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the optimization problem is given as
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(5.31)

with boundary condition J(x, v,T ) = x�
� . Here, Jt, Jx, Jvi , Jxx, Jvivi , and Jxvi for i = 1, 2 are the

first and second partial derivatives of the function J with respect to t, x, and vi.
The optimal strategy and the associated value function are derived in the next proposition.

Proposition 5.4.1. The solution to the HJB Equation (5.31) is as follows:

J(x, v1, v2, t) =
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�
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(
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)
, (5.32)

where ⌧(t) = T � t, D(⌧), E(⌧), and F(⌧) are given by
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with auxiliary parameters
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The optimal controls are
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(5.36)

The optimal allocations are
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See Appendix D.4 for the complete proof.

In the multivariate 4/2 model, the optimal allocation of S 2 is the same as that in the uni-
variate 4/2 model by Cheng and Escobar (2021). Moreover, there is a term that is proportional
to the optimal allocation of S 2 in the weight of S 1, where the factor � v1+b3

v1+b1
combines the e↵ects

of volatility co-movements and the correlation between assets. More importantly, this term in
asset S 1 completely hedges away the risk from W1 in asset S 2.

In the search for a verification result, the Proposition 5.4.2 next describes conditions for a
real-valued and finite value function. The proof is provided in Appendix D.5.

Proposition 5.4.2. The function J(x, v, t) is a well-defined solution to the HJB Equation (5.31)
if

�
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⌘
+ 2

i > 0, i = 1, 2. (5.38)

To ensure that the optimal control is the unique solution and that its associated value func-
tion solves the optimal problem, a verification result along the lines of Cheng and Escobar
(2021) is provided next.2

Theorem 5.4.3. Consider a function J(x, v, t) : [0,1) ⇥ [0,1)2 ⇥ [0,T ]! R, such that
1) J is real-valued, finite, once continuously di↵erentiable in t and twice continuously di↵eren-
tiable in x and the vector v; and
2) J satisfies Equation (5.31) and its terminal condition, with J(x, v, t) = x�

� h(v, t) for a positive
function h(v, t) = eD(T�t)+E(T�t)v1+F(T�t)v2;
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3.2) While the function F(T � t) in Equation (5.35) must satisfy the following condition:
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4) Both functions E(T � t) and F(T � t) must satisfy the following condition as long as
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2The proof, in the stream of Kraft et al. (2013) (Appendix C) is also entertained, which does not rely on a Lip-
schitz condition for the utility, hence permitting potential extensions to log and Epstein-Zin utilities. Conditions
from both proofs are checked to be satisfied by the values of parameters in numerical analysis.
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Then ⌘⇤i , i = 1, 2 in Equation (5.36) denote the optimal control and J in Equation (5.32) is the
corresponding value function. Hence, ⇡⇤i in Equation (5.37) are the optimal allocations.

See Appendix D.6 for the complete proof.

5.5 Numerical analysis
In this section, we report the implication of our model for investors within EUT for a CRRA
utility.

We first adapt the estimates of the one-dimensional 4/2 model by Cheng and Escobar (2021)
to our two-dimensional setting. The estimation reported in the aforementioned paper, Chapter
2, was conducted based on S&P 500 and VIX data from January 2010 to the end of 2019. Here,
we take key statistics of asset S 1, such as expected returns, expected variances, and expected
volatility of variance, as benchmarks, adjusting parameters for asset S 2 such that similar values
are ensured for the same key statistics of S 2. The parameters are presented in Table 5.1, and
the key statistics are listed in Table 5.2.

More specifically, we first map the parameters for the variance driver v1t from the process
of vt in Cheng and Escobar (2021). To do this, let v1t = a2vt, where v1t is the first variance
driver, while a and vt are from Cheng and Escobar (2021). By Ito’s lemma, it can be shown
that

dv1t = (a2✓ � v1)dt + a�
p

v1tdZ1, (5.42)

which yields the values of the parameters in Equation (5.4): 1 = , ✓1 = a2✓, and �1 = a�.
Then, we find the value of b1 by setting the expected volatility to be the same:

a
p
✓ +

bp
✓
=

p
✓1 +

b1p
✓1
, (5.43)

where vt and v1t are targeted to their mean reversion levels ✓ and ✓1, respectively. Recall,
parameters a and b are the proportions of the Heston component (i.e., a = 0.9051) and the 3/2
component (i.e., b = 0.0023). The mapping results of 1, ✓1, �1, and b1 are reported in Table
5.1. The parameters associated with S 2 are obtained by first setting the variance drivers to the
level of their long-term mean reverting value, vit = ✓i, i = 1, 2, and then ensuring that the key
statistics in Table 5.2 are met.

Now, we can assess the impact of the raw new parameters, � (driver of ⇢sto), b2 (driver ofp
⌃2, volatility of S 2) and b3 (driver of ⇢covo), in the optimal allocations; see Figures 5.1, 5.2,

and 5.3, respectively.
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Table 5.1: Baseline parameters

r T � i ✓i �i ⇢i b1 b2 b3 � vi = ✓i �̄1 �̄2

2% 10 -1 7.3479 0.0269 0.5985 -0.7689 0.00208 0.0015 -0.0039 0.7139 0.0269 3 1.0857

(a) (b)

Figure 5.1: The impact of � on the optimal strategies. Panel (a) shows ⇡1 vs. �. Panel (b) shows ⇡2 vs.
�.

(a) (b)

Figure 5.2: The impact of b2 on the optimal strategies. Panel (a) shows ⇡1 vs. b2. Panel (b) shows ⇡2
vs. b2.
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(a) (b)

Figure 5.3: The impact of b3 on the optimal strategies. Panel (a) shows ⇡1 vs. b3. Panel (b) shows ⇡2
vs. b3.

The figures confirm the significant impact of � and b3 on allocations to the first asset and the
influence of b2 on allocations to both assets. The impact is consistent with findings by Buraschi
et al. (2010). In their paper, the correlation between the asset (⇢sto) and the volatility of assets
(
p
⌃1,
p
⌃2) is related to the matrix M, while volatility co-movements (⇢covo) are connected

to the matrix Q in the Wishart process. Specifically, the matrix M drives the mean reversion
of the variance-covariance matrix, and the matrix Q determines the volatility of the variance-
covariance matrix. That is, all the parameters in the matrix M (Q) participate in explaining the
key statistics

p
⌃2, ⇢sto (⇢covo). This leads to di�culty not only in interpreting each parameter

but also in extracting the pure e↵ect (the combination of all interactions among parameters in
the matrix) of the so-called statistic of interest on optimal allocation.

To extract the pure impacts of ⇢covo, ⇢sto and
p
⌃2 on the optimal allocations, we control

the impacts of excess asset returns, covariances/variances, and volatility of variances on the
optimal strategies by keeping them constant, as per Table 5.2. In particular, if ⇢covo and ⇢sto are
not the examined parameters, then they are set to 0.5.

Table 5.2: Baseline statistics

S 1 S 2

Return (µi) µ1 = r + �̄1(v1 + b1) = 0.1068 µ2 = 0.1
Variance (⌃i) ⌃1 =

⇣p
v1 +

b1p
v1

⌘2
= 0.0312 ⌃2 = 0.04

Volatility of ⌃i (Ai) A1 = (1 + b2
1v1)�1

p
v1 = 0.0981 A2 = 0.1

⇢covo 0.5
⇢sto 0.5

The statistics of interest, ⇢covo and ⇢sto, are closely related to the parameters b2, b3, and �.
Here, by controlling the variance of S 2 (i.e., ⌃2), we can work out the expressions for b2, b3,
and � in terms of ⇢covo, ⇢sto, and ⌃2. That is,
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where the expression of � in Equation (5.48) results from substituting Equation (5.46) into
Equation (5.44); the representation of b2 results from combining Equations (5.46) and (5.48);
the formula for �2 follows from replacing � in Equation (5.47) by Equation (5.48); and the so-
lution of b3 can be obtained from Equation (5.51) by substituting �2, �, and b2 from Equations
(5.50), (5.48), and (5.49).

For a reasonable range of ⇢covo, ⇢sto, the variance of S 2 (⌃2), and volatility of ⌃2 (A2), the
parameters b2, b3, �2, and � can be found as reported by Equations (5.49), (5.51), (5.50), and
(5.48). In this setting, we adjust �̄2 accordingly to ensure that the expected return of asset S 2

also remains constant:
�̄2 =

µ2 � r � �̄1�(✓1 + b3)
✓2 + b2

. (5.52)

Now, we are ready to study the clean impact of the key statistics, namely ⇢covo, ⇢sto, andp
⌃2. This is a first in the literature. Figure 5.4 illustrates the impact of ⇢covo on the optimal allo-

cations with di↵erent levels of volatility of ⌃2, where the examined range of ⇢covo 2 [0.01, 0.9]
is the maximal interval passing all necessary conditions (i.e., the change of measure in Propo-
sition 5.3.1, the technical condition in Proposition 5.4.2, and the verification theorem in Propo-
sition 5.4.3). The figure conveys the little importance of these statistics for allocations, quite
di↵erent to the apparent, misleading importance from Figure 5.3. This can be explained by
the lack of financial derivatives on the portfolio (i.e., the incomplete market setting). In an in-
complete market, there is little control over stochastic covariance risk, rendering key stochastic
covariance parameters devoid of impact on optimal solutions.3

3A complete market study may require di�cult-to-price multi-asset derivatives, so it is left for future studies.
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(a) (b)

Figure 5.4: The impact of changes in ⇢covo on the optimal strategies. Panel (a) shows ⇡1 vs. ⇢covo. Panel
(b) shows ⇡2 vs. ⇢covo.

The significant influence of ⇢sto on optimal allocations can be observed in Figure 5.5, where
the maximal viable range is [0, 0.57] given that all the other parameters follow the baseline
values. Not surprisingly there are important changes in allocation (e.g., threefold with changes
in sign) for di↵erent values of ⇢sto. For comparison purposes, we also include Merton’s optimal
allocation. For a fair comparison, we consider the Merton analog of our multivariate 4/2 model:

dS 1t = S 1t

h
µM

1 dt + �M
1 dW1t

i
,

dS 2t = S 2t

h
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2 dt + �M�M
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i
,

(5.53)
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where ⌃M
2 represents the variance of stock S 2; that is, ⌃M
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2 )2. With the same
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The optimal strategy for the Merton model is computed accordingly, such that
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It can be realized that both strategies recommended by the 4/2 model and the Merton model are
highly sensitive to changes in correlations among assets. Specifically, as correlations among
assets increase, the allocations in both assets shrink drastically in an incomplete market. We
observe that both the 4/2 and Merton strategies o↵set the risk exposures of S 2 from the risk
factor W1 precisely, while the 4/2 strategy takes the risk from volatility co-movements into
account and hence allocates less than the Merton strategy does in S 1. The 4/2 strategy does,
however, allocate slightly more than the Merton strategy because of the hedging demand in S 2.

It should be noted that the 4/2 strategy would bring even more richness to the solution
and di↵erences to existing solutions as variance drivers vi change. This is because the optimal
allocation depends explicitly on the volatility driver. In other words, the figures we have created
assume that the volatility driver at the time of analysis is at its long-term value; if this were not
the case, then we would expect larger di↵erences to the Merton strategy and others.

(a) (b)

Figure 5.5: The impact of the changes in ⇢sto on the optimal strategies. Panel (a) shows ⇡1 vs. ⇢sto.
Panel (b) shows ⇡2 vs. ⇢sto.

Figure 5.6 illustrates the impact of the volatility of S 2 on the optimal allocations, where we
consider the range of

p
⌃2 to be within [0.2, 0.6].

The impact of the risk aversion level, � < 0, on optimal allocations is illustrated in Figure
5.7, where the optimal allocations under the Merton model are provided as a benchmark.

5.6 Conclusion
In this chapter, we developed a multivariate 4/2 model that is flexible enough to capture,
in a more interpretable way, stochastic correlations among assets and among variances (co-
volatility movements). We found closed-form expressions and conditions for well-defined
changes of measure and c.f. and m.g.f. under risk-neutral and historical measures. We stud-
ied an expected utility portfolio optimization choice in an incomplete market setting. The
optimal strategy implied by the multivariate 4/2 model was solved in closed form along with
a verification theorem. The pure impacts of stochastic correlation among assets and among
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(a) (b)

Figure 5.6: The impact of volatility of S 2, i.e.,
p
⌃2, on the optimal strategies. Panel (a) shows ⇡1 vs.p

⌃2. Panel (b) shows ⇡2 vs.
p
⌃2.

(a) (b)

Figure 5.7: The impact of � on the optimal strategies. Panel (a) shows ⇡1 vs. �, and Panel (b) shows ⇡2
vs. � along with the Merton strategy as a benchmark.



100 Chapter 5. Multivariate 4/2 stochastic volatility model

volatilities (co-volatility movements) on the optimal allocations were presented with the con-
trol of expected returns, variances, and volatility of variances. The numerical analysis indicates
that although the new parameters have significant impact on optimality, this does not translate
into a significant impact on co-volatility movements. Moreover, the importance of stochastic
correlation and variances among stocks are confirmed.



Chapter 6

A class of portfolio optimization solvable
problems

This chapter reveals the largest class of stochastic volatility processes solvable in closed form
within expected utility theory for a hyperbolic absolute risk aversion investor. The risky-asset
setting considers a framework outside the seminal work of Liu (2007), and highlights applica-
tions not yet studied in the literature. The work also demonstrates that analytical solutions for
ambiguity-aversion analyses within the framework of Maenhout (2004) are feasible.

In this setting of continuous-time models with potentially incomplete markets, dynamic
programming is one of the main approaches for tackling the implied optimal control problem
associated with an expected utility theory (EUT) setting. Finding the optimal control (e.g., the
optimal proportion allocated to the risky asset) involves solving a partial di↵erential equation
(PDE) that may not be tractable. Although numerical methods have advanced significantly in
the past two decades, closed-form solutions are still desirable and convenient to gain a better
understanding and interpretation of solutions.

This chapter has two objectives. First we aim to provide the most up-to-date review of
solvable models within EUT for a hyperbolic absolute risk-averse (HARA) investor1, many
of which have not yet been implemented in the literature. Second, based on this collection
of solvable cases, we use a simple change-of-control method to reveal a large family of fully
solvable models, opening the door to far more complex and realistic configurations of di↵usion
and drift terms. For the sake of facilitating presentation and readability, we consider one risky
asset with stochastic volatility in an incomplete market. Although extensions to multiple risky
assets, complete markets, and other state variables are viable, they are more di�cult to present
in a granular form2 .

Liu (2007) made the most celebrated attempt at revealing a large family of solvable models
in EUT, presenting the class of exponential-quadratic value functions and its originating mul-
tivariate models (quadratic returns and quadratic processes) for CRRA (constant relative risk
aversion) utilities. The author detailed the functional forms of the drifts and di↵usion terms
of asset prices, state variables (stochastic volatility, or stochastic short rate, or predictors of
stock returns), and the correlation between asset prices and state variables that allows for such

1This also connects to pre-commitment solutions in the realm of Mean-Variance theory.
2In the appendix, section E.2, we provide some insight on multidimensional models
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exponential-quadratic form of the value function. Importantly, the paper was not concerned
with detailing subclasses, leaving the door open to exploring members of such large family in
terms of, for example, verification theorem, conditions for well-defined solutions, or further
extensions in lower dimensions.

This chapter takes advantage of a one-dimensional setting (i.e. one risky asset, and one state
variable) to perform a granular analysis of which specific stochastic volatility models would
be solvable within HARA utilities. We go directly to the required PDE, showing that under
certain conditions there are solvable cases outside the exponential-quadratic family. We then
outline all these cases with the title “base cases”. We go beyond the base cases via a change
of control. This technique originated in the seminal work of Liu and Pan (2003) dealing with
financial derivatives, and it was later used widely, even for ambiguity-averse problems; see
Escobar et al. (2015).

This chapter is organized as follows. Section 6.1 presents the general model for a stock
process and its stochastic volatility. Section 6.2 formulates the optimal portfolio choice prob-
lem in an incomplete market and discusses the changing of control. Then, a list of specific
solvable models (i.e., base cases) and their source paper are presented in Section 6.3.

6.1 The model
Let all the stochastic processes be defined on a complete probability space (⌦,F ,P, {Ft}t2[0,T ]),
where {Ft}t2[0,T ] is a right-continuous information filtration generated by standard Brownian
motions (BMs). Let us assume a general model with one risky asset and a state variable driving
its di↵usion and market price of risk terms:

dS t

S t
= [r + �(vt)G(S t, vt, t)] dt +G(S t, vt, t)dWt, S (0) = S 0 > 0, (6.1)

dvt = m1(vt)dt + m2(vt)dZ1t, v(0) = v0 > 0, (6.2)

where r is the risk-free interest rate; �(vt) is the market price of risk (MPR); G(S t, vt, t) rep-
resents the volatility of the risky asset; and m1(vt), m2(vt) are the drift and volatility of vt

respectively. The correlation between the underlying asset and the state variable is captured
by Wt and Z1t via the parameter ⇢ 2 (�1, 1). For ease of representation, we write dWt =

⇢dZ1t +
p

1 � ⇢2dZ2t, where Z2 is another standard BM, independent of Z1. We assume all
the coe�cients of the SDEs above are progressively measurable with respect to the filtration
{Ft}t2[0,T ].

Assumption 6.1.1. 1. To ensure uniqueness for the SDE (6.1), we assume (see Kraft (2005))
Z T

0

⇣
|�(vt)G(S t, vt, t)| +G2(S t, vt, t)

⌘
dt < 1 a.s. (6.3)

2. For the SDE (6.2), we ensure existence of the solution adapted to the filtration {Ft}t2[0,T ]

by checking the growth condition on its coe�cients. That is,

m2
1(t, x0) + m2

2(t, x0)  K2(1 + x2
0) (6.4)

for x0 2 R, |x0|  N, 0  t  T for arbitrary positive constants N and T for some K > 0.
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3. To ensure uniqueness in Equation (6.2), we need to employ the Yamada–Watanabe con-
dition (Watanabe and Yamada, 1971); see Theorem 4 therein. This is, there exist real-
valued, continuous, positive, and increasing functions f (u) and g(u) defined on [0,C) for
some C > 0, such that:

|m1(t, x0) � m1(t, y0)|  g(|x0 � y0|),
|m2(t, x0) � m2(t, y0)|  f (|x0 � y0|)

(6.5)

for all x0, y0 2 R such that |x0 � y0| < C; where f (0) = g(0) = 0, and f 2(u)u�1, g(u) are
concave, satisfying the relation,

Z

0+
[ f 2(u)u�1 + g(u)]�1du = 1, (6.6)

We consider a portfolio optimization problem in the framework of EUT with HARA utility;
that is, u(x) = (x�F)�

� with x > F and � , 0. This is arguably the largest and most popular family
of utilities among practitioners due to its flexibility in capturing risk preferences. The following
are some interesting special cases of HARA utility, which can be adapted to our methodology:
� = 2 Quadratic utility3, F = 0, � < 1 leads to Power utility (CRRA), and � ! 0, F = 0 to
Log utility.

An investor’s objective is to find an investment strategy that maximizes their utility from
terminal wealth at time T . The portfolio consists of a risky asset, i.e., Equation (6.1), and a
risk-free asset Mt with dynamics

dMt = Mtrdt, (6.7)

where M0 = 1, and r is the constant risk-free interest rate.

6.2 Problem formulation
For a HARA investor with a finite investment horizon, we denote ⇡t as the proportion of wealth
that the investor allocates to the stock, and the remaining portion of their wealth, (1�⇡t), is kept
in the risk-free bank account Mt. The goal of the investor is to find a strategy that maximizes
their utility from terminal wealth; that is,

J(x, v, t) = sup
⇡2U⇡

Ex,v,t[u(XT )], (6.8)

where J(x, v, t) is the value function.
Using a self-financing argument, the wealth Xt of the investor follows the SDE:

dXt

Xt
=


r + ⇡t�(vt)G(S t, vt, t)

�
dt + ⇡tG(S t, vt, t)dWt. (6.9)

As before, we need conditions on ⇡t such that the coe�cients of the SDE above are pro-
gressively measurable with respect to the filtration {Ft}t2[0,T ], and the SDE (6.9) has a unique
solution. These requirements lead to a set of admissible strategies (denoted byU⇡) as defined
next:

3This establishes a connection with the pre-commitment solution within mean-variance theory (MVT), see
Zhou and Li (2000), Theorem 3.1.
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Definition 6.2.1. ⇡ is an admissible strategy if
1) ⇡ is progressively measurable, and
2) For all (x0, v0) 2 R+ ⇥ R+ and t 2 [0, T ], the SDE (6.9) has a pathwise unique solution
{X⇡

t }t2[0,T ] under the risk-neutral measure Q, and

EQ
x0,v0,t0 [u(Xt)] < 1,

where EQ
x,v,t[.] = EQ[. | Xt = x, vt = v] denotes the conditional expectation.

Next, we consider a new control variable  t, such that

 t = ⇡tG(S t, vt, t), (6.10)

where  t satisfies
Z T

0

⇣
| t�(vt))| +  2

t )
⌘

dt < 1 a.s. (6.11)

This last equation ensures that  t is an admissible control satisfying Definition 6.2.1, with the
new set denoted by U. We can write the portfolio optimization problem in terms of the new
control as follows:

J(x, v, t) = sup
⇡2U⇡

Ex,v,t[u(XT )] = sup
 2U

Ex,v,t[u(XT )]. (6.12)

The wealth process with the new control then follows the SDE:

dXt

Xt
=


r +  t�(vt)

�
dt +  tdWt. (6.13)

The wealth under  t looks simpler than in the original process with ⇡t. Moreover, if we solve
the problem in terms of  t then we can produce the solution to the original problem.
The rationale above means we should first find all cases solvable under the simpler wealth rep-
resentation. That is, we should first describe all the functions �(vt),m1(vt),m2(vt) such that  is
solvable in closed form. These will be regarded as “base cases”.

Remark 1. This approach allows for solvability of arguably any di↵usion term G(S t, vt, t).
That is, G(·) could be any well-defined function, finite and nonzero, supported by data.
For instance, if G(S t, vt, t) = S ↵

t (a
p

vt +
bp
vt

), where 0  ↵  1, then a local volatility 4/2
model would be targeted. Here, G could even be a highly non-linear function from the
realm of machine learning.

2. The approach implies the same value function and optimal wealth for infinitely many
functional G’s. However, this is an illusion, as every choice of G would lead to di↵erently
calibrated parameters; for example, the parameters in vt from the multiplicative model
G = S tvt would be di↵erent to those in vt if working with G = vt. Thus, the value
function and optimal wealth would be di↵erent due to the parameters.
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6.3 Portfolio optimization and solvable “base cases”
As explained in the Section 6.2, the investor’s goal is to find a strategy that could maximize
their terminal utility from terminal wealth. That is,

J(x, v, t) = sup
 2U

Ex,v,t[u(XT )]. (6.14)

Based on the principle of dynamic programming, the corresponding Hamilton-Jacobi-Bellman
(HJB) equation satisfies

sup
 

(
Jt +


r +  �(vt)

�
xJx +

1
2

x2 2Jxx + m1(vt)Jv +
1
2

m2
2(vt)Jvv + x ⇢m2(vt)Jxv

)
= 0, (6.15)

where Jt, Jx, Jv, Jxx, Jvv, Jxv are the first and second partial derivatives of the value function J
with respect to t, x, v. The above HJB equation also satisfies the boundary condition J(x, v,T ) =
(x�F)�
� .

Further, we assume a candidate value function of the form

J(x, v, t) =
(x � Fe�r(T�t))�

�
h(v, t), (6.16)

with terminal condition h(v,T ) = 1. Using the first order condition in the maximization prob-
lem leads to a candidate optimal solution of  such that

 ? =
�x⇢m2Jxv � �xJx

x2Jxx

= (x � Fe�r(T�t))
(�⇢m2hv � �h)

x(� � 1)h
.

(6.17)

Substituting  ? back and simplifying leads to a PDE in terms of the helper function h:

ht+

 
r� � 1

2
�

� � 1
�2(vt)

!
h+

 
m1(vt) �

�

� � 1
�(vt)⇢m2(vt)

!
hv+

1
2

m2
2(vt)hvv�

1
2

�

� � 1
⇢2m2

2(vt)
h2

v

h
= 0.

(6.18)
Scholars have tackled the above PDE with the most general ansatz for h as an exponential-
quadratic (see Liu (2007)). That is,

h(v, t) = exp
⇢
A(⌧) + B(⌧)v +

1
2

C(⌧)v2
�
, (6.19)

where ⌧(T ) = T � t, and A(0) = B(0) = C(0) = 0 to ensure the terminal condition h(v,T ) = 1
for all v. Note that G(S t, vt, t) plays no role in the solvability of the PDE, while �,m1,m2 are
critical4.

Liu (2007) was the first to mention that a polynomial with an order higher than 2 cannot help
in solving the PDE, but no proof was provided. Hence, in the next proposition, we conclude
and prove the limitation on the order of the polynomial for the conjectured value function and
the solvability of the portfolio optimization problem.

4Although ⇢ could be made a function of vt, its bounded nature would create high nonlinearity in the PDE,
jeopardizing any solvability.
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Proposition 6.3.1. Consider a HARA investor, who aims at problem (6.12). Assume that the
value function J(x, v, t) is conjectured in the exponential family, such that

J(x, v, t) =
(x � Fe�r(T�t))�

�
h(v, t) =

(x � Fe�r(T�t))�

�
exp

⇢ nX

k=0

Ak(⌧)vk
�
, (6.20)

where ⌧(T ) = T � t, and Ak(0) = 0 for all k = 0, 1, ..., n. The ansatz cannot solve PDE (6.18) if
the highest degree of the polynomial n � 3.

See proof in Appendix E.1.
The exponential-quadratic family for a CRRA setting (F = 0, � < 1) was described by Liu

(2007), leading to a quadratic di↵usion process of the state variable and quadratic returns (see
Definitions 1 and 2 therein). To facilitate the connection, we map the notation between the two
papers for one risky asset and one state variable: N = N1 = 1, ⌘ = 0 or 1; X denotes the state
variable, which is vt in our paper, and P is the return of the risky asset, denoted S in our paper.
For the drift and di↵usion process of the state variable X (see Equations (9)-(11) in the refer-
enced paper), and the drift and di↵usion process of the risky asset S , (Equations (14)-(17)), we
get:

1. ⌘ = 1 implies an OU process for vt (Table 1, column 2) with constant or linear MPR
(Table 1, rows 2 and 4):

µX = k � KX = m1, ⌃
X⌃X> = h0 = m2

2,

(µ � r)(⌃⌃)�1(µ � r) = H0 + 2H1
p

H0X + H2
1 X2 = �2,

⌃X⇢⌃�1(µ � r) = l0 + l1X = ⇢m2�.

(6.21)

2. ⌘ = 0, implies a process for vt slightly richer than a CIR (see Table 1, column 3 for the
CIR, i.e. h0 = 0) with constant and square root MPR (Table 1, rows 2 and 3)5:

µX = k � KX = m1, ⌃
X⌃X> = h0 + h1X = m2

2,

(µ � r)(⌃⌃)�1(µ � r) = c0(h0 + h1X) = �2,

⌃X⇢⌃�1(µ � r) = c1(h0 + h1X) = ⇢m2�.

(6.22)

Interestingly, our approach allows for richer risky asset di↵usion terms, this is, our G can be a
function of the asset itself and time, more flexible than ⌃ in Liu (2007). We also realize that
Equation (9) in the referenced paper violates the Growth condition unless K2 = 0 or ⌘ = 0,
hence we have to limit the drift of the SDE for the state variable to the linear case.
Several exponential-quadratic models have been thoroughly analyzed in the existing literature.
For example, Kraft (2005) solved two base cases related to the Heston model (i.e. G as a 1/2
with v a CIR)6, while Cheng and Escobar (2021) developed the solution for the 4/2 model of
variance (G as a 4/2).

5other subcases appear if ⇢ = 0
6Chacko and Viceira (2005) solved a case of an inverse CIR (G as a 3/2) with infinite horizon hence outside

our framework.
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The PDE (6.18) can also be solved outside the family of exponential-a�ne structures, an
example is available for ⇢ = 0 thanks to Lie symmetries for PDEs and the use of confluent
hypergeometric functions (see Cheng and Escobar-Anel (2022)). This case fits into non-linear
MPR within our context. For clarity, Table 6.1 summarizes a collection of solvable cases with
the source of the main result, if no source is provided, it means the case has not yet been studied
in the literature.

Table 6.1: Summary of solvable cases

aaaaaaaaaaa

MPR
�(·)

Stochastic
volatility

(vt)
OU process CIR process

Constant G = vt G = C: CRRA (Merton, 1969)
HARA (Merton, 1975)

G =
p

vt: CRRA (Kraft, 2005)
G = a

p
vt +

bp
vt

G = 1p
vt

Linear in
p

vt G =
p

vt: CRRA (Kraft, 2005)
HARA (Legendre and Togola, 2016)
MVT (Li et al., 2012; Sun and Guo, 2018)

G = a
p

vt +
bp
vt

: CRRA (Cheng and Escobar, 2021)
MVT (Zhang, 2021b)

G = 1p
vt

: MVT (Zhang, 2021a)
Linear in vt

(exponential-quadratic) G = vt

G =
p

vt

G = a
p

vt +
bp
vt

: CRRA (Cheng and Escobar-Anel, 2022)Linear in (a
p

vt +
bp
vt

)
G = 1p

vt



Chapter 7

Conclusion

In this thesis, we study portfolio optimization problems using dynamic control theory for the
4/2 stochastic volatility model proposed by Grasselli (2017). We obtain the (robust) optimal
strategies by solving the associated HJB(I) equations in both an incomplete and a complete
market. Verification theorems are provided to ensure optimality. We perform sensitivity anal-
ysis based on parameters estimated from real-world data. The impact of important parameters
is presented and the wealth-equivalent losses are addressed for typical suboptimal strategies.
Moreover, consumption and a more preferable market price of risk are considered, and the so-
lutions entail confluent hypergeometric functions due to their non-a�ne nature. Furthermore, a
multivariate 4/2 stochastic model is proposed and constructed in the structure of a linear com-
bination of independent 4/2 factors. We consider a portfolio optimization problem including
two risky assets and derive conditional characteristic functions (c.f.) under both the real-world
measure and risk-neutral measure, which can be used for risk management and options pric-
ing. Lastly, the class of stochastic volatility processes solvable in closed form within expected
utility theory for a HARA investor is explored.

With the contributions we have made in this thesis, there are still many limitations we re-
alized from our results. Several extensions can be considered in future research but are not
limited to:
• Numerically, our estimation approach depends on the minimum of variance process,

which leads to biased estimators, moreover, a full multivariate estimation has not been
performed. This limitation calls for improvement of the estimation method in future
research.

• Theoretically, there is no consensus on what form of the market price of risk is the most
appropriate one in the existing literature. Due to its relevance to the solvability and
the analytical representation of the portfolio optimization problem, it is worthwhile to
investigate this problem from solid empirical analysis.

• Explore portfolio solutions for the popular Epstein-Zin recursive utility investor.

• The multivariate model is worth investigating in at least two aspects: 1) a complete
market, which can help to better extract the impact of co-volatility movements on optimal
asset allocations; 2) an estimation for multiple assets.
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Appendix A

Proofs for Chapter 2

A.1 Proof of conditions on change of measure
Proof. The first step is to ensure the change of measure is well-defined and for this we use
Novikov’s condition, i.e., generically for i = 1,2
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From Cheng et al. (2019), in order for this expectation to exist, we need one condition:
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The second step is to ensure the drift of the asset price is equal to the short rate under Q, which
is obviously satisfied here.

The third step ensures the discounted asset price process, eS t = e�rtS t, is a true Q-martingale
and not just a local Q-martingale, therefore it does not concern the change from P to Q but
rather the martingale properties of the asset price under Q (see Grasselli (2017), section 2 for a
similar situation). Recall,
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Note, under Q, we have:

EQ
h
eS t

i

= eS 0EQ

2
666666664exp

8>>><
>>>:

tZ

0

 
a
p

vs +
bp
vs

!
dWQ

s �
1
2

tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

3
777777775

= eS 0EQ

2
666666664exp

8>>><
>>>:
⇢

tZ

0

 
a
p

vs +
bp
vs

!
dZQ

1s +
p

1 � ⇢2

tZ

0

 
a
p

vs +
bp
vs

!
dZQ

2s

9>>>=
>>>;

⇥ exp

8>>><
>>>:
�1

2

tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

3
777777775

= eS 0EQ

2
666666664exp

8>>><
>>>:
⇢

tZ

0

 
a
p

vs +
bp
vs

!
dZQ

1s �
1
2
⇢2

tZ

0

 
a
p

vs +
bp
vs

!2

ds +
1
2
⇢2

tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

⇥ exp

8>>><
>>>:

p
1 � ⇢2

tZ

0

 
a
p

vs +
bp
vs

!
dZQ

2s �
1
2

(1 � ⇢2)
tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

⇥ exp

8>>><
>>>:

1
2

(1 � ⇢2)
tZ

0

 
a
p

vs +
bp
vs

!2

ds � 1
2

tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

3
777777775

= eS 0EQ

2
666666664exp

8>>><
>>>:
⇢

tZ

0

 
a
p

vs +
bp
vs

!
dZQ

1s �
1
2
⇢2

tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

⇥ exp

8>>><
>>>:

p
1 � ⇢2

tZ

0

 
a
p

vs +
bp
vs

!
dZQ

2s �
1
2

(1 � ⇢2)
tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

3
777777775

= eS 0EQ ⇥
⇠1t⇠2t

⇤
= eS 0EQ ⇥

⇠1t
⇤

where we have used dWQ
s = ⇢dZQ

1s +
p

1 � ⇢2dZQ
2s, the independence of ZQ

1s and ZQ
2s (hence of

vs and ZQ
2s); and ⇠1t, ⇠2t defined as follows:

⇠1t = exp

8>>><
>>>:
⇢

tZ

0

 
a
p

vs +
bp
vs

!
dZQ

1s �
1
2
⇢2

tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

⇠2t = exp

8>>><
>>>:

p
1 � ⇢2

tZ

0

 
a
p

vs +
bp
vs

!
dZQ

2s �
1
2

(1 � ⇢2)
tZ

0

 
a
p

vs +
bp
vs

!2

ds

9>>>=
>>>;

⇠1t is an exponential local martingale while ⇠2t is an exponential martingale.
Hence, testing the martingale property for the discounted asset is equivalent to performing

the Feller nonexplosion test for volatility using ⇠1t. Note ⇠1t can be interpreted as a new change
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of measure for the volatility process:
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These together lead to condition (2.12) and conditions (2.13), (2.14).
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A.2 Proof of optimal investment strategy
Proof. Proof of Proposition 2.3.1.

Separate out terms that involves ⇡ in Equation (2.16) and denote it as a function g(⇡):
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That is,
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Substituting ⇡⇤ back into HJB equation, eliminating the “sup”, cancelling, simplifying, and
regrouping, it follows that
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Assume the form of J(x, v, t) is given by J(x, v, t) = x�
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Jt =
x�

�
ht, Jv =

x�

�
hv, Jx = x��1h, Jvv =

x�

�
hvv, Jxv = x��1hv, Jxx = (� � 1)x��2h.

Moreover,

J2
x

Jxx
=

x2(��1)h2

(� � 1)x��2h
=

x�h
� � 1

,
J2

xv

Jxx
=

x2(��1)h2
v

(� � 1)x��2h
=

x�h2
v

(� � 1)h
,

JxJxv

Jxx
=

x2(��1)hhv

(� � 1)x��2h
=

x�hv

� � 1
.
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Furthermore, assume that h(t, v) is of exponentially a�ne form, such that h(t, v) = exp(A(⌧(t))+
B(⌧(t))v) ,with time horizon ⌧(t) = T � t and therefore boundary conditions

h(T, v) = 1 8 v) A(0) = A(⌧(T )) = 0, B(0) = B(⌧(T )) = 0. (A.4)
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Separating out v:
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We end up with a term that is linear in v, but both “coe�cients” are linear di↵erential equations.
Both of them have to be zero, such that

A0 = ✓B + �r, (A.5)
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The Equation (A.5) is a so called Riccati equation with auxiliary parameters ki, i 2 {0, 1, 2},
which can be solved. Let A(⌧), B(⌧) be two time dependent functions satisfying the equations
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where we implicitly assumed that B(⌧) , k1+k3
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, which will be shown later. We
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This leads to the following representation for A(⌧),
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Then, we can obtain h(t, v), i.e., h(t, v) = eA(⌧(t))+B(⌧(t))v. Moreover, J(t, x, v) = x�
� h(t, v) and

its partial derivatives can be obtained. Lastly, substitute these partial derivatives of J into the
optimal strategy ⇡⇤ from Equation (A.2), such that,
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A.3 Proof of option price process
Proof. We have:
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where Ft = (S t, vt)T . Then the option price can be represented as Ot = m(Ft, t). On the one
hand, according to Björk (2009), the option price should satisfy the following PDE,
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where mf f is a matrix of mixed partial derivatives of the function m. On the other hand, by
applying Ito’s Lemma to the function m, we can get
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Rearranging and regrouping the equation by two risk factors, i.e., dZ1t and dZ2t, such that
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) + mv�
p

v
# ⇣
�̄1
p

vdt + dZ1t

⌘

+

"
mS S

p
1 � ⇢2(a

p
v +

bp
v

)
# ⇣
�̄2
p

vdt + dZ2t

⌘
.
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Thus, the dynamic of option price is given as

dOt

Ot
= rdt +

1
Ot

" 0
BBBBBBB@mS⇢S t + mv

�
p

vt⇣
a
p

vt +
bp
vt

⌘

1
CCCCCCCA

|                                   {z                                   }
K1

 
a
p

vt +
bp
vt

! #

|                                                         {z                                                         }
K

⇣
�̄1
p

vtdt + dZ1t

⌘

+
1
Ot

" ⇣
mS

p
1 � ⇢2S t

⌘

|                   {z                   }
L1

 
a
p

vt +
bp
vt

! #

|                                         {z                                         }
L

⇣
�̄2
p

vtdt + dZ2t

⌘
.

Note: Here we factor out the term
⇣
a
p

vt +
bp
vt

⌘
, which is the di↵usion coe�cient from stock

process, together with the Brownian motions Z1t and Z2t that are involved in the stock process.
Also, as the di↵usion part of the stock process and stochastic volatility are of di↵erent forms,
i.e.,

⇣
a
p

vt +
bp
vt

⌘
vs. �

p
vt, we cannot totally separate out vt from K1. But this follows the

same idea as Liu and Pan (2003) and Escobar et al. (2017). ⇤

A.4 Proof of optimal investment strategy in complete market
Proof. Proof of Proposition 2.3.3.

The corresponding HJB equation that the value function should satisfy is given by

0 = J̄t + sup
⌘2R2

(
1
2

x2⌘T V̄2⌘J̄xx + x
⇣
r + ⌘T V̄�̄

⌘
J̄x + x⌘T V̄R̄T�

p
vJ̄xv +

1
2
�2vJ̄vv + (✓ � v)J̄v

)
,

where R̄ = (1, 0) represents the correlation between the di↵usion part of the stochastic volatility
process (i.e., dZ1t) and the di↵usion part of the stock process (i.e., ⇢dZ1t +

p
1 � ⇢2dZ2t). The

function J̄ is the value function denoted in the case of complete market, such as

J̄(x, v, t) =
x�

�
h̄(t, v),

with h̄(T, v) = 1. Similarly to the value function in the incomplete market, J̄x, J̄v, J̄xx, J̄vv, and
J̄xv are first and second partial derivatives of the function J̄, and it should satisfy the boundary
condition J̄(x, v,T ) = x�

� . Plugging J̄(x, v, t) into the HJB equation (2.23), we get

0 = J̄t + (✓ � v)J̄v +
1
2
�2vJ̄vv + sup

⌘

(
ḡ(⌘)

)
,

where ḡ(⌘) = 1
2 x2⌘T V̄2⌘J̄xx + x

⇣
r + ⌘T V̄�̄

⌘
J̄x + x⌘T V̄R̄T�

p
vJ̄xv. With a first order condition on

the function ḡ(⌘) and setting ḡ0(⌘) = 0, we get the candidate of optimal ⌘⇤, this is:

⌘⇤ =
⇣
V̄2

⌘�1
 
�V̄R̄T�

p
v

J̄xv

xJ̄xx
� V̄�̄

J̄x

xJ̄xx

!
.


