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ABSTRACT 

Pannexins (Panxs) are a recently identified family of channel-forming glycoproteins, 

comprised of three members: Panx1, Panx2 and Panx3. Panxs were classified as 

gap junction (GJ) proteins based on their shared sequence homology to the 

invertebrate GJ protein, innexins. While no sequence homology exist between 

Panxs and the GJ proteins, connexins (Cxs), they share similar topology with four 

transmembrane domains, two extracellular loops, an intracellular loop and 

cytoplasmic exposed amino and carboxy terminal tails. In this study, we investigated 

if Panx1 and Panx3 exhibit unique or shared properties of cell surface delivery, 

mobility, cytoskeletal dependency, internalization and degradation, to the well 

characterized Cx43 GJ protein. Over-expression of a dominant-negative Sar1 

mutant revealed that, like Cx43, Panx1 and Panx3 followed the classical secretory 

pathway en route to the cell surface. At the plasma membrane, Panx1 and Panx3 

distributed in a relatively uniform pattern independent of the presence of an adjoining 

cell, a feature distinct from the punctate localization of Cx43 at cell-cell apposition. 

Rapid time-lapse imaging and photo-bleaching revealed high mobility of Panx1 and 

Panx3 at the cell surface, unlike Cx43-GJs. Using pharmacological inhibitors of 

microtubule and microfilament polymerization, Panx1 and Panx3 were identified to 

rely primarily on actin filaments for their overall cell surface stability. Interestingly, co-

sedimentation and co-immunoprecipitation assays revealed that actin bound directly 

to the C-terminal tail of Panx1. Truncation of the Panx1 C-terminal tail at residue 307 

(Panx1T307) inhibited its trafficking to the cell surface causing it to be retained within 

the endoplasmic reticulum. Co-expression of full length Panx1 could not rescue the 
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delivery of Panx1T307 to the cell surface but exhibited limited co-interaction. Blocking 

of protein synthesis and secretion revealed a prolonged half-life of Panx1 in 

comparison to Cx43. Rapid time-lapse imaging of cells expressing Panx1-GFP 

uncovered a unique pattern of Panx1 internalization through dynamic tubular-like 

extensions.  Chloroquine-induced inhibition of lysosomal function revealed that 

Panx1 is degraded by lysosomes. Collectively, our studies show that Panx1 and 

Panx3 exhibit many properties that are distinct from Cx43, further supporting that 

pannexins forms a unique class of channel proteins that should be considered 

separate from connexin-based GJ channels.   

Keywords 

Pannexins, connexin43, rapid time-lapse imaging, fluorescence recovery after 

photo-bleaching and cytoskeletal elements 
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1  INTRODUCTION 
1.1 Evolutionary aspect of innexins, connexins and 
pannexins 

A family of channel forming proteins, termed pannexins (Panxs), was first 

identified in the year 2000 by Panchin and colleagues [1]. Pannexins were 

discovered as the vertebrate homologs of invertebrate gap junction proteins, 

innexins (Inxs) [1, 2], and were therefore proposed to share functional features 

similar to gap junctions.  

Gap junctions (GJs) are tightly packed intercellular channels that are assembled 

from two halves or hemi-channels composed of GJ proteins [3, 4]. GJ channels 

connect the cytoplasm of two apposing cells for bi-directional passage of ions, 

small metabolites and messenger molecules less than 1 kDa in size [4, 5]. The 

intercellular communication mediated by GJ channels regulates physiological 

processes related to development, synchronization, differentiation and 

proliferation [6-8].  

In the 1980s, the pioneer work done on characterizing GJs led to the 

identification of a multigene family of vertebrate proteins, connexins (Cxs) [9, 10], 

and the nomenclature of Cxs was based according to their predicted molecular 

mass [9, 10]. Ever since the cloning of the first connexin, Cx32, from rat and 

human liver [11, 12], 20 murine and 21 human connexin family members have 

been identified [13]. Based on the cDNA and genomic sequences, Cxs were also 

evident in animals of chordate branch: tunicates, ascidians and appendicularians 

(GenBank accession numbers AY380580, AY386312, AY386311) [14]. Despite 
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being a large family, several initiatives could not identify connexin homologs in 

the genomes of Caenorhabditis elegans (nematode) or Drosophila melanogaster 

(arthropod), thereby suggesting an existence of a distinct family of proteins for 

the formation of GJs in invertebrates [15].  A second GJ protein, unrelated to 

Cxs, was then found in several bilaterian protostome phylas including 

Platyhelminthes, Nematoda, Annelida, Molluscs and Arthropoda (Figure 1.1). 

This family of proteins was originally designated as OPUS, derived from the 

founding members: ogre, Passover, unc-7 and shaking-B, but were later 

renamed innexins (invertebrate analog of connexin) based on their shared ability 

to form intercellular channels, like connexins [16-20].   

With the renaming of invertebrate GJs to innexins, the genomic sequence of 

mollusk and flatworm were aligned and compared against the human genome 

using a PSI-BLAST (Position Specific Iterative-Basic Local Alignment Search 

Tool) approach [21]. The BLAST search identified two mRNA sequences with no 

previously assigned functions that encoded MRS1 (GenBank accession number 

AF093239) and MRS1-related proteins (GenBank accession number AL022328). 

Interestingly, sequence searches based on the MRS1 protein retrieved the 

invertebrate gap junction protein, Unc-7 from C. elegans, thus expanding the 

innexin homolog family into the chordata phyla [21].  Due to the apparent 

ubiquitous presence of this family of proteins in the metazoan animal kingdom, 

and their putative role as GJs, they were termed ‘pannexins’ (from the Latin Pan-

all, throughout and nexus- connection) [1, 21]. As a result, the human MRS1 

protein was denoted as PANX1, and its related form as PANX2. In addition, a 
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protein sequence query (TBLASTN) applied against the human genome detected 

a final member of this family, PANX3 [21].  

From an evolutionary perspective, it appeared that innexins emerged to provide 

gap junctional intercellular communication in animals of Cnidarian lineage, which 

was later inherited by protostomes and deuterostomes (Figure 1.1). In 

comparison, Cxs emerged in deuterostomes as a second class of GJ proteins, 

presumably by a gene duplication in the early protochordate lineage [22].  This 

divergence led innexins to be found in a subfamily within deuterostomes- as 

pannexins [23].  

Connexins were originally identified to be chordate-specific, however, additional 

genomic sequence analysis from other organisms have shown some exception 

to this criteria, as animals (e.g. lancelets) within one of the branches of the 

chordata phylum (cephalochordate) are devoid of connexins, but have pannexins 

[24] (Figure 1.1).  

From the functional point of view, pannexins might have emerged to provide 

compensatory, overlapping or unique physiological roles compared to that of 

connexins. The assessment of the phylogenetic relationship between different 

members of this superfamily has been an ongoing effort in the gap junction 

research community. Being a vertebrate homolog of innexins, it therefore 

became logical to determine if pannexins exhibited similar characteristics to the 

well studied gap junction proteins of vertebrates, connexins.    
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Figure 1.1 Evolutionary aspect of innexins, connexins and pannexins 

Schematic representation of presence (+) and absence (-) of innexins, 

connexins and pannexins in various taxonomic groups. Adapted from 

Shestopalov and Panchin (2008). 
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1.2 Human and murine pannexin genes 

Amino acid sequence alignment of the three human pannexins members: 

PANX1, PANX2 and PANX3, revealed 49-94% similarity with murine pannexins 

[2]. While human pannexins are written in uppercase, murine pannexins are 

represented by the Panx1, Panx2 and Panx3 nomenclature.  

PANX1 located on human chromosome 11q14.3, contains five exons and four 

introns and encodes a 426 amino acid protein (Accession number NP_056183) 

with an expected molecular mass of 47.6 kDa [21]. On the other hand, murine 

Panx1 is located on chromosome 9, and similar to human PANX1 encodes five 

exons and four introns [21], generating a product of 426 amino acids (Accession 

number NP_062355) with a molecular weight of ~45 kDa [25]. 

PANX2 located on human chromosome 22q13.31-13.33, contains 4 exons and 

has two protein isoforms [21]. PANX2 isoform 1 contains 677 amino acids 

(Accession number NP_443071), and isoform 2 contains 643 amino acids 

(Accession number NP_001153772), with a predicted molecular mass of ~70 

kDa [21]. The murine Panx2 is located on chromosome 15 and similar to the 

human PANX2, contains 4 exons and encodes a protein product of 677 amino 

acids (Accession number NP_001002005) with a molecular weight of ~80 kDa 

[21]. Finally, the human PANX3 is similar to the murine Panx3, as they both 

contain 4 exons and encodes a 392 amino acids long protein with a molecular 

weight of ~44.7 kDa and ~43 kDa, respectively (human: Accession number 

NP_443191; murine: Accession number NP_766042) [21]. While human PANX3 

is located on 11q24.2, murine Panx3 is located on chromosome 9 [21].   
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Interestingly, both the human and murine pannexin genes for Panx2 and Panx3 

are located on shorter chromosome segments (less than 6 kb from first to last 

exon) than Panx1 (more than 40 kb from first to last exon) [21]. Moreover, Panx1 

and Panx3 are located on the same chromosomes in human and mouse, with a 

separation of 30 Mb and 22 Mb, respectively, and share 41% identity and 59% 

conservation at the primary structure level [21]. Given the overall similarity in the 

exon-intron organization, chromosomal location, and the shared conservation at 

the amino acid level, it is postulated that the close relationship of Panx1 and 

Panx3 may have arisen from chromosomal duplication [21]. Furthermore, the 

phylogenetic mapping of vertebrate pannexins revealed more divergence of 

Panx1 from Panx2, suggesting unique roles for these family members [21]. Given 

that Panx1 and Panx3 are more closely related to each other, this thesis will 

predominantly focus on these two members of the pannexin family.  

1.3 Diversity of pannexin expression  

In addition to the human and mouse genomes, the expression of all three 

pannexin members have now been identified in at least 5 more species including: 

Rattus norvegicus (rat), Canis familaris (dog), Bos Taurus (cow), Danio rerio 

(zebrafish) and Tetraodon nogrovirdis (puffer fish) [2]. Despite the vast inter-

species distribution, pannexins are most well characterized in human and rodent 

tissues, with Panx1 being the most studied member. The first studies relied on 

detecting pannexins at only the transcript level due to the unavailability of high-

quality, custom-designed antibodies. 
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1.3.1 Pannexin1 

Northern blot analysis of human tissues revealed Panx1 expression in brain, 

heart, skeletal muscle, skin, testis, ovary, placenta, thymus, prostate, lung, liver, 

small intestine, pancreas, spleen, colon, blood endothelium and erythrocytes 

[21]. In the central nervous system (CNS), Panx1 transcripts were detected in 

cerebellum, cortex, lens (fiber cells), retina (retinal ganglion, amacrine and 

horizontal cells), pyramidal cells, interneurons of the neocortex and 

hippocampus, amygdale, substantia nigra, olfactory bulb, neurons and glial cells 

[21, 24, 26-35].  Developmentally, a gradient of Panx1 expression was found in 

mouse brain, such that higher levels were expressed during the embryonic 

(E13.5-18) and postnatal stages with lower levels in the adult brain [30, 32]. 

Notably, our tissue survey using custom-designed affinity purified anti-Panx1 

antibodies demonstrated a robust expression of Panx1 in the brain, with variable 

levels of Panx1  in the lung, kidney, spleen, heart ventricle, skin and sources of 

cartilage from ear and tail of a 3-week old mice [25]. More recently, Panx1 

protein expression was also detected in the rodent cochlea, specifically in 

supporting cells of the Organ of Corti, spiral limbus, cochlear lateral wall and 

strial blood vessels [36]. 

1.3.2 Pannexin2 

In comparison to Panx1, Panx2 mRNA was restricted to several areas of the 

human adult brain including:  cerebellum, cerebral cortex, medulla, occipital pole 

frontal lobe, temporal lobe and putamen [21]. While Northern blot analysis 

revealed higher levels of Panx2 transcript in the rodent brain, spinal cord and 
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eyes, other tissues such as thyroid, kidney and liver also revealed some level of 

Panx2 expression [26-28]. Interestingly, in-situ hybridization revealed co-

expression of Panx2 with Panx1 in various regions of adult rat brain, such as 

hippocampus, olfactory bulb, pyramidal cells, dentate gyrus, Purkinje cells of the 

cerebellum, pyramidal cells and interneurons of the hippocampus and neocortex 

[32]. Unlike Panx1, Panx2 transcript expression was low during prenatal 

development of rat brain, and substantially increased in postnatal brains [32].  

Recently, Panx2 protein expression was identified in the basal cells of the stria 

vascularis and spiral ganglion neurons of the rat cochlear system [36]. 

1.3.3 Pannexin3 

Based on expressed sequence tags, Panx3 was predicted to be present in 

osteoblasts, synovial fibroblasts, whole joints of mouse paws, and cartilage from 

the inner ear [21]. In addition, Panx3 transcript expression, albeit low, was also 

detected in human hippocampus extracts [21]. Recently, Panx3 protein 

expression was reported in murine cochlear bone [36], while in-situ hybridization 

of  embryonic day 16.5 mice strongly revealed Panx3 expression in 

prehypertrophic chondrocytes, perichondrium and osteoblasts [37]. Furthermore, 

we demonstrated that while Panx3 protein exhibits two forms at ~43 kDa and ~70 

kDa, when expressed in skin, cartilage, and ventricle, only the ~70 kDa species 

is detected in lung, liver, kidney, thymus and spleen of a 3 week old mice [25]. It 

is however yet to be determined if the occurrence of ~70 kDa species is due to a 

splice variant or Panx3 dimerization.   
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1.4 Pannexin family members share similar topology to   
    connexins 

The discovery of pannexins led to further analysis of the protein topology using 

multiple sequence alignment systems [2].  Connexins, innexins and pannexins all 

share the same topology with four alpha-helical transmembrane (TM) domains, 

two extracellular loops (EL), one intracellular loop (IL) and intracellular amino 

(NT) and carboxy (CT) termini [1, 2, 21] (Figure 1.2).  While primary sequence 

homology does not exist between Panxs and Cxs, various motifs of Panxs and 

Inxs share significant sequence homology [2]. Both Inxs and Panxs share two 

cysteine residues in each of their EL domains (Figure 1.2), with the exception of 

Drosophila Inx4 that has 3 pairs of cysteines [2, 38].   

The two cysteine residues within the 1st EL are fully conserved between Panxs 

and Inxs, with 37% identity and 58% amino acid similarity when flanked by 24 

additional amino acids. However, only 1 of the 2 cysteine residues is conserved 

in the 2nd EL of Panxs and Inxs [2]. Comparatively, the well characterized Cx 

family member, Cx43, has 3 cysteine residues in each of its ELs [39] (Figure 1.2) 

which is the same for all characterized connexins with the exception of Cx23, 

which harbors 2 pairs of cysteines [40]. In the case of Cx43, and likely all other 

family members, these cysteine residues are critical for forming intramolecular 

disulfide linkages between ELs, such that when docked at the apposing plasma 

membrane, each half of the GJ channel is stabilized by intermolecular hydrogen 

bonds [41]. 
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Figure 1.2 Topology of innexins, connexins and pannexins 

Panx1, Panx2 and Panx3 share similar topology of four transmembrane domains 

(TM), two extracellular loops (EL), one intracellular loop (IL) and intracellular 

amino (NT) and carboxy (CT) groups with innexins and Cx43. Pannexins and 

innexins also share two cysteine residues in each of their ELs, while Cx43 has 

three cysteine residues. Panx1 is glycosylated on the second EL, whereas Panx2 

and Panx3 are glycosylated on the first EL. 
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Interestingly, a signature sequence of all Inxs (YYQWV) is not conserved in 

Panxs. However, this motif along with a 23 amino acid flanking region in Inxs 

exhibits 39% identity and 61% similarity in TM2 of Panxs [2]. Additionaly, a 

proline motif (correlated with conformation changes associated with channel-

gating in Cxs) is conserved in TM2 of Inxs and Panxs, and is found in relatively 

the same position in Cxs [42].  

While Inxs and Panxs contain two fully conserved cysteine residues in their CT 

region, it is the NT domains that are better conserved [2].  All connexin members 

posses almost the same length of intracellular NT domain with major differences 

found in the length of the CT domain [43]. In contrast to Panx1 and Panx3, 

Panx2 exhibits a very large CT domain (Figure 1.2) which is speculated to 

convey unique functions to Panx2 regulation, targeting or macromolecular 

interactions [2]. The regulatory role of the Cx43 CT domain is multifaceted. This 

includes many interactions with scaffolding and cytoskeletal proteins [44] that 

contribute to the overall size and number of gap junction plaques at the cell 

surface [45] and the channel gating properties [46]. However, the role of the CT 

domain in Panxs has yet to be investigated. 

1.5 Pannexins and connexins form multimeric channels 

Initial characterization of Panx1 oligomerization revealed that 6 subunits were 

required for a channel formation [47]. The monomers of Panx1 resolved at ~43-

49 kDa, whereas the dimeric and hexameric configuration was detected at ~98 

kDa and ~290 kDa, respectively [47]. While Panx1 and Cx43 channels share a 
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hexameric configuration, this is quite different from the heptamers or octomers 

reported for Panx2 [48].  On the other hand, the state of oligomerization for 

Panx3 is currently unknown.  Distinct from Cx43, Panx1 forms a wider pore 

channel [49] likely due to relatively longer ELs (~50-60 amino acids) than seen in 

Cxs (~30 amino acids) [24] (Figure 1.2). Pannexin hexamers are termed 

pannexons [47], following the nomenclature devised for connexins (as connexin 

hexamers are termed connexons) [3, 4].  While ‘connexons’ are also referred as 

‘hemi-channels’ (i.e. a structure constituting half of the channel), the term 

‘pannexons’ primarily reflects the single-membrane channel. It is well established 

that connexons from adjacent cells dock at the plasma membrane to form 

intercellular channels, however, an ongoing effort continues in the field to deduce 

if single membrane channels of pannexins also possess the capability to form 

intercellular junctions [50].  

1.6 Pannexins do not readily form intercellular channels 

Currently, there are conflicting reports in the literature as to whether pannexins 

are involved in direct intercellular communication. It was initially reported that 

over-expression of Panx1 mRNA, but not Panx2 or Panx3, formed intercellular 

channels, albeit, 24-48 hours after pairing Xenopus oocytes [26, 51, 52]. In a 

parallel study, Boassa et al., [47] reported that while Panx1 intercellular 

channels did not form resulting in a significant junctional conductance within 6 

hours of oocytes pairing, the Cx46 formed robust intercellular channels within 1 

hour [47].  Additional evidence of intercellular channel formation by Panx1 was 



14 

 

derived from two independent studies using C6 glioma cells [53] and LNCaP 

prostate cancer epithelial cells [54]. While these studies revealed the passing of 

sulfurodamine 101 dye in C6 gliomas [53] and Ca2+ permeability in LNCaP 

neighboring cells [54], they were performed under highly artificial conditions of 

either bathing or perfusing the cells with chemical agents, thus questioning the 

ability of pannexins to readily or efficiently form intercellular channels. A scrape 

loading assay (a commonly used technique to detect intercellular 

communication) conducted by Boassa et al., [47] further revealed the inability of 

Panx1 to pass Lucifer yellow dye in communication-deficient Madin-Darby 

Canine Kidney cells. This study was in line with our findings that revealed no 

electrical coupling conductance in gap junction-deficient neuro-2A (N2A) cells 

expressing either Panx1 or Panx3 [25]. Additional reports in erythrocytes [55] as 

well as neuronal and glial cells [56] have also failed to provide evidence that 

Panxs can in fact form gap junctions, thus providing further indication that the 

pannexin family of proteins does not serve a role redundant to that of connexins 

by readily forming intercellular channels.  

1.7 Pannexins form functional non-junctional channels  

It was first identified in 2003, that Panx1, but not Panx2, possesses the ability to 

form non-junctional membrane channels, in single Xenopus oocytes [26]. The 

unitary conductance of Panx1 single-membrane channels was determined to be 

550 pS [57], which was approximately 200 pS larger than that of any of the 

connexins [58]. Co-injections of Panx1 and Panx2 transcripts, revealed a ~15% 
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reduction in the conductance of heterotypic channels (comprised of different 

subunits), thus reflecting a dominant negative effect of Panx2 on Panx1 channel 

function [26]. Since then, we have reported that all family members: Panx1, 

Panx2 and Panx3 can form variable levels of single-membrane channels, 

capable of dye uptake [59]. However, intermixing of Panx1 with Panx2, but not 

Panx3, attenuated the channel function by lowering the incidence of dye uptake 

[59]. While Panx1 channels can be activated by mechanical stimulation, 

cytoplasmic Ca2+, membrane depolarization and extracellular ATP [49, 57, 60-

62]; its conductance is abolished by CO2-mediated cytoplasmic acidification [60], 

negative feedback from ATP release [63], mimetic peptides [64] and channel 

blockers such as carbenoxolone, probenecid  and fluefenamic acid [65, Barbe, 

2006 #3]. It is now well established that the activation of pannexin single-

membrane channels allows for cellular communication with the extracellular 

environment to fulfill a diverse range of functions [50, 56, 60, 66, 67]. 

1.8 Physiological roles of pannexin single-membrane 
channels 

1.8.1 Paracrine signaling mediated by Panx1 

Indirect communication between cells is typically mediated through activation of 

single-membrane channels and releasing molecules such as ATP [68] into the 

extracellular space.  

Calcium waves: Ca2+ is a versatile, ubiquitously expressed second messenger 

that can regulate several cellular responses [69]. Initiation of Ca2+ waves is 
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mediated by the activation of ATP-sensitive purinergic receptors, P2Y and P2X 

[70]. Binding of ATP to the membrane receptor increases inositol 1, 4, 5-

triphosphate, which in turn, releases Ca2+ from the ER stores. Once released, 

Ca2+ activates single-membrane channels, leading to further release of ATP, and 

propagation of signal to the neighboring cells [71]. Essential to this notion is the 

fact that Panx1 has been shown to be a part of the P2X7 receptor complex, 

necessary for ATP release [55, 72]. Furthermore, ATP-induced ATP release was 

also reported when Panx1 channels were activated through P2Y receptors and 

cytoplasmic Ca2+ [60], thus supporting the role of Panx1 in the initiation and 

propagation of regenerative Ca2+ signaling.  

Vasodilation:  Release of ATP from erythrocytes occurs during stress and 

hypoxic conditions [73].  It was recently discovered that erythrocytes 

endogenously express Panx1, and mechano-sensitive activation of Panx1 

channels regulate ATP release [55]. It is hypothesized that under conditions of 

stress, activation of Panx1 channels control blood flow, by releasing ATP from 

red blood cells, and initiating Ca2+ wave propagation through stimulation of 

purinergic receptors on the endothelial cells [55]. Elevation of Ca2+ subsequently 

releases NO onto the smooth muscle, leading to vasodilation [55]. 

Taste sensation: Taste buds are comprised of two distinct population of cells, 

some that express taste receptors (receptor cells), and others that contain 

synapses (presynaptic cells) [74]. It has been reported that Panx1 is expressed 

in the receptor cells, and upon taste stimulation, ATP is released through Panx1 

single-membrane channels [65, 74]. Once released in the extracellular medium, 
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ATP stimulates P2 receptors of the presynaptic cells to release serotonin (5-HT) 

[65, 74], thereby providing a mechanism for cell-cell signaling and information 

processing within taste bud.   

Airway defense: Airway epithelium provides a defense mechanism by controlling 

mucociliary clearance, which depends on maintaining adequate airway surface 

liquid volume and ciliary activity [75].  In the differentiated human airway 

epithelium cells, expression of Panx1 single-membrane channels in the apical 

region has been linked to ATP release under hypotonic stress [75].  Panx1-

evoked ATP release is proposed to be crucial for regulating the ciliary beat 

frequency and surface liquid volume for mucous clearance [75].  

1.8.2 Intracellular responses mediated by Panx1 
Immune response: Interaction of Panx1 with P2X7 receptors elicits an immune 

response by releasing the pro-inflammatory cytokine interleukin (IL)-1 β, in 

response to receptor stimulation by ATP followed by a subsequent activation of 

caspase-1 [49]. Panx1 is also reported to trigger the Toll-like receptor-

independent inflammasome (comprising cryopyrin), based on recognition of 

bacterial molecules passing from endosomes to cytosol [76]. Furthermore, P2X7-

mediated activation of Panx1 channel is potentiated by high extracellular K+ 

levels in neuronal/astrocytic inflammasomes [77].  

Tumorigenesis: Exogenous expression of Panx1 has been linked to tumor-

suppressive properties in C6 gliomas [53]. In the presence of Panx1, C6 gliomas 

exhibit a flattened morphology and a reduction in proliferation, motility, 
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anchorage-independent growth [53]. In addition, injection of Panx1 expressing 

cells in nude mice reduced the in vivo tumor growth [53].  Taken together, it is 

suggested that Panx1 plays a role as a tumor suppressor. 

Ischemic cell death and Epileptic seizure: The rapid decrease of O2 and glucose 

in mouse hippocampal pyramidal neurons has been associated with the opening 

of Panx1 single-membrane channels that leads to conductance of large currents 

[78]. This, in turn, causes a profound ionic dysregulation, thereby leading to 

neuronal death [78]. In addition, the N-methyl-D-aspartate receptor-based 

opening of Panx1 channels leads to epileptiform seizure activities in pyramidal 

neurons [66], further supporting the importance of precise regulation of Panx1 

channel openings. 

Apoptosis:  Panx1 forms the pore unit of the P2X7 death complex [72]. The co-

expression of Panx1 with P2X7 receptor revealed ATP-induced zeiosis in 

Xenopus oocytes, which was not observed upon the injection of Panx1 transcript 

alone or together with P2Y receptor [60, 72]. These results suggest that although 

activation of purinergic P2Y receptor can mediate Panx1 currents, the specific 

cell death signaling is through interaction with ionotropic P2X7 receptor. Quite 

recently, Panx1 channels have been documented to mediate the release of 

nucleotide signals from apoptotic cells for the recruitment of activated monocytes 

[79]. In this situation, Panx1 channels gets activated by caspases which cleave 

Panx1 and opens the channel for ATP and UTP release as a “find me” signal to 

attract phagocytes [79]. 
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Keratinocyte differentiation: We have previously shown that ectopically 

expressed Panx1 reduces the proliferation rate of rat epidermal keratinocytes 

(REKs), however, it does not significantly alter their migratory properties [67]. 

Furthermore, over-expression of Panx1 in organotypic cultures (generated from 

monolayer REKs) disrupts the overall architecture of the epidermis, reduces the 

thickness of vital layer (likely stratum spinosum and granulosum) and re-localizes 

the basal cell marker, cytokeratin 14, throughout the vital layer [67], thus, arguing 

for an adequate expression of Panx1 in maintaining keratinocyte differentiation.  

1.8.3 Intracellular responses mediated by Panx3 
Keratinocyte and Chondrocyte differentiation: In contrast to Panx1, much less is 

known about the channel capabilities of Panx3. We have shown that, similar to 

Panx1, Panx3 also reduces the proliferation of REKs without altering its migration 

rates [67]. However, unlike Panx1, Panx3 maintains the integrity of the 

organotypic epidermis and keratinocyte differentiation upon its over-expression 

[67]. In addition, Panx3 expression in cartilage has recently been associated with 

chondrocyte differentiation [37]. Specifically, Panx3 promotes ATP release into 

the extracellular medium (likely by the action of Panx3 single membrane 

channels), and reduces the parathyroid hormone-mediated proliferation of 

chondrocytes by decreasing cAMP levels and inhibiting phosphorylation of CREB 

[37]. Thus, these results support a role for Panx3 in switching the fate of 

chondrocytes from proliferation to differentiation.   
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1.9 Distinct from Cx43, Panx1 and Panx3 are glycosylated  

Consensus site analysis of Panx1 and Panx3 polypeptide sequences followed by 

experimental investigation revealed that glycosylation occurs at asparagine 254 

in the second extracellular loop of Panx1 (Figure1.2), and at asparagine 71 in the 

first extracellular loop of Panx3 [25]. Treatment with N-glycosidase F, revealed 

the glycosylation status of Panx1 [25, 47, 59] and Panx3 [25, 59]. Three distinct 

glycosylation species of Panx1 and Panx3 were revealed: the non glycosylated 

form that constitutes the core protein- Gly0 (resolves at ~37 kD for Panx1 and 

~30 kD for Panx3), the predominant ER resident high mannose form- Gly1 

(resolves at ~42-43 kD for Panx1 and ~43 kD for Panx3) and the complex 

glycosylated form that is fully processed- Gly2 (resolves at ~48 kD for Panx1 and 

at ~44-45 kD for Panx3). Glycosylation of pannexins is a post-translational 

modification that is not found on any connexin, including Cx43. Instead, the 

multiple banding profile of Cx43 detected by immunoblotting is due to differential 

states of phosphorylation [80]. Although both Panx1 and Panx3 encode several 

consensus sites for phosphorylation [25], alkaline phosphatase treatment did not 

change the protein banding pattern for either Panx1 or Panx3, unlike Cx43 [25].  

Nevertheless it remains possible that Panxs could serve as a substrate for 

phosphorylation events without causing any shift in the banding profile. 

The extended carbohydrate modifications on the ELs of pannexins have been 

reported to prevent the close docking of single-membrane channels at cell-cell 

appositions, in contrast to the connexons which are never glycosylated. Electron 

micrographs of Panx1 in the areas of apposing cells revealed intercellular 
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spacing of 20-50 nm, which is quite distinct from the 2-4 nm spacing seen in 

Cx43-based gap junctions [47]. The glycosylation status of Panxs has also been 

proposed to be mechanistically inhibitory to gap junction formation. This notion is 

based on the report where removal of all cell surface glycan chains from rat 

Panx1 as well as all other cell surface glycoproteins increased the junctional 

conductance in Xenopus oocytes [81]. Interestingly, the GJ coupling did not 

occur until 6 hours post pairing, which is greatly delayed from paired Oocytes 

that express connexins [47, 81].  

Glycosylation of Panx1 and Panx3 is important for proper trafficking to the cell 

surface. This conclusion is based on reduced [25] or absent cell surface 

localization [47] of the glycosylation-deficient mutants Panx1N254Q or Panx3N71Q. 

Our recent data has shown that a subpopulation of both the N-glycosylation 

deficient mutants of Panx1 and Panx3 that do reach the cell surface are capable 

of forming functional single membrane channels [59],  thus suggesting that 

glycosylation of pannexins mediates their cell surface trafficking, without 

impairing the ability to assemble into functional channels.  Overall, the distinct 

post-translational modification of Panx1 and Panx3 in comparison to Cx43 

separates the pannexin family from the better understood connexin family of 

proteins. While the life cycle aspects of Cx43 are well characterized, our 

knowledge of trafficking events regulating the Panx1 and Panx3 function remains 

poor. 
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1.10 The life cycle of Cx43-from biogenesis to degradation 

1.10.1 Biogenesis of Cx43 

Cx43 has a relatively short half life of approximately 1-3 hours [82]. As a result, 

gap junction channels composed of Cx43 are continually being transported to 

and removed from the plasma membrane. Being an integral membrane protein, 

Cx43 becomes co-translationally inserted into the ER membrane prior to 

oligomerization into connexons [13, 83]. Although several connexins have been 

reported to oligomerize in the ER [84-86], this is not the case for Cx43. Instead, 

Cx43 exist in a monomeric form after exiting the ER, and undergoes 

oligomerization in the trans-Golgi network prior to the cell surface trafficking [87].  

1.10.2 Transport of Cx43 to the plasma membrane 

Time-lapse imaging of the GFP-tagged Cx43 has revealed its delivery to the 

plasma membrane in pleiomorphic vesicles and tubular extensions, originating 

from the distal end of the Golgi apparatus [88]. Transport of Cx43 is also 

facilitated in part by microtubules. This understanding is based on the fact that 

Cx43 gap junction plaques failed to readily regenerate in the presence of 

nocodazole-induced depolymerized microtubules [88]. Interestingly, other reports 

suggest that neither microfilaments nor microtubules are an absolute requirement 

for the assembly of gap junctions; however, intact microtubules are necessary for 

the enhanced growth of gap junctions and Cx43 transport to the plasma 

membrane [89].  The targeting of Cx43 to specific cell surface micro-domains, 

however, remains relatively unclear with some evidence supporting a role for 

adherens-based junctions in the formation of gap junctions [90, 91]. 
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Once at the cell surface, connexons were originally proposed to exist in a gated-

closed state to avoid unwanted exchange of small molecules with the 

extracellular environment [13]. However, this notion is currently evolving as 

several lines of evidence supports the role of unpaired connexons, otherwise 

called hemichannels, in non-junctional plasma membranes for the intercellular 

communication through paracrine signaling [92, 93].  

1.10.3 Assembly of Cx43 gap junctions at the cell 
surface 

At the cell surface, connexons from two adjacent cells dock to form gap junction 

channels that tightly cluster into gap junction plaques [13]. Studies using 

tetracysteine and GFP-tagged Cx43 supported a model in which new gap 

junctions formed at the outer edge of the plaques, with mature channels 

coalescing at the center of the plaques [94, 95]. Cx43 was documented to cluster 

into gap junction plaques through lateral movements [88]. Fluorescence recovery 

after photobleaching (FRAP) revealed two states of Cx43 lateral mobility, high 

and low [96]. The differential rates of Cx43 mobility was proposed to be either 

due to scaffolding with binding partners, and/or acquiring different states of 

channel packing-ranging from loose (new) to crystalline (mature) structures [96]. 

Electron microscopy images of Cx43 containing fragments budding from the 

inner segment of gap junction plaques further support the mature aspects of the 

gap junction being destined for internalization and degradation [94]. 
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1.10.4 Internalization and degradation of Cx43 

Several electron microscopic studies have reported the internalization of 

connexons into one of the two neighboring cells in the forms of double-

membrane structures [97-100], recently coined connexosomes [13].  Micro-

injection studies with anti-Cx43 antibody, together with rapid time-lapse imaging 

revealed connexosomes to originate from pre-existing gap junction plaques and 

internalize in one of the two adjacent cells [101]. Furthermore, a close 

association of Cx43 double-membrane structures to clathrin-coated pits and actin 

cytoskeleton [102-104] suggests additional mechanisms may be involved in 

Cx43- gap junction internalization.  

Once internalized, degradation of Cx43 is mediated by both lysosomes and 

proteasomes [105, 106]. Evidence suggests that mono-ubiquitination of Cx43 

serves as an internalization cue, whereas poly-ubiquitination directs it to the 

lysosomes [107]. Alternatively, it is hypothesized that proteasomal-mediated 

degradation of Cx43 might be correlated with ER-associated degradation (ERAD) 

of mis-folded proteins, while lysosomes function to degrade Cx43 removed from 

the plasma membrane [13].  

Although Cx43 is well characterized from biogenesis to degradation, an in-depth 

knowledge of the life cycle of pannexins remains obscure.  
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1.11 Rationale, Hypothesis and Objectives of the Thesis 

1.11.1 Rationale 

Ever since the discovery of pannexins, considerable focus has been given 

towards understanding the function of these channels and their physiological 

roles; however, trafficking events that regulate the overall function of pannexins 

are not fully understood. Although pannexins and connexins were reported to 

share structural similarities [1, 108], it was not clear if pannexins exhibit 

characteristics similar to connexins in terms of their plasma membrane delivery 

and localization, cell surface mobility dynamics, interplay with the cytoskeletal 

network and pathways governing their turnover and degradation. Therefore, we 

paralleled our study to the well-characterized life cycle of Cx43. For our studies 

we mainly utilized Cx43 positive BICR-M1Rk, (rat mammary tumor) cell line as 

these cells are devoid of Panx1 and Panx3 expression, and have previously 

proven to be an excellent reference model for characterizing the trafficking, 

assembly and turnover of Cx43 [96, 109]. BICR-M1Rk cells can also be readily 

engineered to express either Panx1 or Panx3.  

1.11.2 Hypothesis 

I hypothesize that in comparison to Cx43, Panx1 and Panx3 exhibit distinct 

subcellular distributions, cell surface motilities and cytoskeletal dependencies; 

while Panx1 is further governed by unique turnover dynamics and mechanistic 

pathways that lead to its internalization and degradation. 
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1.11.3 Objectives (Figure 1.3) 

Objective 1 (Chapter 2)  To characterize the subcellular distribution of Panx1 

and Panx3, to identify the secretory pathway involved in Panx1 and Panx3 cell 

surface trafficking, to analyze the mobility dynamics of GFP-tagged Panx1 and 

Panx3 at the cell surface and to assess the role of the cytoskeleton in Panx1 

trafficking and cell surface dynamics. 

Objective 2 (Chapter 3) To identify the role of the carboxyl terminal tail in 

Panx1 trafficking and homomeric interactions.  

Objective 3 (Chapter 4) To explore the pathways for Panx1 internalization and 

degradation 
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Figure 1.3 Schematic representation of the aims addressed in the study  

Aim#1: To characterize the subcellular distribution profile of Panx1 and Panx3, 

to identify the secretory pathway involved in Panx1 and Panx3 cell surface 

trafficking, to analyze the mobility dynamics of GFP-tagged Panx1 and Panx3 at 

the cell surface to assess the role of the cytoskeleton in Panx1 trafficking and cell 

surface dynamics. Aim #2: To identify the role of carboxyl terminal tail in Panx1 

trafficking and homomeric interactions. Aim #3: To explore pathways for Panx1 

internalization and degradation.  
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CHAPTER 2: Pannexin1 and Pannexin3 Delivery, Cell 
Surface Dynamics, and Cytoskeletal Interactions 

 

2.0 OVERVIEW 

 

This study was designed to determine if Panx1 and Panx3 exhibit unique 

characteristics (trafficking, cell surface dynamics and interplay with the 

cytoskeletal network) or are similar to the well studied gap junction protein, Cx43.  
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2.1  INTRODUCTION 

The pannexin family is a new class of integral membrane glycoproteins that have 

been identified to share sequence homology to the invertebrate gap junction 

proteins, innexins [1]. Unlike the connexin family that is comprised of 21 

members [110], both the human and mouse genomes contain only three 

pannexin-encoding genes (Panx1, Panx2 and Panx3) [1]. Although connexins 

and pannexins exhibit no sequence homology, pannexins are predicted to share 

similar topology to connexins which includes four transmembrane domains, two 

extracellular loops, a cytoplasmic loop and intracellular amino and carboxy 

terminals [21, 25, 47]. Our previous study has shown that ectopically expressed 

Panx1 and Panx3 are capable of trafficking to normal rat kidney (NRK) cell 

surfaces; however, their distribution profile at cell-cell interfaces is not typically 

clustered or punctate as seen for Cx43 [25]. Consistently, electron micrographs 

of Panx1 over-expressing Madin-Darby Canine Kidney cells also revealed 

dispersed Panx1 localization at the plasma membrane with no evidence of gap 

junction plaques [47]. 

Cx43 has a relatively short half-life of approximately 1-3 hours [82].  As a result, 

Cx43 subunits assembled into connexons within the trans Golgi network [87] are 

constantly being transported to and removed from the plasma membrane [88]. 

Recent reports provide evidence that although Panx1 appears to form similar 

hexameric channel units defined as pannexons [47], they exhibit slower turnover 

dynamics in comparison to Cx43, as assessed by the use of pharmacological 

blockers of protein synthesis and protein trafficking [25, 47]. Functionally, most 
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studies support the premise that pannexins, in particular Panx1, form single 

membrane channels [25, 47, 50, 71, 111, 112], while far less evidence supports 

the notion that they also can form intercellular channels [26, 53]. 

The delivery of Cx43 for the assembly of functional channels at the cell surface 

has been extensively studied using fluorescent protein and epitope tags [94, 96]. 

Cx43-GFP has been shown to exhibit similar distribution and functional 

characteristics as its untagged counterpart, when assessed by dye permeability 

and electrical conductance [88, 113]. Likewise, GFP tagging of the carboxyl 

terminal tail of Panx1 did not significantly alter the localization profile of Panx1 in 

NRK cells [25]. However, a recent electrical conductance assessment provided 

evidence that mouse Panx1-GFP exhibits reduced channel function when 

expressed in human embryonic cells (HEK) 293 cells [114], suggesting that its 

functional state is somewhat impaired but not completely eliminated by the GFP 

tag. In other studies, untagged and tetracysteine-tagged Panx1 exhibited 

comparable capabilities in rescuing the trafficking of the glycosylation-defective 

mutant of Panx1 in Madine-Darby canine kidney cells [81].  Collectively, these 

studies would suggest that the trafficking and life cycle properties of Panx1 can 

be assessed by GFP tagging approaches in conjunction with real-time dynamic 

imaging. 

It has been previously established through a number of studies using both 

untagged and GFP-tagged Cx43 that the delivery and regeneration of Cx43 gap 

junction plaques is facilitated by microtubules and requires a fully functional 

secretory pathway [88, 89, 95]. Other studies using rapid time-lapse imaging of 
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GFP and tetracysteine tagged Cx43 have shown that Cx43 is delivered in 100-

150 nanometer vesicles that coalesce laterally into the pre-existing gap junction 

plaques [94, 115]. However, the delivery of pannexins to the cell surface, their 

dynamic organization at specific cell surface micro-domains, and their 

dependency on an intact cytoskeletal network, have yet to be investigated. 

The life-cycle of Cx43 is governed, in part, by many direct and indirect binding 

partners [13, 44, 116], while pannexin binding partners are only beginning to be 

identified with some evidence to support Panx1 interaction with a protein subunit 

of the voltage-dependent potassium channel [117] and regulatory cross-talk with 

P2X7 receptors [49, 111].  In the present study we further expand on a very 

limited number of pannexin binding proteins by identifying actin as a specific 

Panx1 binding protein. 
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2.2 EXPERIMENTAL PROCEDURES 

2.2.1 Cell Culture and Reagents 

BICR-M1Rk cells originally derived from a rat mammary tumor,  HEK-293T, NRK 

and REK (rat keratinocytes) cells were cultured in high glucose DMEM 

(Invitrogen, Burlington, ON, Canada), supplemented with 10% fetal bovine 

serum, 100 units/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-glutamine (all 

from Invitrogen, Burlington, ON, Canada). B16-BL6 murine melanoma cells were 

kindly provided by Dr. Moulay A. Alaoui-Jamali-(Department of Medicine and 

Oncology, McGill University; Montreal, Canada) and cultured as previously 

described [118]. Trypsin (0.25%, 1mM EDTA), Opti-MEM1 media and 

Lipofectamine 2000 were purchased from Invitrogen. Brefeldin-A (BFA), 

nocodazole and cytochalasin B were purchased from Sigma-Aldrich (Oakville, 

ON, Canada).  

2.2.2 Expression Constructs of Mouse Panx1, Panx2, 
and Panx3 and Engineering of the GST-Panx1 
Carboxyl domain   

Untagged and GFP-tagged expression constructs encoding full length mouse 

Panx1 and Panx3 were previously described [25], and correspond to current 

NCBI reference sequence encoding 426 amino acids for Panx1 (NP_062355) 

and 392 amino acids for Panx3 (NP_766042).  

As previously described, Panx2 was originally cloned from mouse brain and the 

purified PCR product was inserted into the EcoR1-Sal1 site of pEGFP-N1 vector 

(Clonetech, CA) to generate the untagged Panx2 [59]. The sequence was 
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confirmed to encode 677 amino acids according to RefSeq. Furthermore, Panx2 

cDNA was amplified using forward primer: 5’- CCCAAGCTTATGCACCACCTC to 

create a HindIII site and 5’- GGCGACCGGTCCAAACTCCACA to create a AgeI 

site at the 5' and 3' ends of Panx2, respectively. PCR products and the vector 

pEGFP-N1 (Clonetech, Palo Alto, CA) were digested with HindIII and Age1, 

ligated and clones were selected. GFP was fused in frame to the carboxyl 

terminus of Panx 2 with the addition of a five-amino acid polylinker 

(GGACCGGTCGCCACC) and validated by sequencing.  

Panx1 carboxy tail primers (Forward 5’- CTAGGATTCCGGCAGAAAACGGAC, 

Reverse 5’- CGAGTCGACTTAGCAGGACGGATT), with flanking sites for BamHI 

and SalI amplifying the Panx1 carboxy tail sequence (corresponding to amino 

acid 299-426), were created.  This sequence was ligated into the pGEX-6P-3 

GST vector and transformed into BL21 bacteria.  Batch purification using 

Sepharose 4B was performed as described in GST Gene Fusion System manual 

with some modifications (GE Healthcare, Buckinghamshire, UK).  A single BL21 

clone transformed with either GST alone or GST-Panx1 carboxyl tail was grown 

to absorbance (600nm) of 1 and was induced by the addition of 0.5 mM isopropyl β-

D-1-thiogalactopyranoside. A total of 500 mL of either GST or GST-Panx1 

carboxy tail bacterial culture was shaken overnight at room temperature. The 

next day purification was performed using 400 µL of 50% sepharose slurry, 

washed in PBS seven times and stored at 4oC for the co-sedimentation assays. 
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2.2.3 Transfection and Engineering of Stable Cell Lines  
DsRed tagged Sar1WT and Sar1H79G cDNA constructs were previously described 

[88] and used for transfection into BICR-M1Rk cells engineered to express Panx1 

or Panx3. Briefly, BICR-M1Rk cells were grown overnight to 50-70% confluency 

on glass coverslips and transfected in Opti-MEM1 media containing 4 μL of 

Lipofectamine 2000 and 1 µg of Panx1 or 3 µg of Panx3 plasmid DNA together 

with 2 µg of Sar1WT or Sar1H79G expression constructs.  

Panx1-GFP cDNA construct was previously described (5) and used to transfect 

BICR-M1Rk cells stably expressing untagged Panx1, and B16-BL6 cells. Cells 

were grown overnight to 50-70% confluency on 35mm glass bottom dishes and 

transfected in Opti-MEM1 media containing 1.5 μL of Lipofectamine 2000 and 1.5 

µg of Panx1-GFP plasmid DNA for 4 hours at 37°C. 

For Panx3 and Panx3-GFP co-transfections: BICR-M1Rk cells were grown 

overnight to 20-30% confluency on 35mm glass bottom dishes and transfected in 

Opti-MEM1 media containing 4 μL of Lipofectamine 2000 and 3 μg of Panx3 

together with 1.5 μg of Panx3-GFP plasmid DNA. Opti-MEM1 media was 

replaced with complete culture media 4 hours after transfection at 37 ˚C. 

For Panx2 and Panx2-GFP expression: BICR-M1Rk cells grown overnight to 50-

70% confluency on glass coverslips were transfected in Opti-MEM1 media 

containing 3 μL of Lipofectamine 2000 and 1.5 μg of Panx2 or 1.5 μg of Panx2-

GFP plasmid DNA. For co-transfection of Panx2 with Panx2-GFP 0.75 μg of 
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each plasmid DNA was used in Opti-MEM1 media containing 3 μL of 

Lipofectamine 2000.  

Full length constructs encoding mouse Panx1, Panx1-GFP and Panx3 were 

inserted into the AP-2 retroviral vector and transfected into the 293GPG 

packaging cell line as described earlier by Qin et al. [119]. Following transfection, 

replication-defective retroviral supernatants were collected and filtered through a 

0.45 μm filter (Pall Gelman Laboratories, Ann Arbor, MI). BICR-M1Rk cells 

expressing Cx43-GFP were engineered to stably express Panx1 and Panx3 by 

following a previously described protocol [119]. Retrovirus encoding Panx1-GFP 

was also used to stably express GFP-tagged Panx1 in BICR-M1Rk cells.  

2.2.4 Treatments with pharmacological reagents  

Panx1 and Panx3 over-expressing BICR-M1Rk cells were treated with 5μg/mL of 

BFA for 19 hours at 37˚C, and cell lysates were collected and subjected to 

immunoblotting. For elucidating the role of cytoskeletal elements in pannexin 

trafficking, Panx1-GFP expressing cells were treated with 10μM nocodazole or 

2.5 μg/mL cytochalasin B for 90 minutes at 37˚C and fixed for 

immunocytochemistry. For fluorescence recovery after photobleaching (FRAP) 

studies, Panx1-GFP expressing cells were pre-treated with cytoskeletal inhibitors 

for 90 minutes prior to imaging up to 3-4 hours in presence of these same 

inhibitors.  
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2.2.5 Immunocytochemistry 

Cells were immunolabeled as previously described [25].  Briefly, cells grown on 

glass coverslips were fixed using ice-cold 80% methanol and 20% acetone for 20 

minutes at 4˚C. Cytochalasin B-treated cells were fixed using 3.7% formaldehyde 

for 30 minutes at room temperature and permeabilized for 45 minutes in a 1% 

blocking solution (Bovine Serum Albumin-(BSA; Sigma))  containing 0.1% Triton-

X-100. Cells were incubated with a 500-fold dilution of polyclonal anti-Cx43 

antibody (Sigma), a 100 fold dilution of polyclonal anti-GPP130 antibody 

(Convance), polyclonal anti-Panx2 antibody (Zymed Laboratories, San 

Francisco, CA) or monoclonal anti-tubulin antibody (Convance) for 1 hour at 

room temperature. Affinity-purified polyclonal Panx1 and Panx3 antibodies were 

used at a concentration of 2 μg/mL. F-actin was localized using a 200 fold 

dilution of rhodamine phalloidin (Invitrogen). Cells were incubated in goat anti-

rabbit antibody conjugated to Texas Red or fluorescein isothiocyanate (FITC) 

(1:100, Jackson Laboratories, Westgrove, PA) or a goat anti-mouse antibody 

conjugated to Texas Red (1:100, Jackson Laboratory). Cells were rinsed with 

PBS and nuclei were stained with Hoechst 33342 and mounted. Immunolabeled 

cells were imaged using a 63x oil objective lens mounted on a Zeiss LSM 510 

META (Zeiss, Toronto, ON) system. 

2.2.6 Immunoblotting and Co-immunoprecipitation 

Cell lysates from BICR-M1Rk cells transiently co-transfected with Sar1 and Panx1 

or Panx3 cDNA constructs, and BFA-treated cells were collected using a lysis 

buffer containing 1% Triton-X-100, 10 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 
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mM EGTA, 0.5% NP-40, 100 mM sodium fluoride and 100 mM sodium 

orthovanadate and a protease inhibitor tablet (one tablet per 10 mL buffer; 

Roche, Laval, QC), pH 7.4.  Protein concentrations were measured using a BCA 

protein determination kit (Pierce). In total, 20-30 µg of protein was resolved using 

10% SDS-PAGE and transferred to nitrocellulose membrane (Pall Life Sciences, 

NY). Nitrocellulose membranes were blocked in Licor blocking solution (Lincoln, 

NE) or 3% BSA solution, and probed overnight with polyclonal affinity purified 

anti-Panx1 or anti-Panx3 antibodies (0.2 µg/mL) at 4̊C. Monoclonal anti -β-actin 

antibody (1:5000, Sigma) was used to assess gel loading. Detection of primary 

antibody binding was performed by using mouse IgG IR dye 800 (Rockland 

Immunochemicals, PA) and rabbit IgG Alexa 680 (Invitrogen) with Odyssey 

infrared imaging system (Licor).  

For co-immunoprecipitation experiments, 1 mg of protein lysates from WT, Panx1 

and Panx1-GFP over-expressing BICR-M1Rk cells were incubated overnight at 

4°C in the lysis buffer (1% Triton-X-100, 10 mM Tris, 150 mM NaCl, 1 mM EDTA, 

1 mM EGTA, 0.5% NP-40, 1 mM sodium fluoride and 1mM sodium 

orthovanadate containing 10 µg/mL of anti-Panx1 antibody. The antibody 

complex was pulled down with 30 µl of pre-cleaned protein A-sepharose beads 

(in PBS) for 2 hours on the rocker at 4°C. The antibody-bead complex was 

centrifuged at 4500 RPM at 4°C for 2 minutes and supernatant was aspirated. 

Unbound nonspecific protein was separated from bound proteins by washing 

three times with 500 µL of lysis buffer, and the bound complex was detached by 

boiling for 5 minutes in 30 µL of 2x Laemmli loading sample buffer containing β–
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mercaptoethanol. Samples were resolved by 10% SDS-PAGE and transferred to 

nitrocellulose membranes which were probed with anti-Panx1 and anti-β-actin 

antibodies. 

2.2.7 FRAP analysis 

To assess Panx1 or Panx3 dynamics at the cell surface, BICR-M1Rk cells 

expressing Panx1-GFP alone or in combination with the untagged, Panx1, or 

Panx3-GFP together with Panx3, were cultured on 35 mm glass bottom dishes 

and subjected to FRAP. B16-BL6 cells expressing Panx1-GFP were also subject 

to FRAP analysis. Rapid time-lapse imaging was performed on a Zeiss LSM 510 

META to quantify the movement of Panx1-GFP into the bleached region of 

interest (ROI), as previously described [96].  Briefly, glass bottom dishes were 

placed in an environmentally-controlled chamber and ROIs representing the 

various plasma membrane domains were selected and photo-bleached using 

scan iterations at 488 nm with 100% laser strength. Images were acquired ~2-5 

seconds apart for up to 60 seconds with 0.9% laser strength, to avoid further 

photobleaching. Fluorescence intensities within ROIs were quantified as 

previously described [96]. Briefly, fluorescence recovery was recorded: before 

photobleaching, immediately upon completion of photobleaching (t was set to 0 

seconds), and post bleaching at the following time intervals (15, 25, 50 and 60 

seconds). Post-bleach intensities were corrected and normalized for any residual 

fluorescence, and the recoverable fraction of Panx1-GFP or Panx3-GFP was 

calculated using FNt= (Ft – F0)/ (Fi - F0) as previously described [120]; where FNt = 

normalized fluorescence at a t time point; Ft = fluorescence intensity within ROI at 
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t seconds post photo-bleach; F0 = fluorescence intensity upon photo-bleaching at 

t = 0 and Fi = fluorescence intensity prior to photobleaching. All FRAP 

experiments were repeated 3 times for each experimental set, with each set 

containing multiple ROIs at t = 15, 25, 50 and 60 seconds. FNt values from 

replicates of each experimental set were combined and a non-linear regression 

analysis was performed to obtain a curve of best fit using GraphPad Prism 

software (San Diego, CA). To compare the mobility dynamics of Panx1-GFP or 

Panx3-GFP in various plasma membrane domains, a one-way ANOVA followed 

by Tukey’s multiple comparison tests were performed. For comparisons between 

untreated versus nocodazole and cytochalasin B treated experimental sets, t 

tests were performed using GraphPad Prism software.  

2.2.8 Vesicle Movement  

Panx1-GFP containing vesicles were analyzed by measuring the total distance 

traveled of vesicles that remained in confocal plane of focus for the duration of 

the analysis.  Vesicles of ~0.5-0.8 μm in diameter were monitored by 1.8 second 

interval image scans for a total period of 8.8 seconds. (n= 18-20, over 4 

independent repeats).  

2.2.9 Actin co-sedimentation assays  

Muscle actin (Cytoskeleton Inc., Denver, CO) was resuspended in buffer (5 mM 

Tris-HCl pH 8.0, 0.2 mM CaCl2) to a concentration of 1 mg/mL in 250 µl on ice for 

30 min. 25 µLs of 10X actin polymerization buffer (500 mM KCl, 20 mM MgCl2, 

10 mM ATP, 100 mM Tris pH 7.5) was added to the monomeric actin and 
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incubated at room temperature for 1h (F-actin stock at 23 µM).  Protein samples 

of BSA, GST, Panx1 C-tail and GST tagged Panx1 C-tail were centrifuged at 

150,000 x g for 1 h at 4 ºC. Supernatants were collected and placed on ice. For 

co-sedimentation assays, a GST fusion protein containing the C-tail of mouse 

Panx1 was used, either as a fusion protein after elution from the sepharose 

beads or after cleavage of the Panx1 C-tail from the fusion protein using 

PreScission Protease (GE Healthcare, Buckinghamshire, UK) for 16 h at 4 ºC, as 

per manufacturer's instructions.  Following the Cytoskeleton Inc. protocol for actin 

binding protein assays, 50 µL samples were prepared with either F-actin alone, 

GST protein with or without F-actin, BSA (negative control) plus F-actin, and 

Panx1 C-tail or GST fusion protein with or without F-actin.  Samples were 

incubated at room temperature for 30 min, followed by centrifugation at 150,000 

x g for 1.5 h at 24 ºC. Supernatants were carefully removed and mixed with 10 

µL 4X Laemmli reducing-sample buffer. The pellets were resuspended in 30 µL 

of double-distilled water and mixed with 30 µL of 2X Laemmli buffer.  Equal 

volumes of resuspended pellets and supernatants were run in duplicate on 10% 

SDS-PAGE.  Gels containing samples were either stained overnight with Sypro-

Ruby Protein gel stain (Invitrogen) or transferred onto nitrocellulose membranes 

using an iBlot apparatus for dry transfer (Invitrogen). Sypro-Ruby stained gels 

were de-stained and exposed to UV for visualization of the major bands. 

Nitrocellulose membranes were incubated overnight with primary anti-Panx1 

antibodies, washed, and probed with Alexa-680 anti-rabbit secondary for 

detection of Panx1 bands with a LiCor scanner as described previously [25]. 
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2.2.10 Biotinylation assays 

BICR-M1Rk cells grown on 100 mm dishes were transiently transfected with 5-10 

µg of Panx3-GFP encoding cDNA constructs, and 48 hours post transfection, 

cells expressing Panx3-GFP were subjected to biotinylation treatment on ice as 

previously described [25]. Cells were incubated in PBS or with cold PBS 

containing EZ-link Sulfo NHS-LC-biotin (0.5 mg/mL; Pierce Biotechnology) for 20 

min at 4oC.  Control and biotin-treated cells were washed and incubated in 100 

mM glycine buffer for 15 min at 4oC to quench the biotin.  Cells were then lysed 

with SDS lysis buffer (1% Triton X-100 and 0.1% SDS in PBS) and protein 

concentrations were measured using a BCA protein determination kit (Pierce). In 

total, 1000 µg of protein from control and biotin-treated cell lysates were rocked 

overnight at 4oC in the presence of 50 μL of neutravidin-agarose beads (Pierce 

Biotechnology).  Beads were washed three times with immunoprecipitation lysis 

buffer (IP)  (150 mM NaCl, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.5% NP-40, 

and 1% Triton X-100) containing 1 mM NaF and 1 mM Na3VO4; and once with 

PBS containing 1 mM NaF and 1 mM Na3VO4. The beads were air dried and 

resuspended in 50 μL of 2x Laemmli loading sample buffer containing β–

mercaptoethanol before boiling for 5 minutes.  As a lysate control, 40 μg of total 

protein from control and biotin samples was also resolved by SDS-PAGE and 

transferred to nitrocellulose membranes for immunoblotting with anti-Panx3 

antibody.  GAPDH was used as a control to detect any unexpected biotin 

internalization. 
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2.3 RESULTS 

We have previously shown that the Cx43-positive BICR-M1Rk (rat mammary 

tumor) cell line is an excellent reference model for investigating dynamic delivery 

events, assembly and turnover mechanisms of Cx43 [96, 109]; therefore, we 

designed our experimental approach to compare Panx1 and Panx3 trafficking 

dynamics in Cx43-positive BICR-M1Rk cells.  We engineered stable cells lines to 

ectopically express Panx1 or Panx3. Western blots analysis revealed that wild-

type BICR-M1Rk cells are negative for Panx1 and Panx3 (Figure 2.1A) but when 

engineered to express pannexins, Panx1 resolved as multiple species ranging 

from ~41-48 kDa; whereas, Panx3 was detected as a doublet at ~43kDa  (Figure 

2.1A). These multiple pannexin species have previously been shown to be the 

result of glycosylation [25, 47]. Immunolabeling of both Panx1 and Panx3 

revealed that both of these pannexins were capable of trafficking and localizing in 

a relatively uniform pattern at the apposing cell surface (Figure 2.1B). In contrast, 

detectable Panx2 and Panx2-GFP were mainly localized in the intracellular 

compartments of, not only BICR-M1Rk cells, but also in HEK 293T, NRK and rat 

keratinocytes (Supplementary Figure 1). Not unexpected, the co-expression of 

Panx2 with Panx2-GFP did not alter the distribution pattern of untagged or 

tagged Panx2. These studies indicate that Panx2 has a unique distribution when 

compared to Panx1 and Panx3 even when expressed in the same reference 

cells.   
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Figure 2.1 Panx1 and Panx3 are capable of trafficking to the cell surface in 
BICR-M1Rk cells 

BICR-M1Rk cells were engineered to stably express Panx1 or Panx3. 

Immunoblotting with affinity purified antibodies (anti-Panx1 and anti-Panx3) 

revealed multiple banding profiles of Panx1 (~41-48 kDa) and Panx3 (~41-43 

kDa) (A). β-actin was used as a protein loading control (A).  Immunolabeling of 

Panx1 and Panx3 (B) identified that both pannexins trafficked and localized to 

the cell surface (arrows). Nuclei are stained with Hoechst 33342 (blue).  Bars= 10 

µm. Representative of three independent experiments. 
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2.3.1 Trafficking of Panx1 and Panx3 is mediated 
through Sar1-dependent COPII vesicles 

It has been widely documented that Sar1 (secretion associated and Ras related) 

GTPase is critical for COPII (coat protein II) assembly and vesicular transport of 

newly synthesized proteins from the endoplasmic reticulum (ER) compartment 

[121, 122]. Dominant-negative GTP-bound mutant Sar1H79G has previously been 

shown to block the ER-Golgi transport of newly synthesized Cx43 in BICR-M1Rk 

cells [88]. In order to determine if Panx1 and Panx3 follow the classical ER-Golgi 

secretory pathway mediated through a COPII-dependent mechanism, we 

engineered BICR-M1Rk cells to co-express Panx1 or Panx3 along with Sar1WT or 

Sar1H79G. Co-expression of Panx1 with Sar1WT revealed a typical uniform 

distribution of Panx1 at the cell surface (Figure 2.2A, arrows), while Sar1WT was 

localized to the paranuclear region in an intact Golgi-like compartment (Figure 

2.2A, B). In comparison, expression of Sar1H79G resulted in fragmentation of a 

Golgi-like compartment in the paranuclear region (Figure 2.2A, B); and retention 

of Panx1 and Panx3 in ER-like patterns with little evidence of cell surface 

localization (Figure 2.2A, B arrowheads). In the same culture environments, 

BICR-M1Rk cells expressing Panx1 or Panx3 but not Sar1H79G revealed a uniform 

cell surface labeling of Panx1 and Panx3 (Figure 2.2A, B inserts, arrows). 

Furthermore, as we previously reported [88], the distribution of Cx43 gap junction 

plaque-like structures was not evident in the presence of Sar1H79G (not shown). 

Since Panx1 and Panx3 resolve as multiple bands (Figure 2.1A and 2C), we 

wanted to determine the effect of dominant-negative Sar1 on the different 

molecular species. 



45 

 

 

Figure 2.2 Trafficking of Panx1 and Panx3 was disrupted in the presence of 
a dominant-negative Sar1 mutant 

BICR-M1Rk cells expressing Panx1 or Panx3 together with Sar1WT or Sar1H79G 

were immunolabeled for Panx1 (A) or Panx3 (B). Both Panx1 and Panx3 were 
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capable of trafficking and localizing to the cell surface in the presence of Sar1WT 

(A, B filled arrows). Expression of Sar1H79G resulted in Panx1 and Panx3 being 

retained in an ER-like compartment (A, B arrowheads); however, when cells 

expressed Panx1 or Panx3 without expressing Sar1H79G in the same cellular 

environment, both Panx1 and Panx3 trafficked to the plasma membrane (A, B, 

insets, arrows). Western blotting of Panx1 and Panx3 in the presence of Sar1H79G 

(C), or after long term BFA treatment (19hr; D) revealed an accumulation of the 

high mannose species of Panx1 and Panx3, with a noticeable reduction in the 

higher molecular weight glycosylation species (C and D). Nuclei are stained with 

Hoechst 33342 (blue).  Bars= 10 µm. Representative of three independent 

experiments. 
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When compared to Panx1 alone or with Sar1WT, the presence of Sar1H79G 

revealed an accumulation of the intermediate species (previously demonstrated 

to be a high mannose glycosylation species [47]), with a noticeable reduction in 

the most extensively glycosylated species of Panx1 (Figure 2.2C). Similarly, an 

accumulation of lower molecular weight species (previously reported to be a high 

mannose glycosylation species [59]) of the Panx3 doublet was also revealed in 

the presence of Sar1H79G (Figure 2.2C), suggesting that the higher molecular 

weight species of Panx1 and Panx3 is the consequence of additional post-

translational processing  that occurs upon exiting the ER. Consistently, long term 

brefeldin A (BFA) treatment (19hr) (a pharmacological blocker known to inhibit 

anterograde transport of proteins between the ER and Golgi apparatus [123]) of 

Panx1 and Panx3 expressing BICR-M1Rk cells caused a detectable increase in 

the high mannose species of Panx1 and Panx3, with a noticeable reduction in 

the higher molecular weight species of both Panx1 and Panx3 (Figure 2.2D). 

Collectively, these results suggests that both Panx1 and Panx3 are co-

translationally inserted into the ER and transported in a COPII-dependent 

mechanism to the Golgi apparatus, where they are substrates for further 

glycosylation and processing.  

2.3.2 GFP-tagged Panx1 mimics the distribution profile 
of untagged Panx1 and is suitable to investigate the 
dynamic distribution of Panx1 

In order to assess the dynamic properties of Panx1, we first stably expressed 

Panx1-GFP in BICR-M1Rk cells and evaluated its distribution profile with respect 

to untagged Panx1. Immunofluorescent labeling revealed that Panx1-GFP 
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exhibited a similar cell surface distribution pattern (Figure 2.3A, arrows) as 

observed for untagged Panx1 (Figure 2.3F, arrows), with a notable increase in 

intracellular fluorescent signal (Figure 2.3A). Clearly, the cell surface pattern for 

Panx1-GFP was distinct from that observed for Cx43-GFP when expressed in 

the same cell type (Figure 2.3A, insert). To assess the dynamic activity of Panx1 

at the cell surface and within intracellular compartments we performed rapid 

time-lapse imaging on cells that expressed Panx1-GFP.  Panx1-GFP was not 

only visualized in a relatively uniform pattern at the cell surface (Figure 2.3A), but 

also as mobile bright fluorescent clusters (Figure 2.3B and C). Rapid time-lapse 

imaging revealed that these clusters (suggestive of Panx1-GFP aggregates) 

were mobile at the plasma membrane and in regions devoid of cell-cell contacts 

(Figure 2.3B and C, filled arrows, see Movie 2.1). In addition, Panx1-GFP was 

also found in distinct intracellular vesicle-like structures that were highly mobile 

(Figure 2.3D, unfilled arrows, Movie 2.1). Surprisingly, and distinct from that 

observed for functional Cx43, Panx1-GFP was found in dynamic finger-like 

projections indicative of membrane protrusion (Figure 2.3E, arrowheads, Movie 

2.1). This localization to membrane protrusion was also frequently evident in cells 

expressing untagged Panx1, suggesting that this localization profile is not a 

consequence of the GFP tag (Figure 2.3F, arrowheads). 
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Figure 2.3 Panx1 was localized to multiple sites, compartments and 
microdomains 
 
Immunolabeling of Panx1-GFP with an anti-Panx1 antibody revealed its 

localization at the cell surface (A, filled arrows) in a pattern that was distinct from 
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Cx43-GFP (A, insert). Regions of interest from live BICR-M1Rk cells expressing 

Panx1-GFP (B, red and blue rectangles) were chosen for live imaging and 

imaged at t= 0, 10, 50, 70 and 110 seconds (C and D). Rapid time-lapse imaging 

revealed that Panx1-GFP is distributed primarily in a uniform pattern, while 

mobile bright fluorescent clusters could be identified at the cell surface (B and C, 

filled arrows) and within the cell (D, unfilled arrows). Panx1-GFP was clearly 

localized to dynamic plasma membrane protrusions (E, arrowheads), that were 

evident in BICR-M1Rk cells expressing untagged Panx1 (F, arrowheads). Nuclei 

in A and F are stained with Hoechst 33342 (blue).   Bars= 10µm. Representative 

of three independent experiments. See Movie 2.1: http://www.jbc.org/  

Movie 2.1 Dynamic structures carrying Panx1-GFP are distributed 
intracellularly and at the cell surface 

Rapid time-lapse imaging was performed on Panx1-GFP expressing BICR-M1Rk 

cells to assess the overall localization and distribution pattern of Panx1.  Panx1-

GFP was localized in a relatively uniform manner at the cell surface with some 

evidence of cell surface clusters. Intracellular vesicle-like structures carrying 

Panx1-GFP were evident as bright clusters. Panx1-GFP was also localized to 

membrane protrusions that were constantly being remodeled. The movie 

sequence represents 32 frames scanned every 5 seconds, with a total elapsed 

time of 160 seconds. 
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2.3.3 Panx1-GFP is highly mobile at all plasma 
membrane domains as revealed by FRAP analysis 

To analyze the dynamic mobility characteristics of Panx1-GFP, we first assessed 

the ability of Panx1-GFP to traffic and localize at three distinct plasma membrane 

domains where there was no neighboring cell (Figure 2.4A, red arrow), the 

neighboring cell expressed Panx1-GFP (Figure 2.4A, blue arrow), or the 

neighboring cell was devoid of Panx1-GFP (Figure 2.4A, purple arrow).  Once it 

was determined that Panx1-GFP was not differentially distributed to any of these 

cell surface domains (Figure 2.4A), regions of Panx1-GFP located at these 

distinct domains were selected and subjected to fluorescence recovery after 

photobleaching (FRAP) analysis (Figure 2.4B-E). After initial photobleaching, 

within 2 seconds there was a rapid movement of fluorescent molecules from the 

outer edges into the photobleached area of all bleached cell surface domains 

(Figure 2.4B-D, inserts).  FRAP curve analysis revealed the mobile fluorescent 

fractions to be 45-60% at all micro-domains over a time course of only 60 

seconds (Figure 2.4E). Moreover, there was no significant difference in the total 

recovered fraction of Panx1-GFP within any of the plasma membrane domains; 

an observation that was similar to when we analyzed the percentage recovery of 

transiently transfected Panx1-GFP (40-50%) in BICR-M1RK cells stably 

expressing untagged Panx1 (Supplementary Figure 2), or B16-BL6 cells, 

identified for the first time to express endogenous Panx1 (Supplementary Figure 

3A and B). 
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Figure 2.4 Panx1-GFP is highly mobile at all plasma membrane locations 

Panx1-GFP was localized to three distinct plasma membrane domains of BICR-
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1Rk cells, as depicted by the schematic diagram (A).  Fluorescent images of 

Panx1-GFP were superimposed with DIC images to highlight the 

microenvironment surrounding the cell being analyzed (A-D). Selected cell 

regions where Panx1-GFP was localized at the three distinct plasma membrane 

domains were photobleached and fluorescence recovery back into the 

photobleached areas was assessed and normalized over 60s (B, C and D). 

Panx1-GFP recovery within the photo-bleached area was not significant different 

(P>0.05) amongst all three domains (E). Bars = 10 µm. n = 6-9 per plasma 

membrane domain collected from three independent experiments.  
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2.3.4 A sub-population of GFP-tagged Panx3 is evident 
at the cell surface when expressed alone or co-
expressed with Panx3 and reveals dynamic localization 
to the membrane protrusions  

We have previously reported that Panx3-GFP has a substantial trafficking defect 

causing it to be retained within the endoplasmic reticulum of NRK cells [25].  

However, when over-expressed in BICR-M1Rk cells, some evidence of Panx3-

GFP localization to the cell surface was detected (Figure 2.5A, filled arrows), 

along with the intracellular ER-like distribution of Panx3-GFP (Figure 2.5A, 

unfilled arrows). To further confirm that a sub-population of Panx3-GFP can 

traffic and localize to the cell surface, we performed biotinylation assays in live 

BICR-M1Rk cells transiently expressing Panx3-GFP. Incubation of Panx3-GFP 

expressing cells with biotin followed by pull downs with neutravidin beads 

revealed that the ~70 kD Panx3-GFP indeed traffics to the cell surface 

(Supplementary Figure 4). GAPDH was used as a negative control to confirm cell 

integrity and specificity (Supplementary Figure 4).  It was interesting to note that 

when Panx3-GFP was co-expressed with Panx3 in BICR-M1Rk cells, there was 

an apparent increase in the cell surface population of Panx3-GFP (Figure 2.5B, 

filled arrows), with some expected intracellular distribution (Figure 2.5B, unfilled 

arrows).  This data suggests that Panx3-GFP may interact with Panx3 to facilitate 

its traffic to the plasma membrane.  
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Figure 2.5 Delivery of Panx3-GFP to the cell surface  

Wild-type BICR-M1Rk cells engineered to express Panx3-GFP (A), or both Panx3 

and Panx3-GFP (B) were immunolabeled with anti-Panx3 antibody. Panx3-GFP 
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was retained mainly in an ER-like pattern (A, B, unfilled arrows) with some 

evidence of a cell surface distribution (A, B, filled arrows), while co-expression of 

Panx3 appeared to increase the cell surface population of Panx3-GFP (B). Rapid 

time-lapse imaging of live BICR-M1Rk cells co-expressing Panx3-GFP and 

Panx3 revealed that Panx3-GFP was distributed primarily in a uniform pattern 

with notable mobile fluorescent clusters at the cell surface (C, filled arrows), and 

within the cell (C, unfilled arrow). Localization of Panx3-GFP to plasma 

membrane protrusions (D, arrows) was similar to that found in cells expressing 

only Panx3 (E, arrows). Nuclei in A, B and E are stained with Hoechst 33342 

(blue). Bars= 10 µm. Representative of three independent experiments. 
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To assess the dynamic activity of Panx3-GFP at the cell surface and within 

intracellular compartments, we performed rapid time-lapse imaging on cells co-

expressing Panx3 and Panx3-GFP.  Panx3-GFP was localized at the cell surface 

in a relatively uniform pattern and as bright clusters either approaching or at the 

cell surface (Figure 2.5C, filled arrows). In addition, Panx3-GFP was also 

visualized in distinct vesicle-like structures (Figure 2.5C, unfilled arrows); and 

observed in cell surface protrusions (Figure 2.5D, arrows), that were also 

occasionally identified in cells expressing only Panx3 (Figure 2.5E, arrows).  

2.3.5 Panx3-GFP is highly dynamic at all cell surface 
domains  

We co-expressed Panx3 with Panx3-GFP and used GFP-tagged Panx3 as a 

tracer to assess and quantify the mobile fraction in various plasma membrane 

domains where: the neighboring cell surface was devoid of Panx3-GFP (Figure 

2.6A), the neighboring cell expressed Panx3-GFP (Figure 2.6B, see Movie 2.2) 

or there was no neighboring cell (Figure 2.6C). FRAP analysis of selected 

regions expressing Panx3-GFP revealed that within 60s after photobleaching, 

there was a rapid re-entry of GFP-tagged Panx3 molecules into the 

photobleached area at all micro-domains (Figure 2.6A-C, inserts), and the mobile 

fraction was calculated to be ~30-40%.  However, no significant difference was 

noticed in the total recovered fraction of Panx3-GFP within any of the plasma 

membrane domains (Figure 2.6D).  
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Figure 2.6 Panx3-GFP is highly mobile at all plasma membrane domains  

Panx3-GFP was localized to three distinct plasma membrane domains of BICR-

M1Rk cells co-expressing Panx3 (A-C). Selected cell surface regions containing 
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Panx3-GFP were photobleached and fluorescence recovery back into the 

photobleached areas was assessed and normalized over the time course of 60s. 

The percent Panx3-GFP recoverable fraction was not found to be significantly 

different amongst all three plasma membrane domains examined (P>0.05) (D). 

Bars=10µm. n=12-25 per plasma membrane domain collected from three 

independent experiments. See Movie 2.2: http://www.jbc.org/ 

Movie 2.2   The cell surface population of Panx3-GFP is highly mobile 

 FRAP and rapid time-lapse imaging was performed at cell-cell interfaces where 

both cells co-expressed Panx3-GFP and Panx3. After photobleaching, Panx3-

GFP rapidly migrated into the photo-bleached area. Intracellular vesicle-like 

structures carrying Panx3-GFP were evident as were bright fluorescent clusters 

at the cell surface. Panx3-GFP was also observed to be present in actively 

remodeling membrane protrusions. The movie represents 31 frames scanned 

every 2 seconds, with a total elapsed time of 62 seconds. 
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2.3.6 Cell surface population of Panx1-GFP and Panx3 
is insensitive to nocodazole treatment 

It has been documented that nocodazole disruption of microtubules impairs the 

continuous trafficking and regeneration of Cx43-GFP at the cell surface [88]. To 

investigate if trafficking and recovery of Panx1-GFP into the photobleached area 

is dependent on microtubules, Panx1-GFP expressing BICR-M1Rk cells were 

exposed to nocodazole for 90 minutes. Nocodazole treatment resulted in 

characteristic morphological changes in the cells from spindle-shaped to more 

cuboidal with a notable disruption of the microtubule architecture (Figure 2.7A-C). 

However, the distribution of Panx1-GFP (Figure 2.7B) and Panx3 

(Supplementary Figure 2.7.5B) at the cell surface remained relatively unaffected 

by the nocodazole treatment. Furthermore, FRAP studies revealed that Panx1-

GFP migrated into the photobleached area similarly in both untreated and 

nocodazole-treated cells (Figure 2.7C, D).  Interestingly, the inward progression 

of fluorescent recovery from the edges of the photobleached area towards the 

centre was not detected until 10 seconds post bleaching (Figure 2.7C, insert). 

Furthermore, FRAP analysis of Panx1-GFP in the presence of nocodazole 

treatment, revealed no significant difference in the recovered fraction when 

compared to the untreated cells (Figure 2.7D). Thus, nocodazole treatment does 

not visually affect the cell surface localization of Panx1-GFP, or the recovery into 

the photobleached area at the cell surface.  
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Figure 2.7 The cell surface population of Panx1-GFP is insensitive to 
nocodazole treatment 

Untreated (A) or nocodazole-treated (B) Panx1-GFP expressing BICR-M1Rk 

were immunolabeled for tubulin. As expected, nocodazole treatment collapsed 



62 

 

tubulin into paranuclear regions (A, B); however, the distribution profile of Panx1-

GFP at the cell surface and in the intracellular compartments (A, B) remained 

relatively unchanged with collapsed tubulin (B). FRAP analysis in presence of 

nocodazole revealed that Panx1-GFP was able to recover into the 

photobleached area and the percentage of recoverable fraction was not 

significantly different from the untreated cells (C and D). Bars= 10µm. n = 5-10 

per plasma membrane domains, data collected over four independent repeats.  
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2.3.7 The cell surface stability of Panx1-GFP and 
Panx3 is sensitive to cytochalasin B treatment while the 
mobility of Panx1-GFP transport vesicles is perturbed in 
the absence of intact microfilaments 

We next wanted to assess the role of actin microfilaments in stabilizing Panx1 

and Panx3 at the cell surface as well as evaluating their cell surface dynamic 

properties and transport of Panx1-GFP.  Treatment of cytochalasin B (90 min) 

caused a re-distribution of F-actin from the cell periphery (Figure 2.8A, 

Supplementary Figure 5A) to the paranuclear region (Figure 2.8B, 

Supplementary Figure 5A), with a subsequent change in cell morphology. In 

cytochalasin B treated cells, Panx1-GFP and Panx3 were mainly localized in 

intracellular compartments (Figure 2.8B, Supplementary Figure 5A, arrowheads); 

while a small population remained evident at the cell surface (Figure 2.8B, 

Supplementary Figure 5A, arrows). These findings suggest that actin may play a 

crucial role in the cell surface stability of Panx1-GFP and Panx3. FRAP analysis 

of the remaining and detectable cell surface population of Panx1-GFP after 

cytochalasin B treatment (see Movie 2.3) revealed that Panx1-GFP was mobile 

but the recovery rate was slower and the amount of the recovered fraction was 

significant less (~15-20%), when compared to the untreated cells (Figure 2.8C). 

Furthermore, rapid time-lapse imaging on the same field of cells visualized 

before (see Movie 2.4) and after (see Movie 2.5) cytochalasin B treatment 

revealed that Panx1-GFP carrying vesicles were freely able to move and travel in 

the untreated cells, however, this movement was greatly perturbed when cells 

were treated with cytochalasin B with a ~60% decrease in vesicle  
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Figure 2.8 Effect of cytochalasin B on Panx1-GFP 

Untreated (A) or cytochalasin B treated (B) Panx1-GFP expressing BICR-M1Rk 

cells were labeled with phalloidin for F-actin localization. As expected, 

cytochalasin B caused the re-distribution of F-actin from the cell surface (A) to 
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the paranuclear region (B). The collapse of F-actin microfilaments coincided with 

the intracellular accumulation of Panx1-GFP (B, arrowheads) while, a small 

population of Panx1-GFP remained evident at the cell surface (B, arrows). FRAP 

analysis in the presence of cytochalasin B treatment revealed that the cell 

surface population of Panx1-GFP was significantly impaired from entering the 

photobleached area (P<0.05) (C) N=3. Quantification of the total distance 

traveled by Panx1-GFP carrying vesicles within the same field of cells analyzed 

before and after the cytochalasin B treatment indicated a significant (P< 0.05) 

reduction in vesicle mobility in cytochalasin B treated cells (D). Bars= 10µm.  

Representative of five independent experiments.  

Movie 2.3   Panx1-GFP recovery in the photobleached area is reduced in 
response to the disruption of actin microfilaments 

Panx1-GFP expressing BICR-M1Rk cells pre-treated with cytochalasin B were 

subjected to FRAP and rapid time-lapse imaging at a cell surface where there 

was no neighboring cell (top of the frame). Recovery of Panx1-GFP into the 

photo-bleached area was minimal, becoming evident at roughly 20 seconds post 

photobleaching. The movie represents 61 frames scanned every 1 second, with 

a total elapsed time of 60seconds. See online at http://www.jbc.org/ 

Movies 2.4 and 2.5   Movement of Panx1-GFP carrying vesicles is reduced 
in response to the disruption of actin microfilaments 

Rapid time-lapse imaging was performed on the same field of BICR-M1Rk cells 

expressing Panx1-GFP before (Movie 4) and after cytochalasin B (Movie 5) 

treatment. Post 45 minutes of cytochalasin B treatment, we observed an 

apparent loss of membrane protrusions as well as a reduction in the movement 

of intracellular Panx1-GFP carrying vesicles. The movies represent 39 frames for 

untreated cells and 41 frames for cytochalasin B treated cells, scanned every 1.5 

seconds. See online at http://www.jbc.org/ 

http://www.jbc.org/�
http://www.jbc.org/�
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movement over a fixed interval of time (8.8s) (Figure 2.8D). Collectively, these 

studies suggest that microfilaments play a multifaceted role in pannexin 

stabilization at the cell surface and vesicular transport. 

2.3.8 F-actin directly binds Panx1 at the carboxy 
terminus 

To further examine the possible interaction of Panx1 with actin, lysates of wild-

type BICR-M1Rk cells engineered to express Panx1 or Panx1-GFP were 

subjected to immunoprecipitation of Panx1 prior to immunoblotting for Panx1 or 

β-actin. As expected, multiple glycosylated species of Panx1 (resolved below the 

IgG band) and Panx1-GFP were detected in the immunoprecipitates and cell 

lysates of Panx1 over-expressing cells but not wild-type BICR-M1Rk cells (Figure 

2.9A, top panel). Interestingly, β-actin was found to co-immunoprecipitate with 

Panx1 from both Panx1 and Panx1-GFP expressing BICR-M1Rk cells (Figure 

2.9A, bottom panel). To further validate the interaction of actin with Panx1, we 

conducted co-sedimentation assays where polymerized actin was mixed with 

GST fusion protein containing the carboxy terminal tail (C-tail) of Panx1. As 

observed by Sypro-stained gel, once polymerized, F-actin typically sediments in 

the pellet fraction. In the absence of polymerized actin, GST-Panx1 C-tail was 

found in both the soluble and pellet fraction (Figure 2.9B). However, when 

combined with F-actin, GST-Panx1 C-tail sediments preferentially in the pellet 

fraction (Figure 2.9B). As a control, GST alone did not sediment in the pellet 

fraction with or without F-actin (Figure 2.9B). Since the Panx1 C-tail fusion 

protein detection at ~43kD was partially masked by actin, we cleaved the C-tail of 
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Panx1 from the GST and performed a similar co-sedimentation assay. Further 

Panx1 immunoblots revealed the Panx1 C-tail at ~15kD in the pellet fraction 

(Figure 2.9C). These results suggest that F-actin binds directly to the carboxyl 

terminal of Panx1.  
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Figure 2.9 F-actin binds Panx1 at the carboxy terminus  

Wild-type (WT), or Panx1 or Panx1-GFP expressing BICR-M1Rk cells were lysed 

and subjected to immunoprecipitation (IP) for Panx1 prior to immunoblotting (IB) 
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the immunoprecipitates and cell lysates for Panx1 or  β-actin.  β-actin co-

immunoprecipitated with Panx1 and Panx1-GFP (A). Monomeric actin was 

polymerized into F-actin, incubated with either GST-fusion protein containing the 

carboxy-terminal tail of Panx1 (B) or the carboxy-terminal tail of Panx1 alone (C) 

and separated into supernatant or pellet fractions (denoted by S and P, 

respectively) prior to immunoblotting for Panx1. Panx1 was found to co-sediment 

with F-actin in the pellet fractions (B and C). Parallel gels were stained with 

Sypro gel stain and BSA and GST were used as controls in the co-sedimentation 

assays. Representative of three independent repeats. 
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 2.4 DISCUSSION 

 With the recent discovery of pannexins as a new family of channel or conduit 

forming proteins, there has been a growing interest to elucidate their biochemical 

properties, life-cycle and cellular roles.  Previous reports have linked Panx1 

channels to the release of ATP in neurons [66] and astrocytes [124], and in 

cellular response to pathological insults such as initiation of inflammatory action 

[76, 112], ischemia-induced death of neurons [78] and in tumor suppression [53]. 

Our understanding of Panx3 is even more rudimentary. While Panx3 has been 

shown to be a cell surface glycoprotein that forms conduits capable of dye 

uptake [25, 125], its cellular function remains largely unknown.  It was our 

hypothesis that being integral membrane proteins with sequence relationships to 

invertebrate innexin gap junction proteins, Panx1 and Panx3 would exhibit similar 

characteristics to the well studied Cx43 gap junction protein in terms of the 

secretory pathway governing their trafficking, dynamic properties within the 

plasma membrane and interplay with the cytoskeletal network.  

2.4.1 Trafficking of Panx1 and Panx3 to the cell surface 

It has been well established that Cx43 is co-translationally inserted into the ER 

and oligomerizes into connexons in the trans-Golgi network before trafficking to 

the plasma membrane [13]. In the case of Panx1, treatment with EndoH and 

PNGaseF enzymes have revealed that the lower molecular weight species 

constitutes the core protein that gets glycosylated to the high mannose form in 

the ER  before further glycosylation and processing in the Golgi apparatus and 

delivery to the cell surface [25, 47].   Although recent studies have extensively 
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focused on correlating glycosylation status with the delivery of Panx1 to the cell 

surface [47, 81], molecular mechanisms underlying the secretory pathway taken 

by Panx1 and Panx3 were largely unknown. To address if the transport of Panx1 

and Panx3 from the ER to the Golgi apparatus is mediated through COPII 

vesicles, we transiently co-expressed Panx1 or Panx3 with the dominant-

negative GTP-bound mutant Sar1H79F. Stabilization of Sar1 in the dominant-

negative GTP bound state has been previously shown to efficiently block COPII-

mediated ER transport of proteins to the cell surface [126]. Our data 

demonstrated that Sar1H79F expression severely inhibited the cell surface 

localization of Panx1 and Panx3, thus suggesting that COPII vesicular trafficking 

of these pannexin family members is required prior to their eventual delivery to 

the cell surface. This data also indicates that efficient GTP hydrolysis of Sar1 is 

crucial for regulating their transport from the ER compartment, as restriction of 

GTP hydrolysis of Sar1H79G to GDP has been previously shown to arrest the 

cargo-containing vesicles at the ER exit sites [122].  Consistent with our findings, 

we previously showed that Sar1 function was necessary for delivery of Cx43 to 

the cell surface [88].  Our data supports the premise that the post-ER pool of 

Panx1 and Panx3 is correlated with pannexin processing to the highly complex 

glycosylation species; whereas the accumulation of the high mannose 

intermediate species of Panx1 and Panx3 is consistent with retention of Panx1 

and Panx3 in the ER. Similar Sar1 GTPase dependency was observed for KATP 

channels, where expression of dominant-negative mutants: Sar1H79G (mutant 

incapable of hydrolysing GTP) and Sar1T39N (mutant restricted in its ability to 
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exchange GDP for GTP) prevented proper channel processing and the cell 

surface expression of the channel [127]. 

ER to Golgi transport of Panx1 and Panx3, as well as their state of glycosylation, 

was further confirmed by the use of BFA which is known to inactivate Arf1 

thereby inhibiting ER to Golgi transport [128]. Consistent with a previous study 

[81] we noticed a dramatic increase in the high mannose form of Panx1 in BFA-

treated cells. Interestingly, we also observed an accumulation of the high 

mannose species of Panx3 in response to BFA treatment, consistent with the 

inhibition of both Panx1 and Panx3 being delivered to the Golgi apparatus for 

further processing. Vesicular trafficking of Panx1 and Panx3 would also strongly 

suggest that, like Cx43, both proteins are integral transmembrane proteins that 

get transported from ER membranes in COPII vesicles.  

2.4.2 Mobility Dynamics of Panx1 and Panx3 

In our study, we used Panx1-GFP and Panx3-GFP as tracer probes to elucidate 

the distribution profile and cell surface dynamics of Panx1 and Panx3. The 

distribution of Panx1-GFP at the plasma membrane appeared to be uniform with 

occasional Panx1 enriched domains consistent with previous findings using the 

untagged Panx1 [25]. In contrast, Panx3-GFP alone revealed an increased 

intracellular profile, as reported earlier [25], with some clear evidence of its 

localization to the cell surface that was confirmed by cell surface biotinylation 

assays. Since adequate delivery of Panx3-GFP to the cell surface was required 

to investigate its dynamics at the plasma membrane, we co-expressed it with 

untagged Panx3 and found an increased cell surface expression of Panx3-GFP. 
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It is possible that Panx3 co-oligomerized with Panx3-GFP to facilitate its delivery 

to the plasma membrane; if this holds true, it would also suggest that having a 

GFP tag at the carboxy terminal tail of Panx3 does not interfere with the 

intermixing of Panx3 subunits.  A similar mechanism has been proposed for the 

cell surface rescue of a trafficking-defective, glycosylation-deficient mutant of 

Panx1 when co-expressed with either wild-type Panx1 or tetracysteine tagged 

Panx1, further indicating that tagging of pannexins does not impair its ability to 

assemble together with its untagged counterpart [81].   

In our study, delivery of both Panx1-GFP and Panx3-GFP to the cell surface 

appeared to occur at multiple plasma membrane domains via intracellular 

vesicle-like structures that formed bright clusters upon apparent fusion with the 

plasma membrane. These clusters were found to be quite mobile and displaced 

laterally within the cell surface membrane, thus supporting a model of untargeted 

delivery of Panx1 and Panx3 to all cell surface micro-domains. In contrast, Cx43-

GFP typically known to localize in punctate-like structures at the cell surface, has 

been documented to have both an arbitrary delivery to all plasma membrane 

domains [88, 96] as well as a preferred microtubule-dependent delivery to 

adherens junctions that reside in close proximity to the pre-existing gap junctions 

[129]. Interestingly, our data supports the premise that Panx1 and Panx3 are 

enriched in membrane protrusions at areas that are devoid of contacting cells, a 

situation not typically observed for Cx43 unless non-functional Cx43 mutant 

studies are performed [96]. Localization of pannexins in the finger-like membrane 

protrusions could suggest it may play a role in cell migration, as the process of 
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cell motility typically involves actin polymerization, and entails formation of fan 

like or pointed projections (lamellipodium and filopodia, respectively) at the 

leading edge [130]. Previously, the absence of Panx1 from the leading edge of a 

corneal epithelium wound in P2X7
-/- mice was correlated with delayed corneal re-

epithelialization and compromised wound healing [131].  Other channel forming 

proteins such as aquaporin-1 has been implicated in increased cell migration by 

localizing to the lamellipodia [132]; whereas, migration of lymphocytes [133] and 

embryonic nerve cells [134] have been correlated with voltage-dependent K+ 

channels, thus supporting the role of channel forming proteins in regulating cell 

motility.  

Our FRAP assessments of Panx1 and Panx3 mobility identified that, similar to 

Cx43 [96], lateral movement of Panx1-GFP and Panx3-GFP occurred from the 

outer edge to the centre of the photo-bleached areas. It is notable that while the 

recovery of fluorescence into the photobleached area is likely the result of lateral 

movement of pannexins due to the time course being examined, there is also 

likely a contribution from newly delivery fluorescent protein tagged pannexins to 

the cell surface.  The relative rate of Panx1-GFP and Panx3-GFP recovery into 

the photobleached area was quite comparable in any of the examined plasma 

membrane micro domains, thus suggesting that the assembly state of these 

pannexin family members remains relatively unchanged with respect to its 

subcellular location within the plasma membrane. In our study, Panx1-GFP (and 

to a slightly lesser extent Panx3-GFP) exhibited over twice the mobility of Cx43-

GFP, which are typically arranged in gap junction-like clusters [96]. Slow 



75 

 

recovery of Cx43-GFP was also reported in HeLa cells [135].  Given the relatively 

uniform cell surface distribution of Panx1 and Panx3 that appears to be 

untargeted to specific micro-domains, we speculate that these pannexins are not 

likely packaged into dense crystalline-like structures as reported for Cx43 [39].  

Thus, the distribution and mobility of these pannexins are more in line with other 

channels and receptors such as Na+ channels [136], and acetylcholine receptors 

[137]. 

The percent of fluorescence recovery after photobleaching for both Panx1-GFP 

and Panx3-GFP (representing the mobile fraction) reached a plateau between 

40-60% with the remaining component representing the immobile fraction. 

Typically the size of the immobile fraction is dependent on the nature of the 

protein and the membrane microenvironment being assessed. For instance, the 

immobile fraction of Na+ channels ranges from ~10% in the cell body to ~40% in 

the neurite terminals [136]. Likewise, the mobile fraction of glycine receptors 

ranges from ~50% in the neuronal cell body to ~70% in the processes [138]. In 

addition, the viscosity of the membrane microdomain [139], tethering of proteins 

with scaffolds/binding partners or interaction with cytoskeleton can all contribute 

to the size of the immobile fraction [140]. 

2.4.3 Cytoskeletal dependency of Pannexin trafficking 
and mobility 

In order to assess the role of the cytoskeleton in pannexin trafficking and cell 

surface mobility dynamics, we used nocodazole and cytochalasin B to disrupt 

microtubules and microfilaments, respectively.  Nocodazole-induced disruption of 



76 

 

microtubules did not significantly alter the cell surface distribution of either Panx3 

or Panx1-GFP, which may not be totally unexpected given the predicted long 

half-life of Panx1 [25, 47]. This finding is quite distinct from Cx43, where 

enhanced growth of gap junctions [89], and Cx43 molecular movement into the 

photobleached gap junctions was minimal in nocodazole-treated cells [88] 

suggesting that Cx43 is much more dependent on microtubules than Panx1.  In 

contrast, disruption of microfilaments revealed concomitant accumulation of 

paranuclear Panx1-GFP and Panx3 with collapsed actin microfilaments, while 

only a subpopulation of Panx1-GFP or Panx3 remained at the cell surface. The 

longer turnover dynamics of pannexins, and the rapid intracellular accumulation 

upon short term cytochalasin B treatment support the premise that actin provides 

stability to the cell surface population of Panx3 and Panx1. On the other hand, 

Cx43 gap junctions have been documented to remain considerably more 

independent to the assembly state of microfilaments [141].  Mobility assessment 

of the remaining cytochalasin B-insensitive subpopulation of Panx1-GFP at the 

cell surface revealed a rather smaller mobile fraction of ~35% in the absence of 

intact microfilaments. This surprising finding was somewhat distinct from Na, K-

ATPase and reggie-1/flotillin-2 where the disruption of microfilaments caused an 

increase in the mobile fraction [142, 143]. The smaller mobile fraction of Panx1-

GFP noticed in our study may be explained by the fact that transport vesicles 

carrying Panx1-GFP either to or from the plasma membrane were less mobile 

and this decrease may mechanistically account for the reduced fluorescent 

recovery into the photobleached area.  The relative speeds of Panx1-GFP 
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carrying vesicles in untreated cells (~0.2 µm/sec) and cytochalasin B treated 

cells (~0.07 µm/sec) were also quite different.  Although credited to trafficking on 

microtubules tracks, vesicles containing Cx43-GFP showed comparable average 

speeds of ~0.5 µm/sec in untreated HeLa cells [95].  

2.4.4 Interaction of Panx1 with actin 

Given the finding that actin microfilaments regulated the distribution and cell 

surface mobility of Panx1, we speculated a direct interaction between Panx1 and 

actin may exist. Since we were best equipped to address this question for Panx1 

we first demonstrated that actin does in fact co-immunoprecipitate with Panx1. 

To further assess: 1) if Panx1 binds to monomeric or filamentous actin, 2) if 

Panx1 interaction to actin is direct, and 3) which domain of Panx1 might be 

responsible for interaction, we conducted co-sedimentation assay with a GST-

Panx1 C-tail fusion protein. Here we show that Panx1 sediments preferentially in 

the F-actin fraction, the interaction appears to be direct and it is the carboxy 

terminal tail of Panx1 that seems responsible for interacting with actin. 

Comparatively, actin binding to Cx43 is thought to be facilitated via its interaction 

with zonula occludens-1 which is a known Cx43 binding partner [144].  Future 

studies will be needed to elucidate the Panx1 motif responsible for actin binding 

at the C-terminus, and whether actin also binds to Panx3.   

 In summary, trafficking and assembly of pannexins is a precisely regulated 

process. Our study is the first to report that Panx1 and Panx3 transport is 
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dependent on Sar1-mediated COPII vesicles, cell surface Panx1 and Panx3 

have dynamic mobility properties, and Panx1 directly interacts with F-actin.  
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Supplementary Figure 2.7.1 Distribution profile of mouse Panx2 

BICR-M1Rk, HEK-293T, NRK and REK cells were transiently transfected to 

express Panx2 and Panx2-GFP alone or together. Panx2 expressing cells were 

immunolabeled for Panx2. In all the cell types, both Panx2 and Panx2-GFP were 

primarily localized to intracellular compartments. Bars = 10 µm. 
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Supplementary Figure 2.7.2 Characterization of the cell surface dynamics 
of Panx1-GFP when expressed in Panx1-expressing BICR-M1RK cells 

Panx1 over-expressing BICR-M1Rk cells engineered to co-express Panx1-GFP 

were immunoblotted (A) and immunolabeled (B) with anti-Panx1 antibody. Like 

untagged Panx1, Panx1-GFP also resolved in a multiple banding profile, where 
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β-actin was used as a protein loading control (A).  Immunolabeling of 

Panx1+Panx1-GFP cells identified the cell surface and intracellular distribution of 

GFP-tagged (B-arrowheads) and untagged (B-arrows) Panx1. Nuclei were 

stained with Hoechst 33342 (blue).  Bar = 10 µm. Three distinct plasma 

membrane domains expressing Panx1-GFP were photobleached and 

fluorescence recovery revealed no significant difference amongst them (C). n = 

8-10 per plasma membrane domain collected from three independent 

experiments.  
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Supplementary Figure 2.7.3 Characterization of the cell surface dynamics 
of Panx1-GFP when expressed in Panx1-positive BL6 cells 

BL6 cells expressing endogenous Panx1 were transiently transfected with 

Panx1-GFP and immunoblotted with anti-Panx1 antibodies (A). β-actin was used 

as a protein loading control (A). Exogenously expressed Panx1-GFP (B, 

arrowheads) and endogenously expressed Panx1 (B, arrows) exhibited a uniform 
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cell surface distribution. Nuclei were stained with Hoechst 33342 (blue).  Bar = 10 

µm. Photobleaching of Panx1-GFP at three plasma membrane domains revealed 

no significant difference in the percentage of recovery (C). n = 9-12 per plasma 

membrane domain collected from three independent experiments.  
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Supplementary Figure 2.7.4 Panx3-GFP is capable of trafficking to the cell 
surface 

Cell surface biotinylation of BICR-M1Rk cells transiently expressing Panx3-GFP 

indicated that Panx3-GFP can reach the cell surface. Cell lysates of Panx3-GFP 

with (+) or without (-) biotin were precipitated with neutravidin beads and 

immunoblotted for Panx3. GAPDH was used as a control to assess if biotin had 

entered the cell during the labeling procedure.  
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Supplementary Figure 2.7.5 The cell surface distribution of Panx3 is 
partially sensitive to cytochalasin B and insensitive to nocodazole 
treatment 

BICR-M1Rk cells transiently expressing Panx3 were treated with cytochalasin B 

(A) or nocodazole (B) and co-immunolabeled for Panx3 and tubulin or labeled for 

Panx3 together with phalloidin.  In cytochalasin B treated cells, Panx3 was 
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mainly localized to intracellular compartments (A, arrowheads), with some 

evidence of a cell surface pool (A, arrows); whereas nocodazole treatment 

caused no obvious difference in the cell surface distribution of Panx3 (B) Bar = 

10 µm.  
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CHAPTER 3: The Carboxyl Terminal Tail of Panx1 
Regulates Trafficking and Homomeric Interaction 

 

3.0 OVERVIEW 

 

This study was designed to characterize the role of the C-terminal domain of 

Panx1 in trafficking and oligomerization, by truncating the polypeptide at residue 

307 and comparing its properties to full length Panx1.  
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3.1 INTRODUCTION 

Pannexins were originally discovered due to their shared sequence homology 

with the invertebrate gap junction proteins, innexins [1]. The pannexin family is 

comprised of three members: Panx1, Panx2 and Panx3 [1].  Although the scope 

of physiological significance of pannexin family members is only beginning to 

emerge, it is well established that Panx1 holds importance in: forming conduits 

for ATP release [57, 145, 146], propagation of Ca2+ waves [60], and triggering 

neuronal and immunological inflammasome [49, 77, 147].  Additionally, activation 

of Panx1 channels has been implicated in ischemic cell death [78], and seizure-

like activities [66].  In order to fulfill a wide spectrum of biological functions, a 

precise regulation of pannexin assembly and trafficking is required.  

In general, glycosylation of integral membrane channel proteins can have 

important implications on proper folding and subunit assembly, cell surface 

expression, and function [148-150]. We and others have shown that Panx1 is N-

linked glycosylated [25, 47] and exists as core (Gly0), high mannose (Gly1) and 

complex (Gly2) species [59].  The significance of Panx1 glycosylation on 

trafficking was first explored using site-directed mutagenesis of putative N-linked 

glycosylation sites [47]. While the Panx1N204Q mutant was fully glycosylated and 

expressed all the three forms: Gly0, Gly1 and Gly2, the Panx1N254Q mutant was 

not glycosylated and was expressed only as a Gly0 species [25, 47]. Moreover, 

the Panx1N254Q mutant displayed trafficking defects suggesting that glycosylation 

played a role in proper trafficking of Panx1 to the cell surface.    
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Cell surface Panx1 exists in the form of hexamer channels, termed pannexons 

[47]. In MDCK cells, Panx1 has been shown to rescue the delivery of the 

Panx1N254Q mutant to the cell surface suggesting that  they co-oligomerize [81].  

Thus, the lack of glycosylation does not perturb the ability of Panx1N254Q subunits 

to fold properly and intermix with Panx1. Interestingly, despite the glycosylation 

deficiency and the low levels of the Panx1N254Q mutant at the cell surface, the 

mutant is still capable of forming functional single membrane channels that can 

take up dye [25].  A glycosylation deficient mutant of zebrafish Panx1 (zfPanx1-

N246K), on the other hand, traffics to the cell surface, but displays impaired 

uptake of ethidium bromide compared to WT zfPanx1 [151].  

The function of Panx1 channels has also been investigated by engineering 

specific point mutations in the polypeptide sequence and expressing these 

mutants in reference cell models. First, substitution of lysinealanine at residues 

248 and 265 in the second extracellular loop resulted in a loss of Panx1 channel 

function.  Mutation of arginine at position 75 (in the first extracellular loop) to 

alanine, lysine, glutamine, or cysteine was further used to assess the inhibitory 

effects of ATP analogues on Panx1 channel currents [63].  Based on the single 

mutation analysis of these mutants, R75 was identified as a key ATP binding site 

for regulation of Panx1 channel activity [63]. When expressed in Xenopus 

oocytes, the C346S mutant formed constitutively leaky channels thereby causing 

cell death; whereas C136S or C436S mutants did not significantly alter Panx1 

channel properties [152].  Although the C346S mutant was only partially 

glycosylated to the Gly1 form, as opposed to the full glycosylation states 
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achieved by the C136S and C426S mutants, all three mutants trafficked and 

localized to the cell surface [152]. Thus, these results suggest that partial 

glycosylation of Panx1 to the high mannose species (Gly1) is sufficient to drive a 

subpopulation to the cell surface, a notion further supported by our recent work 

demonstrating cell surface biotinylation of the Gly1 species of Panx1N254Q [59]. 

Clearly, engineering of mutations along several domains of Panx1 provide 

insights into Panx1 assembly, trafficking and channel function. While several 

studies have investigated at the effect of single amino acid substitutions within 

specific Panx1 motifs, mutants where entire Panx1 domains have been deleted 

have not be studied. We were particularly interested in the large 127 amino acid 

long C-terminal domain as this cytoplasmic domain is a prime candidate exposed 

for interacting with other regulatory proteins. In fact, we have previously shown 

that the Panx1 C-tail acts as a substrate for binding actin, which provides a 

multifaceted role in vesicular transport, cell surface mobility, and stability of 

Panx1 [153].  In the present study we expand our understanding of the role of the 

Panx1 C-terminus by investigating the trafficking and oligomeric potential of C-

terminal truncated Panx1. 
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3.2 EXPERIMENTAL PROCEDURES 

3.2.1 Cell culture and reagents 

BICR-M1Rk cells and  human embryonic kidney (HEK)-293T, cells were cultured 

in high glucose DMEM (Invitrogen, Burlington, ON, Canada), supplemented with 

10% fetal bovine serum, 100 units/ml penicillin, 100 µg/ml streptomycin, and 2 

mM L-glutamine (all from Invitrogen, Burlington, ON, Canada).  

3.2.2 Expression constructs and transfection 

To truncate Panx1 carboxy tail at amino acid position 307, primers were 

designed with flanking sites for HindIII digestion- using the forward primer: 5’- 

GATAAGCTTACCATGGCCATCGCCCAC, and NotI digestion for reverse primer: 

5’- TCAAGCGGCCGCACCACTTTGAGAATG. PCR products were digested with 

HindIII and NotI restriction enzymes, and inserted into the pcDNA3-mRFP vector 

(Addgene Plasmid Repository). Truncated Panx1 and RFP (denoted as 

Panx1T307-RFP) were separated by a five-amino acid polylinker encoded by the 

nucleotide sequence (GGACCGGTCGCCACC). The resulting construct was 

validated by sequencing. 

To create the Panx1-RFP construct, full length Panx1 (encoding 426 amino 

acids) was excised from a previously engineered pEGFP-N1 vector [25] using 

HindIII and BamHI restriction enzymes. Panx1 was fused with RFP in frame to 

the carboxyl terminus in the pcDNA3-mRFP vector by a thirty one amino acid 

polylinker encoding by the nucleotide sequence:  
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(CTGTCGACGGTACCGCGGGCCCGGGATCCACTAGTAACGGCCGCCAGTG

TGCTGGAATTCTGCAGATATCCATCACACTGGCGGCCGCTCGAG).  

For transfection of Panx1T307-RFP and Panx1-RFP, cells were grown overnight to 

50-70% confluency in 35 mm dishes and transfected in Opti-MEM1 (Invitrogen) 

media containing 2 μL of Lipofectamine 2000 (Invitrogen) and 5 µg of plasmid 

DNA. For co-expression studies, HEK-293T cells were plated in 100 mm dishes 

and 7-9 µg of Panx1 was co-transfected with 10-15 µg of either Panx1T307-RFP 

or Panx1-RFP in Opti-MEM1 media containing 15 μL of Lipofectamine2000.  

Opti-MEM1 media was replaced with complete culture media 4 hours after 

transfection at 37˚C. 

3.2.3 Immunocytochemistry 

Cells were immunolabeled as previously described [153].  Briefly, cells grown on 

a glass coverslips were fixed using ice-cold 80% methanol and 20% acetone for 

20 minutes at 4̊ C and blocked in 2% blocking solution (Bovine Serum Albumin -

(BSA; Sigma)) for 30 minutes. Cells were incubated for 1 hour at room 

temperature with affinity-purified polyclonal Panx1 antibody at a concentration of 

2 μg/mL, a 100 fold dilution of monoclonal anti-GM130 antibody (BD 

Transduction Laboratories), a 500 dilution of monoclonal anti-PDI antibody 

(Stressgen) or a 200 fold dilution of polyclonal anti-RFP antibody (Abcam). Cells 

were incubated with goat anti-rabbit or goat anti-mouse Alexa Fluor488 (1:500, 

Invitrogen) for 45 minutes at room temperature. Cells were rinsed with PBS and 

nuclei were stained with Hoechst 33342 and mounted. Immunolabeled cells were 
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imaged using a 63x oil objective lens mounted on a Zeiss LSM 510 META (Zeiss, 

Toronto, ON) system.  

3.2.4 Co-Immunoprecipitation and immunoblotting 

Protein lysates were collected from cells expressing Panx1T307-RFP and Panx1-

RFP with or without Panx1 using a lysis buffer as previously described [153]. 

Protein concentrations were measured using a BCA protein determination kit 

(Pierce). The co-immunoprecipitation assay was performed mainly as previously 

described [154]; briefly, 1 mg of each protein lysate was incubated with 10 μg/ml 

of anti-Panx1 CT-395 antibody and rocked overnight at 4°C. The following day, 

30 μl (50% slurry) of protein A-Sepharose beads were added to the lysates and 

incubated for an additional 2 hours at 4°C. Thereafter, beads were collected by 

centrifugation at 4500 rpm for 2 minutes, washed three times to remove any 

nonspecific binding, and boiled for 5 minutes in 2x Laemmli buffer prior to 

resolving on 8-10% SDS-PAGE gels.  

For cellular lysates control, a total of 30-40 µg of protein was used, and gels were 

transferred to a nitrocellulose membrane using the iBlot Dry Blotting system 

(Invitrogen). Nitrocellulose membranes were blocked in 3% BSA or 5% blotto 

milk (Santa Cruz Biotechonologies), and probed overnight with polyclonal affinity 

purified anti-Panx1 (0.2 µg/mL) or polyclonal anti-RFP (1:2,000) antibodies at 

4˚C. Monoclonal anti-GAPDH antibody (1:10,000, Millipore) was used to assess 

protein loading. Since both the RFP and Panx1 antibodies were raised in rabbits, 

detection of co-immunoprecipitates was achieved using the Clean-Blot IP 
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Detection Reagent (horse radish peroxidase; Pierce Chemical) as a secondary 

antibody at 1:4,000 dilution for 45 minutes, in order to minimize the appearance 

of the IgG bands.  Blots were incubated in reagents from SuperSignal West 

Femto chemiluminescent kit (Pierce Chemical) prior to scanning with the BioRad 

system. For cell lysates, detection of primary antibody binding was performed 

using mouse IgG IR dye 800 at 1:10,000 (Rockland Immunochemicals) or rabbit 

IgGAlexa 680 at 1:10,000 (Invitrogen) and scanning with the Odyssey infrared 

imaging system (Licor). 

3.2.5 Deglycosylation assays 

Enzymatic digestion of glycan chains using peptide N-glycosidase (PNGase) F 

and endo-β-N-acetylglucosaminidase (Endo) H were performed as previously 

described [59]. Briefly, 35 μg of HEK-293T cell lysates containing either 

Panx1T307-RFP or Panx1-RFP were incubated in the presence or absence of 10U 

of N-glycosidase F and incubated for 1 hour at 37°C prior to immunoblotting 

using the RFP antibody. Similarly, for Endo H treatment,  35 μg of protein was 

incubated with or without 5000U of the enzyme for 1 hour at 37°C and samples 

were resolved on a 8% SDS PAGE before transferring to nitrocellulose 

membranes and probing with an anti-RFP antibody. 

3.2.6 Cell surface biotinylation 

HEK-293T cells ectopically expressing either Panx1T307-RFP or Panx1-RFP were 

subjected to biotinylation 48 hours following transfection. To prevent any 

potential internalization of cell surface proteins, all reagents and cell cultures 
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were maintained on ice. Cell culture dishes were first rinsed three times with cold 

PBS to remove media and incubated thereafter either in PBS alone or in PBS 

containing 1 mg/ml of EZ-link Sulfo NHS-LC biotin (Pierce Chemical) for 20 

minutes at 4°C.To quench any excess biotin, cell culture dishes were first rinsed 

and then incubated in PBS containing 100 mM glycine for an additional 15 

minutes at 4°C. Proteins were then extracted from both unlabeled and biotin 

labeled dishes using the SDS lysis buffer (1% Triton X-100 and 0.1% SDS in 

PBS), and quantified using a BCA protein determination kit (Pierce). 1 mg of cell 

lysates from biotin labeled and unlabeled samples were incubated with 50 μl of 

NeutrAvidin-agarose beads (Pierce Chemical) overnight at 4°C. The following 

day, beads were washed with IP lysis buffer (150 mM NaCl, 10 mM Tris-HCl, pH 

7.4, 1 mM EDTA, 0.5% NP-40, and 1% Triton X-100) containing 1 mM NaF and 1 

mM Na3VO4, and suspended in 2x Laemmli buffer before boiling for 5 minutes 

and resolving on the SDS-PAGE. Total protein containing 30-40 μg of lysate was 

simultaneously resolved on the gel, transferred to nitrocellulose and probed for 

RFP and Panx1 expression.  

3.2.7 Pharmacological inhibitors 

HEK-293T cells expressing Panx1T307-RFP and Panx1 together or individually 

were exposed to 10 µM of lactacystin (Sigma) and 200 µM of chloroquine 

(Sigma) for 20 hours prior to protein extraction. Total protein lysates of treated 

and untreated cells were then subjected to immunoblotting for RFP and Panx1. 
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3.3 RESULTS 

In order to characterize the biological significance of the Panx1 C-tail, we 

truncated Panx1 at residue 307 that is approximately 10 amino acids 

downstream of where the fourth transmembrane domain is predicted to exit the 

plasma membrane. To facilitate detection of the Panx1 truncated mutant, the 

mutant was tagged with red fluorescent protein (RFP). To control for any possible 

adverse effect of the RFP tag, we also tagged full length Panx1 with RFP to be 

used in comparative studies.  

3.3.1 RFP tagging does not modify the distribution 
profile of Panx1 

RFP is a fluorescent protein derived from Discosoma coral that is spectrally 

distinct from the green fluorescent protein (GFP), originally cloned from 

Aequorea jellyfish [155].  In order to validate that the RFP tag does not modify 

the trafficking of Panx1, we compared it to the GFP-tagged version that 

previously showed similar cell surface delivery and localization patterns to 

untagged Panx1. Transfection of Panx1-RFP in BICR-M1Rk cells stably 

expressing Panx1-GFP revealed relatively uniform co-localization at the cell 

surface and overlap in vesicle-like compartments distributed intracellularly 

(Figure 3.1A, arrowheads). Interestingly, similar to Panx1-GFP, RFP-tagged 

Panx1 was also found in plasma membrane protrusions (Figure 3.1B, arrows).  
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Figure 3.1 Panx1-RFP co-localize with Panx1-GFP  

Over-expression of Panx1-RFP (red) in BICR-M1Rk cells stably expressing 

Panx1-GFP (green) resulted in their co-localization (yellow) in a relatively uniform 
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pattern at the cell surface and in vesicle-like structures (A, arrowheads). Panx1-

RFP also co-localized (yellow) with Panx1-GFP at the plasma membrane 

protrusions (B, arrows). Nuclei were counterstained with Hoechst.  Bar = 10 µm. 
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This suggests that like GFP, RFP tagging of the Panx1 carboxyl terminal tail also 

displays distribution characteristics similar to the untagged counterpart and 

therefore could be employed as a control to study the biological properties of 

Panx1T307-RFP.  

3.3.2 The C-tail of Panx1 is important for trafficking to 
the plasma membrane 

Both Panx1T307-RFP and Panx1-RFP were over-expressed in either BICR-M1Rk 

or HEK-293T cells, as these cell lines are devoid of endogenous Panx1 [59, 153]. 

The high transfection efficiency of HEK-293T cells was deemed ideal for 

immunoblotting experiments; however, given their small spindle morphology, 

large nuclei and low cytoplasmic volume [59], they were not as suitable for 

immunolocalization studies as the larger BICR-M1Rk cells.  

When Panx1T307-RFP was expressed in BICR-M1Rk cells the mutant was found 

to primarily reside in intracellular compartments (Figure 3.2A). In contrast, full 

length Panx1-RFP was capable of trafficking and localizing to the cell surface in 

a relatively uniform manner (Figure 3.2B). As expected, the Panx1 CT-395 (from 

here on denoted as the anti-Panx1) antibody detected the full length Panx1-RFP 

but was unable to detect Panx1T307-RFP due to the deletion of the antigenic 

epitope used to generate the antibody (Figure 3.2A and B).  In comparison, the 

RFP antibody detected both Panx1T307-RFP and Panx1-RFP (Figure 3.2C and 

D).  Interestingly, the subcellular distribution profile of both Panx1T307-RFP and 

Panx1-RFP was consistent between BICR-M1Rk and HEK-293T cells (Figure 

3.2E and F), eliminating any potential cell type differences.  
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Figure 3.2 The C-tail of Panx1 is critical for trafficking to the cell surface 
Panx1T307-RFP was localized to the intracellular compartments (A, red) while 

Panx1-RFP was found at the cell surface (B, red) in BICR-M1Rk cells.  
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Immunolabeling with Panx1 detected Panx1-RFP and not Panx1T307-RFP (A and 

B, green). As expected, the anti-RFP antibody localized both Panx1-RFP and 

Panx1T307-RFP (C and D, green). The subcellular distribution of full length and C-

tail truncated Panx1 remained consistent in HEK-293T cells (E and F, red). 

Nuclei were counterstained with Hoechst.  Bar=10µm. 
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Collectively, these findings suggest that the C-terminal of Panx1 is critical for 

delivery and retention of Panx1 at the cell surface.  

3.3.3 Panx1T307-RFP is primarily retained within the ER 
compartment and glycosylated to a high mannose form 

In order to identify the subcellular localization of Panx1T307-RFP, cells were 

immunolabled for ER (PDI and calnexin) and Golgi (GM130) resident proteins. 

Although the distribution patterns of both Panx1T307-RFP and PDI (an ER lumen 

protein) partially overlap, their localization patterns were not identical (Figure 

3.3A). In contrast, the ER integral membrane protein marker, calnexin, revealed 

strong co-localization with Panx1T307-RFP, particularly around the perinuclear 

region (Figure 3.3B).  Not surprisingly, Panx1-RFP at the cell surface did not 

localize with either PDI or calnexin (Figure 3.3A and B). Additionally, labeling with 

the cis-Golgi matrix protein, GM130, revealed a distinct distribution profile from 

both Panx1T307-RFP and Panx1-RFP (Figure 3.3C). Thus, in the absence of the 

C-tail it appears that Panx1 is largely retained in the ER compartment. As a 

glycoprotein, it is well documented that Panx1 exhibits multiple banding patterns 

reflecting the core unglycosylated protein: Gly0; a high mannose glycosylated 

species associated within the ER: Gly1; and the extensively glycosylated species 

that is modified in the Golgi apparatus prior to cell surface delivery: Gly2 [25, 47, 

59]. To address if Panx1T307-RFP also resolves as multiple species, lysates of 

HEK-293T wild-type cells, cells over-expressing full length Panx1 fusion proteins, 

and the C-tail truncated protein were subjected to immunoblotting using anti- 

RFP and Panx1 antibodies. 
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Figure 3.3 Characterization of the subcellular distribution of Panx1T307-RFP  

BICR-M1Rk cells ectopically expressing Panx1T307-RFP (red) or Panx1-RFP (red) 

were immunolabeled with antibodies against PDI, calnexin and GM130. 
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Panx1T307-RFP expressing cells revealed an intracellular pattern that exhibited 

partial colocalization with resident proteins of the endoplasmic reticulum. The 

bulk of Panx1-RFP trafficked to the cell surface with no obvious co-localization 

with PDI (A, merge) or calnexin (B, merge). GM130 (green) was mainly localized 

around the perinuclear region.  Nuclei were counterstained with Hoechst.   

Bar=10µm. 
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Owing to the fusion of RFP (~27-30kD), C-tail truncated Panx1 was detected as 

a doublet at a molecular weight of ~50kD, whereas full length Panx1 resolved as 

multiple bands at ~75-80kD (Figure 3.4A). Consistent with our immunolabeling 

data, the Panx1 CT-395 antibody did not detect Panx1T307-RFP, but identified full 

length GFP and RFP -tagged Panx1 (~75-80KD), as well as occasionally some 

bands near 50kD, which are likely proteolytic products (Figure 3.4B). As 

expected, WT cells did not express any Panx1, however, some non-specific 

bands were observed above 50 kDa when probed with the RFP antibody (Figure 

3.4A).  

In order to determine whether the banding pattern of Panx1T307-RFP was a result 

of glycosylation, we enzymatically digested the cell lysates using N-glycosidase F 

prior to immunoblotting.  Within an hour, N glycosidase F treatment of Panx1-

RFP removed glycan chains associated with the Gly1 and Gly2 species and 

shifted the banding pattern to the level of Gly0 (Figure 3.4C). Similarly, the upper 

band of Panx1T307-RFP, likely the Gly1 species, also shifted to the lower band 

(Gly0) upon N-glycosidase F digestion (Figure 3.4D). To further assess the 

extent of glycosylation, both Panx1T307-RFP and Panx1-RFP were subject to 

Endo H digestion, which selectively cleaves the high mannose form of a 

glycoprotein.  Consistent with previously reported digestion of mouse [47, 59] 

and rat untagged Panx1 [47], Endo H treatment of Panx1-RFP revealed a shift in 

only the intermediate Gly1 band without reducing the Gly2 species (Figure 3.4E). 

Interestingly, the upper band of Panx1T307-RFP was also sensitive to the Endo H 

treatment (Figure 3.4F).  
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Figure 3.4 Panx1T307-RFP exhibits glycosylation states distinct from Panx1-
RFP 

Protein lysates of HEK-293T WT cells and cells over-expressing Panx1-GFP, 

Panx1-RFP and Panx1T307-RFP were immunoblotted for RFP tagged Panx1 (A 

and B). Panx1-RFP (A and B) resolved similar to Panx1-GFP (B) in a multiple 

banding profile, whereas Panx1T307-RFP was detected primarily as a doublet 

~50kD (A). Digestion of Panx1-RFP and Panx1T307-RFP with N-glycosidase F (C 

and D) and Endo H (E and F) revealed that while Panx1-RFP can exist as a core 

(Gly0), high mannose (Gly1) and complex glycoprotein species (Gly2), 
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Panx1T307-RFP primarily consists of core (Gly0) and   high mannose (Gly1) 

species.  GAPDH was used as a protein loading control.  
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Taken together, these results suggest that in the absence of the C-tail, 

glycosylation of Panx1 is limited to a high mannose form. 

3.3.4 Panx1 is incapable of rescuing Panx1T307-RFP to 
the plasma membrane 

Panx1 is reported to presumably oligomerize with the glycosylation-deficient 

mutant, Panx1N254Q, to rescue its predominant intracellular distribution to the cell 

surface [81]. To examine whether the C-tail of Panx1 regulates homomeric 

interactions, we transiently co-expressed Panx1 with Panx1T307-RFP. When 

Panx1 is ectopically expressed alone or in conjunction with Panx1-RFP, a 

relatively uniform cell surface distribution is revealed (Figure 3.5A and B). In 

contrast, the intracellular retained Panx1T307-RFP was not rescued to the cell 

surface when co-expressed with Panx1; instead, a sub-population of Panx1 was 

detected intracellularly in the perinuclear region (Figure 3.5C). Thus, suggesting 

that intermixing of Panx1 with the C-tail mutant does not result in rescue of the 

mutant to the cell surface. 

3.3.5 C-Tail of Panx1 is involved in glycosylation-
dependent homomeric interactions  

To further examine the potential role of the Panx1 C-tail in Panx1 

oligomerization, lysates of HEK-293T cells, cell over-expressing Panx1 alone or 

in combination with either Panx1-RFP or Panx1T307-RFP were subjected to 

immunoprecipitation for Panx1.   
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Figure 3.5 Panx1 expression did not relocalize Panx1T307 to the cell surface    

HEK-293T cells transfected with Panx1 alone (A), or with Panx1-RFP (B, red) 

and Panx1T307-RFP (C, red) were immunolabeled for Panx1 (green). When 

expressed alone (A) or with Panx1-RFP (B), Panx1 reached the cell surface and 

also colocalized with Panx1-RFP (B, merge). The intracellular localization pattern 

of Panx1T307-RFP (red) was evident in the presence of Panx1 (green) (C).  Nuclei 

were counterstained with Hoechst.  Bar=10µm. 
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When immunoblotted with either RFP or Panx1 antibodies, immunoprecipitates 

of Panx1 co-expressed with Panx1-RFP revealed both the high mannose (Gly1) 

and complex glycosylated species (Gly2), with much lower detection of the core 

(Gly0) species (Figure 3.6A and B).  In contrast, only trace amounts of the Gly1 

species of Panx1T307-RFP was found to co-immunoprecipitate with Panx1 (Figure 

3.6A). Conversely, immunoblotting with the anti-Panx1 antibody revealed the 

Gly1 and Gly0 species with little evidence of the Panx1 Gly2 species when co-

expressed with Panx1T307-RFP (Figure 3.6B).  Interestingly, total cell lysates also 

revealed little Gly2 species of Panx1 in the presence of Panx1T307-RFP (Figure 

3.6B). Collectively, these findings suggest that all three species of Panx1 can 

readily interact with Panx1-RFP.  In contrast, when the C-tail of Panx1 is 

truncated, only a weak interaction exists with Panx1, with a preference for the 

core and high mannose species. 

3.3.6 Panx1T307-RFP has a dominant-negative effect on 
the maturation of Panx1 to the Gly2 Species 

To determine the effect of Panx1T307-RFP mutant on the maturation of Panx1 to 

the Gly2 species and delivery to the cell surface we conducted a cell surface 

biotinylation assay on live HEK-293T cells expressing Panx1T307-RFP, and 

Panx1-RFP alone or in combination with Panx1.  As depicted by Panx1 

immunoblotting of NeutrAvidin pulled down fractions and cell lysates, all species 

of Panx1-RFP were capable of trafficking to the cell surface, with a preference for 

the Gly2 species when probed with anti-RFP antibody (Figure 3.7A).  
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Figure 3.6 Truncation of the Panx1 C-tail limits the interaction with the full 
length Panx1  

Immunoprecipitation of Panx1 was performed on cell lysates from WT HEK-293T 

cells and cells ectopically expressing either Panx1 alone or with Panx1-RFP and 

Panx1T307-RFP.  A robust interaction of the Gly1 and Gly2 species of Panx1-RFP 

with Panx1 was revealed when immunoblotted for RFP (A) and Panx1 (B). 

Panx1T307-RFP also co-immunoprecipitated with Panx1, however, it was mainly 

the Gly1 species that was weakly pulled down (A). Co-immunoprecipitaton of 
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Panx1 with Panx1T307-RFP revealed reduced interaction with the Gly2 species of 

Panx1 (B). Expression levels of all Panx1 variants were also assessed by 

probing the total protein lysate with RFP or Panx1 antibody.  
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In contrast, despite detectable Panx1T307-RFP expression in the cell lysates, 

NeutrAvidin fractions contained virtually no Panx1T307-RFP (Figure 3.7A). 

As a control, the lack of immunolabeling of GAPDH suggests that biotin did not 

penetrate into the cell.  When co-expressed with Panx1, a subpopulation of the 

highly glycosylated species of Panx1-RFP (Figure 3.7B and C), as well as all the 

three glycosylation forms of Panx1, reached the cell surface (Figure 3.7C). 

However, when co-expressed with Panx1T307-RFP, there was a noticeable 

reduction in the cell surface population of all the three species of Panx1 (Figure 

3.7C), with no clear evidence of plasma membrane expression of Panx1T307-

RFP, even in the presence of Panx1 (Figure 3.7B). These findings support the 

notion that the Panx1T307-RFP mutant is acting dominantly to reduce the delivery 

of Panx1 to the cell surface.  

3.3.7 Panx1T307-RFP is preferentially degraded through 
the proteasomal pathway 

Given the predominant intracellular distribution of Panx1T307-RFP, we assessed 

whether Panx1T307-RFP is targeted to proteasomal or lysosomal degradation 

using the pharmacological inhibitors lactacystin and chloroquine, respectively. 

Blocking the proteasomal pathway with lactacystin clearly showed a robust 

accumulation of both the Gly1 and Gly0 species of Panx1T307-RFP, with no 

detectable change in protein expression upon chloroquine exposure (Figure 

3.8A). On the contrary, inhibition of the lysosomal and not the proteasomal 

pathway revealed a pronounced increase in the Gly1 and Gly2 species of both 

Panx1-RFP (Figure 3.8A) and Panx1 (Figure 3.8B). In comparison to Panx1 
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alone (Figure 3.8B), co-expression with Panx1T307-RFP showed an overall 

decrease in the Gly2 species of Panx1, with a noticeable reduction in the Gly1 

species, upon chloroquine treatment (Figure 3.8C). When compared to 

Panx1T307-RFP alone (Figure 3.8A), co-expression with Panx1 revealed an 

accumulation of the Gly1 species of Panx1T307-RFP with the chloroquine 

treatment, without considerably altering the expression upon lactacystin 

treatment (Figure 3.8C).  
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Figure 3.7 Panx1T307-RFP reduces the cell surface expression of Panx1  

Protein lysates of HEK-293T cells labeled with (+) or without (-) biotin were 

precipitated with NeutrAvidin beads prior to immunoblotting for RFP and Panx1. 
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Cell surface biotinylation of Panx1-RFP revealed that all glycosylated species of 

Panx1 trafficked to the cell surface, while no clear cell surface expression of 

Panx1T307-RFP was detected (A). NeutrAvidin fraction displayed a pronounced 

cell surface expression of both Panx1-RFP and Panx1, when co-expressed 

together (C). Plasma membrane biotinylation of co-expressed Panx1 could not 

detect Panx1T307-RFP at the cell surface (B); however Panx1T307-RFP expression 

reduced the overall expression of Panx1 (C). Total protein lysates labeled with 

(+) or without (-) biotin were also assessed for expression levels of Panx1, 

Panx1-RFP and Panx1T307-RFP. GAPDH (an intracellular protein) was used to 

detect any internalization of biotin.  
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Figure 3.8 Panx1 is destined for proteasomal-mediated degradation in the 
absence of the C-tail 

Panx1T307-RFP, Panx1-RFP and Panx1 expressing HEK-293T cells were 

exposed to either proteasomal (lactacystin) or lysosomal (chloroquine) inhibitors 

for 20 hours prior to immunoblotting for RFP and Panx1.  Expression of both the 

Gly0 and Gly1 species of Panx1T307-RFP increased with lactacystin exposure, 
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with no detectable change upon chloroquine treatment (A). Lactacystin-treated 

cells expressing Panx1-RFP (A) or Panx1 (B), revealed a slight reduction in the 

expression of the Gly2 species; while chloroquine treatment resulted in the 

accumulation of the Gly1 and Gly2 species. Co-expression of Panx1 with 

Panx1T307-RFP clearly reduced the Gly2 form of Panx1 (C). When co-expressed 

together, chloroquine treatment caused a reduction in the Gly1 form of Panx1, 

while Gly1 increased in cells expressing Panx1T307-RFP (C).  GAPDH was used 

as a protein loading control. 
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3.4 DISCUSSION 

To identify the role of the Panx1 C-terminal domain in regulating Panx1 

trafficking, glycosylation, oligomerization and degradation, the current study 

employed a Panx1 mutant that lacked the last 119 amino acid residues from the 

C-terminus.  First we identified that in the absence of the C-terminal tail the 

mutant failed to traffic to and be retained at the cell surface. Second, the Panx1 

truncated mutant was retained primarily within the ER where it was found as a 

core Gly0 protein or a high-mannose Gly1 species. Third, the Panx1 mutant 

failed to substantially interact with Panx1 suggesting that the C-terminal domain 

plays a role in Panx1 homomeric oligomerization. Finally, the ER-retained 

truncated mutant was subjected to proteasomal degradation, which is consistent 

with ER associated degradation. 

3.4.1 Cell surface trafficking, post-translation 
modification and homomeric interaction of Panx1T307-
RFP  

It has been well established that Panx1 traffics to the plasma membrane and 

distributes itself in a fairly uniform pattern, with some evidence of cell surface 

clustering [153]. Our results revealed that the deletion of the C-tail causes a shift 

in Panx1 localization, with a predominant retention in the ER. Similarly, truncation 

of the C-tail domain has been shown to perturb the cell surface trafficking of 

several other integral membrane proteins such as the human anion exchanger 

AE1 [156],  the human sodium dependent vitamin C transporter 1 [157], the A1 

adenosine G-protein coupled receptor [158] and Glut 1 and Glut 4 isoforms of 

glucose transporter [159], thus suggesting that an intact C-tail domain is required 
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to facilitate the adequate delivery of several proteins to plasma membrane.  In 

addition, the cell surface trafficking of Panx1 is partially dependent on 

addition/processing of the glycan chains in the ER-Golgi compartments [47, 59]. 

Therefore, to determine if the lack of the cell surface localization of Panx1T307-

RFP was related to its glycosylation status we further assessed this possibility. 

Our results indicated that Panx1T307-RFP exists as both core (Gly0) and high 

mannose (Gly1) species. Given that Panx1 is glycosylated on the second 

extracellular loop [25, 47], together with the fact that the Gly1 species of 

Panx1T307-RFP was sensitive to Endo H treatment, our data suggests that 

deletion of the C-tail does not interfere with normal ER-based glycosylation 

events. It is quite likely that the trafficking defect is thus independent of ER-based 

glycosylation events but could still be related to proper Panx1 folding or 

oligomerization. This notion is somewhat similar to a case involving C-tail 

mutants of A1 adenosine G-protein coupled receptors, where incomplete 

modifications of the complex carbohydrate chains was correlated with defects in 

exiting the ER compartments of HEK-293 cells [158].  In addition, the ER 

retention of the C-tail truncated mutants of A1 receptors was also associated with 

incomplete folding and failed ER quality control [158]. It is well established that 

ER based chaperones, such as calnexin, mediate quality control by aiding in 

proper folding of glycoproteins, while restricting the trafficking of misfolded 

proteins [160]. In our studies, the strong co-localization of Panx1T307-RFP and not 

Panx1-RFP with calnexin could possibly reflect the misfolded state of Panx1 in 
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the absence of its C-tail. Alternatively, failure of truncated Panx1 acquiring a 

proper oligomeric state could also be the cause for its ER retention [161, 162]. 

Misfolded mutant proteins often impair cell surface trafficking of their wild-type 

counterparts. One of the well characterized examples of this phenomenon is the 

ER retention of the Cl- ion channel cystic fibrosis transmembrane conductance 

regulator (CFTR) in the presence of its mutant counterpart ∆F508 [163]. Our cell 

surface biotinylation assay of cells co-expressing Panx1 and the truncated 

mutant did not reveal the mutant at the cell surface; however, the presence of the 

mutant clearly reduced the cell surface expression of all the Panx1 species. 

Interestingly, a similar ER variant-induced inhibition of the cell surface delivery of 

WT members of Wnt receptors was deemed to be due to impaired 

oligomerization [164]. Given that Panx1 oligomerizes as a hexamer prior to 

trafficking to the cell surface [47], we were interested in investigating if the partial 

retention of Panx1 in the presence of the mutant was due to potential co-

interactions between the mutant and Panx1, while being residents of the ER.  

Interestingly, only a weak interaction between the Gly1 species of Panx1T307-RFP 

and full length Panx1 was detected, thus suggesting the importance of the intact 

C-tail in mediating efficient oligomerization process of Panx1.   

3.4.2 Fate of the C-tail truncated mutant of Panx1 

It is widely accepted that misfolded or improperly assembled proteins retained in 

the ER are destined for premature degradation, if molecular chaperones are 

unable to correct their folding [159]. A proteasomal based degradation pathway is 
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linked to the degradation of incorrectly folded glycoproteins that are rejected by 

the quality control system of the ER [165], a process termed ER-associated 

degradation (ERAD).  Proteasomal inhibition-induced accumulation of Panx1 in 

our studies, together with its localization in the calnexin-positive ER 

compartments suggests that this mutant is likely a substrate for ERAD. 

Interestingly and consistent with a study by Boassa et al., [47], our studies 

suggest that full length Panx1 is destined for lysosomal degradation.  In 

particular, chloroquine-induced lysosomal inhibition of Panx1 revealed an 

increase in the more complex-mature form and the high mannose glycosylated 

species of Panx1. Since both glycosylated species of Panx1 (complex and high 

mannose) are capable of trafficking and residing at plasma membrane [59], its 

accumulation suggests that Panx1 cycling through the cell surface are destined 

for lysosomes for degradation. Alternatively, since a subpopulation of the high 

mannose species of Panx1 is also associated with the ER pool [47], its 

accumulation could either be a consequence of a negative-feedback mechanism, 

generated from the cell surface pool of Panx1 or inhibition of direct escape from 

ER-Golgi compartment to lysosomes. This hypothesis is somewhat supported by 

studies showing targeting of mutated prion proteins from the Golgi apparatus to 

lysosomes [166]. 

In keeping with our current findings, we propose a model where full length 

Panx1, capable of trafficking to the cell surface, is preferentially destined to 

lysosomes, as opposed to proteasomal dependent degradation of truncated 

mutant. This paradigm is shifted, however, when Panx1T307-RFP and Panx1 are 
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co-expressed.  An obvious increase in the high mannose species of Panx1T307-

RFP and Panx1 is noticed upon lysosomal and proteasomal inhibition, 

respectively. It is likely that oligomerization of Panx1 with Panx1T307-RFP drives a 

subpopulation of Panx1T307-RFP to lysosomes and a limited proportion of Panx1 

to proteasomes.  

3.4.3 Pathophysiological Significance   

Adequate cell surface trafficking is imperative for Panx1 to form functional single 

membrane channels [25, 59].  A recent report showed that a single amino acid 

substitution from cysteine to serine at residue 346 on the C-tail alters Panx1 

channel properties, such that it leads to the formation of constitutively leaky 

channels, thereby causing cell death [152]. Additionally, a point mutation in the 

Panx1 C-tail at position 337 perturbs the trafficking and distribution at the cell 

surface [47]. The physiological significance of the C-tail is further demonstrated 

by other channel forming proteins such as Cx43, where 97% of mice harboring a 

truncation of carboxyl-terminal (K258stop) die shortly after birth due to a 

defective epidermal barrier caused by impaired differentiation of keratinocytes 

[167].  With a growing significance of Panx1 in initiation and propagation of 

calcium waves [60], tumor suppression [53], release of interleukin-1β [147], 

keratinocyte differentiation [67], and ischemia induced cell death [78], our study 

provides strong evidence for a critical role for the carboxyl terminal tail in 

regulating Panx1 trafficking, oligomerization and degradation.  
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CHAPTER 4: Panx1 Exhibits Prolonged Turnover Kinetics 
and Internalization Pattern Distinct from the Connexin 
Family of Gap Junction Proteins  

 

4.0 OVERVIEW 

 

This study was designed to uncover the turnover kinetics and mechanism(s) 

responsible for Panx1 endocytosis. In particular, endocytic pathways mediated 

by clathrin-, caveolin- and dynamin were closely examined to determine their 

roles in the internalization of Panx1.  A unique pattern of Panx1 turnover was 

characterized using rapid time-lapse imaging, while the degradation of Panx1 

was explored using pharmacological inhibitors. 

_____________________ 

 

This chapter is currently in the process of being submitted, while some of the 

sections have been published in: 

 

 Silvia Penuela, Ruchi Bhalla, Xiang-Qun Gong, Kyle N. Cowan, Steven J. 
 Celetti, Bryce J. Cowan, Donglin Bai, Qing Shao, and Dale W. Laird  
 Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct  
 characteristics from the connexin family of gap junction proteins. 
 J. Cell Sci., 2007. 120(21): p. 3772-3783. 

 



128 

 

4.1 INTRODUCTION 

Pannexins (Panxs) are the recently identified vertebrate homologues of the 

integral membrane invertebrate gap junction proteins, innexins [1, 21]. Although 

no sequence homology exists between pannexins and the vertebrate gap 

junction proteins, connexins (Cxs), pannexins were first proposed to belong to 

the gap junction superfamily of proteins based on their homology to innexins. 

Panx and Cxs exhibit tetraspanning transmembrane domains with intracellular 

amino and carboxy termini and two extracellular loops [108]. While there are 21 

members of the connexin family, the pannexin family is comprised of only three 

members: Panx1, Panx2 and Panx3, which are commonly examined in humans, 

mice and rats [21].  Similar to Cx43, Panx1 is ubiquitously expressed in several 

murine tissues, while Panx2 is expressed predominantly in the central nervous 

system, and Panx3 is localized to the skin and cartilage [21, 25]. 

It has been reported that Panx1 oligomerizes into hexamers that traffic to the 

plasma membrane to form cell surface channels [47]. We and others have 

demonstrated that Panx1 achieves three states of glycosylation: Gly0 (core, 

unglycosylated), Gly1 (high mannose form) and Gly2 (complex form) [25, 47]; 

and assembles as single membrane channels that are mechano-sensitive [25, 

57]. In addition, limited evidence also exists to support the formation of Panx1 

intercellular channels [26, 53, 54].  

Homomeric single-membrane Panx1 channels have a large conductance of 550 

pS [57], which is correlated with ionic dysregulation during ischemic conditions, 

subsequently leading to neuronal necrosis [78]. Furthermore, N-methyl-D-
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aspartate receptor (NMDAR)-induced opening of Panx1 channels has been 

implicated in hippocampal epileptiform seizure-like activity [66]. Other studies 

have associated Panx1 channel activation with apoptosis of Xenopus oocytes by 

forming a pore unit with the death complex of the P2X7 receptor [72]. More 

recently, Panx1 was characterized as a target for caspase 3 and 7 cleavage that 

resulted in a constitutively open channel [79]. In the same study, Panx1 channels 

were further shown to mediate phagocyte recruitment by releasing nucleotide 

signals from apoptotic cells [79].  In light of several physiological roles for Panx1, 

it is critical to determine pathways that may regulate its turnover and degradation.  

In the case of Cx43, a unique turnover mechanism exists where gap junction 

plaques are internalized into one of the two contacting cells as large double 

membrane structures called connexosomes [101]. In addition, several studies 

have identified an association between Cx43 and clathrin-coated pits [102-104], 

where the down regulation of clathrin-adaptor protein complex 2 (AP2) as well as 

dynamin GTPase significantly reduced Cx43 gap junction internalization [102]. 

Cx43 has been shown to interact with caveolin (Cav)-1 [168] and Cav-2 to form 

complexes in membrane rafts at the plasma membrane that further regulate the 

level of gap junctional intercellular communication (GJIC) [154]. While more than 

one pathway exists in mediating Cx43 turnover, it has yet to be investigated 

whether pannexins follow the same routes of internalization.   

We and others have reported that Panx1 exhibits slower turnover rates than 

Cx43 [25, 81]. While Cx43 biosynthesis, cell surface delivery, removal from the 

plasma membrane and degradation is completed with a half-life of only 1-3 hours 
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[82], use of pharmacological blockers have suggested that Panx1 levels at the 

cell surface remain relatively unchanged over a period of 8 hours [25]. Rapid 

turnover kinetics for Cx43 is of physiological importance for cell and tissue 

homeostasis through the regulation of GJIC. This notion is clearly demonstrated 

by a several fold increase in Cx43 expression in the myometrium prior to the 

labor onset, followed by rapid clearing post labor [169, 170]. Similarly, it is 

hypothesized that Panx1 turnover kinetics may also be critical in governing key 

physiological roles in cells. While Cx43 is targeted for both lysosomal and 

proteasomal degradation [105, 106, 171, 172], one report has suggested that 

Panx1 is destined for  lysosomal degradation [47]. However, it is not currently 

known which glycosylated species of Panx1 undergoes lysosomal-mediated 

degradation. Thus, in the current study, we examine whether dynamin- and/or 

caveolin-dependent pathways are involved in Panx1 internalization, how Panx1 

internalizes as assessed by rapid time-lapse imaging, and which Panx1 species 

are destined for lysosomal degradation.  
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4.2 EXPERIMENTAL PROCEDURES 

4.2.1 Cell culture and reagents 

BICR-M1Rk cells, originally derived from rat mammary tumors, were a gift from 

Dieter Hulser, (Stuttgart, Germany [96]) and engineered to stably over-express 

Panx1, as previously described [25]. Cells were maintained at 37°C in high 

glucose DMEM (Invitrogen, Burlington, ON, Canada), supplemented with 10% 

fetal bovine serum, 100 units/ml penicillin, 100 µg/ml streptomycin, and 2 mM L-

glutamine (all from Invitrogen, Burlington, ON, Canada), and sub-cultured using 

0.25% trypsin/1 mM EDTA solution (Invitrogen). 

4.2.2 Transfections 

GFP-tagged WT and K44A DynII expression constructs were kindly provided by 

Dr. Mark A McNiven, (Mayo Clinic College of Medicine, MN) and used for 

conducting transient transfections of BICR-M1Rk cells expressing Panx1. Cells 

grown in 35 mm dishes overnight to ~50-70% confluency were transfected in 

Opti-MEM1 media containing 1 µg of WT or K44A DynII GTPase cDNA 

constructs with 2 μL Lipofectamine 2000. Opti-MEM1 media was replaced with 

complete media 4 hrs post transfection.  

4.2.3 Immunocytochemistry 

Panx1 expressing BICR-M1Rk cells grown overnight on glass coverslips were 

fixed with either 3.7% formaldehyde or 80% methanol and 20% acetone. 

Formaldehyde fixed cells were permeabilized in 1% blocking solution (Bovine 

Serum Albumin-(BSA; Sigma)) containing 0.1% Triton-X-100. Since antibodies 
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against Panx1, clathrin and Cav-1 were all raised in rabbits, a 488 fluorophore 

conjugated Panx1 antibody was engineered as per manufacturer’s directions 

(Pierce Chemical) for dual labeling of Panx1 with these markers. For 

immunolabeling of Panx1 expressing cells for clathrin or Cav-1, cells were first 

incubated with either a 200 fold dilution of polyclonal anti-clathrin heavy chain 

antibody (Abcam), or a 100 fold dilution of polyclonal anti-Cav-1 antibody (BD 

Biosciences Transduction Laboratories) for 1 hr at room temperature, followed by 

incubation with goat anti-rabbit Alexa Fluor555 (1:500, Invitrogen) for 45 min at 

room temperature. Thereafter, cells were washed with PBS and incubated with 

Panx1_488 antibody for an additional 45 min at room temperature before staining 

nuclei with Hoechst 33342 (Invitrogen). For double labeling of Panx1 expressing 

cells for AP2 or Cav-2: cells were first labeled with affinity-purified polyclonal 

Panx1 antibody at a concentration of 2 μg/mL for 1 hr, followed by incubation 

with goat anti-rabbit Alexa Fluor555 (1:500, Invitrogen) for 45 min at room 

temperature. Next, cells were labeled with either monoclonal anti-AP2 (Sigma) or 

monoclonal anti-Cav-2 (BD Biosciences Transduction Laboratories) at a 100 fold 

dilution followed by incubation with goat anti-mouse Alexa Fluor488 (1:500, 

Invitrogen). DynII was labeled using a 50 fold dilution of anti-DynII antibody 

(Santa Cruz) for 1 hr prior to using Texas Red conjugated donkey anti-goat 

(1:200, Jackson Immuno Research Laboratories) as a secondary antibody. Once 

immunolabeled, cells were mounted on glass slides and imaged using a LSM 

510 META confocal microscope (Zeiss) using a 63x oil lens. 
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4.2.4 Pharmacological inhibitors 

Brefeldin A (BFA), cycloheximide (CHX), dynasore, methyl-β-cyclodextrin (MβC) 

and chloroquine were all purchased from Sigma. Cells were treated for 20-32 hr 

with 5 µg/ml BFA and for 1-24 hr with 10 mM MβC. For cycloheximide treatment, 

20 µg/ml was used to inhibit all protein synthesis, and cells were lysed at 2, 4, 6 

and 8 hours following the exposure. Dynasore treatment was used at a 

concentration of 40 µM, consistent with previous studies [102]. Post treatment, 

cells were fixed for immunocytochemistry and lysed for immunoblotting and co-

immunoprecipitation assays.  

4.2.5 Immunoblotting and co-immunoprecipitation  

Immunoblotting and co-immunoprecipitation assays were performed based on 

our previously described protocol [153]. Briefly, cells were lysed in buffer 

containing 150 mM NaCl, 10 mM Tris-HCl, pH 7.4, 1 mM EDTA, 0.5% NP-40, 

and 1% Triton X-100, supplemented with protease inhibitor cocktail (one tablet 

per 10 mL buffer, Roche) and phosphatase inhibitors (1 mM NaF and 1 mM 

Na3VO4). Protein concentrations were measured using a BCA protein 

determination kit (Pierce), and 20-30 µg of total protein lysate was resolved on a 

10% SDS-PAGE gel.  Protein samples were transferred onto nitrocellulose 

membranes using the iBlot Dry Blotting system (Invitrogen) and blocked with 5% 

Blotto Milk (Santa Cruz Biotechnologies) or 3% BSA (Sigma) for 1 hr prior to 

incubating with anti-Panx1 (0.2 µg/mL), anti-clathrin (1:1000, Abcam), anti-AP2 

(1:500, Sigma), anti-DynII (1:250, Santa Cruz), anti-Cav-1 (1:2000) or anti-Cav-2 

(1:2000 BD Biosciences Transduction Laboratories), and anti-GAPDH (1:5000, 
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Millipore) antibodies. Primary antibody binding was detected using mouse IgG IR 

dye 800 at 1:10,000 dilution (Rockland Immunochemicals) or rabbit IgG Alexa 

680 at 1:10,000 dilution (Invitrogen) and blots were scanned with the Odyssey 

infrared imaging system (Licor).  

For co-immunoprecipitation assays, 800-1000 µg of cell lysates were incubated 

overnight in presence of 10 µg/ml anti-Panx1 antibody at 4°C, and immune 

complexes were pulled down using 30 µl (50% suspension) of protein A-

Sepharose beads. Beads were washed in 1x lysis buffer, boiled for 5 min in 30 µl 

of 2x Laemmli buffer, resolved by SDS-PAGE, and immunoblotted with specific 

antibodies to detect Panx1, clathrin, AP2, Cav-1, Cav-2 and DynII.  Although 

primary antibodies were detected using mouse IgG IR dye 800 at 1:10,000 

(Rockland Immunochemicals) or rabbit IgG Alexa 680 at 1:10,000 (Invitrogen), 

detection of co-immunoprecipitates was achieved using the Clean-Blot IP 

Detection Reagent (horse radish peroxidase; Pierce Chemical) as a secondary 

antibody at a 4000 fold dilution for 45 minutes, in order to minimize the 

appearance of the IgG bands in some instances. 

4.2.6 Transferrin uptake 

Cells expressing WT DynII or K44A mutant grown on glass bottom dishes were 

rinsed and incubated in DMEM media containing 20 mM Hepes and 2 mg/ml 

BSA for 1 hr at 37°C. Cells were incubated for 1 hr in presence of 10 µg/ml of 

dynasore. Media was then replaced with media containing 10 µg/ml of 

transferrin-Alexa 555 (Invitrogen) and cells were incubated for additional 45 min 
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at 4°C to block any uptake. Thereafter, cells were imaged either immediately (to 

capture 0 min of uptake) or post 30-40 min after incubation at 37°C.  

4.2.7 Rapid time-lapse imaging 

BICR-M1Rk cells expressing GFP-tagged Panx1 were sub-cultured on glass 

bottom dishes and treated with 5 µg/ml of BFA in culture media for 20 hr at 37°C.  

Prior to imaging, cells were rinsed and replenished with Opti-MEM1 media 

containing fresh BFA. Rapid time-lapse imaging was performed in a temperature 

and C02 controlled humidity chamber, staged on a Zeiss LSM 510 META 

confocal microscope. A region of interest was selected and vesicles budding 

from the plasma membrane were monitored at 30 s time intervals for a total 

period of 23 min.  
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4.3 RESULTS 

4.3.1 Panx1 exhibits a longer turnover rate than Cx43 

We have previously demonstrated that Cx43-positive BICR-M1Rk cells serve as a 

good cell reference model for examining the turnover mechanisms of Cx43 [109], 

and thus this cell system has been employed in this study to investigate the 

internalization process of Panx1. In order to follow the fate of an existing cell 

surface population of Panx1, we used BFA to block the transport of newly 

synthesized proteins to the plasma membrane. BFA-treated cells over-

expressing Panx1 were fixed at various time points prior to immunolabeling for 

Cx43 and Panx1. In untreated cells, Cx43 was visualized as punctate structures 

at cell-cell appositions with some intracellular distribution, whereas Panx1 was 

localized in a relatively uniform pattern at the cell surface (Figure 4.1A). Within 3 

hrs of BFA exposure, most of the Cx43 puncta were cleared from the cell surface 

and newly synthesized protein was retained in an ER-like pattern. In contrast, 

Panx1 was localized predominantly at the cell surface with minimal distribution in 

the intracellular compartment (Figure 4.1A). At 32 hrs of BFA treatment, some 

clearing of Panx1 from the cell surface was evident with increased accumulation 

in an ER-like pattern (Figure 4.1A).  To further compare the kinetic properties 

between pannexins and connexins, Panx1 and Cx43 expression was examined 

in cells under conditions in which protein synthesis was inhibited by CHX.  
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 Figure 4.1 Turnover kinetics of Cx43 and Panx1 

Panx1 expressing, Cx43-positive BICR-M1Rk cells were treated with BFA for up 

to 32 hr prior to immunolabeling for Cx43 or Panx1 (A, red). Note the loss of 
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Cx43 from the cell surface within 3 hr of BFA treatment while Panx1 was 

observed at the cell surface for over 18 hr. Nuclei were stained with Hoechst.   

Bar=10µm. Cells exposed to CHX for 2, 4, 6 and 8 hr were immunoblotted for 

Panx1 and Cx43 (B). When compared to untreated cells (0 hr), immunoblot 

analysis of Panx1 revealed no difference between the banding profile at 2, 4, 6 

and 8 hr of CHX treatment (B); whereas, the level of Cx43 consistently 

diminished following CHX exposure (B). Upon BFA treatment, Panx1 revealed 

the accumulation of the Gly1 species with a reduction of the Gly2 species, which 

remained the same for up to 5 hr upon BFA washout (B). β-actin and GAPDH 

were used as protein loading controls. 
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In agreement with the BFA results and when compared to untreated cells, 

immunoblot analysis of Panx1 levels revealed no difference between the banding 

profiles at 2, 4, 6 and 8 hrs of CHX treatment (Figure 4.1B), whereas there was 

an overall time-dependent decrease in Cx43 levels following CHX exposure 

(Figure 4.1B). These results clearly suggest Panx1 retention at the cell surface is 

much longer than Cx43.   

The rapid turnover and intracellular accumulation of Cx43 can be reversed within 

1 hr of BFA removal [109].  Based on this information, we investigated if the 

recovery dynamics of Panx1 BFA treatment was the same as Cx43 or different. 

BFA treatment of Panx1 expressing cells for 20 hrs reduced the higher 

glycosylated (Gly2) species, with a subsequent increase in the high mannose 

(Gly1) form of Panx1 (Figure 4.1C). However, 5 hr washout of BFA was 

insufficient to return the ratio of the three Panx1 glycosylated species back to 

normal (Figure 4.1C). Collectively, these results suggest that not only is Panx1 

long lived at the cell surface but trafficking of Panx1 through the secretory 

pathway is relatively slower than that of Cx43.  

4.3.2 Panx1 is co-expressed but does not co-
immunoprecipitate with clathrin or AP2 

Clathrin mediated endocytosis (CME) is a well documented process that is 

initiated by the recruitment of clathrin and adaptor proteins (such as AP2) to the 

plasma membrane before forming a coat around the endocytic vesicles and 

budding off [173]. Internalization of Cx43 has previously been correlated, in part, 

with the CME pathway [102].  In order to investigate if Panx1 is internalized 



140 

 

through a clathrin driven pathway, we first immunolabeled Panx1 expressing 

BICR-M1Rk cells with antibodies directed against the clathrin heavy chain and 

Panx1.  Panx1 was distributed at the cell surface in a relatively uniform pattern; 

while, clathrin was assembled in a punctate-like pattern at the cell surface with 

some intracellular distribution (Figure 4.2A). Panx1 co-distributed with clathrin 

(Figure 4.2A) and AP2 (Figure 4.2B) at the cell surface. The plasma membrane 

co-distribution of Panx1 with AP2 was not noticeably altered in the presence or 

absence of BFA (Figure 4.2B and C).  Additionally, immunoprecipitation of Panx1 

from WT and Panx1 over-expressing cells did not pull down either clathrin or 

AP2, which were expressed in total lysates at ~180 kDa and ~105-110 kDa, 

respectively (Figure 4.2D). As expected, Panx1 was immunoprecipitated in cells 

over-expressing Panx1 but not in WT cells (Figure 4.2D). This indicates that 

although Panx1 may co-exist in the same compartment with either clathrin or 

AP2, they do not interact.  

4.3.3 Panx1 co-distributes but does not co-
immunoprecipitate with Cav-1 and Cav-2 

Several channels have been reported to localize to the lipid rafts/ caveolae to 

regulate their functional status [174-176]. Caveolae are specialized invaginated 

domains that are formed by the caveolin family of integral membrane proteins, 

which consists of three members: Cav-1, Cav-2 and Cav-3 [177]. Similar to 

Panx1, Cav-1 is ubiquitously expressed in several tissues, whereas Cav-2 is co-

expressed with Cav-1 in various tissues and Cav-3 is primarily restricted to 

muscle [178].  
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Figure 4.2 Panx1 co-distributes, but does not co-Immunoprecipitate with 
clathrin or AP2 

Panx1 expressing BICR-M1Rk cells were immunolabeled for clathrin heavy chain 

(A) or anti-AP2 (B, C). 488-fluorophore conjugated Panx1 antibody detected 

Panx1 (green) with clathrin (red) at the cell surface (A, merge). Double 
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immunofluorescent-labeling revealed the co-distribution of Panx1 (green) with 

AP2 (red) at the cell surface before and after a 20 hr BFA exposure (C). Nuclei 

were stained with Hoechst.  Bar=10µm. Immunoprecipitates of Panx1 from WT 

and Panx1 expressing cells were immunoblotted for Panx1, clathrin and AP2. 

Panx1 (~43-50kD) was successfully pulled down from Panx1 expressing cells 

(under and below the IgG band); however, clathrin (~192kD) or AP2 (~105-

110kD) did not co-immunoprecipitate with Panx1 (B). IB: immunoblot; IP: 

immunoprecipitation, WT: wild type cells; Panx1: Panx1 expressing cells. 
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In order to determine whether caveolins play a role in Panx1 turnover, we 

investigated the localization profile and interaction status of Panx1 between Cav-

1 and Cav-2. Two different fixative methods, formaldehyde and 

acetone/methanol, were employed to detect the intracellular and cell surface 

populations of Cav-1/Cav-2, respectively [154]. In formaldehyde fixed cells, 

Panx1 co-distributed with Cav1 (Figure 4.3A) and co-localized with Cav-2 (Figure 

4.3C) in the intracellular compartment, presumably the Golgi complex. 

Conversely, fixation with acetone/methanol revealed co-expression of Panx1 with 

Cav-1 (Figure 4.3B) and Cav-2 (Figure 4.3D) mainly at cell-cell appositions. To 

examine the potential interaction of Panx1 with Cav-1 and Cav-2, a co-

immunoprecipitation assay was conducted. Panx1 but not Cav-1 was pulled 

down in the immunoprecipitates of Panx1 (Figure 4.3E). Reciprocally, Cav-1 but 

not Panx1 was detected in the immunoprecipitates of Cav-1 (Figure 4.3F). While 

Panx1 was detected in the immunoprecipitates of Panx1 expressing cells, Cav-2 

remained undetected (Figure 4.3G). Conversely, Cav-2 but not Panx1 was 

expressed in the immunoprecipitates of Cav-2 (Figure 4.3H). As expected, total 

cells lysates revealed Panx1 expression only in over-expressing and not the WT 

cells, whereas Cav-1 (Figure 4.3E and F) and Cav-2 (Figure 4.3G and H) were 

detected in both WT and Panx1 over-expressing cells.  
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Figure 4.3 Subcellular distribution and interaction of Panx1 with Cav-1 and 
Cav-2 

BICR-M1Rk cells endogenously expressing Cav-1 and Cav-2, and stably 

expressing Panx1 were fixed with formaldehyde or acetone/methanol prior to 

immunolabeling. Panx1 (green) was found to co-distribute with intracellular and 
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plasma membrane localized Cav-1 and Cav-2 (red) (A-D).   Immunoprecipitates 

of Panx1 (E and G) from WT and Panx1 expressing cells were immunoblotted for 

Panx1, Cav-1 and Cav-2. Panx1 was detected only in the immunoprecipitates of 

Panx1 (E and G) and not in the Cav-1 (F) or Cav-2 (H) immunoprecipitates. 

Conversely, Cav-1(F) and Cav-2 (H) were found in their respective 

immunoprecipitates and not in the Panx1 immunoprecipitates (E and G). IB: 

immunoblot; IP: immunoprecipitation, WT: wild type cells; Panx1: Panx1 

expressing cells. 
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While caveolins become detergent insoluble upon integrating into membrane 

rafts, these rafts can be disrupted with the cholesterol-depleting agent MβC 

[154]. We exposed Panx1 expressing cells to MβC for various time points to 

disrupt caveolin enriched membrane rafts. No substantial difference in the Panx1 

banding pattern (Figure 4.4A) or localization profile (Figure 4.4B) was detected in 

presence of MβC. Interestingly, the highly phosphorylated species of Cx43, 

typically associated with the cell surface and detergent-insoluble pool [154], 

diminished within 1 hr of MβC treatment (Figure 4.4A). Overall, our results 

indicate that while Panx1 co-distributes in the same intracellular and cell surface 

compartments as Cav-1 and Cav-2, there is no clear evidence of their co-

interaction. Additionally, cholesterol extraction from the plasma membrane does 

not noticeably alter the overall Panx1 expression.  

4.3.4 Panx1 internalization is independent of dynamin 
GTPase 

The dynamin GTPase is a common player in mediating caveolar fission, as well 

as budding the clathrin coated vesicles from the plasma membrane [179]. The 

mammalian dynamin family comprises of three members: dynamin I, II and III, 

where dynamin I is brain-enriched, dynamin II is ubiquitously expressed and 

dynamin III is mainly found in testis but also has some enrichment in brain 

especially in postsynaptic areas [180-183]. It is well accepted that a dominant-

negative GTP hydrolyzing mutant of dynamin (K44A) interferes with the function 

of endogenous dynamin by blocking vesicular internalization prior to pinching off 

cell membrane [184].  Therefore in order to investigate the role of dynamin in 
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Figure 4.4 Characterization of methyl-β-cyclodextrin treatment on Panx1     
expression levels and distribution profile 

Western blots revealed that the expression levels of the Panx1 glycosylation 

species remained unaltered after a 24 hr treatment with MβC (A); while the highly 

phosphorylated form of Cx43 was reduced within 1 hr of MβC exposure (A). The 

cell surface distribution of Panx1 (red) remained relatively uniform during the 24 

hrs of MβC treatment (B). Nuclei were counterstained with Hoechst.  Bar=10µm. 

GAPDH was used as a protein loading control. 
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Panx1 internalization, we transfected previously generated GFP-tagged WT and 

K44A DynII in Panx1 over-expressing cells. As expected, an antibody generated 

against DynII detected both the WT (Figure 4.5A) and K44A DynII mutant (Figure 

4.5B), dispersed intracellularly and at the cell surface. Some evidence of Panx1 

co-localization with the WT (Figure 4.5C) and the K44A (Figure 4.5D) DynII 

mutant at the plasma membrane was noticed in untreated cells. Cells co-

expressing Panx1 and WT DynII revealed consistent co-distribution at the cell 

surface with a slight increase in the intracellular localization of Panx1 (Figure 

4.5E).  Conversely, in the presence of BFA, cells co-expressing Panx1 and the 

K44A DynII mutant revealed less intracellular accumulation of Panx1 when 

compared to cells expressing only Panx1 in the same culture environment 

(Figure 4.5F). It was unclear if the increased intracellular expression of Panx1 in 

the absence of the K44A DynII mutant was due to uninhibited turnover of the cell 

surface population of Panx1 or the BFA-induced ER accumulation of Panx1.  

Therefore, we assessed the effect of the WT and K44A DynII mutant over-

expression, and dynasore (a pharmacological inhibitor of dynamin GTPase) on 

the glycosylation species of Panx1.  It was predicted that if dynamin GTPase 

plays a role in Panx1 internalization, then an increase in the Gly2 expression of 

Panx1 would be seen in the presence of the K44A DynII mutant or dynasore. In 

the untreated group, expression of Panx1 alone or in presence of the WT or 

K44A DynII revealed no significant difference among all the three glycosylated 

species of Panx1 (Figure 4.6A and B). In contrast, BFA treatment significantly 

reduced the Gly2 species with a subsequent increase in the Gly1 species of 
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Figure 4.5 Assessment of Panx1 distribution in the presence of WT and 
K44A mutant DynII 

Cells stably expressing Panx1 were transiently transfected with WT or K44A 

DynII expression constructs. Immunolabeling with anti-DynII antibody (red) 
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detected the GFP-tagged WT (green) and K44A (green) DynII mutant at the cell 

surface and within intracellular compartments (A and B). In untreated cells, WT 

and K44A DynII localized with Panx1 primarily at the cell surface (C and D). BFA 

treatment induced similar intracellular and cell surface distribution of Panx1 in the 

presence of WT (E) or K44A DynII (F). Nuclei were counterstained with Hoechst. 

Bar=10µm. 
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Figure 4.6 Characterization of dynamin GTPase on Panx1 expression, 
interaction and transferrin uptake  

Protein lysates of untreated and BFA treated cells expressing Panx1 alone or in 

combination with WT and K44A DynII, were subjected to immunoblotting using 
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anti-Panx1 and anti-DynII antibodies. A significant reduction of the Panx1 Gly2 

species and accumulation of the Gly1 species was observed when cells were 

exposed to BFA (A and B). The overall Panx1 expression levels remained 

unaltered with the co-expression of WT and K44A DynII (A and B). Transient 

transfection of WT and K44A DynII resulted in their expression at approximately 

equal levels (A). In contrast to the WT DynII, temperature sensitive uptake of 

transferrin-Alexa 555 in live cells was greatly reduced in the presence of K44A 

DynII (C). Immunoprecipitates of Panx1 from WT and Panx1 expressing cells 

were probed with anti-Panx1 and anti-DynII antibodies. Panx1 but not DynII was 

detected in the immunoprecipitates of Panx1 (D). GAPDH was used as a protein 

loading control. For statistical analysis, ratios between glycosylation species of 

Panx1 (Gly0, Gly1, Gly2) and GAPDH loading control were taken and a one-way 

ANOVA was performed followed by Tukey’s post test (where ‘a’ is significantly 

different to ‘b’ and ‘c’). Y-axis reflects arbitrary numbers. Bar=10µm. 
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Panx1 in all groups (Figure 4.6A and B). In comparison to the WT DynII, no 

significant increase in the Gly2 species of Panx1 was observed when co-

expressed with the K44A DynII (Figure 4.6A and B). 

To ensure that cells adequately expressed functional exogenous DynII 

constructs, we assessed the protein levels and transferrin uptake capabilities of 

the WT and K44A DynII. Over-expression of the GFP-tagged WT and K44A 

DynII revealed a band at approximately 125-130 kDa (Figure 4.6A). When 

maintained at 4°C, live cells expressing WT or K44A DynII revealed transferrin 

distribution at cell-cell appositions (Figure 4.6C). Following incubation at 37°C, 

the WT DynII showed a clear accumulation of transferrin in the intracellular 

compartment, while K44A DynII restricted the ability of transferrin uptake (Figure 

4.6C). Given the role of dynamin in vesicular budding [184], it was not surprising 

to find that Panx1 did not interact with DynII (Figure 4.6D). Parallel with the DynII 

K44A study, treatment with dynasore alone did not significantly enhance the 

expression of the Panx1 Gly2 species (Figure 4.7A and B). When treated 

together with BFA, dynasore did not show any additive effect on the BFA-induced 

expression levels of the Panx1 Gly2 and Gly1 species (Figure 4.7A and B).  As 

expected, dynasore treatment limited the transferrin uptake when incubated at 

37°C (Figure 4.7C). Overall, our results indicate that Panx1 internalization is 

unique and independent of the dynamin-mediated pathway.  
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Figure 4.7 Panx1 protein expression levels remains unaltered in the 
presence of dynasore  

Panx1 expressing cells were treated in the presence or absence of dynasore 

together with or without BFA for 20 hrs prior to immunoblotting for Panx1. 

Treatment with BFA alone caused a significant reduction in the Gly2 species of 

Panx1 with a marked accumulation of the Gly1 form; while dynasore treatment 
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alone did not change this protein banding profile (A and B). Together, dynasore 

did not cause any additive effect to the BFA induced reduction and accumulation 

of the Gly2 and Gly1 expression, respectively (A and B).  GAPDH was used as a 

protein loading control.  Exposure to dynasore successfully blocked the uptake of 

transferrin-Alexa 555 in live cells at 37°C (C) indicating its effectiveness at 

inhibiting endocytosis. For statistical analysis, ratios between glycosylation 

species of Panx1 (Gly0, Gly1, Gly2) and GAPDH loading control were taken and 

a one-way ANOVA was performed followed by Tukey’s post test (where ‘a’ is 

significantly different to ‘b’ and ‘c’). Y-axis reflects arbitrary numbers. Bar=10µm. 
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4.3.5 Panx1 follows a unique pattern of internalization  

To examine the internalization of Panx1 in live cells, we exposed Panx1-GFP 

over-expressing BICR-M1Rk cells to BFA for 20 hrs prior to capturing rapid-time 

lapse images.  

BFA treatment revealed three distinct distribution profiles of Panx1: a) 

intracellular accumulation around the perinuclear region, b) some evidence of 

uniform distribution at the cell surface, and c) bright clusters at the plasma 

membrane (Figure 4.8). Over time, bright clusters of Panx1-GFP at the cell 

surface formed peculiar tubular-like extensions that stretched away from the 

plasma membrane toward intracellular compartments (Figure 4.8 arrowhead, see 

Movie 4.1). Additionally, Panx1-GFP containing extensions (570 s, Figure 4.8) 

appeared to collapse back onto the plasma membrane (720 s, Figure 4.8). 

Overall, these tubular-like extensions were very slow in internalizing from the cell 

cell surface ranging from ~ 30-45 mins.  Over 30 tubular-extensions were 

visualized in 12 random cells assessed over three independent BFA exposures 

and image capturing sessions. Our imaging data suggests that Panx1 is removed 

from the cell surface along unique tubular-like extensions.  

4.3.6 Panx1 is destined for the lysosomal mediated 
degradation 

In contrast to untreated cells, long term exposure to the pharmacological 

lysosomal inhibitor, chloroquine, revealed a sustained expression of the cell 

surface associated Gly2 species, with a pronounced accumulation of the Gly1 

form of Panx1 (Figure 4.9).  The subcellular distribution of Panx1 in the presence  
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Figure 4.8 Panx1-GFP internalizes in dynamic tubular-like extensions  

Cells stably expressing Panx1-GFP were treated with BFA for 20 hrs prior to 

performing rapid-time lapse imaging in the presence of BFA. Images were 
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acquired every 30 s for the total time of 23 min, however, only a subset of time 

frames are displayed (see Movie 4.1). Panx1-GFP internalized by clustering at 

the plasma membrane (420 s) followed by a dynamic tubular-like extension 

(arrowhead, 450s) that stretched to bud away from the cell surface towards the 

intracellular compartment (600-930s). Minimal extensions of other nearby cluster 

(unfilled arrow, 570 s) were noticed to collapse back on to the cell surface 

instead of detaching itself (720 s). Bar=10µm. 

Movie 4.1 Panx1-GFP follows a unique pattern of internalization through 
dynamic tubular-like extensions  

Rapid time-lapse images of BFA-treated Panx1-GFP expressing cells were 

captured to assess the mechanisms of Panx1 internalization.  Panx1-GFP was 

localized in a relatively uniform manner with some evidence of bright clustering at 

the cell surface that occurred prior to endocytosis. These clusters first extended 

in a tubular-like morphology away from the cell surface and then detached. The 

movie sequence was captured every 30 s over 46 frames representing a total 

elapsed time of 23 min. The movie was accelerated to play in 10.12 s.   
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of chloroquine paralleled its banding profile, as a sub-population was noticed 

around the perinuclear region (presumably lysosomes [47]), with a clear 

evidence of the cell surface expression (Figure 4.9). As expected, BFA treatment 

reduced the Gly2 species with a subsequent increase in the Gly1 form of Panx1 

(Figure 4.9), which was consistent with the loss of the cell surface distribution 

coinciding with an accumulation in an intracellular compartment (Figure 4.9). 

Inhibition of the lysosomal pathway in the presence of BFA resulted in a slight 

increase in expression of the Panx1 Gly2 species when compared to BFA 

treatment alone (Figure 4.9). This finding suggests that accumulation of the 

existing cell surface pool of Panx1 is a result of blocking its internalization and 

degradation through the lysosomal pathway. 
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Figure 4.9 Panx1 is degraded by lysosomes 

Panx1 expressing cells were exposed to BFA and the lysosomal inhibitor 

(chloroquine) alone or together for 20hr prior to immunoblotting (A) and 



161 

 

immunolabeling (B) for Panx1.  Chloroquine treatment caused a sustained 

expression of the Gly2 species of Panx1 with an accumulation of the Gly1 form 

(A) which was marked by a increased intracellular distribution of Panx1(B, red).  

BFA-induced reduction of the Panx1 Gly2 species (A) was correlated by the 

increased loss of the cell surface population of Panx1 with a subsequent 

accumulation in the intracellular compartment (B, red). When treated together, a 

subtle rescue of the Panx1 Gly2 species was observed in the presence of the 

lysosomal inhibitor, chloroquine (A). BFA treatment along with chloroquine also 

resulted in the increased cell surface distribution of Panx1 (B, red).  GAPDH was 

used as a protein loading control. Nuclei were counterstained with Hoechst. 

Bar=10µm.  
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4.4 DISCUSSION 

The focus of this study was to elucidate the turnover kinetics and mechanisms for 

internalization and degradation of Panx1. Our data strongly indicates that Panx1 

has a long life at the cell surface, follows a unique pattern of internalization that is 

independent of endocytic pathways mediated by clathrin, caveolins and dynamin 

GTPase, and undergoes lysosomal-based degradation. 

One of the distinguished characteristics of most connexin family members is that 

their physiological regulation is not only at the level of gating the channels open 

or closed [58] but also at the level of gap junction formation and removal [13]. 

The latter level of regulation is possible because most connexins, including Cx43, 

have an unprecedented short half-life for polytopic plasma membrane proteins. In 

this regard, our studies in which protein synthesis or trafficking were blocked by 

pharmacological agents revealed prolonged localization of Panx1 at the cell 

surface, compared to Cx43 gap junctions. Thus, indicating that Panx1 has a 

much longer half-life than Cx43.   

While the highly phosphorylated P2 form of Cx43 [109] is often identified at the 

plasma membrane, it is predominantly the complex glycosylated Gly2 form of 

Panx1 [47, 59] that is destined for cell surface delivery.  The rapid turnover of 

Cx43 in response to BFA is correlated with the loss of the highly phosphorylated 

(P2) species with an accumulation of the lower species (P0) of Cx43 [109]. In our 

studies, a parallel phenomenon occurred where the high mannose Gly1 species 

of Panx1 increased at the expense of the Gly2 species. Since it was possible to 

rescue the trafficking of intracellular accumulated Cx43 and rebuild the normal 
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gap junction complement upon BFA removal [109],  we wanted to follow the 

glycosylation status of Panx1 upon BFA washout as a measure of its recovery 

from intracellular retention.  Interestingly, at no time following BFA removal did 

Panx1 levels at the cell surface return to normal, suggesting that Panx1 has 

delayed trafficking to the cell surface.  Alternatively, it is possible that the 

prolonged exposure to BFA permanently impairs the reorganization of the Golgi 

apparatus thus limiting the rescue of the Panx1 Gly2 expression. Nonetheless, 

our data strongly supports the conclusion that Panx1 half-life while at the cell 

surface is many hours longer than what is documented for Cx43.  

While the internalization mechanisms of connexins, particularly Cx43, have been 

extensively studied, the endocytic pathways governing Panx1 turnover have not 

yet been identified. Whereas, internalization of Cx43 as double membrane 

structures [101] termed connexosomes [13] has previously been linked to the 

CME pathway, while our study is the first to investigate the role of clathrin in 

Panx1 endocytosis. Our data indicates that although Panx1 co-distributes in the 

same cell surface micro-domain as clathrin, its physical interaction with the 

clathrin heavy chain could not be detected. Consistently, while AP2 co-distributed 

with Panx1 at the cell surface they also failed to interact. These finding are in 

contrast to other channels types such as chloride channels [185] or renal outer 

medullary K+ channels (ROMK) [186], where clathrin-mediated internalization is 

marked by co-localization and  co-interaction with clathrin and AP2. Since our 

study only revealed localization of Panx1 and AP2 in the same compartment 

without direct interaction, it is likely that Panx1 endocytosis is independent of 
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clathrin and thus distinct from Cx43 and other channel forming proteins. As there 

is growing evidence of clathrin-independent pathways for internalization of 

plasma membrane proteins that rely on caveolae and glycolipid rafts [187], our 

next approach was to identify if Panx1 turnover is mediated by caveolin-driven 

pathway. 

Several channels such as K+ [188], Ca2+ [189] and Cl- [190] are reported to 

localize to glycolipid rafts/caveolae for their regulation by caveolins. Our first 

assessment revealed localization of Panx1 with Cav-1 and Cav-2 at the cell 

surface and within intracellular compartments.  While the plasma membrane 

localization of Panx1 with Cav-1 and Cav-2 suggests the presence of Panx1 in 

the lipid rafts- presumably in preparation for internalization, the formaldehyde-

fixed detection of Panx1 with Cav-1 and Cav-2 in the intracellular compartment 

argues for a distinct role. In the case of Cx43, the intracellular distribution with 

Cav-1 and Cav-2, suggested that caveolins might facilitate the delivery of Cx43 

from the Golgi apparatus to cell surface [154]. It is possible that, like Cx43, 

caveolins might be involved in the secretory pathway of Panx1.  Alternatively, 

intracellular co-distribution of caveolins with Panx1 could also reflect the role of 

caveolins in recycling Panx1 from the cell surface to the perinuclear region. This 

notion is in keeping with the previously reported caveolin-mediated internalization 

of the seven transmembrane receptor protein: autocrine motility factor from the 

plasma membrane and its targeting to the ER compartment [191, 192].  

Interestingly, Cav-1 has been identified as a negative regulator of the endocytic 

pathway to the ER compartment, thus providing a more stabilizing role of 
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caveolae at the plasma membrane [187]. The reduced intracellular localization of 

Panx1 with Cav-1 (in comparison to Cav-2) could support the role of Cav-1 in 

maintaining Panx1 at the cell surface instead of its internalization-an argument 

that clearly needs further investigation. Our study has shown that distinct from 

Cx43, Panx1 does not interact with Cav-1 or Cav-2 [154]. Furthermore, the 

cholesterol depleting agent, MβC, known to disrupt the integrity of membrane 

rafts [193] and association of Cx43 with Cav-1/Cav-2 [154], did not noticeably 

alter the Panx1 expression or its cell surface localization. Taken together, our 

results suggest that turnover of Panx1 is independent of caveolin driven pathway.  

As large dynamin GTPase (~100 kDa) has implications in clathrin-dependent 

internalization [194], and caveolar driven fission of the plasma membrane [195], 

we investigated if this molecular player could contribute in Panx1 endocytosis.  

To identify the role of dynamin GTPase in Panx1 internalization, we utilized the 

GTP binding and hydrolyzing mutant, K44A DynII, in the presence or absence of 

BFA. Although Panx1 co-distributed with K44A DynII at the cell surface, blocking 

of the ER-Golgi transport with BFA did not reveal a substantial accumulation of 

Panx1 at the cell surface. It was also interesting to observe that while K44A DynII 

and dynasore blocked the expected transferrin uptake, it did not significantly 

increase the expression of the cell surface species of Panx1. This finding differs 

from the previously documented accumulation of Cx43 plaques [102], and 

enhancement of ROMK (renal outer medullary potassium) channel currents in 

response to K44A DynII over-expression [186]. Thus, our data suggests that 
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Panx1 is internalized in a unique manner that is independent of dynamin 

GTPase.  

Our rapid time-lapse imaging of Panx1-GFP following a long term exposure to 

BFA suggested that clustering of Panx1 at the cell surface is a pre-requisite for 

its turnover. Within several minutes, dynamic tubular-like extensions carrying 

Panx1 pinched off. This pattern of Panx1 internalization was quite distinct from 

the rapid internalization of the double membrane structure of Cx43 that bud from 

preexisting gap junction plaques, and enter one of the two neighboring cells 

[101]. The tubular morphology of Panx1 extensions is quite intriguing and hints to 

the possibility of its internalization via pathways independent of clathrin, caveolin 

and dynamin GTPase. Glycosyl-phosphatidyl-inositol anchored proteins enriched 

early endosomal compartments (GEECs) is one such example that results from 

fusion of uncoated tubulovesicular clathrin-independent carriers (CLICs) directly 

stemming from the plasma membrane [196]. Another feature of the 

CLICs/GEECs endocytic pathway is its independence from dynamin [197] and 

dependence on actin polymerization machinery that is regulated by the Rho 

family GTPase, Cdc42 [198]. As one of the documented binding partners of 

Panx1 [153], it is possible that actin might regulate the endocytic process of 

Panx1. One of the proposed models for actin-dependent endocytosis is the 

elongation of plasma membrane invaginates into a tubular structure through 

active polymerization, followed by scission via myosin motor proteins [199, 200]. 

Such association of actin and myosin II has been reported for endocytosis of 

Cx43 double membrane structures (e.g. connexosomes) [201], and needs to be 
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further investigated in the case of Panx1. Another candidate that has been linked 

to actin remodeling is endosomal-associated GTPase, ADP, ribosylation factor 6 

(Arf6) [202, 203]. The Arf6-mediated pathway is not only independent of dynamin 

and clathrin [204] but is also implicated in the endocytosis and recycling of  K+ 

channels [205].  Interestingly, the Arf6 dependent pathway also includes the 

formation of tube-like structures that are eventually used for recycling the cargo 

back to the plasma membrane [206].  Although the Arf6 pathway needs further 

investigation, it is tempting to speculate that the observed collapse of Panx1-GFP 

tubules back onto the plasma membrane might take advantage of this 

mechanism.  

Once internalized, degradation of Cx43 is linked to both lysosomal [106] and 

proteasomal pathways [171], while consistent with the previous report, our 

current study suggests a role of lysosomes in Panx1 degradation [47]. In our 

studies, while BFA blocked the cell surface trafficking of Panx1, consistent with 

increased Gly1 levels, it did not interrupt Panx1 turnover from the cell surface, as 

revealed by the loss of the Gly2 species.  Surprisingly, chloroquine induced a 

robust increase in the Panx1 Gly1 species, which correlated with Panx1 

localizing to the perinuclear region.  It is possible that long term blockage of 

lysosomal function initiated a negative-feedback mechanism causing Panx1 to 

bypass normal targeting to the cell surface trafficking and direct trafficking to 

lysosomes. Collectively, the sustained expression of the Gly2 species in the 

presence of chloroquine, together with a subtle rescue of the BFA-induced loss 
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of the Gly2 species, supports that Panx1 typically cycles through the plasma 

membrane en route to lysosomes for final degradation.  

In summary, since Panx1 forms large pore channels implicated in: neuronal 

necrosis [78], epileptic seizure-like activity [66] and initiation of the death complex 

with the P2X7 receptor [72], our study was designed to characterize mechanisms 

related to Panx1 turnover and degradation as potential regulatory mechanisms of 

overall Panx1 function. Our study is the first to show that the turnover of Panx1 is 

slow and is mediated via unique tubular-like extensions.  
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CHAPTER 5: DISCUSSION and CONCLUSIONS 
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5.1 DISCUSSIONS and CONCLUSIONS 

Objective 1: To characterize the subcellular distribution of Panx1 and Panx3, to 

identify the secretory pathway involved in Panx1 and Panx3 cell surface 

trafficking, to analyze the mobility dynamics of GFP-tagged Panx1 and Panx3 at 

the cell surface and to assess the role of the cytoskeleton in Panx1 trafficking 

and cell surface dynamics. 

Our study was the first to reveal that ectopically expressed Panx1 and Panx3 

trafficked to the cell surface via the ER-Golgi in a Sar1-mediated COPII-

dependent manner [153]. Once at the plasma membrane both pannexin 

members predominantly localized in a relatively uniform manner, as well as in 

dynamic cell surface protrusions [153]. Distinct from Cx43 [96], Panx1 and Panx3 

were highly mobile at all plasma membrane domains [153]. In addition, Panx1 

and Panx3 revealed no interdependency on microtubules for their cell surface 

delivery or mobility [153], as reported for Cx43 [88]. Interestingly, intact 

microfilaments facilitated the free movement of Panx1 carrying vesicles and 

provided overall stability at the cell surface [153].  This study also identified actin 

as a novel direct binding partner of Panx1 at the carboxyl terminal tail [153].  

Objective 2: To identify the role of the carboxyl terminal tail in Panx1 trafficking 

and homomeric interactions. 

To investigate the role of the carboxyl terminal tail (C-tail) of Panx1 in trafficking 

and homomeric interactions, we truncated the polypeptide at residue 307 

(Panx1T307) and ectopically expressed the mutant in BICR-M1Rk and HEK-293T, 

cells devoid of Panx1. Truncation of the Panx1 C-tail dysregulated its cell surface 

delivery resulting in the mutant being retained predominantly in the ER. 
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Furthermore, enzyme-based de-glycosylation experiments revealed that the 

Panx1T307 mutant was glycosylated, albeit, to only the high mannose species. 

Interestingly, co-expression of Panx1 could not rescue the delivery of the 

Panx1T307 mutant to the cell surface and these species had limited co-interaction.  

Thus, these results suggest that the Panx1 C-tail plays a role in oligomerization. 

While our study fully supports the previously reported lysosomal-mediated 

degradation of full length Panx1 [47], our data also supports proteasomal-based 

degradation of mutant Panx1.  

Objective 3: To explore the pathways for Panx1 internalization and degradation. 

Using the pharmacological inhibitors of protein synthesis (cycloheximide) and 

protein trafficking (BFA), we discovered that Panx1 had a much longer predicted 

half-life compared to Cx43 [25]. To uncover the mechanism(s) responsible for 

Panx1 internalization, this study focused on determining the putative involvement 

of clathrin-, caveolin- and dynamin- mediated pathways. Although co-distribution 

of Panx1 with clathrin and adapter protein (AP2) was observed at the cell 

surface, no interaction was detected. This suggested that clathrin-mediated 

internalization may not play a role in Panx1 internalization. Similarly, Panx1 also 

co-distributed with caveolin (Cav)-1 and Cav-2 at the cell surface as well as 

within intracellular compartments. However, co-immunoprecipitation assays 

together with methyl-β cyclodextrin-induced disruption of membrane rafts 

supported the position that Panx1 internalization was independent of caveolins. 

Inhibition of dynamin (DynII) GTPase (characterized in budding off membrane-

bound vesicles) by a dominant-negative GTP hydrolyzing mutant, K44A DynII 



173 

 

and the pharmacological inhibitor, dynasore, further revealed that Panx1 turnover 

was independent of dynamin. Interestingly, rapid time lapse imaging revealed a 

novel internalization pattern of Panx1 along dynamic tubular extensions. 

Although Panx1 degradation through the lysosomal pathway was previously 

reported [47], we found that the high mannose species of Panx1 is accumulated 

in the presence of the chloroquine-mediated inhibition of lysosomes.  This finding 

was also correlated with increased perinuclear Panx1 distribution and sustained 

cell surface localization of Panx1.  While Cx43 gets degraded through both 

lysosomal and proteasomal pathways [105], our study strongly supports the 

premise of Panx1 degradation through lysosomes.   

5.2 CONTRIBUTIONS of the RESEARCH 

Prior to this study, the dynamics, regulatory binding partners, pathways and 

compartments involved during the life-cycle of pannexins were essential 

unknown. The overall goal of this study was to investigate if pannexins share 

similar properties to Cx43 gap junctions based on their trafficking, mobility, 

turnover and degradation characteristics. These studies were the first in the field 

to combine GFP tagging and rapid time-lapse imaging to closely monitor and 

address the dynamic properties of pannexins in live mammalian cells. In these 

studies we showed that except for sharing a common secretory pathway, Panx1 

and Panx3 are quite distinct from Cx43. Basically, Panx1 and/or Panx3 exhibited 

a:  a) relatively uniform cell surface distribution, b) extensive and rapid mobility at 

the cell surface, c) prolonged turnover kinetics, and d) unique internalization 
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properties within dynamic tubular extensions that were independent of pathways 

mediated by clathrin, AP-2, Cav-1, Cav-2 and DynII.   

5.2.1 Compared to Cx43, Panx1 and Panx3 exhibit 
distinct subcellular distribution properties, cell surface 
dynamics and cytoskeletal dependency  

 While an uniform cell surface distribution of Panx1 and Panx3 is the 

predominant phenotype observed when these pannexins are expressed in 

reference cell models, additional studies have highlighted other subcellular 

distribution profiles that include diffused localization throughout the cell body and  

punctate cell surface localization [36, 59, 125, 153]. Endogenously expressed 

Panx1 revealed three distinct profiles: a) the relatively uniform cell surface 

pattern at the cell surface of melanoma cells (B16-BL6) [153], and Madin-Darby 

canine kidney cells [47], b) a cell surface punctate pattern as observed in: human 

facial epidermis [25] and Hensen, Claudius and Boettcher cells of the rat cochlea 

[36], and c) diffused cell body localization as seen in an mouse osteoblast cell 

line (MC3T3-E1) [125], spiral limbus and spiral prominence in the rat cochlear 

lateral wall [36], and murine spleen [25]. Whereas endogenous expression of 

Panx3 was found to be within intracellular compartments in rat cochlear bone 

[36], mixed patterns of localization were found both at the  cell surface and 

cytoplasmic localization in murine chondrocytes and chondrogenic cell lines 

(ATDC5) [37]. The differential distribution profiles of Panx1 and Panx3 suggest 

that they may have distinct cellular roles. While the uniform cell surface 

distribution of Panx1 supports the function of cellular communication with the 

extracellular environment -through formation of non-junctional membrane 
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channels [25, 55], the intracellular localization of pannexins suggests that they 

serve alternate roles. In the study conducted by Vanden Abeele et. al., [54], 

intracellular localized Panx1 was proposed to regulate ER-based calcium 

homeostasis. However, later we showed that Panx1 dysregulated keratinocyte 

differentiation while Panx3 maintained the epidermal integrity of murine skin [67]. 

In addition, our current study revealed a unique enrichment of Panx1 and Panx3 

in dynamic cell surface protrusions, at areas that are devoid of contacting cells 

[153].  While similar distribution of Panx3 in cellular extensions supported its role 

in ATP release and chondrogenic differentiation [37], this phenomenon was not 

typically observed for Cx43, unless non-functional Cx43 mutant was ectopically 

expressed [96].  Collectively, these results support our hypothesis that the 

pannexin family of proteins exhibits a more diverse subcellular localization than 

connexins, broadening their potential cellular roles.   

The cell surface clustering of Cx43 and the relatively uniform distribution of 

Panx1 and Panx3 [153] also supports that these families of proteins acquire 

different states of assembly.  In fact, the rapid lateral movement of Panx1 and 

Panx3 in all plasma membrane microdomains [153], suggests that pannexins are 

likely not packaged into dense crystalline-like structures, as reported for Cx43 

[39]. Pannexin channel packing and cell-cell interactions may be inhibited by 

steric hindrance provided by the bulky carbohydrate moieties at the extracellular 

domain, prohibiting the close proximity of the two adjacent cells.  Electron 

micrographs of Panx1 at the cell surface depicting 20-50 nm of intercellular 

spacing, as opposed to 2-4 nm for Cx43 [47], further supports this notion. The 
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greater mobile fraction of Panx1 and Panx3 in comparison to Cx43 [153], could 

also suggest less interactions with scaffolding proteins and  cytoskeletal 

elements. 

 In our study, nocodazole-induced disruption of microtubules did not significantly 

alter the cell surface distribution of Panx1 and Panx3 [153]. However, this finding 

was quite distinct from Cx43, where the regeneration of gap junction plaques and 

cell surface mobility was minimal upon nocodazole exposure [88, 89], suggesting 

that the delivery of Cx43 was much more dependent on microtubules, as 

compared to Panx1 and Panx3. On the other hand, disruption of microfilaments 

revealed concomitant intracellular accumulation of Panx1 and Panx3 leaving only 

a subpopulation at the cell surface. In contrast, Cx43 gap junctions remain 

relatively more independent to the assembly states of microfilaments [141], 

thereby suggesting that the connexin and pannexin family of proteins have 

distinct dependency on cytoskeletal elements for their cell surface transport, 

mobility and stability.  

5.2.2 The carboxyl terminal tail of Panx1 facilitates its 
trafficking and homomeric interaction 

Several studies have identified the effect of single amino acid substitutions within 

specific motifs of Panx1 [25, 47, 63, 151, 152], however, deletion of an entire 

Panx1 domain has never been investigated. We were particularly keen on 

identifying the role of the C-tail, as this cytoplasmic exposed domain was 

considered a prime candidate for interaction with other regulatory proteins. In 

fact, our work identified that Panx1 C-tail serves as a substrate for direct binding 
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with actin that may provide multifaceted functions in Panx 1 transport, cell 

surface mobility and stability [153].  

Using a truncated mutant of Panx1 lacking the last 119 amino acids from the C-

tail, our study suggested that the C-tail was important in trafficking, homomeric 

interactions and targeted degradation through lysosomes. First, we identified that 

in the absence of the C-tail, Panx1 mutant failed to traffic to the cell surface. 

Second, the Panx1 C-tail truncated mutant was retained primarily within the ER 

where it was found as a core (Gly0) or high-mannose (Gly 1) species. Third, the 

Panx1 C-tail mutant failed to substantially interact with the full length Panx1, 

suggesting a role of the C-tail in homomeric oligomerization. Finally, the ER-

retained truncated mutant was directed to proteasomes for degradation, thus 

supporting the involvement of the endoplasmic reticulum associated degradation 

(ERAD) pathway. Since ERAD is associated with premature degradation of 

misfolded proteins [159, 165], we speculate that the C-terminus may also play an 

important role in the proper folding of Panx1.  

5.2.3 Distinct from Cx43, Panx1 exhibits a longer half-
life and internalizes via unique tubular-like extensions  

In these studies, we showed that the internalization of the cell surface pool of 

Panx1 exceeds the 1.5-3 hrs of Cx43 turnover [25] with an estimated half-life in 

excess of 10 hours. While removal of Cx43 from the cell surface involved 

internalization of the entire or fragments of gap junctions as connexosomes [13] 

into one of the two contacting cells [101], the removal of Panx1 form the cell 

surface appeared to follow tubular extensions. Mechanistically, rapid Cx43 
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internalization was aided by several molecular players such as: dynamin, 

clathrin, AP-2, actin and myosin [102, 104, 201]. However, the internalization of 

Panx1 as noted in our study was independent of clathrin, AP-2, dynamin and 

caveolin-driven pathways. Given the direct association of the Panx1 C-tail with 

microfilaments, it is possible that the internalization of Panx1 might be actin-

mediated. Our studies also supported the lysosomal degradation of internalized 

Panx1. Since Panx1 channel function is linked to neuronal necrosis, epileptic 

seizures-like activity and activation of death complex of P2X7 receptor [66, 72, 

78], our study provides a means of regulating the channel function by processes 

of internalization and degradation.  

5.3 LIMITATIONS and FUTURE DIRECTIONS 

5.3.1 Limitations 

In order to identify the dynamic properties of pannexins in live cells, we tagged 

Panx1 and Panx3 with GFP. Although, Panx1-GFP revealed trafficking and 

localization pattern similar to its wild-type (WT) counterpart, the GFP tagging of 

Panx3 caused a severe trafficking defect [25] with only a trace amount available 

at the cell surface. This posed a limitation in collecting quantifiable data for 

Panx3 mobility at distinct microdomains of plasma membrane. To overcome this 

setback, we co-transfected the untagged Panx3, as it facilitated the adequate 

delivery of Panx3-GFP to the cell surface for assessment of the mobile fraction.  

The comparable percentage (40-50%) of mobile fractions of Panx3-GFP (co-

expressed with Panx3) and Panx1-GFP (co-expressed with Panx1) further 
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suggested that co-expression with the WT counterpart does not hinder the 

mobility of pannexin family members at the plasma membrane.  

In addition, while tagging of Panx1 C-tail truncated mutant with RFP identified its 

role in trafficking, we were unable to parallel our findings using the untagged 

counterpart due to the lack of a quality antibody. It was expected that our 

previously generated antibodies against Panx1 extracellular domain [59], would 

serve as a tool to detect the C-tail truncated mutant of Panx1; however, our 

antibody detection was deemed to be inadequate. Therefore, to control for any 

possible adverse effects of the RFP tag, we also tagged the full length Panx1 

with RFP to be used in comparative studies. Since RFP tagging of full length 

Panx1 exhibited similar distribution characteristics as the untagged counterpart, it 

was employed as a control to study the biological properties of the Panx1 C-tail.  

5.3.2 Future Directions 

Based on our studies, it is clear that pannexins are a distinct family of proteins, 

as compared to connexins.  Part of this distinction may arise from differential 

regulation, based on protein-protein interactions.  While Panx1 was identified to 

directly interact with actin, it remains to be investigated which motif within the 

Panx1 C-tail binds to actin. Consistent with other reports [207, 208], one possible 

approach for identifying the actin binding site within Panx1 is by using serial 

truncations of the C-tail. In addition, it would be interesting to determine if Panx3 

also interacts with actin, as its cell surface localization is also perturbed in 

response to disrupted microfilaments [153]. Although our studies identified a role 

of microfilaments and microtubules in the plasma membrane distribution of 
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Panx3, it has yet to be examined if these cytoskeletal elements play a role in the 

cell surface mobility of Panx3.  

It has been postulated that the overall cellular function of pannexins can be 

regulated, in part, by appropriate trafficking and turnover to/from the plasma 

membrane. While deletion of almost the entire Panx1 C-tail provided evidence for 

its role in the cell surface trafficking, future research should focus on determine if 

there are any targeting motifs within the C-tail that regulate Panx1 trafficking. In 

addition, investigating the role of the C-tail should also be extended to Panx3.   

Our studies also suggest that Panx1 is a long-lived protein; however, it remains 

to be determined if Panx3 also exhibits a prolonged half-life. While Panx1 

internalization was associated with unique tubular-like extensions budding away 

from plasma membrane, the underlying mechanism remains unclear. Since the 

endocytosis of Panx1 was found to be independent of clathrin, AP-2, dynamin 

and caveolin-driven pathways, we speculate that the Panx1 binding protein, actin 

might play a role in its internalization. One of the proposed models of actin-

mediated internalization is the elongation of plasma membrane invaginates into a 

tubular structure through active polymerization, followed by scission via myosin 

motor proteins [199, 200]. Since such association of actin and myosin II has also 

been reported for endocytosis of Cx43 as connexosomes [201], future studies 

should pursue this hypothesis to investigate how Panx1 is internalized via tubular 

extensions.  

In summary, our studies support the hypothesis that in comparison to Cx43, 

Panx1 and Panx3 exhibit distinct subcellular distributions, cell surface mobilities, 
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and cytoskeletal dependencies, while Panx1 possesses unique turnover 

dynamics, and mechanistic pathways leading to its internalization and 

degradation. 
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