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the 1–25 poly-P/Q motif contains four non-canonical class I-type SH3 binding motifs, and one
overlapping WW class IV Peptidyl-Prolyl Isomerase (Pin1) binding motif. Future investiga-
tions will be needed to identify protein(s) interacting with this region. It is worth noting that
Pin1 has been shown to promote nuclear localization of Rel proteins [49] and the adenosine
deaminase ADAR2 [50], however how this is achieved remains unknown.

The RanBPM aa 635–649 sequence (NLS2) appeared to present some of the characteristics
of a bi-partite NLS, with two clusters of basic amino acids. However, while mutations in the
first cluster (R635A, R656A and K640A) did inhibit its ability to direct cytoplasmic GFP-β-gal
to the nucleus, surprisingly, alanine substitutions of the three lysines in the second cluster of
the motif (K645A, K646A and K649V) did not prevent NLS activity (data not shown). This

Fig 8. RanBPM is associated with microtubules. A)Hela andB) 3T3 MEFs were fixed and incubated with antibodies against RanBPM and α-tubulin.
Shown are single plane confocal images. Insets are enlarged images of the boxed regions from the above panels and arrows indicate areas of colocalization.
The right panels showmerged images (RanBPM, green; α-tubulin, red). Scale bar: 10μm.C) Hela whole cell extracts were incubated with either an α-tubulin
antibody or mouse IgG control. Immunoprecipitates were analyzed by western blot using RanBPM and α-tubulin antibodies and compared with 5% of
input proteins.

doi:10.1371/journal.pone.0117655.g008

Fig 9. Quantitative analysis of RanBPM in cytoplasmic and nuclear fractions and its association with
chromatin. A) Hela cell extracts were partitioned in cytoplasmic, nuclear soluble and chromatin fractions as
described in Materials and Methods. Proportional amounts of each fraction were analyzed by western blot
with the indicated antibodies. Left, representative western blot, with the percentage of each fraction loaded
indicated above each lane. Right, bar graph representing the percentage of RanBPM protein present in each
fraction. Data represent averages from three separate experiments with error bar representing SD. B)Hela
RanBPM shRNA cells were transfected with pCMV-HA-WT-RanBPM and processed as in A.

doi:10.1371/journal.pone.0117655.g009
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suggests that NLS2 activity is dependent on determinants present in the first cluster of basic
residues, in the sequence “RRDCGK”. Interestingly, this motif has similarities to that of a non-
canonical NLS recently identified in a BRCA1 splice variant (KRAAER) [51], with two basic
residues separated from a third basic residue by three amino acids.

Both the 1–25 poly-P/Q motif and NLS2 elements were able to direct a cytoplasmic GFP-β-
gal construct to the nucleus. However, our results suggest that RanBPM nuclear localization is
primarily dependent on the 1–25 poly-P/Q motif and that the C-terminal NLS2 does not ap-
preciably contribute to RanBPM localization in normally cycling cells, conditions used in our
experiments. This conclusion is supported by two observations: first, deletion of the C-terminal
region containing NLS2 and mutation of the NLS2 sequence had little effect on RanBPM sub-
cellular localization, and second, deletion of aa 1–25 poly-P/Q motif prevented RanBPM nucle-
ar localization. One possibility to explain why NLS2 is not functional in the context of the full
length RanBPM protein is that it is masked by protein folding. Indeed, we observed a dramatic
shift in RanBPM localization from cytoplasmic to nuclear upon deletion of the 102–138 region
(in the ΔN3 mutant) compared to the ΔN2 mutant. Thus, we postulate that this region normal-
ly folds over RanBPM C-terminus and masks NLS2, and that its deletion relieves the inhibition
on NLS2. This folding could serve to modulate the activity of sequences such as NLS2 that are
present in the C-terminal region in response to stress or physiological stimuli. A previous
study identified this element as a putative NLS [37]. This study also reported that an N-termi-
nal proteolytic fragment of RanBPM (aa 1–392) displayed cytoplasmic localization and this
was attributed to the loss of that element in the C-terminal region of the protein. Since we have
demonstrated that NLS2 is not imperative for nuclear localization, this is unlikely to be the
case, however the reason for the cytoplasmic localization of this proteolytic fragment remains
to be elucidated.

Our analysis showed that about 20% of total RanBPM, which represents about a third of the
RanBPM nuclear pool, is associated with chromatin. RanBPM does not appear to comprise se-
quences conferring DNA binding properties, thus we postulate that its association with chro-
matin is mediated through interaction(s) with chromatin-associated partners. RanBPM was
previously reported to interact with the Transcription Factor IID (TFIID) subunit TAF4 and
with the glucocorticoid, androgen and thyroid receptors [11,13,14]. The thyroid receptor was
suggested to interact with the C-terminal region of RanBPM [13], but the localization of the
complex was not evaluated. Interestingly, the interaction of p73 with RanBPM was shown to
promote RanBPM localization to the nucleus [12]. Whether and how RanBPM affects genomic
regulations and DNA metabolism and whether this is in the context of the CTLH complex or
in association with other proteins will need to be investigated.

RanBPM in the cytoplasm
We have identified three motifs or domains that promote cytoplasmic localization: a bona fide
NES, the SPRY domain and the LisH/CTLH domain. RanBPM NES presents the characteristics
of a typical leucine-rich motif [52], but we also noted the presence of basic amino acids which
led us to hypothesize that it may also function as a NLS. However, this element was only able
to direct cytoplasmic localization of a nuclear GFP-β-gal fusion construct, suggesting that it
only functions as a NES. We showed that this NES is readily sensitive to LMB in isolation
(GFP-β-gal) which is further typical of leucine-rich NES which are CRM1/Exportin1-depen-
dent [2,52]. But, while mutation of the NES promoted RanBPM nuclear accumulation, endoge-
nous RanBPM was only sensitive to LMB treatment when subjected to LMB for longer periods
of time, suggesting that only a small fraction of RanBPM is actively shuttling. In parallel, we
found that deletion of both SPRY and LisH/CTLH domains promoted RanBPM nuclear
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accumulation. Since neither domain contains any identifiable NES, cytoplasmic localization
through these domains most likely occurs through protein-protein interactions. As we have
shown that RanBPM is associated with microtubules, it is possible that the LisH/CTLH domain
could mediate RanBPM recruitment to microtubules and that this serves to retain RanBPM in
the cytoplasm. As for SPRY domains, they are found in a wide array of proteins and are known
to engage in protein-protein interactions. SPRY domain-containing proteins have been suggested
to function as adaptors and play roles as scaffold proteins in a variety of signaling pathways [6].
Several proteins have been shown to interact with RanBPM through the SPRY domain in both
the nuclear and cytoplasmic compartments. In the nucleus RanBPM has been shown to interact
with cyclin-dependent kinase 11 CDK11(p46) [53], the immediate-early protein Rta of Epstein-
Barr virus [54], and the ubiquitin-specific protease USP11 [55]. The SPRY domain of RanBPM
has been demonstrated to interact with cytoplasmic or membrane bound proteins such as the
TNF receptor associated factor TRAF6 [56], the receptor tyrosine kinase MET [57], the neural
cell adhesion molecule L1 [58], and the neurotrophin receptor TrkA [59]. However, the contribu-
tion of these interactions to RanBPM subcellular localization was not investigated. Our results
imply that the SPRY domain functions as a cytoplasmic restraint, suggesting that it mediates in-
teraction of RanBPMwith cytoplasmic protein(s), although this remains to be confirmed.

RanBPM has long been suspected to associate with microtubules, and was previously re-
ported to cofractionate with components of the microtubules dynein and dynactin and dyna-
mitin [47]. We show here that RanBPM indeed colocalizes and associates with α-tubulin.
However, it is not clear whether this reflects a direct interaction with microtubule components,
or if it is due to RanBPM association with microtubule-interacting proteins. Studies of the mi-
crotubule motor-regulating protein LIS1, the most extensively studied LisH-containing pro-
tein, suggest that the N-terminal LisH domain of LIS1, which is necessary for microtubule
association, is not involved in dynein binding (which occurs through the C-terminal of LIS1),
but that dimerization of LIS1 through the LisH domain is essential for dynein motility [60].
Therefore, we speculate that RanBPM is associating with microtubules through the LisH do-
main, however this remains to be determined. Interestingly, we recently reported that RanBPM
forms a complex with the histone deacetylase HDAC6 [30]. HDAC6 is a microtubule-associat-
ed deacetylase that regulates α-tubulin acetylation and participates in microtubule metabolism
[61–63], so the possibility exists that RanBPM is recruited to microtubules through HDAC6.

Regulatory function of the N-terminal domain
RanBPM N-terminal region has a dual function in regulating RanBPM subcellular localization
as it harbours both nuclear targeting and nuclear export sequences. Interestingly, in addition to
modulating subcellular localization, the N-terminal 102–139 region also appears to affect pro-
tein stability. Progressive deletion of the N-terminal sequences resulted in a gradual decrease in
protein expression, most notably when deleting the 102–139 region (ΔN3). Mutations in this
region (WW and USP7 motifs) did not affect protein stability, suggesting that it is not the se-
quences per se that are important but that the region may function intramolecularly to regulate
stability and localization.

One possibility to explain the changes in protein stability and subcellular localization
observed with N-terminal deletions is that the RanBPM C-terminus is unstable/unfolded
in absence of the N-terminal region. In support of this, a previous study documented that C-
terminal fragments of RanBPM (corresponding to the C-terminal 350 aa) were very weakly ex-
pressed when transfected in mammalian cells [15]. RanBPM N-terminal region contains sever-
al amino acid repeats (proline, glutamine, alanine) that are characteristic of a low complexity
regions (LCR) predicted to be unstructured [64]. LCRs are often found in ‘hub’ proteins and
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C-terminal LCRs have been predicted to have high levels of connectivity and are enriched in
stress-response proteins [65]. While the function of the RanBPM LCR is unknown, our data
suggest that it is critical for RanBPM stability and subcellular localization.

It is puzzling is that the deletion of the 102–139 (ΔN3) results in significant accumulation of
RanBPM in the nucleus, despite the presence of the NES and the central domains, SPRY and
LisH/CTLH, which would be expected to collectively allow cytoplasmic localization. Moreover,
removal of the NES in the ΔN4 mutant and further deletion encompassing part of the SPRY
domain (ΔN1) only marginally increased nuclear localization. Since this prominent nuclear lo-
calization occurs concurrently with the decrease in the level of protein expression, it is possible
that the deletion of the N-terminal domain promotes the degradation of the cytoplasmic pool
of these mutants, leaving the nuclear fraction somewhat stable.

RanBPM is well conserved between eukaryotic species, with the SPRY, LisH, CTLH and
CRA domains being conserved throughout eukaryotes [28]. Both the NES identified within res-
idues 140 and 155 and NLS2 comprising residues 635 and 649 are well conserved in mammals
and in chordates in general, while in arthropods, such as Drosophila, these elements are par-
tially conserved. The N-terminal domain however is the least conserved region of the protein.
In particular, the poly-Q and poly-P repeats present in the human RanBPM N-terminus are
not found in most homologs. Therefore the RanBPM 1–25 poly-P/Q motif is not present in
other species, except in the mouse homolog where it is partially conserved [66]. Thus the regu-
lations conferred by the 1–25 poly-P/Q region and the N-terminal region in general may only
occur in human and possibly in mouse RanBPM, perhaps allowing NLS2 to be the predomi-
nant NLS in other species. In the S. cerevisiae RanBPM homolog Gid1, the domains are con-
served however the NLS/NES motifs that we identified are not conserved.

Finally, one major element that may be contributing to RanBPM localization is its interac-
tion with members of the CTLH complex. All components of the CTLH complex have been
shown to be present within both the nuclear and cytoplasmic compartments with the exception
of MAEA (Macrophage Erythroblast Attacher, also called p48EMLP, or EMP), which is only
present in the nucleus and muskelin, which is mostly cytoplasmic [15,22]. These two proteins
have been demonstrated to influence the localization of the other complex components. Ectop-
ic expression of MAEA was shown to trigger increased recruitment of Twa1, the armadillo-re-
peat protein ARMC8α and RanBPM to the nucleus [22]. MAEA has been shown to contain a
putative NLS between aa 110–113, however whether this element is a functional NLS that im-
ports MAEA to the nucleus has not been determined [67]. Conversely, overexpression of
muskelin resulted in cytoplasmic localization of Twa1, ARMC8α and RanBPM [22]. Previous
analyses suggested that the subcellular distribution of muskelin is also modulated by several
domains, a C-terminal domain that restrains it in the cytoplasm and a LisH domain that, con-
trary to that of RanBPM, has nuclear targeting activity [15]. However, the details of the CTLH
complex formation remain unclear and the effect of RanBPM localization on the other mem-
bers of the CTLH complex remains to be elucidated.

In yeast, RanBPM (Gid1) was found to be a crucial component for the architecture of the
Gid complex as any alteration in this protein was found to disrupt the complex [25]. Given the
high conservation of the members of the complex between yeast and mammals, it will be inter-
esting to determine how the RanBPMmutations that affect its subcellular localization influence
the CTLH complex formation and localization.

Supporting Information
S1 Fig. Validation of subcellular localization scoring protocol. A) Cells were fixed 24h after
transfection of the RanBPMmutants indicated and incubated with an HA antibody and then
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with an Alexa Fluor 555 secondary antibody. Nuclei were stained with DAPI. Subcellular local-
ization was quantified with ImageJ as described in materials and methods. Data represent aver-
ages from three separate experiments, each assessing approximately 100 cells. Error bars
represent standard error. Mutant RanBPM constructs versus WT, ���, P<0.001; ��, P<0.01;
�, P<0.05. B) Cells from two clonal derivatives, Hela RanBPM shRNA 2–7 (employed
throughout the study) or Hela RanBPM shRNA 2–6 were fixed 24h after transfection of the
RanBPMmutants indicated and incubated with an HA antibody and then with an Alexa Fluor
555 secondary antibody. Nuclei were stained with DAPI. Subcellular localization was scored as
either, N>C (nuclear greater than cytoplasmic), N = C (nuclear equal to cytoplasmic), or C>N
(cytoplasmic greater than nuclear). Data represent averages from three separate experiments,
each assessing approximately 100 cells. Error bars represent SD. Statistical analysis was per-
formed to compare RanBPM shRNA clone 2–7 versus RanBPM shRNA clone 2–6 for each
RanBPMmutant construct.
(PDF)

S2 Fig. Effect of short LMB treatment on RanBPM nuclear export. A)Hela cells treated with
EtOH or 20nM LMB were fixed 3h after treatment. Cells were processed for immunostaining
with antibodies to RanBPM and cyclin B1 and nuclei stained with DAPI. At least 100 cells were
scored as N>C (nuclear greater than cytoplasmic), N = C (nuclear equal to cytoplasmic), or
C>N (cytoplasmic greater than nuclear). Data represent averages from three separate ex-
periments. Error bars represent SD. B) RanBPM shRNA Hela cells transfected with pCMV-
HA-WT-RanBPM were incubated O/N and treated with EtOH or 20nM LMB for 3h. Cells
were analyzed as described above. Scale bar: 10μm.
(PDF)

S3 Fig. Mutations of N-terminal USP andWWmotifs do not affect RanBPM expression.
A) Amino acid sequence and position of the USP andWW domains in RanBPM. Mutations
are indicated to the right. The predicted motifs are underlined and mutations are marked in
red and deletions are represented by a dash (-). USP7 1Δ and 2Δmutant is comprised of both
1Δ and 2Δmutations. B)Whole cell extracts were prepared from RanBPM shRNA Hela cells
transfected with pCMV-HA-RanBPMmutant constructs 24h after transfection. An HA anti-
body was used to detect HA-RanBPM and β-actin was used as a loading control. Western blots
show expression of WT and USP mutant constructs. C) Expression of WT and WWmutant
constructs as described in B.
(PDF)

S4 Fig. Amino acid 1–25 of RanBPM. The sequence of the first 25 amino acids of human
RanBPM is shown.
(PDF)
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