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Abstract

This thesis deals with development and experimental evaluation of control algorithms for

stabilization of robot-environment interaction. A framework for stable robot-environment in-

teraction is presented and evaluated on a real physical system. The proposed algorithm fun-

damentally generalizes the conventional passivity-based approaches to the coupled stability

problem. In particular, it allows for stabilization of not necessarily passive robot-environment

interaction. The framework is based on the recently developed non-planar conic systems for-

malism and generalized scattering-based stabilization methods. A comprehensive theoretical

background on the scattering transformation techniques, planar and non-planar conic systems

is presented. The dynamics of the robot are estimated using data-driven techniques, which

allows the equations for the dynamics of a robot to be obtained in an explicit form. The gen-

eralized scattering transformation is used in combination with the Lyapunov-based adaptive

trajectory tracking control. It is shown that the original interconnected system is not stable

due to its non-passive nature; however, the application of the proposed stabilization algorithm

allows stability to be achieved, without affecting the robot’s trajectory tracking performance in

free space.

Keywords: robot-environment interaction, machine learning, dynamics estimation, mo-

tion control, interaction control, force control, conic systems, coupled stability, stabilization,

scattering transformation

ii



Lay Summary

Since the advent of robotics, considerable effort has been put in the development of ap-

propriate theory, algorithms and their implementation. Nowadays, robotic systems have found

applications in various areas including, but not limited to, industrial manufacturing, the ser-

vices sector, driving and healthcare fields. Further integration of robotics in the economy

requires enabling a higher level of physical interaction between a robot and the outside world.

In other words, robots should be able to, for example, safely interact with people, other robots

and various systems. The robotics research community has put a great amount of effort into

investigating methods for interaction control. To date, most commonly applied algorithms for

interaction control are limited to passive systems, i.e., systems that do not have internal sources

of energy. Simple examples of passive systems are a mass-spring-damper system and a fixed

wall. In contrast, both humans and robots come under the concept of non-passive, or active

systems, because they have internal sources of energy. Thus, conventional interaction control

algorithms typically fail to interact with active environments in a stable manner. In this thesis,

a framework for stable robot-environment interaction for passive and non-passive systems is

presented and evaluated on a real robot. This work presents a comprehensive overview and

theoretical background on control methods and paradigms used to design the framework. All

the necessary steps for implementation of the algorithm are described. These include hard-

ware design, a method for estimation of dynamics and cone parameters. It was experimentally

verified that the proposed algorithm successfully stabilizes interaction between the robot and

the environment. The proposed framework constitutes a fundamental extension of the existing

passivity based approaches for the coupled stability problem. The algorithm can be applied for

stabilization of interconnections of active systems. For example, possible applications of the

framework are bilateral teleoperation with communication delays, robotic surgery on a beating

heart, and haptics-based environments for training.
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Chapter 1

Introduction

To date, there were three stages of industrial revolution. The first industrial revolution dates

back to thousands of years ago to the late Stone Age. The division of labor marks a signifi-

cant milestone in the history of humanity, allowing for faster and more efficient production of

goods. This, in turn, triggered a chain of new discoveries and innovations in the next millen-

nia. The second industrial revolution occurred in the late 18th century with the introduction

of manufacturing machinery, where steam power was harnessed for manufacturing and trans-

portation. The latest industrial revolution took place in 1970s with the introduction of robotic

systems in the industrial manufacturing and even beyond, for example, in health care and ser-

vice sectors. The concept of the fourth industrial revolution – ”Industry 4.0” – was first formed

in 2011 at the Hannover Industrial Exhibition in Germany [90]. The aim of this concept is

to bring positive change to the economy and society through the use of the intelligent robotic

systems, Internet of Things (IoT), Artificial Intelligence (AI), Big Data, and other scientific and

engineering developments. The technologies mentioned should be more tightly integrated into

different economic sectors and everyday life in order to allow for more efficient production,

better healthcare, and in general safer and more comfortable people’s lives. In particular, one

of the key factors of the ”Industry 4.0” concept is to enable safe physical interaction of robots

with humans and the environment.

1



2 CHAPTER 1. INTRODUCTION

The goal of this thesis is to design a framework for stable robot-environment interaction.

One of the main challenges associated with robot-environment interactions is to ensure stable

contact between the robot and the environment. When a robot encounters an environment,

the interaction force is generated between the robot and the environment, thus forming the

closed-loop dynamics of the robot-environment system. The problem of stability of robot-

environment interaction, also known as contact or coupled stability, is a fundamental problem

in robotics. The term “environment” is understood here to mean any physical object(s) other

than the controlled robot such as a conveyor belt, other robots, or people.

The rest of this chapter is organized as follows. In Section 1.1, a review of the litera-

ture related to stability and control of robot-environment interaction is presented. Section 1.2

provides motivation behind the research. Section 1.3 discusses the goals of the thesis and its

contributions. Section 1.4 describes the overall thesis structure.

1.1 Literature Review

In general, there exist several approaches that can be used for control of robot-environment

interaction; the most popular approaches include impedance control, admittance control, and

hybrid force/position control. In this Section, background materials related to the problem

of coupled stability are described. Mainly, the background section covers the developments

in impedance, admittance, and hybrid control approaches. In addition, scattering-based tech-

niques are also described.

1.1.1 Impedance and Admittance Interaction Control

The objective of impedance control is to modulate the apparent stiffness, damping, and iner-

tia of the robot. Admittance control, on the other hand, can be described as position-based

impedance control [61]. Specifically, admittance control achieves the effect of compliant

control performance by changing the reference trajectory [70] in response to the force ap-
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plied, whereas the idea behind impedance control is to modulate force in response to a change

in trajectory. The desired control performance in impedance and admittance control is guar-

anteed through imposing a proper impedance model, which relates the external force to the

manipulator’s motion. Thus, selection of the impedance/admittance model parameters appears

particularly important. This is achieved by using a dynamical model of the robot and the con-

tact force feedback. In early research works on impedance control, a desired impedance model

was prescribed to the robot, while the main challenge was to precisely estimate the dynamics

of the robot and to handle the uncertainties of the model [16, 59, 13, 91, 54]. Some works

are based on learning the impedance model, or implementing an adaptive impedance model.

In some cases, a dynamical model of the environment is also incorporated into the impedance

control scheme [12], which enables the impedance behaviour to be more agile. Moreover,

there has been a significant research effort related to implementing control schemes with vari-

able impedance [81, 82, 10, 36, 37]. In these works it was shown that, compared to controllers

with fixed impedance, variable admittance controllers result in better stability and performance

in robot-environment interaction tasks where the environment has variable stiffness properties

or where the robot interacts with a human. The main idea of variable impedance approaches is

to switch parameter values between predefined constants. Although these approaches may pro-

vide better control performance, the impedance parameters (stiffness, mass, and damping) are

obtained using heuristic methods and cannot be easily used in other applications. To overcome

this problem, iterative learning approaches have been developed to find impedance parameters

in cases where the environmental dynamics are unknown. The idea of the iterative learning ap-

proach is to repeat the same task with the goal of iteratively improving the control performance

[3, 4]. Indeed, in order to learn how to interact with previously unknown objects or envi-

ronments, humans typically take several, possibly unsuccessful, attempts [21, 100]. In [15],

associative search network learning is applied to a wall-following task. In [101], an impedance

learning approach based on an internal model is developed and implemented for a high-speed

insertion application. In [80], neural networks are used to regulate the impedance parameter of
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the end-effector, i.e., the neural networks for position and velocity are used to control a robot

in free space. The other neural network is used to control the robot during a contact with an

environment. Thus, this method regulates stiffness, damping, inertia and virtual trajectory of

the end-effector. There has also been some research effort in investigating adaptive methods

for obtaining the impedance parameters. This approach does not require the robot to repeat

the same operation. However, impedance adaptation is a challenging problem, because such

adaptation may require some environmental variables to be invariant, which is not the case with

a dynamically changing environment. There has been extensive research done in impedance

adaptation; however, this approach is less popular as compared to impedance learning. In [83],

a trajectory tracking control method is proposed for multi-joint robots by adapting the stiffness

through the use of resonance. In [76], switching between different values of the impedance

parameters is implemented in order to dissipate the energy of the system faster.

In [23], the researchers proposed tuning the admittance damping parameter based on the

measurements performed by a force/torque (F/T) sensor mounted at the end-effector of a 3-

DOF Cartesian robot. The inertia parameter in this approach remains constant. In their work,

forces and the rate of change of the forces are used to predict human intentions. In [46], vari-

able admittance control laws are proposed that adjust the admittance parameters based on the

magnitude of acceleration. This approach was further improved in [45], where the authors

added an algorithm to anticipate and avoid kinematic limitations. Compared to the previous

control schemes, this approach has faster execution time and lower errors in robot-environment

interaction tasks. However, the authors used three or four translational degrees-of-freedom

(DOF) systems in their experiments, which lack the coupling complexity of a 6-DOF robot.

In [25], the researchers combined Cartesian impedance modulation and redundancy resolution

to obtain better performance in human–robot physical interaction. They concluded that con-

trollers with variable impedance demonstrate better performance compared to those with the

fixed impedance, because in the case of manual guidance the robot is able to adapt its behaviour

dynamically depending on the task and the human intention, which makes it more comfortable
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for the user to control the robot. In addition, variable impedance controllers allow to reach

a more favorable trade-off between accuracy and execution time as compared to controllers

with fixed impedance. Labrecque and Gosselin [44] presented a control scheme where variable

impedance allows a smooth transition between two interaction modes, unilateral and bilateral.

Their experimental setup includes a 7-DOF robot with two F/T sensors. Experiments showed

that this approach allows an operator to interact with a robot in an efficient and intuitive man-

ner. This approach improves performance and stability in physical Human-Robot Interaction

(HRI); however, the implementation and validation are explored on a collaborative robot and

rely on its advantages such as inherent low inertia and joint torque sensing. In [22], an online

approach is proposed that calculates virtual constraining repulsive forces based on different

performance indices to avoid singularities and achieve low efforts in human–robot cooperation

tasks using a 7-DOF robot.

Generally, optimization is an integral part of impedance learning and adaptation algorithms,

because these algorithms control both force and position, and the control design typically in-

volves a trade-off between the two objectives. A reward function or a cost function can be

defined which evaluates the interaction performance, and the parameters of control scheme

subsequently can be chosen to maximize the reward function or minimize the cost function. For

example, in [38], a Linear Quadratic Regulator (LQR) is used to find the optimal parameters for

a control algorithm in the situation where the environmental dynamics are known beforehand.

In [62], the environmental dynamics are also assumed to be known, however, the parameters

of the control algorithm are updated online, in contrast with [38] where the parameters are

fixed after optimizing the LQR parameters. The drawback of these two control algorithms is

that the system’s dynamics have to be known a priori. To address the problem of unknown

system dynamics in optimal control, techniques such as Reinforcement Learning or Adaptive

Dynamic Programming (ADP) have been extensively researched [9, 51, 92, 95, 93, 96, 94].

The main idea of Adaptive Dynamic Programming is to design a control scheme that would

mimic the way biological systems interact with their surrounding environment. The control
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system in ADP is defined as an agent or an actor which modifies its behaviour based on the

previous outcomes of interaction with the environment. The agent or actor are either punished

or rewarded for a control action based on the cost function [51, 92]. Out of all ADP control

schemes, the most recognized are heuristic dynamic programming, Q-Learning, globalized and

dual-heuristic programming. The main feature of these control approaches is that only partial

information about the system’s dynamics is required for the design of the optimal controller.

There are also works where ADP is used for impedance adaptation of a robotic manipulator.

In [57], the output feedback adaptive dynamic programming method is used to determine the

desired impedance parameters. In [11], variable impedance control is designed by using path-

integrals (PI2) in the Reinforcement Learning algorithm. The Path-Integrals algorithm is a

sampling-based learning algorithm which is derived from first principles of stochastic optimal

control. This technique allows for learning the joint-space variable impedance skills. That is,

by specifying the task through the cost function, this algorithm tunes the stiffness for high per-

formance in various tasks, e.g., via-point trajectory following and flipping a light switch. The

disadvantage of this method is that the joint-space impedance learned has limited policy trans-

ferability. This technique was further improved in [71], where the state-dependent stiffness

model is learned together with trajectories. In [60], the authors investigated how the choice

of action space influences the performance of the RL algorithm in manipulation tasks. It was

found that the variable impedance control in end-effector space performs best in contact-rich

and constrained tasks. However, the performance of the RL algorithm highly depends on the

design of the reward function. The main idea of Inverse Reinforcement Learning approaches

is to infer the reward function from expert demonstrations, whereas in traditional Learning

from Demonstration (LfD) methods, the goal is to mimic expert actions. In RL methods, the

variable impedance policies are obtained by maximizing the reward function using forward

RL. One commonly used framework for IRL is the maximum entropy IRL [105]. This work

assumes that expert trajectories follow a Boltzmann distribution model and updates the cost

function by maximum likelihood learning. This framework was improved in [50] by using
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the local Laplace approximation of the cost function, which allowed inverse optimal control

to be performed in high dimensional and continuous domains. However, for the cost function

updates, these methods require a dynamical model of the system, which may be difficult to

obtain, particularly for the more complex robotic manipulators.

Recently, a sample-based IRL approach was proposed [28], where a nonlinear cost func-

tion is learned for high-dimensional continuous systems. In this approach, the actor alternates

between optimizing the cost function and optimizing the variable impedance policy, which in

turn generates an optimal trajectory. This IRL approach does not require a dynamic model

of the system. Later the authors combined this approach with Generative Adversarial Net-

works and introduced the GAN-GCL algorithm [27]. The performance of this algorithm was

improved in [30] where an Adversarial Inverse Reinforcement Learning (AIRL) algorithm

extended the GAN-GCL to single state-action pairs, which helped to achieve better results in

simulation. In [104], variable impedance gain action space is introduced, that allows more

general representation of the expert policy to be found compared to using force as action. This

improves the reward function transfer performance in a new task setting.

1.1.2 Hybrid Position-Force Interaction Control

The other type of interaction control algorithms is the hybrid position/force control. The idea

behind the hybrid control strategy is to control either a position or a force in complementary

subspaces of the task space, through the use of proper selection matrices [69]. Lozano and

Brogliato [58] presented an adaptive controller for redundant manipulators, which is based on

the decomposition of the robot Jacobian and the environmental stiffness matrices. This ap-

proach does not require measurements of joint accelerations and force derivatives. Yoshikawa

and Sudou [35] further improved the control scheme presented in [69]. The authors proposed a

dynamic hybrid position/force control architecture, which takes into consideration the manipu-

lator dynamics and the end-effector constraints specified by the given task. In [43], the authors

proposed a new robust adaptive control scheme for simultaneous force/motion control of con-
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strained rigid robots. The algorithm is based on a sliding-mode technique which guarantees

robustness with respect to parameter variations in both manipulator and motors dynamics. The

adaptive force/position controller proposed in [63] is based on a strict-feedback backstepping

technique. The authors in [20] presented an adaptive position/force controller for constrained

environments. This control architecture does not require the measurements of velocity. In

[99], the authors used the force/torque and vision sensors in their implementation of the hybrid

position/force controller. This control scheme allows a manipulator equipped with an uncali-

brated camera and force sensor to move along a path on an unknown surface with acceptable

position/force errors. In [72], the authors presented an adaptive force control algorithm with

low-level position/velocity controllers for robotic manipulators. This algorithm achieves stable

contact with surfaces with unknown linear compliance. In [14], a motion and force tracking

controller is proposed for robots with uncertain kinematics and dynamics. In [41], a method

is proposed that reduces impulsive contact force between the manipulator and its environment.

In [31], the authors use Neural Networks to compensate for unmodeled dynamics of the robot

using hybrid force/position controllers.

1.1.3 Scattering Techniques

The scattering transformation, also called the wave transformation or the Cayley transforma-

tion, has been known in robotics for a long time. However, initially this approach originated in

the field of electrical networks, where it was used in transmission lines and distributed networks

with delays [97]. In the field of robotics and control, the scattering transformation was first

introduced in the work of Anderson [1], where it was used for establishing the relationship

between the small-gain theorems and the notion of passivity. Later in the work of Ander-

son and Spong [2], the approach based on the scattering transformation was used to stabilize

force-reflecting teleoperators in the presence of communication delays. The scattering based

approach presented in [2] and that in the parallel developments of Niemeyer and Slotine [64],

appear to be the backbone of most popular methods for stabilization of bilateral teleoperators.
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That is, scattering-based techniques are commonly used to tackle the instabilities caused by

communication delays in the force reflecting teleoperators [65, 77]. The stability is achieved

due to the fact that conventional scattering operator transforms a passive system into a system

with L2-gain less than or equal to one, as shown in [2, Theorem 3.1]. More specifically, if

we represent a force reflecting teleoperator as an interconnection of passive subsystems, the

scattering operator applied to the both sides of the communication channel would transform

these passive systems into systems with L2-gain less than or equal to one. The stability of the

overall interconnected system, i.e., the bilateral teleoperator, then follows from the small gain

theorem.

Extension of conventional scattering transformation to the case of not necessarily passive

systems was pursued in [34] and [68]. The proposed generalization of scattering techniques

is based on the fact that the conventional scattering operator performs a rotation of the input-

output pair by the angle p/4. That is, the approach described in [68] performs a rotation by the

desired angle which may not necessarily be p/4. In addition, the described extension allows a

desired gain to be prescribed to the system being transformed. Thus, these two developments

provide more control over the transformation to be designed, which in turn makes it possible

to formulate more general stability conditions for the interconnected system. For example, the

generalized scattering transformation described in [68] is used to satisfy the graph separation

stability condition, which defines conditions for a more general stability in comparison with

the small gain theorem. The developments presented in [68] rely heavily on the conic system

formalism originally described in the work of Zames [103]. That is, a dynamical system

is represented as a conic sector on the plane parameterized by two variables. This notion is

fairly general and includes finite L2-gain stable, passive and non-passive systems. Extensions

to nonlinear conic sectors were pursued in [73] and [78], which allows for a more versatile

representation of a system.

Further generalizations of the scattering techniques are based on the non-planar conic sys-

tem formalism [85, 86, 87]. In the case of the coupled stability problem, the use of the non-
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planar conic systems framework and generalized scattering transformations may potentially

lead to fundamental extensions of the existing coupled stability criteria and methods for sta-

bilization of robot-environment interaction. Direct application of the methods developed in

[85]– [87] to the coupled stability problem, however, is not preferable, particularly because

straightforward designs based on the methods from the above cited works would interfere with

a robot’s tracking performance in free space. The design framework for the coupled stability

problem which is compatible with an arbitrary tracking control algorithm and does not affect

the trajectory tracking performance in free space was developed in [84]. Specifically, this

work formulates a problem of control design for coupled stability as the problem of design of

a scattering transformation that stabilizes the robot-environment interaction while satisfying

structure constraints that preclude its interference with the tracking control algorithm during

the free space motion. A procedure was presented for constrained scattering-based design as

well as a detailed control design example. In this example a manipulator controlled by a tra-

jectory tracking algorithm experiences nonpassive contact with an environment which results

in coupled instability. The application of the developed scattering-based methods stabilizes

the robot-environment interaction. The work presented in [84] can be regarded as the most

advanced and applicable scattering-based approach for the stabilization of a coupled system.

The goal of this thesis is to adapt and test the scattering-based framework proposed in [84] on

a real, physical robot-environment interaction system.

1.2 Motivation

1.2.1 Passivity

Most of the interaction control algorithms described above are based on an assumption that the

closed-loop system is passive. Their results either show limited performance or no performance

at all with non-passive systems. However, there are many examples of inherently non-passive

environmental dynamics that include a user’s dynamics in a robotic rehabilitation systems [5],
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robotic surgery on a beating heart [102], terrain with slippage in mobile robotics [52, 53],

digitally implemented environments for haptics applications [55], etc. Another example of

active environment is a second manipulator executing a prescribed trajectory.

It is also worth noting that the closed-loop system composed of the interconnection of the

robot and its environment might not be passive, even if it appears to be so. This problem is

often overlooked in the robotics community, as in most cases researchers simply assume the

interconnection is passive, without going into detail. However, in reality an interconnection

of two passive systems might be non-passive in a strict sense. This will be discussed in more

detail in the next section. In addition, even for passive environments, a more detailed de-

scription of the environmental behaviour can frequently be obtained which forms a (possibly

small) subset of a general passive behaviour. In many situations, control schemes based only

on passivity may be overly conservative and carry unneeded constraints on the system. For

example, the passivity requirement imposed on closed-loop robot dynamics contradicts with

the manipulator’s tracking performance [84].

Therefore, the need to design control architectures for interaction with non-passive systems

arises. Algorithms for coupled stability that go beyond the passivity framework are presented

in [17, 18]. In fact, these works implement loop transformations that, for linear time-invariant

systems, expand the passivity and the small-gain criteria to more general cases of graph sepa-

ration stability conditions.

1.2.2 Interconnections of Passive Systems

In this section, properties of interconnections of passive systems are discussed. In particular,

we elaborate that the interconnection of two passive systems, the robot and its environment

in our case, can be non-passive. Consider an affine nonlinear control system of the following

form

S :

8
>><

>>:

ẋ = f (x)+g(x)u,

y = h(x)
(1.1)
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where x 2 X ⇢ R
n,u 2 Rm,y 2 Y ⇢ R

m are the state, input and output of the system, respec-

tively; f : X !R
n, h : X !R

m, and g : X !R
n⇥m are functions of the state. Let the state space

X 2 R
n be an open connected set. Then the map f : X ! Rn is the vector field, defined on X .

The vector field is said to be smooth if it is smooth (differentiable) as a map f . If V : X ! R

is a differentiable function, then the Lie derivative of V (x) along the flow of vector field f is

defined as follows

LgV (x) =
∂V
∂x

f (x). (1.2)

The value of LgV (x) is equal to the rate of change of V (x) along the trajectories of the differen-

tial equation ẋ = f (x). The higher order Lie derivatives can be computed using the following

equation:

Lk
gV (x) = Lg(Lk�1

g V (x)). (1.3)

For simplicity let us say that the storage function V 2Ck, where k = 0,1,2, . . . , if V is k times

differentiable. Let us define the system (1.1) when u ⌘ 0 as

S0 :

8
>><

>>:

ẋ = f0(x),

y = h0(x)
(1.4)

Let us also define the derivative of f0 with respect to ui as

g0
i (x) =

∂ f0(x)
∂ui

,1 6 i 6 m, (1.5)

and consider the following distribution

D = span
n

adk
f0g0

i : 0 6 k 6 n�1,1 6 i 6 m
o
.
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Let us define the following sets

S :=
n

x 2 X : Lk
f0LtV (x) = 0 8 t 2 D , and 8 0 6 k 6 r�1

o
,

W :=
n

x 2 X : Lk
fV (x) = 0, k = 1, . . . ,r

o

where r � 1 is the order of smoothness of the storage function V . In [56], it was found that for

passive systems of type (1.1) with a positive storage function V 2Cr, the condition W\S = 0

implies that the system (1.1) is zero-state observable. The following result is then valid:

Lemma 1.2.1 (Condition for 0-GAS) [67]) Let the system (1.1) be passive with positive stor-

age function V 2Cr and also be zero-state observable, i.e., W\S = 0. Let us also define the

following control law

u =�f(y), (1.6)

where f : Rm ! Rm is the smooth function such that yT f(y)> 0 for all y , 0. Then the control

law (1.6) ensures that the zero-state of the system is globally asymptotically stable.

For the affine systems of type (1.1), it is possible to find a state feedback such that the sys-

tem becomes stable. For example, let the system (1.1) be stable with zero input and Lyapunov

function of the form V 2Cr,r > 1. Then the frequency theorem (Yakubovich-Kalman Lemma)

[7] implies that if we choose the output as y = LgV (x), then the system is passive. Hence, using

the lemma 1.2.1 we get the following result [67].

Theorem 1.2.2 (Conditions for 0-GAS [67]) Let the system (1.1) be zero-input stable with

Lyapunov function V 2Cr,r > 1 and also be zero-state observable, i.e., W\S = 0. Then the

control law

u =�g LgV (x) (1.7)
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Figure 1.1: Negative feedback interconnection of two passive systems

ensures zero-state global asymptotic stability with any g > 0.

The above theorem generalizes the results obtained in [39, 40, 47]. Next, consider two

interconnected systems as shown on Figure 1.1. The following result is valid:

Theorem 1.2.3 (Passivity of interconnected systems [67]) Let S1 and S2 be the affine non-

linear control systems, such that u2 = y1, u1 = �y2. Suppose that both systems S1, S2 are

passive, and the corresponding storage functions V1(x1) and V2(x2) are continuously differen-

tiable and positive definite. We see that V (x1,x2) = V1(x1)+V2(x2) is positive definite as a

function of x1, x2, and V̇1(x1)6 yT
1 u1, V̇2(x2)6 yT

2 u2. This implies the following:

V̇ (x1,x2) = V̇1(x1)+V̇2(x2)6

6 yT
1 u1 + yT

2 u2 =�yT
1 y2 + yT

1 y2 = 0.

Therefore the feedback system S = S1 +S2 is Lyapunov stable and passive.

The robot-environment interaction system can be represented as two interconnected passive

systems. In fact, the environment has force fe as an input and velocity ẋe as an output. The

robot as a physical system has velocity ṗ at the input and end-effector force fr at the output.

This force can also be defined as an external torque te. Thus, whenever the robot’s end-effector
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is in contact with its environment, the velocities of robot and environment are equal ṗ = ẋe.

The force applied at the end-effector is opposite to the force of the environment fr =� fe.

Considering this setup, it is common in the robotics community to assume that this inter-

action system is passive. Typically, researchers assume it is passive without going into details.

However, it is not always correct. Considering the methodology described above, namely,

Theorems 1.2.2 and 1.2.3, we conclude the system is non-passive.

In our setup, the robot is controlled using the passivity-based adaptive control (2.3). In

[66], it is proven that this algorithm is passive with respect to input r and output u. The vector r

represents the combined position and velocity error, as in equation (2.5). Let us assume that the

output of the environment ẋe is the new input to the control algorithm (2.3), i.e., we change the

input of the control algorithm from r to ẋe. According to Theorem (1), necessary condition for

the system to be passive is that the input has the specific form (1.7). Therefore, in our case, if

we change the input r to input ẋe, the robot becomes non-passive. Theorem 1.2.3 requires both

interconnected systems to be passive; hence, the joint system S is also non-passive in that case.

The non-passivity of the joint system leads to instabilities that were observed in experiments

described further in this thesis.

1.3 Thesis Objectives and Contribution

Summarizing the background presented in the previous section, the following should be noted.

First of all, impedance, admittance and hybrid control algorithms are generally not applicable

to the case of interconnection of non-passive systems. That is, in a strict sense, these algo-

rithms are not stable when applied to non-passive systems. The recent developments based

on scattering techniques therefore deserve attention; however, there is no published work to

date that evaluates the performance of the most recent and advanced scattering techniques for

stabilization on a real physical robot-environment interaction system.

This thesis deals with development and experimental evaluation of control algorithms for
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stabilization of robot-environment interaction based on the conic systems formalism and scat-

tering transformation techniques. The main goal of this work is to adapt and evaluate the

generalized scattering transformation developed in [84] on a real robot-environment system.

The experiments were conducted on a 5-bar linkage robot interacting with soft tissue, that

represents the environment. Since the scattering transformation algorithm requires knowledge

of the dynamic model of a system, it becomes necessary to implement algorithms to estimate

these dynamics. The dynamics of the robot were estimated using two data driven Machine

Learning techniques: linear regression and neural network based approach. Due to the fact

that the overall system is non-passive, instability occurs when the robot encounters its environ-

ment; however, when the scattering-based algorithm is applied, the instability vanishes, while

the task-space trajectory in free space is preserved. Thus, it was verified in this work that

a scattering-based technique works not only in simulation but also on a real coupled system.

Further, this thesis presents a comprehensive theoretical background and a review on conic sys-

tems and scattering transformation techniques, generalizing the currently available knowledge

on this topic.

1.4 Thesis Outline

This thesis is organized as follows: Chapter 2 contains a thorough theoretical foundation re-

quired for the implementation of the scattering-based stabilization algorithms. In particular,

Chapter 2 presents the theoretical background on planar and non-planar conic systems, defines

conditions for stability of coupled systems and describes scattering transformation techniques

for stabilization. Chapter 3 describes all the necessary steps to implement a scattering-based

stabilization framework on a real system. Chapter 4 presents the results of experiments with

scattering transformations on a real coupled system. The chapter provides a description of

a set-up of the interconnected system and presents evaluation results of the scattering-based

stabilization algorithm. Chapter 5 presents a summary of the work performed and possible
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directions for future work.



Chapter 2

Conic Systems and Scattering

Transformations

The goal of this chapter is to present the theoretical background related to different versions of

the conicity notion and the scattering transformations. This theoretical foundation forms a basis

for development and implementation of the framework for stabilization of robot-environment

interaction which is described subsequently in Chapter 3. In order to analyze stability and

implement scattering transformation on an interconnected system, the interconnected dynamic

systems need to be represented as conic systems.

The theoretical background related to conventional (planar) notion of conicity is presented

in Section 2.1. Further, Section 2.2 describes a more general class of dynamical systems – the

so-called non-planar conic systems. The same section also introduces methods for calculation

of the dynamic cones’ parameters and for stability analysis of interconnections of conic sys-

tems. Finally, Section 2.3 describes a method for stabilization of interconnected systems using

scattering transformation techniques.

18
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2.1 Planar Conic Systems

To describe the scattering transformation approach and how it can be applied to stabilize in-

terconnected systems, first the notion of a conic system needs to be defined. In this section,

the notion of a conic system is defined following the original work of Zames [103]. This sec-

tion starts with the theoretical background necessary for the introduction of conic systems.

Subsequently, several properties of the representation of such systems are given.

2.1.1 Planar Conicity

Systems, broadly speaking, can behave in one of the two opposing ways: it can either be

stable or unstable. Generally, the stability of a system can be analyzed using either Lyapunov’s

methods, or an alternative approach that evaluates the relationship between the input and the

output. Below, the latter approach is chosen for the evaluation of a system’s stability properties.

Using this approach, a system is defined as a function that maps one function of a time, called

the input, to the other function of time, called the output. In the majority of cases, the output

of a given system might be required to track some function of the input. In order for a system

to be stable, it must exhibit the following two properties:

1. The system must be non-explosive, i.e., bounded inputs must result in bounded outputs.

2. Outputs must not be sensitive to small changes in inputs.

Here both stable and unstable systems will be analyzed; therefore, the space where input

and output functions are defined need to include both bounded and unbounded functions. In

other words, the space also needs to include functions that grow without bound as time ap-

proaches infinity. For example, this space has to include logarithmic functions log2(t) and

exponential functions et . Such functions are not contained in the spaces commonly used in

functional analysis, for example, in Lebesgue linear spaces Lp. Therefore, to meet the require-

ment defined above, a normed linear space X , that contains bounded functions, can be extended
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by including unbounded functions to form a special space Xe. That is, Xe will be the enlarge-

ment or extension of the normed linear space X . Each finite-time truncation of a function from

Xe will belong to X . Thus, a function x 2 Xe truncated on [0, t] will have a finite norm and lie

in X . However, this norm may grow without bound as time approaches infinity.

In the strict sense, spaces X and Xe, functions x and their truncations xt can be defined as

described below.

Truncated functions. Let V be a linear space, T be an subinterval of the reals, for example,

(•, t0]. Let x be a function that maps points from T to V , i.e., x : T !V . Let t be any point in

T . Then the function x truncated at time t0, denoted by xt0 : T !V , can defined as follows

xt(t) =

8
>><

>>:

x(t), for t < t0

0, for t > t0.

Space X . X is a normed linear space consisting of functions x : T ! V which satisfies the

following assumptions:

1. If x 2 X then xt 2 X for all t 2 T .

2. kxt0k is a nondescending function of t0 2 {t|a < t < b}⇢ T , where a and b are any finite

numbers in T .

3. If limt!• kxtk<+•, then x 2 X and limt!• kxtk= kxk.

Space Xe. Xe is an enlargement of space X , that is, it consists of X plus all functions with

unbounded norm at infinity, i.e., Xe = X [ {x | kxk ! • as t ! •, while kxtk < • for all t <

•}. Thus, all finite time truncations of any x 2 Xe will also belong to X . An extended norm

of a function, denoted as kxke is defined as follows: kxke = kxk for x 2 X , and kxke = • for

x < X .

The model of a system will be defined as a relation between points in Xe. That is, such

a relation maps some functions from a space Xe, called input space, into a set of functions
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functions in another space Xe, called output space. Due to the fact that different initial states

of a system may result in different outputs for the same input, the system model should do

precisely that – map some inputs into possibly many outputs. In a strict sense, the model of a

system can be described as follows:

System Model. A model of a physical system can be represented as a relation H on Xe, which,

in turn, can be represented as a subset of the product space Xe⇥Xe. Pairs (x,y) in product space

Xe ⇥Xe constitute a mapping of input functions to the output functions. Output y will be said

to be H-related to input x; y will also be said to be an image of x under relation H. It is worth

noting, that given the notations described above, systems that ”explode” only on infinite times

will be considered here. The reason for this is because outputs of the system are in Xe, i.e., the

output functions are bounded on a finite time interval. Further, a domain Do(H) and codomain

Ra(H) of relation H on Xe can be defined as the following sets:

• Do(H) = { x | x 2 Xe, and there can be found y 2 Xe such that a pair (x,y) 2 H exists}

• Ra(H) = { y | y 2 Xe, and there can be found x 2 Xe such that a pair (x,y) 2 H exists}

In order to simplify many derivations, it is best to consider a type of relations H that map zero

element to zero. If this condition is not met for some mapping H, the outset in this case can be

shifted so that the condition is satisfied. Thus, consider the following definition.

Class R. R is the class of those relations H on Xe having the property that the zero element,

denoted o, lies in Do(H), and Ho = o. Consider the following assumptions about H:

1. If H,K 2 R, and c is a real constant, product cH, sum (H +K), composition product

(KH) are the relations in R.

2. The inverse of H 2 R, denoted by H�1, belongs to R.

Stability property can be defined as follows: a system is stable if it produces bounded out-

puts for any bounded inputs. In addition, the system should not be sensitive to small variations

of input. Consider the following definition of the input-output stability.
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Input-Output Stability. A system H is input-output stable if it satisfies the following two

conditions:

1. Relation H is bounded. That is, for any bounded subset U ⇢ Xe, the image Hu for all

u 2U is also bounded.

2. H is continuous. That is, given any input function x0 2 X , and any arbitrarily small e > 0,

there exists d (e)> 0 such that, for all x2 { x | kx� x0k< e, x2X}, norms of all images

kHx�Hx0k< d (e).

A co-domain Ra(H) of some relations H in class R may have, or be inscribed in, a specific

geometric form. In other words, the relation H maps its domain to some subset Y ⇢ Xe that

forms a specific geometric structure. As mentioned in [103], the vast majority of physical

systems fall into the conic system category. In the strict sense, the system is said to be conic if

it exhibits the following properties.

Conicity. A mapping H ⇢ R is interior conic, if there exist constants r > 0, c 2 R such that

the following inequality holds:

k(Hx)t � cxtk6 rkxtk (2.1)

for all x 2 Do(H) and t 2 T . If the inequality sign is reversed the system is said to be exterior

conic. The constant r corresponds to the radius of the cone, whereas the constant c corresponds

to the center parameter.

Considering this equation in Xe space, it means that systems H that satisfy the inequality

should map the inputs x to the outputs (Hx)t in a specific and strictly defined way. More

precisely, outputs (Hx)t should always fall into a sphere with following properties:

• center of the sphere is located along the vector xt , and its distance to xt is proportional to

the norm kxtk.

• radius of the sphere is proportional to the norm of truncated input kxtk.
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Figure 2.1: A conic sector in the plane. Interior of sector is shaded.

Thus, if we fix the direction of the vector xt , the spheres (Hx)t , that depend on xt could

always be inscribed in a cone. A cone’s axis would then be located along the direction of xt .

The radius of the cone would be determined by the constants c and r.

There is also the other way of considering a relation H. This mapping can be examined

in the product space Xe ⇥Xe. That is, a set of ordered pairs (xt ,(Hx)t) for all xt 2 Do(H) and

t 2 T will form a cone if the relation H is conic.

However, the most convenient way of representing a conic system is by visualizing a re-

lation H on a 2D plane. This could be done in the following way. Suppose H is a relation

on Lebesgue space with Euclidean norm L2e. Further, let Hx(t) be the value assumed by the

function Hx at time t 2 T . In other words, Hx(t) is a function of x(t), say Hx(t) = N(x(t)).

Then the function N(·) can be represented as a graph on a 2D plane. Depending on whether a

system is interior or exterior conic, this graph will be located either inside or outside the conic

sector. The slope of the center of a conic sector is equal to constant c. The boundaries of a cone
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are defined by the lines with slopes c� r and c+ r, as shown in Figure 2.1. More generally,

the necessary and sufficient condition for a system to be, for example, interior conic is that

function Hx(t) maps all inputs x 2 Do(H) for all times t 2 T to a conic sector.

Inequality (2.1) can be also expressed in the form k(Hx)t � cxtk 6 rkxtk. If we express

norms as inner products, then, after factoring we get the following:

h(Hx)t �axt ,(Hx)t �bxti6 0 (2.2)

where a = c�r and b = c+r. If inequality (1.1) holds for all x 2 Do(H) and t 2 T then system

H is interior conic. A system is exterior conic if the inequality (2.2) holds with the inequality

sign reversed.

2.1.2 Conic Systems as Dissipative Systems

Conic systems can be viewed as dissipative systems with a specific supply rate parameterized

by the radius and the center of a given cone [68]. This can be done as follows: Suppose we

have a system of the form

S :

8
>><

>>:

ẋ = f (x,h)

y = h(x,h)

(2.3)

where x 2 R
n is a state of the system, h ,y 2 R

m are the input and output, f (·, ·),h(·, ·) are

locally Lipschitz continuous maps of corresponding dimensions. The input is a function of

time h : t ! R
m where t 2 T . The control inputs h(t) belong to U [t0,t1]

x0 ⇢ Xe which denotes

a set of Lebesgue measurable locally essentially bounded functions. The solutions x(t) of a

system (2.3) given any inputs h(t) from the set U [t0,t1]
x0 are well-defined for all t 2 T . A system

(2.3) is said to be dissipative if there exists a storage function V : Rn ! R+ such that the
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inequality

V (x(t1))�V (x(t0))6
Z t1

t0
w(y(t),h(t))dt (2.4)

holds along the trajectories of system (2.3) for all inputs h 2 U [t0,t1]
x0 , all t0, t1 2 T such that

t1 > t0, and any initial state x(t0). For ease of presentation, storage function V (x) is assumed

to be radially unbounded. That is, V (x)! • as kxk ! •, i.e., storage function grows without

bound as x goes away from the origin. Depending on the choice of supply rate function, the

type of dissipative system can be further specified. Two well-know types of dissipative systems

are passive and L2-gain stable with gain less than or equal to g > 0. Specifically, a system is

said to be passive if it is dissipative with supply rate w(y,h) = yT h . A dissipative system

is finite L2-gain stable if w(y,h) = (g khk2 �kyk2 /g)/2. Conic systems, in turn, constitute

a more general notion that also includes dissipative systems with other types of supply rates.

The supply rate of a conic system can be defined in the following two ways.

Definition (supply rate for conic systems). Following inequality (2.2), a supply rate of an

interior conic system can be defined as

w(y,h) = (bh � y)T (y�ah) (2.5)

where a,b 2R[{±•},a 6 b. A conic system is said to be exterior conic if w(y,h) =�(bh �

y)T (y�ah).

The representation of supply rate w(·) as in equation (2.5) may become ambiguous when

infinite values of a or b may be required to describe certain types of systems. For example,

if a conic system is passive, a = 0 and b = +•. The following definition introduces a more

convenient represention of supply rate function for conic systems.

Definition (another form of supply rate for conic systems). A system of the form (2.3) is
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said to be interior conic if it is dissipative with supply rate

w(y,h) =


hT yT

�
W (fc,fr)

2

64
h

y

3

75 (2.6)

where fc 2 R is a center of cone, fr 2 [0,p/2] is an angle defining radius of a cone. Matrix

W (·) is defined as

W (fc,fr) = (2.7)

1
2sin2fr

·

2

64
(cos2fc � cos2fr)I sin2fcI

sin2fcI �(cos2fc � cos2fr)I

3

75 (2.8)

where I is a unit matrix of corresponding dimensions. A system (2.3) is said to be exterior

conic with respect to a cone with radius fr and center fc if it is dissipative with supply rate

w(y,h) =�[hT ,yT ]W (fc,fr)[hT ,yT ]T , where W (fc,fr) is defined as in (2.6).

Throughout the rest of this Chapter, a shorthand notation S 2 Int(fc,fr) will be used to

represent an interior conic system with center fc and radius fr. Similarly, S 2 Ext(fc,fr) will

denote exterior conic system. A number of useful observations can be made with regards to

conic systems described above.

Remark 1. Suppose the parameters of a conic system is defined by parameters a and b, where

a,b 2 R[{±•},a 6 b. Then the center of the cone fc 2 R and the radius fr 2 [0,p/2] can be

found using the equation below

fc =
tan�1 a+ tan�1 b

2
, fr =

tan�1 b� tan�1 a
2

(2.9)

Remark 2. An interior conic system with a certain center and radius is exterior with respect

to a different center and radius. Similarly, an exterior conic system is interior with respect to

different center and radius. That is, a system S 2 Int(fc,fr) with fr 2 [0,p/2] is equivalent to
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a system S 2 Ext(f 0
c,f

0
r) where f 0

c = fc ±p/2 and f 0
r = p/2�fr. This can be shown directly

by substituting f 0
c,f

0
r for fc,fr to equation (2.6). Given that, it is reasonable to consider only

one type of system, because if a statement is valid for an exterior conic system it will be also

valid for an interior one, and vice versa. •

Remark 3. From the supply rate equation (2.6), it can be seen that a system S 2 Int(fc1,fr) is

equivalent to S 2 Int(fc2,fr) whenever fc1�fc2 = kp where k is an integer (k 2Z). Therefore,

it would be more practical to consider conic center fc to be an element of equivalence class

in a quotient set R\P. The equivalence relation P can be defined according to the formula

P = {f1 ⇠ f2 iff f1 � f2 = kp,k 2 Z}. Thus, any interval of the form (a,a+ p] will have

exactly one element from each of the equivalence classes in the quotient set R\P; such an

element can be denoted as f(a,a+p].•

Remark 4. Suppose a system (2.3) is also a conic system S 2 Int(fc.fr). The inverse system

S�1 can be defined as a system with flipped input and output signals, where h is considered an

output and y as an input. Considering the equation

2

64
y

h

3

75

T

W (fc,fr)

2

64
y

h

3

75=

2

64
h

y

3

75

T

W (p/2�fc,fr)

2

64
h

y

3

75 (2.10)

that can be directly verified from (2.6), it can be concluded that the inverse system S�1 2

Int(fc.fr).•

Remark 5. Both passive and finite L2-gain stable systems can be defined in terms of conic

relations parametrized with fc and fr. In particular, any passive system is also interior conic

S = Int(fc,fr) with fc = p/4 and fr = p/4. Similarly, any finite L2-gain stable system with

gain less than or equal to g � 0 is also interior conic with respect to a cone center fc = 0 and

radius fr = tan�1 g .•
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2.2 Non-Planar Conicity and Scattering Transformation

In the previous section, the notion of planar conic systems was defined. As shown for example

in [68], methods based on the scattering transformation for planar conic systems can be used

to stabilize interconnections of systems. Despite the fact that many physical systems fall into a

class of planar conic systems, this representation of systems has certain limitations. First, any

conic system is parameterized with only two scalar values: conic center fc and radius fr. Such

systems came to be called planar conic systems because of the fact that their dynamics can be

presented as a conic sector on a plane. The notion of planar conic systems is fairly general;

that is, it includes different types of passive systems, finite L2-gain systems, etc., as special

cases. This description also lacks flexibility, which in turn limits its range of applications.

Second, apart from finite L2-gain stable systems, the dimension of inputs has to be equal to the

dimension of outputs in this type of conic systems, which in turn further limits the applications

of this method. Lastly, another substantial limitation of planar conicity is that the feedback

interconnection of two planar conic systems is, generally speaking, not a planar conic system.

Description of an overall system in that case can be a non-trivial task. Thus, this fact makes it

difficult to analyze complex interconnections using the notion of planar conicity.

In this section, an extension of conicity notion to non-planar case [87] is defined, which

removes all the limitations described above. This approach generalizes planar conic systems to

the case when a center of a cone has a dimension greater than one. The set of supply rates of

non-planar conic systems coincides with that of (Q, S, R)-dissipative systems. In particular, for

a given quadratic supply rate, parameters defining a cone of a system can be calculated using

procedure described later in this section. In addition, for a given interconnection of two non-

planar systems, a graph separation condition for finite L2 gain stability is defined. This condi-

tion is derived in terms of the relation between the radii of subsystems’ cones and the maximal

singular value of the product of the projection operators onto central subspaces. Subsequently,

a new generalized scattering transformation is described that allows for rendering the dynamics

of a non-planar conic system into a cone with prescribed parameters. This, in turn, allows for
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stabilization of feedback interconnections by modifying parameters of the subsystems’ cones.

Scattering transformations derived for non-planar conic systems can, in particular, be applied

to the problems of stable robot-environment interaction or bilateral teleoperation.

This section is organized as follows. First, the notion of non-planar systems is defined, and

the procedure for calculation of cone parameters is described. Next, graph separation condi-

tion for stability of feedback interconnection of non-planar conic systems is defined. Later,

the generalized scattering transformation that renders a non-planar conic system into a cone

with prescribed parameters is presented. Lastly, a procedure for stabilization of interconnected

systems is described.

2.2.1 Non-Planar Conicity

Consider a nonlinear system of the form

S :

8
>><

>>:

ẋ = f (x,h)

y = h(x,h)

(2.11)

where x 2R
n is the state of the system, h 2R

m is input, and y 2R
p is the output of the system.

The functions f (·) and h(·) are locally Lipschitz continuous in their arguments. A system

(2.11) is said to be dissipative with respect to supply rate w : Rp ⇥R
m ! R if there exists a

storage function V : Rn ! R+ such that the inequality

V (x(t1))�V (x(t0))6
Z t1

t0
w(y(t),h(t))dt (2.12)

holds along the trajectories of the system (2.11) for any t1 � t0, any initial state x(t0), and arbi-

trary admissible control input h(t) where t 2 [t0, t1). Throughout this thesis, it is assumed that

all storage functions are radially unbounded, i.e., V (x)! • as |x|! •. There is a notable dif-

ference between system (2.11) and a system used in derivations of planar conic systems (2.3).

The difference is that in inequality (2.3) input and output signals have to have the same dimen-
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sions, whereas inequality (2.11) allows input and output signals to have different dimensions.

Now, let us derive supply rate for non-planar conic systems. In the development below, the

parameter l can be chosen to be equal to l =
p

(a2 +1)(b2 +1), where the parameters a and

b define slopes of the conic sector (2.2). A matrix W (fc,fr) of the quadratic supply rate used

in planar conic system developments (2.6) can also be written in the form

W (fc,fr) = l ·
⇥
lclT

c � cos2 frI2
⇤
⌦ Im (2.13)

where lc = [cosfc sinfc]
T is the unit vector that lies on the subspace defining a center of cone.

The above representation of matrix W (·, ·) allows for an extension to a non-planar case. This

can be done in the following way. To simplify the derivations, suppose that l = 1 and m = 1.

If we substitute expression (2.11) to (2.6), supply rate can be written in the following form

w(y,h) =


hT yT

�
lclT

c

2

64
h

y

3

75� cos2 fr ·

�������

h

y

�������

2

. (2.14)

Since lc is the unit vector lying on the central subspace, the dot product of


hT yT

�T
and lc

corresponds to the length of projection of input-output pair onto the central subspace. Based

on this observation, the supply rate (2.14) can be rewritten in the following form

w(y,h) =


hT yT

�
PT

c Pc � cos2 frI2

�
hT yT

�T
(2.15)

where

Pc =

2

64
cos2 fc sinfc cosfc

sinfc cosfc sin2 fc

3

75 (2.16)

is the matrix that projects vectors onto the center of the cone. Since the matrix Pc is a projection

matrix it is symmetric (PT
c = Pc) and indempotent (P2

c = Pc); therefore, PT
c = Pc and supply
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rate can be further simplified as follows

w(y,h) =


hT yT

�
Pc � cos2 frI2

�
hT yT

�T
. (2.17)

The above equation allows for the generalization of planar conic systems supply rate (2.6) in

the two following directions. First of all, the dimensions of the input and output of a conic

system represented by (2.17) may not be equal. Secondly, a center of a conic system may have

a dimension higher than one. These two improvements allow to design methods that have wider

ranger of applications compared to methods based on planar conicity. Formally, generalization

of interior conicity to a non-planar case, when dimensions of the input and output are not equal

m , p, is presented in the definition below.

Definition (Supply rate of non-planar conic system). Suppose the input of the system (2.11)

h 2 R
m and output y 2 R

p. Then input-output vector


hT yT

�T
2 R

m+p. Consider a sub-

space of input-output space W ⇢ R
m+p, dimW = l 2 {0, . . . , m + p}, and radius of a cone

fr 2 [0, p/2). A system S of the form (2.11) is said to be interior conic with respect to a center

W and radius fr, in other words, S 2 Int(W, fr), if it is dissipative with supply rate

w(y,h) =


hT yT

�
W (W, fr)


hT yT

�T
, (2.18)

where matrix W (W, fr) is defined as

W (W, fr) = PW � cos2 frIm+p, (2.19)

where PW is the projection matrix onto central subspace W.

The general notion defined above in Definition 2.2.1 represents the generalization of planar

conic systems (2.6). That is, in the case of Definition 2.2.1, planar conic system is the special

case of non-planar conic system. Thus, if m = p and the central subspace is of the form
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y� tanfc ·h = 0 where fc 2 (�p/2, p/2), the supply rate (2.18) would represent a planar

conic system.

Remark 6 (non-planar conicity vs. planar conicity). Non-planar systems remove several

limitations and have higher flexibility compared to planar representation. Even if the dimen-

sions of input and output of the system coincide, i.e., m = p, non-planar representation is more

advantageous compared to planar. This can be shown in the following way: Suppose the dimen-

sions of input and output of system S are equal (m= p), and center of a cone fr 2 (�p/2, p/2].

Then, such a system can be represented using a notion of planar conicity described in Defini-

tion 2.1.2. At the same time system S can be represented as a non-planar cone with supply rate

given in Definition 2.2.1. The central subspace of system S can be defined in the following

way

W = span

(
cosfc sinfc

�T
⌦ Im

)
. (2.20)

Given that m = p the dimension of input-output vector equals to 2m, or, in other words,
hT yT

�T
2 R

2m. For any fr 2 (�p/2, p/2], dimension of central subspace dimW = m.

Cone center W is a subspace of input output space; therefore, W ⇢ R
2m. Since S can be any

subspace of R2m, we can consider S to be belonging to a set of all possible m-dimensional

subspaces of 2m dimensional linear space. Such a set of all possible subspaces can be repre-

sented as a Grassmanian manifold Gr(m, n). The dimension of the Grassmanian manifold can

be found using the following equation dim{Gr(m, n)} = m(n�m). In our case, the set of all

possible m-dimensional subspaces of 2m-dimensional space forms m2-dimensional manifold.

However, if we represent a system using a notion of planar conicity, a center of cone is defined

using a single scalar value fc 2 (p/2, p/2]. Therefore, even in the case where m = p, m > 1,

i.e., when a system can be represented as a planar cone, it is still better to follow the notion of a

non-planar conicity. Fundamentally, this representation is more flexible and allows for a more

precise description of a system’s dynamics.
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The other advantage of non-planar conicity lies in its relationship with a well-know notion

of (Q, S, R)-dissipativity, studied in [33]. In particular, central subspace W and radius fr

of interior conic system S 2 Int(W, fr) can be found, knowing [QSR] matrix. The following

paragraphs elaborate on this idea.

A system of the form (2.11) is said to be (Q, S, R)-dissipative if it is dissipative with supply

rate

w(y, h) = yT Qy+2yT Sh +hT Rh

=


hT yT

�
QSR

�
2

64
h

y

3

75 (2.21)

where


QSR

�
=

2

64
R ST

S Q

3

75 2 R
(m+p)⇥(m+p). (2.22)

where matrices Q = QT 2 R
p⇥p, R = RT 2 R

m⇥m, and S 2 R
p⇥m. All interior conic systems

in the sense of Definition 3 are also (Q, S, R)-dissipative. Similarly, if a system is (Q, S, R)-

dissipative then it is also non-planar conic.

Matrix


QSR
�

is real symmetric; thus, its eigenvalues µ1, . . . , µp+m are all real. Consider

the following

GT ·


QSR
�
·G = diag [µ1, . . . , µp+m] , (2.23)

where µ1, . . . , µp+m are the eigenvalues of


QSR
�

written in an arbitrary prescribed order; in

addition, considering the nature of the matrix


QSR
�

, all its eigenvalues are real. The matrix

G is a real orthogonal matrix, composed in such a way that its ith column is an eigenvec-

tor of


QSR
�

that corresponds to ith eigenvalue µi, i = 1, . . . , m+ p. Now, let l (QSR) =
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{µi, i = 1, . . . , m+ p} denote a set of eigenvalues of


QSR
�

, l�(QSR) ⇢ l (QSR) the set of

strictly negative (< 0) eigenvalues of


QSR
�

and l+(QSR) = l (QSR) \l�(QSR) the set of

nonnegative (� 0) eigenvalues of


QSR
�

. Next, let us introduce the following notations

l = card
�

l+(QSR)
 
, l 2 {0, . . . , m+ p} , (2.24)

µ� = min
�
|µi| : µi 2 l�(QSR)

 
, (2.25)

µ+ = max
�
|µi| : µi 2 l+(QSR)

 
, (2.26)

where l is the number of nonnegative eigenvalues of


QSR
�

. The value of µ� is well-defined

if l�(QSR) , 0, or, in other words, if l < m+ p. Similarly, the value of µ+ is well-defined if

l+(QSR) , 0, i.e., if l > 0. The following statement is valid.

Lemma 2.2.1 (Parameters of a non-planar cone [87]). Suppose a system (2.11) is (Q, S, R)-

dissipative. Then it is non-planar interior conic in the sense of Definition 3 S = Int(W, fr).

System S has a center W ⇢ R
m+p, dimW = l, and radius fr 2 [0, p/2). In particular, conic

center W can be found using the following expression

W = span
�

g+1 , . . . , g+l
 

(2.27)

which is essentially a subspace spanned by eigenvectors g+1 , . . . , g+l of matrix


QSR
�

that

correspond to its nonnegative eigenvalues µi 2 l+(QSR). If 0 < l < m+ p, conic radius can

be found the following way

fr = tan�1
⇣p

µ+/µ�
⌘
, (2.28)

If condition 0 < l < m+ p is not met, i.e., if l = 0 or l = m+ p, radius fr can be chosen

arbitrarily from the range (0, p/2).
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Figure 2.2: Feedback interconnection of systems S1 and S2.

2.2.2 Graph Separation Stability Condition for Non-Planar Conic Sys-

tems

In this section, a graph separation stability condition for the interconnection of two non-planar

conic systems will be formulated. In this work, we will address finite gain L2-stability. A

system of the form (2.11) is said to be finite gain L2-stable if it is dissipative with supply

rate w(y, h) = g2|h |2 + |y|2, where g � 0 is the L2-gain, see [89]. Finite gain L2-stability

of a feedback interconnection of two non-planar conic subsystems shown in Figure 2.2 can

be guaranteed by a graph separation condition which was originally developed in [85, 87].

This stability condition is based on the dynamic cone parameters of the subsystems. These

parameters, i.e., the central subspace and radius, can be found using quadratic supply rate of

the subsystem as shown in Lemma 6.

To formulate the graph separation stability condition, it is convenient to use the notion

similar to the one of the inverse graph [79]. Thus, a conic system with certain center W and

radius fr is called inverse interior conic, if the same system with swapped inputs and outputs is

interior conic Int(W, fr) with the same parameters center and radius. In other words, the conic

parameters of inverse conic system stay the same even if we have y on input and h on output.

The following paragraphs elaborate on this idea.

Suppose we are given a central subspace W ⇢ R
m+p , W = span{w1, . . . , wm}, dimW = m,
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i.e., the vectors w1, . . . , wm form a basis in W. Consider the following space

W = span
�

P(m,p)w1, . . . , P(m,p)wm
 
, (2.29)

where P(m,p) 2 R
m+p is a permutation matrix defined as follows:

P(m,p) =

2

64
O Ip

Im O

3

75 . (2.30)

Thus, a system of the form (2.11) is considered to be inverse interior conic with center W and

radius fr if and only if it is interior conic with respect to center W and radius fr. Multiplication

of the input-output vector by P(m,p) only swaps inputs and outputs, i.e., P(m,p) ·
⇥
hT yT ⇤T =

⇥
yT hT ⇤T . In addition, projection matrix PW is related to PW according to the formula PW =

P(m,p)PWPT
(m,p).

Consider two nonlinear systems of the form

Si :

8
>><

>>:

ẋi = fi(xi,hi),

yi = hi(xi,hi),

i 2 {1, 2} (2.31)

where y2, h1 2 R
m and y1, h2 2 R

p. Suppose systems S1 and S2 are interconnected in the

following way

h1 = y2 +c1, h2 = y1 +c2 (2.32)

where c1 2 R
m, c2 2 R

p are disturbance inputs. The architecture of the overall system is

presented on Figure 2.2. This system has input
⇥
cT

1 , cT
2
⇤T 2 R

m+p and output
⇥
yT

1 , yT
2
⇤T 2

R
m+p. Consider the following theorem.

Theorem 2.2.2 (Graph Separation Condition [78, 85]). Suppose two subsystems of the

form (2.31) are interconnected according to equations (2.32). If both systems are interior
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conic S1 2 Int(W1, fr1), S2 2 Int(W2, fr2), where W1 \W2 = {0}, dimW1 = m, dimW2 = p,

and if the following condition is satisfied

s
⇣

PW1
,PW2

⌘
< cos(fr1 +fr2) (2.33)

then the interconnected system (2.31), (2.32) is finite gain L2-stable.

The proof for Theorem 2.2.2 can be found in Sections 4 and 5 of conference paper [85].

It should be noted that the condition for stability defined above assumes that dimension of

central subspace should be equal to the dimension of system’s input. In other words, dimW1 =

dimh1 = m and dimW2 = dimh2 = p. This requirement is apparently necessary to exclude

meaningless and/or overly conservative cases. More precisely, let us consider the case when

dimW1 < dimh1 or dimW1 < dimh1. This assumption imposes restrictions on values of input

signals h1(t), h2(t). In the case where dimW1 + dimW2 > m + p, the graph separation is

impossible. However, these issues will be studied in detail in our future research.

2.3 Scattering Transformation for Non-Planar Conic Systems

A scattering transformation enables input-output characteristics of subsystems to be trans-

formed in such a way that the graph separation condition is satisfied. More precisely, scattering

transform enables the desired center and radius of the non-planar cone of the system to be pre-

scribed. This operator essentially performs planar rotation and scaling of the input-output vec-

tor. Thus, it transforms a passive system into a system with gain less than or equal to one. The

scattering transformation presented in [86, 87] allows for rendering of the input-output charac-

teristics of a non-planar conic system into an arbitrary prescribed cone with equal dimension of

the central subspace. Specifically, let us consider a system S of the form (2.11). Suppose this

system is non-planar interior conic S 2 Int(W, fr) where center W ⇢R
m+p, dimW = m and ra-

dius fr 2 (0, p/2). The desired central subspace and radius are given as Wd ⇢R
m+p,dimW=m
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and frd 2 (0, p/2), correspondingly. Thus, a scattering operator should transform the input-

output signal in the following way


uT vT

�T
= S(W, Wd, fr, frd)


hT yT

�T
. (2.34)

where


uT vT

�T
is the new input-output vector of system u2R

m, v2R
p. This transformation

should render input-output characteristics into a cone with center Wd and radius frd . That is,

scattering transforms an interior conic system S 2 Int(W, fr) to a system S(u,v) 2 Int(Wd, frd).

An operator with the above described properties can be constructed using the following

procedure. First, suppose that vectors g1, g2, . . . , gm form orthonormal basis in central space

W. Now, suppose that there is a set of vectors
�

gm+1, . . . , gm+p
 
2 W? that together with basis

{g1, g2, . . . , gm} 2 W forms orthonormal basis in the input-output space R
m+p. Let us denote

the basis of input-output space using the following matrix

G =


g1 . . . gm gm+1 . . .gm+p

�
. (2.35)

Similarly, a matrix Gd can be constructed such that its first m columns form an orthonormal

basis in Wd , while the whole set of its columns form an orthonormal basis in R
m+p. Next,

consider the following transformation

S(W, Wd, fr, frd) = Gd ·G(fr, frd) ·GT (2.36)

where

G(fr, frd) =

✓
cosfrd

cosfr

◆a
·
✓

sinfrd

sinfr

◆�b

⇥

2

64

⇣
tanfrd
tanfr

⌘a
Im Omp

Opm

⇣
tanfrd
tanfr

⌘b
Ip

3

75 , (2.37)
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and a =�p/(m+ p), b = m/(m+ p). Consider the following Lemma.

Lemma 2.3.1 (Scattering transformation for non-planar conic systems [86]) Suppose that

system S of type (2.11) is interior conic S 2 Int(W, fr), where W ⇢ R
m+p, dimW = m, and

fr 2 (0, p/2). Then the transformed system (2.11), (2.34), (2.36), (2.37) with new input-output

variables (u, v) satisfies S(u,v) 2 Int(Wd, frd).

One special case of Lemma 7 is of particular interest for the problem of stabilization of

robot-environment interaction. Suppose subsystems Si, i = 1, 2 are non-planar conic. To guar-

antee stability of the feedback interconnection of (S1, S2), one can implement a scattering

transformation for one of the subsystem which renders its input-output characteristics into a

desired dynamic cone. If the parameters of the desired cone are chosen in a way that guarantees

the fulfilment of the graph separation stability condition (Theorem 3), then the interconnection

is guaranteed to be finite gain L2-stable. Design methods that use scattering transformation of

the form (2.36), (2.37) to guarantee stability of the interconnected system can be found in [87].

In regards to the scattering transformation defined using equations (2.34), (2.36), (2.37), it

is worth noting the following. Matrices G and Gd define central subspaces W and Wd . More

precisely, columns of matrices G, Gd form orthonormal basis of central subspaces. Since there

are no further restrictions on G and Gd , this orthonormal basis can be chosen arbitrarily. There-

fore, technically, there is an infinite number of basises that can define a given subspace. That is,

there is an infinite number of possible transformations that renders a system into a non-planar

cone with prescribed parameters. The choice of matrices G and Gd may depend on the specific

application.

Thus, to stabilize the interconnected system, the following steps should be taken. First,

the dynamic cone parameters, i.e., subspace W and radius fr, should be calculated for both of

the subsystems. This could be done using subsystems’ supply rates as shown in Lemma 6.

Next, the desired dynamic cone parameters for the one of the systems should be found. This

can be done following the graph separation stability condition defined in Theorem 3. Further,

a scattering transformation should be calculated (2.34), (2.36), (2.37) and inserted into the
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communication channel to transform one of the subsystems parameters into the desired ones.

A more detailed design example that uses scattering transformation (2.34), (2.36), (2.37) for

the stabilization of two interconnected non-planar conic systems is presented in Chapter 3.

2.4 Conclusion

In this Chapter 2, the theoretical background on conic systems and scattering transformation

techniques was presented. First, planar conic systems in the form introduced by Zames [103]

were described. That is, the notion of planar conicity enables dynamic systems to be repre-

sented in the form of a cone defined with two scalar parameters – center fc and radius fr.

Next, Section 2.2 built on these developments and described a more general representation of

systems - so called non-planar conic systems that were introduced in [85, 86]. In addition,

this section presented a comparison of the notions of planar vs. non-planar conicity. Further,

in Lemma 2.2.1 a method to calculate cone parameters from the supply rate of the system

was described. Next, Theorem 2.2.2 describes a graph separation condition for stability. Fi-

nally, this chapter introduced a method for design of scattering transformation for stabilization

of coupled systems. The core of this method is that the scattering transformation effectively

change parameters of one of the subsystem’s cones such that the graph separation condition

is satisfied. Overall, this chapter presented a theoretical foundation which forms the basis for

the implementation of the scattering-based framework for stabilization of robot-environment

interaction which is described in the next chapter.



Chapter 3

Scattering-Based Design for Coupled

Stability

The goal of this chapter is to present the necessary steps for implementation of the scattering

based stabilization framework on a real physical system. The chapter begins with Section 3.1

which contains description of the experimental set-up. In Section 3.2, dynamical modeling

and estimation of the robotic device used in the experiments are presented. Estimation of

the dynamics is performed using two data driven methods, specifically, parameter estimation

using Linear Regression, and dynamics estimation using Neural Networks. The environmental

dynamics and the adaptive trajectory tracking control algorithm are described in Section 3.3.

Analysis of dissipativity properties of the robot and the environment and parameters of the

corresponding dynamic cones are derived in Sections 3.4 and 3.5, respectively. The scattering

transformation design for stability of robot environment interaction is presented in Section 3.6.

The control architecture is summarized in Section 3.7. Section 3.8 contains some concluding

remarks.

41



42 CHAPTER 3. SCATTERING-BASED DESIGN FOR COUPLED STABILITY

(a) (b)

Figure 3.1: Experimental setup: (a) – robot, (b) - force sensor together with the 3D printed
mount.

3.1 Hardware Description

In our experiments, a 2-DoF cable driven robot manufactured by Quanser was used. The

experimental setup is shown in Figure 3.1, while the mechanical structure of the manipulator

is presented in Figure 3.2. The robot is driven by DC motors that are controlled by specifying

the motors’ currents. The design of the built-in motor controller as well as the back EMF of

the motors results in substantial kinetic friction. In addition, the robot’s joints have relatively

high static friction. The rotation angles of the motors are measured by discrete encoders. One

full rotation of the robot’s joint corresponds to 80,000 counts of the motor’s encoder. The

encoder values can be read at a maximum frequency of 2kHz. An ATI Nano43 sensor is used

to measure the force at the end-effector. The sensor is shown in Figure 3.1(b). The reading

frequency of this sensor can be as high as 10kHz, and the resolution is 1/128N.

3.2 Manipulator Modeling and Dynamics Estimation

In this section we derive dynamics equations that describe the time evolution of the joints’

torque of the robot. Further, we describe and evaluate two data-driven approaches for dealing

with unknown robot parameters and unmodeled dynamics.
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Figure 3.2: Mechanical structure of the five-bar linkage manipulator used in the experiments.

3.2.1 Euler-Lagrange Equations

Generally, the dynamics of a rigid-link robot can be described using the Euler-Lagrange equa-

tions [29]. This set of differential equations describe the system’s dynamics subject to holo-

nomic constraints where the constraint forces satisfy the principle of virtual work. In the gen-

eral form, the Euler-Lagrange equations can be written as follows

d
dt

∂L

∂ q̇k
� ∂L

∂qk
= tk, k = 1, . . . , n, (3.1)

where L is the Lagrangian function of the system defined as follows,

L = K �P, (3.2)

where K and P are the kinetic and the potential energies of the system, respectively. Since

there is no potential energy in our system, the Lagrangian function would simply be equal to

K. Thus, starting from kinetic energy of the system and taking the corresponding derivatives,
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one can arrive at the resulting equations as follows:

Hp(q)ẍ+Cp(q, q̇)ẋ+Fp(q̇) = fr + fe, (3.3)

fr = J�T
p t, (3.4)

where q, q̇ 2R
n are robot’s position and velocity vectors represented in joint space coordinates,

x, ẋ, ẍ 2 R
m are position, velocity and acceleration, respectively, of the robot’s end-effector

represented in the task space coordinates, Hp(q),Cp(q, q̇),Fp(q̇) are matrices of inertia, Coriolis

and centrifugal forces, and vector of damping forces represented in the task space coordinates,

fe denotes the force applied at the end-effector, fr is the task space control input, t 2 R
n

is the vector of joint torques, Jp (q) is the Jacobian. In the cases when the Jacobian is non

square Jp 2 R
m⇥n, n , m, it cannot be inverted directly. Instead, we can construct the right

pseudoinverse of Jp using its singular value decomposition, for details see [32]. Description of

the robot’s dynamics in the task space significantly simplifies the analysis of their interaction

with environment. Similarly to the task space dynamics (3.3), the joint space dynamics have

the form

H(q)q̈+C(q, q̇)q̇+F(q̇) = t (3.5)

where H(q),C(q, q̇),F(q) are matrices of inertia, Coriolis and centrifugal forces, and vector of

damping forces, respectively, represented in the joint space coordinates.

3.2.2 Manipulator Modeling

The goal of this subsection is to determine a mathematical model of the manipulator used in

the experiments (and described in Section 3.1) in the form of Euler-Lagrange equations in

joint space coordinates (3.5). Specifically, given the mechanical structure of the robot used

in the experiments, we need to derive expressions for functions H(·), C(·), F(·) that enter the
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dynamics equation (3.5). This derivation can be done as follows. First, as can be seen in

Figure 3.2, even though the robot has four links, there are in fact only two degrees of freedom.

Thus, the links of the manipulator form a closed loop chain. As a first step. let us write down

the equations that define the coordinates of the centers of mass of the various links as a function

of joint position

2

64
xc1

yc1

3

75=

2

64
lc1 cosq2

lc1 sinq2

3

75 ,

2

64
xc2

yc2

3

75=

2

64
l1 cosq2 + lc2 cosq1

l1 sinq2 + lc2 sinq1

3

75 ,

2

64
xc3

yc3

3

75=

2

64
lc3 cosq1

lc3 sinq1

3

75 ,

2

64
xc4

yc4

3

75=

2

64
l3 cosq1 + lc4 cosq2

l3 sinq1 + lc4 sinq2

3

75 ,

(3.6)

where mi, li are link masses and lengths, correspondingly. Next, given the equations above, we

can derive the equations defining the task space velocities of the centers of mass of the various

links as functions of q̇1 and q̇2. Thus, after taking the corresponding derivatives we get the
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following

vc1 = Jvc1 q̇ =

2

64
0 lc1 sinq2

0 �lc1 cosq2

3

75 q̇,

vc2 = Jvc2 q̇ =

2

64
lc2 sinq1 l1 sinq2

�lc2 cosq1 �l1 cosq2

3

75 q̇,

vc3 = Jvc3 q̇ =

2

64
lc3 sinq1 0

�lc3 cosq1 0

3

75 q̇,

vc4 = Jvc4 q̇ =

2

64
l3 sinq1 lc4 sinq2

�l3 cosq1 �lc4 cosq2

3

75 q̇,

(3.7)

where Jvci , i 2 {1, . . . ,4} are the velocity Jacobians. The angular velocities of the four links are

given by

w2 = w3 = q̇1k,

w1 = w4 = q̇2k.
(3.8)

Thus, the inertia matrix H(q) is given by

H(q) =
4

Â
i=1

miJT
vcJvc +

2

64
I2 + I3 0

0 I1 + I4

3

75 (3.9)

where Ii are the inertia tensors. If we now substitute from the equation (3.7) into (3.9), after

some calculations, we get the equations defining the elements of the inertia matrix H(q)
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d11 = m2l2
c2 +m3l2

c3 +m4l2
3 + I2 + I3

d12 = d21 = (m2l1lc2 +m4l3lc4)cos(q1 �q2)

d22 = m1l2
c1 +m2l2

1 +m4l2
c4 + I1 + I4

(3.10)

where mi, li, Ii are link masses, lengths and inertia tensors, correspondingly. The elements of

the Coriolis and centrifugal forces matrix C(q, q̇) are defined as follows:

ck j =
n

Â
i=1

ci jk(q)q̇i (3.11)

where

c111 =
1
2

∂d11

∂q1
= 0, c121 = c211 =

1
2

∂d11

∂q2
= 0, c122 = c212 =

1
2

∂d22

∂q1
= 0,

c221 =
∂d12

∂q2
� 1

2
∂d22

∂q1
=�(m2l1lc2 +m4l3lc4)sin(q1 �q2) · q̇2,

c112 =
∂d12

∂q2
� 1

2
∂d22

∂q1
= (m2l1lc2 +m4l3lc4)sin(q1 �q2) · q̇1.

(3.12)

The matrix of friction torques has the following form:

F(q̇) =

2

64
k1q̇1

k2q̇2

3

75+

2

64
b11sign(q̇1)

b21sign(q̇2)

3

75+

2

64
b12sign(q̇1 � q̇2)

b22sign(q̇1 � q̇2)

3

75 , (3.13)

where ki and bi are the friction coefficients. The first term defines the kinetic friction of motors.

The second and third terms define the static frictions in motors and four joints of the robot.

3.2.3 Manipulator Dynamics Estimation

As the robot’s manufacturer provides neither a dynamical model nor any parameters or specifi-

cations, the robot’s dynamics and/or parameters need to be estimated. In such a case, one could

acquire the dynamics of the robot using a data-driven approach. Data-driven approaches allow
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to estimate dynamic equations by interpolating a function based on a set of sample points.

Given the joint space dynamics (3.5), a sample point k can be represented as

k 2 Q⇥ Q̇⇥ Q̈⇥T , (3.14)

where Q, Q̇, Q̈, and T are sets of possible instantaneous values of robot positions, velocities,

accelerations, and torques, respectively. Thus, the task is now to find the function D that

maps instantaneous configuration and its first two derivatives to instantaneous joint torques

D : (q, q̇, q̈)! t , where (q, q̇, q̈) 2 R
6 and t 2 R

2.

Two data-driven approaches for dynamics estimation were implemented and evaluated in

this work, based on the linear regression and the neural networks, respectively. Both of these

approaches rely on recordings of the robot’s movement and supplied torque. The data gather-

ing was done as follows. First, one thousand points were randomly selected from the robot task

space. Next, using the inverse kinematics, the corresponding joint space configurations were

found. Furthermore, the robot traversed through all of these points under a PD control algo-

rithm. The commanded torque, configurations, and estimations of velocity and accelerations

(3.14) were recorded.

3.2.4 Linear Regression

Based on dynamical model (3.5), (3.10) - (3.13), robot’s parameters can be estimated using the

Linear Regression (LR) method. The estimation method using LR was inspired by the work

reported in [98]. That is, given a dataset of points {yi, xi1, . . . , xip}n
i=1, the LR model assumes

that the relation between dependent variables yi and vectors of regressors xi is linear. The linear

regression model is defined as

yi = q1xi1 + · · ·+qpxip + ei, i = 1, . . . , n, (3.15)
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where qi are regression coefficients, ei are unobserved random variables, n is the number of

sample points, and p is the number of regression coefficients. Equation (3.15) can also be

written in the matrix form

y = Xq + e, (3.16)

where

y =

0

BBBBBBB@

y1

y2
...

yn

1

CCCCCCCA

, X =

0

BBBBBBB@

xT
1

xT
2
...

xT
n

1

CCCCCCCA

=

0

BBBBBBB@

x11 . . . x1p

x21 . . . x2p
...

. . .
...

xn1 . . . xnp

1

CCCCCCCA

, q =

0

BBBB@

q1
...

qp

1

CCCCA
, e =

0

BBBBBBB@

e1

e2
...

en

1

CCCCCCCA

, (3.17)

where y 2 Rn is the dependent variable, matrix X 2R
n⇥p is the set of regressors, q 2R

p is the

vector of regression coefficients, and e 2 R
n is the vector of disturbances. In order to estimate

the vector of parameters q , the ordinary least squares (OLS) method is used. This algorithm

minimizes the sum of squared residuals, and leads to a closed-form expression for the estimated

value q̂ of the unknown parameter vector q :

q̂ = (XT X)�1XT y =

 
1
n

n

Â
i=1

xixT
i

!�1 
1
n

n

Â
i=1

xiyi

!
. (3.18)

Thus, if we substitute the sample points k (3.14) into the dynamic equations (3.5), (3.10) -

(3.13), the vector of joint torques t would linearly regress on the unknown parameters.

t = Xq , (3.19)
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where

XT =

2

6666666666666666666666664

q̈2 cos(q1 �q2)+ sin(q1 �q2) · q̇2
2 q̈2 cos(q1 �q2)+ sin(q1 �q2) · q̇2

1

q̈1 0

q̇1 0

sign(q̇1) 0

sign(q̇1 � q̇2) 0

0 q̈2

0 q̇2

0 sign(q̇2)

0 sign(q̇1 � q̇2)

3

7777777777777777777777775

, (3.20)

and

q :=

2

6666666666666666666666664

m2l1lc2 +m4l3lc4

m2l2
c2 +m3l2

c3 +m4l2
3 + I2 + I3

k1

b11

b12

m1l2
c1 +m2l2

1 +m4l2
c4 + I1 + I4

k2

b21

b22

3

7777777777777777777777775

. (3.21)

Thus, after applying ordinary least squares method (3.18), the vector of unknown parame-

ters was obtained as follows

q T =


0.042 0.109 0.409 0.185 0.123 0.084 0.388 0.230 0.071

�
. (3.22)

The resulting estimates of the robot’s parameters can be used as an initial guess for the param-
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(a) (b)

Figure 3.3: Dynamics estimation using linear regression: (a) - prediction of the torque for joint
1, (b) - prediction of torque for joint 2.

eter vector Q̂init used below in the trajectory control algorithm (3.28).

The result of fitting the linear regression model into the recorded data is shown in Fig-

ure 3.3. Thus, the linear regression method can be used to find the unknown parameters of the

manipulator. The mean absolute error on the test set is less than 3% of the torque range.

3.2.5 Neural Network Based Dynamics Estimation

Analyzing the results of evaluation of the linear regression method, it can be noted that the

robot’s responses are not predicted perfectly. This suggests that the dynamic equations (3.5),

(3.10) - (3.13), do not capture the dynamics in full and need some additional terms. Generally,

it is quite hard to identify these additional terms because they may be highly nonlinear. The

second approach estimates H(q),C(q, q̇) and F(q) using neural networks and does not require

equations describing these matrices. This dynamics estimation method was inspired by [26].

In contrast with the linear regression approach, this technique estimates the functions rather

than the constant parameters.

The neural network architecture that was used in experiments is presented in the Figure

3.4. This architecture allows functional expressions for matrices H(q),C(q, q̇) and F(q) to

be found that further can be used in the control algorithm or dynamic cone estimation. The



52 CHAPTER 3. SCATTERING-BASED DESIGN FOR COUPLED STABILITY

Figure 3.4: Architecture of a neural network for dynamics estimation.

inputs to the neural network in Figure 3.4 are the manipulator configurations, velocities and

acceleration, the output is the joint torque. The part of neural network that estimates matrix

function H(q) has the configuration q 2 R
2 and matrix H(q) 2 R

2⇥2 on output. In the same

manner, the C(q, q̇) part of neural network has vectors q 2R
2 and q̇ 2R

2 on input and C(q, q̇)

on output. The same logic applies to F(q̇) part of the network. Further, the outputs of the above

described subnetworks together with the inputs (q, q̇, q̈) are used to calculate the torque as in

the Euler-Lagrange equation of dynamics 3.5.

The dataset has 20,000 sample points, where each point is comprised of input points

(q, q̇, q̈) 2R
6 and output points t 2R

2. The dataset was randomly split in the ratio 80 : 10 : 10

to correspond to training, validation, and testing sets. The validation set is used to find hy-

perparameters of the network, such as the number of neurons, layers, activation function type,

number of training epochs, batch size and type of loss function. The ranges of hyperparameters

tuned are presented in the first row of Table 3.1. The hyperparameters were selected using the

grid search approach [48]. The selected parameters are showed in Table 3.1 in bold. The lower

and upper bounds of the hyperparameters were selected manually, based on the performance

of the network. Thus, the network was trained on the selected hyperparameters. The training

and validation losses are shown in Figure 3.5. The loss decreases rapidly within the first 20

epochs. After that the loss decreases slowly reaching a plateau after the 250th epoch.
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Figure 3.5: Train and validation loss of the neural network for dynamics estimation.

Next, after training the whole network, i.e., finding a function that maps configuration and

its derivatives to instantaneous joint torques D : (q, q̇, q̈) ! t , the network was split in three

parts, that represent matrices H(q),C(q, q̇) and F(q) (see Figure 3.4). That is, the correspond-

ing parts of the trained network were saved and used later as the separate neural networks. As

with the linear regression method, the mean squared error on the testing set was also below 3%

of the torque range.

Thus, both of the dynamic estimation approaches have similar mean absolute error on a

test set. The linear regression approach is used in further developments and experiments, since

its behaviour is more predictable and well defined compared to that of the neural network

approach.

3.3 Environmental Dynamics and Control Algorithm

In this section, the mathematical model of the environment is presented, and adaptive control

algorithm is described which is used in our experiments in conjunction with the scattering-
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hyperpara-
meter

number of
neurons layers

activation
function
type

number of
epochs batch size loss func-

tion type

range

10,
50,
100,
500,
1000

1,
2,
5,
10

linear,
ReLU,
LeakyReLU,
tanh,
sigmoid

50,
100,
200,
300,
500

5,000,
10,000,
15,000,
20,000

MSE,
MAE,
CosineSimi-
larity,
MSLE

Table 3.1: The ranges of hyperparameters tuned. Values that minimize the error on validation
set are in bold.

(a) (b)

Figure 3.6: Dynamics estimation using neural network: (a) - prediction of torque for joint 1,
(b) - prediction of torque for joint 2.

based stabilization method.

3.3.1 Environmental Dynamics

The dynamics of the environment can be described by the following equation

Heẍe +
∂Pe(xe)

∂xe
+Deẋe + fe = 0, (3.23)

where He 2 R2⇥2 and De 2 R2⇥2 are matrices representing inertia and damping characteristics

of the environment, respectively, and Pe(·) is the potential energy of the environment.
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3.3.2 Adaptive Control Algorithm

One of the possible ways to enable trajectory tracking control of the robot is to employ the in-

verse dynamics model [75]. Typically such a model has the same structure as the actual dynam-

ics model of manipulator. However, it is not practically feasible to find equations that would

model the true physical system exactly. In particular, parametric uncertainty and unmodeled

non-linearities usually present. The passivity- or Lyapunov-based adaptive control [74] allows

for online update of the parameter estimates for the inverse dynamics control law:

t = Ĥ(q)a+Ĉ(q, q̇)v+ F̂(q̇)�Kr (3.24)

where Ĥ(q),Ĉ(q, q̇) and F̂(q̇) are estimates of inertia, Coriolis/centrifugal, and friction matri-

ces. The signals v, a, and r are defined as follows:

v := q̇d �Lq̃ (3.25)

a := v̇ = q̈d �L ˙̃q (3.26)

r := q̇� v = ˙̃q+Lq̃ (3.27)

where K = KT > 0 and L = LT > 0 are gain matrices, and q̃ = q�qd is the error between the

desired and current configuration of manipulator. If the robot dynamics are parametrized using

the linear regressor approach, the control law (3.24) becomes:

t = Y (q, q̇,a,v)q̂ �Kr, (3.28)

where Y (q, q̇,a,v) 2 R
m⇥p is the linear regressor, q̂ 2 R

p is a vector of the estimated robot

parameters q given by (3.21). In the case of robot manipulator described in Section 3.2, m = 2,

p = 9, and regressor Y (q, q̇,a,v) 2 R2⇥9 can be obtained from (3.20) by matching the corre-

sponding signals in (3.5) and (3.24). Specifically, the regressor Y (q, q̇,a,v) has the following
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form:

Y T (q, q̇,a,v)=

2

6666666666666666666666664

a2 cos(q1 �q2)+ sin(q1 �q2) · q̇2 · v2 a1 cos(q1 �q2)+ sin(q1 �q2) · q̇2
1 · v1

a1 0

q̇1 0

sign(q̇1) 0

sign(q̇1 � q̇2) 0

0 a2

0 q̇2

0 sign(q̇2)

0 sign(q̇1 � q̇2)

3

7777777777777777777777775

,

(3.29)

The vector of the parameter estimates q̂ 2 R
9 can be updated using different methods of

adaptive control, such as least squares or gradient update laws. The latter one has the following

form:

˙̂q = G�1 ·Y T (q, q̇,a,v) · r, (3.30)

where G = GT > 0 is a matrix (usually diagonal) of coefficients which control the update speed

of the parameter vector q̂ . The lower the coefficients of which G comprises, the faster the

update speed of the parameters of the robot. However, if the update speed is too fast, in practice

this may result in controlled manipulator to become unstable. Thus, the parameters on the

diagonal of matrix G were chosen to guarantee the fastest update speed while preserving the

stability of the controlled robot.

The combination of the equations of the robot’s dynamics (3.3), (3.4), and control laws

(3.24)–(3.30), yields the closed loop system in the following form:

H(q)a+C(q, q̇)v+F(q̇)+Kr� te = Y (q, q̇,a,v)(q̂ �q) (3.31)
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3.4 Dissipativity Analysis of the Robot and the Environment

In order to design a scattering transformation that would stabilize robot-environment interac-

tion, we need to find cones of each of the subsystems. That is, we need to find central subspaces

W and radii fr of the robot and the environment cones. This can be done by analyzing the dis-

sipativity properties of the respective subsystems. The closed-loop dynamics of the controlled

manipulator can be found by substituting the control law (3.24) in the dynamics equation (3.3).

As a result, we have the following

˙̃x =�Lx̃+ r (3.32)

ṙ = H�1
p (q) [�Cp(q, q̇)r�Kr+ fe + fr] . (3.33)

Consider a storage function candidate for the manipulator

Vr =
1
2

rT Hp(q)r+
r
2

x̃T x̃, (3.34)

where r > 0 is a positive parameter. The time derivative of Vr along the trajectory is

V̇r =�rT Kr� rT
✓

1
2

Ḣp(q)�Cp(q, q̇)
◆

r+ rT v f

�r x̃T Lx̃+r x̃T r =�rT Kr+ rT v f �r x̃T Lx̃+r x̃T r

=

2

66664

v f

x̃

r

3

77775

T 2

66664

O O
1
2I

O �rL 1
2rI

1
2I

1
2rI �K

3

77775

2

66664

v f

x̃

r

3

77775
(3.35)

where v f := fe + fr and x̃ := x� xd . This implies that the manipulator (3.3) controlled with

the control law (3.24) is (Q, S, R)-dissipative with respect to input v f and output
�
x̃T , rT�T . To

simplify further analysis, let us transform the output vector to the form
�
x̃T , ˙̃xT�T . This can be
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done using the following transformation

2

64
x̃

˙̃x

3

75= T�1
l

2

64
x̃

r

3

75 , where Tl =

2

64
I O

L I

3

75 2 R
2m⇥2m. (3.36)

Substituting transformation (3.36) in equation (3.35) yields

Wr =

2

64
I O

O T T
L

3

75

2

66664

O O
1
2I

O �rL 1
2rI

1
2I

1
2rI �K

3

77775

2

64
I O

O TL

3

75 (3.37)

where Wr is the [QSR]-matrix of the robot (3.3), (3.24).

Next, let us analyse dissipativity of environment (3.31). The storage function candidate can

have the following form

Ve =
1
2

ẋT
e Heẋe +P(xe) (3.38)

The time derivative of Ve along the trajectory of the environment when the robot and the envi-

ronment are in contact is defined as

V̇e = ẋT
e Deẋe � ẋT

e fe

It can be bounded from above using the following inequality

V̇e 

2

66664

fe

xe

ẋe

3

77775

T

We

2

66664

fe

xe

ẋe

3

77775
= (3.39)

2

66664

fe

xe

ẋe

3

77775

2

66664

O O �1
2I

O O O

�1
2I O O

3

77775

2

66664

fe

xe

ẋe

3

77775
(3.40)
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Figure 3.7: Radius of controlled manipulator’s cone as a function of r > 0.

where We is the matrix of quadratic supply rate of the environment.

3.5 Analysis of the Subsystems’ Cones

The next step is to find central subspaces W and the radii fr of the cones defining the controlled

manipulator and the environment. The values of W and fr can be found using the method

described in Lemma 2.2.1. That is, to find the parameters of subsystems’ cones only the sup-

ply rate matrices of the robot Wr and the environment We are used. In other words, it is not

necessary to have the full knowledge of the dynamics of the interconnected subsystems. This

is especially useful in the case of the environment, because it might not always be feasible

to obtain equations that would precisely describe its dynamics. As can be seen from equa-

tion (3.37), the quadratic supply rate matrix of the robot depends on matrices L and K of the

control law (3.24). These matrices can be chosen so that the robot has a desired trajectory

tracking performance in free space. In the experiments conducted for this work, the matrices
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L and K were chosen as follows:

L =

2

64
1.05 0

0 2.25

3

75
1
s
, K =

2

64
0.25 0

0 0.55

3

75
s ·H
m2 (3.41)

In addition to the matrices L and K, there is also a parameter r > 0 in (3.37) that needs to be

defined. The value of the coefficient r is chosen to minimize the radius of the robot’s cone. The

relation between fr and r is shown on Figure 3.7. Thus, r = 3.6 is the point of the minimum

of the function that corresponds to fr ⇡ 30.98�. The center of the robot’s cone forms a 2D

subspace, which is defined as

Wr = span

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

2

666666666666664

�0.0000

0.9303

�0.0000

0.1984

0.0000

0.3085

3

777777777777775

,

2

666666666666664

�0.9416

0.0000

�0.1714

0.0000

�0.2898

�0.0000

3

777777777777775

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

. (3.42)

Next, let us find the parameters of the environmental cone. The set of non-negative eigen-

values l+ of [QSR] matrix of the environment is

l+(We) =

⇢
0, 0,

1
2
,

1
2

�
(3.43)

and the set of negative eigenvalues has the following form:

l�(We) =

⇢
�1

2
,�1

2

�
. (3.44)
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The parameters µ+ and µ� are defined as follows:

µ� = min
�
|µi| : µi 2 l�(We)

 
=

1
2
, (3.45)

µ+ = max
�
|µi| : µi 2 l+(We)

 
=

1
2
. (3.46)

Therefore, according to Lemma 2.2.1, the radius of the environmental cone is defined as

fe = tan�1

 s
µ+

µ�

!
⇡ 0.785 (3.47)

The center of the environmental cone is a 4D subspace, spanned by the following vectors

We = span

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

2

666666666666664

0

0.7071

0

0

0

�0.7071

3

777777777777775

,

2

666666666666664

0.7071

0

0

0

�0.7071

0

3

777777777777775

,

2

666666666666664

0

0

1

0

0

0

3

777777777777775

,

2

666666666666664

0

0

0

1

0

0

3

777777777777775

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

, (3.48)

Once the parameters of the subsystems’ cones are known, we should check if the graph sepa-

ration stability condition is satisfied. First, the projection matrices PWr and PWe can be found

from the known subspaces Wr and We in the following way. First, let Ŵr be a matrix whose

columns span the central subspace Wr. Then the robot’s projection matrix PWr = ŴrŴT
r . The

projection matrix of the environment can be found in similar way. As calculations show,

smax =
⇣

PWr
,PWe

⌘
⇡ 0.372 and cos(fr +fe)⇡ 0.243. This does not satisfy the graph separa-

tion stability condition (2.33), i.e., s
⇣

PWr
,PWe

⌘
⌅ cos(fr +fe). This theoretical observation

is in accordance with the experimental results where the robot-environment system experiences

instability. However, the system can be stabilized with the scattering transformation techniques

described in the following section.
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3.6 Design of the Scattering Transformation

The robot-environment system (3.3), (3.24), (3.23) can be stabilized by using scattering tech-

niques. In this section, we describe how to apply the scattering transformation described earlier

in this work to the specific interconnected system of the controlled manipulator and environ-

ment. That is, the developed scattering transformation should stabilize the coupled system

while preserving the free space task trajectory of the robot. As before, the general idea is to

transform the cone of one of the subsystems, which in our case will be the robot, so that the

graph separation stability condition is satisfied. First, suppose that the end-effector of the robot

follows a desired trajectory Yd =
⇥
xT

d (t), ẋT
d (t)

⇤
. Then the actual trajectory of the robot can be

defined as Y =
⇥
xT (t), ẋT (t)

⇤
, where x and xd represent the actual and desired positions, ẋ and

ẋd represent the actual and desired velocities. When the robot’s end-effector is in contact with

environment the force fe is generated, thus forming a closed-loop robot-environment system.

To guarantee the stability of the overall system, we can apply a scattering transformation on

the robot subsystem in the following way. Suppose that the controlled manipulator has input

fe, and tracking error u = Y�Yd . Then we can design an operator S that would transform a

signal in the following way

2

64
fe

u

3

75= S

2

64
v f

E

3

75 (3.49)

where v f is a new force input and E is a new tracking error. Since there is a physical interac-

tion with energy exchange between the robot and its environment, the scattering transformation

(3.49) cannot be applied directly. Instead, we can implement the scattering transformation in-

directly through the introduction of reference signals fr = v f � fe and Ỹr = u �E as shown on

Figure 3.8. Next, let us put constraints on the scattering transformation S so that the trajectory

tracking performance of the robot remains the same when there is no contact with the environ-

ment. That is, in this case the signal going through the scattering transformation block should
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Figure 3.8: Scattering-based stabilization of robot-environment interaction.

remain unchanged. Thus, when there is no external force fe, the transformed force v f should

be equal to zero, and the new tracking error E should be equal to the actual tracking error u .

Thus, the inverse of the scattering operator should have the following form

S
�1 =

2

64
S1 O

S2 I

3

75 (3.50)

where S1, S2 are arbitrary and S1 is nonsingular. To get the original scattering transformation

(3.49), we can use the inverse operator (3.50) and have the following:

S=

2

64
S
�1
1 O

�S2S
�1
1 I

3

75 . (3.51)

Thus, the scattering transformation (3.49), (3.51) guarantees that the trajectory performance

of the robot in free space remains unchanged. However, since signals fe and u are readily

available, it is easier to use the inverse scattering operator as follows

2

64
v f

E

3

75= S
�1

2

64
fe

u

3

75 . (3.52)
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Next, we need to find matrices S1 and S2 that would guarantee the stability of the coupled

system. First, consider signals E and Ỹr in Figure 3.8 that are defined as follows

E =

2

64
x�xr

ẋ� ẋr

3

75 , Ỹr =

2

64
xr �xd

ẋr � ẋd

3

75 (3.53)

Therefore, considering the transformation (3.52) scattering should establish a relationship be-

tween the following signals

2

66664

fe + fr

x�xr

ẋ� ẋr

3

77775
= S

�1

2

66664

fe

x�xd

ẋ� ẋd

3

77775
. (3.54)

Equation (3.54) is equivalent to the following transformation

2

66664

fr

xd �xr

ẋd � ẋr

3

77775
=
⇥
S
�1 � I

⇤

2

66664

fe

x�xd

ẋ� ẋd

3

77775
. (3.55)

Thus, considering the structure of the operator S�1 given by (3.50), the scattering transforma-

tion should have the following form

S
�1 =

2

66664

S1 O O

S21 I O

S22 O I

3

77775
2 R

6⇥6 (3.56)

Substituting the scattering transformation (3.56) in (3.55), the reference signals can be derived

as follows

fr = [S1 � I3] fe, (3.57)
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xr = xd �S21 fe, (3.58)

ẋr = ẋd �S22 fe, (3.59)

The scattering transformation (3.56) is a function of a parameter vector a =


a1...a6

�T
2

R
6, i.e., S= S(a). The functional that is minimized has the following form:

FD = [a�a0]
T ·D · [a�a0], (3.60)

where a0 =


1 1 1 0 0 0

�T
2 R

6, and D is a diagonal matrix with di > 0, i = 1, ...,6,

such that trD = Sdi = 1. In other words, a scalar FD can be calculated in the following way:

FD = tr(W1(S1 � I3)
2 +W2S2

21 +W3S2
22) (3.61)

where the matrices Wi are the weight matrices. In the experiments Wi = I/6 for i = 1, ...,3.

Therefore, in order to find matrix S
�1 the point of minimum of function (3.61) needs to be

found. The point of minimum a can be used to comprise the matrix S
�1. In other words:

a⇤ = arg min
a2R6

FD(a) (3.62)

This optimization problem is subject to the constraints that are defined in the remaining part of

this section.

The matrix W of the robot has the following form:

W = Grob

2

64
s2
I2 O

O �c2
I4

3

75GT
rob (3.63)

where Grob is the matrix comprised of the basis vectors of the robot’s cone, s = sinfrob and
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c = cosfrob.

The desired [QSR]d matrix has the form:

[QSR]d = S
T
0 ·W ·S0 (3.64)

The matrix M and scalar s are defined in the following way:

M = Pd ·Pe (3.65)

s =
p

maxn (3.66)

where Pd is the desired projector, i.e., projector of [QSR]d , Pe is the projector of the envi-

ronment, vector n is the vector of eigenvalues of matrix M ·MT . Thus, the constraint on the

optimization problem (3.62) is defined as:

C(a) =

2

64
s � cos(fe +fd +dd)

�(aT
c )

2 +10�3

3

75< 0 (3.67)

where ac = [a1,a2]. Therefore, by solving equation (3.62) with the constraints (3.67), the

matrix S
�1 can be found.

Finally, let us demonstrate the actual values of the scattering transformation found using the

above described pipeline. The desired gap dd was chosen to be equal to 4� in the experiments.

Thus, matrix S
�1 has the following form:

S
�1 =

2

66664

S1 O O

S21 I O

S22 S3 O

3

77775
(3.68)
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Figure 3.9: Control architecture for robot-environment interaction stabilization through scat-
tering transformation

where

S1 ⇡

2

64
0.846 0

0 0.844

3

75 , S21 ⇡

2

64
0.082 0

0 0.070

3

75 ,

S22 ⇡

2

64
�0.349 0

0 �0.344

3

75 (3.69)

3.7 Complete Control Architecture of the System

Thus fr, xr and ẋr serve as the new end-effector force, desired position and velocity for the

passivity-based adaptive control algorithm. Since the scattering transforms signal in task space,

we need to convert joint positions and forces to and from task space. The joint variables are

converted to task space using forward kinematic rules. The velocity of the end-effector is

determined as

xd = J(qd)q̇d (3.70)

where J(qd) is the manipulator’s Jacobian matrix, xd is the desired end-effector position. The

robot’s Jacobian is defined as:

J(q) =

2

64
�l2 sinq1 �l1 sinq2

l2 cosq1 l1 cosq2

3

75 . (3.71)
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The readings from the force sensor attached to the end-effector are transformed to the base

frame using the following equation:

fe = R fee =

2

64
cos(q1 +q2) �sin(q1 +q2)

sin(q1 +q2) sin(q1 +q2)

3

75 fee (3.72)

where R is the rotation frame that represents the rotation of the end-effector frame with respect

to the inertial frame. Thus, having calculated the environment force fe, the desired position xd

and the velocity ẋd , using equations (3.70)–(3.72), we apply the scattering calculation (3.57)–

(3.59). Further, we need to transform the reference signals from task space back to joint space.

This can be done as follows:

tr = JT (q) · fr (3.73)

q̇r = JT (q) · ẋr (3.74)

The reference joint position qr is determined using the inverse kinematics of the robot. The

reference torque tr is used as an additional term in the control law (3.28):

t = Y (q, q̇,a,v)q̂ �Kr� tr, (3.75)

In this way, the reference signal calculated using the scattering transformation is fed to the

control algorithm (3.28). The complete control architecture with the forward and inverse kine-

matics blocks, the scattering transformation and the passivity-based adaptive control algorithm

is presented on Figure 3.9.

3.8 Conclusions

This chapter described all the necessary steps for implementation of the scattering-based sta-

bilization algorithm on a real physical system. The chapter started with the description of the
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hardware used in the experiments. Next, the dynamic equations of the robot were derived.

The two data-driven approaches were employed to estimate the unknown robot parameters

and counter unmodeled dynamics. Both dynamics estimation methods, linear regression and

neural network-based estimation showed similar performance. Thus, parameter estimation

method based on Linear regression was selected to be used in further experiments since it is

more predictable and well-defined compared to the neural network-based approach. The re-

sulting dynamics equations of the robot are necessary for the dynamic cone estimation and

implementation of the trajectory control algorithm. Next, the dynamics of the environment are

described, which is also necessary for the estimation of the dynamic cone of the environment

and further design of the scattering transformation. By analyzing the dissipativity properties

and dynamic cones alignment of the robot and the environment systems, it was found that

the closed-loop system is unstable, which is in a complete accordance with the experimental

observations. Further, the scattering transformation design for stability of robot-environment

interaction was presented.



Chapter 4

Experimental Results

This chapter presents the implementation of the scattering transformation on a real physical

robot and the corresponding experimental results. The chapter starts with the description of

how velocities and accelerations are estimated based on the position measurements. In Sec-

tion 4.2, the reference trajectories used in the experiments are described. Experimental results

are reported in Section 4.3. Furthermore, in order to gain better understanding of the behav-

ior of a coupled system, the models of the robot and the environment used in the experiments

are implemented in simulations. Section 4.4 describes the simulation environment and the

steps needed to bring the behaviour of a simulated system closer to that of a real one. Finally,

Section 4.5 contains concluding remarks.

4.1 Velocity and Acceleration Estimation

The robot used in experiments does not provide joint velocity and acceleration measurements,

these signals have to be reconstructed by taking the derivatives from the joint position. A well-

known problem with the signal differentiation is its sensitivity to high frequency measurement

noises. Practical differentiation is a trade-off between exact differentiation and robustness with

respect to noise since it is typically impossible to discern between the noise and the actual

signal with any degree of reliability.

70
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Differentiators are commonly based on the assumption that the measurement noise has

low magnitude and high frequency. The goal is to filter out this noise [42]. Thus, due to the

filtering involved, conventional high-frequency [6] and sliding-mode [24, 88] differentiators

do not provide exact derivatives. The exact derivatives can be obtained using the robust exact

finite-time-convergent differentiator [49], provided that the highest order derivative is bounded

by a known constant. This differentiator has the best possible asymptotics in the presence of

infinitesimal Lebesgue-measurable sampling noises. It has found its application in numerous

fields [8, 19]. The following is the design of the high-order sliding mode observer [49] for

estimation of the first and the second derivatives of the input signals.

Let the input signal f(t) be a function defined on [0,+•), and consisting of a bounded

Lebesgue-measurable noise with unknown characteristics and unknown basic signal. Let us

assume that the k-th derivative of the basic signal has known Lipschitz constant L > 0. Then

the real-time robust estimations of the derivatives f (i)
0 (t), i= 0, . . . , k, for k = 4, which coincide

with the exact derivatives in the absence of noise, are computed as follows [49]:

2

66666664

ż0

ż1

ż2

ż3

3

77777775

=

2

66666664

v0

v1

v2

v3

3

77777775

=

2

66666664

�l3 ·L1/4 · |z0 �f |3/4 · sign{z0 �f}+ z1

�l2 ·L1/3 · |z1 � v0|2/3 · sign{z1 � v0}+ z2

�l1 ·L1/2 · |z2 � v1|1/2 · sign{z2 � v1}+ z3

�l0 ·L · sign{z3 � v2}

3

77777775

(4.1)

where l0 = 0.5,l1 = 0.5,l2 = 2,l3 = 3, and L > 0 is a sufficiently large constant gain. Theo-

retically, L should be chosen such that

L � max
t

|f (4)(t)|. (4.2)

In practice, L > 0 should be chosen sufficiently large. However, the experiments showed that

the higher the gain L, the more noisy the estimation becomes. Thus, L should be chosen

such that there is no noise in the estimation, while being bounded from below by inequality
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(4.2). In our experiments L = 5, which satisfies inequality (4.2). The velocity and acceleration

estimations are obtained from (4.1) as follows:

ˆ̇f ⇡ z1,

ˆ̈f ⇡ z2.
(4.3)

Despite the fact that we only need to estimate the first and second derivatives of the measured

position, we still need our observer to be of fourth order, i.e., internally it should also estimate

the third derivative. The reason for this is because if our estimator is only of the third order, the

differential equation that corresponds to estimation of acceleration is not continuous. There-

fore, the solution of this equation would have cusp points, i.e., infinite curvature. However, the

additional, fourth order provides smooth estimations of acceleration.

The control scheme (3.24) used in the experiments only requires estimation of the first

derivative of the robot’s position, while for the desired trajectory both the first and second

derivatives have to be estimated. The signals in both cases are estimated using the fourth order

sliding mode observer described above.

4.2 Reference Trajectory

In this section, the reference (desired) trajectory used in the experiments below is described.

The desired trajectory of the robot’s end-effector in task space is shown in Figure 4.1. This

trajectory consists of two parts. The first part of the trajectory represents a path which starts at

the point ps = (0, 0.5)m, and comprises two circles with radius rtr = 0.16m and center at the

point pc = (0.16, 0.50)m in the counter-clockwise direction. The purpose of this part of the

trajectory is to give the control algorithm time to update and stabilize parameters that enter the

vector q̂ . The second part of the trajectory represents a straight line normal to the surface of

the environment. The last point of the trajectory is 0.02m inside the environment. The desired

trajectory xd together with its first derivative ẋd and second derivative ẍd are obtained via a
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Figure 4.1: Desired task space trajectory of the robot (in blue) and environment position (in
red).

(a) (b)

Figure 4.2: Desired joint space trajectory of the robot: (a) 10.7 s variant of trajectory, (b) 12.8
s variant of trajectory.
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high-order sliding mode observer described above in Section 4.1.

Two versions of this trajectory were examined in this work, which differ in their desired

velocity. The first version of the trajectory corresponds to the case where the above mentioned

path that has to be completed in 10.7 s. The second version represents a trajectory that has to be

completed in 12.8 s. Trajectories are designed in such a way that the robot’s end-effector moves

along the trajectory with the uniform speed. Plots of both versions of the desired trajectory in

joint space are shown in Figure 4.2. The coefficients of trajectory control algorithm were

chosen such that the robot has a desired trajectory performance in free space; for exact values

see (3.41). At the point of collision, a piece of soft silicon with a width of ⇡ 20mm is rigidly

attached to the table, as shown in Figure 3.1a. To execute the trajectory described above, both

of the robot’s motors have to be used. In addition, their contributions are different considering

the structure of the robot. To reach the starting point of the trajectory from the home position,

the PD control scheme was used.

4.3 Contact Stability Experiments

The passivity-based (Lyapunov-based) adaptive control algorithm (3.28), (3.30)) which is used

in the contact stability experiments has a number of parameters that need to be tuned. These

parameters include matrices K > 0, L > 0, and G > 0. The matrices of the coefficients K > 0,

L > 0 of the motion control algorithm were chosen such that the robot has a desired trajectory

tracking performance in free space, the exact values of these matrices are given in (3.41). That

is, if the coefficients in the matrices K > 0 and L > 0 are too large the real trajectory of the

robot may heavily overshoot and the robot may be only marginally stable with respect to the

desired trajectory, i.e., it may have damped or even sustained oscillations.

On the other hand, if the coefficients K > 0, L > 0 are too small the robot may heavily

lag with respect to the desired position trajectory and the corresponding tracking error may be

unacceptably high. Thus, the coefficients in the matrices K > 0 and L > 0 are chosen to ensure
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a trade-off between the robot’s stability and the trajectory trajectory error. The coefficients on

the main diagonal of the matrix G> 0 (3.30) control the speed of update of the parameter vector

q̂ . Higher coefficients correspond to higher speed of update. The matrix G> 0 was chosen such

that the parameter estimates reach steady-state by the time the robot finishes executing the first

part of the trajectory.

Overall, the two versions of the desired trajectory described above in Section 4.2 were used

in the experiments. In order to evaluate the adaptation properties of the control algorithm,

for each version of the desired trajectory, three initial estimates of the parameter vector q̂ init

were tested. The first initial value of q̂ init
1 comprises the parameter values found using linear

regression estimation (see Section 3.2.4). That is, the initial values of the parameters q̂ init
1 are

close to the actual parameters of the robot. The second initial condition for q̂ init
2 is chosen such

that it differs from the estimates obtained through the linear regression by ±30%. Lastly, the

third initial value of q̂ init
3 used in the experiments is set equal to zero vector, i.e., q̂ init

3 =O12.

The results of experiments with and without the scattering transformation for the first ver-

sion of the trajectory (i.e., with execution time = 10.7 s) are presented below in Figures 4.3-4.8.

The results of the experiments for the second version of trajectory (execution time = 12.8 s)

are presented in Figures 4.9-4.14. As can be seen, without the scattering transformation the

robot typically starts oscillating as soon as it collides with the environment. The general rea-

son for this instability is described in Section 1.2.2. It consists in the fact that even though both

subsystems are passive, the nature of the subsystems interconnection makes the overall system

non-passive. The root cause for oscillations is explained in the following section.

As can be seen from the experimental results, the trajectory tracking performance improves

with time due to updates of the parameter vector q̂ . Typically, after collision with the environ-

ment, some values of the parameter vector tend to update to compensate for the discrepancy

between the actual and desired position of the robot, as seen in Figures 4.3f-4.14, subfigures

(f). Implementation of the scattering transformation stabilizes the robot-environment interac-

tion (see Figures 4.4, 4.6, 4.8, 4.10, 4.12, and 4.14); at the same time, the trajectory tracking
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performance in free space remains unaffected. Further, it can be seen that the force mea-

surement noise does not significantly impact the trajectory tracking performance, which is in

complete accordance with the theoretical consideration that the gap between the robot and the

environment’s dynamic cones provides for robustness with respect to perturbations.

4.4 Simulation Results

As shown in the previous section, the scattering transformation can be used to stabilize the

system. As shown in Section 1.2.2, the reason for the original instabilities occurring in the

system is that the system is non-passive. However, what is the root cause of this non-passivity

and oscillations? The aim of this section is to answer this question. One of the advantages of

simulations is that they enable experiments to be conducted that otherwise would not possible

with a physical robot. A well implemented simulation can show how the robot would behave

if there were no sensor noise or delay.

4.4.1 Description of the Simulation Environment

The dynamic model of the robot used in the simulation corresponds to the dynamics of the

physical robot used in the experiments described above. The dynamics (3.5), (3.10)-(3.13) that

were found by fitting a function to the robot’s movement recordings are about 3% different

from the behaviour of the real robot. The environment in the simulation was chosen to match

the characteristics of the environment used in the real experiments. The piece of silicon that is

used in the experiments is somewhat similar to a very stiff spring that has a substantial amount

of damping. The scheme of the environment is presented on Figure 4.15.

When the end-effector is in contact with the environment, it experiences a force defined as

follows:

f =�(D · v+K · pd ) (4.4)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Experimental results: no scattering transformation, trajectory execution time 10.7
s, initial parameters q̂(0) = q̂ init

1 : (a) robot’s joint trajectories, (b) desired joint trajectories, (c)
joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter estimates q̂ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Experimental results: the scattering transformation is applied, trajectory execu-
tion time 10.7 s, initial parameters q̂(0) = q̂ init

1 : (a) robot’s joint trajectories, (b) desired joint
trajectories, (c) joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter
estimates q̂ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Experimental results: no scattering transformation, trajectory execution time 10.7
s, initial parameters q̂(0) = q̂ init

2 : (a) robot’s joint trajectories, (b) desired joint trajectories, (c)
joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter estimates q̂ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.6: Experimental results: the scattering transformation is applied, trajectory execu-
tion time 10.7 s, initial parameters q̂(0) = q̂ init

2 : (a) robot’s joint trajectories, (b) desired joint
trajectories, (c) joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter
estimates q̂ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Experimental results: no scattering transformation, trajectory execution time 10.7 s,
initial parameters q̂(0) = q̂ init

3 =O12: (a) robot’s joint trajectories, (b) desired joint trajectories,
(c) joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter estimates q̂ .



82 CHAPTER 4. EXPERIMENTAL RESULTS

(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Experimental results: the scattering transformation is applied, trajectory execution
time 10.7 s, q̂(0) = q̂ init

3 = O12: (a) robot’s joint trajectories, (b) desired joint trajectories, (c)
joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter estimates q̂ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Experimental results: no scattering transformation, trajectory execution time 12.8
s, initial parameters q̂(0) = q̂ init

1 : (a) robot’s joint trajectories, (b) desired joint trajectories, (c)
joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter estimates q̂
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Experimental results: the scattering transformation is applied, trajectory execu-
tion time 12.8 s, initial parameters q̂(0) = q̂ init

1 : (a) robot’s joint trajectories, (b) desired joint
trajectories, (c) joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter
estimates q̂
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: Experimental results: no scattering transformation, trajectory execution time 12.8
s, initial parameters q̂(0) = q̂ init

2 : (a) robot’s joint trajectories, (b) desired joint trajectories, (c)
joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter estimates q̂ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.12: Experimental results: the scattering transformation is applied, trajectory execu-
tion time 12.8 s, initial parameters q̂(0) = q̂ init

2 : (a) robot’s joint trajectories, (b) desired joint
trajectories, (c) joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter
estimates q̂ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.13: Experimental results: no scattering transformation, trajectory execution time 12.8
s, initial parameters q̂(0) = q̂ init

3 : (a) robot’s joint trajectories, (b) desired joint trajectories, (c)
joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter estimates q̂ .
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Experimental results: the scattering transformation is applied, trajectory execu-
tion time 12.8 s, initial parameters q̂(0) = q̂ init

3 : (a) robot’s joint trajectories, (b) desired joint
trajectories, (c) joint velocities, (d) commanded torques, (e) end-effector forces, (f) parameter
estimates q̂ .
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Figure 4.15: Scheme of the environment used in simulation. Trajectory is shown with the
dashed line. The following are the trajectory waypoints: (a) - starting point, (b) - point of
collision, (c) - desired end point.

where a and v are the robot’s acceleration and velocity in task space, pd is the delta vector that

represents the compression of the environment. Vector pd is oriented normally to the surface

of the environment and its norm is equal to the amount of compression of the environment.

This way, when the robot collides with the environment, the interaction force is always normal

to the surface. The matrices D and K were chosen as:

K =

2

64
70 0

0 70

3

75 , D =

2

64
10 0

0 10

3

75 . (4.5)

The exact coefficients in matrices K and D were chosen such that the dynamics of the simulated

environment is very similar to the real environment used in experiments. The position of the

end-effector was calculated using forward kinematics of the manipulator.

To make the simulation as realistic as possible, the following features were implemented.

First, the joint positions measurements were quantized with step dq = 7 ·10�5. Second, noise

was added to the force readings. This noise has the same mean and standard deviation as
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Figure 4.16: Distribution of the force along the x axis of the Nano 43 sensor when the external
force is equal to zero. The mean µx = �0.0276 H, µy = 0.0085 H; the standard deviation
sx = 0.0043 H and sy = 0.0059 H.

the noise of the sensor used in the experiments. It was assumend that this noise is normally

distributed. The mean and standard deviation were found by fitting the Gaussian curve to the

force readings when the external force is equal to 0. The distribution of the noise along the

x axis of the force sensor is shown in Figure 4.16. Further, the acceleration of the robot was

bounded by ±5rad/s2. This is based on the fact that the acceleration of the real robot never

exceeds this limit and thus this modification makes the behaviour of the robot in simulation

closer to that of the real robot. The velocity and acceleration readings were calculated using a

second-order low-pass filter. The desired trajectory of the manipulator is exactly the same as

the one used in the real experiments, except it does not have the circular components which

originally were intended to allow the robot to estimate its coefficients (3.29). That is, the

trajectory starts at the beginning of the straight path (see Figure 4.1) and then goes towards the

environment.

4.4.2 Simulation Results

The derivatives of the joint positions were found using a second-order low-pass filter with cut-

off frequencies of 50 Hz for the first derivative and 30 Hz for the second. The damping was
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(a) (b)

Figure 4.17: Desired and actual joint positions of the robot in simulation: (a) cutoff frequency
of the low-pass filter is 50 Hz, (b) cutoff frequency of the low-pass filter is 100 Hz.

equal to 1 for both of derivatives. These values correspond to the values used in the filter in

the real experiments. The desired and actual joint positions of the robot are shown in Figure

4.17a. It should be noted, that after collision with the environment, the robot starts to oscillate;

similar behaviour can be observed in the real experiments. However, if we increase the cutoff

frequency of the low-pass filter from 50 Hz to 100 Hz, the oscillations are not seen (see Figure

4.17b). This indicates that the root case of the oscillations in the interconnected system is the

presence of delays in sensor data, which in turn is caused by the filtering. It should be noted,

that on a real robot the cutoff frequency of 100 Hz causes chattering in the commanded torque

and hence in the robot motion. This is due to the noise in the joint position readings. Thus, to

find the actual cause of the oscillations solely using the physical robot is not possible.

4.5 Conclusion

The results of the experiments with the scattering transformation on a real coupled system

were presented in this chapter. The chapter started with a description of how velocities and

accelerations are estimated based on the position measurements. That is, given that the robot

used in the experiments does not provide joint velocity and acceleration measurements, these
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signals have to be reconstructed by taking the derivatives from the joint positions. The imple-

mented high-order sliding mode observer [49] provides precise estimation of the first and the

second derivatives of the input signals. Experimentally it was verified that the velocity and

acceleration estimates provided by the observer can be used as inputs to the trajectory control

algorithm. The experiments were conducted for two different trajectories with three different

initial estimates of parameter vector q̂ init . The experiments showed that due to the non-passive

nature of the interconnected system, instabilities occur. However, the application of the scat-

tering transformation allows to stabilize the system. This is in a complete accordance with the

theoretical developments in the previous chapter. Section 4.4 described the process of creating

a digital twin of a coupled system. This indicated that the root cause of the instabilities lies in

the design of a filter that is used to estimate joint velocities and acceleration.



Chapter 5

Conclusion

5.1 Summary

This thesis presented design, implementation, and experimental evaluation of a framework for

stable robot-environment interaction. The framework is based on the use of a non-planar conic

system formalism and the generalized scattering transformation techniques. A comprehensive

overview of interaction control methods and the scattering transformation techniques was pre-

sented in Chapter 1. In addition, Chapter 1 summarized objectives and motivation behind the

research. That is, the conventional passivity-based approaches for the coupled stability prob-

lem are limited to the case of passive interaction; however, there are many examples of subsys-

tems that are non-passive. Likewise, even if subsystems are passive, the overall interconnected

system may be non-passive if the outputs used for the interconnection are not passive outputs.

Chapter 2 presented a theoretical background on conic systems and scattering transforma-

tion. These theoretical developments form a basis for the implementation of the scattering-

based framework for stabilization of the robot-environment interaction. All the necessary steps

for the deployment of the scattering-based stabilization framework on a real physical system

were presented in chapter 3. This chapter described the derivation of the dynamics equations

for the robot, which is necessary for the implementation of the trajectory-tracking control al-

93
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gorithm. Furthermore, the general structure of the dynamics equations is necessary for the

implementation of the scattering transformation. To estimate unknown robot parameters and

to capture unmodeled dynamics the two data-driven approaches were used. Both dynamics es-

timation methods: Linear regression and Neural Network-based showed similar performance.

The mean absolute error on the testing set is less than 3% of the torque range. Next, the dy-

namics of the environment were described, which is also necessary for the estimation of the

dynamic cone of the environment and further design of the scattering transformation. Further,

the dissipativity properties and dynamic cones alignment of the robot and environment systems

were analyzed. It was found that stability the closed-loop system cannot be guaranteed, which

is in a complete accordance with the experimentally observed instability. Further, the scattering

transformation design for stability of the robot-environment interaction and the complete con-

trol architecture of the system were presented. Thus, chapter 3 described how the developed

stabilization framework can be applied on a real system.

The evaluation of the proposed framework on the robot-environment system was presented

in Chapter 4. The following results have been achieved in this chapter. First, it was shown that

the Lyapunov-based adaptive control algorithm shows stable behaviour and is able to reliably

track the reference trajectory in free space. This, in turn, demonstrates that all the parts of the

framework that were employed in the trajectory control algorithm are working correctly. That

is, the high-order sliding mode observer that was implemented provides estimations of velocity

and acceleration signals that are precise enough for desirable performance of the trajectory

control algorithm. In addition, it demonstrates that the dynamics of the robot were derived

correctly. Second, experiments showed that the robot-environment interaction is not stable due

to its non-passive nature. However, the application of the proposed stabilization framework

enabled stability to be achieved without affecting the robot’s trajectory-tracking performance

in free space. This result is in complete accordance with the theoretical developments. The

method presented in this work constitutes a direct extension of the existing passivity based

approaches for the coupled stability problem. Furthermore, chapter 4 described the process
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of creating a digital twin of a coupled system. This provided more insights on the behaviour

of a real system and allowed to understand that the root cause of instabilities lies in minor

discrepancies between the real and the estimated values of the joint velocities and accelerations.

5.2 Future Research

Further research is required in order to extend the proposed method to benefit from its full

potential as well as to identify its possible shortcomings. In particular, a complete analyti-

cal solution of the scattering-based design problem for coupled stability subject to constraints

such as (3.50) is a topic for future research. Another future direction for this research work is to

evaluate the performance of the proposed approach for haptic teleoperation in surgical applica-

tions. This involves solving a number of issues, particularly related to the design, fabrication,

and modeling of the system. For example, there will be a requirement imposed on the slave

trajectory-tracking performance. That is, the slave manipulator will be required to follow the

trajectory that is being generated by the master manipulator. Another requirement can be that

the system should avoid the so-called ”wave reflection” phenomena observed in teleoperators.

This can be mitigated by applying scattering transformation on the both sides of the commu-

nication channel, i.e., both from the master and the slave’s sides. Therefore, adaptation of the

proposed stabilization framework to the teleoperator systems will require additional theoreti-

cal developments and it will be an important next step of this research. Finally, data-driven

approaches for conic parameter estimation need to be explored. This will allow to avoid the

modeling of a system and the search of parameters based on the model. Instead, it might be

possible to estimate the parameters of a dynamic cone directly from the experiments.
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[65] Emmanuel Nuño, Luis Basañez, and Romeo Ortega. Passivity-based control for bilateral

teleoperation: A tutorial. Automatica, 47(3):485–495, 2011.



104 BIBLIOGRAPHY

[66] Romeo Ortega and Mark W. Spong. Adaptive motion control of rigid robots: A tutorial.

Automatica, 25(6):877–888, 1989.

[67] I.G. Polushin, A.L. Fradkov, and D.J. Hill. Passivity and passification of non-linear

systems. Automatics and Telemechanics, (3):3–37, 2000.

[68] Ilia G. Polushin. A generalization of the scattering transformation for conic systems.

IEEE Transactions on Automatic Control, 59(7):1989–1995, 2014.

[69] M. H. Raibert and J. J. Craig. Hybrid position/force control of manipulators. Journal of

Dynamic Systems, Measurement, and Control, 103(2):126–133, 06 1981.

[70] Isura Ranatunga, Frank L. Lewis, Dan O. Popa, and Shaikh M. Tousif. Adaptive admit-

tance control for human–robot interaction using model reference design and adaptive

inverse filtering. IEEE Transactions on Control Systems Technology, 25(1):278–285,

2016.

[71] Joel Rey, Klas Kronander, Farbod Farshidian, Jonas Buchli, and Aude Billard. Learning

motions from demonstrations and rewards with time-invariant dynamical systems based

policies. Autonomous Robots, 42(1):45–64, 2018.

[72] Jaydeep Roy and Louis L. Whitcomb. Adaptive force control of position/velocity con-

trolled robots: theory and experiment. IEEE Transactions on Robotics and Automation,

18(2):121–137, 2002.

[73] Michael George Safonov. Stability and Robustness of Multivariable Feedback Systems.

MIT press, 1980.

[74] Shankar Sastry, Marc Bodson, and James F Bartram. Adaptive control: stability, con-

vergence, and robustness, 1990.

[75] Mark W. Spong and Romeo Ortega. On adaptive inverse dynamics control of rigid

robots. IEEE Transactions on Automatic Control, 35(1):92–95, 1990.



BIBLIOGRAPHY 105
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