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Abstract

Dirac ensembles are finite dimensional real spectral triples where the Dirac operator is

allowed to vary within a suitable family of operators and is assumed to be random. The Dirac

operator plays the role of a metric on a manifold in the noncommutative geometry context of

spectral triples. Thus, integration over the set of Dirac operators within a Dirac ensemble, a

crucial aspect of a theory of quantum gravity, is a noncommutative analog of integration over

metrics.

Dirac ensembles are closely related to random matrix ensembles. In order to determine

properties of specific Dirac ensembles, we use techniques from random matrix theory such

as Schwinger-Dyson equations and the recently introduced bootstrapping. In particular, we

determine the relations between the second moments of our models and parameters of the

models. All the other moments can be represented in terms of the coupling constants and the

second moments using the set of recursive relations called the Schwinger-Dyson equations.

Additionally, explicit relations for higher mixed moments are found.

We also introduce a new technique, the moment-coefficient method, to solve multi-trace

matrix models in the large N limit. This technique is compatible with several well-known ap-

proaches to solving single matrix ensembles. Using this technique, we study Dirac ensembles

in the so called “double scaling limit”. It is significant to note that, as predicted by conformal

field theory, the asymptotics of the partition function of these models is used to construct a so-

lution for the Painlevé I differential equation. Moreover, results of this thesis are also justified

numerically by Monte Carlo Metropolis-Hastings simulations.

Keywords: Noncommutative Geometry, Finite Dimensional Spectral Triples, Random

Matrix Theory, Dirac Ensembles, Schwinger-Dyson Equations, Multi-Trace Matrix Models,

Bootstrapping Technique, Phase Transition, Double Scaling Limit, Monte Carlo Metropolis-

Hastings Algorithm.
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Summary for Lay Audience

The nature of a theory of spacetime in quantum gravity is constrained by the existence of

the Planck length. In fact, using the Heisenberg uncertainty principle and Einstein’s general

relativity theory, it can be shown that spacetime cannot be a smooth manifold at Planck length

since black holes can emerge in very small scales. Several options has been suggested to

replace the conventional spacetime. One such suggestion is a noncommutative Riemannian

manifold in the sense of spectral triples. In particular for finite dimensional spectral triples, the

role of the metric is played by a Dirac operator.

A random matrix is a matrix whose entries are random variables. The main goal of this

study is to find the probability distribution function of eigenvalues of certain random matrices

that appear in some toy models of quantum gravity based on noncommutative geometry.

In this thesis, in order to find the moments of random Dirac operator numerically, we use

the bootstrapping method. The bootstrapping method is based on a set of recursive relations

called “Schwinger-Dyson equations”, and some positivity constraints that are satisfied by the

moments of eigenvalue distributions of such matrices. We are able to find higher moments of

the model in terms of the second moment, and we calculate the second moment numerically

using the bootstrapping method.

In order to solve matrix ensembles when the size of the matrix reaches infinity, we offer a

brand-new technique called the moment-coefficient method. This method is compatible with

several well-known methods for solving single matrix ensembles. In particular, it is used to

analyze Dirac ensembles at the double scaling limit, which occurs when the model’s order

parameter approaches the critical value and the size of the matrix reaches infinity. We show that

the so called free energy of our models (logarithm of the partition function) can be constructed

using solutions of the Painlevé I differential equation. Additionally, Monte Carlo Metropolis-

Hastings simulations are used to numerically support the outcomes of this thesis.
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Chapter 1

Introduction to Matrix Ensembles

1.1 Beginning of random matrix theory

In the introduction of three papers forming chapters 2, 3, and 4 of this dissertation, we shall give

further background to random matrix theory. In this chapter, we shall recall some elementary

results without much detail. Further explanatory remarks can be found in appendices A, B, and

C at the end of this thesis.

A random matrix is a matrix-valued random variable. That is a matrix whose entries are

random variables. Random matrices first appeared in statistics in 1928, when Wishart [12]

generalized the chi-squared law to multivariate random variables. Let us consider N ≥ p

random p-component vectors and form a rectangular matrix X with N rows and p columns.

X = (X1, X2, · · · , XN)T , Xi = (xi1, xi2, · · · , xip), xi j ∈ R. (1.1)

The Xi’s are independent, identically distributed (i.i.d.) random vectors with a multivariate

normal distribution Np(0,V) with zero mean and a covariance matrix V of size p:

Np(0,V)(Xi) =
e−

1
2 Tr XiV−1XT

i

(2π)
p
2
√

det V

p∏
j=1

dxi j. (1.2)

We are interested in the properties of the correlation matrix

S = XT X,

which is a symmetric (positive semi-definite) square matrix of size p. The space of such ma-

trices

Wp(V, n) = {XT X | X ∈ Rn×p} (1.3)

1



2 Chapter 1. Introduction toMatrix Ensembles

equipped with the pushforward measure is called Wishart ensemble. The probability law for

the correlation matrix S is given by the Wishart distribution:

P(M) =
(det M)

N−p−1
2 e−

1
2 Tr V−1 M

2
1
2 N p(det V)

N
2 Γp( N

2 )
. (1.4)

Later, in 1967, Marchenko and Pastur [6] worked on the large N behaviour of p×p matrices

S N = XT X, where the entries of X are i.i.d. variables with a normal distribution N(0, σ2). S N

is a non-negative symmetric random matrix. So its eigenvalues are non-negative real random

variables:

0 ≤ λ1(S N) ≤ λ2(S N) ≤ · · · ≤ λp(S N).

Define the empirical distribution of eigenvalues on R as follows:

µN,p(S N) =
1
p

p∑
i=1

δ

(
x −

λi(S N)
√

N

)
∈ P(R), (1.5)

where P(R) is the set of Borel probability measure on R. Equivalently, for any measurable

subset A ⊆ R:

µN,p(A) =
1
p

#
{

i
∣∣∣∣ λi
√

N
∈ A

}
. (1.6)

The large N limit of this measure is called the spectral distribution of the model and was found

by Vladimir Marchenko and Leonid Pastur.

Theorem 1.1.1 (Marchenko–Pastur 1967 [6]) Let p,N → ∞ such that p
N → λ ∈ (0,∞).

Then the empirical spectral density function µN,p converges weakly in distribution to µ, where

µ(x) =


(
1 − 1

λ

)
δ0 + ν(x) if λ > 1

ν(x) if 0 ≤ λ ≤ 1
(1.7)

and

ν(x) =
1

2πσ2

√
(b − x)(x − a)

λx
χ[a,b] (1.8)

with a = σ2(1 −
√
λ)2 and b = σ2(1 +

√
λ)2.

1.1.1 Gaussian and Wigner ensembles

In the middle of the 1950s, Wigner published a number of studies that introduced random

matrices to physics [9, 10, 11]. Wigner modeled the Hamiltonians of heavy nuclei by large

random Hermitian or symmetric matrices. He studied the statistical distribution of the variable
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Figure 1.1: The graph of the Marchenko–Pastur law.

s (the distance between adjacent energy levels). If the energy levels were uncorrelated random

numbers, the variable s would follow the Poisson distribution. But experimental observation

showed the probability density is different, and very well approximated (within 1%) by the

Wigner surmise:

P(s) = Cβsβe−aβs2
, (1.9)

where the parameter β ∈ {1, 2, 4} is determined by the symmetries of the problem, and values

of Cβ and aβ are determined by:∫ ∞

0
P(s)ds = 1,

∫ ∞

0
sP(s)ds = 1. (1.10)

Consider two independent families of i.i.d. real, or complex, valued random variables

{Zi, j}1≤i< j≤N with the normal distribution N(0, 1) and {Yi}1≤i<N with the normal distribution

N(0, 2). Now consider the symmetric, or Hermitian, N × N matrix XN with entries:

XN(i, j) = X∗N( j, i) =


Zi, j
√

N
if i < j

Yi√
N

if i = j.
(1.11)

Definition 1.1.1 The space of such matrices equipped with the joint measure of the above

random variables is called the Gaussian matrix ensemble.

We can generalize the Gaussian ensembles by relaxing the underlying normal distribution

restriction of its random variables.

Definition 1.1.2 A random symmetric or Hermitian matrix with i.i.d. entries with mean 0 and

variance 1 for off-diagonal elements and mean 0 and variance 2 for diagonal entries with the

corresponding joint distribution is called Wigner ensemble.



4 Chapter 1. Introduction toMatrix Ensembles

The Wigner surmise is also a very good approximation of the large size limit of the prob-

ability density for the distance between consecutive eigenvalues of Wigner matrices. In spite

of its simplicity, this is actually a quite deep result. The probability of two eigenvalues being

very close to each other is very small, i.e., the eigenvalues tend to repel each other (but not too

much). It is like birds perching on an electric wire, or parked cars on a street.

The Wigner surmise for level spacing (the distribution of distances between adjacent eigen-

values) of symmetric Wigner matrices has the following form:

P(s) =
1
2
πse−

1
4πs2

. (1.12)

It is exact for 2 by 2 matrices and a good approximation for the actual distribution for real

symmetric matrices of any dimension. Figure 1.2 is the sampling of difference of eigenvalues

of matrices of size two and the Wigner surmise.

Figure 1.2: The histogram of level spacing of 4000000 symmetric matrices of size 2 with the

proper normalization plotted with the Wigner surmise.

Recall that the empirical distribution of the eigenvalues is defined as:

µN(XN) =
1
p

p∑
i=1

δ (x − λi(XN)) ∈ P(R). (1.13)
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Note that since we have already normalized our matrices by the factor 1
√

N
, we don’t need

to divide the eigenvalues by
√

N in the empirical spectral distribution. Define the semicircle

distribution (or law) as the probability distribution σ(x)dx on R with the density function:

σ(x) =
1

2π

√
4 − x2 χ[−2,2]. (1.14)

Theorem 1.1.2 (Wigner 1955 [9]) For a Wigner ensemble, the empirical measure µN con-

verges weakly, in probability, to the semicircle distribution.

We can say the Wigner’s semicircle law is universal in the sense that the eigenvalue distribution

of a symmetric or Hermitian matrix with i.i.d. entries, properly normalized, converges to the

semicircle distribution regardless of the underlying distribution of the matrix entries. Figure 1.3

is the sampling of eigenvalues of symmetric matrices of size 1000 and the Wigner semicircle

distribution.

Figure 1.3: The histogram of the eigenvalues of 1000 symmetric matrices of size 1000 with the

proper normalization compared with the Wigner semicircle distribution.

1.2 Unitary invariant matrix ensembles

There is a natural generalization of Gaussian ensembles called “invariant ensembles”. A certain

class of invariant ensembles, called Hermitian unitary invariant ensembles, play a role in many
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areas of mathematics and physics, such as orthogonal polynomials [2], KdV hierarchy [4],

quantum gravity [5], Witten’s conjecture [13] and many other interesting places. We will now

define the Hermitian (unitary invariant) matrix models that this thesis is based on.

Definition 1.2.1 A Hermitian unitary invariant matrix ensemble consists of:

• A unitary group U acting on a space of Hermitian matricesH .

• A probability measure dµ on H that must be invariant under U and has the form of

e−V(H)dH, whereV(H) is the potential of the model.

The partition function of the model is then defined as

Z =

∫
H

e−V(H)dH. (1.15)

In general, the measure dµ = e−V(H)dH is not normalized, i.e., Z , 1 . However, we can

define the expectation of a real, or complex values function f defined onH with respect to the

ensembleH as:

⟨ f (H)⟩︸ ︷︷ ︸
physics notation

= E ( f (H))︸    ︷︷    ︸
math notation

:=
1
Z

∫
H

f (H) dµ(H). (1.16)

Most of the models we have in this thesis are unitary invariant matrix models, and we will use

the physics notation for expectation value.

Consider the space of N × N Hermitian matrices, denotedHN , and let H ∈ HN . Since H is

a complex matrix, we may write the (i, j)-entry of the matrix H for i ≤ j as:

(H)i j := Hi j =xi j + i yi j 1 ≤ i < j ≤ N

(H)ii := Hii =xii 1 ≤ i ≤ N,

where xi j, yi j, and xii are real. Furthermore, the other entries can be written in terms of these

elements. Therefore, the vector space HN is isomorphic to RN2
as a real subspace of vector

space of complex matrices. Thus,

dH =
N∏

i=1

dxii

∏
1≤i< j≤N

dxi j dyi j (1.17)

forms the Lebesgue measure on HN . The unitary group U(N) acts by conjugation on HN .

Any U(N) invariant probability measure P(H) dH has the property that P(H) must be invariant

under the conjugate action of U(N):

P(UHU∗) = P(H) for U ∈ U(N). (1.18)
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That follows that the probability law P(H) dH, can be written as:

P(H) dH = e−V(H)dH, (1.19)

whereV(H) is a trace polynomial function in H.

1.2.1 Gaussian unitary ensembles (GUE)

A special case of the Hermitian matrix model is the Gaussian unitary ensemble (GUE). It is

described by the partition function:

ZGUE =

∫
HN

e−
N
2 Tr H2

dH. (1.20)

Let Hi j denote the entry of H ∈ HN in row i and column j. We get:

Tr H2 =

N∑
i, j=1

Hi jH ji =

N∑
i=1

H2
ii +

N∑
i, j=1
i, j

Hi jH ji =

N∑
i=1

H2
ii + 2

∑
1≤i< j≤N

Hi jHi j

=

N∑
i=1

H2
ii + 2

∑
1≤i< j≤N

|Hi j|
2 =

N∑
i=1

x2
ii + 2

∑
1≤i< j≤N

(x2
i j + y2

i j). (1.21)

It follows that xi j and yi j for 1 ≤ i < j ≤ N, have the standard normal distribution N(0, 1), and

xii for 1 ≤ i ≤ N, has the normal distribution N(0, 2), and they are all independent. This means

that the Gaussian unitary ensemble is indeed a Gaussian Wigner ensemble. In 1960, Porter and

Rosenzweig proved the following theorem.

Theorem 1.2.1 (Porter and Rosenzweig [8]) The only Wigner ensemble on the space of Her-

mitian matricesHN which is also unitary invariant is the GUE.

1.2.2 Single matrix models

We would like to consider potentials with additional terms to the Gaussian. We can write a

joint probability distribution on the matrix entries:

dµN =
1
ZN

e−N Tr V(H)dH, (1.22)

where V(H) is some polynomial in H and 1
ZN

is the normalization factor that may differ from

model to model. This is what we refer to as a single trace matrix model. By a multi-trace
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The space of matrix ensembles

Unitary 

invariant 

ensembles

Wigner

ensemblesGUE

Figure 1.4: The Venn diagram of the space of matrix ensembles.

matrix model, we mean a matrix ensemble with the joint probability distribution function on

the matrix entries:

dµN =
1
ZN

exp

− g∑
g=0

d∑
i=2

∑
p⊢i

tg
p

(N
t

)2−2g−|p|∏
j∈p

Tr H j

j

 dH.

the second sum is over partitions of i and the product is over addends of a partition. The tp

are coupling constants that allow us to fine tune parameters of these models. For example, let

d = 3 and g = 0, then the potential becomes:

t2
N
t

Tr H2 + t1,1 Tr H Tr H + t3
N
t

Tr H3 + t1,2 Tr H Tr H2 + t1,1,1

(N
t

)−1

Tr H Tr H Tr H.

If one sets all the coupling constants of nontrivial partitions equal to zero, we are left with a

single trace model. When d is even and td > 0, it is not hard to see that the integral:

ZN :=
∫
HN

dµN ,

known as the partition function, is convergent. Such an integral is called a convergent matrix

model. However, regardless of the parity of d, one can define a formal matrix integral. To this

end, let t2 = 1/2, and define the formal sum:

Zformal :=
g∑

g=0

∞′∑
ng

p=0
p⊢i

2≤i≤d

∫
HN


g∏

g=0

d′∏
2≤i≤d

p⊢i

(tg
p)ng

p

ng
p!

∏
j∈p

Tr H j

j


ng

p

 dµGUE
N ,
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Informally one can think of this as Taylor expanding each exponential term of the integral

and then swapping the order of integration and summation. What we are left with is a formal

summation of Gaussian integrals.

Interestingly enough when physicists first worked with matrix integrals they did not even

distinguish between convergent and formal models. This is because it is very often the case

that the moments and cumulants of a formal matrix model and its convergent counterpart (if

it exists) satisfy the same set of recursive relations, which under certain circumstances can be

shown to have a unique solution. For more details on the relationship between formal and

convergent matrix models see [3]. The simplest cases are single trace models with probability

law:

P(H) =
1
Z

e−N TrV(H), (1.23)

whereV(H) is a polynomial potential,

V(x) =
t2

2
x2 +

t3

3
x3 + · · · +

tn

n
xn. (1.24)

and the partition function of the model is:

Z =

∫
HN

e−N TrV(H)dH =
∫
HN

e−N
∑n

k=2
tk
k Tr(Hk)dH. (1.25)

1.2.3 Joint distribution of eigenvalues

A Hermitian matrix H has real eigenvalues, and can be diagonalized by a unitary transforma-

tion U ∈ U(N).

H = UΛU−1 with Λ = diag(λ1, · · · , λN). (1.26)

The diagonalization (1.26) of H ∈ HN is not unique. In fact, H can be also diagonolized by

U′, where U′ is U multiply by any elements of the following sets.

• Set of diagonal unitary matrices U(1)N ⊂ U(N).

• Set of permutation matrices GN ⊂ U(N).

Therefore, one can show:

HN ≃

U(N)
U(1)N × R

N

GN
. (1.27)

Using the diagonalization (1.26), the Lebesgue measure dH can be written in terms of the

measure on Λ and the Haar measure on U(N). Hence,

dH = |∆(Λ)|2 dΛ dUHaar, (1.28)
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where:

dΛ =
N∏

i=1

dλi (1.29)

is the Lebesgue measure on RN , and the Jacobian is the square of the Vandermonde determi-

nant,

|∆(Λ)|2 =
∏

1≤i< j≤N

(λi − λ j)2. (1.30)

The partition function of the model (1.25) then becomes:

Z = CN

∫
RN
|∆(Λ)|2e−NV(Λ)dΛ. (1.31)

This is commonly referred to as the Weyl integration formula [1]. Here, CN is a constant and

can be calculated using Selberg–Mehta integral [7] or using orthogonal polynomials, and it

turns out that the prefactor is:

CN =
π

N(N−1)
2∏N

k=1 k!
. (1.32)
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Chapter 2

From Noncommutative Geometry to
Random Matrix Theory

2.1 Introduction

In this paper we would like to give an overview of some of the recent developments on the inter-

section of noncommutative geometry, random matrix theory, and Euclidean quantum gravity.

The existence of the Planck length puts restrictions on the nature of a theory of spacetime

suitable for a quantum theory of gravity. In fact, a combination of the Heisenberg uncertainty

principle and Einstein’s general relativity shows that, due to the formation of black holes in

small length scales, spacetime cannot be a smooth manifold. There have been several possibil-

ities suggested for a replacement of classical spacetime. A noncommutative space, in the sense

of spectral triples, is one such proposal [29]. Other possibilities include spin networks [76],

random tensors [48], spin foams [69], and loop quantum gravity [77]. If the spectral triple is

assumed to be finite one can use computer simulations and random matrix theory techniques

to explore these models in detail.

Random matrices first appeared in physics in a series of papers by Wigner in the mid 50’s

[86, 87, 88], where Wigner modeled the Hamiltonians of heavy nuclei by large random Hermi-

tian or symmetric matrices. Since then random matrices have found applications in many other

areas of physics, in particular in models of two dimensional quantum gravity. This was first

seen in the matrix integral used by Kontsevich to prove Witten’s conjecture [89, 58]. Around

the same time it was found that artifacts of two dimensional conformal field theory coupled

with gravity, sometimes called Liouville quantum gravity (LQG), could be obtained from cer-

tain matrix models in the double scaling limit [33, 35, 10]. More recently it was discovered

in [78, 81, 90, 67] that the genus expansion of partition functions in Jackiw–Teitelboim (JT)

13



14 Chapter 2. From Noncommutative Geometry to RandomMatrix Theory

gravity can be computed using random matrix techniques. In particular, a process known as

Topological Recursion, original developed in [38], was applied. In fact Topological Recursion

can be used in all the cases stated above. We will discuss this method in Appendix B.3.

We are specifically interested in toy models of Euclidean quantum gravity where integration

over metrics is replaced by integration over Dirac operators on a fixed finite noncommutative

space, as proposed by Barrett and Glaser [5]. This scenario quickly leads to very interesting

multi-trace multi-matrix models. As a rule such models are hard to analyze using standard

methods. Yet the fact that they are obtained from specific potentials defined on the space of

Dirac operators gives them a special structure and hence the possibility of analytic study.

The partition function of these models is of the form

Z =
∫
D

e−S (D)dD,

where the integration is carried out over the spaceD of Dirac operators. This can be justified by

general principles of noncommutative geometry, starting from the fact that the metric structure

of a smooth spin manifold is encoded in its Dirac operator [25, 28, 30, 66]. In particular Dirac

operators are taken as dynamical variables and play the role of metric fields in gravity.

Such a matrix integral is not necessarily convergent, nor does it require a real valued ac-

tion S . However, they may always be interpreted as formal matrix integrals, which are the

generating functions of certain types of maps [8, 41]. The action functional S is, for models

considered in this survey, alwas chosen in such a way that the partition function Z is absolutely

convergent and finite. For example, we can choose S (D) = Tr( f (D)) for a real polynomial f

of even degree with a positive leading coefficient. For more details on formal and convergent

matrix models see [37, 34].

There are several benefits Dirac ensembles have over the usual random matrix ensembles.

A random matrix model can be interpreted as a zero-dimensional quantum field theory or, if the

model is formal, it may be viewed as a discretized path integral from string theory, where maps

act as discrete surfaces. A Dirac ensemble maintains these interpretations while also being

formalized as a computable noncommutative path integral over metrics, represented as Dirac

operators, which is a key feature of a theory of quantum gravity. Additionally Dirac ensembles

have an interpretation as a random noncommutative space. The probability distribution on

Dirac operators corresponds to a probability distribution on noncommutative geometries. This

idea is first mentioned in [5] and explored in detail in [6], where geometric quantities are

determined using the spectrum.

It is worth noting that the connections between matrix integrals, noncommutative geometry,

and physics do not start with Dirac ensembles. In [49] path integrals over finite spectral triples

are also studied. Additionally the Kontsevich model and some of its generalizations appear in
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noncommutative quantum field theory [80, 17, 18, 53]. In particular, it is conjectured that a

quartic version of the Kontsevich model obeys a generalized version of Topological Recursion

known as Blobbed Topological Recursion [14, 15]. For a review of these developments see

[19].

For Dirac ensembles a connection was recently established with LQG [52]. The authors

hope that one day a connection to JT gravity will also be established using similar methods.

We will discuss this development and the relevant background.

This paper is organized as follows. In Section 1 we define Dirac ensembles, give examples

of how they can be studied and how they give rise to interesting theories, such as Yang-Mills-

Higgs fuzzy spaces. In Section 2 we review results on the spectral distributions and phase

transitions in Dirac ensembles. In Section 3 we recall the bootstrap method as applied to

Dirac ensembles. In Section 4 we formulate some natural open problems and directions for

further study. Finally, in the Appendices we recall some aspects of random matrix theory, the

Schwinger-Dyson equations and Topological Recursion.

Acknowledgments: We would like to deeply thank the referees whose careful reading of

the text and many constructive suggestions led to an improved version of this paper.

2.2 Random matrix models from spectral triples

In this section, before we introduce the key concept of a Dirac ensemble, we shall first briefly

discuss the notions of spectral triples and in particular fuzzy spectral triples which are the base

for the Dirac ensembles appearing in this survey. It may be helpful for readers unfamiliar with

random matrix ensembles to review Appendices B.1 and B.2.

2.2.1 Fuzzy spectral triples

Spectral triples were introduced by Connes in [26] (see also [30]) and are defined by data

(A,H ,D) whereA is a unital, involutive, complex, associative algebra acting by bounded op-

erators on a complex Hilbert spaceH , and D is a self-adjoint (in general unbounded) operator

acting onH . This data is further required to satisfy certain finiteness and regularity conditions,

which are automatically satisfied if A andH are finite dimensional. Since this will always be

the case in this survey we omit these conditions here.

A real spectral triple is a spectral triple equipped with two additional operators J and γ

called the charge conjugation and the chirality operator, where J : H → H is an anti-linear

real structure, with the requirement that [a, JbJ−1] = 0 for all a, b ∈ A, and γ : H → H is a

self-adjoint operator with γ2 = 1. The data (A,H ,D, J, γ) is required to satisfy some further
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compatibility conditions between D, J, γ, and the representation of A which we will recall in

Definition 2.2.1.

The overall idea is that a real spectral triple is a noncommutative analogue of a spinc Rie-

mannian manifold and its canonical Dirac operator. In fact, any closed spinc Riemannian man-

ifold M defines a real (commutative) spectral triple as follows. The algebraA = C∞(M) is the

algebra of smooth complex valued functions on M. The Hilbert space consists of square inte-

grable sections of the spinor bundle, with A acting as multiplication operators. The operator

D is the Dirac operator of M acting on the spinors, and J and γ are the standard charge conju-

gation and chirality operators. The reconstruction theorem of Connnes states that, conversely,

a commutative real spectral triple, i.e. a triple where A is commutative, satisfying some nat-

ural conditions is the spectral triple of a spinc Riemannian manifold [28]. The reader can find

further details and many interesting commutative and non-commutative examples of spectral

triples in the book of Connes and Marcolli [30], as well as their applications to the standard

model of elementary particles and quantum field theory in general.

A spectral triple is called finite if bothA andH are finite dimensional vector spaces. In this

paper we shall primarily consider a subclass of finite real spectral triples called fuzzy spectral

triples or fuzzy geometries introduced and classified in their present form by Barrett in [4].

These should be thought of as spinc Riemannian manifolds with a finite resolution or Plank

length. It should be noted that important examples of fuzzy spectral triples like the fuzzy

sphere [65, 32, 47, 4, 64] and fuzzy tori [61, 79, 7, 62] were defined and studied for their

own interest before the concept of fuzzy geometry was coined. We should also mention that

finite dimensional real spectral triples have been fully classified by Krajewski in [60]. Further

references include [30, 66, 4, 84].

We will now specialize further to the class of fuzzy spectral triples. Let Cℓp,q, for non-

negative integers p and q, denote the real Clifford algebra associated to the vector space Rn,

n = p + q, and the pseudo-Euclidean metric η of signature (p, q) given by

η(v, v) = v1
2 + · · · + vp

2 − vp+1
2 − · · · − vp+q

2 , v ∈ Rn .

Let Cℓn B Cℓp,q⊗RC denote the complexification of Cℓp,q. Let {ei}
n
i=1 denote the standard basis

of Rn. The chirality element Γ ∈ Cℓn is defined by

Γ = i
1
2 s(s+1) e1e2 · · · en ,

where s ≡ q − p (mod 8) is known as the KO-dimension. We denote by Vp,q the unique (up to

unitary equivalence) hermitian irreducible Cℓp,q -module, where for n = p+ q odd the chirality

element Γ acts trivially on Vp,q . The module Vp,q also comes with a charge conjugation operator

C : Vp,q → Vp,q (see [66, 4] for details).
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Definition 2.2.1 A fuzzy spectral triple of type, or signature, (p, q) is a finite real spectral triple

(A,H ,D, J, γ) where

• A = MN(C) is the algebra of complex N × N matrices,

• H = Vp,q ⊗MN(C) with the inner product

⟨u ⊗ A, v ⊗ B⟩ = ⟨u, v⟩ Tr (AB∗) , u, v ∈ Vp,q , A, B ∈ MN(C),

• The action ofA onH is defined by A · (v ⊗ B) = v ⊗ (AB) ,

• The charge conjugation operator is J(v ⊗ A) = (Cv) ⊗ A∗ ,

• The chirality operator is defined as γ(v ⊗ A) = (Γv) ⊗ A,

• The Dirac operator D satisfies:

a) D∗ = D,

b) Dγ = −(−1)sγD,

c) DJ = ϵ′JD , where ϵ′ = 1 for s = 0, 2, 3, 4, 6, 7 and ϵ′ = −1 for s = 1 or 5,

d) [[D, a], JbJ−1] = 0 for all a, b ∈ A.

The quantity n = p+q is called the dimension of the fuzzy spectral triple, the quantity s = q− p

is the KO-dimension.

The main benefit of considering fuzzy spectral triples is that their Dirac operators can be

expressed in terms of the gamma matrices γi (the image of ei in the Clifford algebra), and

commutators or anti-commutators with Hermitian or skew-Hermitian matrices. More precisely,

Barrett proved in [4] that the Dirac operator of a fuzzy spectral triple is always of the form

D =
∑

γI ⊗ {KI , ·}eI (2.1)

where the sum is over increasingly ordered multi-indices I. If γI is Hermitian, eI = 1 and

{KI , ·}eI = {HI , ·}, where HI is some Hermitian matrix. If γI is skew-Hermitian, eI = −1

and {KI , ·}eI = [LI , ·], where LI is some skew-Hermitian matrix. This allows us to effectively

parametrize the space of Dirac operators by matrices.

One prominent example of a fuzzy spectral triple is the fuzzy sphere [82, 85, 65, 47, 32]. Let

J1, J2, J3 be the standard skew-Hermitian generators of su2 and denote the 2 j + 1-dimensional

irreducible representation of su2 by (π j,V j). An initial definition of a Dirac operator for the

fuzzy sphere is then defined on C2 ⊗ M2 j+1(C) � C2 ⊗ V j ⊗ V∗j by

d = 1 ⊗ 1 + γµ ⊗
[
π j(Jµ), ·

]
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with γµ = iσµ for the Pauli matrices σµ. This definition has two problems, it is of signature

(0, 3) which has KO-dimension 3 rather than the desired 2, and it does not admit a grading [32].

Hence d cannot be the Dirac operator for a fuzzy geometry. Instead we form a Dirac operator

of signature (1, 3), by D = σ1 ⊗ d which admits a grading σ3 ⊗ 1. The real structure is given

by J(v ⊗ a) = σ2v ⊗ a∗.

2.2.2 Dirac ensembles

By a Dirac ensemble we mean a statistical ensemble of fuzzy spectral triples (A,H ,D, J, γ)

where the “Fermion space” (A,H , J, γ), is kept fixed but the Dirac operator D is a random

variable with a given probability density. This a non-commutative analogue to a probability

distribution on the space of metrics on a given manifold, as the Dirac operator encodes the

metric structure while the algebra encodes the topology.

More precisely, let D denote the set of all possible Dirac operators D : H → H such that

the quintuple (A,H ,D, J, γ) satisfies the conditions a), b), c), and d) of definition 2.2.1. Clearly

D ⊂ End(H) is a real subspace, hence it is equipped with an inner product and thus a natural

Lebesgue measure which we denote by dD. Given a choice of action functional S : D → R,

usually a polynomial whose choice is part of the data for a Dirac ensemble, the probability

density onD is defined by
1
Z

e−Tr S (D)dD

where

Z =
∫
D

e−Tr S (D)dD

is the partition function of the model.

For fuzzy spectral triples the space of Dirac operators can be paramatrized by a combination

of (skew)-Hermitian matrices or, by writing the skew-Hermitian matrices as i multiplied by a

Hermitian one, purely by Hermitian matrices using equation (2.1). The probability density, and

thus partition function, may then be written as a matrix integral of the form

Z =
∫
D

e−Tr S (D)dD =
∫
Hm

N

e−S̃ (H1,H2,...,Hm)dH1...dHm, (2.2)

where HN is the space of Hermitian N by N matrices. For a given Dirac ensemble defined

by e−Tr S (D)dD, we refer to the third term in equation (2.2) as the associated random matrix

ensemble. We will see this correspondence in detail in Sections 2.2.3 and 2.2.4.

The matrix ensembles associated to Dirac ensembles are usually both multi-trace or multi-

matrix. Since most of the results in random matrix theory are for single matrix and single trace

models, this hints that the analytic study of Dirac ensembles as matrix integrals is quite difficult

in general.
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2.2.3 One dimensional Dirac ensembles

For fuzzy spectral triples of dimension n = 1 the only possible signatures are (1, 0) and (0, 1).

In both caseH = MN(C) and the two possible choices for D are as follows [4, 5]:

Type (1, 0) The Dirac operator is the anticommutator with a Hermitian matrix H,

D = {H, ·}.

The trace of powers of D can be computed by

Tr Dℓ =

ℓ∑
k=0

(
ℓ

k

)
Tr Hℓ−k Tr Hk.

Type (0, 1) The Dirac operator is the commutator with a skew-Hermitian matrix L,

D = i[L, ·].

The trace of powers of D can be computed by

Tr Dℓ =

ℓ∑
k=0

(
ℓ

k

)
(−1)k Tr Lℓ−k Tr Lk.

For the action functional we can consider a quartic potential

Z =
∫
D

e−g Tr D2−Tr D4
dD,

where the real parameter g is called a coupling constant. In type (1, 0) the integral is over the

spaceHN of Hermitian N × N matrices and the partition function in terms of H is

Z =
∫
D

e−g Tr D2−Tr D4
dD =

∫
HN

e−2N(g Tr H2+Tr H4)−2g(Tr H)2−8 Tr H Tr H3−6(Tr H2)2
dH.

The substitution of HN for D is justified as the parametrization of Dirac operators by the

Hermitian matrix H is bijective.

In type (0, 1) the integral is over the space LN of skew-Hermitian N × N matrices, and the

partition function is given by

Z =
∫
D

e−g Tr D2−Tr D4
dD =

∫
LN

e−2g(N Tr L2−(Tr L)2)−(2N Tr L4−8 Tr L Tr L3+6(Tr L2)2)dL.

Note that the kernel of the map LN → D consists of the scalar matrices, which has lebesgue

measure zero, justifying the substituion. We can write L = iH, for a Hermitian matrix H, to get

Z =
∫
D

e−g Tr D2−Tr D4
dD = i

∫
HN

e2g(N Tr H2−(Tr H)2)+(−2N Tr H4+8 Tr H Tr H3−6(Tr H2)2)dH.
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In [56] it was shown that the two terms (Tr H)2 and (Tr H) Tr H3 contribute nothing in the

large N limit, giving us the same matrix integral as the above quartic type (1, 0) up to a factor

of i. This idea extends to all type (1, 0) and (0, 1) Dirac ensembles with even potentials, that is,

all such ensembles will have identical real eigenvalue density in the large N limit.

If one considers formal Dirac ensembles of types (1, 0) or (0, 1), it can be shown [3] that

their partition functions and moments are the generating functions that count combinatorial

objects know as stuffed maps in the sense of the work Borot and Shadrin in [14, 15]. Similar to

the more common types of maps that arise in Hermitian matrix ensembles, the matrix integrals

that generate stuffed maps obey a generalized form of Topological Recursion, called Blobbed

Topological Recursion. Given the genus zero one-point and two-point generating functions

one can recursively compute all higher order corrections. In particular, this (blobbed) topolog-

ical recursion applies to (1, 0) or (0, 1) Dirac ensembles with multi-tracial potentials and was

studied in [3].

2.2.4 Two dimensional Dirac ensembles

For two dimensional fuzzy geometries there are three options. In this case the Hilbert space

H = C2 ⊗ MN(C), where for p + q = 2, C2 � Vp,q is the space of spinors. The structure of the

Dirac operator depends on the type as follows:

Type (2, 0) Let

γ1 =

1 0

0 −1

 , γ2 =

0 1

1 0

 .
Then,

D = γ1 ⊗ {H1, ·} + γ
2 ⊗ {H2, ·},

where H1 and H2 are Hermitian matrices.

Type (1, 1) Let

γ1 =

1 0

0 −1

 , γ2 =

 0 1

−1 0

 .
Then,

D = γ1 ⊗ {H, ·} + γ2 ⊗ [L, ·],

where H is Hermitian and L is skew-Hermitian.

Type (0, 2) Let

γ1 =

 i 0

0 −i

 , γ2 =

 0 1

−1 0

 .
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Then,

D = γ1 ⊗ [L1, ·] + γ2 ⊗ [L2, ·],

where L1, L2 are both skew-Hermitian.

The general structure of trace powers of Dirac operators ensembles of signature above 1

becomes quite complicated and has no obvious patterns. They were first studied in [70].

The associated matrix models also rise in complexity, take for example a type (2, 0) quartic

potential

Z =
∫
D

e−
t2
8 Tr D2−

t4
16 Tr D4

dD

=

∫
H2

N

eS̃ (H1,H2)dH1dH2,

where

S̃ (H1,H2) = −t2(N Tr H2
1 + N Tr H2

2) − t4

(
1
4

N Tr H4
1 +

1
4

N Tr H4
2 + N Tr H2

1 H2
2

−
1
2

N Tr H1H2H1H2 +
3
4

(Tr H2
1)2 +

3
4

(Tr H2
2)2 +

1
2

Tr H2
1 Tr H2

2

) (2.3)

are the contributing terms in the large N limit. This ensemble is a bi-tracial two-matrix model.

There are no known applicable analytic techniques from random matrix theory.

Note that similarly to the type (0, 1) geometry, Dirac ensembles with skew-Hermitian ma-

trices can always be converted to ensembles of Hermitian matrices. So, in particular, studying

models from the above geometries amounts to solving Hermitian two-matrix models.

2.2.5 Yang-Mills-Higgs Dirac ensembles

Dirac ensembles as defined so far describe only the metric structure of a fuzzy space. The space

Vp,q plays the role of a spinor space and MN(C) plays the role of L2-functions on the manifold

so that together they make a (trivial) spinor bundle. In order to include a gauge sector we

can consider Yang-Mills-Higgs fuzzy spaces [72]. This approach is based on gauge theory on

almost commutative manifolds [22, 23] (see also chapter 8 of [84]), and consists of introducing

a finite spectral triple playing the role of an additional (trivial) vector bundle which will carry

an analogue of a connection.

Concretely, let M f = (MN(C),HN ,D f , J, γ) be a fuzzy spectral triple in the sense of Def-

inition 2.2.1 and let F = (AF ,HF ,DF , JF , γF) be a finite spectral triple. This second spectral

triple will be referred to as the gauge or finite spectral triple. IfAF = Mn(C) andHF = Mn(C)
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the gauge triple is referred to as a Yang-Mills triple. The Gauge-Higgs fuzzy space, or Yang-

Mills-Higgs fuzzy space if the gauge triple is of Yang-Mills type, is then the product spectral

triple M f × F given by(
MN(C) ⊗AF ,HN ⊗HF ,D f ⊗ 1 + γ ⊗ DF , J ⊗ JF , γ ⊗ γF

)
.

In this picture DF is usually considered fixed and controls physical aspects of the gauge fields,

while D f will vary and describe the metric structure of the fuzzy space M f . The smooth limit

of the fuzzy Yang-Mills-Higgs triple is given by N → ∞, while the size of the gauge sector n

remains fixed. As in Equation 2.1 we can write D f =
∑
γI ⊗ {KI , ·}eI , the amplification D f ⊗ 1

can then be written as
∑
γI ⊗ {KI ⊗ 1n, ·}eI acting on Vp,q ⊗ MN(C) ⊗ Mn(C).

The gauge theory enters this framework in the guise of inner fluctuations. These inner

fluctuations [27] (see also chapter 6 of [84]) arise from Morita self-equivalences and are

parametrised by the self-adjoint Connes one-forms, for a spectral triple (A,H ,D, J, γ) these

one-forms are given by

Ω1
D(A) =

{∑
ai[D, bi]

∣∣∣∣ ai, bi ∈ A
}
⊂ End(H)

where the sum is finite. For a self-adjoint ω ∈ Ω1
D(A), the fluctuated Dirac operator is given

by Dω = D + ω + JωJ−1.

For the fuzzy Yang-Mills-Higgs triple we can split the fluctuations into a fuzzy and a finite

part, by a[D, b] = a[D f ⊗ 1, b] + a[γ ⊗ DF , b] for a, b ∈ MN(C) ⊗ Mn(C). The fuzzy part

of this, a[D f ⊗ 1, b], can be parametrized by Ω1
D f

(MN(C)) ⊗ Mn(C), while the finite part can,

independently, be parametrized by MN(C) ⊗ Ω1
DF

(Mn(C)). The effect of the fuzzy part of the

fluctuation, for s , 1, 5, on D f ⊗1 is to replace KI ⊗1n by KI ⊗1n+TI , with TI ∈ Ω
1
KI

(MN(C))⊗

Mn(C) of the appropriate (skew-)adjointness. The finite part of the fluctuation does not affect

the fuzzy section, since it carries the action of γ on the Vp,q factor ofHN . Instead, the finite part

of the fluctuation together with DF itself is gathered into one term Φ = 1N ⊗DF + {ϕ, ·}ϵ′′ where

ϵ′′ depends on s and ϕ ∈ MN(C) ⊗Ω1
DF

(Mn(C)). Φ is suggestively called the Higgs potential.

To motivate the term Yang-Mills-Higgs spectral triple we will specialize to the 4-dimensional

Riemannian case which has signature (p, q) = (0, 4). In this case the fuzzy Dirac operator can

be written

D f =
∑
µ

γµ ⊗ [Lµ, ·] + γµ̂ ⊗ {Xµ, ·}.

Here γµ̂ is the increasingly ordered product of the gamma matrices for V0,4 except γµ. The

(0, 4) fuzzy Dirac operator shows remarkable similarity to the Dirac operator on a commuta-

tive manifold, with [Lµ, ·] taking the place of ∂µ and {Xµ, ·} taking the place of, appropriately

symmetrized, Christoffel symbols. This leads us to say the fuzzy space is flat if all Xµ vanish.
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The term Yang-Mills is further motivated by considering the gauge group [27, 30, 84]

associated to a spectral triple (A,H,D, J, γ),

G(A, J) = {uJuJ−1 | u ∈ U(A)}.

For a Yang-Mills fuzzy geometry, this gauge group is PU(N) × PU(n) acting in the adjoint

representations on MN(C) ⊗ Mn(C). The PU(N) factor corresponds to symmetries of the base

fuzzy geometry, while PU(n) acts on the finite “vector bundle” part as a Yang-Mills gauge

group.

When basing a Yang-Mills-Higgs fuzzy geometry on such a flat (0, 4) fuzzy space the self-

adjoint one-forms, and thus the inner fluctuations, can be parametrized as
∑
µ γ

µ ⊗ Aµ with

Aµ ∈ Ω
1
Lµ(MN(C))⊗Mn(C) skew-adjoint. The effect of such a fluctuation on D f is by replacing

Lµ by Lµ + Aµ, making the action of inner fluctuations analogous to having a connection on

the “vectorbundle” F. In this setting we define the field strength of a Dirac operator by Fµν =[
[Lµ + Aµ, ·], [Lν + Aν, ·]

]
, mimicking the regular commutative definition of the field strength of

a connection.

Considering the quartic potential S (D) = g Tr D2 + Tr D4 we have [72], for a fluctuated

(0, 4) Dirac operator,

S (D) = −2 Tr FµνFµν + 4 Tr(gθ + θ2) + 4 Tr(gΦ2 + Φ4) − 8 Tr([Lµ + Aµ,Φ][Lµ + Aµ,Φ])

where θ = ηµν[Lµ + Aµ, ·] ◦ [Lν + Aν, ·]. Here θ is analogous to a Laplace operator and the trace

is taken as operator on MN(C) ⊗ Mn(C). Each of these four tracial terms has an interpretation

in terms of commutative Yang-Mills-Higgs theory:

• Tr FµνFµν is analogous to the classical Yang-Mills action,

• Tr gθ+ θ2 contains geometric information similar to a Laplace operator through a type of

heat-kernel expansion [6],

• Tr gΦ2 + Φ4 represents, for appropriate values of g, the Higgs potential,

• Tr([Lµ + Aµ,Φ][Lµ + Aµ,Φ]) is the coupling between the Yang-Mills connection and the

Higgs field.

Hence we can include a Yang-Mills-Higgs action in a Dirac ensemble by taking the product

with a finite spectral triple and considering inner fluctuations. The resulting Dirac ensemble

has a space of Dirac operators D parametrized by, in the flat signature (0, 4) case, the four

skew-adjoint matrices Lµ as well as the inner fluctuations Aµ ∈ Ω
1
Lµ(MN(C)) and ϕ ∈ MN(C) ⊗

Ω1
DF

(Mn(C)). The physical DF is considered fixed. It should be noted that the Aµ are not
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necessarily independent, as they originate from a single one-form ω ∈ Ω1
D f

(MN(C)) further

complicating any analytical investigation of these models.

Investigating Yang-Mills-Higgs ensembles numerically or for a lower dimensional fuzzy

spectral triple would be very interesting. Another open direction is the addition of a fermionic

term to the action in the Dirac ensemble of the form ⟨Dψ, ψ⟩ where ψ ∈ HN ⊗HF plays the role

of a fermion field and would be assigned a probability distribution together with the metric and

gauge fields represented by D and its inner fluctuations.

2.3 Spectral statistics and phase transitions

In this section we discuss spectral statistics and phase transitions that have been studied for

Dirac ensembles so far. In Section 2.1 we discuss general properties of the spectra of random

Dirac ensembles. Next, in Section 2.2 we look at the phase transition in the large N limit of

spectral density functions of Dirac ensembles and present a new result. In Section 2.3 we dis-

cuss the manifold-like behavior of spectra of Dirac ensembles at various phase transition points

and attempts to make this idea more concrete. Finally, in Section 2.4 we show that in certain

Dirac ensembles one can recover the critical exponents and partition functions of minimal mod-

els from Liouville quantum gravity. We recommend that readers unfamiliar with the spectral

density functions and genus expansions of random matrix ensembles review Appendices B.1

and B.2.

2.3.1 Spectral statistics of Dirac ensembles

The Dirac ensembles of type (1, 0) and (0, 1) discussed in Sections 2.2.3 can be analyzed as

bi-tracial matrix models using various standard random matrix techniques that are applicable

to that setting. Consider a type (1, 0) or (0, 1) Dirac ensemble with a partition function of the

form

Z =
∫
D

e−
t2
4 Tr D2+

∑d
j=3

t2 j
4 j Tr D2 j

dD.

The spectra of H and L appearing in the associated matrix model can be computed, as we will

see in subsequent sections. However, we are not just interested in the spectrum of H and L but

also in the spectrum of D. It was first conjectured in [4] and later proven in [57] that if the

limiting eigenvalue distribution, ρ(x), of the associated random matrix ensemble exists then

the limiting eigenvalue density function of D, ρD(x), is given by the integral convolution of the

random matrix spectral density function with itself i.e.

ρD(x) =
∫
R

ρ(x − t)ρ(t)dt.
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The relationship between spectral densities is far from clear for higher signature Dirac

ensembles, even for the two dimensional ones from Section 2.2.4. Moreover, the associated

matrix models of these Dirac ensembles are multi-trace and multi-matrix, of which little is

known [37].

In the large N limit, there is a universality to the spectral density function of Dirac ensem-

bles for any signature when the potential is Gaussian. In [4] a Gaussian potential

S (D) = Tr D2,

is investigated. When looking at the (1, 0) Dirac ensemble, the associated matrix potential

becomes 2N Tr H2+2 Tr H Tr H, where H is a Hermitian matrix. For the (0, 1) Dirac ensemble,

this potential becomes 2N Tr L2 + 2 Tr L Tr L where L is skew-Hermitian. For these ensembles

the numerics show that the distribution of the eigenvalues of H and L resembles Wigner’s

semicircular distribution as N increases. This suggests that the multi-trace term has little to no

impact as N gets larger. Dirac ensembles of signatures (2, 0), (1, 1) and (0, 2) were also studied

for small matrix size, where some of the above-mentioned results also apply. Furthermore, the

eigenvalue density function of the Dirac operator was conjectured to be the integral convolution

of Wigner’s semicircular law with itself.

This was then proven in [57]. It was shown that in the large N limit the eigenvalue density

function for D is universal, in the sense that for any signature (p, q) the limit is the same given

the right scaling. Consider the partition function of the form

Z =
∫
D

e−
1
2k Tr D2

dD

where k is the dimension of Vp,q. Then the density function of D, for any signature (p, q), is in

the large N limit given by

ρD(x) =
∫
R

ρW(x − t)ρW(t)dt,

where

ρW(x) =
1

2π

√
4 − x2

[−2,2]

is Wigner’s Semicircular Distribution [57].
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Figure 2.1: The Wigner semicircular distribution in blue compared to the Wigner convolution

distribution in green.

2.3.2 Spectral phase transitions

In this subsection we will discuss results related to spectral phase transitions, which we define

as a configuration of coupling constants where the number of connected components of the

support of the large N eigenvalue density function of the random matrix ensemble changes.

Like their random matrix model cousins, Dirac ensembles also exhibit phase transitions. This

was first investigated numerically using Markov chain Monte Carlo methods in [5] and then

in [44]. It was later proven rigorously in [56] that spectral phase transitions indeed occur in

quartic type (1, 0) and (0, 1) Dirac ensembles. In this subsection we recall this quartic phase

transition from [56] and we also present a new result proving a phase transition for a sextic

Dirac ensemble. It is an interesting problem to analytically investigate phase transitions for

Dirac ensembles of any type (p, q) and a potential of any order. We believe that these phase

transitions do indeed exist, but we don’t have a proof at hand. The existing results use what is

known as the Coulomb gas method, the rigorous foundations of which are fully developed in

[34]. We give a brief summary of this technique in Appendix B.1.

For Gaussian potentials, unsurprisingly, no phase transition exists. This motivated the study

of a Landau-Ginzburg type quartic potential as studied in [5]. This potential is of the form

S (D) = g2 Tr D2 + Tr D4,

and was studied numerically for different small signatures (p, q) for a matrix size of ten in [5].
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It was discovered that, for many signatures, the spectrum of the Dirac operator displayed a

single-cut distribution for certain values of g2 which transitioned into a double-cut regime for

different g2. This suggests the existence of a spectral phase transition. Furthermore, it was

noted that near the phase transition the spectrum of D asymptotically behaves like the Dirac

operator on a two dimensional manifold i.e. ρD(λ) ∼ CD|λ|, as λ goes to infinity, where CD is a

constant.

Computing these eigenvalue density functions explicitly even in the large N limit is very

difficult. Dirac ensembles of dimension higher than one with a potential more complicated than

the Gaussian are multi-trace multi-matrix models about which little is known. Usual methods

such as orthogonal polynomials cannot be applied because of the multi-trace terms, Weyl’s

integration formula cannot be applied because of the lack of unitary invariance, and the loop

equations are too complicated for Topological Recursion. Furthermore, it is not of the form of

a Harish-Chandra integral, and is too complicated for a characteristic expansion. For a review

of these techniques see [40].

However, for Dirac ensembles of signature (1, 0) or (0, 1), several options are available.

The multi-trace terms still prevents the use of orthogonal polynomials, but the Coulomb gas

technique can be applied. This was done in [56] where the type (1, 0) quartic model

Z =
∫
D

e−g Tr D2−Tr D4
dD =

∫
HN

e−2N(g Tr H2+Tr H4)−2g(Tr H)2−8 Tr H Tr H3−6(Tr H2)2
dH

was studied. We will recall those results here as an example. In our paper [56], the phase

transition location is off due to a missing scalar factor. In this paper we will give the new

correct value that we have been able to derive analytically and have also verified with our own

Monte Carlo simulations. Furthermore, the relationship between the coupling constant and the

support is given by slightly different equations in both the single cut and double cut solutions.

It was shown in [56] that the quartic (1, 0) and (0, 1) ensembles have the same behavior in the

large N limit. Using the Coulomb gas method as explained in Appendix B.1, we obtained the

following explicit formula for the limiting eigenvalue density function of H: for g > −4
√

2,

ρ(x) =
1
π

(−4γ2 +
1

2γ2 + 4x2)
√

4γ2 − x2
[−2γ,2γ],

where the support [−2γ, 2γ] can be found as a function of g as the root of

192γ8 + 48γ4 + 4gγ2 − 1 = 0.

When g = −4
√

2 the spectral phase transition occurs. For g < −4
√

2 the new limiting

eigenvalue density function was found to be

ρ(x) =
2
π
|x|

√
(x2 − a2)(b2 − x2)[−a,−b]∪[b,a],
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Figure 2.2: The eigenvalue density functions for type (1, 0) and (0, 1) quartic matrix models in

the large N limit. The colors in the above figures correspond to different values of g as follows:

blue is g = −3, red is g = −4, green is g = −5, yellow is g = −4
√

2, navy is g = −6, gray is

g = −7, and orange is g = −8.

where the support [−a,−b] ∪ [b, a] can be found in terms of g via the equations

a2 = −
1
8

g +
1
√

2
,

and

b2 = −
1
8

g −
1
√

2
.

These results are plotted in Figure 2.2.

As discussed in the previous section, the eigenvalue density function of the Dirac operator

in the large N limit is the convolution of the density functions of H. See Figure 2.3.

We note that the techniques presented in [56] in fact apply to any even potential Dirac

ensembles of signature (1, 0) or (0, 1) and any convergent bi-tracial single matrix model. For

example, let us consider the following type (1, 0) sextic model

Z =
∫
D

e−
g
2 Tr D2− 1

6 Tr D6
dD.

Once again employing the Coulomb gas method results in the following explicit formula for

the limiting eigenvalue density function:

ρ(x) =
−40 γ12 + 20 γ10x2 + 10 γ8x4 + 50 γ10 − 50 γ8x2 + 24 γ6 − 12 γ4x2 − γ2x4 − 1

20 γ8π − 2 π γ2

√
4 γ2 − x2

[−2γ,2γ]
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Figure 2.3: The eigenvalue density functions of the (1, 0) and (0, 1) quartic Dirac ensembles in

the large N limit. The colors in the above figures correspond to different values of g as follows:

blue is g = −3, red is g = −4, green is g = −5, yellow is g = −4
√

2, navy is g = −6, gray is

g = −7, and cyan is g = −8.

where the support [−2γ, 2γ] can be found as a function of g by (numerically) solving the

equation

1 = 10
γ2

(
60 γ16 − 130 γ14 − 26 γ10 − 22 γ8 + γ6g − 5 γ4 − g/10

)
10 γ6 − 1

.

Alternatively one can use the Lagrange inversion formula to find a perturbative expansion

of γ in terms of g. This model also exhibits at least one spectral phase transition and in general

the plots are very similar to the quartic model. However, it is the belief of the authors that

it might exhibit another phase transition, but further analysis is required. For details of this

analysis, which is identical to the formal case, see the sextic example in [52].

2.3.3 Spectral geometry of fuzzy spaces

In this subsection we shall very briefly give an overview of some of the results obtained in

[6]. A simple, yet interesting, model of a discrete and finite noncommutative spin Riemannian

manifold is a fuzzy spectral triple as we defined in Section 1. Given the important role that

spectral geometry has played in global analysis, geometry, and topology of manifolds, as well

as in noncommutative geometry, it is natural to ask to what extent its ideas can be extended to

fuzzy spectral triples.



30 Chapter 2. From Noncommutative Geometry to RandomMatrix Theory

Figure 2.4: The eigenvalue density functions for type (1, 0) sextic matrix model (left) and for

the corresponding Dirac ensemble (right) in the large N limit. The colors in the above figures

correspond to different values of g as follows: blue is g = −1.5, green is g = −4, red is

g = −6.5, orange is g = −9, and yellow is g = −11.5.

However, many of the results from spectral geometry are based on asymptotics of the spec-

trum (λn)n∈N of the Dirac operator D (ordered such that |λn+1| ≥ |λn|). Since the spectrum of the

Dirac operator of a finite spectral triple is finite there is an obvious problem in directly gener-

alizing such asymptotic results from spectral geometry to fuzzy spaces. For example, the first

major result of spectral geometry is the celebrated Weyl’s asymptotic law, according to which

the volume and dimension of a compact d-dimensional Riemanian manifold can be recovered

from its Dirac spectrum:

Vol(M) = lim
n→∞

n (4π)d/2 Γ(1 + d/2)
k |λn|

d ,

where k is the rank of the spinor bundle of M and Γ(s) =
∫ ∞

0
e−t ts

t dt is the Gamma function.

In [6] the authors define, and numerically investigate, quantities computed from the spec-

trum that recover the usual asymptotic properties of dimension and volume for infinite spectra,

but are also applicable to finite spectra. One such quantity is the spectral variance which is

defined as

vs(t) = 2t2

∑i λ
4
i e−λ

2
i t∑

i e−λ2
i t
−

∑i λ
2
i e−λ

2
i t∑

i e−λ2
i t

2 .
If computed for the spectrum of a manifold one obtains limt→0 vs(t) = dim(M), which follows

from Weyl’s law. This quantity is also sensible for finite spectra, and gives the expected result of

two for the fuzzy sphere and tori for appropriate values of t [6]. The presence of the parameter

t should be thought of as an energy scale, with t small corresponding to high energies and small
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wavelengths and t large corresponding to low energies and large wavelengths. For fuzzy spaces

limt→0 vs(t) = 0, as fuzzy spaces have a minimum wavelength, or Planck length, built in.

Another way to access asymptotic information in the spectrum (λn) is by the spectral zeta

function

ζD(s) =
∞∑

n=1

1
λ2s

n
,

which turns out to be useful even in the finite case. It is well-known that Weyl’s Law is equiv-

alent to the fact that the volume of M can be expressed in terms of the residue of the spectral

zeta function ζD(s) at its top pole s = d/2:

Vol(M) =
(4π)d/2

k
Ress=d/2(ζD(s)Γ(s)).

One can use the spectral zeta function to define a notion of distance between fuzzy spectral

triples and even between fuzzy spectral triples and manifolds. One possibility for a notion of

distance between metric spaces is the Gromov-Hausdorff distance [75], but in [31] the authors

define a distance notion more useful in this situation, based on the spectra of Riemannian

manifolds. Let D1 and D2 be two Dirac operators with ζD1(s) and ζD2(s) their spectral zeta

functions. Then the distance between geometries is defined to be

σ(D1,D2) = sup
γ≤s≤γ+1

∣∣∣∣∣∣log
(
ζD1(s)
ζD2(s)

)∣∣∣∣∣∣ (2.4)

for some interval [γ, γ + 1] where all poles lie below γ. For Dirac operators on compact spin

manifolds it was found in [31] that this is indeed a metric, in particular σ(D1,D2) = 0 if and

only if the spectra are the same.

In [6] this idea is adapted to define a distance between (random) fuzzy spectral triples. For

example for each fuzzy sphere with matrix size N we have a Dirac operator of size N. This

spectrum is the same as the Dirac operator on the spin bundle of the 2-sphere tensored with C2

but with a cut-off. As N goes to infinity the spectral zeta function of the fuzzy sphere converges

to the spectral zeta function of the sphere uniformly on the interval [γ, γ + 1] for any γ > 1.

Thus, σ(DN ,DS 2) goes to zero as N goes to infinity. Note that when considering truncated

spectra, pointwise convergence of zeta functions is not a sufficient condition for σ(D1,D2) = 0,

uniform convergence is needed. For more on fuzzy spaces and truncated spectral triples see

[45, 46].

One of the most remarkable results in [6] is that, when using the spectral distance to com-

pare random spectra sampled from each of the quartic Dirac ensembles of types (1, 1), (2, 0),

and (1, 3) to the fuzzy sphere for various values of the coupling constant, near the spectral phase

transition the spectral distance σ tends to zero. See Figure 2.5. The authors of [6] found further
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numerical evidence that, near spectral phase transitions, Dirac ensembles display manifold-like

behavior, but we are still far from proving such a conjecture rigorously.

Figure 2.5: The spectral distance metric (2.4) is plotted between various type (p, q) quartic

Dirac ensembles of various matrix sizes and the fuzzy sphere [6]. Note that the spectral distance

goes to zero near where phase transitions (denoted by a vertical line) were found to exist in

[5, 44].

2.3.4 Liouville quantum gravity

It has long been known that random matrix theory has connections to two dimensional quantum

gravity. These range from the famous Kontsevich model [89, 58], to the newly discovered

connections to Jackiw-Teitelboim (JT) gravity [78, 81, 90, 67]. Of particular interest however,

is the connection to conformal field theory. Heuristically, physicists knew in the 80’s and 90’s

from the asymptotics of convergent matrix integrals (found using orthogonal polynomials) that

certain matrix ensembles have critical exponents corresponding to models in conformal field

theories coupled to gravity [21, 36].

The idea is that matrix models count maps which can be thought of as discretized Rie-

mann surfaces. If the coupling constants of the models are tweaked such that the number of

polygons that form these maps goes to infinity, one would in essence be counting Riemann

surfaces, which are also counted in conformal field theories in two dimensions. Later in [10],

this idea was made precise with formal matrix models. These formal models often have the
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same asymptotics as their convergent matrix model counterparts (if such a counterpart exists).

We will briefly describe the idea behind these critical points here.

Suppose a formal random matrix model’s partition function Z has the following genus

expansion

log Z =
∑
g≥0

N2−2g Fg,

where the Fg are the generating functions of certain types of maps (specified by the model)

with no boundaries [41], see Appendix B.2 for details. Random matrix models often have crit-

ical points where the coupling constants of the model are such that the number of polygons

in the maps goes to infinity. In such cases it is proven that the Fg have asymptotic expan-

sions around these points, which have critical exponents corresponding to a minimal model in

conformal field theory [35, 10]. Additionally, these matrix model asymptotics satisfy a partial

differential equation that is also satisfied by the corresponding minimal model. For example,

the quartic Hermitian matrix model corresponds to the (3, 2) minimal model, also referred to

as pure gravity, and its partition function satisfies Painlevé I.

How this relates to Dirac ensembles is not as obvious at a first glance. However, for several

models examined in [52] we prove that single Hermitian matrix models are hidden in Dirac

ensembles. In particular the cubic, quartic, and sextic Dirac ensembles of type (1, 0) contain

the cubic, quartic, and sextic Hermitian matrix models, respectively, in their phase space. This

is nontrivial because in a Dirac ensemble coupling constants are not attached to specific bi-

tracial terms. Instead many single and bi-tracial terms share the same coupling constants, so

one cannot easily turn off all bi-tracial terms by setting certain coupling constants to zero.

Consider for example the quartic Dirac ensemble from Section 2.2.3. As alluded to, one

can fine-tune its coupling constants such that we recover a quartic Hermitian matrix model in

the large N limit. For a full proof see [52].

The single trace quartic model ∫
HN

e−
N
2 Tr H2−

t4
4 N Tr H4

dH (2.5)

has a critical point at t4 = −1/12 which we will refer to as tc [41]. The singular parts of the

Fg are algebraic for all genus g, except for g = 1, in which case it is logarithmic. In particular

they are

sing(Fg) = Cg (t4 − tc)5(1−g)/2

and

sing(F1) = C1 log(t4 − tc)
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for g , 1. These expansions are often referred to as a “double scaling limit”. We may define

the generating series

u(y) =
∞∑

g=0

Cgy5(1−g)/2.

Then u′′(y) satisfies the Painlevé I equation, i.e.

y = (u′′(y))2 −
1
3

u(4)(y).

We know that the critical point of the quartic Hermitian model is t4 = −1/12 [41], and that the

quartic Dirac ensemble

Z =
∫
D

e−
t2
4 Tr D2−

t4
8 Tr D4

dD (2.6)

contains it i.e. for a certain choice of coupling constants you recover the quartic Hermitian

model. In particular, this happens when t2 = 4/3 and t4 = −1/12 [52]. Figure 2.6 allows one

to visualize several phenomena of the model in a phase diagram.

Figure 2.6: The phase diagram of the quartic Dirac ensemble [52]. The y-axis is t2 and the

x-axis is t4.

In this diagram we have the curve where a spectral phase transition occurs, this is a gen-

eralization of the phenomenon in Section 2.3.2 with two coupling constants. The equation of

this curve is

t2 = −8
√

t4.

Below the critical (green) curve the spectrum of the Dirac ensemble is in a 3-cut phase and

above it 1-cut, as seen in Section 2.3.2.
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The diagram also shows for what values of (t2, t4) the Dirac ensemble in equation (2.6)

has the quartic Hermitian matrix model, equation (2.5), as the associated matrix model if the

coupling constants lie on the blue curve with equation:

t2 = −
(1 + 12t4)3/2 − 4 − 144t4 + (36t4 + 3)

√
1 + 12t4

72t4
.

These equations are derived in [52] by solving the loop equations. Note that these curves do

not intersect because the quartic Hermitian matrix model as stated in equation (2.5) does not

have a spectral phase transition. The reason is that there is no coupling constant in front the

Tr H2, which is required to reach the phase transition.

Hermitian multi-matrix models are also associated with a much wider class of minimal

models than single matrix Hermitian matrix models [33, 35]. Thus it would be interesting

to investigate numerically if higher signature Dirac ensembles are also associated to minimal

models. The question also remains unproven as to which (1, 0) or (0, 1) Dirac ensembles cor-

respond to minimal models. Additionally, there might also be other critical points in Dirac

ensembles besides those mentioned or other interesting critical phenomena.

The authors would like to emphasize that none of the connections between conformal field

theory and random matrix theory mentioned here are new. The point is rather to lend credit to

a noncommutative theory of quantum gravity where integrating over finite Dirac operators in

place of metrics can be used to recover other toy models of quantum gravity.

2.4 Bootstrapping the loop equations

Bootstrapping was introduced in elementary particle physics as part of the S-matrix program

by Geoffrey Chew in the early 1960’s. The idea was to use any consistency conditions avail-

able to compute various correlation functions of interest and especially to formulate a theory

of strong interactions. The mantra was “particles pull themselves up by their own bootstraps”.

But, after an initial success, the idea stalled in producing viable new results and predictions.

Meanwhile a competing theory, the standard model of elementary particles, was created based

on the theory of quarks and gauge theory, which could indeed successfully account for exper-

imental data. As a result, bootstrap methods were nearly forgotten for a long time. In recent

years, however, there has been a revival of the bootstrap idea mostly thanks to the success of

the conformal bootstrap program by Rattazzi, Rychkov, and collaborators in 2008 in under-

standing phase transition and critical phenomena in dimensions bigger than two [73]. In two

dimensions, the conformal bootstrap was demonstrated to work in 1983 by Belavin, Polyakov

and Zamolodchikov [8].
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In the context of random matrix theory and related fields, bootstrapping recently emerged

in several works, first by Anderson and Kruczenski in the context of lattice gauge theory [2].

In a random matrix setting bootstrapping was first used by Lin [63], then in our paper [51],

and also by Kazakov and Zheng [55]. Bootstrapping has also recently been applied to matrix

quantum mechanics as well [50, 11, 9]. In the following section we present a new example

that deals with a cubic Dirac ensemble as well as recalling our results from [51]. To readers

unfamiliar the with Schwinger-Dyson equations in the context of random matrix theory we

recommend reviewing Appendix B.3.

In another interesting new development, bootstrapping is now used in computing the spec-

trum of Einstein and hyperbolic manifolds in [12, 13]. The eigenvalues of the Laplace-Beltrami

operator, as well as the integrals of their eigenfunctions, satisfy certain positivity conditions that

imply bounds on both quantities. One wonders whether an extension of these ideas to some

classes of spectral triples is possible.

2.4.1 The cubic type (1, 0) Dirac ensemble

We will start with a brief overview of how bootstrapping works for Dirac ensembles. The large

N limits of higher moments of random matrix models satisfy an infinite system of nonlinear

equations, which was first derived by Migdal [68]. These so-called loop equations are conse-

quences of Schwinger-Dyson equations and the factorization property of moments at large N

limits. In general the loop equations are not restrictive enough to fully determine the moments.

However, as we shall explain later in this section, one can bring to bear some positivity con-

straints on moments to further restrict the set of possible solutions to the loop equations. The

process of further narrowing the search space by adding certain extra positivity constraints is

called bootstrapping. Further positivity constraints are obtained from the fact that our matrix

models stem from Dirac operators of spectral triples. This extra positivity is quite useful and

is missing in general matrix models. By narrowing down the search space one can sometimes

recover the values of the initial moments. From there the loop equations can be used, in theory,

to find any moment.

We will now give a novel example of the bootstrap method by applying it to a cubic Dirac

ensemble. Using the bootstrap technique we are able to find a relationship between the coupling

constant of the model, the first moment and from there higher moments. Let us consider a type

(1, 0) cubic Dirac ensemble with the partition function

Z =
∫
D

e−
1
4 Tr D2−

g
6 Tr D3

dD.

This integral is obviously not convergent but understood perturbatively, i.e. as a formal matrix
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model. The associated matrix model is a bi-tracial Hermitian single-matrix model with the

potential

S̃ (H) =
1
2

(
N Tr H2 + (Tr H)2

)
+

g
3

(
N Tr H3 + 3 Tr H2 Tr H

)
.

The loop equations of the model are then given by:

ℓ−1∑
k=0

mkmℓ−k−1 = mℓ+1 + m1mℓ + g (mℓ+2 + 2m1mℓ+1 + m2mℓ) for ℓ ∈ N ∪ {0}. (2.7)

In particular we get the following loop equation for ℓ = 0:

g
(
m2 + m2

1

)
+ m1 = 0.

It can be shown that by having the first moment m1, we can recursively calculate higher mo-

ments using the loop equations. We refer to such a situation as the dimension of the search

space being one. If the loop equations required n moments or higher moments to determine all

other (higher) moments, we would say the search space has dimension n.

The existence of an eigenvalue density function ρ(x), which is a probability density func-

tion, gives us constraints on moments in the following way. Take a real polynomial f (x) =∑k
j=1 c jx j. Then by the non-negativity of the integral we have

∫
R

f (x)2ρ(x)dx =
k∑

i, j=1

∫
R

cic jxi+ jρ(x)dx =
k∑

i, j=1

cic jmi+ j ≥ 0,

for all real values of the ci. This shows that the quadratic form
∑k

i, j=1 cic jmi+ j is positive semi-

definite. Since this holds for all k = 1, 2, ... and it can be expressed nicely in terms of the

positive semi-definiteness of the Hankel matrix of moments



m0 m1 m2 m3 · · ·

m1 m2 m3 m4 · · ·

m2 m3 m4 m5 · · ·

m3 m4 m5 m6 · · ·

...
...

...
...

. . .


≥ 0.

As a side remark we should add that Hamburger’s Theorem says that positivity of this matrix

is a necessary and sufficient condition for a sequence of real numbers m0,m1,m2, ... to be the

moments of a probability distribution, see page 145 of [74].
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The positive semi-definiteness of the Hankel matrix tells us, in particular, that every leading

principal minor is greater than or equal to zero. This gives us countably many inequalities, or

constraints, involving the moments. Combining this observation with the fact that in this par-

ticular model every moment can be written in terms of m1, thanks to the structure of the loop

equations (2.7), we obtain an infinite number of nonlinear constraints on m1. Using semidefi-

nite programming to find the region satisfied by these constraints gives us Figure 2.7.

Figure 2.7: The constraints on the relation between g and m1 for the (1,0) cubic model found by

bootstrapping. Each colour corresponds to a different number of constraints derived from pos-

itivity of principal minors. The solution space narrows as the number of constraints increases.

Notice that in this example increasing the number of constraints shows that there exists a non-

linear relationship between g and m1. Additionally the analytic solution from [52] is plotted

for comparison.

It is worth noting that positivity constraints can be applied to both the Hankel matrix of

moments of the matrix ensemble and the Hankel matrix of moments of the Dirac ensemble. As

mentioned earlier the moments of the Dirac operator are defined as

dℓ = lim
N→∞

〈
1

N2 Tr Dℓ

〉
= lim

N→∞

1
N2

1
Z

∫
D

Tr Dℓe−
1
4 Tr D2−

g
6 Tr D3

dD,
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so by the same argument as before we have

1 d1 d2 d3 · · ·

d1 d2 d3 d4 · · ·

d2 d3 d4 d5 · · ·

d3 d4 d5 d6 · · ·

...
...

...
...

. . .


≥ 0.

These additional constraints are a particular advantage that Dirac ensembles have over ordinary

matrix ensembles when bootstrapping.

We emphasize that this model can be solved analytically [52], but is presented here as an

insightful example of the bootstrap technique.

2.4.2 The quartic type (2, 0) Dirac ensemble

Bootstrapping can also be applied successfully to ensembles that are, to the best of our knowl-

edge, unsolvable. To illustrate this let us consider the quartic action for a type (2, 0) ensemble,

which appears in [5, 44, 6],

Z =
∫
D

e−g Tr D2−Tr D4
dD,

where the associated matrix potential is given by equation (2.3). We will summarize the results

of [51] to show the effectiveness of bootstrapping for this model. Note that the action of this

model is symmetric under the transformations

D→ −D,

H1 → −H1,

H2 → −H2,

and

H1 ↔ H2.

This greatly simplifies the loop equations. In particular all the odd moments and odd higher

moments are zero i.e. any moment of a word in H1 and H2 containing either an odd number of

H1 or H2 is zero. After considering these symmetries the following terms of the potential are

the ones that contribute to the loop equations in the large N limit

g(4N Tr H2
1 + 4N Tr H2

2) + 4N Tr H4
1 + 4N Tr H4

2

+ 16N Tr H2
1 H2

2 − 8N Tr H1H2H1H2 + 12(Tr H2
1)2

+ 12(Tr H2
2)2 + 8 Tr H2

1 Tr H2
2 .
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We use the following loop equations for bootstrapping:

ℓ−1∑
k=0

mkmℓ−k−1 = (8g + 64m2)mℓ+1 + 16mℓ+3 − 16mℓ,1,1,1 + 32mℓ+1,2

in the large N limit where we denote mixed moments as

ma,b,c,d = lim
N→∞

1
N
⟨Tr Ha

1 Hb
2 Hc

1Hd
2⟩.

Positivity constraints for mixed moments can be derived but require a slightly more general

setting.

Unlike the approach in [63], we considered the moments of all words. By doing this we

were able to prove in [51] that the search space for this model has dimension one. The results

are displayed in Figure 2.8. One interesting feature is that the relation between m2 and g

appears to be linear for values of g below the phase transition [44]. This is also what was

observed analytically in the type (1, 0) quartic in [56].
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Figure 2.8: The search space region for the (2,0) quartic Dirac ensemble m. Note that near the

phase transition found in [5] the relationship between the coupling constant g and m2 appears

to change from non-linear to linear [51].

By generating all the loop equations using Maple we found the following remarkable for-

mulas for moments in terms of g and the second moment m2:

m4 = −
1
8

gm2 +
1
64
,

m2,2 = −
1
8

gm2 − m2
2 +

1
64
,
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m1,1,1,1 =
gm2

8
+ 2m2

2 −
1

64
,

m6 =
g2m2

64
−

g
512
−

gm2
2

8
+

3 m2

64
−

5 m2
3

4
,

m4,2 =
g2m2

64
+

gm2
2

8
−

g
512
−

m2
3

4
+

m2

64
,

m3,1,1,1 = −
g2m2

64
−

3 gm2
2

8
−

7 m2
3

4
+

g
512
+

m2

64
,

m2,1,2,1 =
g2m2

64
+

3 gm2
2

8
−

g
512
+

11 m2
3

4
−

m2

64
,

m8 = −
gm2

64
+

m2
4

4
+

g2

4096
+

m2
2

256
+

3
4096

−
g3m2

512
+

3 g2m2
2

64
+

gm2
3

2
.

Note that the trace powers and therefore moments of this Dirac ensemble do not have a

clear formula. These trace powers were studied closely in [70]. With the above formulas and

those borrowed from [70] we have

d2 = 8 m2,

d4 = −4 gm2 +
1
2
,

d6 = −160 m2
3 − 16 gm2

2 + 6 m2 + 2 g2m2 −
1
4

g.

2.5 Summary and outlook

In this paper we gave an overview of the recent efforts to utilize random matrix theory tech-

niques to give insight into toy models of Euclidean quantum gravity suggested by noncommu-

tative geometry and initially proposed in [5]. We saw that type (1, 0) or (0, 1) Dirac ensembles

can be analyzed analytically using the Coulomb gas technique [56] and with the Blobbed Topo-

logical Recursion of stuffed maps [3, 57]. However, for ensembles with dimension higher than

one no known analytic techniques of random matrix theory seem to apply. Instead they may

be examined at finite matrix size using Monte Carlo simulations [5, 44] or at large matrix size

using bootstrap techniques [63]. Most recently it was discovered that certain Dirac ensembles

are dual to minimal models in conformal field theory [52]. It is worth investigating if this is

true for more types and potentials. Additionally one wonders if connections to other theories

of quantum gravity are possible, such as the recent connection found between random matrix

theory, Topological Recursion, and JT gravity [78, 81, 90, 67].

One naturally wants a coupling of these models with fermions and gauge fields. In non-

commutative geometry there is a finite spectral triple F of the standard model of elementary
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particles [30, 84]. In their work, Chamseddine, Connes and Marcolli [23] consider spectral

triples of the form X×F, where X is a Riemannian manifold which represents the gravitational

sector. Using the spectral action principle [22] and heat kernel expansion they were able to

obtain the Lagrangian of the standard model coupled with gravity. For a recent account and

survey see [24]. Instead of a manifold, we can take a noncommutative space and a finite real

spectral triple as a good first approximation to that. We should mention that the initial steps

in this direction has already been taken in [43], and also in [72]. Especially in the latter work

the kinematics of coupling the gravitational field, in the context of finite spectral triples, with

the Yang-Mills-Higgs field of the standard model is worked out. What remains to be done is

to choose a suitable potential S to go in the path integral, to calculate various quantities of

interest, and also to study the large N and double scaling limits of these quantities. We hope to

come back to this project in the near future.

An alternative approach to path integral quantization is the BV formalism. In the context of

gauge theory on spectral triples this has been studied in [54] and the BV formalism is applied

directly to Dirac ensembles in [42].

Finally let us suggest some open questions and problems in this line of research:

• Investigate the limiting eigenvalue distribution of Dirac ensembles with more compli-

cated potentials. This could be done numerically for any type or analytically for types

(1, 0) and (0, 1) using the techniques outlined in [56].

• Do one dimensional Dirac ensembles have critical points other than those that appear

when the coupling constants are tuned to become a single trace model [52]?

• Do these new critical points have double scaling limits of correlation functions that obey

Blobbed Topological Recursion? This is seen in the single trace case [41].

• Are there minimal models associated with higher dimensional Dirac ensembles? This

could be investigated by looking at critical exponents using Monte Carlo simulations

[44] or perhaps using the functional renormalization group [71].

• Can one find and make rigorous a connection between Dirac ensembles at phase transi-

tions and the spectra of two dimensional manifolds, along the lines of [6]?

• Is there a connection between Dirac ensembles and the recent work in noncommutative

QFT [80, 17, 18, 53]? One of the goals of this series of papers is to prove that the corre-

lation functions of the quartic Kontsevich model satisfy Blobbed Topological Recursion

[14]. As proved in [3], certain Dirac ensembles also satisfy it. For a review see [19].
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• Apply the Batalin-Vilkovisky (BV) formalism of [42] to other Dirac ensembles.

• Investigate a possible relationship between Dirac ensembles and one-loop corrections to

the spectral action [83].

• Can we extend the Yang-Mills-Higgs theory to more general Dirac ensembles, coupling

gravity with the standard model? [72].

• Investigate the consequences of adding a Fermionic term to the action of Dirac ensem-

bles.
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Chapter 3

Bootstrapping Dirac Ensembles

3.1 Introduction

In this paper we use the bootstrap method to find the moments of certain multi-trace and multi-

matrix random matrix models inspired by noncommutative geometry. These large N limit

moments satisfy an infinite system of nonlinear equations, due to Migdal [30], called loop

equations. The loop equations are consequences of Schwinger-Dyson equations (SDE’s). The

SDE’s put constraints on the moments and these constraints help to narrow the search for mo-

ments, but this is usually not enough. The process of further narrowing the search space by

adding certain extra positivity constraints is called bootstrapping. This idea was recently used

by Anderson and Kruczenski in the context of lattice gauge theory [1] . Then in a random

matrix setting it was used by Lin [28], and will be employed throughout this paper as well. We

will see that further positivity constraints are obtained from the fact that our matrix ensembles

originate from Dirac ensemble. This is an added feature that is absent in standard matrix mod-

els. By narrowing down the search space one can sometimes recover the values of the initial

moments. From there the loop equations can be used, in theory, to find any moment. Using the

bootstrap technique we are able to find the relationships between the coupling constant of the

model and the second moment. From there all other moments can be expressed in terms of the

coupling constant and the second moment, allowing them to be computed explicitly. We also

obtain explicit relations for higher mixed moments.

By a Dirac ensemble we mean an statistical ensemble of finite real spectral triples where

the Fermion space is kept fixed, but the Dirac operator is allowed to be random subject to

constraints of a real spectral triple. Technical definitions will be given further below. Such

ensembles were first defined by Barrett and Glaser [5] with the goal of building toy models

of Euclidean quantum gravity over a finite noncommutative space. They studied these models
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via computer simulation, in particular by Markov chain Monte Carlo methods. They also in-

dicated phase transition and multi-cut regimes in their spectral distribution. Quite significantly

they also noticed, numerically and for particular models, that at the phase transition point the

limiting spectral distribution of their models resembles the Dirac eigenvalue distribution of a

round sphere. That is they have a manifold behaviour at phase transition. One expects all such

models to have a manifold type behaviour at phase transition points, but we are still far from

proving this attractive conjecture rigorously. We shall indicate the main reason for this further

below in this introduction. In [2, 3, 33, 34, 35, 25, 26, 18], formal and analytic aspects of these

models and their generalizations are studied through topological recursion techniques as well

as standard random matrix theory methods.

In these models the integration over metrics is replaced with integration over Dirac opera-

tors,

Z =
∫

metrics
e−S (g)D(g) ⇒ Z =

∫
Diracs

e−S (D)dD. (3.1)

This can be justified by general principles of noncommutative geometry to be explained below.

In particular Dirac operators are taken as dynamical variables and play the role of metric fields

in gravity. It is a feature of these models that the moduli space of Dirac operators are typically

finite dimensional vector spaces. The action functional S is chosen in such a way that the

partition function Z is absolutely convergent and finite. For example, S (D) = Tr( f (D)) for a

real polynomial f of even degree with a positive leading coefficient. Note that, in general, these

matrix integrals are not necessarily convergent, or even need not have a real valued potential.

However, they may always be interpreted as formal matrix integrals, which are the generating

functions of certain types of maps [17]. We mention that the models considered by Barrett and

Glaser and in this paper are always convergent. For more details on formal and convergent

matrix models see [16]. For a treatment of these integrals when convergent we refer the reader

to [25].

The backbone of a spectral triple is the data (A,H ,D), where A is an involutive complex

algebra acting by bounded operators on a Hilbert space H , and D is a self-adjoint (in general

unbounded) operator acting on H . This data is required to satisfy some regularity conditions.

For finite spectral triples these conditions are automatically satisfied. A real spectral triple is

equipped with two extra operators J and γ, the charge conjugation and the chirality operator.

Finite dimensional real spectral triples have been fully classified by Krajewski in [27]. Other

references include [15, 29, 4, 37]. In this paper we work exclusively with finite dimensional

real spectral triples introduced by Barrett in [4]. Such finite real spectral triples represent a

noncommutative finite set equipped with a metric.

Using the classifications of finite spectral triples and their Dirac operators one can express
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the Barrett-Glaser models as multi-trace and multi-matrix random matrix models [4, 5] (cf.

also [2, 3, 33, 34, 35]). Since most of the results in random matrix theory is for single matrix

and single trace models, this shows that the analytic study of these models as convergent matrix

integrals is quite difficult in general. The scarcity of analytic tools is one of the reasons we

are still far from a rigorous proof of the manifold type behaviour of these models at phase

transition. The first analytic treatment of these models was carried out in [25] where the phase

transition for type (1, 0) and (0, 1) models was rigorously proved. In a recent paper the large

N limit spectral density function of Gaussian Dirac ensembles is obtained and shown to be

given by the convolution of the Wigner semicircle law with itself [26]. We also mention that in

[33, 34] the algebraic structure of the action functional of these models is further analyzed and

linked to free probability theory. This gives more hope for analytic treatment of these models

in general.

One of the motivations behind the introduction of these models in [5] is the well known

observation that a combination of the Heisenberg uncertainty principle and Einstein’s general

relativity will force the spacetime to lose its classical nature as a pseudo-Riemannian manifold

at Planck length. This is essentially due to formation of black holes when we probe the space

at Planck length. There are many proposals as to what should replace the classical spacetime.

A noncommutative space in the sense of spectral triples is an attractive proposal since the

metric, as a necessary dynamical variable of a theory of gravity, is already encoded by the Dirac

operator. Furthermore, assuming the spectral triple to be finite, allows computer simulation as

well as methods of random matrix theory to be applied and various scenarios to be tested.

There is also a more ambitious hope of coupling these models with fermions, as they appear

in the finite spectral triple F of the standard model of elementary particles [15, 37]. This will

be along the lines of the work of Chamseddine, Connes and Marcolli [12] where they consider

spectral triples of the form X × F, where X is a Riemannian manifold which represents the

gravitational sector. Using the spectral action principle [10] and heat kernel expansion they

were able to obtain the standard model Lagrangian coupled with gravity. For a recent account

and survey see [11]. Again instead of a manifold, one needs to use a noncommutative space

and a finite real spectral triple is a good first approximation to that. We should mention that the

initial steps in this direction has already been taken in [18], and also in [35]. Specially in the

latter work the kinematics of coupling the gravitational field, in the context of finite spectral

triples, with the Yang-Mills-Higgs field of the standard model is worked out. What remains

to be done, and that is a tall order indeed, is to choose a suitable potential S to go in the path

integral (3.1), and to calculate various quantities of interest and also study the large N limits of

them. We hope to come back to this project in the near future.

The idea of replacing metrics by Dirac operators is justified by general principles of non-
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commutative geometry as we explain next. For example the distance formula of Connes [13]

d(p, q) = Sup{| f (p) − f (q)|; ||[D, f ]|| ≤ 1},

shows that the geodesic distance on a Riemannian spin manifold can be recovered from the

action of its Dirac operator D on the Hilbert space of spinors. This role of the Euclidean Dirac

operator as a selfadjoint elliptic operator can be abstracted and cast in the notion of a (real)

spectral triple which simultaneously encodes the data of a Riemannian metric, a spin structure,

and a Dirac operator on a commutative or noncommutative space [13]. A deep result, the

reconstruction theorem of Connes [14], shows that a spin Riemannian manifold can be fully

recovered from a commutative real spectral triple satisfying some natural conditions. For this

reason, real spectral triples can be regarded as noncommutative spin Riemannian manifolds,

and the space of their compatible Dirac operators as the space of Riemannian metrics.

Finite real spectral triples of interest in this paper are characterized by a pair of non-negative

integers (p, q) [4, 5]. These integers count the number of gamma matrices that square to one

and minus one, respectively. As p and q increase, the corresponding Dirac ensemble gets more

and more complicated as a multi-matrix and multi-trace matrix model. The signature of the

model s = p + q determines the multiplicity of the matrix model. Consider for example the

case when p = 1 and q = 0. The Dirac operator can then be expressed as D = H ⊗ I + I ⊗ H

and the partition function (3.1) reduces to

Z =

∫
HN

e−S̃ (H)dH,

where S̃ is some new potential function in H and dH is the Lebesgue measure on the spaceHN

of N × N Hermitian matrices. Note that even in this case S̃ is a multi-trace function. We shall

see more examples later in this paper. In this paper we are mainly concerned with finding the

moments of these models in the large N limit i.e. when the matrix size approaches infinity. In

the above mentioned (1, 0) ensemble they are defined as

mk = lim
N→∞
⟨

1
N

Tr Hk⟩ = lim
N→∞

1
N

1
Z

∫
HN

Tr Hke−S̃ (H)dH.

Mixed moments are also defined in a similar manner.

Here is a brief outline of the contents of this paper. In Section two we derive and discuss the

Schwinger-Dyson equations, the loop equations, as well as the crucial idea of mixed moment

factorization in the large N limit. We will then explain the positivity constraints on moments

in both single and multi-matrix models. In Section three we will compare the numerical results

from bootstrapping to the analytic solution for signature one models obtained in [25]. In Sec-

tion four we will compare features that we found using the bootstrap method for signature two
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models with those obtained in [5] via Monte Carlo simulation. In the Appendix A we briefly

explain how the factorization of mixed moments is obtained from their genus expansion.

We would like to warmly thank the referees for several very useful comments and sugges-

tions that we believe led to a better exposition of this paper.

3.2 The bootstrap method

3.2.1 The loop equations

In general, the partition function of a Dirac ensemble is a multi-trace and multi-matrix model

of the form

Z :=
∫
Hm

N

e−S̃ (H1,H2,...,Hm)dH1...dHm,

where S̃ is the trace of a polynomial in traces of the m variables H1, . . . ,Hm and their products

with suitable powers of N in the coefficients. This integral is over the Cartesian product of

m copies of the space HN of Hermitian N × N matrices and the integration is with respect to

the Lebesgue measure in each matrix variable. Such an integral can be considered either as a

formal or convergent matrix integral. Note that both types of models satisfy the same SDE’s.

The SDE’s relate the moments of the model in some word W in the alphabet of matrix variables

{H1,H2, ...,Hm}, defined as expectation values

⟨
1
N

Tr W⟩ :=
1
N

1
Z

∫
Hm

N

Tr We−S̃ (H1,H2,...,Hm)dH1...dHm.

The SDE’s are a common technique used in Random Matrix Theory [17, 21] and can be

derived in the following manner. We shall be very brief. Take a word W as before and consider

the following relation

N∑
i, j=1

∫
Hm

N

∂

∂(Hq)i j

(
Wi j e−S̃ (H1,H2,...,Hm)

)
dH1...dHm = 0,

where Wi j denotes the (i, j)-entry of the product of matrices that make up the word W. This

relation easily follows from the Stokes’ theorem. The use of the product rule in the left hand

side results in the Schwinger-Dyson equations. For example, when m = 1, W = Hℓ
1, and

S̃ (H1) = N
2 Tr H2

1 , the above equation generates the following relations

ℓ−1∑
k=0

⟨Tr Hℓ−1−k
1 Tr Hk

1⟩ = ⟨N Tr Hℓ
1S̃ ′(H1)⟩ = ⟨N Tr Hℓ+1

1 ⟩.
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For a finite N the SDE’s put some constraints on moments and in general do not determine

the moments. However, if the large N limits of moments exist, then the SDE’s simplify dra-

matically1. This is a consequence of the factorization property of the large N limits of mixed

moments. In particular, when m = 1, it is well known that the following factorization holds in

the large N limit

⟨Tr Ha
1 Tr Hb

1⟩ = ⟨Tr Ha
1⟩⟨Tr Hb

1⟩,

for any positive integers a and b. This is true for single trace single matrix convergent models

[32], and for formal multi-trace single matrix models. This factorization holds also in some

formal multi-matrix models (m > 1), in particular when those models have a genus expansion.

See the appendix B for a detailed explanation. One key assumption we will make for the

signature two models is that this factorization does hold. This is proved in [26].

One key fact to notice is that the loop equations are relations for generating higher order

moments from lower order ones. In particular one might wonder what is the minimum number

of generating moments one needs to generate all of the rest. Using the terminology from [28]

we will refer to this collection of moments as the search space. What we will see in the

following sections is that the search space of the matrix ensembles studied here are of only one

dimension.

3.2.2 Bootstrapping models with positivity

The positivity constraints on moments of a single matrix model in the large N limit are related

to the Hamburger moment problem, as it was noticed by Lin [28]. However, positivity and

bootstrapping was already used in the context of solving the loop equations for lattice gauge

theory by Anderson and Kruczenski [1]. Bootstrapping has recently been used in several other

works on matrix models including [24, 23], and for matrix quantum mechanics [22, 8, 7].

The Hamburger moment problem can be formulated as follows: given a sequence (m0,m1,m2, . . . )

of real numbers, one asks if there is a positive Borel measure µ on the real line so that mk is the

kth moment of µ, that is

mk =

∫
R

xkdµ(x), k = 0, 1, 2, . . . .

It is known that a necessary and sufficient condition for the existence of µ is that the Hankel

1The large N limit is understood differently for formal and convergent models, we again refer the reader to
[16].
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matrix of the moments

M =



m0 m1 m2 m3 · · ·

m1 m2 m3 m4 · · ·

m2 m3 m4 m5 · · ·

m3 m4 m5 m6 · · ·

...
...

...
...

. . .


,

is a positive matrix. That is ∑
j,k≥0

m j+kc jck ≥ 0,

for all sequences (c j) of complex numbers with finite support. In fact checking the necessity

of this condition is quite easy. Take the polynomial f (x) =
∑

c jx j. Then the positivity of the

integral
∫
R

f (x) f (x)dx immediately implies the positivity of the Hankel matrix. For a proof of

the sufficiency of the condition see page 145 of [36].

In our context m0 = 1,

mk = lim
N→∞

1
N
⟨TrHk⟩, k = 1, 2, . . . ,

and dµ(x) = ρ(x)dx, where ρ(x) is the limiting spectral density function.

These positivity constraints can be applied to both the Hankel matrix of moments of the

matrix ensemble and the Hankel matrix of moments of the Dirac ensemble defined as

D =



1 d1 d2 d3 · · ·

d1 d2 d3 d4 · · ·

d2 d3 d4 d5 · · ·

d3 d4 d5 d6 · · ·

...
...

...
...

. . .


where

dℓ = lim
N→∞
⟨

1
N2 Tr Dℓ⟩ = lim

N→∞

1
N2

1
Z

∫
G

Tr Dℓe−S (D)dD.

These additional constraints are one advantage that Dirac ensembles have over matrix ensem-

bles when bootstrapping.

There is a generalization of the (univariate) Hamburger moment problem to the non-commutative,

multivariate case [9]. To discuss this generalization that we need in this paper we require the

following definition.
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Definition 3.2.1 The sequence of the real number {mw}w∈W indexed by word w, where W is the

space of the words formed by Hermitian matrices H1,H2, · · · ,Hn, is called a tracial sequence,

if mw = mu whenever w and u are cyclic equivalent.

The truncated moment problem asks for necessary and sufficient conditions for a tracial se-

quence to be a sequence of the moments of some non-commutative, multivariate distribution.

Consider the large N limit of a multi-trace multi-matrix model of the following form

Z :=
∫
Hm

N

e−S (H1,H2,...,Hm)dH1 . . . dHm.

The (infinite) tracial moment matrix M(m) of a tracial sequence m = {mw} indexed by

words is defined by the symmetric matrix

M(m) = (mw∗u)w,u.

The necessary, but not sufficient, condition for a sequence of {mw}w∈W is positive semi-

definiteness of the tracial moment matrix [9].

For instance, with tracial sequence m∅ = 1,mA,mB,mAA,mAB,mBB, . . . , we can enforce

positivity of the sub-matrix ofM, defined as

1 mA mB mAA mAB mBB

mA mAA mAB mAAA mAAB mABB

mB mBA mBB mBAA mBAB mBBB

mAA mAAA mAAB mAAAA mAAAB mAABB

mAB mBAA mBAB mBAAA mBAAB mBABB

mBB mBBA mBBB mBBAA mBBAB mBBBB


.

3.2.3 The algorithm

A Python script is first used to generate the loop equations for all possible words up to a given

order. This order is dependent on how many loop equations it takes to deduce the dimension

of the search space. Once we have found the search space and generated a sufficient number

of loop equations we compute all moments, assemble them into the matrices outlined above,

then check for positivity of the matrix and various submatrices. This process is done for both

matrix moments and Dirac moments. From here Mathematica is able to numerically find the

region in which its corresponding positivity constraints are satisfied. We increase the number

of constraints until a satisfactorily small region is found.

The manner in which our algorithm differs from [28] is twofold. First, in the multi-matrix

models loop equations are generated for all possible words. One might expect that this would
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hinder us from finding the search space by introducing more moments. In fact, we found that

this was helpful in finding the search space. Secondly, we are working with Dirac ensembles

which have both matrix moments and Dirac moments, allowing us to derive more positivity

constraints than if we were working with just a matrix model.

3.3 One matrix Dirac ensembles

Consider real finite spectral triples (A,H ,D) where the algebra is A = MN(C) and the Hilbert

space isH = C ⊗ MN(C). The two signature one noncommutative geometries from [5] are

1. Type (1, 0) with

γ1 = 1,

D = {H, ·},

where H is a Hermitian matrix.

2. Type (0, 1) with

γ1 = −i,

D = γ1 ⊗ [L, ·],

where L is a skew-Hermitian matrix.

For each geometry we define a quartic action and a partition function∫
G

e−(g Tr D2+Tr D4)dD.

The trace powers in the action for type (1, 0) can be written in terms of H as

Tr D2 = 2N Tr H2 + 2 Tr H Tr H,

and

Tr D4 = 2N Tr H4 + 8 Tr H Tr H3 + 6 Tr H2 Tr H2.

Similarly for type (0, 1) we have

Tr D2 = −2N Tr L2 + 2 Tr L Tr L,

and

Tr D4 = 2N Tr L4 − 8 Tr L Tr L3 + 6 Tr L2 Tr L2.

As one can now see, these models are single matrix, multi-trace random matrix models.

They have been found to share many similar properties, such as a genus expansion [2], with
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single trace single matrix models. Furthermore, many techniques to analyze them have been

extended from single trace models such as the coloumb gas method [25] and blobbed topolog-

ical recursion [3].

For the quartic potential, in the large N limit, when L is replaced with iH for some Hermi-

tian matrix H, these are the same matrix and Dirac ensembles [25]. Furthermore, it is not hard

to see that the trace of ℓ-th power of the Dirac operators is given by

ℓ∑
k=0

(
ℓ

k

)
Tr Hℓ−k Tr Hk.

Hence, by the factorization theorem the Dirac moments in the large N limit are

dℓ = lim
N→∞

1
N2 ⟨Tr Dℓ⟩ =

ℓ∑
k=0

(
ℓ

k

)
mℓ−kmk,

and the general loop equations of this model are as follows

ℓ−1∑
k=0

mkmℓ−k−1 = g (4mℓ+1 + 4m1mℓ) + 8mℓ+3 + 8m3mℓ + 24m1mℓ+2 + 24m2mℓ+1.

The odd moments are zero since we are taking the integral of odd functions. This simplifies

the loop equations to the following form

m2ℓ+2 =
1
8

2ℓ−2∑
k=0

mkm2ℓ−k−2 −
1
2

gm2ℓ − 3m2m2ℓ.

It is clear from the above recursion that once we have m2, we can find all moments of the

model. Hence, the search space has dimension one. Using various positivity constraints on the

above loop equations, we were able to approximate m2 with respect to g.
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Figure 3.1: The approximate relation between m2 and g, with g varying from −5 to −2.5. The

different coloured regions denote different constraints applied.
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Figure 3.2: The approximate relation between m2 and g, with g varying from −2.5 to 1.5.

The relationship found is remarkably similar (after re-scaling the appropriate factor of a

half) to the analytic relationship found in [25]. In the analytic solution, for g below the critical

value, the relationship is linear, which is clearly visible in the bootstrap solution. For values of

g above the critical point, the curve is also very similar to its analytic counterpart.
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3.4 Two matrix Dirac ensembles

Consider real finite spectral triples (A,H ,D) where the algebra is A = MN(C) and the Hilbert

space is H = C2 ⊗ MN(C). The three signature two noncommutative geometries from [5] are

characterized by their Dirac operators D as follows:

1. Type (2, 0): Let

γ1 =

1 0

0 −1

 , γ2 =

0 1

1 0

 .
Then,

D = γ1 ⊗ {H1, ·} + γ
2 ⊗ {H2, ·},

where H1 and H2 are Hermitian matrices.

2. Type (1,1): Let

γ1 =

1 0

0 −1

 , γ2 =

 0 1

−1 0

 .
Then,

D = γ1 ⊗ {H, ·} + γ2 ⊗ [L, ·],

where H is Hermitian and L is skew-Hermitian.

3. Type (0,2); Let

γ1 =

 i 0

0 −i

 , γ2 =

 0 1

−1 0

 .
Then

D = γ1 ⊗ [L1, ·] + γ2 ⊗ [L2, ·],

where L1, L2 are both skew-Hermitian.

Now for each geometry we consider a quartic action and the partition function

Z =

∫
G

e−(g Tr D2+Tr D4)dD.

We shall substitute L = iH, where H is Hermitian, for each skew-hermitian matrix L in the

above geometries. The result is that all three matrix models have the same matrix action in the

large N limit. To see the explicit potentials we refer the reader to the appendix of [5]. Hence,

each of these matrix models is identical in this sense, allowing the following results to apply to

all three. However, we should not confuse a random matrix ensemble with its Dirac ensemble;

their eigenvalues are certainly related but their relationship depends on the geometry. Since the
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action of this model is even, the odd moments are zero. This means that any moment of a word

containing either an odd number of H1 or H2 is zero. The following terms are the only ones

that contribute to the loop equations in the large N limit

Tr D2 = 4N Tr H2
1 + 4N Tr H2

2 ,

and

Tr D4 = 4N Tr H4
1 + 4N Tr H4

2 + 16N Tr H2
1 H2

2 − 8N Tr H1H2H1H2

+ 12(Tr H2
1)2 + 12(Tr H2

2)2 + 8 Tr H2
1 Tr H2

2 .

Let us consider the words Hℓ
1 for ℓ ≥ 1. The loop equations of this model with respect to

these words come from

N∑
i, j=1

∫
H2

N

∂

∂(H1)i j
(Hℓ

1)i j e−(g Tr D2+Tr D4)dH1dH2 = 0,

giving us

ℓ−1∑
k=0

mkmℓ−k−1 = (8g + 64m2)mℓ+1 + 16mℓ+3 − 16mℓ,1,1,1 + 32mℓ+1,2, (3.2)

in the large N limit. For more details on the loop equations see Appendix A. Here, we use the

notation

ma,b,c,d = lim
N→∞

1
N
⟨Tr Ha

1 Hb
2 Hc

1Hd
2⟩.

When ℓ ≤ 7, in the left hand side there is no term that is a product of moments that come

from degree four words or higher. For example m2,2m4 cannot be found. Thus, loop equations

of words with length less than 7 can be seen as a system of linear equations and that can be

solved in terms of g and m2.

Proposition 3.4.1 The number of non-trivial moments (up to cyclic permutation and symme-

try) that appear in the loop equations of words with length ℓ ≥ 9 is less than the number of

non-zero loop equations.

Proof Denote by W the set of all words with length ℓ+3. Note that the degree of new moments

that appear in equation (3.2) is ℓ + 3. The set W is acted on by A = Z/(ℓ + 3)Z, which shifts

letters. Then it follows from Burnside’s lemma that

|W/A| =
1

ℓ + 3

∑
a∈A

|Wa| ≤
1

ℓ + 3

2ℓ+3 +

l+3∑
j=1

2min( j,l+3− j)

 ≤ 1
ℓ + 3

(
2ℓ+3 + 2

ℓ+7
2
)
,
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where Wa denotes the set of words left invariant by a ∈ A. Considering the symmetry property

and vanishing of odd moments, we will get

# new moments ≤
1

ℓ + 3

(
2ℓ+1 + 2

ℓ+3
2
)
. (3.3)

We may have similar loop equations for two different (up to cyclic symmetry property) words,

but it is not hard to see that it is never the case that more than half of them are identical. Using

symmetry property we have

# new loop equations ≥ 2ℓ−2. (3.4)

It follows from equations (3.3) and (3.4) that for ℓ ≥ 9

# new loop equations ≥ #new moments.

Corollary 3.4.2 The dimension of the search space of the above model is 1.

Proof Inductively we can substitute the lower moments into the new loop equations and solve

the system of linear equations in terms of g and m2. By proposition 3.4.1, the number of new

moments is less than the number of nonzero loop equations for a given g. Thus the dimension

of the search space is 1.

By generating all the loop equations for words up to order ten in Python and then using

Maple we found some remarkable formulas for moments up to order eight strictly in terms of

g and the second moment m2. Here are a selection of them:

m4 = −
1
8

gm2 +
1
64
,

m2,2 = −
1
8

gm2 − m2
2 +

1
64
,

m1,1,1,1 =
gm2

8
+ 2m2

2 −
1

64
,

m6 =
g2m2

64
−

g
512
−

gm2
2

8
+

3 m2

64
−

5 m2
3

4
,

m4,2 =
g2m2

64
+

gm2
2

8
−

g
512
−

m2
3

4
+

m2

64
,

m3,1,1,1 = −
g2m2

64
−

3 gm2
2

8
−

7 m2
3

4
+

g
512
+

m2

64
,

m2,1,2,1 =
g2m2

64
+

3 gm2
2

8
−

g
512
+

11 m2
3

4
−

m2

64
,
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m8 = −
gm2

64
+

m2
4

4
+

g2

4096
+

m2
2

256
+

3
4096

−
g3m2

512
+

3 g2m2
2

64
+

gm2
3

2
.

Using only the explicit formulas in terms of g and m2 and some associated positivity con-

straints we were able to find the following regions in the solution space using Mathematica.

-7 -6 -5 -4 -3
0.0

0.2

0.4

0.6

0.8

g

m
2

Figure 3.3: The search space region for the (2,0) quartic model where the relationship between

g and m2 becomes linear.

-3 -2 -1 0 1
0.00

0.05

0.10

0.15

0.20

0.25

0.30

g

m
2

Figure 3.4: The search space region for the (2,0) quartic model where the relationship between

g and m2 is nonlinear.
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Note that

lim
N→∞

1
N2 ⟨Tr D2⟩ = 8 lim

N→∞

1
N
⟨Tr H2

1⟩.

With this factor of 8 taken into account the figure is remarkably similar to the one computed

for ten by ten matrices in [19]. Unlike with the signature one models, no explicit formula is

known for the moments of the Dirac ensemble of signature two models. However, they can

be computed with much effort using the combinatorics of chord diagrams; see [33]. With the

above formulas and those from [33] we have computed the first three nonzero moments of the

signature two Dirac ensembles in terms of m2 and g:

d2 = 8 m2,

d4 = −4 gm2 +
1
2
,

d6 = −160 m2
3 − 16 gm2

2 + 6 m2 + 2 g2m2 −
1
4

g.

It is also worth noting that the relation between m2 and g appears to be linear for values of g

roughly below the phase transition [19]. This is precisely what happened for the signature one

model analyzed in [25].

While in [28] the size of the search space is estimated for both single and multi-matrix

models, the multi-matrix model from the (2,0) quartic geometry, despite its complexity, had a

search space dimension of one! It is now worth noting that our technique differs from Lin’s

mainly in that when we look for the search space we examine the loop equations generated by

all words up to a given order. A smaller search space dimension here is particularly counter

intuitive since using more words means introducing more complicated new moments. We

believe this is an artifact of this particular model.

3.5 Summary and outlook

In this paper Dirac ensembles and their associated matrix models are analyzed using the boot-

strap technique. What is found is in very close agreement with simulation results of [19] and

analytic treatment of [25]. What is particularly interesting is that the relationship between the

coupling constant and the second moment of the signature two matrix ensemble is linear after

the phase transition. This linear relationship was also found analytically for the signature one

matrix models in a similar range of the coupling constant [25]. This finding suggests that there

may be a deep relationship between the multi-matrix models studied here and the single matrix

models.

It is hoped that the computation of moments found here will be used to learn more about

these models. Known analytic results do not extend to geometries with signature of two or
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higher and Monte Carlo simulations are severely limited by matrix size. Hence, bootstrapping

offers a new opportunity to study Dirac and random matrix ensembles suggested by noncom-

mutative geometry.

We hope to apply the bootstrap method to more complicated geometries such as (0,3),

studied in [19]. The methods outlined in this paper should in theory work for any higher

signature geometry. It would also be interesting if one could estimate the supports of the

limiting eigenvalue density functions. This would allow one to reconstruct the eigenvalue

distributions of both the Dirac and the random matrix ensembles.

Additionally the formulas found for the Dirac moments seem to exhibit some a pattern. If

one could find the loop equations strictly in terms of Dirac moments for any geometry, this

would be an impactful step towards a better understanding of these models.

In [5] it was speculated that the (2, 0) model (among others) exhibited manifold-like be-

haviour near the phase transition. What is meant by this is that the spectrum visually has

similarities with the spectrum of the Dirac operator on S 2. Its spectral density function is of

the form |λ|. Evidence to support this was found in [6]. The work in [20] is promising if it can

be applied to these models. Another even more recent approach is the utilization of Functional

Renormalization Group techniques on these models found in [34].
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Chapter 4

Double Scaling Limits of Dirac Ensembles

4.1 Introduction

Attempts to construct theories of Euclidean quantum gravity typically involve a partition func-

tion where the integration is over possible topologies or metrics and matter fields. However,

these integrals are nonrenormalizable. Some approaches often used in physics involve dis-

cretizing the space, metrics, or topologies. Discrete approximations of physical theories have

often found much success, such as in lattice gauge theory [31]. An alternative approach comes

through noncommutative geometry. One may approximate commutative spaces by replacing

the algebra of commutative functions on that space by a corresponding algebra of matrices.

This was first done with the fuzzy sphere [33]. Such constructions exist for other spaces; for

an example see the construction of the complex projective plane in [25].

As mentioned earlier, one would like to construct a path integral over all metrics (and

eventually over matter fields), but when a space is “fuzzified” its metric loses its meaning.

Alternatively, in the framework of spectral triples the role of a metric is played by the Dirac

operator, as in Conne’s distance formula [14]. Barrett first suggested in [4] that a toy model for

finite noncommutative quantum gravity could be constructed as a well-defined matrix integral

over an appropriate space of Dirac operators. We refer to these models as Dirac ensembles.

The goal was that in some appropriate limit Dirac ensembles might connect to some understood

physics, thus validating this random fuzzy approximation. The resulting partition functions of

these models are matrix integrals, allowing one to use techniques from random matrix theory.

In this paper we find that certain Dirac ensembles are dual to minimal models from conformal

field theory coupled to gravity in the double scaling limit.

In random matrix theory the expectation values of observables can typically be written as a

formal summation organized by genus, called the genus expansion, which was first discovered

71
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by t’ Hooft [38]. Taking the large N limit of matrix models is equivalent to counting various

types of planar maps [7]. As proven in [29], Dirac ensembles of any dimension have a genus

expansion. In particular, the leading order term, found by a large N limit of appropriately scaled

quantities, amounts to counting strictly planar maps. In the late 80’s and 90’s physicists found

artifacts of conformal field theory in the large N limit of matrix models when coupling con-

stants were tuned to specific critical values [12, 20, 16]. These critical values occur when the

genus expansion terms of the log of the partition function fail to be smooth. This is analogous

to how critical values are found in statistical mechanics.

Figure 4.1: Intuitively if one fine tunes coupling constants of matrix models such that the

number of polygons in maps goes to infinity, maps are replaced by smooth surfaces.

We give some intuition for this connection. Formal random matrix models are formal

summations of Gaussian integrals, which via Feynman graph techniques can be realized as the

weighted generating functions of maps [11]. A map is a type of embedding of a graph onto

a two dimensional surface. Maps can be seen as a method of discretizing surfaces, and when

the number of polygons that make up the map becomes very large, one would expect that one

should be able to find a connection to partition functions that sum over surfaces. The number

of polygons in maps can in fact grow by tuning the coupling constants to critical values [6].

Note that these critical values are not the same as those discussed in [5, 28].
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The authors wish to emphasize that none of these connections between quantum gravity

and random matrices are new, but our goal is to reframe them as a toy noncommutative theory

of quantum gravity. We prove in this paper that single trace matrix ensembles emerge from

Dirac ensembles when the coupling constants are tuned appropriately. As we will discuss, this

is highly non-obvious because the coupling constants of bi-tracial and single trace terms are

shared. This allows one to recover random matrix models that are dual to minimal models of

conformal field theory, an old and well studied connection in physics [6].

In Section 2 we give a brief introduction to Dirac ensembles. The Schwinger-Dyson equa-

tions and stuffed maps are developed in Section 3. The resolvent function is computed for some

examples of Dirac ensembles in Section 4. Section 5 explains how one uses blobbed topolog-

ical recursion to compute higher order and genus correlation functions. Section 6 highlights

the main result of this paper. In this section the critical points of the examples in Section 5

are discussed as well as the connection to Liouville conformal field theory. In Section 7 we

summarize these results and future projects.

4.2 Dirac ensembles

A Dirac ensemble is defined by a fixed finite dimensional real spectral triple, in which the

Dirac operator is allowed to be randomly selected subject to some consistency conditions. Let

us briefly recall that a finite real spectral triple is a quintuple (A,H ,D,Γ, J) whereA is a finite

dimensional complex involutive algebra acting on the Hilbert space H . The Dirac operator is

a self-adjoint operator from H → H . The two extra operators Γ and J, known as the charge

conjugation and the chirality operator play no active role in our analysis so will not be discussed

here. For a more detailed explanation see [15, 4, 39, 34].

The partition function of a Dirac ensemble is given by Barrett and Glaser [5] as

Z =
∫
D

e−Tr S (D)dD, (4.1)

where D is the space of possible Dirac operators, which form a real vector space, and dD is

the Lebesgue measure on this space. In general, the Dirac operator can be expressed in terms

of gamma matrices tensored with commutators and anti-commutators of Hermitian and skew

Hermitian matrices. More precisely, in [5] it was found that for any fuzzy spectral triple, the

Dirac operator is of the form

D =
∑

γI ⊗ {KI , ·}eI

where the sum is over increasingly ordered multi-indices, and the following rules apply:
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• If γI is Hermitian, {KI , ·}eI = {HI , ·}, where HI is some Hermitian matrix and {·} is the

anti-commutator.

• If γI is skew-Hermitian, {KI , ·}eI = [LI , ·], where LI is some skew-Hermitian matrix and

[·] is the commutator.

Note that the HI and LI are free variables. As a result, integral (4.1) can be expressed as

an integral over the Cartesian product of the spaces of N × N Hermitian matrices, HN , and

skew-Hermitian matrices LN:

Z =
∫

e−Tr S (D)dD,

where dD is the Lebesgue measure on the product space of finitely many spaces of Hermitian

and spaces of skew-Hermitian matrices. In particular when p + q is equal to one or two we

have

dD =
p,q∏
ℓ,r=1

dHℓdLr =

p,q∏
ℓ,r=1

N∏
i=1

dHriidIm(Lℓii)
∏
i< j

d Re(Hℓi j)d Im(Hℓi j) d Re(Lri j)d Im(Lri j).

The choice of S (D) is left open. However, we are particularly interested in cases where S is

a polynomial in D. Note that the use of (p, q) for the KO-dimension of fuzzy spectral triples

has no relationship with the integers (p, q) that are used in Kac’s table for minimal models in

conformal field theory.

A skew Hermitian matrix can be written as a Hermitian matrix multiplied by the complex

unit. Furthermore, since S (D) is a polynomial, and thus the potential is a trace polynomial of

the Hermitian and skew-Hermitian matrices seen in D, any integral of the above form can be

written strictly as a Hermitian multi-matrix integral. These objects are interesting purely from

a random matrix perspective, of which very little is known in general. Relatively recently some

universal properties were established in [29].

Unlike the usual matrix model, in addition to the spectra of the H’s we have the spectrum of

D to study. As one might guess, there is a deep and not well understood relationship between

them. The spectrum of the Dirac operator itself is not fully understood but displays some

universal behaviors as seen in [29] and spectral phase transitions as seen in [5, 28, 24]. We

are interested only in the simplest cases for now, partly because of the lack of analytical tools

needed to study multi-matrix models.

We will consider a one dimensional Dirac ensemble of type (1, 0). We emphasize that one

could also work with (0, 1) just as easily, such as in [28]. The type (1, 0) signifies that the

associated Clifford module of the fuzzy spectral triple has a signature of one. Such a Dirac

ensemble consist of a finite real spectral triple of the form (MN(C),MN(C),D) where

D = H ⊗ I + I ⊗ H,
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and H is some Hermitian N × N matrix sampled from the probability distribution

e−Tr S (D)dH.

The function S (D) is some polynomial in D and

dH =
N∏

i=1

dHii

∏
i< j

d Re(Hi j)d Im(Hi j).

It is not hard to see that trace powers of D can be written as follows

Tr Dℓ =

ℓ∑
k=0

(
ℓ

k

)
Tr Hℓ−k Tr Hk. (4.2)

Thus, the integral

Z =
∫
HN

e−Tr S (D)dH

is not just a matrix integral, but more specifically a bi-tracial matrix integral. We will discuss

this further in the next section.

Note that there are in general two ways one may define a matrix integral. If the degree of the

potential d is even and the leading term has a positive coefficient, then the integrand is a positive

rapidly decaying function onHN . This allows the use of Fubini’s theorem and other results of

integral calculus. Thus, it may be interpreted as an N2 dimensional convergent real integral.

We call such an integral a convergent matrix model. Alternatively, regardless of the degree of

the S or values of the coupling constant we can define a formal matrix integral as a formal sum

by power series expanding all non-Gaussian terms in the integrand and swapping the order of

integration and summation. Such formal sums of Gaussian integrals can be evaluated termwise

using Wick’s theorem [32, 22]. Graphically, the coefficients of this formal sum can be realized

as a weighted generating function counting stuffed maps [8].

We can define the matrix moments and higher moments of this ensemble as

Tℓ := ⟨
1
N

Tr Hℓ⟩ =
1
N

1
Z

∫
HN

Tr Hℓ e−Tr V(D)dH

and

⟨
1

Nn Tr Hℓ1 Tr Hℓ2 ...Tr Hℓn⟩ :=
1

Nn

1
Z

∫
HN

Tr Hℓ1 Tr Hℓ2 ...Tr Hℓn e−Tr V(D)dH.

One can further define joint cumulants of higher moments using the classical moment-

cumulant relations. For details see chapter one of [22]. These cumulants are denoted ⟨ 1
Nn Tr Hℓ1 Tr Hℓ2 ...Tr Hℓn⟩c

and are the generating functions of connected maps in the sense that the embedded graph is

connected.
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The Dirac moments can be computed from matrix moments in this case via formula (4.2).

Higher order moments (which were not defined above) can be obtained in the usual manner

from higher order cumulants. As proven in [3], the matrix moments and cumulants have a

genus expansion, i.e.

Tℓ1,...,ℓq =

∞∑
g=0

(N
t

)2−2g−q

T
g
ℓ1,...,ℓq

where t is a continuous formal parameter strictly greater than zero. The terms of the genus

expansion can be put into generating functions of the form

Wg
k (x1, x2, ...xk) =

∞∑
ℓ1,ℓ2,...,ℓk=0

T
g
ℓ1,ℓ2,...ℓk

xℓ1+1
1 xℓ2+1

1 ...xℓ1+1
1

.

The terms of this so-called genus expansion can be computed recursively using a process

called blobbed topological recursion [3]. Blobbed topological recursion is a generalization of

the similar process of topological recursion [21] which has gained much interest in the last two

decades. For a review we refer the reader to [10].

In Section 4.3.2, we will derive a set of recursive equations that can relate cumulants and

moments (as well as their generating functions) called the Schwinger-Dyson equations. It is

a well-known practice in random matrix literature to compute W0
1 using resolvent techniques.

The beauty of (blobbed) topological recursion is that given W0
1 and W0

2 (which is often in

some sense universal), one can compute any Wg
k recursively by decreasing Euler characteristic

−χ = 2g − 2 − n.

For single trace matrix models this process is well studied and formalized, see [22]. How-

ever, for multi-trace matrix models we are unaware of any similar reference. In this paper we

will explicitly show how to compute W0
1 and show that W0

2 has a universal form for bi-tracial

matrix models.

4.3 Bi-tracial matrix integrals

In this section we will set the groundwork for analyzing bi-tracial matrix models.

4.3.1 Stuffed maps

In this paper we are strictly interested in bi-tracial matrix models since they are the ones of

interest for Dirac ensembles. However, one would expect that this analysis can be extended to

higher trace multiplicity. Consider the following matrix integral over the space of Hermitian

matrices
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Z =
∫
HN

e−S (H)dH, (4.3)

where the potential is a bi-tracial polynomial

S (H) =
N
2t

Tr H2 +

d∑
i=3

N
t

ti

i
Tr Hi +

d∑
i, j=1

ti, j

i j
Tr Hi Tr H j

where the ti’s and ti, j’s are coupling constants such that ti, j = t j,i.

It was first discovered in [7] that the moments and cumulants of the random Hermitian

matrix ensembles coincide with the generating functions of maps. The maps of interest for

bi-tracial matrix models are called stuffed maps and were first studied in [8] by Borot, and

subsequently in [9]. Note that stuffed maps are a direct generalization of the maps in [22] used

for single trace matrix models, thus all the following definitions simplify to the types of maps

first considered in [7]. We now define the building blocks of stuffed maps.

An elementary 2-cell of topology (k, h) is a connected oriented surface of genus h with k

boundaries. For example, a 2-cell with topology (1, 0) is a disc. These 2-cells can be “glued”

together by pairing edges of the perimeter to form a surface with an embedded graph. The

resulting surface is referred to as a stuffed map of topology (n, g) with perimeters (ℓ1, .., ℓn).

It is an orientable connected surface with boundaries of lengths ℓ1, .., ℓn. For more on stuffed

maps see [8].

We are interested in enumerating these maps. More specifically, we want to count stuffed

maps that are glued from 2-cells with the topology of discs and cylinders. This comes from the

fact that the Dirac ensembles of interest are bi-tracial matrix models with appropriate N-powers

as coefficients [8]. We shall refer to these maps as unstable stuffed maps. We define SMg
k(v) as

the set of all unstable stuffed maps of genus g, with v vertices and k boundaries. It was proven

in [29] that this set is finite, allowing us to define the following formal series:

T
g
ℓ1,...,ℓk

=

∞∑
v=1

tv
∑

Σ∈SM
g
k (v)

d∏
i=1

tni(Σ)
i

d∏
i, j=0

tni, j(Σ)
i, j

1
|Aut(Σ)|

k∏
q=1

δℓq(Σ),ℓq ,

where ni j(Σ) is the number of 2-cells with boundaries of lengths i and j used in the gluing of the

map Σ. It turns out that these formal series are precisely the genus expansion terms mentioned

in the previous section, that is

Tℓ1,...,ℓk =

∞∑
g=0

(N
t

)2−2g−k

T
g
ℓ1,...,ℓk

and

Wk(x1, .., xk) =
∞∑

g=0

(N
t

)2−2g−k

Wg
k (x1, ..., xk) =

∞∑
g=0

(N
t

)2−2g−k ∞∑
ℓ=0

T
g
k

xℓ1+1
1 ...xℓk+1

k

.
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For a detailed explanation and proof of this fact see [8].

4.3.2 The Schwinger-Dyson equations

The Schwinger-Dyson equations (SDE’s) provide a powerful method to analyze random matrix

models. They were first introduced by Migdal in [35]. In our context they are the consequence

of matrix integrals of the total derivative vanishing. The SDE’s of the bi-tracial matrix model

(4.3) can be derived as follows. Consider the following relation,

∑
i, j

∫
HN

∂

∂Hi j

(Hℓ1
)

i j

n∏
m=2

Tr Hℓme−S (H)

 dH = 0, (4.4)

where
(
Hℓ1

)
i j

is the i j-th entry of the matrix power Hℓ1 , and the partial derivative ∂
∂Hi j

satisfies

∂

∂Hi j

(
Hpq

)
= δipδ jq. (4.5)

One can prove the following properties,

∂

∂Hi j

(
Hℓ1

)
i j
=

ℓ1−1∑
k=0

(
Hk

)
ii

(
Hℓ1−k−1

)
j j

(4.6)

and

∂

∂Hi j

 n∏
m=2

Tr Hℓm

 = n∑
r=2

ℓr

(
Hℓr

)
ji

n∏
m=2
m,r

Tr Hℓm . (4.7)

Now, using the Leibniz product rule in (4.4) and the relations (4.6) and (4.7), we find that

ℓ1−1∑
k=0

⟨Tr Hk Tr Hℓ1−k−1
n∏

m=2

Tr Hℓm⟩ +

n∑
r=2

ℓr⟨Tr Hℓ1+ℓr−1
n∏

m=2,
m,r

Tr Hℓm⟩

=

〈(
N
t

Tr Hℓ1+1 +

d∑
i=3

N
t

ti Tr Hℓ1+i−1

+

d∑
i, j=1

ti, j

i j

(
i Tr Hℓ1+i−1 Tr H j + j Tr Hi Tr Hℓ1+ j−1

)) n∏
m=2

Tr Hℓm

〉
.

Note the model (4.3) can be considered as a formal matrix integral or a convergent matrix

integral. Either way its moments will satisfy the nonlinear recursive relationship above. In the

case of formal integrals, the equations are valid only order by order in t. Applying the genus

expansions of moments and cumulants, then collecting terms of the same N/t powers, one finds

the following.
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Theorem 4.3.1 The Schwinger-Dyson equations for the bi-tracial matrix model (4.3) are :

ℓ1−1∑
k=0

 g∑
h=0

∑
J⊂L

T
(h)
k,JT

(g−h)
ℓ1−k−1,L\J + T

(g−1)
k,ℓ1−k−1,L

 + n∑
m=2

ℓrT
(g)
ℓ1+ℓr−1,L\{r}

= T
(g)
ℓ1+1,L +

d∑
i=3

tiT
(g)
ℓ1+i−1,L

+

d∑
i, j=1

ti, j

i j

 g∑
h=0

∑
J⊂L

(
iT (h)

ℓ1+i−1,JT
(g−h)
j,L\J + jT (h)

ℓ1+ j−1,JT
(g−h)
i,L\J

)
+ iT (g−1)

ℓ1+i−1, j,L + jT (g−1)
ℓ1+ j−1,i,L

 , (4.8)

where L = {ℓ2, ℓ3, · · · , ℓn}.

The coefficient of N/t, when the number of boundaries n is equal to 1, is the main object of

study in the following section.

4.3.3 The spectral curve

When g = 0 and n = 1, equation (4.8) becomes

ℓ−1∑
k=0

T 0
k T

0
ℓ−k−1 = T

0
ℓ+1 +

d∑
i=3

tiT
0
ℓ+i−1 +

d∑
i, j=1

ti, j

i j

(
iT 0

ℓ+i−1T
0
j + jT 0

ℓ+ j−1T
0
i

)
.

This is significantly more complicated than the single trace case. To simplify the notation we

write it as
ℓ−1∑
k=0

T 0
k T

0
ℓ−k−1 = t̃2T

0
ℓ+1 + t̃1,1T

0
ℓ +

d∑
i=3

t̃iT
0
ℓ+i−1, (4.9)

where the bi-tracial terms become a combination of moments and coupling constants t j, all

inside the new t̃ j’s as follows.

t̃k =

d∑
i=2

δi,ktk + 2
d∑

i=1

ti,k

i
T 0

i . (4.10)

Next we multiply equation (4.9) by 1/xℓ+1 and sum from ℓ = 0 to infinity. The resulting

equation is

∞∑
ℓ=0

ℓ−1∑
k=0

T 0
k T

0
ℓ−k−1

xℓ+1 =

∞∑
ℓ=0

t̃2
T 0
ℓ+1

xℓ+1 +

∞∑
ℓ=0

t̃1,1
T 0
ℓ

xℓ+1 +

∞∑
ℓ=0

d∑
i=3

t̃i
T 0
ℓ+i−1

xℓ+1 .

Then the equation can be written as

W0
1 (x)2 = S ′(x)W0

1 (x) − P0
1(x), (4.11)
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where

W0
1 (x) =

∞∑
ℓ=0

T 0
ℓ

xℓ+1 ,

P0
1(x) = t +

d∑
j=2

j−2∑
t=0

t̃ jT
0
j−ℓ−2xℓ,

and

S (x) =
1
2

t̃2x2 + t̃1,1x +
d∑

j=3

t̃ j

j
x j.

By solving the quadratic equation (4.11), one can find the resolvent function

W0
1 (x) =

1
2

(
S ′(x) −

√
S ′(x)2 − 4P0

1(x)
)
. (4.12)

Equation (4.11) is commonly referred to as the spectral curve. The solution W0
1 (x), called

the resolvent, can be used to give us the limiting eigenvalue density function of the random

matrix associated to the given model. It is well-known that this relationship is given by the

Stieltjes transform

W0
1 (x) =

∞∑
ℓ=0

T 0
ℓ

xℓ+1 =

∞∑
ℓ=0

limN→∞⟨
1
N Tr Hℓ⟩

xℓ+1

= lim
N→∞
⟨

1
N

Tr
∞∑
ℓ=0

Hℓ

xℓ+1 ⟩ = lim
N→∞

1
N
⟨Tr

1
x − H

⟩

= p.v.
∫

suppρ

ρ(y)
x − y

dy,

where we define ρ(y) as the limiting eigenvalue density function of the model. Thus, applying

the inverse Stieltjes transform tells us that

ρ(x) = −
1
πt
ℑW0

1 (x).

Consider for example the case that all coupling cosntants are zero except for t = 1. The

resulting model is the Gaussian Unitary Ensemble and

W0
1 (x) =

1
2

(x −
√

x2 − 4).

One can also derive that suppρ = [−2, 2]. So

ρ(x) =
1

2π

√
4 − x2

[−2,2],

which is Wigner’s semicircle distribution.
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The following lemma for unstable stuffed maps first appeared in [29] and is a generalization

of a famous result by the same name discussed in [22]. Ideally one would like to know how the

discriminant in equation (4.12) factors. This will determine the support of the limiting spectral

distribution.

Lemma 4.3.2 (1-Cut Brown’s Lemma) There exists formal power series α and γ2, as well as

a polynomial M(x), such that

α = O(t), γ2 = t + O(t2), M(x) =
S ′(x)

x
+ O(t),

and

S ′(x)2 − 4P0
1(x) = (M(x))2(x − a)(x − b), (4.13)

with a = α + 2γ and b = α − 2γ.

Brown’s lemma tells us that the models we are interested in will always have a single cut

solution. In general it is possible to find the number of connected components of support of

ρ. This will depend on ranges of the coupling constants as well as the degree and structure of

S (x).

4.4 The resolvent

In this section we will focus on finding the resolvent W0
1 (x) for several formal bi-tracial matrix

models that are type (1, 0) Dirac ensembles.

4.4.1 The Zhukovsky transform

The form of the discriminant in equation (4.13) motivates the use of the Zhukovsky transform

x(z) =
a + b

2
+

a − b
4

(
z +

1
z

)
with an inverse

z =
1

2γ

(
x − α +

√
(x − α)2 − 4γ2

)
.

The Zhukovsky transform maps the x-plane minus a line segment to the exterior of the unit

disk in the z-plane. It also has the following useful identity√
(x(z) − a)(x(z) − b) =

a − b
4

(
z −

1
z

)
.

We now borrow Theorem 3.1.1 from [22], which applies to our models as well.
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Theorem 4.4.1 [22] For the formal power series α and γ2 as mentioned above, we have the

expansions

S ′(x(z)) =
d−1∑
k=0

uk(zk + z−k)

and

W0
1 (x(z)) =

d−1∑
k=0

ukz−k,

with u0 = 0 and u1 = t/γ.

Notice that the theorem implies that since we have S (x), in theory we should be able to

compute the coefficients of W0
1 (x(z)) and then transform back to get W0

1 (x). Computing the

coefficients uk is much more involved in our models than in the single trace cases seen in [22].

We will show how to find them in various examples.

4.4.2 Moments

In general one may apply Lagrange’s inversion formula to compute the moments and the sup-

port of ρ(x) for a given model. To see this one first observes that moments can be extracted

from the resolvent generating function via the following contour integral

T 0
ℓ = −

1
2πi

∮
C

xℓW0
1 (x)dx.

We then apply the Zhukovsky transform to get

T 0
ℓ = −

1
2πi

∮
C

x(z)ℓW0
1 (x(z))x′(z)dz.

Expanding one can find the general formula.

Corollary 4.4.2 [22] The ℓ-th moment of ρ(x)dx is

T 0
ℓ =

∑
i+ j<ℓ,i< j<i+d

( j − i)ℓ!
(i + 1)!( j + 1)!(ℓ − 1 − i − j)!

αℓ−1−i− jγi+ j+2u j−i,

where the u j−i’s are the coefficients from theorem 4.4.1 that are determined by the potential.

This formula looks the same as for single trace models, but it is important to note that the

uk’s contain other moments of the model because of the bi-tracial terms. Because of this, this

formula now gives us a system of nonlinear equations to solve for moments.

As a side note, if one wishes to compute γ or α, the Lagrange inversion formula can be

applied to recover them in terms of the coupling constants. Just like in the single trace case
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even though we treated moments as just formal series, they are in fact algebraic functions of α

and γ, which are algebraic functions of the coupling constants. Thus, they have a finite number

of singularities and are convergent in some sufficiently small disc. These singularities are a

beautiful artifact of these models that is fundamental for the connection to Liouville quantum

gravity, as we will see. The characterization of these singularities is not quite understood for

multi-trace models in general, and may be an interesting phenomenon to study.

4.4.3 The quartic model

Consider the potential

S (D) =
t2

4
Tr D2 +

t4

8
Tr D4.

The potential can be written in terms of the Hermitian matrix H:

S (H) =
N
2

t2 Tr H2 +
N
4

t4 Tr H4 +
3
4

t4 Tr H2 Tr H2.

The derivative of the potential in the spectral curve (4.11) is given by

S ′(x) = (t2 + 3T 0
2 t4)x + t4x3.

For this model T 0
ℓ counts the number of planar gluings of quandrangles and 2-cells with two

boundaries of lengths two, with one polygon boundary of length ℓ. If ℓ is odd no such gluings

exist so the generating function is zero. Hence, we focus on even values of ℓ.

We next transform the resolvent and find that

W0
1 (x(z)) =

1
γz
+ t4γ

3 1
z3 .

Transforming back, we arrive at

W0
1 (x) =

1
2

(
(t2 + 3T 0

2 t4)x + t4x3 − t4(x2 − γ2 +
t

t4γ2 )
√

x2 − 4γ2

)
.

Thus, the limiting eigenvalue density function is

ρ(x) = −
1
πt
ℑW0

1 (x) =
1

2π

(
t4(x2 − γ2) +

1
γ2

) √
4γ2 − x2

[−2γ,2γ].

One would like to be able to find the value of γ in terms of the coupling constants. To do

this, we start by finding the transformed coefficients of S ′ :

S ′(x(z)) = (t2 + 3T 0
2 t4)(α + γ(z + 1/z)) + t4(α + γ(z + 1/z))3.
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Expanding, we find that we may write the coefficients of S ′(x(z)) in Theorem 4.4.1 as follows:

u0 = α(t2 + 3T 0
2 t4) + t4(α3 + 6αγ2)

u1 = (t2 + 3T 0
2 t4)γ + t4(3α2γ + 3γ3)

u2 = 3t4αγ
2

u3 = t4γ
3.

Using the same theorem, we deduce that

0 = u0 = α((t2 + 3T 0
2 t4) + t4(α2 + 6γ2))

and

t
γ
= u1 = γ((t2 + 3T 0

2 t4) + t4(3α2 + 3γ2)).

By the one-cut lemma as t goes to zero, so does α and T 0
2 by definition. Thus the factor

((t2 + 3T 0
2 t4)) + t4(α2 + 6γ2)) is nonzero when t2 , 0 order by order in t. Hence α = 0 in order

for this equation to hold on each term of the formal sum. This reduces the second equation to

3t4γ
4 + (t2 + 3T 0

2 t4)γ2 − 1 = 0

Using the formula for the second moment from Corollary 4.4.2, we have

3 t2
4γ

8 + 6t4γ
4 + t2γ

2 − 1 = 0.

Thus we are left with an equation that relates γ to the coupling constants, which can be solved

symbolically using software such as Maple or Mathematica.

Note that if we travel along the curve t2 = 1 − 3T 0
2 t4 the derivative of the potential curve

becomes

S ′(x) = x − t4x3,

which is the same as the quartic Hermitian matrix model∫
HN

e−
N
2 Tr H2− N

4 t4 Tr H4
dH.

See chapter 3 of [22] for details about this model. Thus, both models at these specifications

have the same resolvent W0
1 (x). This shall be important in later sections. We shall make similar

conclusions about the rest of the models examined in the following two sections.
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4.4.4 The hexic model

Consider the potential

S (D) =
t2

4
Tr D2 +

t4

8
Tr D4 +

t6

12
Tr D6.

For the spectral curve (4.11) we get

S (x) =
t2 x2

2
+ t4

(
x4

4
+

3T 0
2 x2

2

)
+ t6

(
x6

6
+

5T 0
2 x4

2
+

5T 0
4 x2

2

)
,

and thus

S ′(x) = t6 x5 +
(
10T 0

2 t6 + t4

)
x3 +

(
5T 0

4 t6 + 3T 0
2 t4 + t2

)
x.

For this model, if ℓ is odd the moment is zero by the same H → −H symmetry as in the quartic

case. We then apply the Zhukovsky transform to obtain

α5t6 + (t4 + t6(20γ2 + 10m2))α3 + (t2 + t4(6γ2 + 3m2) + t6(30γ4 + 60γ2m2 + 5m4))α = u0 = 0.

By the same argument as in the quartic case, we can deduce α = 0. Thus, we find

1
γ
= u1 = t2γ + t4(3γ3 + 3γm2) + t6(10γ5 + 30γ3m2 + 5γm4)

u2 = 0

u3 = t4γ
3 + t6(5γ5 + 10γ3m2)

u4 = 0

u5 = t6γ
5.

Using the Corollary 4.4.2, we find that

m2 = −
γ2

(
5 t6 γ

6 + t4 γ
4 + 1

)
10 t6 γ6 − 1

m4 = 2 γ4 + 3 γ5

t4 γ
3 + t6

5 γ5 − 10
γ5

(
5 t6 γ

6 + t4 γ
4 + 1

)
10 t6 γ6 − 1


 + t6 γ

10.

This gives the limiting eigenvalue density function as

ρ(x) = −
1
πt
ℑW0

1 (x) =
1

2π

t6 x4 +
x2

γ

 t4 γ
3 + t6

(
5 γ5 + 10 γ3m2

)
γ2 − 3 t6 γ

3


+
γ−1 − t4 γ

3 − t6

(
5 γ5 + 10 γ3m2

)
+ t6 γ

5

γ

 √
4γ2 − x2

[−2γ,2γ], (4.14)
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where γ can be found as the solution to the 1/γ = u1 relation for given t2, t4, and t6.

Similarly as in the quartic ensemble, when one travels along the hypersurface 5T 0
4 t6 +

3T 0
2 t4 + t2 = 1, we have that the derivative of the potential becomes

S ′(x) = t6 x5 +
(
10T 0

2 t6 + t4

)
x3 + x.

Next, one may set 10T 0
2 t6 + t4 equal to some desired value to reduce the derivative of the

potential, and therefore W0
1 (x), to being the same as the hexic Hermitian matrix model∫

HN

e−
N
2 Tr H2− N

4 t4 Tr H4− N
6 t6 Tr H6

dH.

4.4.5 The cubic model

Consider the potential

S (D) =
t2

4
Tr D2 +

t3

6
Tr D3,

which becomes

V(x) =
t2

(
2 m1 x + x2

)
2

+
t3

(
3 m1 x2 + x3 + 3 xm2

)
3

in the spectral curve equation (4.11). Thus,

V ′(x) = t3 x2 + (2 t3 m1 + t2) x + t2 m1 + t3 m2.

We then apply the Zhukovsky transform and find that

0 = u0 =
t2 (2 m1 + 2 a)

2
+

t3

(
3α2 + 6αm1 + 6 γ2 + 3 m2

)
3

1
γ
= t2 γ +

t3 (6 γ α + 6 m1 γ)
3

u2 = t3γ
2z2.

Using Corollary 4.4.2, we may compute the moments of interest

m1 = α + γ
4t3

m2 = α
2 + γ2 + 2αγ4t3.

This gives the limiting eigenvalue density function

ρ(x) = −
1
πt
ℑW0

1 (x) =
1
π

(
1
γ2 + t3(x − α)

) √
(x − α − 2γ)(α − 2γ − x)[α−2γ, α+2γ],
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where γ and α can be found as the solution to the above relations for given t2 and t3.

When one travels along 2 t3 m1 + t2 = 1 and t2 m1 + t3 m2 = 0, the derivative of the potential

is the same as the cubic Hermitian matrix model∫
HN

e−
N
2 Tr H2− N

3 t3 Tr H3
dH.

Thus, in these circumstances both models have the same W0
1 (x).

4.5 (Blobbed) topological recursion

Roughly speaking, and in our context of matrix models, topological recursion works as follows.

Using the resolvent technique one first defines a complex curve (Riemann surface) Σ, called

the spectral curve of the model. One then constructs a sequence of symmetric mermorphic

differential forms ωg,n(z1, . . . , zn)dz1...dzn of degree n for g ≥ 0, n ≥ 1, on n-fold Cartesian

products of Σ. Topological recursion works by induction on the Euler characteristic 2 − 2g − n

of a surface of genus g with n boundaries. It gives an inductive formula for all ωg,n, starting

with the first two forms ω0,1 and ω0,2:

ωg,n+1(I, z) =
∑
βi

Resq→βi Ki(z, q)
(
ωg−1,n+2 (I, q, σi(q))

+
∑

g1+g2=g
I1⊎I2=I

(g1,I1),(0,∅),(g2,I2)

ωg1,|I1 |+1 (I1, q)ωg2,|I2 |+1 (I2, σi(q))
)
,

where I = {z1, ..., zn} and βi are the ramification points of the ramified covering x, defined via

dx(βi) = 0. The recursive kernel Ki(z, q) is constructed from the initial data. In the special case

when Σ is the projective line, ω0,2 is the Bergmann kernel

ω0,2(z1, z2) =
dz1dz2

(z1 − z2)2 .

As previously mentioned, it was first seen in [8] that multi-trace matrix models correspond

to the generating function of stuffed maps. Such generating functions obeys a generalization

of topological recursion [8], known as blobbed topological recursion. Recall the generating

functions Wg
k (x1, .., xk) of unstable stuffed maps defined in Section 4.3.1. As discussed these

generating functions are precisely the resolvent functions’ genus expansion terms for multi-

trace matrix models. In our case we are dealing with bi-tracial models, whose genus expansion

is proven rigorously in [29] which corresponds to unstable stuffed maps i.e. stuffed maps in-

volving 2-cells with the topology of discs and cylinders. Given the initial generating functions
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W0
1 (x) and W0

2 (x1, x2), which count connected unstable stuffed maps with one and two bound-

aries respectively, one can use a recursive formula to compute all higher genus and boundary

generating functions [8]. In particular for unstable stuffed maps, blobbed topological recursion

reduces to the usual topological recursion. If more than the product of two traces occurs in the

potential, then blobbed topological recursion is required. These computations are all done in

Zhukovsky space.

4.5.1 Unstable stuffed maps of genus zero with two boundaries

We would like to use blobbed recursion to compute higher order correlation functions of Dirac

ensembles. In the previous section we showed how to compute W0
1 (x) with various examples.

The next step is to find W0
2 (x1, x2), which for many important models, in Zhukovsky space,

is universal. For example this is true in single trace Hermitian matrix models [22] and in the

multi-matrix model seen in [13]. As far as the authors of this paper can tell, the form of this

function has not been established for multi-trace matrix models, despite efforts in this direction

given in [3]. For our bi-tracial models the proof of the universal form of W0
2 (x1, x2) is the same

as the proof in Section 3.2 of [22]. That is

W0
2 (x(z1), x(z2))x′(z1)x′(z2)dz1dz2 =

(
1

(z1 − z2)2 −
x′(z1)x′(z2)

(x(z1) − x(z2))2

)
dz1dz2. (4.15)

Notice the appearance of the Bergman kernel.

If one wishes to compute the second order mixed moments, one needs to compute the

residue

Tℓ1,ℓ2 = Resx1→∞Resx2→∞xℓ1
1 xℓ2

2 W0
2 (x1, x2)dx1dx2.

To simplify this calculation one may apply the Zhukovsky transform in both variables and see

that the second term on the right hand side of equation (4.15) contributes nothing to the residue.

In summary, we have established that for our bi-tracial matrix models W0
2 (x1, x2) has the

same universal form as the single trace matrix models mentioned above.

4.5.2 Single trace models hidden in Dirac ensembles

Now with W0
1 (x) and W0

2 (x1, x2) we may compute higher order correlation functions of our

Dirac ensembles. This is proven as Theorem 9.1 in [3]. However, we shall not explicitly

compute them here and instead have a different goal in mind.

As noted in the previous section, the coupling constants of the quartic, cubic, and hexic

Dirac ensembles can be tuned to be the same as their respective Hermitian matrix model coun-



4.6. The double scaling limit and 2D quantum gravity 89

terparts for certain values. When this is the case, W0
1 (x) is the same, and in particular α and

γ are as well. Thus, combining this fact with the universal form of W0
2 (x1, x2), via topological

recursion all higher order genus expansion terms will be identical. Hence, we have proven that

these single trace models hide in the above mentioned Dirac ensembles, at least for certain

values of the coupling constants.

In [6] and chapter 5 of [22] it is proven that single trace Hermitian matrix models have

interesting behavior at certain critical points. For the quartic model this occurs at t4 = −
1
12 , the

hexic at t4 = −
1
9 and t6 =

1
270 , and the cubic at t3 = −

1
2 3−3/4. These points can be found as the

locations of cusps of the spectral curve. See chapter 5 of [22] for details. Fortunately in the

above mentioned Dirac ensembles all these critical points can be recovered. Their importance

will be discussed in the following section.

4.6 The double scaling limit and 2D quantum gravity

In this section we will first review an old connection between random matrix theory and two

dimensional quantum gravity. We will then discuss how these exact same connections hold for

specific examples of Dirac ensembles of dimension one.

4.6.1 Large maps

As discussed in Section 4.3.1, formal matrix integrals count maps which are essentially poly-

gonizations of Riemann surfaces. Intuitively, as the number of 2-cells that make up a map

increases, the polygonization should give a better approximation of the underlying surface.

Thus, our goal is to fine-tune the coupling constants of the model to some critical point that

will cause the number of polygons that make up maps to go to infinity.

We emphasize that this is not a new idea. It was know on a heuristic level to physicists

in the 80’s and 90’s [12, 20] for asymptotic quantities of random matrix models. Physicists

predicted a connection to Liouville conformal field theory coupled to gravity, and it was in-

deed proven using the KPZ formula [11], that many models from both theories have the same

critical exponents. Correlation functions of certain conformal field theories have the symmetry

of representations of conformal groups. Such infinite representations in two dimensions were

classified in Kac’s table [23], and distinguished by two integers (p, q). For each such integer

pair of a so-called minimal model the generating functions must satisfy a partial differential

equation. It was proved in [6] that formal single matrix models have an associated (2m + 1, 2)

minimal model whose generating functions in the double scaling limit satisfy the associated

partial differential equation and whose critical exponents match the minimal model. For ex-
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ample, the (3, 2) minimal model is referred to as pure gravity. Its generating functions satisfy

Painlevé I. Both the quartic and cubic matrix models are associated with this minimal model.

For a more detailed description see Chapter 5 of [22].

This idea is particularly useful in the context of Dirac ensembles because it provides a

direct link between path integrals over metrics of finite noncommutative geometries to two

dimensional quantum gravity coupled to conformal field theories. We will describe this idea

here. Consider the genus expansion of the partition function for some Dirac ensemble [29]

log Z :=
∞∑

g=0

N2−2gFg,

where

Fg =

∞∑
v=1

tv
∑

Σ∈SM
g
k (v)

d∏
i, j=1

tni, j(Σ)
i, j

1
|Aut(Σ)|

.

In general, Fg is a function of the coupling constants with some algebraic or logarithmic sin-

gularities [22]. These Fg’s can be computed from the W0
k ’s found using topological recursion.

For details see Section 3.4 of [22]. As discussed in the previous section, for specific values

of coupling constants the quartic, cubic, and hexic Dirac ensembles are precisely single trace

Hermitian matrix models. Furthermore, all higher order correlation functions W0
k are the same

in these ranges of coupling constants. Thus, all Fg are as well.

As the number of vertices gets very large, the behavior of the Fg’s is going to be dominated

by their singularities closest to zero. Thus, the behavior of unstable stuffed maps with a very

large number of vertices is going to be controlled by the behavior of their generating functions

near where its derivative diverges.

Now consider the quartic Dirac ensemble as an example. We can fine tune its coupling

constants such that we recover the quartic Hermitian matrix model. As seen in [22], the explicit

forms of the Fg’s of the quartic matrix model imply that near a critical point, the series has

an expansion as the sum of regular and singular functions. With g , 1 at the critical point

t4 = 1/12, the singular part of the expansion looks like

sing(Fg) = Cg (t4 − tc)5(1−g)/2

for some constant Cg. When g = 1,

sing(F1) = C1 log(t4 − tc).

If one defines the new series

u(y) =
∞∑

g=0

Cgy5(1−g)/2,
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then u′′(y) satisfies the Painlevé I equation

y = (u′′(y))2 −
1
3

u(4)(y).

Note that, even in the double scaling limit, the generating functions of large maps can

be computed using topological recursion [22]. Furthermore, for general single trace matrix

models, we can construct the following formal series:∑
g≥0

N2−2gF̃g,

where F̃g are the leading terms in the asymptotic expansions of Fg. This series is a formal

Tau-function of some reduction of the KdV hierarchy, and can be obtained from Liouville

conformal field theory when coupled with gravity. For more details see Section 5.4 of [22].

Thus, if we can fine-tune a Dirac ensemble to the critical points of a single trace matrix model,

the same result follows. In particular, we know that the critical point of the quartic Hermitian

matrix model is t4 = −1/12, and considering the analysis done in Section 4.4.3 we have the

following phase diagram for the quartic Dirac ensemble.

Figure 4.2: The phase diagram of the quartic Dirac ensemble.

In the above diagram we have the curve where the spectral phase transition happens. This

is precisely when the constant t2 is chosen in terms of t4 as

t2 = −8
√

t4.

This can be found by finding when ρ(0) = 0, just as in [28].
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One can also conclude that the quartic matrix model appears when

t2 = −
(1 + 12t4)3/2 − 4 − 144t4 + (36t4 + 3)

√
1 + 12t4

72t4
.

In the quartic matrix model the critical point occurs at t4 = −
1

12 . In the quartic Dirac ensemble

this corresponds to the point t4 = −
1
12 and t2 =

4
3 . Note that the spectral phase transition curve

does not cross the quartic matrix model curve. This is because, in the quartic matrix model

considered, ∫
HN

e−
N
2 Tr H2−

c4
4 N Tr H4

dH,

there is no spectral phase transition. A coupling constant in front of the Gaussian term is

required for this phenomenon to occur.

Remark Ultimately we are solving the loop equations, which are the same in this case regard-

less of whether the model is considered formal or convergent. Which interpretation we can

choose is dependent upon which quadrants of Figure 4.2 we are considering. In the first and

fourth quadrants t4 is negative in the potential, so the model can always be seen as convergent

since the quartic term dominates the Gaussian one at the limits of the integral. In quadrants

one and two the model can always be viewed as formal since the Gaussian integrals in the

definition of a formal integral are always convergent. In the third quadrant, however, the model

is neither formal nor convergent, as the integrals diverge, but so do all the Gaussian integrals

in the formal definition.

A similar analysis may be done for the cubic Dirac ensemble. However, no spectral phase

transition occurs in this model. See Figure 4.3. The critical point is at t3 = −
1
2 3−3/4 and

t2 =

√
3

216
+

1
3
+

3168
√

3 +
(
411915

√
3 + 418608 + 648

√
239311 + 18512

√
3
) 2

3

+ 5043

216
3

√
411915

√
3 + 418608 + 648

√
239311 + 18512

√
3

≈ 1.297.

In general it was shown in [12] that a matrix model of the form∫
HN

e−
N
2 Tr H2−

∑d
j≥

c j
j N Tr H j

dH

is associated with a (2m + 1, 2) minimal model in the double scaling limit. In particular, we

can deduce then that the quartic, cubic, and hexic Dirac ensembles of type (1, 0) are associated
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Figure 4.3: The phase diagram of the cubic Dirac ensemble.

with the (3, 2), (3, 2), and (5, 2) minimal models. In general for single matrix models, if the

potential of the model is degree d and it is odd then it is associated with the (d, 2) minimal

model. If the degree is even, then it is associated with the (d − 1, 2) minimal model. We expect

the same relationship holds for Dirac ensembles of the above mentioned form.

4.7 Conclusion and outlook

In this paper we analyze the quartic, cubic, and hexic Dirac ensembles of type (1, 0) as for-

mal matrix integrals. Their resolvent functions W0
1 and limiting eigenvalue distributions are

found explicitly. The cylinder amplitude W0
2 is discussed to have a universal form. Thus, via

the process of blobbed topological recursion one may compute all higher genus and boundary

correlation functions. During this analysis, it is found that by fine-tuning the coupling con-

stants of these models one can recover critical phenomena seen in certain Hermitian matrix

models. In particular in the double scaling limit we find the critical exponents associated with

minimal models from conformal field theories. Additionally, for these models the genus ex-

pansion terms of the log of the partition function satisfy the same differential equations as the

partition functions of the corresponding minimal model in the double scaling limit. We hope

to prove rigorously in future work that most Dirac ensembles of type (1, 0) and (0, 1) have a

corresponding minimal model in the double scaling limit. Further, it would be interesting to

construct multicritical matrix models [27, 1, 2] from Dirac ensembles.
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Essentially, we have recovered conformal field theories coupled to gravity from toy models

of quantum gravity on noncommutative spaces. We would like to extend this connection to

Dirac operators of higher dimension. This seems likely considering that similar connections

have been made for multi-matrix models [16]. Without any known analytic techniques to study

matrix models seen in higher dimensional Dirac ensembles we can only aim for numerical evi-

dence. It may be possible to deduce the critical values of Dirac ensembles using the bootstraps

technique [26]. In random matrix models the range of coupling constants on which the model

is defined determines the critical values. For example the quartic matrix model has solutions

when −1/12 < t4 in the large N limit. Thus, bootstrapping seems like a likely candidate to

use to find these critical points. However, determining these critical exponents might be better

suited to Monte Carlo simulations. This was explored in some sense in [24]. Note that the

finite size of N might strongly affect these values. Another possibility is through functional

renormalization group techniques [37]. We hope to explore these ideas in future works.
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Borot’s personal homepage, 2018. https://www.mathematik.hu-berlin.de/de/

forschung/forschungsgebiete/mathematische-physik/borot-mp-homepage/ trsum-

mary2.pdf.

[11] A. A. Belavin, A. Polyakov and A. B. Zamolodchikov. Infinite conformal symmetry in

two-dimensional quantum field theory. Nuclear Physics B. 241 (2): 333–380, 1984.

95



96 BIBLIOGRAPHY
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Appendix A

Markov Chain Monte Carlo Simulation

In this appendix, we simulate a random matrix model using the method of Markov chain Monte

Carlo (MCMC) simulation. By doing this we are able to verify results obtained in chapters 2,3,

and 4 by numerical simulation. We discuss the Monte Carlo method of sampling and its benefits

in numerical computations. We study the step size and autocorrelation of the MCMC samples

with an example.

A.1 Method of MCMC in random matrix theory

Consider a random Hermitian matrix model with the partition function:

Z =

∫
HN

e−V(H)dH. (A.1)

The expectation of a real or complex-valued function f onHN is defined to be:

⟨ f (H)⟩ =
1
Z

∫
HN

f (H)e−V(H)dH. (A.2)

The model can be approximated by a discrete ensemble {H1, · · · ,Hn}, and the expectation can

be estimated by averaging of the samples:

⟨ f (H)⟩n =

∑n
j=1 f (H j)e−V(H j)∑n

j=1 e−V(H j)
, (A.3)

i.e.,

⟨ f (H)⟩ = lim
n→∞
⟨ f (H)⟩n. (A.4)

This can be done by using a Markov Chain Monte Carlo simulation. In a MCMC algorithm,

the Hermitian matrix Hi is generated with a probability distribution such that

Pr(X = Hi) =
e−V(Hi)∑n
j=1 e−V(H j)

. (A.5)
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In this case,

⟨ f (H)⟩n =
n∑

i=1

f (Hi)Pr(Hi) . (A.6)

A.2 Metropolis-Hastings algorithm in MCMC simulation

The Metropolis–Hastings algorithm is an MCMC method for obtaining a sequence of random

samples from a probability distribution. It is a powerful tool to generate a discrete measure to

approximate a matrix ensemble. The algorithm is as follows.

• Initialization (step 0): Produce a complex matrix with entries randomly chosen in the

complex range [−1 − i, 1 + i], i.e., the real and imaginary parts of each entries of the

matrix is generated by uniformly distribution from [−1, 1]. Then we take the average

of the matrix with its conjugate to make a Hermitian matrix. This matrix becomes the

initial state x0 of the algorithm.

• Iteration: Then for each iteration t:

– Generate: Add a random Hermitian matrix with entries in the complex range

[(−1 − i)ℓ, (1 + i)ℓ],

to the previous state to get a random candidate state x′. Note that ℓ is the length of

the steps and is kept fixed during the simulation.

– Acceptance ratio: Calculate the ratio r = e−V(x′)

e−V(xt ) = eV(xt)−V(x′).

– Accept or reject:

* Generate a uniform random number u ∈ [0, 1].

* If r ≥ u, accept the candidate by setting xt+1 = x′.

* If r < u, reject the candidate and set xt+1 = xt.

With adjusting the length of the steps, the acceptance rate can be about 50% which is a

desired rate to get a proper simulation [2]. After a sufficient number of moves, the probability

distribution for x j becomes independent of the initial state x0. Only the states generated af-

ter reaching independence are representative of the probability distribution and can be used to

measure observables. The histogram of their eigenvalues approximates the probability distri-

bution of the model. For more details we refer the readers to [1, 3].
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A.3 MCMC for a quartic bi-tracial matrix ensemble

Suppose the potential of a Hermitian matrix model is:

V(H) = N
t2

2
Tr H2 + N

t4

4
Tr H4 +

t2,2

4
(Tr H2)(Tr H2).

We applied a Markov chain Monte Carlo simulation to get the following diagram.

Figure A.1: The eigenvalue distribution of 50000 Hermitian matrices of size 30, at the phase

transition, with the coupling constants t2 = −4, t4 = 1, and t2,2 = 1.

By using the MCMC algorithm, not only a good approximation of the moments of the

model can be found (A.4), but also the phase transition can be achieved. The following diagram

is the autocorrelation of the simulation we had.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

10
4

-0.5

0

0.5

1

Autocorrelation

Figure A.2: Decay of the autocorrelation of the minimum eigenvalue for the model with cou-

pling constants t2 = −4, t4 = 1, and t2,2 = 1. The horizontal axis is Monte Carlo time. After

around 15000 steps, states become almost independent with respect to the initial state.
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Appendix B

Convergent and Formal Matrix Models

B.1 Convergent unitary invariant matrix ensembles

In general, a random matrix is a matrix valued random variable. In particular we are interested

in random Hermitian and skew-Hermitian matrices. The simplest example of interest is what

is called the Gaussian Unitary Ensemble (GUE). The joint distribution on the entries of a GUE

matrix is given by
1

ZG
N

e−
N
2 Tr H2

dH,

where ZG
N is the normalization constant and dH is the Lebesgue measure of the real N2-

dimensional vector space of N × N Hermitian matrices:

dH =
∏

i

dReHii

∏
i< j

dReHi jdImHi j.

The GUE gets its name from being invariant under unitary transformations on H. A much

wider class of random matrix ensembles have this property and are referred to as (unitarily)

invariant ensembles. Traditionally, the invariant ensembles of interest are given by measure a

of the form

1
ZN

e−
N
2 Tr H2−

∑d
j=3

Nt j
j Tr H j

dH.

where d is some even integer greater than three, and the t j’s are some real coupling constants.

There are several quantities of interest when analyzing these ensembles. The partition

function ZN can often be computed using orthogonal polynomials [7]. However, when studying

Dirac ensembles another type of invariant ensemble is considered, one where this technique is

not applicable. Consider convergent matrix models of the form
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ZN =

∫
HN

e−
N
2 Tr H2−

∑d
j=3

Nt j
j Tr H j−

∑d
i, j=1

ti, j
i+ j Tr Hi Tr H j

dH. (B.1)

Such models are called bi-tracial.

Another important quantity of interest are moments which we define as

⟨
1
N

Tr Hℓ⟩ :=
1
N

1
Z

∫
HN

Tr Hℓe−
N
2 Tr H2−

∑d
j=3

Nt j
j Tr H j−

∑d
i, j=1

ti, j
i+ j Tr Hi Tr H j

dH

for ℓ ≥ 0. In practice, given these moments one can find a unique corresponding probability

distribution with compact support. This quantity is often difficult to compute for finite N.

However, calculations simplify if one considers computing the limit of these moments as N

goes to infinity, which we refer to as the large N limit. This sequence of moments, in practice,

also has a unique corresponding probability distribution, which is called the limiting eigenvalue

distribution. In particular for convergent integrals of the form of (B.1) it can be expressed as

dµ(x) = ρ(x)dx, where ρ is a continuous function, referred to as the limiting eigenvalue density

function. For example, in the case of the GUE, the limiting eigenvalue distribution is the

celebrated Wigner semicircular distribution.

Even though the direct computation of ZN for finite N seems out of reach, one may still

compute the limiting eigenvalue distribution in the large N limit using Coulomb gas tech-

niques, which we will now review. The first step to compute this distribution is to apply Weyl’s

integration formula [1] to reduce the N2-dimensional integral ZN to an integral over its N eigen-

values:

ZN = CN

∫
RN

exp

−N
2

N∑
k=1

λ2
k −

d∑
j>2

Nt j

j

 N∑
k=1

λ
j
k


−

d∑
i, j=1

ti, j

i + j

 N∑
k=1

λi
k

  N∑
s=1

λ j
s


∏

k<s

(λk − λs)2
N∏

k=1

dλk

=: CN

∫
RN

exp

− N∑
i, j=1

Q(λi, λ j) + 2
∑
i< j

log |λi − λ j|

 dλk

for some constant CN . Notice that the Jacobian from the change of variables gave us the square

of the famous Vandermonde determinant in the integrand.

For certain potentials, the leading contribution of the integral is going to come from the set

of eigenvalues that maximizes the integrand, we denote such a set {λ∗i }
N
i=1. One can often show

that such a point in RN is unique, allowing us to apply Laplace’s method. Furthermore, we may

construct the normalized counting measure of eigenvalues:

µN =
1
N

N∑
i=1

δλ∗i . (B.2)
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Using the results in chapter six of [7] one can show that for convergent integrals like (B.1),

the measure (B.2) converges in the vague topology to the limiting eigenvalue distribution of the

ensemble. The limiting eigenvalue distribution of (B.1) can be found as the unique measure µ

that minimizes the following functional:

I(µ) =
∫
R

∫
R

(
Q(x, y) − log |x − y|

)
dµ(x)dµ(y).

With knowledge of µ one may compute the large N moments of a random matrix ensemble as

lim
N→∞

1
N
⟨Tr Hℓ⟩ =

∫
xℓdµ(x).

Additionally, though not as obvious how, one can also compute the free energy

lim
N→∞

1
N2 ln ZN

from knowledge of the spectral density ρ. For more details see chapter 6 of [7].

Define the resolvent moment generating function as

W0
1 (x) = lim

N→∞

〈
Tr

1
x − H

〉
=

∞∑
ℓ=0

limN→∞⟨Tr Hℓ⟩

xℓ+1 .

The resolvent is in fact the Stieltjes transform of the limiting eigenvalue density function:

W0
1 (x) =

∫
suppρ

ρ(y)dy
x − y

.

Thus if one can compute the resolvent, then in theory one can invert the Stieltjes transform to

find ρ.

Spectral phase transitions are common phenomena involving the limiting eigenvalue distri-

bution and occurs when the number of connected components of the support changes as one

changes the values of the coupling constants. We refer to Section 2.3.2 for examples.

For later use we will also define higher moments as

⟨Tr Hℓ1 Tr Hℓ2 ...Tr Hℓk⟩ =

∫
HN

Tr Hℓ1 Tr Hℓ2 ...Tr Hℓke−
N
2 Tr H2−

∑d
j=3

Nt j
j Tr H j

dH.

In practice however, it is often easier to compute the cumulants, denote with a subscript c,

instead of the moments, which are related by the moment-cumulants, see relations chapter

1.2.5 of [13].
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B.2 Formal matrix models

We will now discuss a very different but deeply related type of matrix model. Informally, given

an expression for a matrix integral that may or may not be convergent, one defines a formal

matrix integral by expanding the non-Gaussian terms in a power series and exchanging the

order of integration and summation. For example, consider the expression∫
HN

e−
N
2t Tr H2−

t4N
4t Tr H4

dH.

A formal matrix integral corresponding to this expression may be defined as

Zquad :=
∞∑

n=0

Nntn
4

(4t)nn!

∫
HN

(Tr H4)ne−
N
2 Tr H2

dH.

In general, and as can be seen in the preceding example, formal matrix integrals are weighted

formal summations of GUE moments. Note that these series are typically divergent and should

be understood as formal power series in t, t4 and other coupling constants.

GUE moments have a combinatorial interpretation as sums over maps. A map is a graph

embedded in a Riemann surface that comes from gluing edges of various polygons in particular

the complement of a map on a surface is a disjoint union of open discs. For a more detailed

definition see [13]. For example consider Figure B.1. This leads to formal matrix integrals

being the weighted generating functions of maps [6, 13].

Figure B.1: The only two possible maps resulting from gluing an unmarked quandrangle.

Consider the previous example. One can show that

Zquad =
∑
g≥0

(N
t

)2−2g
 ∞∑

v=0

tv
∑
Σ∈Mg(v)

tn4(Σ)
4

|Aut(Σ)|
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where, for the quartic model,Mg(v) is the set of maps with genus g and v vertices formed from

gluing quadrangles together and n4(Σ) is the number of quadrangles glued to form the map Σ.

One can show that for fixed g and v,Mg(v) is a finite set, thus the coefficients of the series

Fg :=
∞∑

v=0

tv
∑
Σ∈Mg(v)

tn4(Σ)
4

|Aut(Σ)|
(B.3)

are finite. This ensures that Zquad is a well-defined formal series [13].

In general, the consequence of a term of the form

t jN
jt

Tr H j

in the potential is that one adds j-gons to the set of polygons that may be used to glue maps.

Thus, a formal matrix integral of the form

ZN =

∫
HN

e−
N
2t Tr H2−

∑d
j=3

Nt j
jt Tr H j

dH

is in fact the formal power series

ZN =
∑
g≥0

(N
t

)2−2g
 ∞∑

v=0

tv
∑
Σ∈Mg(v)

tn3(Σ)
3 tn4(Σ)

4 ...tnd(Σ)
d

|Aut(Σ)|

 , (B.4)

where Mg(v) is the set of maps with genus g and v vertices formed from gluing: triangles,

quadrangles, ..., and d-gons. For 1 ≤ j ≤ d, n j(Σ) is the number of j-gons used to glue the map

Σ. This formal summation is once again well-defined because the setMg(v) is finite.

Note that formal matrix integrals like (B.4) are organized by the genus of the maps. Such

an expression is called a large N expansion or genus expansion. Remarkably, convergent ma-

trix integrals often also have a genus expansion whose coefficients coincide to leading order

with those of its formal counterpart. For discussions on the relationship between formal and

convergent matrix models see [9].

We will now extend these ideas to bi-tracial formal matrix models. A 2-cell of topology

(k, g) is a connected oriented genus g surface with k boundaries. They generalize the usual

polygons seen in the perturbative expansion of single trace matrix models. In particular, for

bi-tracial matrix models, the consequence of a term of the form

t jN
(i + j)t

Tr Hi Tr H j

in the potential is that one adds 2-cells with the topology of a cylinder with boundaries of

lengths i and j to the set of polygons to glue. Maps glued from 2-cells with topologies other
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than a disc are referred to as stuffed maps and were studied in detail in [3, 4]. For example see

Figure B.2.

Figure B.2: A gluing resulting from a quandrangle and a 2-cell with the topology of a cylinder

and boundaries of lengths two.

Some other important aspect of formal matrix integrals are their moments, higher moments,

and cumulants. Consider the following formal matrix integral∫
HN

e−
N
2t Tr H2−

∑d
j=3

Nt j
jt Tr H j

dH.

Its moments are the formal series that result from considering the integral of Tr Hℓ then power

series expanding all non-Gaussian terms and swapping the order of integration and summation.

One can show that these moments, just like the partition function, have a genus expansion:

⟨Tr Hℓ⟩ =
∑
g≥0

(N
t

)1−2g
 ∞∑

v=0

tv
∑
Σ∈M

g
ℓ
(v)

tn3(Σ)
3 tn4(Σ)

4 ...tnd(Σ)
d

|Aut(Σ)|

 :=
∑
g≥0

(N
t

)1−2g

T
g
ℓ

whereMg
ℓ(v) denotes the set of connected maps of genus g, with v vertices, glued from trian-

gles, quandrangles, ..., d-gons, and one distinguished ℓ-gon with a rooted edge, which is called

a boundary. By rooted edge we mean that one edge is distinct and has a direction that orients

the polygon. Notice that maps in Mg
ℓ(v) are connected, where by definition a map is called

connected if it is draw on a connected Riemann surface. Note that if ℓ = 0, then each T g
0 is

precisely Fg from equation (B.3).

Next one wants to consider higher moments which have a similar genus expansion

⟨Tr Hℓ1 Tr Hℓ2 · · ·Tr Hℓk⟩ =
∑
g≥0

(N
t

)2−2g−k

∞∑

v=0

tv
∑

Σ∈M
g
ℓ1 ,...ℓk

(v)

tn3(Σ)
3 tn4(Σ)

4 ...tnd(Σ)
d

|Aut(Σ)|

 ,
whereMg

ℓ1,...,ℓk
(v) denotes the set of not necessarily connected maps of genus g, with v vertices,

glued from triangles, quandrangles, ..., d-gons, one boundary of length ℓ1, ..., one boundary

of length ℓk. Notice that this time the set is not necessarily connected. Counting connected

maps is much easier than counting disconnected ones, thus in practice one computes the sum
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over connected maps, denoted by ⟨Tr Hℓ1 Tr Hℓ2 · · ·Tr Hℓk⟩c. Remarkably, the connected sums

are precisely the cumulants from classical multivariate probability theory. In particular one can

recover ⟨Tr Hℓ1 Tr Hℓ2 · · ·Tr Hℓk⟩ using the moment-cumulant relations. For a discussion of this

see chapter 1.2.5 of [13]. We will see in the next section that one can compute the coefficients

of the genus expansions of moments and cumulants recursively.

In formal matrix integrals we have seen that the partition function, moments, and cumulants

are well-defined formal series. It is often the case that these converge in some small multi-disc

while also having (usually algebraic) singular behaviour for certain values of the coupling con-

stants. At these singularities, the formal series has an asymptotic expansion. The exponent of

the leading order term in this asymptotic expansion is usually referred to as a critical exponent.

Let A(x) be a formal series with a singularity at xc, then the critical exponent of

A(x) ∼ C(x − xc)a + ...

is a.

This idea is common in statistical mechanics to describe quantities near the singularities of

phase transitions and are in some sense universal. In random matrix theory they are often used

to find connections to areas of physics, such as conformal field theory [8]. Some examples of

this are given in Section 2.3.4 for the genus expansion terms of the natural logarithm of the

partition function.

B.3 The Schwinger-Dyson equations and topological recur-
sion

A common tool used to analyze both formal and convergent random matrix integrals are

Schwinger-Dyson equations (SDE’s): an infinite system of recursive equations between mo-

ments and cumulants. They were first introduced by Migdal in [16]. These equations have a

straightforward derivation. Consider a matrix integral, either formal or convergent, of the form∫
HN

e−S (H)dH,

where S (H) is some multi-tracial polynomial of powers of H. Using Stoke’s formula, it follows

that
N∑

i, j=1

∫
HN

∂

∂Hi j

(
(Hℓ)i je−S (H)

)
dH = 0

for any ℓ ≥ 0. Applying the product rule to the integrand we find that
ℓ−1∑
k=0

⟨Tr Hℓ−1−k Tr Hk⟩ − ⟨Tr HℓS ′(H)⟩ = 0.



B.3. The Schwinger-Dyson equations and topological recursion 109

Suppose for example that S (H) = N/2 Tr H2 + Nt4/4 Tr H4. Then this equations becomes

ℓ−1∑
k=0

⟨Tr Hℓ−1−k Tr Hk⟩ = N⟨Tr Hℓ+1⟩ + N⟨Tr Hℓ+4⟩. (B.5)

Often finding the solutions for these equations at finite N is quite difficult. By applying the

genus expansion of moments, provided that it exists, one can derive equations for each order

of N that relate the coefficients of the genus expansions. Continuing the quartic example, let

⟨Tr Hℓ⟩ :=
∑
g≥0

N1−2gT
g
ℓ .

Collecting like terms of the genus expansion of the moments in the Schwinger-Dyson equa-

tions, the leading order SDE’s in N that come from (B.5), often called the loop equations, are

ℓ−1∑
k=0

T 0
ℓ−1−kT

0
k = T

0
ℓ+1 + T

0
ℓ+4, (B.6)

for ℓ ≥ 0. This equation is much simpler to solve due to the disappearance of the higher

moments. In particular, in the case of a Gaussian potential, all odd moments are zero, let

ℓ = 2n + 1 for k ≥ 0 then equation (B.6) becomes

2n∑
k=0

T 0
2n−2kT

0
2k = T

0
2n+2

with T 0
0 = 1. The solution is T 0

2n = Cn the nth Catalan numbers, which are the leading order

terms in the genus expansion of GUE moments.

This is the main reason to introduce the genus expansion is that it allows access to simpler

Schwinger-Dyson equations by restricting to leading order. However, it is possible to recover

lower order contributions through a process called Topological Recursion which we will outline

now.

Note that this process can be repeated for higher order moments by considering

N∑
i, j=1

∫
HN

∂

∂Hi j

(Hℓ1)i j

m∏
q=2

Tr Hℓqe−S (H)

 dH = 0.

Denote the genus expansion terms of general cumulants as

⟨Tr Hℓ1 Tr Hℓ2 · · ·Tr Hℓn⟩c :=
∑
g≥0

Nχ T
g
ℓ1,ℓ2,...,ℓn

,

where χ = 2 − 2g − n is the Euler characteristics of the maps in that term of the expansion.

Then, for the example of the quartic potential from before, one can find that
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2
ℓ1−1∑
k=0

T 0
ℓ1−1−kT

0
k,ℓ2
+ ℓ2T

0
ℓ1−1+ℓ2

= T 0
ℓ1+1,ℓ2

+ T 0
ℓ+4,ℓ2

,

for ℓ1, ℓ2 ≥ 1. From the terms in the product on the left-hand side this equation relies on the

solution to equation (B.6). Similarly, each equation for a given Euler characteristic relies on

the solutions of the higher Euler characteristic equations. For details on the SDE’s see [12, 13]

or in the case that there is a multi-trace potential [3, 2, 14].

In summary the SDE’s are an unwieldy infinite set of recursive equations between terms

of the genus expansion of moments or cumulants. However, in [10] a method was outlined to

streamline this process, called Topological Recursion. This process has been generalized [11,

15, 5] from its original use in matrix integrals. We start by defining the following generating

functions of the genus expansion terms of moments and cumulants:

Wg
n (x1, x2, ..., xn) =

∑
ℓ1,ℓ2,...,ℓn

T
g
ℓ1,ℓ2,...ℓn

xℓ1+1
1 xℓ2+1

2 · · · xℓn+1
n

.

One can write the SDE’s in terms of these new generating functions as a means of collecting

terms. In single or bi-tracial single Hermitian matrix models Topological Recursion allows one

to compute any Wg
n from just the information in the resolvent W0

1 and the cylinder amplitude

W0
2 . The cylinder amplitude is often in some sense universal. This means that the only fun-

damental information needed to compute any Wg
n is contained in the resolvent. Once one has

sufficient Wg
n ’s it is possible to compute the genus expansion terms of the partition function di-

rectly. For details on this process see chapter 3 of [13]. For single matrix integrals with higher

trace multiplicities than two one needs a generalized process called Blobbed Topological Re-

cursion [3, 4].



Bibliography

[1] G. Anderson, A. Guionnet, and O. Zeitouni. An Introduction to Random Matrices. Cam-

bridge: Cambridge University Press (Cambridge Studies in Advanced Mathematics). 2009.

[2] S. Azarfar and M. Khalkhali. Random Finite Noncommutative Geometries and Topological

Recursion. arXiv:1906.09362.

[3] G. Borot. Formal multidimensional integrals, stuffed maps, and topological recursion. An-

nales de l’Institut Henri Poincaré D 1(2), Volume 1, Issue 2, 2014.
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Appendix C

Factorization of Mixed Moments and
Loop Equations

C.1 Factorization of mixed moments

Suppose a formal model is given as described in chapter two,

Z :=
∫
Hm

N

e−S̃ (H1,H2,...,Hm)dH1...dHm,

and further assume that the moments of such a model have a genus expansion, i.e.

⟨Tr Hℓ
p⟩ =

∑
g≥0

N1−2g T
g
ℓ ,

and

⟨Tr Hℓ1
p Tr Hℓ2

q ⟩ = ⟨Tr Hℓ1
p Tr Hℓ2

q ⟩c + ⟨Tr Hℓ1
p ⟩⟨Tr Hℓ2

q ⟩

=
∑
n≥0

N−2gT
g
ℓ1,ℓ2
+

∑
n≥0

N1−2gT
g
ℓ1

 ∑
n≥0

N1−2gT
g
ℓ2

 .
Here the coefficients are a formal series that counts the number of genus g maps with a bound-

ary of length ℓ. The subscript c denotes the sum over connected maps with two boundaries of

lengths ℓ1 and ℓ2. Thus, taking the large N limit, we obtain

lim
N→∞

1
N
⟨Tr Hℓ

q⟩ = T
0
ℓ ,

and

lim
N→∞

1
N2 ⟨Tr Hℓ1

p Tr Hℓ2
q ⟩ = T

0
ℓ1
T 0
ℓ2
= lim

N→∞

1
N2 ⟨Tr Hℓ1

p ⟩⟨Tr Hℓ2
q ⟩.

All the models studied in this thesis do indeed have a genus expansion, hence the above factor-

ization holds.
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C.2 Loop equations for a quartic type (2, 0) Dirac ensemble

Consider two matrix Dirac ensemble of type (2, 0) with the following partition function.

Z =

∫
G

e−(g Tr D2+Tr D4)dD,

where

Tr D2 = 4N Tr H2
1 + 4N Tr H2

2 + 4(Tr H1)2 + 4(Tr H2)2,

and

Tr D4 = 4N Tr H4
1 + 4N Tr H4

2 + 16N Tr H2
1 H2

2 − 8N Tr H1H2H1H2 + 16 Tr H1 Tr H3
1

+ 16 Tr H1 Tr H2
2 H1 + 16 Tr H2 Tr H3

2 + 16 Tr H2 Tr H2
1 H2 + 16(Tr H1H2)2

+ 12(Tr H2
1)2 + 12(Tr H2

2)2 + 8 Tr H2
1 Tr H2

2 .

Using the factorization theorem, the loop equations of this model for the words with length

seven or lower are the following relations. Note that all the loop equations that come from the

even degree words are trivial since the model is even and odd moments are zero.

A : 1 = 8g m2 + 16m4 − 16m1,1,1,1 + 16m2,2 + 16m2,2 + 64m2 m2

AAA : 2m2 = 8g m4 + 16m6 − 16m3,1,1,1 + 16m4,2 + 16m4,2 + 64m2 m4

ABB : m2 = 8g m2,2 + 16m4,2 − 16m3,1,1,1 + 16m2,1,2,1 + 16m4,2 + 64m2 m2,2

BAB : 0 = 8g m1,1,1,1 + 16m3,1,1,1 − 16m2,1,2,1 + 16m3,1,1,1 + 16m3,1,1,1 + 64m2 m1,1,1,1

BBA : m2 = 8g m2,2 + 16m4,2 − 16m3,1,1,1 + 16m4,2 + 16m2,1,2,1 + 64m2 m2,2

AAAAA : m2
2 + 2m4 = 8g m6 + 16m8 − 16m5,1,1,1 + 16m6,2 + 16m6,2 + 64m2 m6

AAABB : m2,2 + m2
2 = 8g m4,2 + 16m6,2 − 16m3,3,1,1 + 16m3,2,1,2 + 16m4,4 + 64m2 m4,2

ABBBB : m4 = 8g m4,2 + 16m4,4 − 16m5,1,1,1 + 16m4,1,2,1 + 16m6,2 + 64m2 m4,2

BAAAB : 0 = 8g m3,1,1,1 + 16m3,1,3,1 − 16m3,2,1,2 + 16m3,3,1,1 + 16m3,3,1,1 + 64m2 m3,1,1,1

BABBB : 0 = 8g m3,1,1,1 + 16m3,3,1,1 − 16m4,1,2,1 + 16m3,1,3,1 + 16m5,1,1,1 + 64m2 m3,1,1,1

BBABB : m2
2 = 8g m2,1,2,1 + 16m3,2,1,2 − 16m3,1,3,1 + 16m4,1,2,1 + 16m4,1,2,1 + 64m2 m2,1,2,1

BBBAB : 0 = 8g m3,1,1,1 + 16m3,1,1,3 − 16m4,1,2,1 + 16m5,1,1,1 + 16m3,1,3,1 + 64m2 m3,1,1,1

BBBBA : m4 = 8g m4,2 + 16m4,4 − 16m5,1,1,1 + 16m6,2 + 16m4,1,2,1 + 64m2 m4,2
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AAAAAAA : 2m2 m4 + 2m6 = 8g m8 + 16m10 − 16m7,1,1,1 + 16m8,2 + 16m8,2 + 64m2 m8

AAAAABB : m4,2 + m4 m2 + m2 m2,2 = 8g m6,2 + 16m8,2 − 16m5,3,1,1 + 16m5,2,1,2 + 16m6,4 + 64m2 m6,2

AAABBBB : m2 m4 + m4,2 = 8g m4,4 + 16m6,4 − 16m5,1,1,3 + 16m4,1,2,3 + 16m6,4 + 64m2 m4,4

ABBBBBB : m6 = 8g m6,2 + 16m6,4 − 16m7,1,1,1 + 16m6,1,2,1 + 16m8,2 + 64m2 m6,2

BAAAAAB : 0 = 8g m5,1,1,1 + 16m5,1,3,1 − 16m5,2,1,2 + 16m5,1,1,3 + 16m5,3,1,1 + 64m2 m5,1,1,1

BAAABBB : 0 = 8g m3,3,1,1 + 16m3,3,3,1 − 16m4,1,2,3 + 16m3,3,3,1 + 16m5,1,1,3 + 64m2 m3,3,1,1

BABBBBB : 0 = 8g m5,1,1,1 + 16m5,3,1,1 − 16m6,1,2,1 + 16m5,1,3,1 + 16m7,1,1,1 + 64m2 m5,1,1,1

BBAAAAA : m2,2 m2 + m4,2 + m2 m4 = 8g m6,2 + 16m8,2 − 16m5,1,1,3 + 16m6,4 + 16m5,2,1,2 + 64m2 m6,2

BBAAABB : 2m2 m2,2 = 8g m3,2,1,2 + 16m3,2,3,2 − 16m3,3,3,1 + 16m4,3,2,1 + 16m4,1,2,3 + 64m2 m3,2,1,2

BBABBBB : m2 m4 = 8g m4,1,2,1 + 16m4,3,2,1 − 16m5,1,3,1 + 16m4,1,4,1 + 16m6,1,2,1 + 64m2 m4,1,2,1

BBBAAAB : 0 = 8g m3,3,1,1 + 16m3,3,1,3 − 16m4,3,2,1 + 16m5,3,1,1 + 16m3,3,3,1 + 64m2 m3,3,1,1

BBBABBB : 0 = 8g m3,1,3,1 + 16m3,1,3,3 − 16m4,1,4,1 + 16m5,1,3,1 + 16m5,1,3,1 + 64m2 m3,1,3,1

BBBBAAA : m4,2 + m4 m2 = 8g m4,4 + 16m6,4 − 16m5,3,1,1 + 16m6,4 + 16m4,3,2,1 + 64m2 m4,4

BBBBABB : m4 m2 = 8g m4,1,2,1 + 16m4,1,2,3 − 16m5,1,3,1 + 16m6,1,2,1 + 16m4,1,4,1 + 64m2 m4,1,2,1

BBBBBAB : 0 = 8g m5,1,1,1 + 16m5,1,1,3 − 16m6,1,2,1 + 16m7,1,1,1 + 16m5,1,3,1 + 64m2 m5,1,1,1

BBBBBBA : m6 = 8g m6,2 + 16m6,4 − 16m7,1,1,1 + 16m8,2 + 16m6,1,2,1 + 64m2 m6,2
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