD)) [40], 

[57]–[66], [66]–[75]. Analytical solutions are usually performed on simple geometry such 

as flat plate and cylinder [44], [76]–[78], whereas other methods usually investigate CHTC 

on building facades. The CFD approach, which is a numerical method, is becoming an 

increasingly attractive way of analysis as a result of the difficulties associated with the 

conduct of experiments as well as the recent developments in computer resources. 

Understanding the relationships between urban buildings and the urban thermal 

environment is critical for reducing urban heat islands and creating a sustainable and 

healthy urban constructed environment [79]. Generally, studies for generically distributed 

building blocks are focused on the effect of different urban geometries (e.g. orientation, 

density) [80]–[85], urban vegetation patterns [10], [86], [87], building materials [88], 

building forms [89], [90], air characteristic(e.g. wind speed, wind direction and surface to 

air temperature differences) [65], [91]. In terms of wind speed, in the summer, every 1 m/s 

increase in wind speed can prevent a 2 C increase in the temperature of urban air [92]. 
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Iousef [41] examines the influence of several CHTC models on the estimated energy 

consumption of three types of structures: buildings with more height than width, buildings 

with less height than width, and buildings with equal height.  He proved that the use of 

various CHTC models might result in deviations of up to 14.5% for the annual heating 

demand and +42.0% for the annual cooling demand when compared to the conventional 

CHTC model. Montazeri and Blocken [70] created generalized equations for the average 

CHTC at all building faces using three-dimensional CFD simulations considering the 

buildings' reference wind velocity, width, and height. They apply the realizable k-ε model 

for high Reynolds flow and generate an equation based on the results of 81 separate isolated 

building simulations using a high-resolution hybrid grid with over two million prismatic 

and hexahedral cells. Liu [40]  examined the effect of plan area densities on CHTC 

distributions on the windward, leeward, lateral, and top faces of buildings using a 

numerical simulation of regular arrays of cubic buildings. Buildings are modelled to 

examine CHTC in an urban environment using Large Eddy Simulations (LES). These 

buildings are placed according to varied plan area densities to simulate different urban 

neighborhoods, and they are used to characterize different flow regimes in urban regions. 

The finding demonstrates that the Reynolds number has little effect on CHTC distributions. 

To accurately anticipate a building's entire energy balance and energy consumption, the 

urban density of its surroundings must be taken into account. Liu [93] used a variety of 

geometrical models to numerically investigate the effect of nearby structures on the wind 

flow around the target building with Reynolds-averaged Navier-Stokes (RANS) equations 

with a realizable k-ε turbulence model. The models vary in terms of the building's 

architectural elements. They considered the intricate building structures around the target 

building in their computational domain, while the remaining regions were handled as 

surface roughness. The results demonstrated that the sheltering and channelling effects of 

the surrounding buildings had a significant impact on the wind flow around the target 

building. This study determined that the region within a 3L radius of the building must be 

modelled with precise building structures in order to produce realistic wind flow and 

pressure distributions around the building. Awol [94] quantitatively examined the effect of 

constructed area density on the CHTC of buildings using twelve distinct packing densities 

of regular arrays of cubical structures. He used CFD simulation and the second-moment 
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closure method, the Reynolds stress turbulence model (RSM) to study the buildings. His 

findings suggest that the characteristics of convective heat transfer change depending on 

the flow regime. In the isolated flow regimes, the CHTC trends are characterized by abrupt 

changes with density. On the other hand, in the interference and skimming flow regimes, 

the CHTC gradually declines with the growth of building area density. 

Studies on CHTC have focused on wind speed, spacing, and wind angle effects. In the 

majority of studies using generic building layouts, every structure has the same height, and 

the impact of having a variety of building heights within the same array of buildings is not 

thoroughly examined. Meanwhile, a small number of studies analyzed the effect of 

different heights. For example, Tominaga [95] analyzed the ventilation efficiency in a non-

uniform building height metropolitan region. Hang et al. [96] investigated the effect of 

building height variation on urban ventilation. Pillai et al. [97] and Pillai and Yoshie [97] 

analyzed the heat removal from typical metropolitan regions with uniform and non-uniform 

building heights using CFD models. Allegrini [98] studied the impact of buoyancy on the 

mean and local air temperatures in non-uniform building heights. In all these studies, 

building heights were not randomly selected and followed a pattern. 

Moreover, Oke [99] discovered three distinct flow regimes with variable flow topologies 

based on the proximity of various obstacles. The first is when the distance between 

buildings is substantially greater than their height, in which case the flow downstream of 

obstruction is rarely affected by the wake from other obstacles. In this circumstance, known 

as an isolated regime (h/s<0.3), the flow field gradually begins to diverge around a barrier 

that is completely isolated. The second flow regime is the wake interference flow regime 

(0.3<h/s<0.65). In this instance, there is a significant interaction between the wake of an 

obstacle and an obstacle downstream. In the third regime, a counter-current vortex is 

entrapped in the spaces between the obstructions while the flow above the obstacles skims 

over them (h/s>0.65). Due to the varying block heights in this project, the criteria for these 

regimes have been revised. 

The likelihood of tall structures being present is quite high when the height is random, 

particularly when the standard deviation is high. Within and above the urban canopy, 
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momentum and scalar exchange are affected by the height of urban structures. Due to the 

fact that wake effects may be significant over long distances, they are essential for urban-

flow modeling at all spatial scales. In addition, the presence of a tall building will change 

the mean flow, turbulence statistics and instantaneous flow structure of the wake region. 

On the other hand, the presence of lower structures in the near-wake diffuses the center of 

the recirculation zone higher, hence decreasing the vertical depth over which flow reversal 

occurs. Numerous studies have analyzed tall-building aerodynamics to define building 

design standards [100], [101], wind comfort and safety for pedestrians [102], [103], and/or 

urban ventilation [104]. The impact of the surrounding environment on tall structures 

[105], [106] as well as the effect of a tall building's wake on low-lying surroundings, have 

been studied previously [107]. 

Daniels [108] investigated the impacts of the inflow turbulence intensity and integral length 

scales using LES of the flow over tall buildings to construct a model for the vortex-induced 

vibration and stochastic response of a tall structure in strong non-synoptic wind regimes. 

Le [109] used LES to examine the aerodynamic behavior of tall structures in two 

configurations: an isolated building and a building surrounded by complex buildings. The 

surrounding arrangement has much lower mean pressure values than the isolated setups, 

by at least 50 percent. The along-wind and torsional responses of the surrounding design 

are found to be 30% less than those of the isolated configuration. This demonstrates the 

need of considering the surrounding impacts when studying the pressure distributions and 

reactions of a tall structure. Cheng [110] used steady state incompressible RANS 

algorithms and the same exact urban morphology manufactured via 3D printing (at a 

smaller scale) for wind tunnel studies to confirm the conclusion. There are local maxima 

of turbulence kinetic energy (TKE) and shear stress at the roof level of these tall structures. 

In addition, he discovered that the presence of high-rise structures had a substantial effect 

on the urban boundary layer. 

1.4 Machine Learning Background 

Numerous Machine Learning (ML) methods exist, including supervised ML[111], semi-

supervised ML, and unsupervised ML[112]. In supervised ML, labelled datasets are used 

to train algorithms that properly categorize data or predict outcomes. The model modifies 
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its weights as input data are fed into it until the model is well fitted. Data would then need 

to be divided into two groups called labels and features (A feature is one column of the 

input set's data. For instance, if you're attempting to predict the price of houses, your input 

features could include the number of bedrooms, the home's location, the house’s age, etc. 

The label is the price of the house). Unsupervised ML refers to a family of machine learning 

algorithms that discover patterns in data without anticipating results, meaning that none of 

the input is labelled.  

In building energy assessment, unsupervised machine learning, in particular clustering, 

may be used to construct data groups with comparable energy characteristics in buildings, 

which can be used to find anomalies in building energy data[113]. Alternatively, 

supervised learning algorithms may construct statistical energy models to estimate building 

energy consumption by modelling complicated connections between inputs and energy 

performance using simulation results or measurement data. This study aims to assess ML 

regression models for predicting the surface heat transfer coefficient of a building under 

random combinations of building height with constant average height, specific standard 

deviation, and skewness. 

1.4.1 Data Preprocessing 

Data may be collected from innumerable sources. The raw data must be preprocessed for 

machines to comprehend it. This technique is known as data preprocessing. Raw data can 

be in any format, including text, image, etc., and are often incoherent, insufficient, and 

contain missing values. The raw data deficiency must be addressed to train a model 

adequately. 

The initial phase of preprocessing is to evaluate the consistency and relevance of the overall 

data to the specific project. The second phase is data cleansing, consisting of inserting 

missing data and correcting or removing irrelevant data. By discretization and 

normalization, the data are converted to a suitable format in the third stage. In this project, 

the first two steps were skipped because the data was collected from a CFD simulation and 

then inspected for any missing or irrelevant information. 
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1.4.2 Machine Learning Models 

The overall architecture of the machine learning algorithm is depicted in Figure 1-4; the 

input data are used to train the model, which then generates an output. To investigate the 

effect of height variation on the convective heat transfer coefficient, a comprehensive 

analysis utilizing computational fluid dynamics (CFD) and ML algorithms is performed. 

Several regression algorithms, which will be described in this section, have been used to 

solve the regression problem in this project; they are described in the following sections. 

 

Figure 1-4: Generic Machine Learning Model Architecture 

1.4.2.1 Random forest 

The Random forest algorithm created by Breiman [114], is an ensemble regression 

approach. The ensemble's fundamental components are tree-structured predictors, and as 

each is generated by injecting randomness, the approach is referred to as random forests 

[115]. The core principle of random forests is to learn a variety of independent decision 

trees and then apply a consensus approach to forecast the unknown samples. This method 

combines the bagging sampling strategy and the random selection of features, established 

independently by Ho [116], Ho [117] and Amit and Geman [118]  in order to generate a 

set of decision trees with a controlled variation. In other words, Random forests generate 
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numerous decision trees using bootstrapped datasets of the original data and randomly 

picking a subset of variables at each branch of the decision tree. The model then picks the 

mode of each decision tree's predictions, so reducing the chance of mistakes associated 

with a certain tree. The structure of the Random Forest model is illustrated in Figure 1-5. 

 

Figure 1-5: Structure of Random Forest Model (Different trees have been created and 

run in parallel with no interaction, with random forest producing the mean of the 

classes (or majority vote) as the prediction for all trees.) 

1.4.2.2 SVR 

It is possible to adapt the notions of support vector machines (SVM), which are used for 

classification problems, so that they may be applied to regression problems. This method 

is known as support vector regression (SVR)[119]. SVR has been demonstrated to be an 

effective technique in real-value function estimation, despite the fact that it is not as widely 

used as SVM [120]. In the realm of fluid dynamics, the SVM has been used for turbulence 

modelling [121] and reduced-order modelling [122]. 
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SVMs tackle binary classification issues by recasting them as convex optimization issues 

[123]. Finding the largest margin separating the hyperplane while properly categorizing as 

many training points as feasible is the optimization challenge. This ideal hyperplane is 

represented by support vectors in SVMs. The SVM's sparse solution and strong 

generalizability facilitate its adaption to regression situations.  

To better understand the concept behind it, we should first understand how SVM works. 

To classify data in the figure below into two groups, we only consider the components 

around the borders called the support vector. To prevent misclassification, it is necessary 

to optimize the distance between the border and adjacent components, which is the 

maximum margin problem. The same techniques can also be applied to regression 

problems. The regression problem deals with continuous value. The approximation of the 

continuous-valued function can be represented as equation 1-2. 

𝑦 = ∑ 𝜔𝑗𝑥𝑖 + 𝑏

𝑀

𝑗=1

       𝑦, 𝑏 ∈ ℝ, 𝑥, 𝜔 ∈ ℝ𝑀 (1-2) 

1-2 

In the above equation, M is the polynomial order used to approximate a function. 𝜔 is the 

weighting coefficient which acts as a regularizing term, and b is bias. SVR formulates this 

function approximation issue as an optimization problem that minimizes the distance 

between the expected and desired outputs while searching for the narrowest tube centred 

on the surface. The objective of the optimization is to minimize the square magnitude of 

the approximated normal vector to the surface, ||w||, as shown in equation 1-3. 

min
1

2
‖𝑤‖2

 (1-3) 

1-3 

SVR employs an 𝜀-insensitive loss function, punishing predictions that are further than ε 

from the desired output. The width of the tube is determined by the value of 𝜀 (for example, 

for two dimension classification problem 𝜀 is represented as the maximum margin in Figure 
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1-6); a smaller value implies a lower error tolerance and also influences the number of 

support vectors and, consequently, the sparsity of the solution. 

 

Figure 1-6: SVR Architecture Example. The purpose of the Support Vector is to 

locate an N-dimensional hyperplane capable of classifying data points. Support 

Vectors are the data points located on the margin and closest to the Hyperplane. SVR, 

or Support Vector Regression, may be used to identify and forecast dependent 

variables when the majority of the data is inside the optimal margins on both sides of 

the hyperplane. 

1.4.2.3 Gradient Boosting Regression Trees (GBRT) 

The GBRT technique combines several weak learners using a boosting strategy in which 

more trees are sequentially added without modifying model parameters in order to 

minimize the loss function. In the GBRT model, the number of trees, the learning rate, and 

the maximum depth of the tree are among the most important hyperparameters that 

significantly impact the model's prediction accuracy. A larger number of trees improves 

the accuracy of the model's predictions; however, an excessive number of trees may result 
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in overfitting. The learning rate, on the other hand, governs the contribution of each tree to 

the predictions, whilst the maximum depth reflects the complexity of each tree. 

XGBoost is an efficient and scalable implementation of the gradient boosting framework 

described by Friedman [124], which contains an efficient linear model solver and tree 

learning algorithm which was initially developed for classification problems, and then 

implemented for numerous objective functions, such as regression, classification, and 

ranking [125]. XGboost is a variation of Gradient Boosted Decision Trees (GBDT) that 

prevents overfitting by including a regularization term. In addition, XGBoost employs a 

second-order Taylor series loss function rather than the first-order derivative used in GBDT 

[126]. Execution speed and model performance are the two primary reasons to employ 

XGBoost. 

1.4.2.4 Ensemble Learning 

Ensemble learning is a paradigm for ML that involves combining several different base 

models in order to achieve better learning results [127]. The primary concept behind this 

is that by methodically combining the foundational models, an ensemble can produce 

superior results to those generated by any individual models. There are two ensemble 

approaches for generating ML learners: the parallel ensemble method and the sequential 

ensemble method [128]. In the first case, ML learners are generated in parallel, whereas in 

the latter, they are generated sequentially. 

1.4.2.5 Deep learning 

Deep learning (DL) is a robust machine learning method that was initially developed by 

Hinton [129]. The idea of accomplishment of human-level performance is one of the most 

important milestones of the contemporary ML era[130]. Based on learning theory, ML 

approaches, enable the generalization of pattern recognition on unseen data[123]. Deep 

multi-layer architectures and DL approaches improved ML performance by learning high-

level data representation[131]. 

The Artificial Neural Network, or ANN, possibly the most well-known deep learning 

technique for supervised learning, is a fundamental approximator of nonlinear functions in 
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a wide range of scientific fields [132]. According to the universal approximation theorem, 

a sufficiently deep network may approximate any function[133]. A neural network's 

structure consists of interconnected layers, with each layer containing a distinct number of 

neurons. The first layer, referred to as the input layer, contains input data that is connected 

to one or more hidden layers in order to generate a prediction in the output layer. The 

architecture of a neural network with two hidden layers, five inputs, and three outputs is 

shown in Figure 1-7. Information is sent between neurons in successive hidden layers 

through weighted connections, which are then averaged with a bias and scaled using an 

activation function before being delivered to the next layer. Hyperparameters are values 

that affect the way the model learns. 

ANN architecture can be defined by the number of inputs, outputs, the number of hidden 

layers, and the number of neurons in each layer. 

ML neurons, the fundamental building block of NN, are a simplification of neurons in the 

human brain. This leads to a modular structure in NN, which provides NNs with strength 

and adaptability. Each neuron gets an input, processes it using an activation function, and 

then generates an output. Different neuronal combinations result in distinct NN 

architectures. Feedforward networks are among the most prevalent architectures; they 

consist of layers of neurons with weighted outputs serving as inputs to subsequent 

levels[134]. In this project, feedforward networks have been implemented. 
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Figure 1-7: An example of neural network architecture with five features in the input 

layer and two hidden layers with nine and ten neurons in each with a bias parameter 

in each hidden layer. The neuron on top of the figure that has no connection with the 

layer before. 

1.4.2.5.1 Activation function 

The activation function, also known as the transfer function, is a function that receives an 

input and transforms it in order to produce the desired output. The activation function can 

be categorized as linear or nonlinear. The linear activation function is unaffected by the 

complexity and other features of the data supplied to neural networks. In addition, it does 

not restrict the function's output to a certain range. Nonlinear activation functions are 

increasingly used owing to their capacity to reduce the model complexity by generalizing 

and adapting the data with varying outputs. 

Simply put, to avoid linearity, activation functions are required. Without them, data would 

pass across the network's nodes and layers using just linear functions (a*x+b). No matter 
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how many layers the input passes through, the output is always the result of a linear 

function since the composite of these linear functions is another linear function.  

 

Figure 1-8: An illustration of the advantages of nonlinear functions for data model 

fitting 

Sigmoid, tanh, and ReLu are the three most common nonlinear activation functions, which 

will be described below. 

Sigmoid given in equation 1-4 is an S-shaped plot that ranges from 0 to 1. This function is 

monotonic and differentiable. 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (1-4) 

1-4 

Tanh given in equation 1-5, also known as a hyperbolic tangent, is an S-shaped activation 

function with a range of -1 to 1. This function is mostly used for classifying problems. One 

of the benefits of the Tanh function over the Sigmoid function is that negative inputs are 

mapped strongly negative, and zero inputs are mapped close to zero. Note that when 

utilizing the Tanh hidden layer function, Xavier Normal or Xavier Uniform weight 

initialization is suggested.  
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𝜎(𝑧) = tanh(𝑧) =
2

1 + 𝑒−2𝑥
− 1 (1-5) 

1-5 

ReLU, which is short for (Rectified Linear Unit) is the most popular activation function 

and is virtually always employed in convolutional neural networks and deep learning with 

a range from zero to infinity. One of the downsides of this approach is that it does not 

effectively map negative outcomes and converts all negative numbers to zero. ReLu is 

easier to optimize, and it has a computational simplicity advantage. 

𝜎(𝑧) = {
𝑧 𝑧 > 0
0 𝑧 ≤ 0

 (1-6) 

1-6 

 

Figure 1-9: Activation functions range 
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1.4.3 Machine learning Concepts 

This section introduces machine learning concepts that have been utilized throughout this 

project. 

1.4.3.1 Errors 

In a machine learning algorithm, we should define an error metric as a loss function to 

assess the results of the model [135]. Mean squared error, MSE, is an important loss 

function for regression problems. The MSE is computed as the squared difference between 

predicted and actual values in a dataset given in equation 1-7. The sign is eliminated by 

squaring these two numbers, resulting in a positive error value. In addition, the impact of 

squaring is to exacerbate or amplify larger errors. This indicates that the squared positive 

error increases as the difference between the expected and actual numbers increases. As a 

result, MSE penalizes models more for greater mistakes as a loss function. The root mean 

squared error, RMSE, may be viewed as an extension of the squared mean error. The 

RMSE is the square root of the MSE; therefore, the units are identical to the actual goal 

value. MAE is linear and intuitive in comparison. The Mean Absolute Error, MAE, is 

determined by averaging the absolute error values. MSE and RMSE penalize more serious 

errors than small ones, hence increasing the mean error score. The MAE does not apply 

different weights to distinct sorts of errors; rather, scores grow linearly as the number of 

errors increases. MAE and RMSE are calculated as follows (equation 1-7): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑖)

2

𝑛

𝑖=1

 (1-7-1) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑖|

𝑛

𝑖=1

 (1-7-2) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉𝑎𝑙𝑢𝑒𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑖)2𝑛

𝑖=1

𝑛
 (1-7-3) 

1-7 
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Higher values of 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 reflect greater error between values. MSE and RMSE 

are more prevalent in the literature and have been utilized more frequently. The primary 

objective of this project was to minimize MSE error for each model. 

1.4.3.2 Drop out  

The Dropout layer reduces overfitting by randomly setting input units to 0 with a rated 

frequency at each training step, as shown in Figure 1-10, which compares a model with 

dropout to a model without dropout. Inputs not set to 0 are scaled up by the factor in the 

equation to maintain the same total sum. 

𝑠𝑐𝑎𝑙𝑒 =
1

1 − 𝜂
 (1-8) 

1-8 

Where 𝜂 is the dropout rate which is a user-defined constant whose weights are initially 

scaled based on the selected dropout rate.   

 

 

(a) Standard Neural Net (b) After applying drop out 

Figure 1-10: Comparison of the architecture of a) standard model and b) model with 

drop out 
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1.4.3.3 Feature Importance 

Feature importance is a core principle in machine learning that refers to the relative 

importance of each feature in the training data, i.e., which feature has the most influence 

on the prediction of the target value. Rogers [136] demonstrated that irrelevant features can 

impede error convergence which demonstrates the importance of feature importance 

analysis. Common forms and sources of feature significance scores include statistical 

correlation scores, coefficients derived from models such as linear models, decision trees, 

and permutation importance scores. Feature selection within a Random Forest framework 

has been utilized in this project. Random Forest [114] utilizes the randomization concept 

[137] to improve the variety of a dataset. This algorithm's basic learners are decision trees 

that employ information gain as the criteria for splitting each node. In order to determine 

the ideal binary split for each node, these trees often search through a huge number of 

potential binary splits for every feature. Due to the random exploration of features, Random 

Forest is well-suited for feature selection, and the preferred metric of feature relevance is 

the average information acquisition throughout forest construction. In other words, the 

variable relevance in the random forest model is determined by permuting each input 

variable to get the mean squared errors for each tree. The influence of each variable on the 

model's performance is recognized as a significant factor of that variable [138]. 

1.4.3.4 Hyperparameter tuning 

To develop accurate ML models, it is essential to perform Hyperparameter tuning on of 

the data, which reduces over-fitting and improves the model's precision [139]. Typically, 

hyperparameters are user-defined parameters that set machine learning models or are 

selected based on the hyperparameters used in the same study field. In artificial neural 

networks (ANN), a hyperparameter may be the number of hidden neurons; in support 

vector machines (SVM), it would be the regularization parameter [140], [141]. These 

parameters should be optimized for predicted accuracy. There is no particular mathematical 

method for optimizing hyperparameters that yields accurate predictions. For example, in 

the case of ANN, there is no specified procedure for determining the right number of hidden 

neurons or hidden layers, and they must be chosen based on the particular data set and 

model. Another crucial aspect of hyperparameter tuning is that the parameters must be 
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adjusted to prevent overfitting during the training process. The process of hyperparameter 

tuning involves executing several trials using training data with provided values for the 

hyperparameters, set within the defined limitations for each hyperparameter. When the task 

is complete, a summary of all the trials and the optimal hyperparameter configuration are 

derived based on the selected criteria (for example, minimizing validation set error). 

1.5 Machine Learning Literature Review 

Artificial intelligence (AI) approaches have lately attracted a great deal of interest because 

of their exceptional ability to solve a variety of difficult challenges. The goal of AI is to 

create computing systems capable of rational action or thought [142]. ML is a division of 

artificial intelligence (AI) and computer science that extracts information from data. The 

most effective ML algorithms automate decision-making by generalizing from existing 

cases. Specifically, the algorithm can generate output for an input it has never seen before 

without human assistance. In the past few decades, numerous studies in the fields of image 

science, natural language processing, and recommendation systems have led to the 

commercial success of ML. 

ML is a rapidly increasing research field that substantially impacts various disciplines of 

science and engineering. ML approaches have shown a vast application potential in several 

engineering disciplines, including wind energy [143], [144], building materials [145], 

[146], and structural health monitoring [147], [148].  ML has become an integral component 

of fluid dynamics' experimental, computational, and theoretical aspects. The 

methodologies available in ML are adequate for handling big data sets and describing the 

nonlinearity prevalent in fluid flow studies. Notably, it is crucial to promote the use of 

methodologies that are inspired by ML and data science when trying to solve issues in fluid 

dynamics. This is mostly important for problems that are difficult to tackle using traditional 

methods. Numerous objectives in fluid dynamics, including analysis, modelling, 

estimation, design optimization, and control, may be framed as optimization problems and 

handled with machine learning. The fact that fluids are nonlinear and may have multiple 

scales in space and time makes it difficult to find solutions to these problems, which can 

be seen as high-dimensional and non-convex optimization problems. Fortunately, advances 
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in ML are helping us improve our capacity to tackle optimization issues that were 

previously intractable [134].  

In order to successfully implement an algorithm for ML, there are various stages that need 

to be followed. Each of these processes must be guided by a knowledgeable person, as the 

process is not automatic. The processes may include determining the project's goal, 

collecting data and preparing it to create a clear data set with adequate features (data 

preprocessing), picking a ML algorithm that best matches the data and the physics of the 

problem, and selecting loss functions to assess the performance of the algorithm [149]. 

In recent years, fluid mechanics has been the subject of extensive study aided by machine 

learning. For example, Hu [150] uses machine learning to forecast wind pressures around 

circular cylinders based on the results of published studies. Reynolds number (Re), 

turbulence intensity (Ti) of the incident wind, and circumferential angle of the cylinder, 

which significantly influence the wind pressure surrounding smooth circular cylinders, 

have been utilized as inputs for a machine learning algorithm. Mean and fluctuating 

pressures were predicted using three machine learning techniques, including decision tree 

regressor, random forest, and gradient boosting regression trees (GBRT). He demonstrated 

that the gradient boosting regression trees models offer an effective and affordable 

substitute to conventional wind tunnel experiments and computational fluid dynamic 

simulations for calculating wind pressures around two-dimensional smooth circular 

cylinders. Bre [151] employs an artificial neural network (ANN) to estimate the surface-

average pressure coefficient for each wall of buildings(flat-, gable-, and hip-roofed surface 

of rectangular buildings) based on the building geometry and the wind angle. He used 

experimental data to create three different ANN models for each roof style. The outcome 

demonstrates that, compared to frequently employed parametric equations for the 

determination of pressure coefficients, the implemented ANN models were much more 

accurate. Kochkov [152] utilized end-to-end deep learning to improve approximations 

within computational fluid dynamics for modelling two-dimensional turbulent flows by 

introducing a method for calculating the accurate time evolution of solutions to nonlinear 

partial differential equations using an order of magnitude coarser grid than is traditionally 

required for the same accuracy. The suggested machine learning model is Equipped with 
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the same precision as a powerful numerical solver but with a resolution 8–10 times finer 

and 40–80 times faster. Hughes [153] used machine learning regression models in order to 

forecast the heat transfer coefficient and frictional pressure gradient during condensation 

of three zeotropic mixes in micro and macro channels. Between support vector regression 

(SVR), random forest regression (RFR), and gradient boost (GB) models, SVR minimizes 

mean absolute percent error for his data the most effectively. In addition, he conducted a 

feature importance analysis and determined that the Reynolds number of both phases and 

a dimensionless temperature gradient are the most essential features in heat transfer 

calculations. For estimating pressure drop, however, the Bond number, Weber number, and 

vapour-phase Reynolds number were the most crucial factors. Tiggeloven [154] uses 

artificial intelligence to forecast the surge component of sea-level fluctuation based on 

local atmospheric conditions in order to enhance coastal adaptation and management. To 

forecast hourly surges, he constructed ensembles of Neural Network (NN) models using 

Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs), Long Short-

Term Memory layer (LSTM), and a mixture of the latter two (ConvLSTM). He attempted 

to minimize the mean absolute error for the full-time series in order to make more accurate 

predictions. Li [155] examined the use of machine learning methods, such as ANNs and 

CNNs, to estimate surface water flood risks in urban settings. He took into account 

variables such as coordinates, elevation, slope gradient, imperviousness, land use, land 

cover, soil type, and normalized differential vegetation index. The machine learning 

models can create flood risk maps quickly and precisely, while hydrodynamic models, 

which are typically employed, are computationally costly to build. Tian [138] designed a 

model to discover energy trends for urban structures. Using ten machine learning methods, 

he investigated the energy characteristics of London, UK homes from three perspectives: 

the tuning process of the learning model, variable importance, and spatial analysis of model 

disagreement. The tuning process of machine learning models determined the intricacy of 

the correlations between input factors and urban building energy efficiency. The variable 

importance derived by machine learning models discovered factors of significance for 

effectively calculating the energy consumption of urban structures. The places with 

atypical energy consumption patterns have been identified using spatial analysis and 
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machine learning approaches. The combination of these three factors would significantly 

enhance our comprehension of the energy behaviors of urban structures.  

1.6 Research Gap 

Previous research investigating the behaviour of flow through an array of blocks has 

focused on arrays with identical blocks or a repeating pattern in the variation. No prior 

research has been done to explore the impacts of a random array or determine whether flow 

properties correlate well with the statistics of the array. Moreover, the use of ML 

techniques has been demonstrated to have a significant potential for application in a variety 

of engineering fields, including fluid flow. Numerous analytical and semi-analytical 

research have been carried out in order to quantify the heat transfer coefficient; however, 

to the best of the authors' knowledge, the heat transfer coefficient has never been computed 

using the ML technique. 

1.7 Research Scope 

The goals of this work are to: 

• Identify correlations between the statistics of a field of blocks with random height 

and the pressure drop, total heat transfer, and heat transfer coefficient of the flow 

over the block array. 

• Investigate qualitative flow features and how they are affected by the block height 

variation, including the traditional flow regimes. 

• Assess the ability of machine learning models to predict the CHTC of specific 

blocks within the array based on the heights of a few surrounding blocks. 

1.8 Research Outline 

The first chapter provides an overview and literature review of the objectives of this 

research, as well as an introduction to the machine learning techniques used in this project. 

In chapter 2, a set of CFD simulations of flow over arrays of blocks with random heights 

is performed in order to examine the effect of heights statistics on pressure drop and heat 

flux. A model-scale experiment validates the simulation procedure. Chapter 3 discusses the 

machine learning models used to predict the heat transfer coefficient of blocks based on 
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the surrounding block heights. Chapter 4 concludes with a discussion of the study's general 

conclusion and potential research prospects. 
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Chapter 2  

2 Fluid Dynamics Numerical Simulations 

In order to study the effect of height variation on pressure drop and total heat flux of the 

block array, and the surface heat transfer coefficient of each obstacle, a set of idealized 2d 

simulations have been conducted. The obstacles in this study could represent a vegetation 

canopy or the buildings in an urban area. The simulations are highly idealized to investigate 

whether the random height variation of obstacle characteristics may significantly alter the 

flow. This chapter discusses the simulation setup, simulation validation, and simulation 

results. Qualitative flow regimes are also studied in this chapter. 

2.1 Simulation Setup 

2.1.1 Geometry, Model, and Boundary Conditions 

An idealized row of two-dimensional (2D) rectangular blocks experiences an incoming 

flow, as shown in Figure 2-1. This is a highly simplified model similar to those frequently 

utilized in the literature to explore and elucidate the underlying governing mechanisms of 

multiple environmental fluid flow phenomena [1]–[4]. For example, Lin [5] conducted a 

numerical study utilizing an idealized two-dimensional street canyon and an experimental 

study on the Reynolds number independent flow regimes and Reynolds number 

independence criteria over a broad Reynolds number range in order to address various 

vortex-flow regimes with similar building configurations but at different scales.  Su [6] 

employed idealized 2D simulation to examine the effects of real trees and their varied 

structures on flow behaviour. 

This study investigates the surface heat transfer coefficient, total heat flux, and total 

pressure drop across 14 blocks representative of a canopy or buildings.  Each block's height 

is chosen randomly so that an array of blocks has an average height of 1 and specified 

standard deviations and skewness. As a result, a flow between each pair of blocks may 

belong to one of three flow regimes: isolation, interference, or skimming. Each simulation 

includes a 2D array of 14 blocks that may represent a slice through a row of buildings or 

fully submerged plants. Although the flow characteristics would differ in 3D because the 



43 

 

flow could move around obstacles, a highly idealized 2D flow is used to investigate how 

significant the effect of random height variation might be in environmental flows. 

Incompressible time-averaged continuity, momentum, and energy equations are solved 

using ANSYS Fluent's steady state coupled pressure-based solver, which is suited for 

incompressible flow. ANSYS Fluent uses the finite volumes method (FVM) to solve the 

partial differential equations that describe the conservation of energy, mass, and 

momentum. From the momentum equations, the velocity field is derived. Solving a 

pressure or pressure correction equation produced by manipulating continuity and 

momentum equations yields the pressure field. Note that the bouncy effect is neglected. 

 

Figure 2-1: Computational Domain 

The height of the computational domain is 6H (where H is the average height of the blocks) 

so that the upper boundary is far enough from the blocks that the flow near it is unaffected 

by the blocks, and a symmetrical boundary condition is applied to the top surface [7], [8]. 

According to Tominaga [9] and Franke [10], the domain length downstream of the last 

block should be stretched to at least 15H to ensure that flow redevelopment is attained 

behind the wake region. Moreover, a distance of 5H has been set between the inflow 

boundary and the first building to allow a boundary layer to develop upstream of the first 

block. The block surfaces are no-slip walls at a consistent temperature of 310K. A pressure 

outlet condition of zero gage pressure is imposed at the domain's outlet. The inlet velocity 

is set to 0.15 m/s with a turbulence intensity of 5 percent. The inlet temperature is 300K. 

The temperature difference of 10 degrees between the inlet and obstacles has been chosen 

according to the literature recommendation [11], [12]. Townsend [13] argued that when Re 

crosses a certain threshold, the flow regime will be non-dimensionally similar with Re for 

the same geometric characteristics. Lin [14] declared that having Re > 11,000 for the flow 
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inside the street canyon will satisfy Re independence. The Reynolds number in this study 

(equation 2-1) is close to this threshold. 

Re =
ρUr

μ
H =

1.225 [
kg
m3] ∗ 0.15 [

m
s ] ∗ 1[m]

1.7894e − 05[
kg
ms]

= 10268 (2-1) 

2-1 

2.1.2 Gid Independence Test 

A mesh was generated for the geometry described above is shown in Figure 2-2. It has one 

hundred fifty thousand polyhedral cells with a cell size of 0.1H and hexagonal cell 

dominance. The area around the blocks, their edges, and the wake zone are refined. Five 

inflation layers using prismatic cells with a growth rate of 1.2 on the bottom and block 

surface have been defined. A grid sensitivity test investigated various element sizes around 

each block, and the total pressure drop of each simulation has been compared to check the 

convergence to best balance simulation accuracy and computational  cost. Due to the fact 

that the change in pressure drop for grid sizes smaller than 0.1 is less than 2%, the grid size 

of 0.1 was chosen for these simulations (shown in Figure 2-3). 

 

Figure 2-2: Generated mesh in ANSYS 
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Figure 2-3: Pressure drop vs element size to check grid sensitivity 

Two hundred and four simulations with different combinations of block heights have been 

conducted in order to investigate statistical trends and collect enough data to implement 

machine learning. To determine statistical trends, some statistical measurements should be 

held constant while others are altered to determine the impact of each variable on the final 

result. Simulations were conducted for random block heights with an imposed mean height 

value of 1, standard deviation values of 0.1, 0.2, 0.3, 0.4, skewness values of -0.3, -0.2,        

-0.1, 0.1, 0.2, 0.3, and first block height values of 0.75, 0.90, 1.10, 1.20. 

2.1.3 Turbulence model 

CFD modelling is widely used to assess geophysical flows such as urban physics and 

microclimate [15]–[17] and vegetation canopies[18]. The two most common turbulence 

models for this flow are Large Eddy Simulation (LES) and Reynolds-averaged Navier-

Stokes simulations (RANS). The computational cost of a microclimatic CFD simulation 

that links the temperature and velocity fields is significantly increased when LES is used 

over RANS. It is anticipated that the greater computing cost of LES and often adequate 
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accuracy of RANS [19]–[22] are the two primary reasons why the vast majority of research 

was conducted using RANS, even though LES is typically regarded as more accurate than 

RANS [16], [21], [23]–[25].  

Two equation turbulence models are among the most prevalent RANS-based turbulence 

models. Models such as the k-ɛ model and the k- ω model are often used for the majority 

of engineering challenges. Since the standard k-ɛ model cannot be integrated all the way 

to the wall, it has a hard time predicting flows, especially when the creation of turbulence 

is substantially greater than its dissipation, such as in flow separation and impingement. 

The shear stress transport (SST) k-ω turbulence model presented by Menter [26] has 

advantages over both k-ω and k-ɛ. Moreover, The SST k-ω model is distinguished by an 

enhanced near-wall treatment that transitions automatically between the low and high Re 

number ω formulation [27]. In other words, the SST k-ω model activates the standard k-ω 

model close to the surface and the k-ɛ model farther away [28]. Pang [29] demonstrates 

that the SST k-ω model is able to properly forecast a high Reynolds number flow around a 

cylindrical bluff body compared to the other two-equation RANS models and that it can 

capture the impacts of surface roughness. In general, two-equation turbulence models 

cannot resolve all complicated flow field features around bluff bodies [9], [30], [31], [31]–

[33] without a fine mesh. In this study, SST k-ω has been used with fine refinement and 

inflation layers near the walls. The numerical method is validated using previous 

experimental results in section 2.1.4.  

The following (equation 2-2) are two advection-diffusion equations for turbulent kinetic 

energy, k, and turbulent frequency, ω [34]–[37], which are used in the SST k-ω: 

∂(ρk)

∂t
+

∂

∂xi

(Uiρk) = Sk − YK + G̃K +
∂

∂xj
(Γk

∂

∂xj
k) 

(2-2) 

∂(ρω)

∂t
+

∂

∂xi

(Uiρω) =
∂

∂xj
(Γω

∂

∂xj
ω) + Gω − Yω + Dω + Sω 

2-2 
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In equations (2-2), G̃K stands for the generation of kinetic energy associated with turbulence 

caused by mean velocity gradients. Gω represents the generation of ω. Γk and Γω stand for 

k's and ω's respective effective diffusivities. YK and Yω represent the dissipation of k and 

ω due to turbulence. Dω represents the cross-diffusion term. Sk and Sω are user-

defined source terms. 

Menter defines the effective viscosities (kg m−1 s−1) as follows (equation 2-3): 

Γk  = μ + μt

1

σk
 

(2-3) 

Γω = μ + μt

1

σω
 

2-3 

In the equation above, σk and σω are the turbulent Prandtl numbers for k and ω. μt is 

turbulent viscosity, and it is calculated as follows (equation 2-4): 

μt =
ρk

ω

1

max (
1
α∗ ,

St F2

α1ω )
 

(2-4) 

2-4 

St is the strain rate magnitude and F2 is a blending function. Further information about 

the implementation of this model can be found in ANSYS documentation 4.5.2. 

2.1.4 Validation 

Validation with measured data is an important step in using CFD for numerical 

investigations. Meinders's [38] experimental data, an experiment with cube arrays, similar 

to the setup we used here, was used to validate the numerical methods used in this study. 

Khan and Saha [39], Awol [40], Montazeri and Blocken (2018), Liu (2013) and others have 

also used this experimental data to validate their simulation. Meinders' (1998) experiment 

was carried out in a wind tunnel with a 500 mm × 50 mm test section. Nine identical cubes 

were positioned along the longitudinal flow direction at half of the vertical channel height. 
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The cube size and spacing between the cubes are both 15 mm (aspect ratio W/H =1). The 

outside layer of the cube was a 1.5 mm epoxy shell, while the inside part of the cube had a 

copper core of 12 mm. The copper core was kept at a constant 75 °C. Meanwhile, the 

conductivity of the epoxy substance was around 0.24 W/m.K. The schematic of this 

experiment can be found in Figure 2-4. 

 

Figure 2-4: Schematic of experimental configuration and measurement cube.  

After accounting for radiative losses from supply flux, an infrared camera was utilized to 

scan the external surfaces of the cubes to obtain the temperature distribution necessary to 

determine the convective heat transfer coefficient. This experiment was carried out with a 

bulk velocity of 5.1 m/s, yielding a Reynolds number of around 5065 based on the cube 

height. The incoming airflow temperature was set at 21 degrees Celsius, which was also 

used as the far field air temperature to calculate the CHTCs.  

The simulation model was a one-to-one scale copy of the tunnel section with a downstream 

fetch size of 15H to verify that the downstream wake effects were fully included within the 

computational domain. Following the recommendation of Tominaga [9] and Franke et al. 
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[10], an upstream fetch of 5H was used. Moreover, the width of the air tunnel is set to 3.3H, 

consistent with Liu[42] and Awol[43]. 

 

Figure 2-5: The computational domain  

To match the conditions in the experiment, the wall on which the cubes are placed is 

oriented vertically. The epoxy-copper interface inside the cube set is set to 75 °C. The 

incoming airflow is heated to 21 degrees Celsius. The outlet pressure is kept constant. The 

computational domain's lateral, top, and bottom faces are all considered adiabatic no-slip 

walls. The cubes' outer surfaces are configured as no-slip walls with non-adiabatic 

environmental conditions. 

The material properties used in this simulation are in Table 2-1: 

Table 2-1: Material property of the experiment 

 Air Epoxy 

Density (kg/m3) 1.225 1668 

Specific Heat Capacity (
J

kg.K
) 1006.4 1150 

Thermal Conductivity (
W

mK
)) 0.0257 0.24 

Viscosity (
Kg

m.s
) 2.197e-5  
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The inlet velocity profile is specified to match the velocity from the experiment. The lower 

near logarithmic and middle uniform portions of the inlet velocity profiles are immediately 

applied from Meinders' digitized database of experimental inputs. The upper laminar 

component of the profile is derived from the work of Awol[43] (2020), which was driven 

by the recycling approach. An 8-order polynomial has been fit to the data, shown in Figure 

2-6, and used as the inlet velocity in the simulation. 

The generated equation is as follows (equation 2-5): 

U

U∞
= −0.079649 × (

Z

Zh
)

8

+  1.003 × (
Z

Zh
)

7

− 5.2009 × (
Z

Zh
)

6

 

+ 14.3266 × (
Z

Zh
)

5

 − 22.5728 × (
Z

Zh
)

4

+  20.4461 × (
Z

Zh
)

3

− 10.3134 × (
Z

Zh
)

2

+ 2.9312 × (
Z

Zh
) + 0.41711 

(2-5) 

2-5 
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Figure 2-6: The adopted mean inlet velocity profile 

In the experiment, turbulence intensity has also been defined using a profile. However, in 

ANSYS software, the turbulence intensity cannot be specified as a profile and must be 

constant. As a result, we analyze the effect of different turbulence intensities as well as the 

influence of varying bulk velocities (U∞) to ensure the accuracy of the velocity profile and 

the best turbulence intensity. 

The surface temperature distribution of the fifth cube in a row is compared between the 

experiment and simulation. The results are collected at the intersection points (AB, BC, 

and CD) of the cube and a vertical plane running longitudinally across the cube, as well as 

the horizontal mid-line on the windward (EF), lateral (FG, HE), and leeward (GH) surfaces 

(See Figure 2-7). 
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Figure 2-7: Schematic showing the paths along which temperature is recorded and 

compared between the experiment and simulations 

The effect of conduction heat transmission and temperature on the cube's exterior surface was 

investigated in two ways. The first method, used by Liu (2013), involves modelling and 

meshing the epoxy shell of the cubes to examine conduction heat transfer. The second 

technique, similar to Awol (2020), determines the temperature on the outer surface of the 

cubes without modelling the interior section, using the shell model in ANSYS. The effect 

of the cube modelling approach, as well as several other modelling options, are discussed 

in the following sections to quantify how well the numerical methods replicate the 

experimental results. 

A mesh with 8 million polyhedral cells with refinement around the cubes was chosen to 

assure computational correctness, and a grid sensitivity test was performed by changing 

the element size around the cube in the range of 0.01, 0.005, 0.001, and 0.0005. The 

temperature distribution along line AB has no significant change in element size of 0.001 

and lower. It's worth noting that refinement was chosen in order to get a low y+ value for 

cells that are close to the walls. The grid shape is illustrated in Figure 2-8. 
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a) 

 

b) 

 

Figure 2-8: Mesh shape for validation 

2.1.4.1 Comparison of modelling cubes versus using shell property 

Temperature and conduction boundary conditions can be applied to cubes in two ways. To 

calculate the temperature on the outer surface, one method is to create geometry and mesh 

for the epoxy layer of the cubes and define the material properties. The other option is to 

define properties in ANSYS using the shell properties model. The second method is more 

computationally efficient because it eliminates the need to mesh the small cubes. The 

outcomes of these two approaches are compared using the same boundary conditions; the 

results are shown in Figure 2-9. 
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a)  

 

b) 

 

Figure 2-9: Comparison of the model using shell properties versus the model defining 

the actual cubes along the paths: a) ABCD b) EFGHE 

The mean relative error (MRE) of the temperature along the two paths of these two 

simulations, calculated using equation 2-6, is nearly identical, as shown in Table 2-2. In 

the formula, avg, exp and sim stand for average value, experiment and simulation, 

[38] 

[38] 
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respectively. The average value refers to the average temperature of the lines; for example, 

the MRE of ab-bc-cd is the average temperature of lines ab, bc, and cd. The model that 

used the shell property predicted the cube's corner better but had lower accuracy in the 

middle of each face. As a result, we cannot say with certainty which model is superior. 

MRE =  
Tavg,exp − Tavg,sim

Tavg,exp
× 100 (2-6) 

2-6 

Table 2-2: Mean relative error of different models 

 ERROR ab-bc-cd ERROR ef-fg-gh-he 

Shell 5.01 4.88 

Solid 6.11 4.49 

 

2.1.4.2 Effect of different turbulence intensities using shell property 

In the experiment and Awol(2020) work, the inlet turbulence intensity is defined as a 

profile rather than a constant value. In this project, the turbulence intensity was unable to 

be defined as a profile due to the limitations of the software and computation power. 

Therefore, a series of simulations with varying turbulence intensities have been conducted 

to evaluate the effect of turbulence intensity and to determine the optimal stimulation for 

validation purposes. In this section, simulations have been done using shell properties 

instead of meshing the epoxy layer of the cube. The velocity has been defined using the 

velocity profile in AWOL work while assuming Uinf = 5.1 m/s. The turbulence intensity 

has been assigned three different magnitudes of 2%, 5% and 8%, and the results are 

compared in Figure 2-10. 
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a) 

 

b) 

 

Figure 2-10: Comparison of different turbulence intensity results using shell 

properties along the paths: a) ABCD b) EFGHE 

[38] 

[38] 
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The MRE, given in equation 2-6, of different turbulence intensities compared with the 

experimental results has been calculated (Table 2-3). 

Table 2-3: Mean relative error of different turbulence intensity results using shell 

properties 

 ERROR ab-bc-cd ERROR ef-fg-gh-he 

TKE2 5.27 5.83 

TKE5 5.01 4.88 

TKE8 3.30 3.94 

Awol 3.54 2.92 

The result shows that the turbulence intensity of 8% has the lowest relative error using the 

shell property. As discussed earlier, turbulence intensity in the experiment follows a profile 

and is not a constant value; however, in this simulation, using a value of 8% would result 

in an acceptable error. The MRE of the simulation in this study is larger than the MRE of 

the Awol simulation. However, the error is still within an acceptable range. 

2.1.4.3 Effect of bulk velocity 

In this section, the cubes' epoxy layer was modelled instead of using shell properties, and 

the epoxy-copper interface temperature boundary condition was specified. Using the 

velocity profile from the Awol work, the bulk velocity or Uinf has been varied to explore 

the effect of bulk velocity on simulation results and ensure the accuracy of the velocity 

profile. Three different magnitudes of 4, 5.1 and 8 m/s have been set for bulk velocity, 

while the inlet bulk velocity of the experiment was 5.1 m/s. The results shown in Figure 2-11 

indicate that a bulk velocity of 8 m/s best matches the experimental data, although all 

simulations provide reasonable results. 
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a) 

b)  

 

Figure 2-11: Comparison of different turbulence intensity results using shell 

properties along the paths: a) ABCD b) EFGHE 

The mean relative error of all three simulations compared with experimental data has been 

provided in Table 2-4: 

 

[38] 

[38] 
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Table 2-4: Mean relative error of different bulk velocity 

 ERROR ab-bc-cd ERROR ef-fg-gh-he 

V4 8.82 7.73 

V5.1 6.11 4.50 

V8 2.68 2.27 

Awol 3.54 2.92 

Comparing the error of Awol's work to the error of these simulations indicates that the 

fitted velocity profile may be inaccurate. Using a bulk velocity of 5.1 as in the experiment 

and a bulk velocity of 8 both result in an acceptable error range. It should be noted that 

assuming a bulk velocity of 8 m/s would result in greater agreement with the experiments 

than Awol’s work exhibits. 

2.1.4.4 Effect of different turbulence intensity modelling cube's 
interior 

As minor differences were observed in meshing cubes and using shell properties, the effect 

of turbulence intensity using meshed cubes has been investigated. The turbulence intensity 

is set to 2%, 5%, and 8%, and Figure 2-12 shows the result. 
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a) 

 

b) 

 

Figure 2-12: Comparison of different turbulence intensity results using actual cubes 

along the paths: a) ABCD b) EFGHE 

In contrast to the model with shell properties, lower turbulence intensity results in a lower 

relative error when the epoxy cubes are modelled and meshed (calculated and shown in 

Table 2-5). Therefore, the turbulence intensity of 2 percent has the lowest relative error 

[38] 

[38] 
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modelling epoxy layer of cubes, which is slightly higher than the relative error of the Awol 

simulation. 

Table 2-5: Mean relative error of different turbulence intensity results modelling 

epoxy layer of cubes 

 ERROR ab-bc-cd ERROR ef-fg-gh-he 

TKE2 3.99 4.51 

TKE5 6.11 4.49 

TKE8 3.53 8.87 

Awol 3.54 2.92 

 

2.1.4.5 Conclusion 

For validation, comprehensive measured data is compared to simulation findings 

surrounding the fifth cube, which is located in the center of the cube array. The validation 

findings for the temperature distributions in the vertical and horizontal planes at the fifth 

cube's surfaces have been discussed. 

In Liu's simulations, shown in Figure 2-13, the SST k-ω model has around a 10% error. 

Therefore, Liu implemented a more computationally expensive turbulent model instead, 

which has a 3-4% error. However, in this work, the average difference between 

experimental data and findings produced with the SST k– ω turbulence model is roughly 

6%, so that SST k-ω turbulence model, as well as the discretization schemes that were 

used, are acceptable. The comparison of temperature distribution of different works is 

summarized in Figure 2-13. 

Varying the bulk velocity, turbulence intensity, and how the epoxy layers of the cubes are 

modelled shows that the error can be further reduced within reasonable parameters. 

Furthermore, it should be noted that some differences between the simulated and 

experimental results are attributable to the limited resolution of the infrared camera used 

to capture temperatures at the cube borders and the conductive heat loss from the heated 
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cube to the base plate in the experiment. Therefore, the results show that the numerical 

methods used in this work are valid. 

Moreover, conduction heat transfer within a solid is not employed in the remainder of this 

project, and the simulation results will be used primarily to study the overall trend of the 

effect of cube height on the heat transfer and pressure drop, so the values themselves are 

not used precisely.  
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a)  

 

b) 

 

Figure 2-13: Temperature distributions on the surface around the fifth cube along the 

path: (a) ABCD in the vertical plane and (b) the path EFGH in the horizontal plane 

(b). 

 

[38] 

[38] 
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2.2 Results and analysis of statistical trends 

The results of 204 simulations have been collected and categorized according to their block 

height statistics. For instance, simulations with the same standard deviation of heights have 

been grouped together to analyze the effect of skewness and height of the first block. The 

results of each group are analyzed to determine the trend in heat flux, pressure drop, and 

surface heat transfer with the height statistics that have been defined earlier. 

2.2.1 Total Pressure Drop 

In this section, the influence of various statistical values on the total pressure drop across 

the row of blocks is examined. The total pressure drop is calculated by subtracting the 

average pressure at the inlet from the pressure at the outlet. The pressure drop is then 

normalized by the pressure drop value (PD0) corresponding to the simulation with the 

lowest pressure drop and heat flux. 

2.2.1.1 Effect of the height of the first block 

Due to the sheltering effect and important role of the first block in developing the boundary 

layer, the effect of the height of the first block is studied. The data is divided into groups 

with similar standard deviations and skewness to isolate the impact of the height of the first 

block. The data have been plotted with a linear trend line so that the slope may be 

determined as a correlation metric. Figure 2-14, Figure 2-15, Figure 2-16, and Figure 2-17 

illustrate the correlation of normalized pressure drop with the height of the first block 

having standard deviations of 0.1, 0.2, 0.3, and 0.4, respectively. Note that for each subplot, 

the skewness is also held constant. 
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Figure 2-14: Variation of normalized pressure drop with respect to the height of the 

first block having a constant standard deviation of 0.1 and skewness a) -0.3 b) 0.3 c) -

0.2 d) 0.2 f) 0.1  
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Figure 2-15: Variation of normalized pressure drop with respect to the height of the 

first block having a constant standard deviation of 0.2 and skewness a) -0.3 b) 0.3 c) -

0.2 d) 0.2 e) -0.1 f) 0.1 
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Figure 2-16: Variation of normalized pressure drop with respect to the height of the 

first block having a constant standard deviation of 0.3 and skewness a) -0.3 b) 0.3 c) -

0.2 d) 0.2 e) -0.1 f) 0.1 
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Figure 2-17: Variation of normalized pressure drop with respect to the height of the 

first block having a constant standard deviation of 0.4 and skewness a) -0.3 b) 0.3 c) -

0.2 d) 0.2 e) -0.1 f) 0.1 

The height of the first block has a significant effect on the structure of the wake; a taller 

first block forces a more abrupt transition in the flow when it encounters the array of blocks. 

The slopes of each subplot from Figure 2-14 to Figure 2-17 are shown in Table 2-6 and the 

p-value of the sets of slopes is 1e-6, which indicates that there is a statistically significant 

correlation between the height of the first block and the pressure drop. There is a 1E-4% 

chance that height of first block and pressure drop are uncorrelated when standard deviation 

and skewness are fixed. Most slopes are positive, and the few slopes that are negative have 

much smaller magnitudes. The negative magnitude of slopes occurs for simulations with 

higher standard deviation; in these cases, the larger variation of subsequent blocks becomes 

more significant and may overshadow the effect of the height of the first block. 
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Table 2-6: Slope of pressure drop changes with respect to the height of the first block 

STD\SK -0.3 -0.2 -0.1 0.1 0.2 0.3 avg 

0.1 0.873 0.890 NAN 0.985 1.085 1.101 0.987 

0.2 1.393 0.653 0.724 0.924 0.378 0.891 0.827 

0.3 0.949 1.523 1.448 0.975 0.255 0.674 0.971 

0.4 0.914 -0.439 0.567 -0.305 0.050 0.093 0.147 

avg 1.032 0.657 0.913 0.645 0.442 0.690 0.733 

Figure 2-18 demonstrates that as the standard deviation increases, the effect of the first 

block's height decreases. Similarly, Figure 2-19 illustrates that increasing skewness also 

decreased the effect of the first block height's on the pressure drop. The effect of the first 

block's height is greater in sets with negative skewness than in sets with positive skewness; 

this is because, in a negatively skewed distribution with a tall first block, there is a larger 

height difference between the first block and the few blocks that immediately follows. 

 

Figure 2-18: the slope of the effect of height of the first block on pressure drop with 

respect to standard deviation 



70 

 

 

Figure 2-19: the slope of the effect of height of the first block on pressure drop with 

respect to skewness 

2.2.1.2 Effect of standard deviation 

The effect of standard deviation on the total pressure drop has been studied by holding the 

skewness and height of the first block constant for each subset of the simulations shown in 

Figure 2-20, Figure 2-21, Figure 2-22, and Figure 2-23 with a constant height of the first 

block of  0.9, 1.1, 1.2, and 0.75 respectively. The standard deviation is anticipated to be the 

most influential statistical variable on the flow. The standard deviation may operate 
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similarly to surface roughness, promoting turbulent mixing around the tops of the blocks, 

hence boosting pressure drop. 

 

Figure 2-20: Variation of normalized pressure drop with respect to standard 

deviation having constant first block height of 0.9 and skewness a) -0.3 b) 0.3 c) -0.2 

d) 0.2 e) -0.1 f) 0.1 
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Figure 2-21: Variation of normalized pressure drop with respect to standard 

deviation having constant first block height of 1.1 and skewness a) -0.3 b) 0.3 c) -0.2 

d) 0.2 e) -0.1 f) 0.1 
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Figure 2-22: Variation of normalized pressure drop with respect to standard 

deviation having constant first block height of 1.2 and skewness a) -0.3 b) 0.3 c) -0.2 

d) 0.2 e) -0.1 f) 0.1 

 

Figure 2-23: Variation of normalized pressure drop with respect to standard 

deviation having constant skewness and first block height of 0.75 
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The results indicate a direct relationship between the standard deviation and the overall 

pressure drop. Compared to the other statistical characteristics considered in this study, the 

standard deviation is the most important moment other than the average height in predicting 

pressure drop. The slope values of all subplots from Figure 2-20 to Figure 2-23 are shown 

in Table 2-7, and they are all positive and with p-value of 1E-11 suggesting that it is 

statistically significant, indicating there is less than a 2E-9% chance that the pressure dop 

is not correlated with the standard deviation. When the skewness is -0.1, and the height of 

the first block is 1.1, the value of the slope is the smallest, which could be due to the small 

amount of data in the subset. 

Table 2-7: Slope of pressure drop changes with respect to standard deviation 

h\SK -0.3 -0.2 -0.1 0.1 0.2 0.3 avg 

0.75 2.187 2.671 0.987 3.419 2.627 3.347 2.540 

0.90 1.315 1.545 1.782 4.534 2.642 2.642 2.410 

1.10 2.105 1.841 0.124 1.092 1.450 1.558 1.362 

1.20 1.657 2.646 0.859 1.320 2.367 2.187 1.840 

avg 1.816 2.176 0.938 2.591 2.272 2.434 2.038 

Increasing the height of the first block reduces the effect of standard deviation on pressure 

drop, as shown in Figure 2-24. Figure 2-25 demonstrates that as skewness increases, the 

effect of standard deviation increases. This is because, with positive skewness, there is 

more likely to be a taller first block, which disrupts the flow more and results in a larger 

pressure drop. 
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Figure 2-24: the slope of the effect of standard deviation on pressure drop with respect 

to the height of the first block 

 

Figure 2-25: the slope of the effect of standard deviation on pressure drop with respect 

to skewness 

2.2.1.3 Effect of skewness 

This section examines the influence of skewness on pressure drop by holding the standard 

deviation and height of the first block constant. Figure 2-26 illustrates the relationship 
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between pressure drop and skewness when the starting block height is 0.75, 0.9, 1.1, and 

1.2 and the standard deviation is 0.1. Figure 2-27, Figure 2-28, and Figure 2-29 depict the 

influence of skewness on normalized pressure drop with varying heights of the first block 

and constant standard deviations of 0.1, 0.2, 0.3, and 0.4, respectively. Negative skewness 

indicates that the taller buildings are positioned more toward the end of the array, which 

may not increase turbulence as much as when the taller buildings are at the beginning of 

the array of blocks. 

 

Figure 2-26: Variation of normalized pressure drop with respect to skewness having 

a constant standard deviation of 0.1 and first block height of a) 0.75 b) 0.9 c) 1.1 d) 

1.2 
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Figure 2-27: Variation of pressure drop with respect to skewness having a constant 

standard deviation of 0.2 and first block height of a) 0.75 b) 0.9 c) 1.1 d) 1.2 
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Figure 2-28: Variation of normalized pressure drop with respect to skewness having 

a constant standard deviation of 0.3 and first block height of a) 0.75 b) 0.9 c) 1.1 d) 

1.2 
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Figure 2-29: Variation of normalized pressure drop with respect to skewness having 

a constant standard deviation of 0.4 and first block height of a) 0.75 b) 0.9 c) 1.1 d) 

1.2 

Table 2-8 displays the relationship between pressure drop and skewness for each 

combination of standard deviation and first block height. Because the slope might be 

positive or negative, with p-value of 11%, which indicates that there is a 11% chance that 

the trend is not statistically significant. However, the slopes themselves or the average of 

slopes are often positive, suggesting that positive skewness or taller blocks at the leading 

end of the array typically result in greater pressure drop rates. 

Table 2-8: Slope of pressure drop change with respect to skewness 

STD\h 0.75 0.90 1.10 1.20 avg 

0.1 -0.044 -0.031 0.055 0.037 0.004 

0.2 -0.026 0.133 -0.172 -0.260 -0.081 

0.3 0.829 0.297 -0.040 0.413 0.375 

0.4 0.232 1.493 -0.388 0.618 0.489 

avg 0.248 0.473 -0.136 0.202 0.197 
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In Figure 2-30, a cubic polynomial has been fitted to all of the simulated data, showing 

how the pressure drop varies with standard deviation and skewness. The result illustrates 

that the standard deviation has the largest effect on the pressure drop. The effect of 

skewness is smaller than the effect of standard deviation, but the effect of skewness 

increases as the standard deviation increases. 

 

Figure 2-30: 3D plot of pressure drop with respect to skewness and standard 

deviation 
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2.2.2 Heat flux 

More variation in the heights of the blocks generates more turbulence in the flow, resulting 

in a greater pressure drop and heat flux. The same physical effects that cause the flow to 

generate more turbulence will also increase the heat flux and pressure drop. In this section, 

we will examine whether the effects of statistics on heat flux are similar to those on pressure 

drop. 

Flux is the transfer of some variable per unit area per unit of time. Typically, for kinematic 

heat flux, the heat value is divided by the density multiplied by the specific heat to get units 

of 

𝐽

𝑚2𝑠

(
𝐾𝑔

𝑚3)(
𝐽

𝐾𝑔.𝐾
)

=
𝐾𝑚

𝑠
. This is just a temperature multiplied by a velocity. In this way, the 

calculated heat flux is independent of density and specific heat coefficient. To determine 

the effect on the total heat flux from the array of blocks, the heat flux at the outlet of the 

domain is subtracted from the inlet heat flux. This gives the net heat flux from the blocks 

to the fluid. Then, the value of heat flux is normalized by the outcome of the same 

simulation used to normalize the pressure drop. In the next subsections, the effect of first 

block height, standard deviation, and skewness on the total heat flux is studied. 

2.2.2.1 Effect of the height of the first Block 

Due to the fact that the height of the first block plays a significant role in the formation of 

the boundary layer and can shield the following blocks if it is very tall, the effect of the 

height of the first block is also being investigated. Note that early results suggested that the 

height of the initial block could be an important parameter. 

In this part, the influence of heat flux in relation to the first block's height is examined. The 

data is separated into sets with identical standard deviations and skewness to examine the 

influence of first height alone. The data have been displayed with a linear trend line to 

determine the slope as a correlation metric of heat flux change and height of the first block. 

Figure 2-31 shows the effect of the height of the first block on the heat flux, having a 

constant standard deviation of 0.1 and different skewness. Following the same trend, Figure 
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2-32, Figure 2-33, and Figure 2-34 show the effect of the height of the first block on the 

heat flux with constant standard deviation values of 0.2, 0.3, and 0.4, respectively. 

 

Figure 2-31: Variation of normalized heat flux with respect to the height of the first 

block having a constant standard deviation of 0.1 and skewness of a) -0.3 b) 0.3 c) -

0.2 d) 0.2 f) 0.1 
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Figure 2-32: Variation of normalized heat flux with respect to the height of the first 

block having a constant standard deviation of 0.2 and skewness of a) -0.3 b) 0.3 c) -

0.2 d) 0.2 e) -0.1 f) 0.1 
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Figure 2-33: Variation of normalized heat flux with respect to the height of the first 

block having a constant standard deviation of 0.3 and skewness of a) -0.3 b) 0.3 c) -

0.2 d) 0.2 e) -0.1 f) 0.1 
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Figure 2-34: Variation of normalized heat flux with respect to the height of the first 

block having a constant standard deviation of 0.4 and skewness of a) -0.3 b) 0.3 c) -

0.2 d) 0.2 e) -0.1 f) 0.1 

The line's slope is utilized as the correlation coefficient. Table 2-9 displays the magnitude 

of each slope. Since generating the height with a small standard deviation and skewness is 

computationally costly, we did not generate simulations for skewness of -0.1 and a standard 

deviation of 0.1 in this project. Consequently, the plots and tables for this combination of 

statistics are empty or NAN. 

Table 2-9: Slope of heat flux changes with respect to the height of the first block 

STD\SK -0.3 -0.2 -0.1 0.1 0.2 0.3 avg 

0.1 0.128 0.151 NAN 0.053 0.239 0.008 0.116 

0.2 0.142 -0.026 -0.206 0.043 -0.148 -0.286 -0.080 

0.3 0.023 0.228 0.151 -0.089 -0.039 -0.199 0.013 

0.4 -0.177 -0.257 0.068 -0.110 -0.054 -0.022 -0.092 

avg 0.029 0.024 0.004 -0.026 -0.001 -0.125 -0.016 
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As evidenced by the fact that certain slopes are positive and others are negative, the height 

of the first block and the heat flux are not strongly correlated, while results show a direct 

correlation between the height of the first block and pressure drop. The slopes value with 

respect to standard deviation and skewness is plotted in Figure 2-35 and Figure 2-36. The 

results show that having negative skewness, meaning the block height at the end of the 

street is larger, the height of the first block has a more robust direct relation with heat flux 

and having positive skewness height of the first block has an inverse relation with heat 

flux. 

 

Figure 2-35: the slope of the effect of height of the first block on heat flux with 

respect to standard deviation 
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Figure 2-36: the slope of the effect of height of the first block on heat flux with 

respect to skewness 

2.2.2.2 Effect of standard deviation 

Standard deviation is expected to be the most important statistical parameter affecting the 

flow because it is the lowest moment other than the mean heights of blocks, which is 

constant for all simulations, and also it was found to be the most important parameter 

affecting the pressure drop. The standard deviation may behave similarly to surface 

roughness, enhancing turbulent mixing around the tops of the blocks and increasing the 

heat transfer and pressure drag. 

The effect of standard deviation on heat flux is studied while holding the first block's 

skewness and height constant. The value of the standard deviation varied from 0.1, 0.2, 

0.3, and 0.4. The results are shown in Figure 2-37, which shows how heat flux varies with 

standard deviation for various skewness and first block height 0.9. Figure 2-38, Figure 
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2-39, and Figure 2-40 depict the variation of heat flux with standard deviation for heights 

of 1.1, 1.2, and 0.75 for the first block, respectively. 

 

Figure 2-37: Variation of normalized heat flux with respect to standard deviation 

having constant first block height of 0.9 and skewness of a) -0.3 b) 0.3 c) -0.2 d) 0.2 e) 

-0.1 f) 0.1 
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Figure 2-38: Variation of normalized heat flux with respect to standard deviation 

having constant first block height of 1.1 and skewness of a) -0.3 b) 0.3 c) -0.2 d) 0.2 e) 

-0.1 f) 0.1 
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Figure 2-39: Variation of normalized heat flux with respect to standard deviation 

having constant first block height of 1.2 and skewness of a) -0.3 b) 0.3 c) -0.2 d) 0.2 e) 

-0.1 f) 0.1 
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Figure 2-40: Variation of normalized heat flux with respect to standard deviation 

having constant skewness and first block height of 0.75 

The standard deviation exhibits a strong correlation, and almost all the slopes are positive, 

demonstrating the significance of height standard deviation on total heat flux as it was for 

pressure drop. This conclusion and trend are statistically significant, with a p-value of 

4.75E-7, which show the probability that the heat flux is not associated with the standard 

deviation is less than 4E-5%. Increasing the standard deviation, which corresponds to a 

larger variation in heights, increases the amount of heat flux. Two anomalies in the slope 

data occur for the height of the first block of 1.1 and skewness of -0.1 and 0.1. For a 

skewness of -0.1, the slope is calculated from a smaller number of simulations compared 

to the other sets. There is also a significant amount of scattering in the data because each 

simulation has a unique set of block heights. The two factors combined explain why a 

simulation set may occasionally exhibit the opposite trend from what is expected. 

However, most of the slopes are positive and have much larger magnitudes than the two 

cases with negative slopes. The slopes are shown in Table 2-10. 
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Table 2-10: Slope of heat flux changes with respect to standard deviation 

h\SK -0.3 -0.2 -0.1 0.1 0.2 0.3 avg 

0.75 0.672 0.743 0.016 0.607 0.819 0.489 0.558 

0.90 0.141 0.596 0.324 0.793 0.495 0.415 0.461 

1.10 0.474 0.342 -0.180 0.211 0.155 -0.035 0.161 

1.20 0.108 0.338 1.035 0.369 0.483 0.690 0.504 

avg 0.349 0.505 0.299 0.495 0.488 0.390 0.421 

 

Figure 2-41 shows the effect of the height of the first block on the slopes in Table 2-10. It 

can be concluded that increasing the height of the first block reduces the impact of the 

standard deviation on heat flux. Although Figure 2-42 displays a negative correlation 

between skewness and slopes, it cannot be concluded that skewness has an effect on slopes 

due to the figure's data distribution. 

 

Figure 2-41: the slope of the effect of standard deviation on heat flux with respect to 

the height of the first block  
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Figure 2-42: the slope of the effect of standard deviation on heat flux with respect to 

skewness 

2.2.2.3 Effect of skewness 

This section examines the influence of skewness on the total heat flux. A positive skewness 

may be expected to increase the heat flux because higher blocks early in the array create a 

more abrupt transition for the flow, which may increase the turbulence and, therefore, the 

heat flux. Each figure illustrates data with the same standard deviation and height of the 

first block. A linear line was used to illustrate the relationship between the change in heat 

flux and skewness. Figure 2-43 shows how heat flux varies with skewness when the initial 

block height is 1.1, with standard deviations of 0.1, 0.2, 0.3, and 0.4. Figure 2-44, Figure 
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2-45, and Figure 2-46 illustrate the effect of skewness on heat flux with different standard 

deviations and constant height of the first block of 1.2, 075, and 0.9, respectively. 

  

Figure 2-43: Variation of normalized heat flux with respect to skewness having a 

constant standard deviation of 0.1 and first block height of a) 0.75 b) 0.9 c) 1.1 d) 1.2 
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Figure 2-44: Variation of normalized heat flux with respect to skewness having a 

constant standard deviation of 0.2 and first block height of a) 0.75 b) 0.9 c) 1.1 d) 1.2 

 

Figure 2-45: Variation of normalized heat flux with respect to skewness having a 

constant standard deviation of 0.3 and first block height of a) 0.75 b) 0.9 c) 1.1 d) 1.2 
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Figure 2-46: Variation of normalized heat flux with respect to skewness having a 

constant standard deviation of 0.4 and first block height of a) 0.75 b) 0.9 c) 1.1 d) 1.2 

Table 2-11 summarizes the correlation between heat transfer and skewness for each 

combination of standard deviation and height of the first block. The result shows that there 

is not a strong association that has been established because the slope can be positive or 

negative, as it was concluded for pressure drop. However, the slopes are more often 

positive, indicating that positive skewness or taller blocks close to the leading end of the 

array typically result in higher rates of heat transfer. This is a weaker effect than the effect 

of standard deviation. 

Table 2-11: Slope of heat flux change with respect to skewness 

STD\h 0.75 0.90 1.10 1.20 avg 

0.1 0.890 0.109 0.015 0.148 0.291 

0.2 -0.013 0.055 -0.034 -0.035 -0.007 

0.3 0.278 0.280 -0.124 0.095 0.132 

0.4 -0.024 0.213 -0.118 0.228 0.075 

avg 0.283 0.164 -0.065 0.109 0.123 
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2.2.3 Flow Regimes 

The qualitative flow structures that occur between two adjacent blocks can be categorized 

into distinct regimes. Oke[44] classifies the flow regime in an idealized street canyon as 

follows: isolated (h/b < 0.2), wake interference (0.2 < h/b < 0.65) and skimming flow (h/b 

> 0.65). Chang[45] conducted a wind tunnel experiment and discovered that a 3D urban 

street canyon also exhibited skimming flow (h/b < 0.83), wake interference (0.83 < h/b < 

0.2) and isolated roughness (h/b < 0.2). Most subsequent research describing the dynamics 

of urban street canyons were then based on these regimes. Since we are analyzing a 2D 

idealized street canyon with a constant inlet velocity, the range of each flow's ratio will 

vary. In this study, eight simulations with a constant height of 1 and varying spacing values 

of 1, 1.5, 3.5, 4.5, 5.5, 7.5,10, and 13 were conducted to identify the different regimes. The 

height with respect to spacing for each of these simulations is in Table 2-12. These regimes 

are then compared to the flow structures found in simulations with varying block heights. 

Table 2-12: Height and spacing of block in simulations to study different regime 

Height Spacing Height/ Spacing (H/S) 

1 1 1.00 

1 1.5 0.67 

1 3.5 0.29 

1 4.5 0.22 

1 5.5 0.18 

1 7.5 0.13 

1 10 0.10 

1 13 0.08 

According to Oke, the simulations with H/S =1 and H/S=0.67 should be in the skimming 

regime, while those with H/S = 0.18, 0.13, 0.10, 0.08 should be in the isolated regime. A 

velocity contour plot for each simulation is shown in Figure 2-47, which illustrates the flow 

structures that occur for each case. 
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a) H/S = 1 

 
b) H/S = 3.5 

 
c) H/S =13 

Figure 2-47: Velocity contour plot with spacing a) 1 b) 3.5 c) 13  
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a) H/S = 1 

 

b) H/S = 3.5 

 

c) H/S = 13 

Figure 2-48: Vector plot with spacing a) 1 b) 3.5 c)13 
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Figure 2-47 and Figure 2-48 show that flows with S/H >0.65 are in the skimming regime, 

while flows with H/S < 0.1 are in the isolated regime. The isolated regime is achieved if a 

reattached velocity profile develops between two blocks, whereas a skimming regime 

develops when a single-centred vortex develops between two blocks (schematic of 

idealized regime shape is shown in Table 2-13). This is similar to the categorization 

proposed by Oke, with a slightly lower ratio required to achieve the isolated regime. 

Table 2-13: schematic description of different flow regimes 

Skimming 

 

Wake 

Interference 

 

Isolated 

 

 

2.2.3.1 Effect of different Regimes 

According to the result from section 2.2.12.2.2, the pressure difference and heat flux are 

correlated with the standard deviation and weakly with skewness. In some simulations, the 

statistical values are identical, but the pressure drop and heat flux are quite different 

because the individual block heights are different from any two sets of simulations. To 

better understand the effect of individual block heights, qualitative details of the flow are 

examined, including the effects of various regimes. The H/S ratio was calculated by 
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dividing the height of each block by its spacing. Simulations can be categorized into three 

distinct groups. The first is the "Only Wake Interference Regime". In this category, all of 

the blocks fall under the wake interference regime. The second category, "Contain all Wake 

Interference, Skimming, and Isolated Regime," includes simulations that cover the entire 

spectrum of H/S. The majority of blocks are in the regime of wake interferences, while 

only a few are in the regime of skimming or isolation. The final category, "Only Isolated 

and Wake Interferences regime" is similar to the second, with the exception that there are 

no blocks in the skimming regime. Notably, categories three and two do not overlap. 

Pressure drop with respect to standard deviation has been plotted in the figures below, with 

the category of each simulation indicated: 

 

Figure 2-49: Pressure drop (Pa) with respect to standard deviation in different flow 

regimes with the height of the first block of 0.75 and skewness of a) -0.3 b) -0.2 c) -0.1 

d) 0.1 e) 0.2 f) 0.3  
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Figure 2-50: Pressure drop (Pa) with respect to standard deviation in different flow 

regimes with the height of the first block of 0.9 and skewness of a) -0.3 b) -0.2 c) -0.1 

d) 0.1 e) 0.2 f) 0.3 

 

Figure 2-51: Pressure drop (Pa) with respect to standard deviation in different flow 

regimes with the height of the first block of 1.1 and skewness of a) -0.3 b) -0.2 c) -0.1 

d) 0.1 e) 0.2 f) 0.3 
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Figure 2-52: Pressure drop (Pa) with respect to standard deviation in different flow 

regimes with the height of the first block of 1.2 and skewness of a) -0.3 b) -0.2 c) -0.1 

d) 0.1 e) 0.2 f) 0.3 

To investigate whether the relationship between pressure drop and standard deviation may 

exhibit a different pattern depending on the flow category, two distinct linear trend lines 

have been plotted: one for simulations in the wake interference region and the other for all 

simulations. In Figure 2-53, simulations with noticeable trend lines have been shown: 
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Figure 2-53: Different trend lines in different regimes a)H1 = 0.75, SK = -0.3 b) H1 = 

0.9, SK = -0.3 c) H1 = 0.9, SK = 0.1 d) H1 = 1.1, SK = 0.3 e) H1 = 1.2, SK = 0.2 f) H1 

=1.2, SK =0.3 

The results demonstrate that the type of simulation regime has a small influence on the 

correlation between the standard deviation of block heights and pressure drop. The trend 

of the pressure drop increasing with increasing standard deviation is consistent whether 

simulations include all regimes or only a subset of the regimes. 

2.2.3.2 Effect of the taller block on flow structure 

Due to the presence of significant variation in the heights of blocks in each simulation set, 

there are additional flow structures that do not fall into the previously mentioned regimes 

and have a distinct appearance. For instance, a tall block's wake region may influence 

several subsequent blocks, creating different regime structures. Figure 2-54 illustrates the 

situation in which a small block exists between two larger blocks. The flow passes in the 

opposite direction over the middle blocks while generating a vortex between the first and 

second blocks. 
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Figure 2-54: flow structure having one small block between two larger blocks 

A tall block is followed by two smaller blocks in Figure 2-55. The wake of taller blocks 

influences the flow structure surrounding smaller blocks and creates a flow in the opposite 

direction above the smaller blocks. 

 

Figure 2-55: flow structure having one tall block followed by two smaller blocks 
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2.2.4 Different Height Average  

To further investigate the effect of the various flow regimes, simulations with standard 

deviations ranging from 0.2 to 1.5 and height averages of 2, 2.5, and 3 are introduced. 

Simulations with larger heights are necessary for blocks in the skimming regime to occur 

within a simulation. Noting that the simulation domain for this set of simulations is entirely 

distinct from the previous set, these simulations are not directly comparable to the previous 

set; the boundary condition remains the same, but since H is being altered, the downstream 

space, height, and upstream space differ from previous simulations. 

Figure 2-56 to Figure 2-59 illustrate how the heat flux and pressure drop depend on 

standard deviation. As predicted, pressure drop and heat flux followed the trend of 

increasing as the standard deviation increased, which supports the conclusion reached in 

the preceding sections. Figure 2-56 and Figure 2-57 also depict the regime of each 

simulation. "Only skimming regime" refers to the simulation in which all heights relative 

to spacing fall within the range of the skimming regime. "Skimming regime and wake 

interference regime" refers to the simulation in which the majority of blocks are in the 
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skimming regime, and only a few meet the wake interference criteria. Finally, in "contain 

all the regimes," all three distinct regimes appear within the simulation. 

 

Figure 2-56: Heat flux with respect to a standard deviation with a height average of 

a) 2 b) 2.5 c) 3 
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Figure 2-57: Pressure drop with respect to a standard deviation with a height average 

of a) 2 b) 2.5 c) 3 

The heat flux and pressure drop will increase with increasing average height as shown in 

Figure 2-58 and Figure 2-59. However, the arrangement and height of each obstacle are of 
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greater importance since the average slope of the effect of standard deviation is greater 

than the average height effect. 

 

Figure 2-58: Pressure drop with respect to height average with a standard deviation 

of a) 0.2 b) 0.4 c) 0.6 d) 0.8 e) 1 f) 1.2 g)1.4 h)1.5 
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Figure 2-59: Heat flux with respect to height average with a standard deviation of a) 

0.2 b) 0.4 c) 0.6 d) 0.8 e) 1 f) 1.2 g)1.4 h)1.5 

2.2.5 Effect of Arrangement of blocks 

The previous section investigates the effect of statistical measures and flow regimes on 

pressure drop and heat flux. In this section, six sets of simulations involving 14 blocks with 

heights that have the same standard deviation, skewness, first block height, and overall 

height average were conducted to investigate the qualitative flow behavior that results in 

different pressure drop and heat flux for simulations with identical values for the statistical 

parameters considered. The heights and related information are shown in Table 2-14: 
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Table 2-14: Heights, Standard deviation, Skewness, and Kurtosis of 6 simulations to 

explore the overall effect of the block's height 
 

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 

H1 1.20 1.20 1.20 1.20 1.20 1.20 

H2 1.45 1.03 0.83 0.80 0.83 1.33 

H3 1.14 1.12 1.01 0.68 1.06 0.96 

H4 0.94 0.80 1.22 1.13 0.97 0.97 

H5 1.05 1.09 1.02 1.40 0.96 0.67 

H6 0.84 1.05 1.09 0.75 0.93 0.97 

H7 1.09 1.13 0.76 1.15 0.86 1.18 

H8 0.59 1.43 1.01 1.13 0.82 1.33 

H9 0.92 1.00 1.40 0.85 1.23 1.03 

H10 0.93 0.98 1.02 1.16 1.08 0.89 

H11 0.83 0.73 0.70 0.86 0.68 0.76 

H12 1.04 0.77 1.13 0.88 1.29 0.79 

H13 1.04 0.96 0.75 1.02 1.33 0.98 

H14 0.95 0.67 0.85 0.97 0.78 1.00 

Standard deviation 0.199 0.204 0.203 0.204 0.202 0.199 

skewness 0.201 0.204 0.200 0.196 0.198 0.197 

mean 1.000 0.997 1.001 0.998 1.002 1.005 

first height 1.200 1.195 1.205 1.197 1.202 1.202 

kurtosis (Not equal 
for all cases) 

3.822 2.753 2.243 2.194 1.873 2.272 
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The flow is in the wake interference regime for all blocks in all of these simulations. The 

following are the total pressure drop and heat flux for these six simulations (Table 2-15): 

Table 2-15: Heat flux and pressure drop for six simulations with different statistical 

measures 
 

SET 1 (A) SET 2 (B) SET 3 (C) SET 4 (D) SET 5 (E) SET 6 (F) 

HEAT FLUX 34.528 33.348 34.658 34.353 34.833 34.143 

PRESSURE DROP 0.0407 0.0472 0.0514 0.0529 0.0518 0.0478 

All simulations have heat fluxes within 5 % of each other, but the pressure drops vary more 

significantly. Simulation 4 has the greatest pressure drop, while simulation 1 has the 

lowest, and the difference is about 30%, despite the fact that all simulations have the same 

standard deviation and average height. The velocity, turbulent kinetic energy, and vorticity 

profile are examined in order to determine the cause of the varied pressure drop in these 

simulations. 

The velocity profile for each of these simulations in the x direction, u, is shown in Figure 

2-60. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 
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The Turbulent kinetic energy plots are as follows (Figure 2-61): 

a) 

 

b) 

 

c) 

 

f) 

 

Figure 2-60: Velocity profile (m/s) along x direction for. a) simulation 1 b) simulation 

2 c) simulation 3 d) simulation 4 e) simulation 5 f) simulation 6 
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d) 

 

e) 

 

f) 

 

Figure 2-61: Turbulent kinetic energy profile (J/kg) for a) simulation 1 b) simulation 

2 c) simulation 3 d) simulation 4 e) simulation 5 f) simulation 6 

The vorticity profile is in Figure 2-62: 



116 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 
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The static pressure profile is as follows (shown in Figure 2-63): 

a) 

 

b) 

 

c) 

 

f) 

 

Figure 2-62: Vorticity profile for. a)  simulation 1 b) simulation 2 c) simulation 3 d ) 

simulation 4 e)  simulation 5 f) simulation 6 in Table 13. 
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d) 

 

e) 

 

f) 

 

Figure 2-63: Pressure profile (Pa) for. a)  simulation 1 b) simulation 2 c) simulation 

3 d ) simulation 4 e)  simulation 5 f) simulation 6 in Table 13. 

The simulations with a greater pressure drop (c, d, e) exhibit more intense turbulent kinetic 

energy at the top of the initial few blocks. These simulations also have the largest height 

difference h1 - h2, indicating that the height difference between the first two blocks in the 

wind path has the greatest effect on the total heat flux and pressure drop for setups that are 

otherwise statistically similar. The first case, which has the lowest pressure drop, also has 

the lowest turbulent kinetic energy and different pressure distribution between the first two 

blocks. This provides some insight into how the qualitative details of the flow are not 

always captured by the first few statistical moments. 
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2.2.6 Effect of the height difference between the first two blocks 

The height difference between the first two blocks has the greatest impact on the total 

pressure drop and heat flux for simulations with equivalent mean, standard deviation, and 

skewness, as concluded in the previous section. The graphs below illustrate how this height 

difference affects the pressure drop. The height difference is calculated by subtracting the 

height of the second block from the height of the first block (h1 - h2). A line was fit to the 

data to represent the relationship between the pressure drop and height difference. The 

results are categorized based on the regimes defined in section 2.2.3. 

  

Figure 2-64: Pressure drop with respect to height difference having a standard 

deviation of 0.1 and skewness of a) -0.3 b) -0.2 d) 0.1 e) 0.2 f) 0.3 
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Figure 2-65: Pressure drop with respect to height difference having a standard 

deviation of 0.2 and skewness of a) -0.3 b) -0.2 c)-0.1 d) 0.1 e) 0.2 f) 0.3 

  

Figure 2-66: Pressure drop with respect to height difference having a standard 

deviation of 0.3 and skewness of a) -0.3 b) -0.2 c)-0.1 d) 0.1 e) 0.2 f) 0.3 
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Figure 2-67: Pressure drop with respect to height difference having a standard 

deviation of 0.4 and skewness of a) -0.3 b) -0.2 c)-0.1 d) 0.1 e) 0.2 f) 0.3 

The lower standard deviation of a set of heights means less fluctuation in height differences 

within a set. Figure 2-64 depicts the same slope for the simulation with a lower standard 

deviation, indicating that the relationship between the height difference of the first two 

blocks and pressure drop is constant for simulations with a lower standard deviation. At 

the same time, as the standard deviation increased, the slope value fluctuated, and the 

average slope value decreased. Note that in simulations that include all the flow regimes, 

the fluctuation in pressure drop is higher than the one that only has one regime. 

A cubic polynomial has been fitted to the simulated data in Figure 2-68. The result suggests 

that when the second obstacle is larger than the first one, the standard deviation highly 

affects the total pressure drop compared with the case where the second obstacle is smaller. 

By increasing the standard deviation, the pressure drop also increases. The highest Pressure 

drop value is obtained at a combination of high standard deviation and a larger first obstacle. 

When the height of the first block is greater than that of the second, the pressure drop is often 

greater. 
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Figure 2-68: 3D plot of pressure drop with respect to height difference and standard 

deviation 
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2.2.7 Surface heat transfer Coefficient (SHTC) 

The investigation of simulations with similar statistics indicates that the same statistics do 

not always imply equal pressure drop, heat flux, and heat transfer and that the arrangement 

of height is crucial. The most important variable in this analysis was the height difference 

between the first two blocks, followed by the height differences between the remaining 

blocks. Due to the nonlinear effect of the height difference between the adjacent blocks, 

the notion of testing machine learning's capacity to forecast variables such as the heat 

transfer coefficient has developed. 

The convective heat transfer coefficient (CHTC) is an indispensable metric for determining 

the microscale flow and energy exchange between a block unit and its environment. 

Statistical trends on the heat transfer coefficient have been analyzed to determine the 

possibility of a correlation, and in the following chapter, a machine learning model is 

implemented to capture the correlation between block height and heat transfer coefficient.  

Using the results of 204 simulations with random block heights, the surface heat transfer 

coefficient for each block surface was calculated. Note that surface heat transfer coefficient 

and convective heat transfer coefficient are equivalent, whereas in Ansys, the term SHTC 

has been used, so this study will continue to use this terminology. The average surface heat 

transfer coefficient for each block is considered. This section examines the impact of 

different statistical values on the average coefficient value of blocks 12 and 13. Therefore, 

in this section, SHTC is referred to as the average SHTC value of blocks 12th   and 13th. 

The effect of the first block's height on the average surface heat transfer coefficient was 

studied, and a line was fit to the data. The slopes are illustrated in Table 2-16.  
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Table 2-16: Slope of SHTC changes in blocks 12 to 13 with respect to the height of the 

first block 

STD/SK -0.3 -0.2 -0.1 0.1 0.2 0.3 AVG 

0.1 0.125 0.068 NAN 0.098 0.034 0.109 0.087 

0.2 0.121 0.278 -0.083 0.139 0.084 -0.18 0.06 

0.3 0.097 0.053 0.152 0.064 0.121 0.024 0.085 

0.4 0.333 -0.016 -0.237 -0.134 -0.215 -0.116 -0.064 

AVG 0.169 0.096 -0.056 0.042 0.006 -0.041 0.04 

Table 2 17 illustrates the effect of standard deviation. 

Table 2-17: Slope of SHTC changes in blocks 12 to 13 with respect to standard 

deviation 

SK/h 0.75 0.9 1.1 1.2 AVG 

-0.3 -0.453 -0.261 -0.177 -0.186 -0.269 

-0.2 0.076 0.12 -0.134 -0.071 -0.002 

-0.1 0.255 -0.429 -0.447 -0.097 -0.18 

0.1 0.06 0.071 -0.305 -0.449 -0.156 

0.2 -0.148 -0.299 0.222 -0.766 -0.248 

0.3 0.172 0.016 0.008 -0.01 0.024 

AVG -0.006 -0.13 -0.139 -0.278 -0.138 

Table 2 18 depicts the influence of skewness. 

Table 2-18: Slope of SHTC change in blocks 12 to 13 with respect to skewness 

STD/h 0.75 0.9 1.1 1.2 AVG 

0.1 0.015 0.014 -0.014 -0.007 0.002 

0.2 0.042 -0.038 -0.08 -0.969 -0.261 

0.3 0.115 -0.036 0.141 -0.005 0.054 

0.4 0.118 0.058 0.062 -0.213 0.006 

AVG 0.073 0 0.027 -0.299 -0.05 
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We do not expect to find a strong correlation between the heat transfer coefficient of blocks 

and defined statistics, as the heat transfer coefficient is determined based on what is 

occurring locally and not on broad statistics of block sets. The slopes show lots of variation, 

so it can be concluded that there is not a strong correlation between the average heat transfer 

coefficient of blocks of 12th and 13th with standard deviation, skewness and height of the 

first block. 

2.3 Conclusion 

Applications in urban canopies, vegetation canopies, and urban structures prompted us to 

conduct a generalized idealized study on the effect of height variation on total heat flux, 

total pressure drop, and surface heat transfer coefficient. A set of CFD simulations with 14 

blocks, each of which may represent a building or canopy with random heights, were 

conducted. Using the experimental data available in the literature, the Reynold average 

two-equation SST k-omega model has been validated and used. Using the results of 204 

simulations, the correlation between the standard deviation and skewness of the block 

heights and height of the first block on the total heat flux, total pressure drop, and surface 

heat transfer coefficient has been determined. 

The results demonstrate that the standard deviation of heights and the average height of the 

blocks have the greatest influence on pressure drop, heat flux, and heat transfer. Skewness, 

however, has a small positive correlation. The three different regimes of isolated, wake 

interference, and skimming have all been observed, and a slight modification of the 

boundaries between the regimes is suggested for this specific flow configuration. 

The study of simulations with identical statistics demonstrates that having identical means, 

standard deviation, skewness and height of the first block does not necessarily imply 

identical pressure drop, heat flux, and heat transfer and that the arrangement of heights is 

important. In this study, the height difference between the first two blocks was the most 

influential variable, followed by the height difference between the remaining adjacent 

blocks. Due to the nonlinearity of the height difference between the blocks, the concept of 

utilizing machine learning to capture this nonlinearity and test its ability to predict variables 
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such as the heat transfer coefficient has emerged which will be discussed in the next 

chapter. 
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Chapter 3  

3 Machine learning  

3.1 Dataset 

 Data is the lifeblood of machine learning, and our ability to construct successful models 

is dependent on the quality and amount of available data. The previous section describes a 

CFD analysis of 14 blocks with random heights and specified standard deviation, 

skewness, and total height average. In this section, the average surface heat transfer 

coefficient for each block has been determined using CFD simulations, and the height of 

14 blocks and the mean surface heat transfer coefficient of the twelfth and thirteenth blocks 

were used to generate a data set to analyze with ML algorithms. The heights of 14 blocks 

are considered as input data, and the average surface heat transfer coefficient is the output 

of the ML model. Table 3-1 depicts the first ten simulations of the data set, which include 

a total of 204 simulations. 
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Table 3-1: Data set 
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Prior to training the machine learning models, the data was normalized using the 

MinMaxScaler, a function in the Scikit-learn package of Python [1], which scales and 

translates each feature independently to be between zero and one; for example, the entire 

height of the second block is scaled together. This scaling's advantages include its 

resistance to extremely tiny standard deviations of features and its ability to preserve zero 

entries in data. The scaled data is calculated as follows (equation 3-1): 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛 

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (3-1) 

3-1 

𝑥𝑚𝑎𝑥 represents the maximum value within the features while 𝑥𝑚𝑖𝑛 presents the minimum. 

For example, for feature H3, which is the height of the third block, 𝑥𝑚𝑎𝑥 is the maximum 

height of the third block, across all the simulations. 

Random selections of this data were used to construct a model in order to generate 

probabilistic estimates of the surface heat transfer coefficient. In other words, the data set 

is ordered by decreasing standard deviation; to prevent the model from overfitting to this 

pattern, the data were shuffled. Note that the feature values in each row have been 

preserved while their positions have been randomized. The data is then separated into train 

and test sets. 90% of the data were assigned randomly to the training set, while the 

remaining 10% were assigned to the test set. On the chosen models, a grid search study 

with three-fold cross-validation [2] is conducted to determine the optimal hyperparameters 

for each model. The following describes the project's pipeline: 
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Figure 3-1: Pipeline of Project 

3.2 Training Models 

Several regression algorithms have been applied to the data using their default 

hyperparameters. The statistical model values, such as MSE, indicate the performance of 

the various models. The table below details the accuracy of each model in the training and 

testing sets. Similar levels of error between the train set and test set indicate a more general 

model. However, lower MSE values indicate a model with more accuracy. The RMSE and 

MSE of the train set and test set are shown for each regression algorithm in Table 3-2: 

Table 3-2: Error of models in preliminary analysis to find the most promising model 

Model RMSE MSE_Test MSE_Train 

Gradient Boosting Regressor 0.075 0.014 0.002 

XGBoost Regressor 0.081 0.016 0.000 

SVR 0.086 0.018 0.007 

Bagging Regressor 0.087 0.018 0.004 

Random Forest Regressor 0.092 0.020 0.003 

AdaBoost Regressor 0.093 0.021 0.011 

Ridge Regressor 0.096 0.022 0.019 

Linear Regressor 0.099 0.024 0.018 

Kneighbors Regressor 0.105 0.027 0.014 

 Based on the results of the preliminary studies, summarized in Table 3-2, a few models 

have been chosen to be optimized in order to obtain a more accurate prediction. The models 
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were selected based on the error and their capability to predict the data. Moreover, it is 

crucial to acquire the highest possible performance from the training data set when 

developing ML models for real issues. Consequently, optimizing the hyperparameters of 

ML algorithms is required during model training. Various methods have been proposed to 

automate the selection of hyperparameters to eliminate manual tuning, including grid 

search and random search hyperparameter optimization[3]. This work employed a grid 

research method with three-fold cross-validation to investigate all potential 

hyperparameter values inside a predefined domain. The number of cross-validation has 

been selected based on the computational power available for this project. The 

Hyperparameters of each of the selected models have been optimized to minimize MSE. 

The errors after hyperparameter tuning are as follows (Table 3-3): 

Table 3-3: MSE after Hyperparameter tuning 

Model 
MSE on Train Set after 

hyperparameter tunning 

MSE on Test Set after 

hyperparameter tunning 

Random Forest 

Regression 
0.013 0.019 

Support Vector 

Regression 
0.016 0.019 

Gradient Boosting 0.009 0.019 

XGBoost 0.002 0.015 

Voting Regressor 0.009 0.018 

In Random forest regression (RFR), the number of decision trees, the maximum depth of 

each tree, the minimum number of samples required to be at a leaf node, the minimum 

weighted fraction of the sum total of weights (of all the input samples) required to be at a 

leaf node, the maximum number of leaf nodes, and the maximum number of features were 

varied within the range specified in Table 3-4.  
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Table 3-4: Hyperparameter tuning range for Random Forest 

Feature Name Tuning Range Tuned value 

max_depth 2, 3, 4, 5, 6, 7 4 

n_estimators 2, 10, 30, 40, 50, 100 10 

min_samples_leaf 1, 2, 3, 4 3 

min_weight_fraction_leaf 
0.01, 0.02, 0.05, 0.1, 0.2, 

0.3 
0.01 

max_feature "auto", "log2", "sqrt" "log2" 

max_leaf_nodes 2, 5, 10, 20, 30 10 

After hyperparameter tuning, the tuned parameter is shown in the third column of Table 

3-4. 

Table 3-5 summarizes the hyperparameters tuned for the Gradient boost model. They 

include the learning rate (Learning rate reduces the contribution of each tree by its value), 

the number of decision trees (n_estimators), the maximum depth of each tree, and the 

maximum number of features. The tuned parameter after hyperparameter tuning is listed 

in Table 3-5. 

Table 3-5: Hyperparameter tuning range for Gradient Boost 

Feature Name Tuning Range Tuned value 

learning_rate 0.001, 0.01, 0.1 0.01 

max_depth 4, 6, 8, 10, 12 8 

max_features 1, 2, 3, 4, 5 5 

n_estimators 
10, 20, 30, 40, 50, 60, 70, 

80, 90, 100, 110, 120 
70 

Support vector regression requires generating a nonlinear curve using a kernel function to 

forecast outputs within an error margin. As shown in Table 3-6, the SVR hyperparameters 

that were adjusted were the error margin (epsilon), a regularization parameter (C) that 
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determines deviation weights, the kernel function, the degree of the polynomial kernel 

function (degree), and the kernel coefficient. Linear, polynomial, radial basis function 

(RBF), and sigmoid were the kernel functions that were considered for this study. 

Table 3-6: Hyperparameter tuning range for Support Vector Regression 

Feature Name Tuning Range Tuned value 

kernel 
"linear", "poly", "rbf", 

"sigmoid” 
"rbf" 

degree 3, 4, 5, 6 3 

gamma 1,0.1,0.01,0.001 1 

epsilon 0.005, 0.01, 0.05, 0.1, 0.5 0.1 

C 0.1,1, 2, 10, 100 10 

XGBoost is an effective method for constructing supervised regression models. As shown 

in Table 3-7, the variable XGBoost hyperparameters included the number of estimators, 

the maximum depth of each tree, the learning rate, step size shrinkage used in the update 

to prevent overfitting (eta), subsample ratio of the training instances, which aids in 

preventing overfitting, Minimum sum of instance weight required in a child (min child 

weight), and the booster type. The optimized hyperparameters are listed in Table 3-7. 
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Table 3-7: Hyperparameter tuning range for XGBoost 

Feature Name Tuning Range Tuned value 

max_depth 6, 9, 12 12 

learning_rate 0.05, 0.1, 0.2 0.05 

min_child_weight 2, 3, 4 3 

subsample 0.9, 1, 1.1 0.9 

booster 'gbtree', 'dart', 'gblinear' 'dart' 

eta 0.05, 0.01, 0.005 0.05 

n_estimators 5, 10, 15 ,20, 50, 100 50 

VotingRegressor's purpose is to combine conceptually distinct machine learning regressors 

and deliver the average of their projected values. Such a regressor may be effective for 

balancing the individual shortcomings of a group of models with comparable performance. 

After combining the tuned versions of all models, the Voting Regressor was applied with 

the default values. 

The plot of the Expected value versus the Predicted value of the average surface heat 

transfer coefficient of blocks 12 and 13 for the test set is shown in Figure 3-2: 

  

a) b) 
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c) d) 

 

e) 

Figure 3-2: Predicted versus True value of test set in a) random forest b) gradient 

boost c) XGBoost d) SVR e) Voting regression for the set of all 14 heights as an input 

Despite the fact that the model performance on the test set is unpromising, the model 

performance on the train set is strong, as depicted in Figure 3-3 for tuned XGBoost. This 

shows that the models are suffering from overfitting. Training machine learning models 

with insufficient data and many features can result in overfitting problems. Reducing the 

number of features and eliminating irrelevant features can aid in preventing model 
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overfitting. This motivates the work described in section 3.4. Note that some algorithms, 

like SVR, did not perform well on the input data. 

  

a) b) 

  

c) d) 

 

e) 

Figure 3-3: Predicted versus True value of train set in a) random forest b) gradient 

boost c) XGBoost d) SVR e) Voting regression for the set of all 14 heights as an input 
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3.3 Feature Importance Analysis 

This study includes 14 distinct input features, which are the heights of 14 blocks in a single 

simulation. Including features that may have relatively minor effects on the target variable 

in training increases computation time and degrades the performance of the model. 

Consequently, finding relevant features using feature selection techniques is essential for 

reducing the dimensionality of data, eliminating irrelevant data, simplifying the resulting 

model, and accelerating the learning process [4]. Importance scores are one method for 

identifying the most relevant features. The relevance of an input parameter to a target 

variable is reflected by its importance score. Using the ".feature importances_" attribute, 

decision tree, and XGBoodt models from the Python scikit-learn module provide a 

straightforward approach to retrieve these scores. In order to reduce the number of features 

used as input and find the most important features, the feature important analysis is 

conducted on top of the dataset. The score of each feature corresponding to different 

models is shown in Figure 3-4. 
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a) 

 
b) 

Figure 3-4: Feature importance analysis using a) Random Forest b) XGBoost 

The goal of this machine learning model was to predict the average surface heat transfer 

coefficient of blocks 12 and 13. As expected from the physics of the problem, the heights 

of the blocks close to the target blocks are the most important. The height of the first block 

is also important because it has a significant effect on the initial development of the 

boundary layer. The score values of Xgboost and Random Forest are distinct due to the 

distinct model structures, and the value itself cannot be compared. In both cases, 

particularly for XGBoost, the height of the sixth block has a high score, which was 

unexpected. 
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3.4 Dropping irrelevant features  

A modified data set is used to train the models to address the threat of overfitting caused 

by using all the features. Based on the result of the feature importance analysis, the six 

most important features (H1, H6, H10, H11, H12, H13) have been selected, and a training 

procedure have been done using a new modified dataset. The data set looks as follows 

(Table 3-8): 

Table 3-8: Data set after dropping irrelevant features 

Simulation 

number 
H1 H6 H10 H11 H12 H13 

SHTC 

AVG_12_13 

Simulation 

1 
0.900 1.031 1.124 1.152 1.049 1.076 0.901 

Simulation 

2 
0.766 1.056 0.958 1.201 0.968 0.957 0.851 

Simulation 

3 
1.197 1.024 1.097 1.058 0.943 1.055 0.944 

Simulation 

4 
0.906 1.048 1.058 0.821 1.009 0.993 0.903 

Simulation 

5 
0.779 0.939 1.124 1.056 0.962 0.998 0.900 

Simulation 

6 
1.194 1.011 0.869 0.929 1.053 1.078 0.965 

Simulation 

7 
0.900 1.037 0.902 0.952 0.937 0.917 0.928 

Simulation 

8 
0.776 1.016 0.978 1.043 1.026 1.008 0.918 

Simulation 

9 
1.191 0.967 1.134 0.941 0.818 1.037 0.925 

Simulation 

10 
0.894 0.930 1.166 0.892 1.128 1.111 0.895 

A preliminary analysis has been conducted to determine the most promising models on 

which to perform hyperparameter tuning, and the error of each model is shown in Table 

3-9: 
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Table 3-9: Error of models in preliminary analysis to find the most promising model 

using modified dataset after dropping irrelevant features 

Model 

Test Set Train Set 

RMSE MSE MSE 

SVR  0.111 0.121 0.029 

AdaBoost Regressor  0.110 0.122 0.035 

KNeighbors Regressor  0.112 0.126 0.042 

Gradient Boosting Regressor  0.115 0.138 0.006 

XGBoost Regressor  0.117 0.140 0.000 

Random Forest Regressor  0.118 0.143 0.007 

Bagging Regressor  0.120 0.146 0.011 

Ridge Regresion  0.125 0.149 0.056 

Linear Regression  0.128 0.155 0.055 

Five distinct models were selected from a preliminary analysis of models in order to 

perform hyperparameter tuning. The error of each model after hyperparameter tuning is 

shown in Table 3-10: 

Table 3-10: Error of selected models using modified dataset after dropping irrelevant 

features 

Model MSE Test Set MSE Train Set 

SVR 0.036 0.011 

Random Forest Regressor 0.040 0.011 

XGBoost Regressor 0.035 0.003 

Kneighbors Regressor 0.034 0.016 

Gradient Boosting Regressor 0.035 0.002 

Voting Regressor 0.034 0.007 
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The tuned hyperparameter for each model is as follows (Table 3-11): 

Table 3-11: Value of tuned hyperparameter of selected models using modified dataset 

after dropping irrelevant features 

Model Hyperparameter 

SVR C = 2 

 
degree = 1 

 
epsilon = 0.1 

 
gamma =1 

 
kernel = "rbf" 

Random Forest Regressor max_depth = 5 

 max_features = log2 

 
max_leaf_nodes = 12 

 
min_samples_leaf = 1 

 
min_weight_fraction_leaf = 0.05 

 
n_estimators = 12 

XGBoost Regressor booster = gbtree 

 
eta = 0.05 

 
learning_rate = 0.05 

 
max_depth =  7 

 
min_child_weight = 1 

 
n_estimators = 50 

 
subsample = 0.9 

KNeighbors Regressor  

 
algorithm = 'auto' 

 
leaf_size = 1 
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n_neighbors = 14 

 
p = 1 

Gradient Boosting Regressor learning_rate = 0.2 

 
max_depth = 10 

 
max_features = 2 

 
n_estimators = 8 

The results show that reducing the number of features does not improve accuracy. This is 

likely due to the small size of the data set. The true value versus the predicted value with 

the model is illustrated in Figure 3-5.  
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a) 

  
b) 

  
c) 
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d) 

  
e) 

  
f) 

Figure 3-5: Predicted versus True value of test and train set in a) random forest b) 

gradient boost c) XGBoost d) SVR e) KNeighbors f) Voting regression for the set of 

all 14 heights as an input 

Although the accuracy of the majority of models improved when compared to models that 

did not eliminate less important features from the data set, the models performed poorly on 

the test set, indicating that they are not generalizable and do not perform well with unseen 

data. This may be due to the small sample size. This motivates the work described in  

section3.5, in which a model predicts the surface heat transfer coefficient of a target 

building using only the heights of adjacent blocks. 

3.5 Sets of 5 blocks data set 

The results of feature importance showed that the height of 2-3 blocks before the target 

block has the greatest effect on the target value prediction. Therefore, to solve the problem 

of the limited data set, we examine sets of 5 blocks, excluding the first three blocks in each 

simulation. In other words, as illustrated in Figure 3-6, sets of 5 blocks are considered, and 
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the surface heat transfer coefficient of the fourth block is calculated. Multiple unique sets 

of five can be considered from each simulation, as shown in Figure 3-6. This approach is 

also consistent with the physics and goal of the problem: heat loss from a single building 

is important when designing a building, and the heat loss is expected to depend most 

strongly on the immediate surroundings. 

  

Figure 3-6: schematic of considering sets of five blocks in each simulation (The surface 

heat transfer coefficient of the fourth block in each set of five blocks is calculated.) 

Using this strategy, the database grows substantially in size to include 1360 datasets. 90% 

of the data was used to train the model, while 10% was used to validate it. Several 

regression algorithms were trained on the dataset without hyperparameter tuning in order 

to identify the most promising ones. The MSE and RMSE of each model's test set are 

calculated (Table 3-12). 
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Table 3-12: Error of models in preliminary analysis to find the most promising 

model using sets of 5 blocks dataset  

Model RMSE MSE 

Linear Regression 0.075 0.048 

Ridge Regression 0.075 0.048 

Random Forest Regression 0.066 0.039 

AdaBoost Regression 0.072 0.043 

Bagging Regression 0.068 0.041 

SVR 0.064 0.036 

Kneighbors Regression 0.067 0.040 

XGBoost Regression 0.072 0.046 

Gradient Boosting Regression 0.067 0.039 

Based on the result of the preliminary analysis, SVR, Random Forest, XGBoost, and 

Gradient Boost have been selected to be tuned on the new data set. The errors after 

hyperparameter tuning are as follows (Table 3-13): 

Table 3-13: Error of selected models after hyperparameter tunning using sets of five 

blocs dataset  

Model RMSE MSE 

Random Forest Regression 0.107 0.011 

Support Vector Regression 0.105 0.011 

Gradient Boosting 0.103 0.011 

XGBoost 0.105 0.011 

Voting Regressor 0.103 0.011 

 The tunned hyperparameters for each model are in Table 3-14: 
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Table 3-14: Value of tuned hyperparameter of selected models using sets of 5 blocks 

dataset  

Model HyperParmeter 

SVR C = 10 

 
degree = 3 

 
epsilon = 0.1 

 
gamma = 1 

 
kernel = 'rbf' 

Random Forest Regressor max_depth = 7 

 
max_features = 'auto' 

 
max_leaf_nodes = 20 

 
min_samples_leaf = 1 

 
min_weight_fraction_leaf = 0.005 

XGBoost Regressor booster = 'gbtree' 

 eta =  0.05 

 
learning_rate = 0.05 

 
max_depth = 6 

 
min_child_weight = 2 

 
subsample = 0.9 

Gradient Boosting Regressor learning_rate = 0.01 

 
max_depth = 6 

 
max_features = 2 

 
n_estimators = 240 

 

The prediction versus the true value of each model is illustrated in Figure 3-7: 
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a) b) 

  

c) d) 

 

e) 

Figure 3-7: Predicted versus True value in a) random forest b) gradient boost c) 

XGBoost d) SVR e) Voting regression 
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Even though there is substantial non-linearity in the new data set, the model predictions, 

particularly XGBoost, are reasonable. Non-linearity in new data sets occurs due to the fact 

that we only consider a small portion of the simulation, despite knowing that the 

surrounding environment will affect the outcome. For instance, as depicted in Figure 3-8, 

there may be a situation in which the heights of five adjacent blocks are identical, but the 

heights of the surrounding blocks are different in each simulation, resulting in different 

outcomes. In this case, the ML algorithm will provide one output for the set of input values, 

and this output cannot match the correct value for all the cases illustrated in Figure 3-8. 

 

Figure 3-8: Example of possible non-linearity in data set of 5 blocks 

The sets of 5 blocks have undergone a feature importance analysis for this approach, where 

the objective is to determine the surface heat transfer coefficient of the fourth block, and 

the relative importance of each block height in the input set is illustrated in Figure 3-8. As 

anticipated, the height of the block just upstream of the target block in the direction of the 

wind has the greatest impact on the heat transfer, followed by the height of the target block 
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itself. The importance of H2 and H5 is one-quarter that of the height of the block preceding 

the target block. In both cases, the feature important analysis of et of all the heights in the 

simulation and sets of five heights, the height of the block just upstream of the target 

building and the height of the target building are among the most important features in each 

simulation. Since the upstream block has a shielding effect on the target block, we expect 

the upstream block to have an effect on the heat transfer. The downstream block also affects 

the heat transfer because it affects the wake region structure. 

 

Figure 3-9: Feature importance analysis result on the sets of 5 blocks 

For estimating the heat transfer coefficient of a building, it is not necessary to model the 

entire city; only the heights of a few nearby buildings are required to have a more accurate 

prediction. 

3.6 Comparing model accuracy in different data sets 

In this project, three distinct data sets were utilized. The first uses all of the data and 

features generated by simulation. To mitigate the problem of overfitting in models trained 

with the first data set, a second data set has been defined. The second set is created by 

excluding the less important features from the first dataset. Removing less relevant features 

was ineffective because the data set was too small, so a new data set was generated in order 

to increase the training set using the same number of simulations as previously. In this data 
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set, the sets of five blocks in each simulation have been analyzed; multiple sets from each 

simulation can be included. The error of the different tuned models is shown in Table 3-15. 

Table 3-15: Error of different data sets after hyperparameter tuning (test set error) 
 

MSE 

Model All data Data set after 

dropping less 

important features 

sets of 5 

Random Forest 

Regression 

0.019 0.035 0.011 

Support Vector 

Regression 

0.019 0.018 0.011 

Gradient Boosting 0.019 0.032 0.011 

XGBoost 0.015 0.038 0.011 

Voting Regressor 0.018 0.033 0.011 

 

In the majority of algorithms, dropping import features does not help reduce error or 

generate a more robust model. However, the model is improved by examining the sets of 

5 blocks; despite the fact that there will be a great deal of non-linearity in the data because 

we do not capture the entire simulation and are only considering a portion of each 

simulation, the improvement is due to the larger data set. It is also a practical approach 

because the prediction is made with less information about the building's surroundings. To 

enhance the accuracy of the prediction, a deep learning analysis will be performed on the 

data. 

3.7 Neural Network 

Using the approach of only considering a few surrounding blocks to estimate the surface 

heat transfer coefficient, the number of data sets has exploded to 1360. With this quantity 

of data, we can employ more advanced machine learning algorithms, such as deep learning 

and particularly neural networks. The objective of using a Neural network is to generate a 
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model that is more accurate and general than the models generated in the preceding section 

in order to test the effectiveness of deep learning in estimating the heat transfer coefficient 

using a subset of the available data. 

In ANN models, information propagation occurs through connections that accept 

information from a processing element (neuron) and transmit it to the subsequent neurons. 

Each piece of information is modified by a weight that reflects the importance of input 

variables to each layer's outputs. The pipeline for this project is depicted in the figure 

below. It resembles the pipeline described previously with a distinct optimization process. 

 

Figure 3-10: Pipeline of deep learning analysis 

The Python hyperparameter optimization library SHERPA has been utilized for neural 

network hyperparameter optimization[5]. In this project, the number of neurons in each 

hidden layer, the dropout rate, the learning rate, the Epoch number, and the batch size were 

optimized to achieve the lowest MSE between the predicted and actual values using the 

SHERPA library. To do this, we use a random search optimization with a maximum of one 

thousand iterations for each neural network (NN). The default parameters for the NN 

models are determined by the values that result in the lowest loss. The ReLu activation 

function is used to activate all of the NN models[6]. The last hidden layer is a fully 

connected layer with a dropout. The Adam optimizer technique was chosen to train the NN 

model in order to minimize the MSE, the chosen loss function, between observed and 

predicted values. Only one node is present in the output layer, which represents the surface 

heat transfer coefficient of the target block. The implementation of NN model types is 

performed using the Python package Keras[7], which employs the Python package 

Tensorflow[8] as a backend. Compared to deep neural networks, a shallow network has a 



157 

 

more straightforward structure. Simple designs with few hidden layers and neurons are 

computationally cheaper and less susceptible to overfitting than complicated layouts. 

Increasing the number of hidden layers will dramatically increase the number of network 

connections and, as a result, the number of weights and biases that must be tuned. In this 

study, three distinct network architectures with 2, 3, and 4 hidden layers were investigated 

and optimized. 

3.7.1 Neural network with two hidden layers 

It is vital to investigate the model setup and tune its hyperparameters in order to 

comprehend the performance of the applied method for a particular task.  Hyperparameter 

optimization has been done for the model with two hidden layers having a learning rate 

ranging from 0.01 to 1 and a number of neurons ranging from 0 to 512. Using the Sherpa 

package, the optimized parameters are a learning rate of 0.01 and the first layer of 128 neurons 

and the second layer of 256 neurons. The MSE of the test set is 0.0091, whereas that of the 

train set is 0.0090. Figure 3-11 compares the actual and predicted outcomes of test and training 

data. 

  

a) b) 

Figure 3-11: Actual vs. predicted values for a) training and b) testing set in 2 hidden 

layers deep learning model. 

3.7.2 Neural network with three hidden layers 

For a model with three hidden layers, hyperparameter tuning has been conducted. This 

resulted in the following hyperparameters: a dropout value of 0 (no dropout has been 
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suggested), batch size of 16, epochs number of 250, and the number of neurons in hidden 

layers are 20, 411, and 37. The MSE value of the test set is 0.0088 and for the train set is 

0.00876. Figure 3-12 shows the actual versus the predicted result of the test and train data 

for the three hidden layer models. 

  

a) b) 

Figure 3-12: Actual vs. predicted values for a) training and b) testing set in 3 hidden 

layers deep learning model. 

3.7.3 Neural network with four hidden layers 

The model with four hidden layers has also been studied. The tuned hyperparameters are 

dropout of 0.1 prior to the output layer, and 352, 133, 97, and 127 neurons are in each 

hidden layer. The batch size is 16, the Epochs number is 81, and the validation split ratio 

is set to 0.2. The MSE of train error is 0.0090, and for the test set is 0.0093. Figure 3-13 

shows the actual versus the predicted result of the test and train data, which illustrates the 

inaccuracy of the model while it has accepted error. 
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a) b) 

Figure 3-13: Actual vs. predicted values for a) training and b) testing set in 4 hidden 

layers deep learning model. 

Although the model performs well on both train and test sets, the regularizer term has not 

been studied. In order to determine whether regularizer terms improve accuracy, a set of 

hyperparameters were manually chosen; the resulting values are shown in Table 3-16. 

Table 3-16: selected hyperparameters and their accuracy of neural network with 

four hidden layers 

Layer1 Layer2 Layer3 Layer4 DropOut Regularizer Epochs 
Test 
Error 

Train 
Error 

352 133 97 127 0.2 l2 250 0.008 0.008 

352 133 97 127 0.25 l2 250 0.009 0.008 

32 64 64 32 0.2 l2 200 0.009 0.010 

32 64 64 32 0.3 none 250 0.009 0.009 

32 64 64 32 0.1 l2 200 0.009 0.010 

32 64 64 32 0.3 l2 250 0.009 0.010 

352 133 97 127 0.25 l2 150 0.009 0.009 

352 133 97 127 0.1 l2 270 0.009 0.008 

256 128 64 32 0.2 none 168 0.009 0.008 

32 64 64 32 0.2 none 200 0.009 0.010 
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512 256 64 128 0.2 none 150 0.009 0.008 

256 128 64 8 0.2 l2 350 0.009 0.009 

512 256 64 128 0.3 none 100 0.009 0.008 

352 133 97 127 0.1 l1_l2 250 0.009 0.011 

32 64 64 32 0.4 none 200 0.010 0.010 

32 64 64 32 0.4 l2 200 0.010 0.011 

256 128 64 32 0.3 l2 500 0.010 0.007 

256 128 64 8 0.2 none 350 0.010 0.007 

352 133 97 127 0.25 none 1200 0.011 0.004 

352 133 97 127 0.25 l2 1200 0.011 0.005 

256 128 64 32 0.2 l2 1200 0.011 0.006 

256 128 64 32 0.3 none 500 0.011 0.006 

512 256 64 128 0.2 none 1200 0.012 0.003 

By increasing the dropout value and adding a l2 regularizer term, the accuracy is improved. 

The predicted value versus the actual value is shown in Figure 3-14. 

  

a) b) 

Figure 3-14: Predicted versus true value in a) test b) train set using 4 layers neural 

network with drop out of 0.2 and l2 regularizer 
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3.8 Conclusion  

This study investigates the application of cutting-edge machine learning models to examine 

machine learning's capacity to forecast the surface heat transfer coefficient of a building. 

The results of 204 distinct simulations with the same domain and varied block sizes were 

used for this purpose. Several advanced machine learning regression models, including 

Random forest, SVR, XGBoost, Gradient Boosting, and deep learning, were tuned, trained, 

and evaluated on the dataset. K-fold cross-validation was employed during the tuning phase 

to ensure that generalized models were developed. The results demonstrate that the models 

accurately represented the underlying principles that contribute to the surface heat transfer 

coefficient of buildings. In addition, the diversity of the algorithms utilized in this study 

demonstrates the robustness of ML algorithms for data analysis despite the dataset's 

complexity and strong non-linearity. The prediction accuracy for the training set utilizing the 

entire dataset was quite high, whereas it was very poor for the testing set. For certain models, 

the inaccuracy of the test set was double that of the train set. This indicates that models for this 

dataset suffer from overfitting and lack of generalization to new, unknown data. Subsets of five 

blocks were then considered to increase the data set size. For this larger dataset, the three 

distinct NN models and machine learning models described previously were implemented. 

The root means squared error (RMSE) and mean square error (MSE) are tracked to evaluate 

each model's performance. The deep learning model's performance was superior to that of 

the machine learning model. The difference between the statistical errors of train and test 

data in deep learning models was less than in conventional machine learning models. 

Similar sized errors indicate good performance; there is a limit to how small the errors can 

get due to the non-linearity illustrated in Figure 3-8. 

Moreover, In urban locations, the wind flow around a building is commonly affected by 

adjacent buildings owing to buffeting, channelling, and sheltering [9]–[11]. Tominaga[12] 

suggests modelling the surrounding buildings within a 1H-2H radius of the target building, 

plus at least one additional block in each direction to completely consider the effect of the 

surrounding. Tong [13]suggested explicitly modelling three layers of buildings in the 

surroundings (n=3) for regular street canyons (H/W=1, where H is the building height on 

the street side and W is the street width) under normal and oblique wind directions while 
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reducing the influence region to two layers (n=2) for wide canyons (H/W=1/3) and a high-

rise configuration. These recommendations are consistent with the findings of this study's 

feature importance analysis, which indicate we must consider the height of two buildings 

in the wind direction before and after the target building. This result is very encouraging 

as it allows engineers to accurately estimate the surface heat transfer of each block while 

considering the surrounding environment with minimal computational costs. This work 

also demonstrates that for specified environmental conditions, ML could be used to 

estimate the surface heat transfer coefficient of a building based on the geometry of a few 

of the surrounding buildings. 
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Chapter 4  

4 Conclusion 

Several environmental flows, such as flow over a series of buildings and flow over a 

vegetation canopy, can be idealized as flow over an array of blocks. The blocks present a 

stiff barrier in the flow, which leads to the formation of a boundary layer above and around 

the obstruction. Due to the extensive industrial applications and environmental impacts of 

barriers on flow behaviour, it is vital to grasp the flow near obstructions. This block may 

represent an urban building; studying the flow around urban buildings can aid in the 

comprehension of pollution dissipation and the creation of more energy-efficient 

structures. Especially in the current era, when global warming poses a significant threat to 

humankind, any action that can conserve energy is crucial. On the other hand, this block 

may represent a submerged canopy, which has an effect on coastal habitats' shielding, 

sediment production and erosion, and carbon sequestration. In this research, a 2D idealized 

simulation was undertaken to examine the influence of height variation, and more 

specifically, the statistics of height variation, inside a single cluster of obstacles. Two 

hundred four simulations were performed for random block heights with a mean height 

value of 1 and standard deviation values of 0.1, 0.2, 0.3, 0.4, skewness values of -0.3, -0.2, 

-0.1, 0.1, 0.2, 0.3, and first block height values of 0.75, 0.90, 1.10, 1.2. 

The height of the first block has a considerable impact on the wake structure; a taller initial 

block causes a more abrupt shift in the flow when it hits the array of blocks. The height of 

the first block has a strong direct correlation with pressure drop; however, the height of the 

first block and heat flux are not strongly correlated, as shown by the large variety in slopes. 

Other than the average height, the standard deviation is the most important factor in 

determining heat flux and pressure drop. The amount of heat flux and pressure drop 

increases as the standard deviation, which corresponds to a big disparity in heights, grows. 

In addition, there was no clear link between heat flux and pressure drop and skewness. As 

a result of the large variation in heat flux values, we have less confidence in trends derived 

from heat flux. Quantitatively, when the standard deviation of block heights increased from 

0.1 to 0.4, the pressure drop increased by 60%, while heat flux increased by 13%. 
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The distinct regimes of skimming, wake interference, and the isolated regime have been 

demonstrated and utilized in published works. In accordance with the conditions of this 

study, simulations with the same block height and different spacing are conducted to 

analyze different regimes and the metric used to determine which regime each block 

belongs to. Skimming flow (h/s > 0.65), wake interference (0.65 > h/s > 0.1), and isolated 

(h/b > 0.1) regimes are all observed in the simulations. The effect of the regime on the 

correlation between pressure drop and standard deviation has been investigated. The result 

shows that the association between the standard deviation of block heights and pressure 

drop is hardly influenced by simulation regime type. The pattern of rising pressure drop 

with increasing standard deviation is similar regardless of whether simulations with all 

regimes or simulations with just the wake interference regime are included. 

Sets of simulations with varying average heights have been generated, and it has been 

demonstrated that increasing the average height of the blocks increases the total heat flux 

and pressure drop. These simulations also verified the conclusion made from the effect of 

the standard deviation of heights on the total pressure drop. 

We cannot precisely predict the pressure drop, overall heat flux, or block heat transfer 

coefficient based on the block height statistics because having the same statistic does not 

guarantee the same result. Six simulations with the same first block height, standard 

deviation, and skewness but different block heights were analyzed to identify qualitative 

differences between simulations with the same statistical properties but different pressure 

drops and heat fluxes. Results show that the height difference between the first two blocks 

along the wind path has the greatest influence on the total heat flux and pressure drop, 

followed by the height differences of adjacent blocks along the path. This proves that the 

height arrangement of the blocks and how they affect each other also matter. For example, 

a taller downstream block will change the wake structure.  

As the height difference between the first two blocks plays a significant role in determining 

the pressure drop, its influence has been studied in greater depth. In situations with a 

smaller standard deviation, the relationship between height difference and pressure drop is 

very direct. However, as the standard deviation increases, the relationship between pressure 
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drop and height difference becomes obscure. It is also proven that when the second obstacle 

is larger than the first one, the standard deviation has a higher effect on the total pressure 

drop compared with the case where the second obstacle is smaller. The largest pressure 

drop value is achieved by combining a high standard deviation with a greater first block 

than the second one. 

A few statistical parameters are unable to fully capture the detailed flow behaviour. In order 

to comprehend the non-linearity and determine whether machine learning can perform well 

on this task, machine learning models were utilized to predict the heat transfer coefficient 

of each block. In this work, the simulation data were employed as input for the ML models. 

On the dataset, a number of advanced machine learning regression models, such as Random 

forest, SVR, XGBoost, Gradient Boosting, and deep learning, were tuned, trained, and 

evaluated. During the tuning phase, K-fold cross-validation was used to ensure the 

generalization of the models. The study indicates that machine learning is able to tackle 

underlying non-linearity and estimate the surface heat transfer coefficient of buildings with 

decent accuracy. 

First, the data set contained the information of all 14 blocks within a single simulation. The 

accuracy of the model on the train set was much better than the accuracy of the model using 

the test set. For certain models, the inaccuracy of the test set was double that of the train 

set. This indicates that models for this dataset suffer from overfitting and lack of 

generalization to new, unknown data. 

In order to tackle the overfitting problem, the inputs were reduced to the six most important 

block heights. In order to find the more important features, a feature importance analysis 

was conducted. This approach did not improve the accuracy, which may be due to the small 

size of the data set, which is 204. 

Based on the result of feature importance and the work done in the literature, we know that 

only a few surrounding buildings of the target building are important to consider. 

Therefore, a new data set of groups of five consecutive blocks have been created to predict 

the heat transfer coefficient of the fourth block in the group, which significantly increased 

the size of the data set. For this larger dataset, the three distinct NN models and machine 
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learning models were implemented. The deep learning model's performance was superior 

to that of the machine learning model. The difference between the statistical errors of the 

train and test data set in deep learning models was less than in conventional machine 

learning models. 

4.1 Future work 

Due to the complexity of the flow studied in this project, we cannot assert that we have 

constructed a flawless analysis of height variation in this thesis study if such a model ever 

exists. There are several limits to this research, and there are various ways this issue might 

be further researched. First, the low amount of accessible data limits the predictive 

capabilities of the models in this investigation. Our model's effectiveness and the 

conclusiveness of our findings might be enhanced with further data. In addition, this 

research used idealized simulations. By including additional characteristics in our 

simulation, such as surface roughness, buoyancy effect and turbulence intensity, we may 

get more realistic predictions from machine learning models. On the other hand, the study 

was conducted in a 2D environment, which may not accurately represent the real world, 

and studying 3D simulation would unquestionably add a great deal to this topic. The data 

may also be confirmed by the experimental work, and the ML models can be checked 

utilizing the outcome of experimental data. 
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Appendices  

Appendix A: Heights of blocks in each simulation 

Simulation 
number 

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 

Simulation 1 0.90 0.90 1.04 1.00 0.96 1.03 0.81 0.99 0.89 1.12 1.15 1.05 1.08 1.11 

Simulation 2 0.77 1.03 1.07 1.12 0.96 1.06 1.02 1.02 0.97 0.96 1.20 0.97 0.96 0.94 

Simulation 3 1.20 0.80 1.00 0.99 0.96 1.02 0.84 1.05 1.03 1.10 1.06 0.94 1.05 0.96 

Simulation 4 0.91 1.18 0.95 1.07 1.03 1.05 1.04 0.93 1.09 1.06 0.82 1.01 0.99 0.85 

Simulation 5 0.78 0.87 1.01 0.93 0.99 0.94 1.11 1.00 1.01 1.12 1.06 0.96 1.00 1.18 

Simulation 6 1.19 1.07 0.96 1.01 1.09 1.01 0.98 0.95 0.80 0.87 0.93 1.05 1.08 1.06 

Simulation 7 0.90 1.12 0.98 0.95 0.83 1.04 1.13 1.06 1.17 0.90 0.95 0.94 0.92 1.10 

Simulation 8 0.78 0.90 1.00 1.10 1.02 1.02 0.99 0.95 1.24 0.98 1.04 1.03 1.01 0.95 

Simulation 9 1.19 0.96 0.90 0.90 0.97 0.97 1.02 1.07 1.09 1.13 0.94 0.82 1.04 1.00 

Simulation 10 0.89 1.03 0.96 1.09 0.86 0.93 1.11 0.95 0.94 1.17 0.89 1.13 1.11 0.95 

Simulation 11 0.78 0.98 0.95 1.00 1.02 1.23 0.96 0.98 0.97 0.96 1.15 1.02 0.94 1.07 

Simulation 12 1.20 0.89 1.03 1.03 1.00 0.92 1.03 1.12 0.97 0.83 0.96 0.89 1.14 1.00 

Simulation 13 0.90 0.65 1.18 1.16 1.12 1.10 0.67 0.88 1.31 0.92 1.19 0.89 0.88 1.09 

Simulation 14 0.75 0.98 1.17 0.86 1.00 0.97 1.12 0.66 1.19 1.28 1.18 1.20 0.93 0.75 

Simulation 15 1.20 0.87 1.14 0.86 0.75 0.83 1.06 1.30 1.16 0.62 1.05 0.89 1.20 1.04 

Simulation 16 0.90 0.82 1.17 1.23 1.20 1.01 0.58 0.93 1.35 0.95 0.85 1.07 1.07 0.87 

Simulation 17 0.75 0.83 1.09 1.10 1.09 0.99 1.20 0.82 0.98 1.11 1.09 1.36 0.61 0.93 

Simulation 18 1.20 0.71 1.09 1.09 1.01 1.27 1.27 1.02 0.93 1.16 0.72 0.72 0.95 0.86 

Simulation 19 0.90 1.10 0.78 0.96 1.01 1.04 1.29 0.72 0.93 1.33 0.95 0.98 0.68 1.26 

Simulation 20 0.75 0.91 0.70 1.04 1.35 0.93 1.35 1.04 1.02 1.01 0.70 1.14 1.07 0.96 

Simulation 21 1.20 1.45 1.14 0.94 1.05 0.84 1.09 0.59 0.92 0.93 0.83 1.04 1.04 0.95 

Simulation 22 0.90 0.97 0.92 1.00 0.83 0.99 0.71 0.71 1.24 0.81 1.39 1.15 1.15 1.15 

Simulation 23 0.75 1.29 0.89 0.92 0.94 1.28 0.69 1.16 0.85 1.32 0.99 0.96 0.86 1.10 

Simulation 24 1.20 0.92 0.78 1.39 1.09 0.98 0.73 1.01 0.99 1.04 0.76 1.25 0.75 1.05 

Simulation 25 0.90 0.82 0.41 0.80 1.25 1.47 1.32 0.64 1.27 1.18 1.21 1.03 0.99 0.74 

Simulation 26 0.75 1.02 0.78 0.51 1.02 0.85 0.74 1.22 1.24 1.33 1.00 1.39 0.39 1.08 

Simulation 27 1.20 1.07 1.34 0.81 0.89 0.91 1.43 0.43 1.12 0.45 0.76 1.01 0.81 1.19 

Simulation 28 0.90 1.02 1.21 0.45 0.98 0.71 1.16 1.51 1.34 1.26 0.58 1.03 0.80 1.04 

Simulation 29 0.75 1.13 1.00 0.59 0.47 1.12 1.35 1.20 0.98 1.00 0.69 0.97 1.50 1.30 

Simulation 30 1.20 1.32 0.87 0.78 1.06 0.47 1.32 0.87 0.93 0.89 0.53 1.06 1.23 1.50 

Simulation 31 0.90 0.74 1.11 1.13 0.54 1.36 0.81 1.05 1.09 0.55 1.58 1.34 0.83 0.95 

Simulation 32 0.75 1.08 1.32 1.35 0.74 0.89 1.49 0.79 0.70 0.83 0.53 1.26 0.95 1.35 

Simulation 33 1.20 0.54 0.63 1.23 1.04 0.95 0.89 1.21 0.87 1.09 1.58 1.34 0.73 0.68 

Simulation 34 0.90 1.10 1.00 1.42 0.60 1.60 0.94 1.17 1.20 0.90 0.63 0.79 0.59 1.21 

Simulation 35 0.75 0.52 0.92 0.71 1.09 1.60 1.37 1.23 1.12 1.25 0.87 1.10 0.73 0.80 

Simulation 36 1.20 1.15 0.63 1.16 0.60 0.83 1.16 1.04 0.71 0.82 0.69 0.99 1.48 1.54 

Simulation 37 1.10 0.99 0.90 1.07 0.92 1.12 1.09 1.10 1.09 1.02 0.88 0.84 1.00 0.88 
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Simulation 38 1.10 0.98 0.99 0.97 0.94 1.08 0.97 1.15 0.99 0.80 1.06 0.89 0.97 1.13 

Simulation 39 1.10 1.08 0.87 0.93 0.99 0.90 1.08 0.93 0.97 1.04 1.16 0.86 1.15 0.95 

Simulation 40 1.10 1.02 1.03 0.94 1.16 0.87 1.17 0.88 1.05 0.93 0.86 1.03 1.01 0.94 

Simulation 41 1.10 0.83 0.84 0.67 1.18 1.26 1.00 1.21 0.71 0.98 0.81 1.23 1.16 1.05 

Simulation 42 1.10 1.21 0.97 1.07 0.65 1.20 0.99 1.02 0.90 1.26 0.75 0.83 1.27 0.77 

Simulation 43 1.10 0.95 0.88 1.26 0.69 0.89 0.78 1.17 0.78 1.36 1.20 1.09 0.90 0.98 

Simulation 44 1.10 1.03 0.91 0.74 0.91 0.77 0.78 0.97 1.04 1.33 1.26 1.07 1.30 0.78 

Simulation 45 1.10 1.30 1.06 0.80 0.99 1.04 0.77 1.12 0.47 0.54 1.41 0.76 1.26 1.40 

Simulation 46 1.10 0.43 0.91 0.68 1.05 0.61 0.87 1.09 1.40 0.85 1.29 0.97 1.26 1.46 

Simulation 47 1.10 1.19 1.51 0.68 1.34 1.40 0.57 0.79 0.86 1.22 0.73 0.67 1.02 0.95 

Simulation 48 1.10 1.14 0.54 1.10 0.68 1.08 0.94 1.60 1.03 0.59 0.83 1.08 0.81 1.42 

Simulation 49 0.80 1.04 1.03 1.01 0.99 0.98 0.94 1.01 1.02 1.03 1.23 0.95 1.10 0.89 

Simulation 50 1.00 0.94 1.02 0.86 0.88 0.96 1.12 1.05 1.16 0.94 1.03 0.85 1.02 1.17 

Simulation 51 0.80 1.11 1.13 0.76 1.35 0.92 0.98 1.08 1.17 0.96 0.97 0.70 0.78 1.32 

Simulation 52 1.00 0.97 1.07 0.98 0.91 0.70 0.67 1.24 1.17 0.89 1.05 1.08 0.84 1.41 

Simulation 53 0.75 0.86 0.81 0.87 1.09 1.19 0.96 1.03 1.01 1.06 1.01 1.31 1.08 0.95 

Simulation 54 0.75 0.64 0.97 1.07 0.60 0.85 1.00 1.05 1.22 1.13 1.55 1.23 1.07 0.90 

Simulation 55 0.90 0.90 0.84 1.15 1.04 1.27 1.07 1.09 0.69 1.13 0.97 1.08 0.97 0.92 

Simulation 56 0.90 1.34 1.34 1.05 1.21 0.98 0.74 1.00 1.19 0.94 0.51 0.86 0.70 1.23 

Simulation 57 1.20 0.83 1.01 1.22 1.02 1.09 0.76 1.01 1.40 1.02 0.70 1.13 0.75 0.85 

Simulation 58 1.20 0.83 1.06 0.97 0.96 0.93 0.86 0.82 1.23 1.08 0.68 1.29 1.33 0.78 

Simulation 59 0.75 1.61 1.13 0.78 0.64 0.90 1.14 0.69 0.86 0.58 1.18 1.22 1.29 1.25 

Simulation 60 0.90 1.20 1.09 1.53 1.75 0.72 1.17 0.11 0.92 0.87 1.20 0.56 1.00 1.00 

Simulation 61 0.75 0.22 0.77 0.79 1.27 0.67 1.24 1.45 1.24 1.03 0.51 1.59 1.02 1.47 

Simulation 62 1.10 0.83 0.82 0.27 0.30 1.70 1.17 0.68 1.13 1.01 1.33 1.05 1.49 1.06 

Simulation 63 1.20 1.08 1.05 0.11 1.41 1.10 0.75 0.55 1.73 0.79 1.46 0.99 0.91 0.83 

Simulation 64 0.90 1.02 1.25 1.68 1.61 0.82 1.21 0.81 1.04 1.23 0.20 0.86 0.42 0.98 

Simulation 65 0.75 0.35 1.08 0.87 1.77 1.34 1.02 0.97 0.71 1.22 0.27 1.27 1.11 1.23 

Simulation 66 1.10 0.88 0.82 1.64 0.97 0.73 1.53 0.21 1.00 0.81 0.50 1.36 1.10 1.41 

Simulation 67 1.20 1.04 1.63 1.36 1.14 0.48 1.27 0.26 0.70 1.55 1.06 0.75 0.94 0.65 

Simulation 68 0.90 1.52 1.37 1.18 1.73 0.43 0.81 1.35 0.89 0.66 0.39 1.12 0.87 0.73 

Simulation 69 0.75 1.54 0.84 1.18 0.94 1.59 0.67 1.00 1.60 1.38 0.54 0.62 1.02 0.37 

Simulation 70 1.10 1.08 1.56 0.92 0.93 1.56 0.82 0.66 0.62 1.62 0.76 0.31 1.39 0.69 

Simulation 71 1.20 1.37 1.22 0.33 0.69 0.82 1.18 1.84 1.06 0.63 0.45 0.85 1.05 1.27 

Simulation 72 0.90 0.83 0.93 0.95 0.60 1.46 0.62 0.52 0.43 1.48 1.21 1.08 1.76 1.29 

Simulation 73 0.75 0.96 1.33 0.45 1.45 0.51 1.76 0.74 0.59 0.78 1.39 1.36 1.18 0.80 

Simulation 74 1.10 1.75 0.93 0.51 0.74 0.85 0.93 1.35 1.60 0.88 0.30 1.32 0.94 0.75 

Simulation 75 1.20 0.81 1.29 1.83 1.20 0.42 0.74 1.16 0.99 1.46 0.56 0.89 0.42 0.98 

Simulation 76 0.90 1.00 1.16 1.34 0.87 0.90 0.76 1.79 0.35 1.39 0.34 0.98 1.42 0.78 

Simulation 77 0.75 1.51 0.88 0.73 0.48 0.92 0.33 1.68 1.13 1.04 0.65 1.52 1.10 1.31 

Simulation 78 1.10 0.92 0.61 1.37 1.07 0.50 0.81 1.79 0.85 1.47 0.99 1.12 1.09 0.25 

Simulation 79 1.20 0.33 1.03 1.35 0.92 1.08 1.64 0.84 1.02 0.43 1.09 1.68 0.62 0.74 

Simulation 80 0.90 1.34 0.86 0.83 1.34 0.52 0.98 1.46 0.71 1.25 1.31 1.04 0.79 0.67 
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Simulation 81 0.75 0.89 0.95 1.05 1.36 1.06 1.31 0.76 0.85 1.57 0.43 1.26 0.74 1.07 

Simulation 82 1.10 0.44 0.67 0.97 1.05 1.53 1.42 1.00 1.25 0.83 0.83 1.27 0.74 0.84 

Simulation 83 1.20 0.55 1.36 1.49 0.66 0.81 0.70 0.67 1.08 1.15 0.91 0.87 1.15 1.33 

Simulation 84 0.90 0.90 0.69 1.12 0.74 0.90 1.30 1.21 1.09 1.23 1.27 0.95 0.88 0.87 

Simulation 85 0.75 1.35 0.96 1.19 0.89 1.14 0.72 0.87 0.91 1.00 1.24 0.72 1.19 1.07 

Simulation 86 1.10 0.75 1.18 1.40 0.96 1.13 1.10 0.74 1.09 0.98 0.69 1.02 0.82 1.02 

Simulation 87 1.20 0.89 1.33 1.07 0.67 0.81 1.01 0.92 0.80 1.12 1.26 0.90 0.87 1.19 

Simulation 88 0.90 1.01 1.13 0.97 0.86 0.83 1.04 1.00 1.01 1.08 1.03 1.19 1.00 0.92 

Simulation 89 1.10 1.00 0.82 0.92 0.97 1.05 1.21 0.95 1.05 0.95 0.87 1.04 1.05 1.06 

Simulation 90 1.20 1.08 1.01 1.07 1.04 0.83 0.99 0.92 0.98 0.88 1.09 1.01 1.01 0.89 

Simulation 91 0.90 1.12 0.66 0.91 0.51 0.80 1.59 1.47 1.52 1.41 0.95 0.25 0.70 1.19 

Simulation 92 0.75 1.22 1.42 1.30 1.80 0.75 0.86 1.10 1.33 0.70 0.85 0.88 0.13 0.96 

Simulation 93 1.10 1.22 1.03 1.49 0.51 0.66 1.19 1.18 0.67 0.28 1.61 1.52 0.68 0.84 

Simulation 94 1.20 0.58 1.42 0.87 0.98 0.56 1.01 0.25 1.11 1.32 0.96 1.39 1.72 0.65 

Simulation 95 0.90 0.66 0.92 1.18 0.45 1.57 0.72 1.25 1.20 1.11 1.21 0.96 1.20 0.68 

Simulation 96 0.75 1.17 0.92 0.75 0.52 0.93 0.57 1.19 1.36 1.45 1.11 1.14 1.36 0.81 

Simulation 97 1.10 0.49 0.90 0.84 0.96 1.20 1.38 1.18 0.85 1.08 1.02 0.92 1.58 0.44 

Simulation 98 1.20 1.25 1.10 0.98 0.52 1.02 0.64 1.27 0.58 1.56 0.83 1.21 1.12 0.78 

Simulation 99 0.90 0.64 0.85 1.00 1.30 1.22 0.71 1.02 1.29 1.13 1.04 1.04 0.82 0.97 

Simulation 100 0.75 1.20 0.69 1.30 0.75 0.94 1.01 0.80 1.19 0.87 1.14 1.12 0.98 1.20 

Simulation 101 1.10 1.05 1.23 1.17 0.88 0.83 1.10 1.17 0.68 1.01 0.86 0.71 0.84 1.31 

Simulation 102 1.20 0.89 1.15 0.80 0.68 1.24 0.93 0.89 0.81 1.02 1.21 1.23 1.17 0.75 

Simulation 103 0.90 1.09 1.04 1.02 0.88 1.08 0.83 0.90 1.03 0.97 1.17 1.03 1.04 1.08 

Simulation 104 0.75 0.91 1.07 0.98 1.02 1.02 1.02 1.01 1.22 0.98 0.96 1.01 0.97 1.05 

Simulation 105 1.20 1.01 1.03 1.04 1.01 1.03 1.04 0.80 1.07 1.00 0.98 0.84 0.94 1.03 

Simulation 106 0.90 0.98 1.01 0.79 0.87 1.04 1.04 0.88 1.04 1.02 1.06 1.03 1.20 1.10 

Simulation 107 0.75 1.22 1.02 0.94 1.08 1.01 0.99 0.98 1.02 1.08 0.96 1.02 0.94 0.93 

Simulation 108 1.20 0.97 0.98 1.05 1.00 1.10 1.03 1.06 0.87 1.02 0.79 1.07 0.90 0.95 

Simulation 109 0.90 0.97 1.06 0.89 1.12 1.18 1.04 0.99 0.87 1.07 1.03 0.93 1.03 0.86 

Simulation 110 0.75 0.99 1.03 0.92 1.09 1.01 1.00 0.99 0.99 0.93 0.93 0.98 1.25 1.03 

Simulation 111 1.20 0.87 1.06 1.04 0.95 0.91 1.00 1.04 1.07 0.95 0.84 1.06 0.92 1.05 

Simulation 112 0.90 0.98 0.93 0.81 1.07 0.96 1.22 1.03 1.03 1.03 1.09 0.97 1.07 0.92 

Simulation 113 0.77 0.94 1.00 0.97 1.07 0.99 0.91 0.90 0.98 0.98 1.19 1.01 0.94 0.87 

Simulation 114 1.20 0.93 1.04 1.17 1.05 0.91 1.05 0.99 0.98 1.00 0.99 0.90 0.82 1.05 

Simulation 115 0.90 1.11 1.15 0.86 1.10 0.85 1.30 1.23 1.17 0.88 1.13 0.98 0.66 0.68 

Simulation 116 0.75 0.80 1.16 1.17 1.28 1.21 1.21 0.80 0.84 1.23 0.76 1.06 0.99 1.15 

Simulation 117 1.20 1.16 0.60 1.00 0.84 0.95 1.11 1.32 0.74 0.93 1.02 1.00 0.88 1.23 

Simulation 118 0.90 0.76 0.98 0.99 1.01 1.01 1.18 1.21 1.22 0.59 0.89 0.94 1.37 1.05 

Simulation 119 0.75 0.65 0.95 1.02 1.21 1.13 0.83 0.90 1.13 1.27 1.18 0.79 0.93 1.23 

Simulation 120 1.20 0.73 1.17 0.65 0.84 0.80 0.82 1.10 1.15 1.04 0.98 1.00 1.23 1.31 

Simulation 121 0.90 1.17 1.10 0.82 1.22 0.77 1.03 1.05 1.28 1.32 0.99 0.88 0.81 0.73 

Simulation 122 0.75 0.70 1.01 0.98 1.04 0.97 1.17 1.42 0.72 1.22 1.03 1.02 1.09 0.92 

Simulation 123 1.20 1.03 1.12 0.80 1.09 1.05 1.13 1.43 1.00 0.98 0.73 0.77 0.96 0.67 
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Simulation 124 0.90 1.30 1.16 1.34 0.97 0.75 1.03 1.07 0.86 1.22 0.80 0.77 0.77 1.04 

Simulation 125 0.75 1.10 0.87 0.85 1.24 1.01 1.23 0.80 1.39 1.09 0.90 1.12 0.70 0.96 

Simulation 126 1.20 1.22 0.96 1.07 0.83 0.86 0.87 0.89 0.86 0.80 1.32 1.27 0.72 1.14 

Simulation 127 0.90 1.30 1.23 0.84 1.11 1.20 0.47 1.41 0.98 1.38 0.65 0.59 0.79 1.16 

Simulation 128 0.75 1.60 1.12 1.03 0.58 1.00 1.02 0.88 0.37 1.22 1.26 1.07 0.95 1.20 

Simulation 129 1.20 1.20 0.35 1.41 0.88 1.10 0.83 0.77 1.09 0.66 1.52 0.92 1.17 0.94 

Simulation 130 0.90 1.09 1.30 1.34 1.22 0.65 1.39 0.77 0.94 0.81 0.46 0.75 1.37 1.07 

Simulation 131 0.75 1.11 0.95 0.95 1.26 0.61 1.19 1.45 0.51 0.82 0.62 1.37 1.20 1.22 

Simulation 132 1.20 1.35 1.08 0.50 0.82 0.80 1.41 1.14 1.13 1.06 0.62 0.89 1.38 0.64 

Simulation 133 0.90 0.97 0.75 1.53 0.84 0.65 1.48 0.99 1.22 0.78 1.10 0.48 1.06 1.30 

Simulation 134 0.75 1.37 1.06 0.57 1.21 0.75 1.52 0.80 1.29 0.83 0.81 0.60 1.29 1.10 

Simulation 135 1.20 0.80 1.62 0.53 0.86 1.28 0.57 1.20 0.86 1.00 1.14 1.10 0.69 1.12 

Simulation 136 0.90 0.91 1.14 1.05 1.17 0.80 0.73 1.50 0.46 0.94 0.90 1.22 1.54 0.76 

Simulation 137 0.75 1.44 1.13 1.11 0.65 1.18 1.36 0.69 0.98 1.07 0.75 0.65 0.79 1.49 

Simulation 138 1.20 1.09 1.09 0.95 0.53 0.89 1.16 0.98 0.51 1.15 1.03 1.00 1.68 0.69 

Simulation 139 1.10 1.17 0.83 0.95 1.01 0.89 1.05 0.98 1.02 1.08 1.01 0.83 1.07 0.99 

Simulation 140 1.10 1.01 1.13 1.13 0.96 0.92 1.09 0.82 0.96 1.04 0.96 1.05 0.87 0.93 

Simulation 141 1.10 0.91 1.01 1.11 1.01 1.05 0.88 1.00 1.20 1.01 0.85 1.07 0.87 0.93 

Simulation 142 1.10 0.94 0.85 1.11 1.04 0.97 0.98 0.96 0.99 1.14 0.95 0.94 1.17 0.86 

Simulation 143 1.10 1.20 0.96 0.77 0.88 1.31 1.16 0.60 0.92 0.95 0.92 1.19 0.89 1.17 

Simulation 144 1.10 1.14 0.98 0.69 1.01 1.14 0.97 1.06 1.39 1.17 0.63 0.99 0.95 0.82 

Simulation 145 1.10 0.81 1.46 0.59 1.09 1.06 0.88 1.05 1.17 0.96 0.86 1.04 1.07 0.88 

Simulation 146 1.10 0.74 0.96 0.93 1.22 1.05 0.89 1.31 0.69 1.13 0.81 1.35 0.88 0.94 

Simulation 147 1.10 0.91 0.98 1.07 0.93 0.60 1.23 1.33 0.67 1.14 0.78 1.46 0.43 1.33 

Simulation 148 1.10 0.43 0.99 1.09 0.87 0.75 1.19 1.56 0.92 1.34 0.93 0.53 1.14 1.10 

Simulation 149 1.10 0.84 1.34 1.13 0.59 0.56 0.91 1.61 0.88 0.90 0.58 1.16 1.22 1.12 

Simulation 150 1.10 0.53 1.11 1.53 0.86 1.08 1.17 0.87 0.80 1.53 0.80 1.20 0.60 0.89 

Simulation 151 0.80 0.95 1.00 1.03 0.96 1.08 1.00 1.22 0.97 0.97 1.12 1.01 1.02 0.93 

Simulation 152 1.00 0.94 1.07 0.92 0.92 0.82 0.95 1.04 0.95 1.15 1.00 1.01 1.06 1.18 

Simulation 153 0.80 1.14 0.92 0.97 0.68 0.81 1.29 0.91 1.20 1.25 0.84 0.99 1.30 0.93 

Simulation 154 1.00 1.11 1.45 0.86 0.97 0.90 0.84 0.97 0.90 1.18 0.58 1.02 1.09 1.16 

Simulation 155 0.75 0.83 1.22 1.09 0.99 1.12 0.96 1.04 1.32 0.99 0.81 1.03 0.98 0.92 

Simulation 156 0.75 1.07 1.21 0.87 1.54 0.81 0.54 0.94 1.03 0.85 1.09 0.92 1.15 1.28 

Simulation 157 0.90 0.90 1.20 0.90 1.12 1.12 0.90 1.10 1.01 1.22 0.98 0.87 1.13 0.69 

Simulation 158 0.90 0.67 0.81 1.26 0.72 0.53 1.08 1.34 1.25 0.93 1.30 1.15 1.11 0.93 

Simulation 159 1.20 0.80 0.68 1.13 1.40 0.75 1.15 1.13 0.85 1.16 0.86 0.88 1.02 0.97 

Simulation 160 1.20 1.33 0.96 0.97 0.67 0.97 1.18 1.33 1.03 0.89 0.76 0.79 0.98 1.00 

Simulation 161 0.75 1.59 0.39 0.93 0.80 1.03 1.08 1.07 1.00 1.14 0.82 1.00 0.84 1.53 

Simulation 162 0.90 0.83 0.33 0.47 1.25 0.88 0.42 1.16 1.30 1.00 1.51 1.15 1.64 1.27 

Simulation 163 0.75 1.17 1.08 1.35 1.37 0.95 1.23 0.26 1.43 1.06 1.64 0.59 0.75 0.50 

Simulation 164 1.10 1.62 0.92 1.12 0.75 1.42 0.89 0.46 0.33 0.47 1.42 1.29 1.02 1.31 

Simulation 165 1.20 0.67 0.67 0.34 1.37 1.52 1.00 1.43 0.41 0.96 0.62 1.45 1.31 1.09 

Simulation 166 0.90 1.46 0.61 1.62 1.39 0.55 1.05 0.24 1.40 0.67 1.03 0.95 0.90 1.28 
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Simulation 167 0.75 0.35 1.31 0.74 0.50 1.01 1.21 1.34 1.31 1.39 0.71 0.51 1.24 1.61 

Simulation 168 1.10 0.65 1.51 1.31 0.50 0.71 1.62 0.32 0.99 1.32 1.08 1.21 1.11 0.51 

Simulation 169 1.20 1.52 0.83 1.12 0.18 1.28 1.00 1.02 1.72 0.57 1.02 1.18 0.76 0.54 

Simulation 170 0.90 1.17 0.97 1.64 1.09 0.82 1.17 1.16 0.79 0.31 1.75 0.43 1.08 0.66 

Simulation 171 0.75 0.67 0.63 0.99 1.26 0.74 1.10 0.60 1.37 1.38 0.94 0.36 1.70 1.49 

Simulation 172 1.10 0.27 0.94 1.29 1.76 1.10 1.62 0.76 0.63 1.27 0.80 1.04 0.57 0.86 

Simulation 173 1.20 1.30 0.56 0.50 1.67 0.96 1.00 0.84 0.91 1.00 0.52 1.47 1.52 0.50 

Simulation 174 0.90 0.87 0.41 1.37 0.33 0.90 1.88 0.98 1.14 1.19 0.71 0.80 1.21 1.29 

Simulation 175 0.75 0.90 0.90 1.14 0.19 1.01 0.80 1.93 0.95 0.58 1.36 1.31 1.24 0.99 

Simulation 176 1.10 1.47 0.49 0.80 1.11 0.74 1.13 0.83 0.90 1.54 0.47 1.74 0.54 1.24 

Simulation 177 1.20 0.86 0.92 1.56 0.72 1.28 0.32 1.35 0.75 0.96 1.79 0.96 0.87 0.49 

Simulation 178 0.90 1.43 1.05 0.82 1.79 0.82 0.25 1.05 0.69 1.32 0.89 1.11 0.53 1.37 

Simulation 179 0.75 0.32 1.71 1.39 1.11 0.72 1.22 1.09 1.11 0.93 0.47 1.56 0.69 0.95 

Simulation 180 1.10 0.91 0.43 1.59 1.30 1.13 0.80 1.62 0.61 1.18 0.43 1.43 0.72 0.80 

Simulation 181 1.20 0.53 1.59 1.38 0.51 0.98 0.71 0.61 1.30 1.06 1.62 0.49 0.78 1.31 

Simulation 182 0.90 1.53 1.23 0.87 1.17 1.24 1.44 0.83 0.62 0.71 0.99 0.96 1.07 0.50 

Simulation 183 0.75 1.07 0.37 0.92 1.15 0.90 0.81 1.39 0.87 1.31 0.87 1.60 0.89 1.08 

Simulation 184 1.10 0.74 0.83 1.05 0.96 1.62 1.05 0.89 0.38 1.23 1.39 1.05 0.96 0.79 

Simulation 185 1.20 1.01 0.60 1.43 0.93 0.51 1.48 0.74 1.02 1.22 0.90 0.75 1.34 0.87 

Simulation 186 0.90 1.15 0.59 0.99 0.76 1.41 1.06 0.93 1.00 1.00 1.25 1.02 0.88 0.99 

Simulation 187 0.75 0.98 0.95 0.66 1.11 1.02 0.85 0.82 1.05 1.26 1.07 1.01 1.17 1.38 

Simulation 188 1.10 1.20 0.74 0.91 1.15 0.75 0.70 1.05 1.38 0.95 0.82 1.17 1.00 1.04 

Simulation 189 1.20 1.26 0.95 1.03 0.90 1.15 0.79 1.36 1.01 0.83 0.66 0.95 0.81 1.14 

Simulation 190 0.90 1.14 1.06 0.86 1.06 1.02 0.98 0.92 1.11 0.85 0.92 1.02 0.98 1.16 

Simulation 191 1.10 0.93 0.91 0.94 0.92 0.94 1.01 0.98 1.10 0.83 1.10 1.17 0.99 1.13 

Simulation 192 1.20 1.05 0.98 0.95 0.94 0.90 0.85 1.03 1.04 1.07 1.05 1.09 0.81 0.93 

Simulation 193 0.90 1.50 0.53 0.26 1.20 0.74 1.47 0.76 1.54 0.88 1.41 0.64 0.85 1.24 

Simulation 194 0.75 0.48 1.39 0.57 1.55 0.66 0.87 1.33 0.39 1.29 1.51 1.34 1.06 0.87 

Simulation 195 1.10 1.41 0.79 0.54 0.76 1.00 1.39 1.79 1.03 0.67 1.17 0.18 1.15 1.04 

Simulation 196 1.20 1.23 1.65 1.27 1.56 0.35 0.50 0.90 0.89 0.42 1.28 0.80 0.91 1.02 

Simulation 197 0.90 0.77 0.33 1.27 0.77 0.90 1.62 0.87 1.03 0.94 1.01 1.22 1.29 1.07 

Simulation 198 0.75 1.15 1.01 0.80 1.14 0.59 0.96 1.48 1.39 1.28 1.12 1.16 0.70 0.53 

Simulation 199 1.09 0.95 1.56 1.04 0.82 0.85 1.30 1.19 1.31 0.78 0.45 1.13 0.54 0.95 

Simulation 200 1.20 1.02 0.38 0.72 1.28 0.97 0.71 1.14 1.58 0.83 1.21 0.84 1.25 0.85 

Simulation 201 0.90 0.64 0.90 0.70 0.87 1.05 1.07 0.89 0.91 1.07 1.21 1.25 1.32 1.21 

Simulation 202 0.75 0.97 0.95 1.39 0.93 1.01 1.18 0.89 0.89 1.19 0.59 1.00 1.10 1.13 

Simulation 203 1.10 1.22 0.77 1.22 0.82 1.31 0.79 1.00 0.68 0.81 1.15 1.17 0.99 1.00 

Simulation 204 1.20 0.69 1.07 0.77 0.74 1.08 1.25 0.91 1.25 1.15 0.89 0.77 1.24 0.95 
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