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Abstract 

High performance gradient and shim coils are highly interested for high-field magnetic 

resonance imaging and spectroscopy to correct for large B0 inhomogeneities created by the 

magnetic susceptibility differences between tissues, bone, and air.  In chapter two, complete 

sets of high-performance gradient and shim coils are designed using two different methods: 

the minimum inductance and the minimum power target field methods.  A quantitative 

comparison of shim performance in terms of merit of inductance, ML, and merit of 

resistance, MR, is made for shim coils designed using the minimum inductance and the 

minimum power design algorithms.  The coils designed using the target field method are not 

controlled over the length of the coil.  In order to produce realistic coils for use in human or 

small-animal studies, direct control over the length of the coils is necessary.  Therefore in 

chapter three, an extended Fourier series method for the design of shim coils with 

predetermined length is presented.  This simple method is based on a truncated Fourier series 

expansion of the current density to allow for explicit control over the coil length.  This 

method is mathematically simple, easy to implement and computationally fast.  Also a 

quantitative comparison of figures of merit for inductance and resistance is made as a 

function of shim coil length. Coils of 40 cm diameter are designed with lengths of 50 cm, 60 

cm, 80 cm, and 100 cm.   

Pushing the boundaries of shim design in MRI, we designed a region specific, custom shim 

coil to correct for large field inhomogeneities that are consistent among subjects.  In chapter 

four, we have designed a custom shim coil for the medial temporal lobe of the human head to 

correct for the significant field inhomogeneities caused by magnetic susceptibility differences 

at air/tissue interfaces.  The custom coil was designed using the boundary element method. 

This method is capable of designing coils wound on arbitrarily shaped surfaces so as to 

produce specific field shapes.  We propose that, the addition of this custom coil to the MRI 

systems can improve the field inhomogeneities significantly.  A systematic displacement of 

head within the custom coil is also presented in this chapter as a method of investigating the 

sensitivity of the customized shim coil to small differences in subject positioning.  
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Chapter 1  

1 Introduction 

1.1 A Brief History of Magnetic Resonance Imaging 

Magnetic Resonance Imaging has proven to be a powerful imaging technique for 

the visualization of internal structure of the body.  It has the ability to create contrast 

between different soft tissues of the body, it possesses sensitivity to a broad range of 

tissue properties, and it allows for the early diagnosis of many diseases, in particular 

neurological, musculoskeletal, and cardiovascular diseases, and cancer.  

Although several scientists like Larmor (1857-1942) (1), Isaac Rabi (1930's), 

Bloch and Purcell (1952) (2,3), and Damadian (1970’s) (4) introduced some basic steps 

towards the development of magnetic resonance imaging, first in vivo cross-sectional 

magnetic resonance images of a finger were acquired by Mansfield and Maudsley (5) in 

1973. In the late 1970's and early 1980's a number of groups of scientists and 

manufacturers showed promising results of MRI in vivo.  The first commercial MR 

scanner in Europe (from Picker Ltd.) was installed in 1983 in the Department of 

Diagnostic Radiology at the University of Manchester Medical School (Professor I 

Isherwood & Professor B Pullen).  Since then there has been an explosion of technology 

and science in the field and we have moved from crude noisy images to highly 

sophisticated measurements.  Figure 1.1 shows a) a recent transverse in vivo T2-weighted 

MR image a normal human wrist acquired by Uchiyama et al. (6) and b) the first 

transverse MR image of a normal human wrist acquired by Hinshaw (7) et al. in 1977.  
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 A modern MRI scanner is capable of providing exquisite anatomical detail as 

well as functional information in perfusion and diffusion studies of the brain.  Two- and 

three-dimensional MR angiography provide a roadmap of vessels in any part of the body, 

together with the ability to obtain functional velocity profiling of blood flow.  This non-

invasive imaging modality with a virtually limitless future is continuing today to make 

further major advances in diagnosing diseases.  

 

 

    a)           b) 

Figure 1.1 A recent transverse in vivo T2-weighted MR image of a normal human wrist   
acquired by Uchiyama et al. is shown in a) and the first transverse MR image of a normal 
human wrist acquired by Hinshaw et al. is shown in b). 

1.1.1 The MRI Scanner 

An MRI scanner consists of four important subsystems: the main magnet, the 

shim coils, the gradient coils and the radio frequency (RF) coil.  A schematic view of an 

MRI system is shown in figure 1.2.  The major component of an MRI scanner is the main 

magnet.  This magnet, which is the largest component, is used to create a constant and 

uniform magnetic field in the imaging region.  Three kinds of magnets are available: 

resistive magnets, permanent magnets and super-conducting magnets.  Resistive magnets 

(8) are composed of current carrying coils with the geometry that will generate a uniform 

magnetic field.  This technology is limited in the achievable field strength due to the mass 

of conductor required to achieve high fields and is only used for low field systems. 



3 

 

Permanent magnets are constructed with ferromagnetic materials and do not require 

electricity to run.  However, these magnets are limited to low magnetic field strength.  

Super-conducting magnets (9) are most commonly used clinically and are composed of 

super-conducting material, such as Niobium-Titanium (Nb3Ti).  The super-conducting 

windings are immersed in liquid helium to reduce the temperature of the alloy to a level 

that makes them superconductive.  

Shim coils (10) are located within the magnet bore and create magnetic fields in a 

variety of shapes to compensate for the field inhomogeneities in the magnetic field and 

make the field more uniform for imaging (This process is further explained in detail in 

this chapter).  Shim coils may be super-conducting and/or room-temperature resistive 

coils of wire.  

Gradient coils (10) are usually located inside the shim coils and are designed to 

produce linear magnetic field gradients in the imaging region, which collectively and 

sequentially are superimposed on the main magnetic field, B0, for the selective spatial 

excitation of the imaging volume.  There are typically three sets of gradient coils creating 

three orthogonal field gradients in the x-, y- and z-directions in conventional MRI 

coordinates.  The gradient in the z-direction, Gz, is conventionally used in the slice 

selecting process.  This gradient is defined as a slice select gradient that causes a linear 

variation in the resonant frequency in z-direction across the sample.  When a slice is 

selected by irradiating the sample with an RF pulse, in the presence Gz, only a slice of 

finite thickness, Δz, is excited.  The gradient in the x-direction, Gx, is conventionally used 

in the frequency encoding process.  This gradient is perpendicular to the slice select 

gradient.  This gradient applies a field gradient and causes a linear variation in the 

resonant frequency in x-direction in order to encode the x-position of the sample. The 

third gradient, Gy, is conventionally used in the phase encoding process.  This gradient, 

which is perpendicular to Gx and Gz, is turned on before the frequency encoding gradient 

to encode the y-position via the phase of the signal. 

The fourth component of an MRI system is the radio frequency (RF) coil (10), 

which is usually located inside the gradient coils.  An RF coil creates a high frequency 
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electromagnetic field that excites the protons at their resonant frequency, and also detects 

the signal generated by the precessing spins after excitation.  During the excitation, the 

slice thickness is determined by the spectral bandwidth of the RF pulse along with the 

strength of the gradient field.  RF coils can be divided into three general categories: 

transmit and receive coils, receive only coils, and transmit only coils.  Transmit and 

receive coils serve as the transmitter of the RF field and receiver of signals from the 

imaged object.  A transmit only coil is used to create the magnetic field and a receive 

only coil is used in conjunction with the transmit coil to detect or receive signals from the 

imaged object. 

 

 

Figure 1.2 Schematic of an MRI scanner is shown with cut-away section including the 
principle components. 

1.2 Magnetic Field Inhomogeneities 

The demand for making more powerful magnets to generate stronger magnetic 

fields is increasing.  With increasing magnetic field strength, the signal to noise ratio 

(SNR) increases in MRI.  This increase in field strength is accompanied by many 

technical challenges.  One challenge is the requirement for the static magnetic field to be 

highly homogeneous.  The fractional deviation of the main magnetic field from the 
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average value of the field is known as field inhomogeneities. The inhomogeneities of the 

static main magnetic field are caused by two major sources: the imperfect magnet and the 

magnetic environment, and the susceptibility of the imaging object. 

1.2.1 Imperfect Magnet and Magnetic Environment 

In practice it is not possible to build a perfect magnet.  Imperfections in the main 

magnet design and construction create field inhomogeneities that should be addressed. 

Ferromagnetic objects in the vicinity of the magnet, the metal impurities in gradient 

systems and magnet shielding around the scanner room also contributes to the creation of 

the field inhomogeneities. These field inhomogeneities are usually on the order of 100 

parts per million (ppm) and are often corrected by placing magnetic materials close to the 

area that experiences large field inhomogeneities and allowing the field to be shimmed. 

1.2.2 Susceptibility-Induced Magnetic Field Inhomogeneities 

The imaging objects such as a human subject, an animal or a device perturb the 

magnetic field due to their susceptibilities when placed in an MRI scanner.  Such 

susceptibility induced field inhomogeneities have been simulated by several authors (11-

13) and the field inhomogeneities have been shown to be sharper and stronger at 

boundaries between materials with different susceptibilities.  The strength of the field 

inhomogeneities scales with the strength of the magnetic field.  Thus at higher magnetic 

field, the field inhomogeneities generated at the interface of tissues of different magnetic 

susceptibilities are higher (14,15).  These field inhomogeneities are usually a few parts 

per million (ppm). 

The field inhomogeneities generated by the imperfect magnet and susceptibility of 

an imaging object are known as static field inhomogeneities, and cause signal loss and 

therefore image distortion.  An image is distorted due to field inhomogeneities created in 

two directions: distortion due to field inhomogeneities in the slice selection direction, G′z 

and distortion due to field inhomogeneities in plane of the slice, G′x and G′y. 
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1.2.3 Field Inhomogeneities in the Slice Select Direction 

The effect of field inhomogeneities in the slice select direction, G′z on the signal 

are found by looking at phase behavior.  The equation for a signal received from a region 

of a sample at a time t (10) could be written as: 

 
    

! 

S( t )" # r( )e
i$ t( )

dxdydz%%%  (1.1) 

where ρ(r) is the spin density and φ(t) is the phase that could be written as: 

 
    

! 

"( t ) = # G(r ) $ r( )t . (1.2) 

 G(r) is the field gradient. Without the effect of the field inhomogeneities: 

 
  

! 

G r( ) = Gxi + Gy j + Gz k . (1.3) 

During the slice select process, the equation for signal is: 

 
  

! 

S( t )" # r( )eiGz zt
dz$  (1.4) 

The presence of the field inhomogeneities in the slice select direction, G′z, can 

cause misregistration of the signal as a function of slice location since the measured 

signal is now affected by G′z: 

 
  

! 

S( t )" # r( )e
i Gz + $ G z( ) zt

dz%  (1.5) 

The addition of G′z, to Gz can also lead to a slice thickness different from the 

designed value because the slice thickness is inversely proportional to Gz + G′z. 

1.2.4 Field Inhomogeneities in the Plane of the Slice 

Magnetic field gradients Gx and Gy are used to encode the MR signal spatially. 

The presence of field inhomogeneities along the x- and y- directions during the slice 
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select process could cause the excited plane to be rotated (10).  During the phase 

encoding process this could cause slice distortion resulting in positional misregistration 

of the signal. 

1.3 Correcting the Field, Shimming 

Magnetic field inhomogeneities can be reduced using ferroshims and shim coils.  

Ferroshims are pieces of ferromagnetic materials placed in the bore of the magnet or 

areas that suffer from large field inhomogeneities so as to correct the inhomogeneities. 

This process is described in detail in section 1.3.4.  Shim coils are resistive coils of wire 

carrying currents controlled by the user to minimize the field inhomogeneities.  In section 

1.4, various techniques that have been developed to design high performance shim coils 

are described.  Several methods have been developed to reduce the field inhomogeneities 

by either using the ferroshims or shim coils. 

1.3.1 FID Shimming 

One way to correct for the field inhomogeneities is free induction decay 

shimming. The free induction decay signal coming from a sample is affected by the field 

inhomogeneities through the signal decay time, 
    

! 

T
2

" .  The increase in the field 

inhomogeneities, decreases 
    

! 

T
2

"  and therefore causes the FID signal to decay more 

quickly.  Figure 1.3 shows two free-induction decay (FID) signals received from a) a 

well-shimmed sample and b) a poorly-shimmed sample.  The shimming is performed by 

adjusting the currents in shim coils manually to minimize the rate of the signal decay 

(16,17).   Automatic shimming (18-20) could be also performed by finding the shim 

currents that maximizes the time integral of the magnitude of the FID signal with a 

minimization algorithm such as the simplex algorithm.  Since in this shimming method, 

the field inhomogeneities are not measured directly, this method is known as a blind 

shimming. 
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a)            b) 

Figure 1.3 FID signals received from a) a well-shimmed sample and b) a poorly-
shimmed sample. 

1.3.2 Field Map-Based Shimming 

This method of shimming relies on the measurement of the field inhomogeneities 

that need to be shimmed.  In this method, a 3D field generated by each shim coil is 

measured for a phantom at the center of the shim coils and a matrix describing all the 

shim fields, Bshim is created (21).  The optimal shim currents vector, I, is obtained by 

multiplying the pseudo inverse, †, of Bshim with a vector of field values, b, required to 

null the field inhomogeneities at each spatial position throughout the sample: 

 
    

! 

I = B
shim( )

+

b. (1.6) 

To create Bshim, chemical shift imaging (22,23) and phase mapping (24,25) 

techniques have been used.  These techniques require long acquisition time and therefore 

are relatively slow.  Fast automatic shimming technique by mapping along projections 

(FASTMAP) was developed by Gruetter (26,27) to offer a time efficient field mapping 

approach. In this method, the field inhomogeneities are measured along 6 ‘pencil-beam’ 
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lines to give enough information for the determination of shim currents.  However this 

method incorrectly assumes that shim coil fields are always fully characterized by a 

minimal set of spherical harmonics.  Later, robust automated shimming technique using 

arbitrary mapping acquisition parameters (RASTAMAP) (28) was developed by using a 

fast, accurate, and flexible pulse sequence that can compensate for phase errors and 

generate absolute field maps regardless of the field of view (FOV) resolution, and 

acquisition geometry, making it ideally suited for automated shimming applications.  In 

this method the shim fields are fitted to the field inhomogeneity map using linear least 

squares fitting in order to find the optimum current in each shim coil. 

1.3.3 z-Shimming 

The presence of the field inhomogeneities in the slice select direction, G′z could 

be eliminated by z-shimming (29).  As mentioned in section 1.2.3, the gradient field in 

the slice direction could be separated into two terms; Gz and G′z, where Gz is the gradient 

field generated by the slice select gradient and G′z is the field inhomogeneities in the slice 

select direction.  The effect of G′z could be removed by applying a compensation gradient 

offset, Gc in time duration tc such that: 

 
    

! 

" G 
z
t #G

c
t

c
= 0 (1.7) 

To perform the z-shimming technique, a normal image (figure 1.4a) with Gc = 0 is 

acquired.  This image shows large signal loss in the inferior frontal cortex and inferior 

lateral temporal regions.  Two subsequent images (figures. 1.4b and 1.4c) were acquired 

with increasing compensation gradient, Gctc.  Figures 1.4b and 1.4c show the 

enhancement in the signal only in regions where the field inhomogeneities are 

compensated by Gc.  All three images were combined to obtain an artifact free image as 

shown in figure 1.4d.  
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Figure 1.4 An example of z-shimming by Yang et al. (29) shows axial gradient-echo 
images of brain.  a) The first image is acquired with no compensation. b) The second 
image is acquired with a 20% slice refocusing gradient area offset and the third image is 
acquired with a 40% of slice refocusing gradient area offset, and (d) shows the sum of 
images (a), (b), and (c) which is an artifact free image. 

1.3.4 Dynamic Shimming 

Similar to field-map-based shimming, dynamic shimming updating (DSU) uses 

the linear least squares fitting to fit the shim fields with the field inhomogeneity map in 

order to find the optimum currents in shim coils.  However in dynamic shimming the 

fitting is performed separately for each slice during a multi-slice imaging acquisition that 

allows for optimal local modeling and updating of shim currents for separate slices.  This 

method of shimming removes the locally manageable field inhomogeneities in a global 

fashion.  Figure 1.5 shows the field maps of brain for selected slices in a 32-slice 

acquisition after a) static global FASTMAP optimized shimming and b) second order 

dynamic shimming.  As shown in the field maps, dynamic shimming significantly 

reduces the field inhomogeneities in frontal lobe as compared to FASTMAP shimming 

(30).  The current in the shim coils needs to be switched rapidly during dynamic 

shimming.  Therefore the shim coils required for performing dynamic shimming should 

be designed with low inductance to allow for shorter switching time.  To limit the effect 

of the eddy currents, (the currents in the bore of the scanner induced by a time varying 
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magnetic field that is generated during switching currents in the shim coils) the shim coils 

may be actively shielded. 

 

 

       a)     b) 

Figure 1.5 Non-oblique-sliced DSU homogeneity improvement for selected slices in a 
32-slice acquisition, a) shows the field maps acquired using static global FASTMAP and 
b) the field maps acquired using second-order dynamic shimming updating. 

1.3.5 Local Passive Shimming 

Paramagnetic, ferromagnetic or diamagnetic materials could be located near the 

areas suffering from large field inhomogeneities to locally shim the susceptibility induced 

field inhomogeneities.  It has been shown that the static field inhomogeneities in the 

inferior frontal cortex of human brain are significantly reduced by placing a small amount 

of strongly diamagnetic material (Highly oriented pyrolytic graphite) in the roof of the 

mouth (31).  
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 Similarly, Koch et al. (32) have shown that a prototype shim comprised of both 

diamagnetic (bismuth) and paramagnetic (zirconium) materials improve the field 

inhomogeneities significantly in a mouse brain.  Figure 1.6 shows an example of the 

residual field maps when a) no shimming, b) one material passive shimming and c) two- 

material passive shimming were performed. 

 

 

Figure 1.6 Residual magnetic field maps near auditory air cavities of a mouse are 
presented using a) no shim, b) a one-material (zirconium) passive shim and c) a two- 
material passive shim. 

1.4  Spherical Harmonic 

In regions of space with free sources of current density, J, the Maxell equations 

that govern the magnetic field are simplified to (36):  

   

! 

" #B = 0  (1.8) 

 

   

! 

" #B = 0  (1.9) 

Using the vector identity 
    

! 

" #" #B = " " $B( ) -"
2
B, Eqs. [1.8] and [1.9], Laplace’s 

equation is derived: 
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! 

"
2
B = 0. (1.10) 

If only the z-component of the magnetic field is considered, Laplace’s equation 

could be simplified to: 

       

! 

"
2
B

z
= 0. (1.11) 

The general solution of Laplace’s equation in spherical coordinates is a linear 

combination of spherical harmonic functions (36): 

 
      

! 

B
z

r( ) = C
n

m

m=-n

n

"
n=0

#

" r
n
P

n

m
cos$( )eim%  (1.12) 

where Pn
m are Legendre polynomials with positive integer order n and positive integer 

degree m ≤ n. Cn
m is the amount of the nth order, mth degree spherical harmonic present in 

Bz(r).  Figure 1.7 shows all the 0th , 1st , 2nd and 3rd order spherical harmonic functions 

plotted on the surface of a sphere.  The order, degree, name, and the equations in 

spherical and Cartesian coordinates of each harmonic are given next to the plot. 
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Figure 1.7 Plots of the spherical harmonics are shown up to 3rd order on the surface of a 
sphere. The equations for the spherical harmonics are given in spherical (r, θ, φ) and 
Cartesian (x, y, z) coordinates. 
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Since the magnetic field vector can be described by spherical harmonic functions, 

the deviation from homogeneities can also be expressed on that basis.  Active shimming 

capitalizes on this principle by using a set of shim coils, each generating one component 

of magnetic field that correspond to one spherical harmonic.  These coils minimize the 

magnetic field inhomogeneities by superimposing a shim field with the same special 

distribution and magnitude but opposite sign to inhomogeneities. 

1.5 Designing Shim and Gradient Coils 

With a serious need for better quality gradient and shim coils, various methods 

have been developed to design these current-carrying coils of wire to generate magnetic 

field whose axial component is in shape of a spherical harmonic.  These methods are 

categorized under the discrete windings method and the distributed windings method. 

1.5.1 Biot Savart  Law 

One of the most fundamental equations used in coil design is the Biot-Savart law. 

Using this equation, the elemental magnetic field dB(r) generated by a current I, through 

a wire element of length dl could be written as (37): 

 
      

! 

dB =
µ

0
Idl " r

4#r
3

 (1.13) 

where r is the distance between the point at which the magnetic field is calculated and the 

wire element and r is the magnitude of vector r as shown in figure 1.8.  The total 

magnetic field produced by a coil is calculated by integration of Eq. [1.13] over the 

whole circuit.   
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Figure 1.8 The elemental form of Biot-Savart law is shown with Idl as the source of 
magnetic field and dB as the resulting field. 

1.5.2 Coil Performance 

The performance of a coil depends on the application for which it is used. This 

includes the efficiency of the coil, the field uniformity, the inductance, the resistance, the 

torque, and the figure of merits. 

The efficiency, η, of a coil is defined as the amount of spherical harmonic 

magnetic field generated by the coil per unit current and has the unit of Tm-nA-1, where n 

is the order of the spherical harmonic generated by the coil.  The accuracy with which the 

desired magnetic field is generated by the coil could be defined as the field uniformity.  

To characterize the field uniformity, the relative field residual defined as the percent 

difference between the actual field and the assumed ideal shape of the field in the region 

of interest could be calculated. 

The inductance, L, the resistance, R, and the torque, M, of a coil govern the speed 

at which the current can be switched in the coil, the amount of power dissipated in the 
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coil, and the amount of the torque that coil experiences in an intense static magnetic field 

respectively. 

Inductive and resistive merits suggested by Turner (38) are used for comparing 

the performance of the gradient and shim coils.  These two quantities defined such that 

they are independent of the number of turns of wire used in the coil.  

The inductive merit is defined as: 

 
    

! 

ML =
"

L

 (1.14) 

and resistive merit for a rectangular wire is defined as: 

 
    

! 

MR =
"

R

. (1.15) 

 

1.5.3 Coils with Discrete Windings 

Gradient and shim coils were originally designed using the discrete winding 

method.  Taylor expansion was widely employed in the design of coils with discrete 

paths.  Later, by expanding the magnetic field in spherical harmonics (39), spherical 

harmonic generating coils were designed.  This process involved the annulment of the 

unwanted harmonics so as to leave the desired harmonics as the dominant form of field 

variation.  The annulment was done by placing the loops of wire at a specified position 

such that the harmonic with lower order and higher order than that of the desired 

harmonic was annulled.  Zonal spherical harmonic generating coils (those with no φ 

dependence, m = 0) were designed by placing loops of wire placed symmetrically (or 

anti-symmetrically) about  z = 0 to generate only even (or odd) zonal harmonics.  

Tesseral (m = 0) and sectoral (m = n ) harmonic generating coils were designed by 

placing arcs of wire on a cylindrical surface and changing the angular length of the arcs 
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and their z-positions to dictate the degree, m, of the harmonics and annuls lower and 

some higher remaining unwanted harmonics. 

1.5.3.1 Zonal Coils: Helmholtz and Maxwell Coils 

 Helmholtz and Maxwell coils are designed by only keeping the zonal spherical 

harmonic (those with no φ dependence, m = 0) expansion (39) of the magnetic field.  A 

Helmholtz coil with m = 0 and n = 0 consists of two coaxial circular loops separated by a 

distance a, equal to the radius of loops.  This coil generates a uniform magnetic field at 

center of the coil and is used to operate as Z0 shim coil within the MRI systems.  Using 

this coil, a magnetic field with deviation of up to 5% is obtained within a sphere of radius 

0.5a.  Figure 1.9 shows a) the Helmholtz coil arrangement and b) the z-component of the 

magnetic field as function of z, within the region of interest. 

 

 

a)      b) 

Figure 1.9  a) An arrangement of a Helmholtz coil is shown with two loops of wire 
arranged on an axis perpendicular to the plane of the loops, separated by a distance, a, 
equal to the radius of the loop. b) The z-component of the magnetic field is plotted as 
function of z within the region of interest. 
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A Maxwell coil with m = 0 and n =1, also consists of two circular loops but with 

the loop separation of √3 a, and currents flowing in reverse directions in the loops (39), 

such that a magnetic field varying linearly with z is produced.  This coil could be 

operated as a Z gradient coil within an MRI system.  Similar to a Helmholtz coil, this coil 

also generates a magnetic field with deviation of up to 5% within a sphere of radius 0.5a.  

An arrangement of a Maxwell coil is shown in figure 1.10a and the z-component of the 

magnetic field as a function of z within the region of interest is shown in 1.10b. 

 

 

a)      b) 

Figure 1.10  a) An arrangement of a Maxwell coil is shown with two loops of wire 
separated by a distance √3a and anti-parallel currents. b) the z-component of the 
magnetic field is plotted as function of z within the region of interest. 

1.5.3.2 Tesseral Coils: Golay Coil 

A Golay or double-saddle coil (40) that generates the first order and the first 

degree (m = n =1) spherical harmonics shaped magnetic field is designed by placing the 

arcs of wire on a cylindrical surface as building blocks.  This coil operates as an X or Y 

gradient coil within MRI systems.  Figure 1.11 shows a) a Y gradient coil designed by 
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placing 120o circular arcs of current with opposite sense at appropriate z positions.  The z 

component of the magnetic field as function of y is shown in b). 

 

 

a)      b) 

Figure 1.11 a) An arrangement of a Y coil is shown with coil spacing for optimal 
gradient uniformity. b) The z-component of the magnetic field is plotted as function of z 
within the region of interest. 

In order to achieve high magnetic field intensity, many loops of wire should be 

used with the discrete design and using many number of loops forces the loops to be 

positioned farther from the correct location and therefore introduces field errors. 

Furthermore the inductance of such coils is higher, since the loops are close together. 

1.5.4 Coils with Distributed Windings 

Coils with distributed windings are designed with a continuous varying current 

density on formers of cylindrical shells, planes or arbitrary surfaces to have higher 

efficiency and lower inductance.  Several methods for designing coils with distributed 

windings have been developed.  Theses methods include matrix inversion techniques, 
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stream function methods, target field methods, the Fourier series method and the 

boundary element methods. 

1.5.4.1 Matrix Inversion Methods 

This method relies on the expansion of the magnetic field to find the optimal 

current flowing on surface of the coil.  In 1997 Holt (41) suggested that the axial 

component of the magnetic field generated by a coil could be written as: 
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is a matrix that relates the axial component of the field at point zm on the axis to the 

current In flowing in the nth  circular loop located at a position zn of a solenoid of radius a.  

To find a set of currents at N positions, the matrix Amn is inverted.  The major weakness 

of this method is that the field could be specified in such a way the matrix becomes 

singular.  Further improvements were made by Compton (42) who introduced a 

predetermined error by departing the magnetic field created by the coil from the desired 

field.  In this method, the surface of the coil was divided into 2048 equally sized 

elementary areas and similar to Holt’s approach the axial component of the magnetic 

field at position k can be written:  

 
      

! 

Bzk = Akj

j=1

n

" I j  (1.18) 

where Akj is a matrix for which each entry is the coefficient of the magnetic field at the 

point a resulting from a current Ij at a differential surface element j.  By subtracting this 

field from desired field,    

! 

B
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0 : 
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and minimizing 
      

! 

E
k

2

k =1

vol

"  with respect to the current elements Ij, a set of n simultaneous 

equations is derived that could be solved by a matrix inversion method to find the surface 

current elements Ij.  The wire pattern can be found by integrating over the elements of 

surface area until the current required for the coil in a discrete wire is accumulated.  The 

transverse and longitudinal gradient coils designed using this method, create optimal field 

uniformity over the volume of the interest.  However this method is computationally slow 

since a 2048 × 2048 matrix is inverted.  Furthermore inductance or power is not 

constrained in this method. 

1.5.4.2 Stream Function Method 

The continuity equation for the current density, ∇. J = 0, allows the current density to be  

described as the curl of a scalar function, the stream function, S(z, φ): 

       

! 

J = " # S
) 
e 

r
 (1.20) 

Various gradient coils with distributed windings have been designed by 

considering simple stream functions capable of generating gradient fields of the desired 

symmetry.  In this method the stream function is used to represent a current flow.  Since a 

special change in the value of the stream function corresponds to an equivalent change in 

the current density, the contour plots of S(z, φ) gives the locations of the discrete wire 

carrying equal currents.  By defining a proper stream function, a desired gradient field 

can be generated.  To design a transverse gradient field, Edelstein et al. (43) defined a 

stream function expressed as: 
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 (1.21) 

where I0 is the total current flowing in the coil, c and d are the parameters that could be 

adjusted to allow for some degree of optimization.  For example, considering large values 

for c and d, results in a linear transverse gradient field over a large volume. Figure 1.12 

shows the plot of the stream function for φ = 0 for Edelstein-type transverse gradient coil. 

 

 

Figure 1.12  A plot of the stream function S(z,0), for φ  = 0, for a transverse gradient coil 
is shown.  The arcs position is then determined by finding the equally spaced contours of 
the stream function.  The wire pattern of the coil is shown figure 1.13.  
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Figure 1.13 The wire pattern of a transverse gradient coil resulting by the stream 
function given by Eq. [1.21] is shown. 

Coils designed with the stream function method generally have a good efficiency, 

but the gradient homogeneity tends to be poor. 

1.5.4.3 Target Field Methods 

Turner developed the powerful target field method (44) that uses the expansion of 

the Green’s function, 
    

! 

G r, " r ( ) =
1

r # " r 

, for the Laplacian, in cylindrical coordinates to 

relate the desired magnetic field to the current density on a cylindrical surface in the 

Fourier domain.  The current density is then calculated from the desired fields in the 

Fourier domain.  The stream function can be evaluated form the current density and the 

position of wires can be determined from the contours of the stream function.  Further, 

Turner modified the target field (38) method by minimizing the coil inductance or power.  

A functional then was made of the deviation of the magnetic field from the desired target 
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fields and the inductance.  This functional was then minimized to give the optimal current 

density.  The complete mathematical derivation for the target field method is presented in 

chapter two where the minimum inductance design is compared with the minimum power 

design for a set of gradient and shim coils. 

1.5.4.4 Fourier Series Method: Finite Length Coil Design 

The length of cylindrical or planar coils designed with the target field method is 

unbounded and could not be controlled. Chronik and Rutt (45) modified the target field 

method by constraining the extent of the current density.  This method is computationally 

slow since a large number of current constraints are used to force the current density to 

remain contained within a finite length.  For the design of gradient coils with finite 

length, Carlson et al (46) developed a Fourier series method.  In their method, the current 

density is expanded as a sum of odd sinusoidal functions for the Z gradient coil: 

 

      

! 

j"
m #,z( ) = $ # % a( ) &n sin

n'z

l

( 

) 
* 

+ 

, 
-           z

n=%N

N

. / l

j"
m #,z( ) = 0                                              z > l

 (1.22) 

and a sum of even sinusoidal functions for transverse gradient coils (X or Y coil): 
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In Eqs. [1.22] and [1.23], a is the radius of the coil, l is the length of the coil  and λn  are 

the unknown coefficients.  Using a functional that includes the magnetic field, 

inductance, power or both, the optimal current density can be derived via λn while 

minimizing the inductance, the power or both.  In chapter three this method is extended 

to design a set of shim coils by introducing a general 2D-Fourier series expansion of 

current density on the surface of a cylinder.  The complete derivation for the Fourier 

series method is presented in chapter three. 
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1.5.4.5 The Boundary Element Method 

This method is capable of designing gradient and shim coils wound on an 

arbitrary surface. This method, which was first developed by Pissanetzky (47), relies on 

discretization of the current density into elements on a mesh.  A functional was made of 

the magnetic field, the inductance and the torque and minimized to allow for finding the 

optimal discretized current density while minimizing the inductance and the torque.  

Further Pool and Bowtell (48) modified this method by adding a power term to the 

functional to also minimize the power dissipation in the coil. In chapter four, the 

complete derivation of the boundary element method for the design of region specific 

custom shim coils is presented. 

1.6 Scope of This Thesis 

In chapter two, the minimum inductance and minimum power target field 

methods are described, and the mathematical derivations for both are presented.  A 

quantitative comparison of minimum inductance and the minimum power algorithms is 

made for the design of shim coils for small animal imaging. 

As previously mentioned, Carlson et al. developed a Fourier series method to 

design gradient coils with finite length.  In chapter three, the technique of Carlson is 

extended to design shim coils with finite length by introducing a general 3D Fourier 

series of the current density.  Also a quantitative comparison of shim coils performance at 

four lengths: 50 cm, 60 cm, 80 cm, and 100 cm designed using minimum power and 

minimum inductance algorithms is made. 

In chapter four, the boundary element method, which is capable of designing coils 

wounds on arbitrarily shaped surfaces is used so as to design region specific custom coils. 

In this chapter, a design of a custom shim coil for the medial temporal lobe of the human 

head is presented and used to correct for the significant field inhomogeneities caused by 

magnetic susceptibility differences at air/tissue interfaces. 
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Chapter 2  

2 Quantitative comparison of minimum 

inductance and minimum power 

algorithms for the design of shim coils for 

small animal imaging 

2.1 Introduction 

A high-field clinical magnetic resonance imaging (MRI) scanner, such as a 3T 

scanner, has the potential to operate with a high signal-to-noise ratio (SNR), allowing the 

acquisition of high-quality magnetic resonance sp1ectroscopy (MRS) data and high-

resolution MR images, provided that the field inhomogeneities are well shimmed (1).  At 

higher magnetic field, field inhomogeneities can be larger, resulting in phase and 

frequency instability in MRI signals and line broadening and frequency shifts in MRS 

(1,2).  To correct the larger field inhomogeneities, gradient and shim coils with higher 

performance than those available in typical clinical MRI scanners are required.  High-

performance gradient and shim coils require low inductance, L, to allow short switching 

times, low resistance, R, to minimize power dissipation, and high efficiency, η, to 

produce the desired field (3).  However, when designing high-performance coils, the 

                                                
A version of this chapter has been published: Hudson P, Hudson SD, Handler WB, Scholl TJ, Chronik BA. 
Quantitative Comparison of Minimum Inductance and Minimum Power Algorithms for the Design of Shim 
Coils for Small Animal Imaging. Concepts Magn Reson Part B Magn Reson Eng 2010;37B(2):65-74 
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trade-offs between different coil characteristics should be considered.  For example, 

minimum inductance coil designs allow faster switching speeds while minimum power 

coil designs optimize the power consumption.  

A target-field approach for designing gradient coils was devised by Turner (4). 

His method relies on inverse Fourier transformations to determine a continuous current 

distribution, confined to flow on cylindrical shells or on planes, that yields the desired 

field.  With this method, a functional that includes the deviation of the desired field from 

the calculated field over the region of interest (ROI) is formed.  The current density in the 

reciprocal domain is found by minimizing the functional with respect to the current 

density. Turner further developed the target field method by adding inductance to the 

functional (5).  This minimized the inductance while maintaining a specified field over 

the desired ROI. 

Carlson et al. modified Turner’s inductance minimization technique by expanding 

the current density as a sum of truncated sinusoidal functions, allowing the length of 

gradient coils to be constrained (6).  Bowtell and Robyr allowed the current density to 

vary in the radial direction in addition to the axial and azimuthal directions, for the design 

of multilayer, cylindrical gradient coils (7).  In their design algorithm, power and 

inductance of the coil were minimized simultaneously.  Further developments were made 

by Forbes and Crozier in a series of papers (8-10), for the design of shielded zonal and 

tesseral shim coils on cylindrical and planar surfaces.  

Poole and Bowtell applied the boundary element method to design gradient coils 

wound on arbitrarily shaped surfaces, by discretizing the current density into a mesh of 

triangles (11).  The inductance, resistance, and torque were derived in terms of current 

density, allowing for a functional capable of simultaneously minimizing the square of the 

difference between the target field and the actual field, the stored energy, the power loss, 

and the torque exerted on the coils.   

As mentioned, many methods have been developed for the design of gradient and 

shim coils.  These methods are able to minimize properties such as power and inductance, 

allowing coils to be optimized for a variety of applications in MRI and MRS.  In an 
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International Society of Magnetic Resonance in Medicine proceeding, Turner reported on 

the comparison of gradient coil performance for coils designed using the minimum 

inductance and minimum power methods (12).  To the best of the authors’ knowledge, no 

quantitative comparison of minimum inductance and minimum power design algorithms 

have been published for a shim coil set designed for small animal imaging. 

In this paper, the method of Turner was applied to design high order shim sets containing 

ten independent axes.  The shim sets were designed using both minimum inductance and 

minimum power algorithms, and a quantitative comparison was made between coil 

performances obtained with the two methods.  These quantitative comparisons are critical 

first steps for the optimization of practical, high-power, high-order shim sets, designed 

for MRI and MRS applications in small animals. 

2.2 Theory 

For the design of the cylindrical shims used in MRI, the axial component of the 

magnetic field, 

! 

B
z
",#, z( ) , is of interest.  For a current constrained to flow on a surface of 

a cylinder, only the azimuthal component of the current density, J! (!, z) , contributes to 

the axial component of the magnetic field.  Inside a coil of radius a (i.e. in the region 

where ρ < a), the axial component of the magnetic field can be represented in terms of 

cylindrical harmonics (13,14): 
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are the modified Bessel functions (15,16) and 
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 is the derivative of 

Km which can be written: 
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m#1( ) .  The Fourier transform of the azimuthal 

component of current density is given by: 
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Our goal is to find an optimal current density, 

! 

j"
m
k( ) , in order to achieve a desired 

magnetic field in the region of interest (ROI), as well as to minimize some physical 

parameters of the coil (such as inductance or power dissipation).  Considering these 

requirements, we introduce a functional, 

! 

U j"
m
k( ){ } , that consists of two terms: 

 

! 

U j"
m
k( ){ } = Z j"

m
k( ){ } + #n

n=1

N

$ Bz %n ,"n, zn( ) & Bzn[ ]  (2.3) 

where Bzn are the desired z-components of the magnetic field at the target points, N is the 

number of field targets, λn are the Lagrange multipliers (5), and Z is the physical 

characteristic of the coil that should be minimized.  For example Z could be Power, 

Inductance or their combination. 

In order to minimize a physical parameter of the coil, it must be expressed in 

terms of the current density.  For designing coils with minimized inductance, inductance 

is represented in terms of the current distribution over the coil by (3,5): 
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where I is the current required to produce the current surface density.   

If minimum power designs are desired, power dissipation resulting from a current 

density flowing on the surface of a cylinder of thickness t and resistivity ρ can be 

expressed as (3,5): 
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Since both inductance and power are quadratic in 

! 

j"
m
k( )  (Eqs. [2.4,2.5]), absolute 

minima of inductance and power are attainable.  These minima, subject to the field 

constraints, are found when:  
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! 

dU j"
m k( )( )

dj"
m k( )

= 0. (2.6) 

This gives an expression relating 

! 

j"
m
k( )  and λ which can be substituted back into 

Eq. [2.1], allowing Bz to be written in terms of λ.  Substituting this expression for Bz into: 
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gives a set of linearly independent equations that can be assembled into a matrix equation 

and solved for the set of {λn} using singular value decomposition.  The matrix has 

dimensions N×N, where N is the number of field targets.  Having the set of {λn}, current 

density can be derived over the surface of the coil via substitution.  The complete 

derivation for the minimum inductance method has been shown by Turner (5) and 

Chronik et al. (17).  The complete derivation for the minimum power method is presented 

in Appendix A.   

Optimum accuracy of the magnetic field and the resistance would be achieved by 

building a coil with a continuous current density.  In practice, it is only possible to build a 

coil that approximates the continuous current density. The current density was 

approximated with a finite set of current carrying loops.  To determine the loop positions 

under the condition 

! 

" # J = 0 , we define a stream function, 

! 

S z( ) , that corresponds to the 

surface current density, 

! 

J" ", z( ), (18) as: 
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S z( ) = J" ", # z ( )
$ z

z
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The stream function is discretized into some contours using the contouring 

function of Matlab version 7.5 (The Mathworks, Inc., Natick, MD, USA).   Contours 

were found at a fixed number of values (levels) of the stream function.  The contours of 

the stream function are the discrete wire patterns that approximate the continuous current 



37 

 

density.  Wires were positioned along the contours of the stream function and each 

contour represents one or more closed loops on the cylindrical surface of the coil (18). 

2.3 Methods 

The calculations and design algorithms were implemented in Matlab, version 7.5 

(The Mathworks, Inc., Natick, MD, USA).  The following ten separate gradient and shim 

axes were designed using both the minimum inductance and the minimum power 

methods: X, Y, Z, XY, X2-Y2, YZ, XZ, Z2, Z3, and Z4.  For the remainder of this 

discussion, all of these will be referred to as shim coils (i.e., gradient coils will be 

considered as first order shims).  All coils were designed with a radius of 10 cm. 

  For each axis, identical magnetic field constraints were used for both the 

minimum inductance and the minimum power methods.  The magnetic field was 

specified at nine evenly spaced points, between z = ± 0.5a where a is the radius of the 

coil, parallel to the z-axis.  Increasing the number of field constraints over the same 

region increases both the accuracy of the field and the size of the region of uniformity, at 

the expense of coil efficiency.  For zonal axes, the field targets were located on the z-axis, 

with the appropriate pure polynomial variation with z, and for tesseral axes, the field 

targets were offset from the z-axis by 0.5a at an angle of zero radians.  Using field targets 

at multiple radial locations did not significantly affect the design of tesseral coils.  The 

current density of tesseral axes were found by limiting the expansion to have only the 

azimuthal order necessary for that shim; for the first order shims we included only m = ±1 

in the current density expansion, for the second order shims we included only m = ±2, etc 

(see Appendix A).  
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Figure 2.1  The upper half (z > 0) of the Z2 wire pattern given by (a) minimum 
inductance and (b) minimum power methods. The bottom halves of the coils are mirror 
images of the top halves not shown in this  figure. Minimum power designs tend to 
feature longer, less compact wire patterns than minimum inductance designs. 

 The continuous current density was approximated as loops of current carrying 

wire.  The location of wire was determined from contours of the stream function using 

the Matlab contouring function.  Once the wire pattern was obtained, it was discretized 

into an array of elements characterized by their positions and lengths, each carrying 

current I.  The magnetic field generated by each coil was calculated using the elemental 

Biot-Savart equation on the array of wire elements (14).  For each coil, it was verified 

that the numerically calculated field met the field targets.  Coils designed with the two 

methods were compared using inductive merit, ML, and resistive merit, MR.   
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Inductive and resistive merits were calculated with both discrete and continuous methods. 

For the discrete method, inductance was evaluated by applying the Neumann formula 

(13,14) to the wire element array.  

Resistance was calculated by summing the resistances of the wire elements in the 

element array.   In the case of rectangular wire, the radial thickness of the conducting 

layer used for coil fabrication was assumed to be constant and the width of the 

conducting path was assumed to be equal to the minimum spacing.  The cross-sectional 

area of each wire element would then be the thickness multiplied by the minimum 

spacing.  If round wire were considered, the cross sectional-area would be the area of a 

circle with a diameter equal to the minimum spacing.   

Regardless of the cross-section of a discrete wire, efficiency varies linearly with 

the number of loops while inductance varies quadratically.  Using this information, an 

equation for inductive merit independent of the number of loops was created.  Inductive 

merit is defined as 
    

! 

"

L
1/ 2

 where L is the coil inductance and η is the field efficiency of the 

coil (7).   

In order to develop a figure of merit for resistance or power, the dependence of resistance 

on the number of loops must first be determined for the cases of rectangular and circular 

cross-section wires separately.  The wire length increases linearly with the number of 

loops for both rectangular and round wires.  The cross-sectional area of round wire (π 

multiplied by one-half the minimum spacing squared) is inversely proportional to the 

number of loops squared because the minimum spacing is proportional to the number of 

loops.  Combining these two effects, the coil resistance (R) for round wire is found to 

vary as the third power of the number of loops.  For rectangular wire the thickness is held 

constant, and therefore the cross-sectional area (thickness multiplied by the minimum 

spacing) is inversely proportional to the number of loops.  This causes the coil resistance 

for rectangular wire to vary with the number of loops.  To obtain a resistive merit 

equation independent of the number of loops, MR was therefore defined as
    

! 

"

R
1/ 2

for 
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rectangular wire and
    

! 

"

R
1/ 3

for round wire (7).  The coil radius is not included in the merit 

equations for this work because it was held constant for coils designed with both the 

minimum inductance and the minimum power methods. 

 

 

Figure 2.2 The upper half (z > 0) of the X2–Y2 wire pattern given by (a) minimum 
inductance and (b) minimum power methods.  The bottom halves of the coils are mirror 
images of the top halves not shown in this figure.  Minimum inductance designs tend to 
give more complex wire and more compact wire patterns than minimum power designs. 

For the continuous method, the continuous current density was directly 

substituted into equations for magnetic field, inductance, and power (3).  As with the 

discrete method, mathematical functions were fit to the analytically calculated field in 

order to obtain the efficiencies of the individual shim coils.  

ML and MR were calculated for the minimum power and the minimum inductance 

designs with both discrete and continuous methods.  Absolute field residuals, defined as 

the difference between the actual field and the assumed ideal shape of the field (i.e., the 

difference between the field created by the shim and the fitted field profile), were 

calculated inside a cylindrical volume with a radius of 0.9a and a length of 1.8a 

(approximately 6 times the volume of the ROI). Relative field residuals, defined as the 
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percent difference between the actual field and the assumed ideal shape of the field were 

also calculated in the same region.  Relative field residuals were not calculated where the 

value of the ideal function used to describe the shape of the field was expected to be 

equal to zero.  Both absolute and relative field residuals were calculated for all shim axes 

as a method of characterizing field uniformity. 

 

 

Figure 2.3  a) Magnetic field profile for Z2, normalized to the edge of the region of 
interest, on the z-axis (solid line). (b) Calculated magnetic field profile in the x and y 
directions for the X2–Y2 shim coil with a radius of a = 0.1 m.  For the Z2 coil, the field 
targets (circles) were specified over a region of z = ±0.5a, the magnetic field profile 
meets the field targets within this region of interest.  It can be seen that for this coil, 
quadratic behavior of the magnetic field continues well outside the region of interest. 

2.4 Results and Discussion 

 Figure 2.1 shows the upper halves of the Z2 wire patterns and Figure 2.2 shows the 

upper halves of the X2-Y2 wire patterns created using (a) the minimum inductance and (b) 

the minimum power design algorithms.  The bottom halves of the coils are mirror images 

of the top halves.  Both algorithms prevent current density from spreading out 

indefinitely over the coil surface.  The basic features characteristic of the two methods 

are apparent: minimum inductance designs tend to feature oscillations within the current 

density and minimum power designs tend to feature longer, less rapidly-varying current 
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densities and a lower power dissipation.  These features are consistent across all shim 

axes designed using these two methods. 

Figure 2.3a illustrates the calculated magnetic field profile and the field targets 

versus z for the Z2 coil.  Within the ROI (the cylinder of length a and radius 0.5a), the 

field profile, having an absolute error of 10-6, shows negligible deviation from the field 

targets, and the quadratic behavior of the magnetic field continues well outside of the 

ROI.  The field profile for an X2-Y2 shim coil, calculated in the xy plane within the ROI, 

is shown in Figure 2.3b.  The magnetic field deviates from the x2-y2 behavior more 

quickly than for the Z2 coil. 

The field profiles given by the two design methods are almost identical within the 

ROI.  However, small differences can be measured by comparing the relative residual 

fields given by each method.  The relative and absolute residual fields for the X2-Y2 coils 

are shown in the xy plane and the yz plane in Figures 2.4 and 2.5, respectively.  In each 

figure, subfigures a & c show the relative and absolute residual fields for the minimum 

inductance design, respectively, and subfigures b & d show the relative and absolute 

residual fields for the minimum power design, respectively.  Due to symmetry, only one 

quadrant of the relative residual fields is shown.  For all tesseral coils, the average 

relative field residuals are less than 2% and the average absolute field residuals are less 

than 10-7 T in the xy plane within the ROI, when evaluated using both design methods.  In 

the yz plane within the ROI, the average relative residual fields are less than 4% and the 

average absolute residual fields are less than 10-6 T for all tesseral coils made with both 

design methods.  For all zonal coils made with both design methods, the average relative 

residual fields are less than 2% and the average absolute residual fields are less than 10-8 

T in the yz plane within the ROI.  The magnetic fields produced by the coils designed 

using the minimum power and the minimum inductance methods are scaled to have the 

same efficiency. 
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Figure 2.4  One quadrant of the relative residual fields (top figures) and the absolute 
residual fields (bottom figures) in the xy plane for the X2–Y2 shim coils designed using 
minimum inductance (a, c) and minimum power methods (b, d).  Within the ROI and in 
the xy plane, the average relative residual fields are <2% and the average absolute 
residual fields are <10-7 T when evaluated using both design methods.  The magnetic 
fields produced by the coils designed using minimum power and minimum inductance 
methods were scaled to have the same efficiency (17 mT/ m2/A). 

 



44 

 

 

 

 

 

Figure 2.5 One quadrant of the relative residual fields (top figures) and the absolute 
residual fields (bottom figures) in the yz plane for the X2–Y2 shim coils designed using 
minimum inductance (a, c) and minimum power methods (b, d).  Within the ROI and in 
the yz plane, the average relative residual fields are <4% and the average absolute 
residual fields are <10-6 T when evaluated using both design methods.  The magnetic 
fields produced by the coils designed using minimum power and minimum inductance 
methods were scaled to have the same efficiency (17 mT/ m2/A). 
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Table 2.1 summarizes the ML and MR values for the ten different shim axes.  

Percent differences of the merits of inductance and of the merits of resistance were 

calculated for coils designed with the minimum power and the minimum inductance 

methods.  The absolute values of MR and ML cannot be compared between different shim 

axes; however, they can be used to compare designs for any given shim axis.  In all cases, 

regardless of discrete or continuous evaluation, coils designed using the minimum 

inductance method have higher ML values, while coils designed using the minimum 

power method have higher MR values, as expected.  However, it is equally clear that the 

differences between the design algorithms are small.  When the stream functions were 

sampled with the same number of levels, the improvement in ML provided by the 

minimum inductance method is less than 10% of the value obtained using the minimum 

power method, in every design case.  The improvements in MR provided by the minimum 

power method are less than 15% of the values obtained using the minimum inductance 

method.  When the stream function sampling levels were adjusted to achieve constant 

coil efficiency, the improvements are 10 to 20% in inductive merit and 20 to 30% in 

resistive merit for the minimum inductance method and the minimum power method, 

respectively.   

The merit of inductance calculated with the discrete method agrees with the merit 

of inductance calculated with the continuous method within 3.5% in all cases.  This is 

expected because both efficiency and inductance are independent of current density. The 

difference between the merits of power calculated with the discrete and the continuous 

methods ranges between 10% and 30%.  This larger discrepancy is observed because the 

resistance calculated by the discrete method is higher than the one calculated by the 

continuous method.   

The results summarized in Table 2.1 are specific to the particular case of 10 cm-

radius shim coils that correct for field inside an imaging region of 10 cm.  The radii of the 

coils were chosen to be twice the radius of the imaging region.  More work is required to 

extend these results to shim coil axes designed over a wider range of uniformity 

parameters.   
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In order to relate the results of this study to pulse sequence parameters for a simple 

example MRI pulse sequence, the effect of readout-gradient performance on a fast 

gradient echo sequence was simulated.  The amplifier parameters were as follows: 

maximum voltage of 1200 V, maximum current of 400 A.  The acquisition parameters 

were: receiver bandwidth of 125 kHz, 256 k-space data points along the readout 

direction, field-of-view equal to 10 cm. Gradient coils from both methods were scaled to 

have equal efficiency of 1.38 mT/m/A.  The gradient coil designed using the minimum 

inductance method allowed a minimum TE of 1.13 ms and dissipated RMS power of 512 

W, whereas the gradient coil designed using the minimum power method allowed a 

minimum TE of 1.15 ms and dissipated RMS power of 410 W.  In this case then, the 

minimum inductance method results in a decrease of the minimum echo time of less than 

2%, while the minimum power method results a decrease in power dissipation of 22%. 

For this application, it is probably most advantageous to utilize the minimum power 

design. 

In this study, it has been shown that for shims coils of higher orders, minimum 

power algorithms yield coils with approximately 30% reduced power dissipation as 

compared to minimum inductance algorithms; while minimum inductance algorithms 

yield coils with approximately 20% reduced switching times.  The question becomes: 

which is more significant for MRI applications? In the opinion of the authors, for small 

animal imaging studies at high field, the reduction in switching times provided by 

minimum inductance coil designs is not significant compared to the reduction in power 

dissipation allowed by minimum power designs.  Modern imaging pulse sequences 

employing steady-state methods typically require gradients operating at high strength 

with very high duty-cycles, where power dissipation is the primary limitation. 

Furthermore, high-power shimming essentially requires direct current (DC) operation of 

the shim coils, and as shimming requirements increase, the thermal dissipation within the 

shim set is also expected to limit operation.  Regardless, the results of this study allow 

judgments regarding gradient and shim coil design algorithm to be made on an informed, 

application-specific basis. 
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Inductive Merit Resistive Merit  

     Axis 

 

 Analysis Min. Power  

Method 

Min. Ind. 

Method 

Percent 

Difference 

Min. Power  

Method 

Min. Ind. 

Method 

Percent 

difference 

Discrete 0.101 5.40 0.00490 0.00460 6.32 
Z 

Continuous 

0.0957 

0.0937 0.100 6.97 0.00620 0.00570 8.4 

Discrete 0.839 5.13 0.0373 0.0340 9.26 
Z2 

Continuous 

0.797 

0.816 0.869 6.29 0.0462 0.0413 11.2 

Discrete 11.2 6.45 0.418 0.395 5.65 
Z3 

Continuous 

10.5 

10.3 11.1 7.48 0.545 0.505 7.61 

Discrete 93.4 5.50 3.3282 3.0998 7.10 
Z4 

Continuous 

91.5 

88.2 90.4 6.25 4.41 4.01 9.50 

Discrete 0.0921 5.69 0.00400   0.00350 13.3 
X and Y 

Continuous 

0.0870 

0.0879 0.0933 5.96 0.00520 0.00450 14.4 

Discrete 1.63 6.33 0.0589 0.0535 9.6 XY and 

X2-Y2 Continuous 

1.53 

1.53       1.62 5.71 0.0799 0.0718 10.7 

Discrete 2.34 8.93 0.0625 0.0581 7.29 
YZ and XZ 

Continuous 

2.14 

2.17 2.33 7.11 0.0844 0.0752 11.53 

Table 2.1 Performance values for ten shim axes designed using minimum inductance and 
minimum power algorithms.  In every design case, the improvement in ML provided by 
the minimum inductance method is less than 10% of the value obtained using the 
minimum power method and the improvements in MR provided by the minimum power 
method are less than 15% of the values obtained using the minimum inductance method.  
The merit of inductance calculated with the discrete method agrees with the merit of 
inductance calculated with the continuous method within 3.5% in all cases.  The 
difference between the merits of power calculated with the discrete and the continuous 
methods ranges between 10% and 30%. 
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2.6 Appendix A 

 To complete the derivation of the current density for the minimum power 

method, the z-component of the magnetic field should be expanded in cylindrical 

harmonics using the Green’s function theory (13): 
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Bz ",# ,z( ) = $µ
0
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im#
ei2%kz j#

m k( ) k Im 2%k"( )
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( ) K m 2%ka( )  (A1) 

where a is the radius of the coil.  Im and Km are the modified Bessel functions.  The power 

dissipation in the coil can also be expanded in cylindrical harmonics (3): 
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where ρ is the resistivity and t is thickness of the conductor.  The functional, 

! 

U j"
m
k( ){ } , 

consists of power, 

! 

P j"
m
k( ){ }, and the field constraints deviation from the calculated field: 

 

! 

U j"
m
k( ){ } = P j"

m
k( ){ } + #n

n=1

N

$ Bz %n ,"n, zn( ) & Bzn[ ].  (A3) 

Bzn are the z-components of the desired magnetic field, N is the number of the field target 

points and λn are Lagrange multipliers.  The minimum value of P, subject to the field 

constraints, is given when: 

 

! 

dU j"
m
k( ){ }

dj"
m
k( )

= 0.  (A4) 

Taking the derivative of U with respect to the reciprocal current density,

! 

j"
m
k( ) , 

setting it equal to zero, and solving for 

! 

j"
m
k( )  yields: 
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where: 
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Once the set of 

! 

"
n
 is known in Eq. [A5], Eq. [A6] gives the reciprocal current 

density, 

! 

j"
m
k( ) .  To find 

! 

"
n
, the field constraint equations: 
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should be considered.  Eq. [A5] can be substituted back into Eq. [A1] to write Bz in terms 

of 

! 

"
n
.  Substituting this expression for Bz into Eq. [A7] yields: 
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Eq. [A8] is a set of linearly independent equations that can be assembled into a 

matrix equation: 

 

! 

M[ ] "n[ ] = B
zN[ ]  (A9) 

 

 

and solved for the set of {λn} using the singular value decomposition method. The 

elements of the matrix M are the integrals as a function of the constraint coordinates: 
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Evaluating the elements of M using Eq. [A9], solving Eq. [A8] for the set of {λn}, 

and substituting λn’s into Eq.[A5]  gives the current density, 

! 

j"
m
k( ) .  The 

! 

J" z,"( ) can be 

calculated by taking the inverse transform of 

! 

j"
m
k( ) .  Since the current density is known, 

Eqs. [A1,A2] give us the magnetic field and the power, respectively. 
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Chapter 3  

3 Finite-length shim coil design using a 

Fourier series minimum inductance and 

minimum power algorithm  

3.1 Introduction 

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spec2troscopy 

(MRS) are under continual development at high field strengths such as 7T and above 

because of the promise of increased signal to noise ratio (SNR), allowing the acquisition 

of high quality, more easily quantifiable spectra in MRS and higher resolution images in 

shorter times for MRI (1).  However, the SNR advantages can be eroded by field 

inhomogeneities which increase with field strength (2).  Dynamically controlled field 

correction systems with higher power and performance than those required by moderate 

field MRI scanners are being developed to address these problems.  An essential 

component of any field correction system is the shim coil.  The performance of the shim 

system is a function of coil inductance, resistance, and field efficiency, as well as the 

physical length and diameter of the wire pattern (3).  In this study, the effects of coil 

aspect ratio (defined as the ratio of coil length to diameter) on figures of merit for 

inductance and resistance were systematically studied.  More specifically, the advantages 

                                                
A version of this chapter has been published: Hudson P, Hudson SD, Handler WB, Chronik BA. Finite-
length shim coil design using a Fourier series minimum inductance and minimum power algorithm. 
Concepts Magn Reson Part B Magn Reson Eng 2010;37B(4):245-253. 
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(if any) of using minimum inductance versus minimum power design algorithms are 

evaluated as a function of coil aspect ratio.  In this study, gradient coils are also 

evaluated, as they can be considered to be the first-order members of the shim coil 

family. 

In some applications rapid switching of gradients and shims are either necessary 

or under investigation.  Functional MRI (fMRI) typically requires single-shot images of 

the brain. Rapid gradient switching is necessary in order to cover the required amount of 

k-space within the transverse decay time of the magnetization.  Rapid temporal 

adjustment of the shim values would be necessary if non-linear field effects due to eddy 

currents are significant or if field changes due to rapid subject motion are to be corrected 

for.  Since switching time is proportional to coil’s inductance, minimum inductance 

designs would be expected to result in the most rapid switching of shim fields.  On the 

other hand, imaging applications such as magnetic resonance microscopy require very 

large magnetic field gradients in order to produce high-frequency spatial encoding in 

sufficiently short echo times.  High field shim coils are necessary in order to try to correct 

for localized field inhomogeneities within the sample.  These applications are often 

limited by power dissipation within the coils, and minimum power designs would be 

attractive in order to limit this problem. 

The target field method (4,5) is an analytic method which has been used to produce 

gradient coils with either minimum inductance or power.  A current distribution is 

obtained over a surface of a cylinder which achieves the desired magnetic field profile.  

The limitation of the method is that the length of the current density is not controlled, 

sometimes resulting in coils that are too long for the desired application.  Modifications 

of this method have been described which allow for explicit constraint of the extent of the 

final current density as well as control over the position of the uniform gradient with 

respect to the current density (6).  The limitation of this approach is that the large number 

of current constraints required result in relatively long computation times and sometimes 

unstable solutions for the desired current density.  To constrain the length of the gradient 

coils more directly, Carlson et al. (7) used a much simpler approach to modify the target 

field technique. In their method the current density is expanded as a sum of odd 
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sinusoidal functions (sines) for the Z gradient and even sinusoidal functions (cosines) for 

the transverse gradients, over a finite region in the z-direction.  In this paper, an extension 

of Carlson’s method for the robust design of shim coils is introduced.  A more general 2D 

Fourier series expansion of current density over the surface of a cylinder is used.  

Because the terms of the expansion are all limited in the z direction, the method allows 

for explicit control over the final current density extent (and thus the coil length).  

Magnetic field target points are specified over some region either within or outside the 

cylinder on which the current density expansion has been made.  The method can be used 

to minimize inductance, resistance, or a weighted combination of the two. 

3.2 Theory 

For any magnetic coil design, the goal is to obtain a current density that produces 

a desired magnetic field subject to optimizing some set of parameters.  For the design of 

cylindrical shims in MRI, only the axial component of the magnetic field, 
  

! 

B
z

r ," ,z( ) , is of 

interest.  In the event that the coils are to be switched extremely quickly, it is possible 

that peripheral nerve stimulation (8) could become a limiting factor, necessitating 

consideration of the other components of the magnetic field; however, this will not be 

considered further in this work.  For a current constrained to flow on a surface of an 

axially aligned cylinder, only the azimuthal component of the current density, 
  

! 

J" r ," ,z( )  

contributes to this field component.  The azimuthal component of the current density 

confined to the surface of a cylindrical coil of radius a and length 2l, can be expanded as 

a Fourier series:  

 

      

! 

J" r ," ,z( ) = # r $ a( ) %
mn

e

in&z

l e
im"

m=$M

M

'            z

n=$N

N

' ( l

J" r ," ,z( ) = 0                                                    z > l

 (3.1) 

where 2N+1 is the number of terms allowed for expansion of the z-variation of current 

density, 2M+1 is the number of terms allowed for expansion of the φ-variation of current 

density, and λmn are the unknown coefficients.  The total number of terms in the 
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expansion is therefore (2M+1) × (2N+1). The goal of the algorithm is to obtain the set of 

‘m × n’ coefficients in an optimal manner. 

The axial component of the magnetic field, 
  

! 

B
z

r ," ,z( )  inside a coil (i.e. r < a) can 

be represented in terms of cylindrical harmonics (9,10) : 
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Im and 
  

! 

K
m

 are the modified Bessel functions (11,12) and 

! 

" K 
m

 is the derivative of 

Km which can be written: 
  

! 

" K 
m
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m#1( ) .  j!m k( )  is the Fourier transform of the 

current density given in Eq.[3.1] and can be written as: 
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Like the magnetic field, inductance can be represented in terms of the current 

density in reciprocal domain (2,8):
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where I is the current used to sample the current density. The power dissipated by the 

current density can be described as: 
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where t and ρ are the thickness and the resistivity, respectively, of the wire assumed to be 

used in approximating the current density (3).   
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The goal is to calculate the unknown λmn’s to achieve a desired magnetic field in 

the region of interest (ROI), while minimizing inductance or power or a combination of 

both.  A functional, 

! 

U j"
m
k( ){ }  is introduced which consists of two terms: 
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In the first term, Z could be power, inductance, or a combination of both.  The 

second term is the sum of the squares of the field deviation from the desired field targets, 

Bzq (7).  α  and  β are weighting factors whose values determine the relative importance 

of the field uniformity within the region of interest. 

Differentiating the functional with respect to λmn inside j!m k( )  and setting it equal 

to zero, yields the set of optimal λmn: 
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The equation above can be written as a set of linear equations that can be assembled into 

a matrix equation and solved for the matrix λ: 

   

! 

( D + A )" = B  (3.8) 

where B is an m × n′ matrix:  
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D is an m × n × n′, a 3-dimensional matrix:  
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and A is an m × n × n′  matrix whose specific form depends on whether inductance or 

resistance is within the functional.  For minimum inductance design, A would be: 
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For minimum power design, A would be: 

 
    

! 

A( m,n, " n ) = #
$al 2

t
dk sinc kl %&n( )

%'

'

( sinc kl %& " n ( ) 1+
m

ka

) 

* 
+ 

, 

- 
. 

2) 

* 

+ 
+ 

, 

- 

. 

. 
. (3.12) 

To generate matrix Eq. [3.8], a set of field targets are specified with indices q = 1, 

2,…, Q.  The number of terms (2N + 1) to be allowed in the z-dimension of the Fourier 

series expansion must be chosen.  Finally, the order of the shim coil to be designed (‘m’) 

must be chosen.  One is then able to calculate the elements of B, D and A using the 

expressions provided above.  Eq. [3.8] can then be solved for the matrix λ using the 

singular value decomposition method.  Having λ, the final current density can then be 

evaluated using Eq. [3.1]. 

3.3 Methods 

The algorithm described above was implemented in Matlab (version 7.5, The 

Mathworks, Inc., Natick, MD, USA) and applied to the design of sets of shim coils with 

diameter 40 cm and four lengths: 50 cm, 60 cm, 80 cm, and 100 cm.  The following ten 

separate axes were designed using both minimum inductance and minimum power 

methods: X, Y, Z, XY, X2-Y2, YZ, XZ, Z2, Z3 and Z4.  For all coil lengths, identical 

magnetic field targets were used for both the minimum inductance and the minimum 
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power methods.  Twenty field targets were located in a cylindrical volume spaced equally 

between z = ±0.15 m, radius r = ± 0.5a and φ = ±π.  Increasing the number of field targets 

over the same region increases both the accuracy of the field and the size of the region of 

uniformity, at the expense of coil efficiency. 

For the first order shims (gradients), 2N+1 = 7 terms in the Fourier series 

expansion of current density were used. For the higher order shims: XY, X2-Y2, YZ, XZ, 

Z2, Z3 and Z4, 9 terms were used.  It was found that for the coil dimensions investigated 

in this study, a higher number of terms did not significantly improve the field uniformity, 

inductance, or resistance.  Zonal shim coils were designed by limiting the expansion to 

have only m = 0 and tesseral shim coils were designed by limiting the expansion to have 

only the azimuthal order necessary for that shim; for the first order tesseral shims we 

included only m = ±1 in the current density expansion, for the second order tesseral shims 

we included only m = ±2, etc.  

The continuous current density was sampled using a finite set of current carrying 

loops in order to calculate realistic wire positions for actual coil designs.  A stream 

function was introduced, which was defined by the cumulative integral of the current 

density with respect to z:  

 
  

! 

S r," ,z( ) = J" r ," , # z ( )
$ l

z

% d # z . (3.13) 

Contours were taken of the stream function using Matlab’s contouring.  Discrete 

wire segments were positioned along the contours of the stream function to represent the 

final discretized wire pattern for each coil (13,14).  The discretized wire pattern was 

organized into an array of elements characterized by their positions and lengths, each 

carrying current I.  The magnetic field generated by each coil was then calculated using 

the Biot-Savart equation (9,10). 

In order to calculate the efficiency, η, of each shim coil a function was fit to the 

calculated field using a linear least squares algorithm (15).  The field was calculated over 

the cylindrical volume of length of 30 cm and radius of 0.5 a.  For each shim coil, the 
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mathematical function used in the fitting was the same function used to define the field 

constraints.  For example, the function z2 was fit to the calculated Z2 shim coil field 

profile.  The coefficient of each fit divided by the current used in the field calculation 

defined the field efficiency for each coil.  

Inductance was calculated by applying the Neumann Formula (9,10) to the wire 

element array.  Resistance was calculated by summing the resistances of the wire 

elements in the element array.  The radial thickness of the wire used for coil fabrication 

was assumed to be constant. The width of the wire was assumed to be equal to the 

minimum wire spacing for that coil design.  The cross-sectional area of each wire 

element would then be the thickness multiplied by the minimum spacing. It is assumed 

that the current density is uniform across the wire cross section.  

In order to assure that the field uniformity produced for the minimum inductance 

and minimum power formulations were comparable, the weighting factors α and β in Eq. 

[3.6] needed to be adjusted separately for each design.  This was done iteratively during 

the design process for each design until the percent difference in mean squared errors 

over the ROI obtained using the two algorithms was less than five percent. 

Relative field residuals were calculated for each coil as a method for 

characterizing overall field uniformity.  They are defined as the percent difference 

between the calculated field and the assumed ideal shape of the field for that shim.  These 

fields were calculated inside a cylindrical volume of radius of 0.9a and a length of 2a 

(approximately 6 times the volume of the ROI). 

The results of the minimum inductance and minimum power design methods were 

compared by calculating inductive merit, ML, and resistive merit, MR.  Inductive merit 

(ML) was defined to be η/L1/2 and the resistive merit (MR) was defined to be η/R1/2 for 

rectangular wire (16).  Both inductive and resistive merit are defined such that they are 

independent of the number of loops used to approximate the current density.  Because the 

coil radius was held constant for this entire study it was not necessary to include it within 

the figures of merit. 
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Figure 3.1  Half-wire-patterns for ten coils: X, Y, Z, XY, X2-Y2, YZ, XZ, Z2, Z3, and Z4 
at  four different lengths  given by minimum inductance and minimum resistance 
methods.  All coils are symmetric about the cuts chosen.  The minimum resistance 
designs tend to feature less oscillation with less number of loops than minimum 
inductance designs at the same coil length. 
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Figure 3.2 The z-component of the magnetic field profile in the z-y plane (x = 0) for a Z2 
shim coil with a radius of a = 0.2 m.  The region shown is larger than the originally 
specified region of interest, and it can be seen that the quadratic behavior of the magnetic 
field continues well outside the region of interest. 

Both ML and MR were calculated for each coil, regardless of whether the coil was 

obtained using the minimum inductance or minimum resistance formulation.  The percent 

difference in ML obtained by using the two formulations was calculated as the difference 

between ML for the minimum inductance design and ML for the minimum resistance 

design, divided by ML for the minimum inductance design.  This yielded 40 comparisons 

(4 coil lengths and 10 shim axes per length). Similarly, the percent difference in MR 

obtained by using the two formulations was calculated as the difference between MR for 

the minimum resistance design and MR for the minimum inductance design, divided by 

MR for the minimum resistance design.  This also yielded 40 comparisons.  
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3.4 Results and Discussion 

  Half-wire-patterns for all shim axes are summarized in Figure 3.1, for both 

minimum inductance and minimum resistance designs.  The characteristic features of the 

two methods are apparent: minimum inductance designs tend to feature more higher-

frequency oscillations within the current density as compared to minimum power designs. 

The observed oscillations in these designs are consistent with those obtained using other 

design methods in gradient coils (6) 

As an example field profile, Figure 3.2 shows the calculated magnetic field profile 

for the 80 cm Z2 coil calculated in the yz plane.  The quadratic behavior of the magnetic 

field continues well outside of the region of interest.  The magnetic field profile for an 80 

cm XY shim coil calculated in the xy plane within the region of interest (ROI) is shown 

in Figure 3.3.  The deviation of magnetic field outside the region of interest was found to 

increase faster for the XY coil than for the Z2 coil in this case. 

 

 

Figure 3.3 The z-component of the magnetic field profile in the x-y plane (z = 0) for an 
XY shim coil with a radius of a = 0.2 m. 
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Figure 3.4 The relative residual fields in the xy (a, b) and yz (c, d) planes for the 80 cm 
length XY shim coil designed using minimum inductance (left column; a, c) and 
minimum power methods (right column; b, d).  The average relative residual fields within 
the ROI in the xy and yz planes are less than 5% for both formulations, indicating that 
both produced comparable field uniformity. 
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The field profiles obtained for all coils produced using the two different 

functionals were found to be almost identical over the prescribed ROI.  The relative 

residual fields for the 80 cm XY coil are shown in Figure 3.4 for the xy and yz planes.  

For both methods, the mean residual fields evaluated over the ROI were found to be less 

than 5% for all tesseral coils and less than 3% for all zonal coils. 

For all 28 distinct pairs of shim axes designed (note that for the three tesseral 

pairs of designs, the coils are simply rotations of each other and are therefore listed 

together in rows), Tables 3.1 and 3.2 list ML and MR respectively.  As expected, in every 

case the minimum inductance design achieved better ML values than the minimum power 

design, and the minimum power design achieved better MR values than the minimum 

inductance design.  However the differences between the two design methods were found 

to be very small.  For all shim axes and all lengths considered, the differences in merit 

(either inductive or resistive merit) between the minimum inductance and minimum 

power designs were less than 6%.  This maximum difference in merit would translate into 

an approximately 10% difference in either resistance or inductance for a completed coil 

(other parameters held constant).  

This small difference must be weighed against the increased complexity and wire 

densities observed for the minimum inductance designs.  The difference between the two 

methods does seem to increase for the highest order and shortest coil lengths, indicating 

that the choice of design method may become important as coil geometries become 

increasingly extreme.  But for the large majority of designs evaluated in this study, there 

is very little difference in performance between the two methods. 
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Inductive Merit (ML) 
50 cm 60 cm 80 cm 100 cm 

 

MinP MinL MinP MinL MinP MinL MinP MinL 
Z 0.016 0.016 0.016 0.017 0.017 0.017 0.016 0.016 
Z2 0.057 0.058 0.060 0.060 0.061 0.062 0.058 0.060 
Z3 0.27 0.27 0.27 0.28 0.28 0.30 0.27 0.27 
Z4 1.09 1.09 1.09 1.09 1.09 1.11 1.08 1.08 
X/Y 1.08 1.08 1.09 1.09 1.10 1.11 1.09 1.09 
XZ/YZ 0.052 0.064 0.058 0.066 0.063 0.069 0.059 0.067 
XY/X2-Y2 0.086 0.090 0.096 0.099 0.088 0.091 0.088 0.091 

Table 3.1 Inductive merit, ML, values for all 28 distinct shim axis pairs designed using 
minimum inductance and minimum power algorithms.  The differences in ML between 
the minimum inductance and minimum power designs were less than 6% in all cases.  
Across most shim axes, the 80 cm length designs had the highest inductive merit values. 

 

 

Resistive Merit (MR) 
50 cm 60 cm 80 cm 100 cm 

 

MinP MinL MinP MinL MinP MinL MinP MinL 
Z 0.0010 0.0009 0.0011 0.0010 0.0012 0.0011 0.0013 0.0012 
Z2 0.0035 0.0034 0.0038 0.0037 0.0040 0.0038 0.0038 0.0036 
Z3 0.014 0.014 0.015 0.015 0.016 0.015 0.014 0.014 
Z4 0.059 0.057 0.060 0.060 0.068 0.064 0.059 0.058 
X/Y 4.3e-4 4.1e-4 4.5e-4 4.7e-4 6.2e-4 6.0e-4 5.8e-4 5.3e-4 
XZ/YZ 0.0026 0.0025 0.0027 0.0026 0.0029 0.0028 0.0027 0.0026 
XY/X2-Y2 0.0034 0.0033 0.0036 0.0034 0.0048 0.0046 0.0037 0.0036 

Table 3.2 Resistive merit, MR, values for all 28 distinct shim axis pairs designed using 
minimum inductance and minimum power algorithms.  The differences in MR between 
the minimum inductance and minimum power designs were less than 6% in all cases.  
Across all shim axes, the 80 cm length designs had the highest resistive merit values. 
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When considering the effect of coil length on performance, it was also found 

across almost all shim axes that the 80 cm length designs (i.e. an aspect ratio of 2) had the 

highest merit values (both for resistance and inductance) while the 50 cm length (i.e. 

aspect ratio of 1.25) designs had the lowest merit values.  The differences between the 50 

cm and 80 cm length coil merits were always less than 25%.  The 50 cm length was 

specifically included in this study because this would be the maximum length of shim 

coil that could effectively be used for human head imaging, as the ROI begins 

approximately 10 cm from the edge of the coil.  These results indicate that the maximum 

penalty in power deposition, assuming constant field efficiency, expected by constraining 

the length of a shim coil to be compatible with human head imaging would be 

approximately 56% as compared to an unconstrained length coil.  This is a significant 

increase in power and suggests that such a shim system may require additional efforts in 

terms of cooling and thermal monitoring; however, it also suggests that such a design 

would not have requirements beyond our existing methods for thermal management in 

gradient coil insert systems.  If the longer coils were to be considered for use with the 

human head, asymmetric designs would clearly be necessary. 

It is the view of the authors that the minimum power design is preferable to the minimum 

inductance approach due to the almost negligible difference in merits for coils resulting 

from the two design algorithms, coupled with the decreased complexity of the minimum 

power wire patterns.  Furthermore, one would expect the power dissipated within any coil 

set to scale with the square of the scanner field strength (for the same object under 

investigation). These results suggest the increased use of minimum power design 

algorithms for the majority of shim and gradient coil applications, even in cases where 

switching and dynamic control is a primary requirement. These results motivate and 

guide the pursuit of high strength, minimum power coil systems for the most demanding 

imaging and spectroscopy applications at field strengths of 7T and above. 
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Chapter 4  

4 A novel custom shim coil designed for 

spectroscopy to correct the field 

inhomogeneities in the medial temporal 

lobe of the human brain  

4.1 Introduction 

Magnetic resonance imaging and spectroscopy is moving towards higher 

magnetic field strength to benefit from the higher signal to noise ratio, that allows for 

higher resolution MR images and more quantifiable spectra of low concentration 

metabolites (1) to be collected.  However at higher magnetic field, B0 inhomogeneities 

increase, causing artifacts in MR images and line broadening in MR spectra (2).  These 

field inhomogeneities are particularly severe at tissue, bone, and air interfaces due to their 

magnetic susceptibility differences (3).  A useful way to look at these field 

inhomogeneities is to factor them into two components: relatively large inhomogeneities 

with minimal variation between subjects, and smaller, subject specific inhomogeneities. 

We propose that very efficient, short, custom shim coils could be designed to compensate 

for the largest, most significant inhomogeneities that are approximately consistent 

between subjects, while system shims could be used to fine-tune the field on a sample 

specific basis.  Optimal performance would be achieved by designing a separate custom 

coil for each specific imaging region.  For example, separate coils could be designed for 

the frontal, temporal, parietal or occipital lobes of the human brain, and these insert shim 
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coils would be switched into and out-of the scanner on a study-specific basis.  In this 

work, we demonstrate the efficacy of our shimming method by designing a custom shim 

coil for correcting the field inhomogeneities over the medial temporal lobe of the human 

brain.  

Magnetic field generating coils such as gradient and shim coils are numerous and 

varied. These gradient and shim coils should be designed such that they only modify the 

z-component of the main magnetic field, B0, since the main magnetic field generated by 

superconductive or resistive magnets is oriented in the z-direction.  The design goal is to 

a produce highly efficient coil with uniform field over the region of interest while 

minimizing other important physical properties of the coil such as inductance, power, and 

torque.  Historically, different techniques have been developed for designing gradient and 

shim coils with minimum power, minimum inductance or both.  Turner and Bowley (4,5) 

developed a target field method for designing gradient coils with minimized inductance 

or power.  The magnetic field, inductance and power due to an unknown current density 

were expanded as Fourier-Bessel functions.  A current distribution was calculated over a 

surface of a cylinder or in a plane to achieve the desired magnetic field, while minimizing 

inductance or power. Carlson et al. modified Turner’s method by expanding the current 

density with a truncated sinusoidal function to allow for finite length gradient coils. (6).  

Bowtell and Robyr designed multilayer, cylindrical gradient coils by allowing the current 

density to vary in the radial direction in addition to the axial and azimuthal directions (7).  

In their design algorithm, power and inductance of the coil were minimized 

simultaneously.  Further developments by Forbes and Crozier in a series of papers (8-10), 

allowed for the design of shielded zonal and tesseral shim coils on cylindrical and planar 

surfaces.  

Pissanetzky (11) introduced a boundary element method (BEM) that allows for 

the design of coils wound on an arbitrary surface.  Using this method a current density is 

discretized into a mesh of triangles.  The magnetic field, inductance and torque were 

derived in terms discretized current density, allowing for a functional capable of 

simultaneously minimizing the square of the difference between the target field and the 

actual field, the inductance, the power loss, and the torque exerted on the coils.  Further, 
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Lemdiasov and Ludwig (12) extended the boundary element method by removing the 

reliance on coil symmetry.  Recently Poole and Bowtell (13) modified the boundary 

element method by adding a power term to the functional allowing the minimization of 

the power dissipation in the coil. 

Since the boundary element method can be used to design current densities with 

symmetric or asymmetric geometry wound on an arbitrary surface to generate a specific 

magnetic field, we will use this method to design our region specific shim coil for the 

medial temporal lobe of human brain.  This region of the brain is located in the vicinity of 

the sinus cavity where the magnetic susceptibility differences between air, tissue and 

bone create significant field inhomogeneities.  Reduction of the field inhomogeneity in 

this region of the brain would allow for higher resolution MR spectroscopy of the 

hippocampi, possibly facilitating diagnosis of Alzheimer’s disease (14) and other neuro-

degenerative diseases via quantitative measurement of specific metabolite concentrations. 

4.2 Methods 

To specify the field targets in the BEM algorithm, the field inhomogeneity maps of 

three normal human heads were derived with a robust automated shimming technique 

using arbitrary mapping acquisition parameters (RASTAMAP) (17) using a head only 7T 

Varian system. Studies were conducted with approval of The University of Western 

Ontario Human Subject’s form # 15018.  This technique uses a gradient echo sequence to 

measure the field inhomogeneities with high precision.  This fast, accurate and flexible 

pulse sequence can compensate for phase errors and generate absolute field maps 

regardless of field of view (FOV), resolution, acquisition geometry, or bandwidth, 

making it ideally suited for automated shimming applications.  A multiecho, 3D gradient 

echo sequence consisting of eight echoes with linearly increasing echoes spacing was 

used for field mapping.  An entire 3D volume with dimensions 19.2 cm by 19.2 cm by 

14.4 cm encompassing a human head was acquired with one polarity and then repeated 

with the opposite polarity.  All gradient spoiling was limited to the readout direction to 

minimize a possible magnetic field along phase encode directions.  The acquisition 

parameters are a 96 × 96 × 72 acquisition matrix, 104 kHz readout bandwidth, 15 ms TR, 
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1.3 ms TE, echo spacing of 1.2 ms, incremental echo spacing increase of 0.2 ms and eight 

echoes for a total acquisition time of 2 min.  A slice-selective sinc pulse with a 6° flip 

angle is used to restrict the FOV in the third dimension.  To minimize the geometric  

distortion caused by static field gradients, the read out bandwidths of 100 kHz or higher 

were used.  Once the field maps were acquired, the effect of the system shims had to be 

removed in order to acquire the unshimmed field maps.  This was achieved by 

subtracting the shim fields from the field maps, taking into account the known current 

used for each shim during the field-mapping experiment.  Linear (gradient) shim fields 

were not subtracted.  

Within each 3D field map, a rectangular volume of dimensions of 8 cm by 5 cm by 4 cm 

(see figure 4. 1) encompassing the medial temporal lobe was chosen as the region of 

interest (ROI).  Principle component analysis (PCA) was used as method of averaging the 

field maps within the ROI.  PCA projects a data set into a new coordinate system where 

the first coordinate has the largest variance of the data set and the second coordinate has 

the largest variance uncorrelated to the first component etc.  In this way the principal 

component of the data contains the “most important aspect” of all the data. Using this 

method, the most important features of all of the field maps were selected. 

 

 

 

Figure 4.1  A schematic view of a custom coil with a diameter of 40 cm and the length of 
30 cm is shown.  The coil’s region of interest has dimensions of 8 cm × 5 cm × 4 cm and 
is off centered. 
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Principle Component Analysis starts by considering a matrix B comprised of 

vectors, Bi, where i = 1, . . ., N.  

 
        

! 

B = B
1
,L, B

i
,L, B

N( )  (4.1) 

The vectors, Bi, are three dimensional field inhomogeneity maps of ith subjects re-

ordered into vectors, within a ROI.  Therefore B is an M × N matrix where M is the 

number of magnetic field data points within the ROI and N is the number of subjects.  In 

our experiment N  =  3. The mean subtracted Bms could be calculated by subtracting the 

mean of each vector, Bi, from Bi: 
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Next the covariance matrix was calculated in order to measure the correlation 

between each two vectors: 

 
      

! 

C =
1

M
B

ms
B

ms

T . (4.3) 

Using the covariance matrix, eigenvectors, V, and eigenvalues, λ, could be 

calculated: 

   

! 

CV = "V . (4.4) 

If the eigenvector corresponding to the highest eigenvalue is multiplied by the 

mean subtracted matrix, the first principle component of the field maps is achieved. 

Similarly if the eigenvector corresponding to the second highest eigenvalue is multiplied 

by the mean subtracted matrix, the second principle component of the field maps, 

uncorrelated with the first principle component, is achieved, etc. 

 The first principal component, PCA field map, can then be used as the target 

magnetic field to design a custom shim coil for the correction of the field 

inhomogeneities within the specified ROI.  A cylindrical surface mesh was created with 
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8300 elements, a diameter of 40 cm, and a length of 30 cm using Comsol Multiphysics 

(Burlington, MA) (see figure 4.2).  The surface mesh was imported into Matlab for the 

use in BEM. C++ was also used for the calculation of some matrices described in 

Appendix B and the current density of the custom coil capable of correcting the field 

inhomogeneities in the region of interest was found. 

 

 

Figure 4.2  A cylindrical surface mesh with 8300 elements, with a diameter of 40 cm, 
and a length of 30 cm was created using Comsol Multiphysics (Burlington, MA). 

The boundary element method (BEM) relies on discretization of the surface 

current density into a set of basis functions over the elements of a mesh.  These basis 

functions are weighted by some unknown coefficients.  The magnetic field, power, and 

torque of the coil are derived in terms of the unknown coefficients via current density, 

and are used to create a functional.  The functional is minimized to find the unknown 

coefficients of current density that yields the desired magnetic field, while optimizing the 
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power and torque properties.  The complete derivation of the boundary element method is 

presented in Appendix B.  This method is implemented in Matlab, version 7.5 (The 

Mathworks, Inc., Natick, MA, USA) and C++ for the design of a custom coil (see figure 

4.2) to correct the field inhomogeneities in the medial temporal lobe. 

For coil construction, the continuous current density should be approximated with 

a set of current carrying loops.  To determine the position of the loops under the 

condition   

! 

" # J = 0 , we define a stream function S(r): 

    

! 

S r( ) = J " r ( )d " r 

-#

r

$  

The stream function was discretized into contours using the contouring function 

of Matlab version 7.5 (The Mathworks, Inc., Natick, MA, USA).  The contours of the 

stream function are the intersections of the stream function with evenly spaced planes 

(levels).  Wires were positioned along the contours of the stream function and each 

contour represented one or more closed loops on the coils cylindrical surface (18). 

Once the wire pattern was obtained (see figure 4.5), it was discretized into an 

array of wire segments characterized by their positions and lengths.  A Bio-Savart 

elemental equation was used to calculate the shim field within the region of interest 

(15,16).  The coil inductance was evaluated by applying the Neumann formula (12,15,16) 

to the wire element array and the resistance was calculated by summing the resistances of 

the wire elements in the element array for rectangular wire.  In this case the radial 

thickness of the conducting layer used for coil fabrication was assumed to be constant 

and the width of the conducting path was assumed to be equal to the minimum spacing.  

The cross-sectional area of each wire element would then be the thickness multiplied by 

the minimum spacing. 

 A computer simulation was performed, by adding the simulated custom shim as a 

channel to the system shims. Linear least squares fitting (19) was used to fit the  

simulated custom coil and system shims fields to the unshimmed field inhomogeneity 
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map within the region of interest.  The fitting provided an estimate of the currents 

required for the real custom coil and the system shims for multiple subjects. 

Once the currents were calculated, the field profile achievable with the simulated 

custom shim plus the system shims was determined for each subject and compared with 

the field profile attainable using the system shims only.  This comparison was made by 

first converting the field profiles to frequency profiles using the gyromagnetic ratio, and 

then by calculating the standard deviation of histograms of the frequency profiles.  For 

each subject, the histograms of three frequency profiles were calculated: the unshimmed 

frequency profile (unshimmed frequency inhomogeneity map), the frequency profile of 

the system shims subtracted from the unshimmed frequency profile and the frequency 

profile of the simulated custom shim plus the system shims subtracted from the 

unshimmed frequency profile.  For each histogram the standard deviation was calculated 

and the results are shown in table 4.1.  To investigate the sensitivity of the simulated 

customized shim coil to small differences in subject positioning within the coil, in 

computer we misaligned one of the subject’s head with respect to the custom coil in the 

x-, y-, and z- directions and the standard deviations of the histograms of many 

misalignments were extracted and plotted versus the misalignments. 

4.3 Results and Discussion 

 Figure 4.3 parts a, d and g show sagittal anatomical images and parts b, e and h 

show sagittal images of unshimmed field inhomogeneity maps of all three-subject heads 

respectively.  To specify the region encompassing the medial temporal lobe on the field 

inhomogeneity maps, the field map of each subject head was overlaid with the anatomical 

image and the results are shown in figure 4.3 parts c, f, and i.  For each subject, the white 

rectangle, shown in part c, f, and i of figure 4.3, encompasses the hippocampi.  The PCA 

field map was calculated from the field maps within the regions enclosed by theses 

rectangles. 
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a)    b)    c) 

 

d)    e)    f) 

 

g)    h)    i) 

Figure 4.3 parts a), d) and g) show sagittal anatomical images and parts b), e) and h) 
show sagittal images of the unshimmed field inhomogeneity maps of all three subject 
heads respectively.  The field map of each subject head was overlaid with the anatomical 
image and the results are shown in parts c), f), and i).  For each subject the white 
rectangle, shown in parts c), f), and i) encompasses the hippocampi. 
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The unwrapped wire pattern of the custom coil is shown in figure 4.4.  The coil 

was modeled with 1 mm diameter wire and 60 windings.  The inductance of the coil was 

calculated to be 960 µH and the resistance of the coil was calculated to be 1.65 Ω.  

 

 

Figure 4.4 The wire pattern of the coil is shown with 1 mm diameter wire and 60 
windings. The inductance of the coil was calculated to be 960 µH and the resistance of 
the coil was 1.65 Ω. 

Figure 4.5 shows the z-component of the magnetic field generated by the custom 

coil along x, y and z-axes, within the region of interest. 
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Figure 4.5 The z-component of the magnetic field is shown along x, y and z-axes, within 
the region of interest. 

Figure 4.6 shows the field inhomogeneity profiles across three slices through the 

center of the region of interest after a) no shimming and b) shimming using the simulated 

custom coil plus system shims.  For each slice, the customized shim is expected to reduce 

the field inhomogeneity by a factor of 1.3 when added to the system shims as compared 

to that obtained using the shim system only. 

Figure 4.7 parts a, b, and c show the histograms of the frequency inhomogeneities 

for all three subjects.  Each figure shows the histogram of the unshimmed frequency 

inhomogeneities, the histogram of the residual frequency inhomogeneities after shimmed 

with the system shims and the histogram of the residual frequency inhomogeneities after 

shimmed with the simulated custom plus system shims.  It should be mentioned that in 

computer software each subject’s head was moved in the z-direction in order to locate the 

medial temporal lobe in the region of interest of the simulated custom coil.  The subject’s 

head was only moved in the z-direction since in practice that could be the only possible 

translation when a subject head is located in an MRI scanner.  In all three cases when the 

simulated custom shim is added to the system shims, the simulated histogram becomes 

narrower which mean that the inhomogeneity is decreased. 
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a)      b) 

Figure 4.6 Planar slices of the field inhomogeneity through the centre of the region of 
interest when a) no shims, b) simulated custom shim and the existing system shims were 
used.  The simulated custom shim reduces the field inhomogeneity by a factor of 1.3 
when added to the system shims as compared to that obtained using the shim system 
only. 
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a)    b)    c) 

Figure 4.7  Parts a),  b), and c) show the simulated histograms of the frequency 
inhomogeneities for three subjects.  Each figure shows the histogram of the unshimmed 
frequency inhomogeneities, the residual frequency inhomogeneities after shimmed with 
the system shims and the residual frequency inhomogeneities after shimmed with the 
simulated custom plus system shims.  In all three subjects the line-width of the histogram 
of frequency inhomogeneities decreases after the addition of the custom coil to the 
system. 

To calculate the reduction of the field inhomogeneity quantitatively, the standard 

deviation of each histogram was calculated and the results are shown in table 4.1.  As 

shown in the table, the standard deviation of frequency inhomogeneity histograms was 

decreased by 70% when the system shims was applied alone. When the simulated custom 

shim was added to the system shims, the standard deviation was decreased by another 

30%. In our field mapping measurements, two subjects were males and one subject was a 

female.  As shown in figure 4.3, all three heads are different in shape and size.   

However, the improvement in the field inhomogeneities is consistent among all three 

subjects after adding the custom shim to the system shims.  We believe that if the custom 

coil is applied to more subjects, it will improve the field inhomogeneities consistently. 
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Standard Deviation, σ (Hz) 

 Subject #1 Subject #2 Subject #3 

No shim 31.1 33.9 27.3 

System shims 5.72 5.95 7.92 

Custom+ system shims 4.71 4.90 5.42 

Table 4.1 Calculated standard deviations of the frequency inhomogeneities when no 
shim, system shims, and the simulated custom plus system shims were used for all three 
subjects.  The addition of the custom shim improves the field inhomogeneities by up to 
30%. 

 

 

Figure 4.8  The standard deviation of residual frequency inhomogeneities after shimmed 
with the simulated custom plus system shims was calculated for many misalignments of 
one subject’s head within the custom coil.  This figure shows that the misalignment of up 
to ± 1 cm could be tolerated in x-, y- and z- directions. 
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4.4 Conclusions 

The results predict that a simulated custom coil insert would allow improvements 

in shimming of up to 30% for this specific head MRI system.  This improvement was 

achieved when a custom shim was designed for a 7T head only MR system where the 

system shims are specifically designed for head.  We believe that such a custom coil 

would improve head shimming significantly when used in whole body MRI scanners.  

We are currently studying the improvement of field inhomogeneity by adding a custom 

coil to a whole body 3T MR system.   As mentioned, the current required for the custom 

coil is small, which means it would need no cooling and it would not experience large 

Lorentz forces. 

Our goal is to develop a series of coil inserts, each customized to a different region of the 

brain or other anatomical area.  These coils would be inserted into the scanner bore as 

necessary for different studies. 
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4.6 Appendix B  

The goal is to find an optimal current distribution flowing on a cylindrical or any 

arbitrary shape surfaces to achieve a desired magnetic field in region of interest.  The coil 

surface could be discretized into a mesh of triangles of the surface (12).  The points at the 

corners of these triangles are called “nodes”.  A current element includes all neighboring 

triangles of the chosen non-boundary node (see Figure 4.9a).  For each node, n, a basis 

function, fn(r), is defined to describe a circulating current around the nodes through the 

adjoining triangles. 

 

 

Figure 4.9 The discretized current carrying surface is shown in a), the current element 
and the basis function fn for the nth node are shown in b), and the length, dni, and the 
width, eni , vectors of one of the triangles associated with the selected node are shown in 
c). 

A current density on a surface is described as the summation of all basis functions 

for N nodes and weighted by In: 
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Each basis function, fn(r), could be described as: 
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where in each neighboring triangle vector e is the opposite edge and vector d is the 

minimum distance vector and perpendicular to e (see Figure 4.9b).  Nn is the number of 

triangles in a particular current element and Δni denotes an ith triangle belonging to node 

n.  This formalism for the basis function provides a system, in which the current density 

is divergence-free on the surface, ∇. J(r) = 0.  Using Eq. [B1] the magnetic vector 

potential A(r) can be written as (15,16): 

 
      

! 

A r( ) =
µ

0

4"

J # r ( )
r - # r 
$ d # S %

µ
0

4"
I

n

n=1

N

&
f

n
# r ( )

r - # r 
$ d # S . (B3) 

The magnetic field is then: 
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To simplify the notation in the equation above, we introduce cn: 
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In Eq. [B7], the integration over the surface, ∫ dS′, is now equivalent to integration 

over the surface of elements containing the node n.  Because the basis functions are made 
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up of Nn parts, the cn (r) matrix is calculated by summing over the set of functions linked 

to each triangle associated with each node:  
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The power dissipation, P, in the coil can be written as (16): 
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Where t is the thickness and ρ  is the resistively of the coil.  Using the discretized current 

density, Eq. [B1], the discretized version of power could be written as: 
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where Ia is the current flowing on the surface of the coil which could be normalized to 

one.  Similarly the inductance could be discretized using Eq. [B1], which will form a 

quadratic system of equations: 
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where Lmn is the self-inductance matrix that could be expanded in terms of vni 

using Eq. [B2]: 
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The current density, J(r′), experiences the torque vector, M, in the external main 

magnetic field, B0 (16): 
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Therefore thee components of the torque are described and discretized as: 
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To optimize the physical parameters of the coil such as self inductance, L, 

resistance, R, and torque, M, and to create a magnetic field, Bz that matches the desired 

target field Bz
t, we introduce a functional that consists of the deviation of the magnetic 

field from the desired target field, self inductance, L, power, P, and torque, M: 
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where W(rk) is a weighting function that can be set to adjust the accuracy with which the 

magnetic field is generated by the coil, Boff, z  is a field offset  that is obtained as a 

solution in the minimization, α and β are weighting factors whose values determine the 

importance of self-inductance minimization and power minimization respectively.  λ  pz , 

λ  py  and λ pz are Lagrange multipliers for the pth surface.  δn∈p is a term that is equal to 1 

if the node n belongs to the pth surface, and 0 if it does not.  This term allows for torque 

minimization on any number of surfaces.  By differentiating the functional with respect to 

each unknown variable such as In values, Boff ,z and the Lagrange multipliers, λ and 

setting it to zero, In values, Boff ,z and the Lagrange multipliers, λ  could be found: 
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In Eq [B20], 

! 

"
#

is a Lagrange multiplier combined with the static magnetic field, 

B0 and in Eqs [B22-B23], P is the number of surfaces composing the coil. Eqs. [B20] to 

[B24] could be assembled into a global matrix equation: 
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If the number of surfaces P = 1, the matrix equation could be shown as: 
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Eq. [B25] is inverted to find I, which contains In values.  Once In values are 

known, the current density J(r) could be found using Eq. [B1].  Having the current 

density, magnetic field, power, self-inductance and torque could simply be found using 

Eqs [B4,B9,B12] and [B15]. 
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Chapter 5  

5 Conclusions 

5.1 Thesis Summary 

The problem of having magnetic field inhomogeneities caused by different 

magnetic susceptibilities within the human body was discussed in this thesis. In 

particular, with the recent movement towards higher magnetic field resonance imaging to 

benefit from higher signal to noise ratio (SNR), the field inhomogeneities become more 

intense and problematic as their magnitude scales with the strength of the magnetic field.  

As discussed in this thesis, many methods have been proposed to reduce the field 

inhomogeneities by either using ferroshims or shim coils which results in better quality 

MR images and more quantifiable MR spectra.  This thesis has focused on designing high 

performance gradient and shim coils using a variety of methods to maximally decrease 

the magnetic field inhomogeneity present in the object being scanned.  An extension of 

powerful gradient design tools based on constrained current minimum inductance was 

expanded to minimize power instead.  Upon conclusion of this research an extension of 

the computationally simple Fourier series method was expanded to include arbitrary shim 

design.  Finally, the recent innovation on the boundary element method for designing 

coils to produce arbitrary fields was applied to shimming the hippocampus specifically, 

as a test case. 

A set of gradient and shim coils customized for small animal imaging was 

designed using minimum inductance and minimum power target field methods.  A 

quantitative comparison of shim performance in terms of merit of inductance, ML, and 

merit of resistance, MR, for shim coils designed using both design algorithms showed 
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that the difference in ML and the difference in MR was less than 15%.  Minimum 

inductance designs tend to feature oscillations within the current density; while minimum 

power designs tend to feature less rapidly-varying current densities and a lower power 

dissipation.  Overall, the differences in coil performance obtained by the two methods 

were small.  Using, the target field method, the length of the gradient and shim coils 

could not be controlled.  Therefore, we decided to extend the Carlson Fourier series 

technique developed for designing gradient coils with finite length.  By introducing a 

truncated 2D-Fourier series expansion of current density in the design algorithm, we 

designed a set of shim coils. 

This technique is mathematically simple, easy to implement, computationally fast 

and allows for simple design of a shim set for use with short-bore magnets.  A prototype 

set of shim coils was designed using Fourier series minimum inductance and minimum 

power algorithms.  A quantitative comparison of shim coil performance in terms of merit 

of inductance, ML, and merit of resistance, MR, was made for coils, of length 50 cm, 60 

cm, 80 cm, and 100 cm, designed using minimum power and minimum inductance 

algorithms.  In each design case, the difference in ML and the difference in MR given by 

the two design methods was less than 6%.  Across shim axes, the 80 cm length designs 

had the highest merit values (for both power and inductance).  We concluded that the 

decreased complexity of the minimum power designs in terms of the wire pattern 

outweighs the slight decrease in the merits and the minimum power designs outperform 

the minimum inductance designs.  This design method makes it possible to easily design 

a shim set of any desired order for any radius and length of surface, which makes the 

engineering of such a coil straightforward. 

 The boundary element method (BEM) capable of designing shim coils with 

widely varying geometry and off centered region of interest (ROI) is a powerful method 

that we used to design region specific custom shim coils.  With the new idea of dividing 

the field inhomogeneities into two factors; relatively large inhomogeneities with minimal 

variation between subjects, and smaller, subject specific inhomogeneities, custom shim 

coils could be designed to correct for the large inhomogeneities that are consistent 

between subjects.  Then the existing system shims could be used to correct the field on a 
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sample specific basis.  We designed a custom coil to correct for the large field 

inhomogeneities existed in the medial temporal of the brain.  The results showed an 

improvement of up to 30% in the field homogeneities when the custom coil was added to 

the head only 7T scanner.  The subject misalignment of up to ± 1cm with respect to the 

custom coil could be tolerated.  In this study, a head only MRI scanner was used, where 

shim coils are specifically designed and built for the head.  We believe that the custom 

coil could improve the field inhomogeneities by up to 50% when inserted in a whole 

body MRI scanner.  The power of this method is that any geometry and any physically 

possible field can be produced, making it an extremely powerful and versatile tool.  The 

only problem with methods such as these is that the coils are essentially coarse as they 

are produced on a mesh and often need further manipulation to make them useful from an 

engineering perspective. 

5.2 Future Work 

The Fourier series method has been used by another student to build a shim set 

which will be used for dynamic shimming.  The benefit of the method was in the 

simplicity of the design. 

A test case custom shim coil that has been designed for the medial temporal of the 

brain will be constructed and tested in the head only 7T MRI scanner.  The custom coil 

will be located concentrically outside the RF coil and inside the magnet bore.  The 

diameter of the coil will be limited by the diameter of the magnet bore and the RF coil. 

Therefore the dimensions of the coil could be different than the one designed in chapter 

4.   

It has been shown by simulation that the custom coil is considerably effective at reducing 

the susceptibility induced magnetic field inhomogeneities in the medial temporal lobe 

where the hipopocampi are located.  This region of the brain suffers from large field 

inhomogeneities caused by magnetic susceptibility differences at tissue/air interfaces.  

The presence of the large field inhomogeneities ultimately increases the complexity of 

metabolite quantification in 1H spectroscopy of the hippocampus.  Our goal is to increase 
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the accuracy of metabolites measurement in the spectrum of the hippocampus by 

applying the custom coil to correct for the significant field inhomogeneities existed in 

this region of the brain.  Accurate quantification of metabolite spectra could possibly 

facilitate diagnosis of Alzheimer’s disease and other neuro-degenerative diseases. 

Ultimately we are planning to design and build separate coils for the frontal, temporal, 

parietal or occipital lobes of the human brain, and these shim coils would be switched 

into and out-of the scanner on a study-specific basis. 

5.3 Final Conclusions 

With the design of efficient traditional gradient and shim coils is now being trivial, 

region specific custom coils described in this thesis are promising tools for shimming at 

high fields, where shimming is of utmost importance.  It has been shown by simulation 

that these coils significantly reduce the magnetic field inhomogeneities caused by 

differences in magnetic susceptibility in the head.  This new approach to shimming has 

the potential to improve the quality of MR images and spectra that benefits from 

increased signal to noise ratio (SNR) at high magnetic field strength. 
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