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Abstract

In this thesis, two advanced implementations of the internal model principle

(IMP) are presented. The first is the identification of exponentially damped sinu-

soidal (EDS) signals with unknown parameters which are widely used to model audio

signals. This application is developed in discrete time as a signal processing problem.

An IMP based adaptive algorithm is developed for estimating two EDS parameters,

the damping factor and frequency. The stability and convergence of this adaptive

algorithm is analyzed based on a discrete time two time scale averaging theory. Sim-

ulation results demonstrate the identification performance of the proposed algorithm

and verify its stability.

The second advanced implementation of the IMP control theory is the rejection

of disturbances consisting of both predictable and unpredictable components. An

IMP controller is used for rejecting predictable disturbances. But the phase lag

introduced by the IMP controller limits the rejection capability of the wideband

disturbance controller, which is used for attenuating unpredictable disturbance, such

as white noise. A combination of open and closed-loop control strategy is presented.

In closed-loop control mode, both controllers are active. Once the tracking error is

insignificant, the input to the IMP controller is disconnected while its output control

action is maintained. In the open loop control mode, the wideband disturbance

controller is made more aggressive for attenuating white noise. Depending on the

level of the tracking error, the input to the IMP controller is connected intermittently.

iii



Thus the system switches between open and closed-loop control modes.

A state feedback controller is designed as the wideband disturbance controller

in this application. Two types of predictable disturbances are considered, constant

and periodic. For a constant disturbance, an integral controller, the simplest IMP

controller, is used. For a periodic disturbance with unknown frequencies, adaptive

IMP controllers are used to estimate the frequencies before cancelling the distur-

bances. An extended multiple Lyapunov functions (MLF) theorem is developed for

the stability analysis of this intermittent control strategy. Simulation results justify

the optimal rejection performance of this switched control by comparing with two

other traditional controllers.

Keywords: Internal model principle; Exponentially damped sinusoid; Inter-

mittent control; Disturbance cancellation; Switched systems; Multiple Lyapunov

functions
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Chapter 1

Introduction

1.1 Motivation

A classical problem in control theory is that of having the system output asymptoti-

cally tracking prescribed references and/or rejecting disturbances despite uncertainty

in plant and controllers, or so called zero-error output regulation problem [1]. In gen-

eral, disturbance signals can be classified into predictable and unpredictable signals.

The objective of this thesis is to develop control strategies that can achieve zero-error

regulation for certain types of exogenous inputs (reference or disturbance signals).

Predictable signals are also called narrowband signals whose essential spectral

content is limited to regions of narrow bandwidths. A typical class of narrowband

signals are periodic or quasi-periodic signals, which can be seen in many diverse ap-

plications, such as rotating machineries, computer disk drives, and power systems.

These signals are modelled as sinusoidal or sum of sinusoidal signals. The amplitudes

of the sinusoids in these models are constant. A natural extension of these signals

are signals whose amplitudes vary slowly, relative to the signal frequency. However,

in audio signal processing, music or speech signals are normally modelled as sinusoids
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with faster time-varying amplitudes, particularly with exponentially damped ampli-

tudes. This type of sinusoid is called Exponentially Damped Sinusoid (EDS) with

the following representation in discrete time,

s(k) = aeσk sin(ωk + φ), k = 0, 1, 2, · · · (1.1)

where σ is the damping factor, ω is the frequency, a is the initial amplitude, and φ

is the initial phase of the signal. Both frequency ω and damping factor σ can be

time-varying, as long as these variations are small with respect to the value of ω.

Thus the amplitude of an EDS signal does not necessarily decrease as time evolves.

Depending on the value of σ, which could be positive or negative constant or time-

varying, the amplitude evolves differently. The signal form in (1.1) can be seen as a

generalized representation of pure sinusoidal or exponential signals by letting σ or ω

be zero respectively. If both parameters are zero, it is just a constant.

Different from predictable signals, unpredictable signals, such as white noise and

colored noise, have their spectral contents spread over a wide bandwidth. So they are

also called wideband signals. No controller can cancel unknown or uncertain wideband

signals. They can only be attenuated. But a uncertain narrowband signal can be

perfectly rejected or tracked by properly designed controllers. The perfect rejection or

tracking cannot be achieved without a perfect identification of the narrowband signal.

Thus there is a strong connection between zero-error output regulation problem and

signal identification problem.
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When designing controllers to reject a narrowband disturbance, it is required to

have them providing closed-loop stability and output regulation. A plant-controller

combination is called structurally stable if these two requirements are satisfied when

certain system parameters are perturbed [1]. In order to achieve structural stabil-

ity, the plant-controller combination must utilize feedback of the regulated variable,

typically the tracking error between the plant output and the exogenous input, and

incorporate in the feedback path a suitably reduplicated model of the dynamic struc-

ture of the exogenous input signal. This is the main idea of the so called Internal

Model Principle (IMP), proposed by Francis and Wonham in 1976 [1]. The replicated

model of the exogenous input is called an internal model.

One of the simplest IMP controllers is integral controller, which is commonly

used for coping with constant signals. It is well known that zero tracking error can

be achieved using integral control for a constant input. IMP control has also been

applied to cancelling sinusoidal disturbances, due to their wide spread existence in

many applications. In this thesis, the identification of EDS signals with unknown

parameters is studied based on the IMP approach.

When a system is subjected to a disturbance with both predictable and un-

predictable components, an IMP controller and a wideband disturbance controller

can be implemented simultaneously for disturbance rejection. However, the rejection

capability of the wideband disturbance controller will be limited due to the phase lag

introduced by the IMP controller. Furthermore, if the predictable disturbance con-
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tains multiple sinusoidal modes with unknown frequencies, especially if the number

of modes is large, it will be extremely difficult to tune these controllers. In order to

achieve an optimum rejection performance, the regulation variable can be connected

to the IMP controller intermittently. This intermittent control strategy also makes

the tuning feasible for multiple IMP controllers. This control idea was proposed by

Brown et al. in [2, 3]. The intermittent control system can be modelled as a switched

system. The stability analysis of the intermittent control strategy is presented in

this thesis, as well as an extension to the control strategy for dealing with different

predictable signals.

1.2 Literature Review

According to the internal model principle, when a replicated internal model of the

exogenous input is connected in the feedback path, the closed-loop system transfer

function, between the input and the tracking error, has a set of transmission zeros that

includes all the eigenvalues of the autonomous dynamical system which generates all

such input signal. Thus the exogenous input is asymptotically blocked in its transit

through the closed-loop system as a result of pole-zero cancellation. Specifically for

a sinusoidal signal with frequency ωc, it has a pair of critically stable poles at ±jωc

on the imaginary axis in the frequency domain. If the frequency ωc is known, an

accurate internal model with fixed parameters of the sinusoid can be constructed to

achieve zero-error regulation.
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However, in many applications, the sinusoid’s frequency may vary over time or

is completely unknown. An IMP controller with fixed parameters will cause unaccept-

able tracking error. This is the main limitation of the IMP approach which requires

the knowledge of the reference or disturbance signals a priori, so that correspond-

ing internal model can be suitably produced. The accuracy of regulation depends

critically on the fidelity of the internal model. Even errors of less than one percent

in model parameters can lead to unacceptable residue errors. Therefore, accurately

estimating the periodic signal’s frequency becomes the most crucial task in regulation

problems.

1.2.1 Frequency estimation

Fourier transform (FT) is a standard tool for spectral analysis in signal processing

area. Although the FT is valid under extremely general conditions, there are some

crucial restrictions of Fourier analysis: the system must be linear and the data must be

strictly periodic or stationary. Natural phenomena measurements are essentially non-

linear and non-stationary. Alternatives to the FT for non-stationary signals include

the Hilbert transform and wavelet transforms. The Hilbert transform of a signal X(t)

is defined as Y (t) = P
π

∫∞
−∞

X(τ)
t−τ dτ , where P indicates the Cauchy principal value.

The instantaneous frequency (IF) is then defined as ω(t) = d
dt∠

(
X(t) + jY (t)

)
[4].

For narrowband signals, this definition matches our common sense idea of frequency,

however, it is not physically meaningful for non narrowband signals.
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1.2.1.1 Time-frequency representation based methods

One type of the IF estimation techniques is based on the time-frequency represen-

tation. A time-frequency representation (TFR) is a signal representation in which

time and frequency information are displayed jointly on a 2-D plane. This represen-

tation is useful for analyzing signals with both time and frequency variations. The

short-time Fourier transform (STFT) and the Wigner distribution (WD) [5] are two

popular choices for TFR-based IF estimation. The STFT guarantees positivity and

is computationally efficient and very robust against noise. However, it suffers poor

time-frequency resolution. Although the WD has many desirable properties such

as high signal concentration in time-frequency, it suffers large cross terms between

multiple signal components in time-frequency, which makes it difficult to interpret

the WD in many practical applications. In [6], a hidden Markov models (HMMs)

based algorithm is used to track the peak of the STFT. The outputs of the HMM

tracker provides an estimate of the mean signal frequency as a function of time. In

this method, the states of the HMM are chosen to lie in some finite scalar set and

transition probabilities between elements of this set are known. White [7] generalized

the HMM formalism to include the case when the state set may be regarded as the

Cartesian product of a finite number of elementary state sets. This so-called Cartesian

HMM (CHMM) based method can track the IF and phase simultaneously. However,

the CHMM introduces a large number of states, which makes the computational cost

very expensive.



7

Kwok and Jones [8] proposed an adaptive short-time Fourier transform (ASTFT)

based instantaneous frequency estimation that inherits the advantages of the STFT

without most of its drawbacks. This is done by using different windows at each time

instance to achieve a good TFR. The adaptation rule is a generalized likelihood ratio

test based on the STFT. In addition, a post-ASTFT peak tracking algorithm further

improves the performance by following the continuous ridge in the time-frequency

plane and removing the spurious deviations. The algorithm is constructed under

a statistical detection and estimation framework and is an approximate maximum-

likelihood sequence estimator (MLSE) of IF tracks.

1.2.1.2 Filter based methods

Another type of IF estimation techniques are filter based, which includes extended

Kalman filter (EKF) frequency estimation, adaptive notch filter, and adaptive feed-

forward control. The EKF frequency estimator design proceeds from a state space

signal model of the process to be estimated. The signal model dynamics describe a

mechanism for how the process may be evolving. The initial stage in the filter de-

sign process is to perform system identification. Once the system has been identified,

Kalman filter theory endeavours to construct an optimal estimator for the state, given

the noise covariances Q and R, where optimality is measured in terms of covariance.

The EKF is derived by linearizing the signal model about the current predicted state

estimate and then using the Kalman filter on this linearized system to calculate a
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gain matrix. This gain matrix, along with the nonlinear signal model and new signal

measurement, is used to produce the filtered state estimate and then an estimate of

the state at the next time instant. In developing extended Kalman filter based on sig-

nal models, the design compromises are to balance filter divergence and sensitivity to

noise [9]. However, the approach developed in [9] is characterized by a vector of three

design parameters. The tuning of these three parameters still remains a difficult task

due to the unclear cross-relationships between such parameters. Bittanti and Savaresi

[10] proposed a parametrization of the extended Kalman filter frequency tracker that

is characterized by just one parameter. This simplification allows an easier and more

transparent tuning of its tracking behaviour.

Adaptive notch filter (ANF) is a well-studied technique for removing or retriev-

ing sinusoids of unknown frequency from additive noise. Classically, the adaptive

notch filter is parametrized with the polynomial coefficients of its transfer function.

These coefficients are a function of the notching frequencies for which the notch filter

has or nearly has a zero gain. The frequencies are then computed from the estimated

transfer function coefficients. These techniques require stability monitoring, that is,

the model stability has to be checked after each adaptation, which leads to a lot of

additional computation [11]. In [12], the lattice structure was used to overcome the

stability monitoring problem for the general adaptive IIR filtering problem. This

lattice-based adaptive IIR notch filter features independent tuning of the notch fre-

quency and attenuation bandwidth. As opposed to minimizing an output error cost
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function, this algorithm is designed instead to achieve a stable associated differential

equation. This results in a globally convergent unbiased frequency estimator in the

single sinusoidal case, independent of the notch filter bandwidth. Using a second-

order structure in the multiple sinusoids case, unbiased estimation of one of the input

frequencies is achieved by thinning the notch bandwidth. Dragosevic and Stankovic

[13] derived an expression for the notch filter output power to serve as a prerequisite

for finding the asymptotically optimal values of both pole contraction and forgetting

factors. The derived optimality conditions depend on a priori knowledge of the signal

and noise parameters.

Adaptive feedforward control (AFC) is an approach based on the phase-locked

loop technique commonly used in frequency-modulation communication systems. Bod-

son and Douglas [14] presented two algorithms for the rejection of sinusoidal distur-

bances with unknown frequency. The first is an indirect adaptive algorithm where the

frequency of the disturbance is estimated independently of the cancellation scheme by

an adaptive notch filter. The estimate is then used in another adaptive algorithm that

adjusts the magnitude and phase of the input needed to cancel the effect of the distur-

bance. The second is a direct adaptive algorithm in which a single error signal is used

to update the frequency and the magnitude estimates simultaneously. This algorithm

consists in extending the AFC scheme by integrating a phase-locked loop so that dis-

turbances with unknown frequencies can be directly cancelled. However, the gain of

the transfer function of the plant at the identified frequency is explicitly required in
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order to implement this direct adaptive algorithm. Thus this algorithm could be very

complicated to implement in practice where the plants are often complicated. In [15],

a frequency estimator based on a magnitude/phase-locked loop approach is presented.

The estimator has the following features: simultaneous estimation of the frequencies,

magnitudes, and phases of the components of a periodic signal, simplicity in design

and implementation, and fast estimation/tracking of time-varying parameters. This

algorithm is derived from the direct adaptive algorithm presented in [14], with an ad-

justment by adding a proportional term Kf in phase estimation to improve frequency

tracking.

1.2.1.3 Signal subspace based methods

Estimating a set of parameters from measurements of the received signals is a prob-

lem of significance in many signal processing applications, such as direction-of-arrival

(DOA) estimation, system identification, and time series analysis. High-resolution

frequency estimation is important in numerous applications, which include the design

and control of robots and large flexible space structures. There have been several

approaches to such problems including maximum likelihood (ML) method and maxi-

mum entropy (ME) method. Although often successful and widely used, these meth-

ods have certain fundamental limitations due to the use of an incorrect model of the

measurements [16]. The MUSIC (MUltiple SIgnal Classification) algorithm was devel-

oped in the late 1970’s by Schmidt and Bienvenu independently [16]. This algorithm
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first estimates the signal subspace from the array measurements. The parameters of

interest are then estimated from the intersections between the array manifold and

this estimated subspace. However, although the performance advantages of MUSIC

are substantial, they are achieved at a considerable cost in computation and stor-

age. Roy and Kailath [16] proposed a so-called estimation of signal parameters via

rotational invariance techniques (ESPRIT) approach that can be applied to a wide

variety of problems including accurate detection and estimation of sinusoids in noise.

It exploits an underlying rotational invariance among signal subspaces induced by an

array of sensors with a translational invariance structure, and generates estimates that

are asymptotically unbiased and efficient. This approach produces signal parameter

estimates based only on eigen-decompositions. It has important implementational

advantages over MUSIC in direction finding applications, as a result of reduction of

computation and storage costs. ESPRIT is also manifestly more robust with respect

to array imperfection than previous techniques including MUSIC [17].

1.2.1.4 Internal model principle based methods

In order to remove the main limitation of the IMP approach, which requires the

knowledge of the exogenous signals a priori, many approaches have been developed.

One of these developments is the repetitive control scheme presented by Tsao et al.

in [18]. Their period identification algorithm is based on the gradient minimization

of a quadratic energy function. They adopted a sampled data recursive scheme for
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identifying the period of a periodic signal with a resolution finer than the sampling

interval. The fine adaptation of the controller sampling interval makes the identified

signal period an exact integer multiple of the controller sampling interval and renders

a superior tracking performance than that of the conventional fixed sampling interval

repetitive controllers. But their algorithm is often unstable at the starting phase of

identification, a low-pass filter is needed to stabilize their algorithm. Another disad-

vantage of their algorithm is that the speed of the convergence is slow. If the initial

condition and the basic period are not close enough, the adaptation may converge to

a local minimum at an integer multiple of the basic period.

Serrani et al. [19] employed a canonical parametrization of the internal model to

solve the problem of output regulation for nonlinear minimum phase systems driven

by an exosystem with unknown frequencies within known bounds. By adaptively

tuning the internal model, robust regulation with a semi-global domain of convergence

can be obtained. This approach adopts the conventional parallel connection of a

robust stabilizer and an internal model. Ding [20] introduced a parameter-dependent

state observer without following the parallel structure. In the state observer, a new

formulation of internal model is used to generate the contribution of the desired

input compensation to a state variable, which is then used in the control design. As

a result, the state estimates are involved with unknown parameters which appeared

in the internal model. The unknown parameters are dealt with in the control design

by adaptive backstepping technique. With this control design, the stabilisation and
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compensation control efforts are combined together to achieve global stabilisation

and disturbance suppression with respect to state variables. Marino and Tomei [21]

designed an output feedback regulator which tunes its own internal model of a linear

stable exosystem with unknown frequencies and known order. For a stabilizable and

detectable linear system, this output regulator guarantees exponential convergence

of regulation error for any initial condition. In [22], the use of IMP is explored for

the rejection of time-varying of narrowband disturbances. In this control scheme,

the Youla-Kucera parametrization (Q-parametrization) is applied to the controller,

which makes it possible to insert and adjust the internal model in the controller by

adjusting the parameters of the Q polynomial.

1.2.2 Exponentially damped sinusoidal signals

The sinusoidal signal has proven its efficiency in modelling harmonic or quasi-harmonic

signals that present slow time variations. However, such modelling provides poor per-

formance when representing transient signals, typically signal onsets or fadings, which

are, by nature, localized both in time and frequency. It can be beneficial to produce

a signal representation based on waveforms allowing a better modelling of fast time-

varying signals [23]. Exponentially damped sinusoidal (EDS) signal is a more powerful

representation of an audio signal such as speech or music than the basic sinusoidal

signal.

Traditionally, the EDS signal is associated with a high resolution (HR) parame-
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ter estimation method, such as matrix pencil, ESPRIT or Kung’s algorithm [24]. Hua

and Sarkar [25] presented an approach to exploit the structure of a matrix pencil of

the EDS signal for estimating the signal parameters. The SINTRACK method [26]

uses a matrix pencil algorithm for the detection and initial estimation of EDS signal

parameters. An adaptive Least Mean Square (LMS) algorithm is then used to track

the minor fluctuations in parameter values. The use of these two algorithms offers a

good compromise between accuracy and computation cost.

In [27], a subspace-based high resolution method is presented for the estima-

tion and tracking of the EDS signal parameters, the damping factor and frequency.

The estimation of the signal parameters is achieved in two steps: first the damping

factor and frequency are computed using a high resolution method, then they are

used to re-synthesis the signal. A simple re-synthesis method is able to realize the

adaptive tracking of the slow variation of the signal parameters. Gunnarsson and

Gu [28] proposed an analysis and synthesis system for music signals consist of mul-

tiple EDS components. The music signal is first divided into overlapped blocks with

fixed size which are approximately stationary. A least-squares ESPRIT method is

then applied to each data block for estimating associated signal parameters, includ-

ing frequency, damping factor, amplitude and initial phase of each EDS component.

The estimated EDS components are then tracked along the time direction under a

continuity constraint to the components in the music signal.

These subspace decomposition based HR methods are very efficient in the con-
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text of audio modelling. One of their advantages is that they are not bounded by

the Fourier resolution limitation. This advantage turns out to be particularly con-

sistent whenever two spectral components of a complex sound are separated by a

distance smaller than the frequency resolution. Also, when there is frequency sliding,

these methods can be efficient. Another advantage of HR methods is their ability

to provide a good estimation of the parameters over a low number of samples. The

use of very short-time analysis windows is then possible without any important loss

of estimation performance which allows a good time resolution [23]. However, other

than their high computational complexity, these methods do not exploit the harmonic

relations between the frequencies and have a high complexity orders. Consequently,

these methods become ineffective when the length of the analysis segment is large

[24].

Other techniques for EDS parameter estimation include maximum likelihood

(ML) [29], polynomial or linear prediction methods, and higher order statistics based

approach [30]. Kumaresan and Tufts (KT) [31] presented a linear prediction method

by using the principal eigenvectors of the data matrix to separate signal subspace

from noise subspace in the form of singular value decomposition (SVD) and the

backward linear prediction equations of the noisy observations of the EDS signal.

When the analyzed signal is contaminated with a high level noise, this method exhibits

a superior performance. Based on the knowledge of the third or fourth order statistics

of the observed EDS signal, Papadopoulos and Nikias [30] extended this minimum
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norm principal eigenvectors method (KT method) to higher order statistics domains.

The signal parameters are calculated by polynomial rooting of a vector of coefficients,

which is a solution of a linear system of equations involving third or fourth order

statistics.

All methods mentioned above have been proven to be conditionally efficient

in estimating parameters of EDS signals form a batch of measurement data. But

they all suffer from a common disadvantage, i.e., these techniques are all processed

off-line and therefore are not suitable for detecting and tracking the time-varying

parameters such as damping factors and frequencies. Zhang et al. [32] proposed a

novel method of estimating parameters of EDS signals by combining Hankel singular

value decomposition (HSVD) with extended complex Kalman filter (ECKF). The

HSVD algorithm is essentially used to obtain accurate initial state estimates from

a small number of samples. These estimates are subsequently being used by ECKF

which is capable of estimating EDS parameters and effectively tracking parameter

variations.

The EDS signal described in (1.1) is real. It can also be described in terms of

complex exponential signals. Let α = 1
2ae

jφ, and z = eσ+jω, we have

s(k) = αzk − α∗(z∗)k (1.2)

where the asterisk (∗) denotes complex conjugate. Among the methods discussed

above, except the iterative method presented in [24], all other methods use the com-
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plex exponential description (1.2) to estimate the signal parameters. Since the fre-

quency can be identified by taking derivative of the phase of the complex exponentials,

it is easier to deal with complex signals than real signals.

1.2.3 Switched control systems

Many dynamical systems from various areas involve the interactions of discrete events

and continuous dynamics. These dynamical systems are usually called hybrid systems.

The area of hybrid systems is a fascinating discipline bridging control engineering,

computer science, and applied mathematics. A switched system is defined as a dy-

namical system with a finite number of continuous time subsystems and a logical

rule that orchestrates switching between them [33]. The need for switching usually

arises from the fact that no single candidate controller would be capable, by itself, of

guaranteeing stability and good performance when connected with a poorly modelled

process [34]. Switched system have numerous applications in control of mechani-

cal systems, process control, the automotive industry, switching power converters,

aircraft and traffic control, and many other fields [35].

Mathematically, a switched system can be described by a differential equation

of the form

ẋ(t) = fσ(t)(x(t)) (1.3)

where x(t) ∈ R
n is the state. {fσ(t) : σ(t) ∈ P} is a family of sufficiently regular (at
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least locally Lipschitz) functions from R
n to R

n. σ(t) is a piecewise constant function

of time: [0,∞) → P, called a switching signal, with P = {1, 2, · · · , m} being a finite

index set. The function σ(t) has a finite discontinuities (switching times/instances) on

every bounded time interval and takes a constant value on every interval between two

consecutive switching times. Normally σ(t) is assumed to be continuous from the right

everywhere: σ(t) = limτ→t+ σ(τ) for each τ ≥ 0. Functions f1(·), f2(·), · · · , fm(·)

are assumed to satisfy

f1(0) = f2(0) = · · · = fm(0) = 0 (1.4)

A switched system described by (1.3) and (1.4) imply that all its subsystems have

the same state and the same equilibrium point at the origin. If all the individual

subsystems are linear time-invariant, a switched linear system can be obtained,

ẋ(t) = Aσ(t)x(t) (1.5)

A main concern in the switched systems design is the stability issue. There are

examples in [36] showing that unconstrained switching may destabilize a switched

system even if all individual subsystems are stable. It also may be possible to stabilize

a switched system by means of suitably constrained switching even if all individual

subsystems are unstable. Liberzon and Morse [37] formulated three basic problems

in stability and design of switched systems.
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A. Find conditions that guarantee asymptotic stability of the switched system (1.3)

for arbitrary switching signals.

B. Identify those classes of switching signals for which the switched system (1.3)

is asymptotically stable.

C. Construct a switching signal that makes the switched system (1.3) asymptoti-

cally stable.

Instead of just asymptotic stability for each particular switching signal, a stronger

property is desirable, namely, asymptotic or exponential stability that is uniform over

the set of all switching signals. The switched system (1.3) is uniformly asymptotically

stable if there exist a positive constant δ and a class KL function β such that for all

switching signals σ(t) the solutions of (1.3) with ‖x(0)‖ ≤ δ satisfy the inequality

‖x(t)‖ ≤ β(‖x(0)‖, t), ∀t ≥ 0 (1.6)

where ‖x‖ is referred to the Euclidean norm of vector x. If the function β takes the

form β(r, s) = cre−λs for some c, λ > 0, so that

‖x(t)‖ ≤ ce−λt‖x(0)‖, ∀t ≥ 0 (1.7)

then the system (1.3) is called uniformly exponentially stable. The switched system

has stability margin λ.
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Much of the work on Problem A has been focused on the existence of a common

Lyapunov function (CLF). It is well known that the switched system (1.3) is uniformly

asymptotically stable for arbitrary switching signals if all of its subsystems share a

radially unbounded common Lyapunov function. Particularly for the switched linear

system (1.5), its uniform exponential stability under arbitrary switching is equivalent

to the existence of a continuously differentiable common Lyapunov function V (x) for

its constituent systems [38].

Most of the available results for the arbitrary switching problem are related

to the existence of common quadratic Lyapunov functions (CQLF). The function

V (x) = xTPx is a CQLF for the switched linear system (1.5) if (i) P is a positive def-

inite symmetric matrix, and (ii) AT
p P +PAp < 0, (p ∈ P). These two conditions are

equivalent to a system of linear matrix inequalities (LMIs) in P . Thus, determining

whether or not the system (1.5) possess a CQLF amounts to checking the feasibility

of a system of LMIs. Solvers for LMIs are built on convex optimization algorithms

that quickly converge [39]. However, LMI-based methods are not effective when the

number of constituent systems is very large and they cannot be directly applied to

check the existence of a CQLF for an infinite family of systems. An alternative nu-

merical technique based on iterative gradient descent methods is presented in [40],

which can be combined with randomization algorithms and applied to compact, pos-

sibly infinite, family of system matrices Ap. In this case, it has been shown that

the algorithm will converge to a CQLF with probability one, provided such a CQLF
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exists. For some families of linear systems, certain algebraic properties have proven

to be sufficient for the existence of CQLFs. In [37], it is shown that if all matrices in

the set {Ap : p ∈ P} commute or have a solvable Lie algebra, a CQLF exists and the

switched linear system is uniformly exponentially stable under arbitrary switching. A

brief survey on various attempts to derive the algebraic conditions for the existence

of a CQLF is given in [41].

In general, CQLF existence is only a sufficient condition for the exponential

stability of a switched linear system under arbitrary switching. And the common

Lyapunov function may not necessary be quadratic. Some of the research [42, 43, 44,

45] has focused on the existence conditions and construction of common piecewise

linear Lyapunov functions (PLLFs) (also known as polyhedral Lyapunov functions).

A PLLF is of the form

V (x) = max
p∈P

(wT
p x) (1.8)

where wp ∈ R
n, p ∈ P and the linear functions wT

p x are called generators of the

PLLF. However, the computational requirements to establish the common PLLF

existence is a serious bottleneck in practice. The main reason is that a complex

representation (with a large number of parameters) is usually required for a solution

to be found rendering the techniques applicable to low-dimensional problems only

[38].

One necessary condition for the switched system (1.3) being uniformly asymp-
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totically stable under arbitrary switching is that all constituent systems are asymp-

totically stable. There are some switched systems that become unstable under certain

switching signals, even if all their constituent systems are asymptotically stable. In

order to achieve stability, one often needs to restrict the class of admissible switching

signals. This leads us to Problem B.

It is well known that a switched system is stable if all individual subsystems

are stable and the switching is sufficiently slow, so as to allow the transient effects

to dissipate after each switch. A notable approach to formulate this idea is the dwell

time approach. The concept of dwell time is introduced to specify slow switching.

Let S[τd] denote the set of all admissible switching signals with interval between

consecutive switching instances no smaller than a positive constant τd. This constant

τd is called the dwell time. Morse [46] showed that if the switching signal σ(t) of

switched linear system (1.5) “dwells” at each of its values in P long enough for the

norm of the state transition matrix of Ap, p ∈ P to drop to one in value (i.e., at least

τd time units), then Aσ will be exponentially stable with a decay rate no longer than

the smallest of the decay rates of Ap, p ∈ P. If for each p ∈ P, Ap is stable, and

‖eApt‖ ≤ e(ap−λpt), t ≥ 0, (1.9)
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where ap ≥ 0 and λp > 0 are two finite numbers, a lower bound on τd is given by

τd > sup
p∈P

(
ap
λp

)
(1.10)

Dwell time switching requires each constituent system to be active for, at least,

τd units of time. Specifying a dwell time may be too restrictive for some systems. It

is possible that some subsystems may lead to bad transient responses or unacceptable

performances during such time interval. An even worse scenario is finite escape may

occur for some nonlinear subsystems before the next switching is permitted. Thus it

is of interest to relax the concept of dwell time, allowing the possibility of switching

fast when necessary and then compensating for it by switching sufficiently slowly

later. The concept of average dwell time from [34] serves this purpose. The switching

signal set is enlarged by including signals with switching intervals occasionally smaller

than a positive constant τ̄d. But the average of all intervals is no less than τ̄d. For

each switching signal σ and each t ≥ τ ≥ 0, let Nσ(t, τ) denote the number of

discontinuities of σ in the open interval (τ, t). For two given positive numbers τ̄d and

N0, denote S[τ̄d, N0] to be the set of all switching signals for which

Nσ(t, τ) ≤ N0 +
t− τ

τ̄d
(1.11)

The constant τ̄d is called the average dwell time and N0 the chatter bound.

Consider the switched linear system (1.5), given a positive constant λ0 such that
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(Ap + λ0I) is asymptotically stable for each p ∈ P, Hespanha and Morse [34] proved

that for any λ ∈ [0, λ0), there is a finite constant τ̄
∗
d such that system (1.5) is uniformly

exponentially stable over S[τ̄d, N0] with stability margin λ, for any average dwell time

τ̄d ≥ τ̄∗d and any chatter boundN0 > 0. Since each (Ap+λ0I) is asymptotically stable,

there exists a set of symmetric, positive definite matrices {Qp : p ∈ P}, such that

Qp(Ap + λ0I) + (Ap + λ0I)
TQp = −I, p ∈ P (1.12)

Let

µ = sup
i,j∈P

σmax[Qi]

σmin[Qj ]
(1.13)

where σmax[Q] and σmin[Q] denote the largest and smallest singular values of Q

respectively. After choosing a stability margin λ, one will obtain a lower bound of

the average dwell time as

τ̄∗d =
lnµ

2(λ0 − λ)
(1.14)

Similar results for certain classes of switched nonlinear systems were also derived in

[34].

The average dwell time approach discussed above mainly focuses on switched

linear systems consisting of only Hurwitz stable subsystems. However, in practice,
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there are cases where switching to unstable subsystems becomes unavoidable. There-

fore, slow switching is not sufficient for stability. It is also required that the switched

system does not spend too much time in the unstable subsystems. In [47], Hu et

al. showed that if both Hurwitz stable and unstable subsystems exist, the switched

system (1.5) is exponentially stable under the assumption that all subsystem ma-

trices are pairwise commutative. Zhai et al. [48] presented an average dwell time

based method to analyze the stability of switched systems consisting of both Hurwitz

stable and unstable subsystems. If the total activation time ratio between Hurwitz

stable subsystems and unstable subsystems is no less than a specified constant, then

exponential stability of a desired margin is guaranteed. By introducing the concepts

of positive stability margin and negative stability margin for Hurwitz stable and un-

stable subsystems respectively, a lower bound of the activation time ratio can be

computed. Then the average dwell time results from [34] can be applied to prove the

exponential stability.

We can see that in both [34] and [48], a series of Lyapunov equations are solved

for deriving the lower bound of the average dwell time. The solutions of these Lya-

punov equations can be used to construct quadratic Lyapunov functions. Such Lya-

punov functions are closely related to the stability of the switched systems. This leads

us to another approach for stability analysis: multiple Lyapunov functions (MLF) ap-

proach. Rather than using a single common Lyapunov function that applies to all

subsystems at all time, MLF approach requires that each subsystem has its corre-
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sponding Lyapunov or Lyapunov-like function combined with a bounding condition

at each switching time. These multiple functions can be pieced together in some way

to produce a non-traditional global Lyapunov function whose overall energy decreases

to zero along the system state trajectories [49].

Among all the published work about this approach, Branicky presented a very

intuitive version in [50]. Branicky’s basic idea was to first define a family of Lyapunov-

like functions {Vp : p ∈ P} corresponding to all subsystems of system (1.3). Instead

of being defined globally, each Vp(x) is defined over the region where subsystem p is

active. Each function Vp(x) also needs to satisfy two conditions: (i) positive definite,

i.e., Vp(x) > 0, ∀x 6= 0, and Vp(0) = 0; (ii) non-positive definite time derivative,

V̇p(x) ≤ 0. If the values of Vp(x) at the entry points (when subsystem p is switched

on) are monotonically nonincreasing for all p ∈ P, the equilibrium point x = 0 of

system (1.3) is stable in the sense of Lyapunov. Same result can be obtained if Vp(x)

is monotonically nonincreasing at the end points. Zhai et al. [51] complemented this

result by introducing the idea of evaluating “the average value of multiple Lyapunov

functions”. For subsystem p, during each of its active time interval, an average value

of Vp(x) over this active time interval is calculated. A sequence of these average values

corresponding to subsystem p is then used to evaluate the system’s stability.

The requirements of Lyapunov-like function in Branicky’s result is weakened in

[52]. Instead of having non-positive definite derivative, Vp(x) only has to be bounded

by a continuous function which is zero at the origin. Vp(x) is called a weak Lyapunov-
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like function if it is monotonically nonincreasing at the entry points (or end points).

The equilibrium point x = 0 of system (1.3) is stable in the sense of Lyapunov if such

weak Lyapunov-like functions exist for each subsystem.

A more general stability result using MLF approach is proposed in [53]. It is

proved that asymptotic stability is guaranteed by requiring the sequence of values of

the Lyapunov-like function candidate at consecutive switching times to be decreasing

and the Lyapunov-like function between these times is bounded by a continuous

function which is zero at the origin.

Using MLFs to form a single non-traditional Lyapunov function offers much

greater freedom and infinitely more possibilities for demonstrating stability, for con-

structing a non-traditional Lyapunov function, and for achieving the stabilisation

of the switched system [49]. But a critical challenge of applying MLF theory in

practical switched systems is how to construct a proper family of Lyapunov-like

functions. Currently, there is no universal constructive procedure for choosing the

best Lyapunov-like functions. However, if one focuses on the linear cases, piecewise

quadratic Lyapunov-like function could be an attractive candidate, since the stability

conditions can be formulated as LMIs. In [54], the search for continuous piecewise

quadratic Lyapunov-like functions is formulated as a convex optimization problem in

terms of LMIs.

All the above discussed MLF approaches have a common restriction in which

all the candidate Lyapunov-like functions must satisfy the same set of conditions.
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This will limit the flexibility of choosing proper candidate Lyapunov-like functions

for each subsystem accordingly.

The dwell time and MLF techniques not only can be applied for stability anal-

ysis, also give the means of constructing stabilizable switching signals, which provide

solutions to Problem C given earlier.

1.3 Introduction of Algorithms

The work presented in this thesis is mainly based on two control algorithms which

are briefly introduced here.

1.3.1 Adaptive internal model principle control algorithm

Brown and Zhang developed an IMP based adaptive algorithm to identify unknown

frequencies of periodic disturbances in [55, 56]. In this algorithm, a standard IMP

controller is implemented using a state space representation as follows



ẋ1

ẋ2


 =


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where x1, x2 are the two state variables of the controller, the tracking error e(t) is the

input, and u is the output control signal. Kf is a tuning gain of the controller. Since

the signal frequency ωc is unknown, according to the certainty equivalence principle,

its best estimate ω is used in (1.15). A mapping from the controller’s state variables

to the frequency estimation error ε can be derived as

ε = −
Kfex1

x21 + x22
(1.17)

Ideally, this estimation error can be eliminated in one updating step if the exogenous

input is noise-free pure sinusoid. However, this is not a realistic situation. An integral

controller was used for eliminating the error as follows,

dω

dt
= −Kω

Kfex1

x21 + x22
(1.18)

where Kω is the integral gain. Thus the parameter ω in the IMP controller is con-

stantly updated and asymptotically converges to the true frequency ωc.

As an alternative approach, a least-squares method was also introduced in [55]

to estimate the frequency ωc, which is given by

dω

dt
= − a1

(a2t+ 1)
×

Kfex1

x21 + x22
(1.19)

where a1 is chosen as the estimate of the uncertainty in initial knowledge of ωc, and
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a2 = a1ψ with ψ being the variance of (ε/Kf ). This approach is only appropriate

when the disturbance frequency does not drift with time. By using a Kalman filter,

the adaptation gain in (1.19) is replaced by
a1+a3t
a2t+1 , so that the estimated frequency

can be time-varying. With the identification of its frequency, the periodic disturbance

is perfectly rejected and zero-error regulation is achieved. The asymptotic stability of

this adaptive algorithm was proved using singular perturbation theory and averaging

theory.

By placing multiple number of this adaptive IMP controllers in parallel in the

feedback path, a periodic signal consisting of multiple sinusoids with different un-

known frequencies can be identified and cancelled. According to the IMP, each IMP

controller corresponds to a sinusoidal component of the signal. One such application

is the power system frequency estimation. In [56], five adaptive IMP controllers are

constructed to cancel a signal with 1st to 9th odd harmonics. All five controllers share

the same estimated fundamental frequency. In [55], two adaptive IMP controllers are

implemented to identify the frequencies of a signal with two non-harmonic compo-

nents. Compared to the results presented in [57], which uses an adaptive observer

technique to identify multiple frequencies, this adaptive IMP algorithm has much

faster convergence.
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1.3.2 Intermittent cancellation control algorithm

When a system is subjected to both a narrowband disturbance and an additive white

noise, a traditional IMP controller and a wideband disturbance controller can be

used together. Since the IMP controller introduces a phase lag into the system, it

will limit the wideband disturbance controller’s capability of minimizing white noise.

Brown et al. proposed an intermittent cancellation control algorithm in [2, 3]. A

wideband disturbance controller is always active in this control algorithm. An IMP

controller is active for narrowband disturbance rejection only when the tracking error

is significant. The input to the IMP controller is disconnected when the tracking

error is smaller than a predefined threshold as a result of near perfect rejection of

narrowband disturbance. Note that the IMP controller continues to provide an out-

put, which after convergence provides perfect cancellation of the predictable portion

of the disturbance or necessary control action to track the reference. Residual errors

will cause the switching mechanism to infrequently close the switch improving the

performance of the system with each invocation. It can be seen that when the switch

is closed, we have a closed-loop IMP control system, and when the switch is open, the

IMP controller provides an open loop cancellation of the error. Thus this intermit-

tent cancellation control system can be modelled as a switched system which switches

between open loop and closed-loop control. With this switching mechanism, the wide-

band disturbance controller can be made more aggressive for attenuating white noise

while maintaining the stability margins and control actions. When the narrowband
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disturbance is constant, an integral controller is the IMP controller. A traditional

IMP controller is implemented when the narrowband disturbance is a known sinu-

soid. If the narrowband disturbance is a sum of known number of sinusoids, multiple

IMP controllers can be placed in parallel for the rejection.

1.4 Contributions of the Thesis

Most of the internal model principle based approaches in regulation problems focus

on periodic signals. In this thesis, two advanced applications of the internal model

principle control theory are developed.

First, the IMP based adaptive algorithm in [55] is extended to identify EDS

signals with unknown parameters in discrete time. Since the amplitude of an EDS

signal varies exponentially, an additional parameter, damping factor, needs to be

estimated as well as the frequency. In this algorithm, a discrete time state space model

of an EDS signal is derived based on its continuous time version. Estimated signal

parameters are used in this model according to the certainty equivalence principle.

After two mappings between the parameter estimation errors and the states of the

state space model are derived, two integral controllers are implemented to update the

estimated parameters respectively. This control law results in a system output error

that decays exponentially fast with a decay rate independent of the signal’s damping

factor. A discrete time two time scale averaging theory developed in [58] is used to

prove the stability and convergence of the adaptive algorithm. Simulation results
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show that this algorithm is capable of tracking time-varying parameters or a signal

with multiple EDS components. This work is presented in Chapter 2, and has been

published in the Proceedings of the 17th IFAC World Congress [59].

The stability analysis of the intermittent control algorithm presented in [2] was

left as an open issue, which is addressed in Chapter 3 in this thesis. The intermittent

control system is first modelled as a switched system with an open loop control

subsystem and a closed-loop control subsystem. In order to carry out the stability

analysis of the switched system model, an extended multiple Lyapunov functions

approach is developed to relax some constraints imposed by existing results. In this

new approach, not all constituent systems are required to have stable equilibria, as

long as those subsystems satisfy a bounding condition. This allows the subsystems to

not share a common equilibrium point. Thus subsystems will be defined as not stable

if they have unstable equilibrium points or lack the necessary equilibrium point. The

not stable subsystems are also allowed to be active for arbitrary long periods of time.

In addition, this extension allows the system to switch between controllers having

different dimensions or states. The extended MLF theorem and stability analysis of

the intermittent integral control system are presented in Chapter 3, and have been

published in the Proceedings of the 2010 American Control Conference [60, 61]. In

addition, some simulation results are also presented in Chapter 3, which are included

in a submission to the IEEE Transactions on Automatic Control [62].

The second advanced implementation of the internal model principle is to com-
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bine the intermittent control with the adaptive IMP control algorithm introduced

in Section 1.3. This extended switching control strategy can be applied to reject a

periodic disturbance with unknown frequencies. The periodic disturbance can be can-

celled once its frequencies are identified by the adaptive IMP control algorithm. Thus

the input to the adaptive IMP controller is disconnected, and may be reconnected in-

termittently due to the residue error. A switched system model is formulated as well

as a stability theorem. This extended intermittent cancellation control is presented

in Chapter 4. Part of this chapter is submitted to the 24th Canadian Conference on

Electrical and Computer Engineering [63].

1.5 Organization of the Thesis

In Chapter 2, a discrete time version internal model principle based adaptive al-

gorithm is developed for the identification of exponentially damped sinusoids with

unknown parameters. This algorithm has two updating laws, one for the estimated

frequency, and one for the estimated damping factor. By using a two time scale av-

eraging theory, this adaptive algorithm is proved to be locally exponentially stable.

Three MATLAB/Simulink simulation examples are also presented to illustrate the

performance of the algorithm.

In Chapter 3, a combination of open and closed-loop control strategy is pre-

sented for attenuating disturbances with both constant component and white Gaus-

sian noise. The system switches between a state feedback control and an augmented
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state feedback control with integral action. A multiple Lyapunov functions theorem

is developed as an extension to existing approaches. This theorem is then used to

prove the stability of the introduced system which is modelled as a switched system.

A numerical example is presented to demonstrate the performance of this switching

control strategy, as well as comparison with two other traditional controllers.

This switching control strategy is extended in Chapter 4, where the closed-loop

mode controller includes a state feedback controller and an adaptive IMP controller.

Thus this control strategy can be applied to minimize disturbances consist of white

noise and a periodic disturbance with unknown frequencies. A switched system model

is derived as well as a stability theorem. Simulation results are presented to demon-

strate the performance improvement. In Chapter 5, some concluding remarks are

drawn.
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Chapter 2

Identification of Exponentially Damped

Sinusoidal Signals 1

2.1 Introduction

In this chapter, we consider signals composed of a sum of exponentially damped

sinusoids with the following form,

s(k) =
N∑

i=1

si(k) =
N∑

i=1

aie
−σik sin(ωik + ϕi) (2.1)

where the uncertain σi and ωi are the damping factor and the frequency, respectively.

This form can also represent constant-amplitude sinusoids, and constant signals. The

objective is to estimate the parameters σi and ωi. There have been many techniques

developed to deal with predictable signals, such as narrowband or sinusoidal signals,

1. This chapter has been published.
J. Lu and L. J. Brown, “ Identification of Exponentially Damped Sinusoidal Signals”, Proc.
of the 17th IFAC World Congress, Seoul, July 6-11, 2008, pp. 5089-5094.
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since they appear in both signal processing and control applications, including ac-

tive noise control, radar signals, rotating mechanical systems, computer hard disk

drive etc. [1]. These techniques include linear quadratic regulator based modern

control, higher harmonic control [2], adaptive notch filter [3], adaptive feedforward

cancellation (AFC) [4], adaptive observer technique [5].

Another common approach for perfect cancellation of signals is based on a

fundamental control principle, the internal model principle (IMP) [6]. This principle

states that perfect disturbance rejection or reference tracking is achieved when a

model of the dynamic structure of the disturbance or reference signal is incorporated

in a stable feedback loop. The accuracy of regulation depends critically on the fidelity

of the IMP controller. Errors of less than one percent in model coefficients can

lead to unacceptable residual errors. Thus, the ability to adaptively tune the model

parameters, which can be completely specified as damping factors and frequencies, is

of great benefit. Then adaptive IMP controllers can provide exact reproduction of the

predictable part of a signal, and when they do, they provide highly accurate estimates

of the signal parameters. One application of the IMP to periodic disturbance rejection

is repetitive control for time-lag systems and multi-link manipulators [7]. Serrani et

al. [8] also presented a solution to a nonlinear output regulation problem based on

the IMP.

An IMP based adaptive algorithm for canceling quasi-periodic, or narrowband

signals with uncertain frequencies is presented in [1]. This approach begins with a
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state space implementation of the standard IMP controller with the best estimate of

the frequency used. A simple mapping from the states of the controller to the error in

the frequency estimate was developed and this “measurement” of the frequency error

is used to update the parameters of the IMP controller. When this adaptive IMP

controller is placed into a feedback loop, the resulting closed-loop system achieves

perfect frequency estimation of the elements of a sum of sinusoidal signals.

In addition to sinusoidal signals, EDS signals are often used to model audio sig-

nals, such as speech or music, which contain relatively fast variations in amplitude.

The conventional sinusoidal model is thus extended by allowing the amplitude to

evolve exponentially as given by (2.1). A well-known approach to EDS signal param-

eter estimation is the polynomial or linear prediction method as in [9]. Traditionally,

EDS signal model is associated with a high resolution parameter estimation method,

such as matrix pencil, ESPRIT or Kung’s algorithm, [10]. Hua et al. [11] presented

a matrix pencil method as an alternative approach which exploits the structure of a

matrix pencil of the EDS signal si(t), instead of the structure of prediction equations

satisfied by si(t). In [12], the EDS signal parameters, damping factor and frequency,

are estimated using a subspace based matrix pencil high resolution method. The

tracking of the slow variation of the signal parameters is achieved using an adaptive

least mean square algorithm.

Motivated by the IMP based adaptive algorithm in [1], an extended adaptive

algorithm for EDS disturbance cancellation was developed in [13]. The control law
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results in a system output error that decays exponentially fast with a decay rate

independent of σi. This is equivalent to what is meant when integral control is said

to provide perfect set-point tracking. This work was developed only in continuous

time framework and strictly as a control algorithm. Here we develop a discrete time

implementation of this algorithm, and convert the control algorithm into a signal

processing algorithm.

This chapter is organized as follows: In Section 2.2, the motivation, the con-

tinuous time state space representation of the IMP controller, is introduced. Then

the derivation of the IMP based adaptive algorithm for EDS signal identification in

discrete time is presented. The convergence and stability property of the proposed

adaptive algorithm is analyzed based on a discrete time two time scale averaging

theory in Section 2.3. Simulation results are demonstrated in Section 2.4, followed

by some conclusions in Section 2.5.

2.2 Internal Model Principle Based Adaptive

Algorithm

2.2.1 Adaptive algorithm in continuous time

The basic structure of the feedback system is shown in Fig. 2.1, where L is a tuning

function that is properly designed to stabilize the system, H represents the IMP

controller. d is an EDS signal, which is defined as follows,
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+

_
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Figure 2.1: Block diagram of an internal model principle control system

d(t) = ae−σct sin(ωct+ ϕ), σc > 0, ωc > 0, a > 0 (2.2)

where σc, ωc are the damping factor and frequency, respectively. Thus, following IMP

theory, a continuous time state space representation of an IMP controller is



ẋ1

ẋ2


 =



−σc ωc

−ωc −σc






x1

x2


+



0

1


 e (2.3)

uh =

[
K1 K2

]


x1

x2


 (2.4)

where K1, K2 are tuning gains.

If the initial conditions for x1 and x2 are given by x1(0) =
a cosϕ√
K2
1
+K2

2

, x2(0) =

a sinϕ√
K2
1
+K2

2

, then for all t > 0, e = 0 and

x1(t) =
ae−σct

√
K2
1 +K2

2

cos(ωct+ ϕ) (2.5)

x2(t) =
ae−σct

√
K2
1 +K2

2

sin(ωct+ ϕ) (2.6)
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By letting x = |x|∠θ = x1(t) + jx2(t), we can get

|x| = ae−σct
√
K2
1 +K2

2

(2.7)

θ = tan−1
(
x2(t)

x1(t)

)
= ωct+ ϕ (2.8)

where tan−1(·) is defined to have a range given by real numbers such that θ is con-

tinuous in t. Differentiating both sides of (2.7) and (2.8), we have

σc = − 1

|x|
d|x|
dt

(2.9)

and

ωc =
dθ

dt
(2.10)

In practice, the model parameters in (2.3) and (2.4) are approximations, giving

σ̂c = − 1

|x|
d|x|
dt

= −x1ẋ1 + x2ẋ2

x21 + x22
= σ − ex2

x21 + x22
(2.11)

and

ω̂c =
dθ

dt
=

d

dt
tan−1

(
x2(t)

x1(t)

)
=
ẋ1x2 − x1ẋ2

x21 + x22
= ω − ex1

x21 + x22
(2.12)
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Thus the error between σ̂c and σ can be expressed as

σ̃ = − ex2

x21 + x22
(2.13)

Similarly, the error between ω̂c and ω is

ω̃ = − ex1

x21 + x22
(2.14)

(2.11) and (2.12) can be used to estimate the damping factor and frequency of the

EDS signal.

2.2.2 Derivation of the adaptive algorithm in discrete time

The discrete time state space equation of the IMP controller can be converted from

its continuous time counterpart (2.3) and (2.4) as



x1(k + 1)

x2(k + 1)


 = e−σ




cosω sinω

− sinω cosω






x1(k)

x2(k)


+



0

1


 e(k) (2.15)

uh(k) =

[
K1 K2

]


x1(k)

x2(k)


 (2.16)

Therefore at sampling instant t = kTs, continuous time estimation errors (2.13)
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and (2.14) are equal to the following discrete time estimation errors

σ̃(k) = − e(k)x2(k)

x21(k) + x22(k)
(2.17)

ω̃(k) = − e(k)x1(k)

x21(k) + x22(k)
(2.18)

and the estimates of the damping factor and frequency can be updated by using two

integral controllers

σ(k + 1) = σ(k) + εσ̃(k)

= σ(k)− ε
e(k)x2(k)

x21(k) + x22(k)
(2.19)

ω(k + 1) = ω(k) + εKbω̃(k)

= ω(k)− εKb
e(k)x1(k)

x21(k) + x22(k)
(2.20)

where ε is a small adaptation gain, Kb is a constant, and both are positive.

From (2.19) and (2.20), it can be seen that if x1(k) = 0 and x2(k) = 0, the

integral update laws are undefined as both the numerators and denominators are 0.

This problem can be avoided by adding a small constant C in the denominators of

both equations, or setting ε = 0 when |x| is less than a constant.

Fig. 2.2 and Fig. 2.3 show the structure of the IMP based adaptive feedback

system, where AIM means adaptive IMP controller. The function Fk(x, e) is what

have been derived in (2.17) and (2.18). Due to the structure of the IMP controller,



51

L(z)

H(z)

_

d + u e

k kσ εσ+ k bK kω ε ω+

Fk(x,e)

σk+1 ωk+1

kσ kω

[ ]1 2

T
x x=x

uh

AIM
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Figure 2.3: Block diagram of an adaptive IMP feedback control system for multi-EDS
signals

a controller can only achieve identification of a single EDS mode. If the signal d(k)

is composed of multiple EDS modes, multiple adaptive IMP controllers are placed in

parallel.

By incorporating the adaptive update laws (2.19)-(2.20), the IMP controller

parameters, σ and ω, converge to the true values σc and ωc of the EDS signal. If σc

or ωc changes with time, e is not zero and the adaptive algorithm will estimate and

track the changing parameters.
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Note that for a sampled-data system, some knowledge of the EDS signal fre-

quency is necessary to determine the sampling frequency.

2.3 Convergence and Stability Analysis

The stability analysis of the proposed adaptive algorithm in continuous time is pre-

sented in [13]. Singular perturbation theorem [14], and averaging theorem [15], are

used for the analysis. Bai et al. adapted these two theorems in a combined discrete

time version, Theorem 2.2.4. Exponential Stability Theorem for Two-Time Scale Sys-

tem, in [16].

The feedback system is now formulated as a two time scale model. Due to

the limitation of space, we will address only the case where the signal is composed

of a single EDS. The techniques for extending the proof to the multi-EDS case are

shown in [1, 17]. The primary change in the proof is that the equilibria x10 and

x20 defined in equations (2.32) and (2.33) will have terms corresponding to each

mode, and the calculation of the averaging function will be far more complicated.

However, as simple sinusoids, these extra terms will ultimately contribute nothing to

the average, beyond possibly requiring longer averaging times. Detailed calculations

of the averaged function have also been omitted for space reasons. The state space

equations for the adaptive feedback system in Fig. 2.2 are as follows:

xp(k + 1) = Apxp(k) +Bpu(k) (2.21)
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e(k) = Cpxp(k) (2.22)

u(k) = −K1x1(k)−K2x2(k) + d(k) (2.23)

d(k) = ae−σck sin(ωck) + c1 (2.24)

x1(k + 1) = (e−σ cosω)x1(k) + (e−σ sinω)x2(k) (2.25)

x2(k + 1) = −(e−σ sinω)x1(k) + (e−σ cosω)x2(k) + e(k) (2.26)

σ(k + 1) = σ(k)− ε
e(k)x2(k)

x21(k) + x22(k)
(2.27)

ω(k + 1) = ω(k)− εKb
e(k)x1(k)

x21(k) + x22(k)
(2.28)

where (2.21) and (2.22) are a state space representation for L(z). The presence of

the bias c1 in the exogenous signal (2.24) does not affect the convergence property of

the algorithm if L(1) = 0.

Perturbation analysis proceeds by fixing σ(k) = σ, and ω(k) = ω. Under these

conditions, the transfer function of the IMP controller is

H(z) =
K2z +K1e

−σ sinω −K2e
−σ cosω

z2 − 2ze−σ cosω + e−2σ

:=
N(z)

D(z)
.

The tuning function can also be expressed as a rational polynomial form as L(z) =

B(z)
A(z)

. Thus the transfer function from d(k) to e(k) can be given by

Ged(z) =
B(z)D(z)

A(z)D(z) +B(z)N(z)
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= (z2 − 2ze−σ cosω + e−2σ)Q(z)

where Q(z) =
B(z)

A(z)D(z)+B(z)N(z)
. The transfer functions from d(k) to x1(k) and

x2(k) can also be derived as

Gx1d
(z) = (e−σ sinω)Q(z),

Gx2d
(z) = (z − e−σ cosω)Q(z).

Now in order to formulate the two time scale model, we introduce new state

variables, σe, ωe, xpe, x1e, x2e, as follows:

σe(k) = σ(k)− σc (2.29)

ωe(k) = ω(k)− ωc (2.30)

xpe(k) = xp(k)− xp0(k) (2.31)

x1e(k) = x1(k)− a|Q|e−σck−σ(k) sinω(k) sin(ωck + ∠Q)

:= x1(k)− x10(k) (2.32)

x2e(k) = x2(k)− a|Q|e−σck−σ(k)[e−σc sinωc cos(ωck + ∠Q)

+ (e−σc cosωc − e−σ(k) cosω(k)) sin(ωck + ∠Q)
]

:= x2(k)− x20(k) (2.33)

where xp0, x10, x20 are steady state solutions when the slow states are fixed at σ and
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ω. |Q| and ∠Q denote the magnitude and angle of Q(z) evaluated at z = e−σc+jωc,

respectively, and σ = σ(k), ω = ω(k). By letting

x(k) =



σe(k)

ωe(k)


 , y(k) =




xpe(k)

x1e(k)

x2e(k)



,

and substituting these new state variables into the system state equations, we can

derive a two time scale model form

x(k + 1) = x(k) + ε



f1(k,x,y)

f2(k,x,y)


 (2.34)

y(k + 1) = A
(
x(k)

)
y(k) (2.35)

where

f1 = −
Cp
(
xpe(k) + xp0(k)

)(
x2e(k) + x20(k)

)
(
x1e(k) + x10(k)

)2
+
(
x2e(k) + x20(k)

)2 (2.36)

f2 = −KbCp
(
xpe(k) + xp0(k)

)(
x1e(k) + x10(k)

)
(
x1e(k) + x10(k)

)2
+
(
x2e(k) + x20(k)

)2 (2.37)
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and

A =




Ap −K1Bp −K2Bp

0 exp(−σe − σc) cos(ωe + ωc) exp(−σe − σc) sin(ωe + ωc)

Cp − exp(−σe − σc) sin(ωe + ωc) exp(−σe − σc) cos(ωe + ωc)




(2.38)

For the adaptive feedback system (2.34) and (2.35), we have the following stability

and convergence theorem.

Theorem 2.1. Consider the dynamic system (2.34)-(2.35), with input signal given

by (2.24), if the following assumptions are satisfied

1. The tuning function L(z) is not equal to zero when z = e−σc+jωc, and a 6= 0;

2. For all fixed σ and ω, matrix A has eigenvalues less than one, i.e., the system

of Fig. 2.2 with H(z) given by (2.15), (2.16), has poles strictly within the unit

circle;

3. L(1) = 0,

then there exists ε∗, such that for all 0 < ε < ε∗, the origin of (2.34) and (2.35) is

locally exponentially stable. Note assumption (3 ) is not required if d(k) is zero mean,

i.e. c1 = 0.

Proof of this theorem results from direct application of Theorem 2.2.4. in [16].

This has two main requirements. It requires the fast system (2.35) to be stable,
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which is satisfied by assumption (2), and the average of the slow system (2.34) is also

required to be stable. In [13], it is shown that

ωc
2π

2π/ωc∫

0

f1dt = ω − ωc +
ωc
π

× ln
(σ − σc)

2 + ω2

ω2c

and

ωc
2π

2π/ωc∫

0

f2dt = σ − σc +
2ωc
π

tan−1 σ − σc
ω

where x1e, x2e and xpe are zero and time index k has been replaced by a continu-

ous time variable. Stability of the resulting average system is easily shown by Lya-

punov’s first method. The details showing that the average calculated by summation

is equivalent is more complicated and has been omitted. Other technical conditions

of Theorem 2.2.4 can be easily verified.

The two time scale requirement of the theory leads to the idea that ε∗ will be

significantly less than the magnitude of the smallest eigenvalue of (I−A). Practically,

for exponential stability of x(k) to require convergence of σ and ω to their true values

in the presence of noise, ε must be significantly greater than σc. Otherwise, x(k)

will go to zero simply as a result of d(k) going to zero. Thus selection of L(z) and ε

must be done to ensure that a three time scale system is generated in order for the

algorithm to function.
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2.4 Simulations

In this section, the performance of the proposed adaptive algorithm is examined via

simulations. All simulations are created in MATLAB and Simulink environment using

discrete solver with time units normalized such that Ts = 1 unit time. In this case, the

frequency unit rad/s means radians per sample. For example, if a signal frequency

is 60Hz, then the Nyquist frequency is 314Hz, the sampling frequency is 628Hz,

and one sample corresponds to 1.6 milliseconds. Three signals are used to conduct

the simulations: (1) A single EDS signal with step changes on both parameters plus

a constant offset and Gaussian noise; (2) A single EDS signal with time-varying

damping factor plus a constant offset and Gaussian noise; (3) A multi-EDS modes

signal plus a constant offset and Gaussian noise. The tuning function is chosen as

L(z) = (z2− z)/(z2−0.75z+0.01), so that the closed-loop feedback system is stable.

Note that for pure sinusoidal signals, Zhang and Brown [18] presented a performance

analysis for the IMP based adaptive algorithm for uncertain frequency identification.

In this article, the tuning function L(z) is chosen as a function of ω such that the

closed-loop system is a bandpass filter with a notch of width W. By incorporating

this bandpass filter in L(z), formulae are derived for calculating the variance for the

estimated frequency. With a signal to noise ratio given by SNR, the variance of ω

was found to be ε2 ∗ W ∗ ω ∗ SNR where ε is the adaptation gain as in this work.

This analysis can be extended to EDS signals that we are interested in.
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For the first simulation, the EDS signal is given by

d(k) = 3e−0.005k sin(0.5k) + 1 + n(k), 0 ≤ k ≤ 149.

At 150 sample point, its damping factor changes from 0.005 to 0.01 and its frequency

has a step change from 0.5 rad/s to 0.6 rad/s. In order to avoid the discontinuities

in the signal magnitude and phase, the signal is given by

d(k) = 3e−0.01k+0.75 sin(0.6k − 15) + 1 + n(k), 150 ≤ k ≤ 300.

The additive Gaussian noise n(k) has zero mean and variance 0.0001. The initial

conditions are σ(0) = 0.008, ω(0) = 0.2 rad/s. The tuning parameters are K1 =

0.5, K2 = 0.3, ε = 0.05, Kb = 2. The magnitude of the dominant eigenvalue of

matrix A is 0.9062. The algorithm presented here, with an integral action contained

in the tuning function L(z), is not affected by the presence of constant offsets, unlike

other algorithms in the literature. Fig. 2.4 shows the signal and error response plots.

The error converges to zero at 40 samples with a decay rate significantly greater

than the EDS signal’s damping factor. Fig. 2.5 shows that the IMP controller’s

parameters converge to the true values of the EDS signal at about 40 samples. After

the step changes in both parameters, it takes about 50 samples for σ and 25 samples

for ω to converge to their new values. In order to evaluate the performance of the

algorithm, we measure the variances of estimated parameters in a steady state time
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Figure 2.4: Single EDS signal with a parameter step change and error response

period. From sample point 50 to sample point 150, the measurements are var(σ) =

7.7× 10−8, var(ω) = 1.8× 10−7.

For the second simulation, the EDS signal is

d(k) = 3 exp
(∑k

i=0
0.02 sin(0.03i)

)
sin(0.5k) + 1 + n(k),

with its damping factor defined as σc(k) = 0.02 sin(0.03k). The additive Gaus-

sian noise has zero mean and variance 0.0001. The initial conditions are σ(0) =

0.05, ω(0) = 0.2 rad/s. The tuning parameters are K1 = 0.5, K2 = 0.3, ε =

0.12, Kb = 0.83. Since the damping factor is time-varying, in order to minimize the

tracking delay, the integral gain for σ has been increased while keeping the integral

gain for ω unchanged. Fig. 2.6 shows the EDS signal with time-varying damping
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Figure 2.5: Parameter estimation of a single EDS signal with a parameter step change

factor and the error response of the adaptive feedback system. It can be observed

that the error decays to zero at a rate independent of the EDS signal’s damping

factor. The top plot in Fig. 2.7 demonstrates the tracking performance of the adap-

tive algorithm. The estimated damping factor tracks the true value after 40 samples

with 8.5 samples delay. The estimated constant frequency is illustrated in the bot-

tom plot. From sample point 50 to sample point 260, the variances for estimated

parameters are calculated as var(ω) = 1.2 × 10−6 and the variance of σ defined as

var(σ(i)− 0.02 sin(0.03(i− 8.5))) equals 9.3× 10−7.

The signal for the third simulation is

d(k) = d1(k) + d2(k) + 2 + n(k),
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Figure 2.6: Single EDS signal with time-varying damping factor and error response
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Figure 2.7: Parameter estimation of a single EDS signal with time-varying damping
factor
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where

d1(k) = 2e−0.007k sin(0.3k),

d2(k) = 3e−0.012k sin(0.5k)

with initial conditions

σ1(0) = 0.005, ω1(0) = 0.2 rad/s,

σ2(0) = 0.015, ω2(0) = 0.65 rad/s.

The additive Gaussian noise has zero mean and variance 0.0001. The tuning param-

eters are the same for each IMP controller as K1 = 0.1, K2 = 0.1, ε = 0.03, Kb = 1.

The magnitude of the dominant eigenvalue of matrix A is 0.9504. Fig. 2.8 shows

the multi-EDS signal and the error response of the feedback system. As ε has been

reduced, we see slower convergence in Fig. 2.9 and 2.10. This has been seen to be

required in practice and can be inferred from the averaging proof as the averaging

period is now calculated for a sum of sinusoids. From sample point 200 to sample

point 300, the variances for estimated parameters are var(σ1) = 3.8×10−7, var(ω1) =

1.1× 10−7, var(σ2) = 4.6× 10−7, var(ω2) = 1.5× 10−7.
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Figure 2.8: Multi-EDS signal and error response
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Figure 2.9: Parameter estimation for EDS mode d1(k)
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Figure 2.10: Parameter estimation for EDS mode d2(k)

2.5 Conclusions

An IMP based adaptive algorithm is developed in discrete time for identifying expo-

nentially damped sinusoidal signals. Both the damping factor and frequency of the

signal can be estimated using the time-varying state variables of the IMP controller.

This adaptive algorithm can not only identify constant parameters, but also track

slowly time-varying parameters. By constructing a series of IMP controllers in par-

allel, the adaptive feedback system can identify a signal composed of a sum of EDS

components, with each IMP controller corresponding to one EDS component.

In the first simulation, the slow system has almost the same speed as the fast

system. In the third simulation, the fast system is faster by a factor of 2 than the slow

system. From these simulations, our algorithm has shown its functionality despite
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the limitation that the slow system shall be slower than the fast system. In order

to speed up our algorithm, we can place the closed-loop poles closer to the origin

by tuning the function L(z). Also note that the variance measurements are zero for

noise free simulation cases.

The proposed algorithm is shown to be locally exponentially stable, with con-

vergence rates given by the design parameters, independent of the signal strength

and almost independent of the signal parameters. (By almost we refer to the natural

restrictions that convergence cannot be faster than 1/ωc, and must be faster than

σc.) Because of the local nature of the stability result, initial choice for σ and ω can

be critical.



Bibliography

[1] L. J. Brown and Q. Zhang, “Identification of Periodic Signals with Uncertain

Frequency,” IEEE Transactions on Signal Processing, vol. 51, no. 6, pp. 1538–

1545, Jun. 2003.

[2] L. A. Sievers and A. H. von Flotow, “Comparison and Extensions of Control

Methods for Narrow-band Disturbance Rejection,” IEEE Transactions on Signal

Processing, vol. 40, no. 10, pp. 2377–2391, Oct. 1992.

[3] P. A. Regalia, “An Improved Lattice-Based Adaptive IIR Notch Filter,” IEEE

Transactions on Signal Processing, vol. 39, no. 9, pp. 2124–2128, Sep. 1991.

[4] M. Bodson and S. C. Douglas, “Adaptive Algorithms for the Rejection of Sinu-

soidal Disturbances with Unknown Frequency,” Automatica, vol. 33, no. 12, pp.

2213–2221, 1997.

[5] R. Marino and P. Tomei, “Global Estimation of n Unknown Frequencies,” IEEE

Transactions on Automatic Control, vol. 47, no. 8, pp. 1324–1328, Aug. 2002.

[6] B. A. Francis and W. M. Wonham, “The Internal Model Principle of Control

Theory,” Automatica, vol. 12, pp. 457–465, 1976.

[7] T. C. Tsao, Y. X. Qian, and M. Nemani, “Repetitive Control for Asymptotic

Tracking of Periodic Signals with an Unknown Period,” Journal of Dynamic

Systems, Measurement, and Control, vol. 122, pp. 364–369, Jun. 2000.

[8] A. Serrani, A. Isidori, and L. Marconi, “Semiglobal Nonlinear Output Regula-

tion with Adaptive Internal Model,” IEEE Transactions on Automatic Control,

vol. 46, no. 8, pp. 1178–1194, Aug. 2001.

[9] R. Kumaresan and D. W. Tufts, “Estimating the Parameters of Exponentially

Damped Sinusoids and Pole-zero Modeling in Noise,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. ASSP-30, no. 6, pp. 833–840, Dec.

1982.

67



68

[10] R. Boyer and J. Rosier, “Iterative Method for Harmonic and Exponentially

Damped Sinusoidal Models,” in Proceedings of the 5th International Conference

on Digital Audio Effects, Hamburg, Germany, Sep.26-28, 2002, pp. 145–150.

[11] Y. Hua and T. K. Sarkar, “Matrix Pencil Method for Estimating Parameters of

Exponentially Damped/Undamped Sinusoids in Noise,” IEEE Transactions on

Acoustics, Speech, and Signal Processing, vol. 38, no. 5, pp. 814–824, May 1990.

[12] R. Badeau, R. Boyer, and B. David, “EDS Parametric Modeling and Tracking

of Audio Signals,” in Proceedings of the 5th International Conference on Digital

Audio Effects, Hamburg, Germany, Sep.26-28, 2002, pp. 1–6.

[13] J. Lu and L. J. Brown, “Control of Exponentially Damped Sinusoidal Signals,”

in Proceedings of the 2007 American Control Conference, New York City, NY,

Jul.11-13, 2007, pp. 1937–1942.

[14] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Prentice-Hall,

2002.

[15] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence, and Robust-

ness. Englewood Cliffs, NJ: Prentice-Hall, 1989.

[16] E. Bai, L. Fu, and S. S. Sastry, “Averaging Analysis for Discrete Time and

Sampled Data Adaptive Systems,” IEEE Transactions on Circuits and Systems,

vol. 35, no. 2, pp. 137–148, Feb. 1988.

[17] L. J. Brown and Q. Zhang, “Periodic Disturbance Cancellation with Uncertain

Frequency,” Automatica, vol. 40, pp. 631–637, 2004.

[18] Q. Zhang and L. J. Brown, “Noise Analysis of an ALgorithm for Uncertain

Frequency Identification,” IEEE Transactions on Automatic Control, vol. 51,

no. 1, pp. 103–110, Jan. 2006.



69

Chapter 3

Combining Open and Closed-Loop

Control Via Intermittent Integral Control

Action 2

3.1 Introduction

Disturbance attenuation is an important issue in many applications. If the distur-

bance has a predictable component, it can be identified or estimated, and can be

compensated using open loop control. However, it is undesirable to use a purely open

loop controller for compensation of predictable disturbances, since slow changes, such

as drifts could eliminate the compensatory effect. In order to compensate these vari-

ations, conventional internal model principle controllers, such as integral control, are

used. But conventional internal model principle controllers limit the capabilities for

2. A version of this chapter has been submitted for publication.
J. Lu and L. J. Brown, “ Combining Open and Closed-Loop Control Via Intermittent
Integral Control Action”, IEEE Transactions on Automatic Control, September, 2010
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compensating unpredictable disturbances as a result of the phase lag they introduce

at relevant frequencies.

We propose to use internal model principle controllers whose inputs are only

connected intermittently, i.e., they switch between learned open loop and closed-loop

control. The simplest implementation of the intermittent control is the intermittent

integral control [1]. When a constant error is detected, the output error signal is

fed to the integral controller, which then learns the necessary offset to apply to the

control action. When the integral control loop is opened, the learned control action is

maintained. A standard wideband disturbance controller is used in parallel with this

switched controller to achieve desirable performance for unpredictable or non-constant

disturbances. Since the integral controller is not normally present, this wideband

controller can be made more aggressive while maintaining stability margins and/or

control actions at similar levels. Some of the work in this chapter was presented in

[1, 2], where significant performance improvements of this controller versus traditional

PI control were demonstrated.

Due to its control fashion, an intermittent integral control system can be mod-

elled as a switched system, which is defined as a hybrid dynamical system that consists

of a finite number of subsystems and a logical rule that orchestrates switching between

these subsystems [3]. Therefore, stability analysis approaches for switched systems

apply to the intermittent integral control system.

When one designs a switching scheme between multiple subsystems, a main
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concern is that switching between these subsystems does not cause instability. There

are examples [4] demonstrating that the stability of a switched system depends not

only on the dynamics of each subsystem but also on the properties of switching

signals. It is well known that a switched system is stable if all individual subsystems

are stable and the switching is sufficiently slow, so as to allow the transient effects

to dissipate after each switch. A notable approach to formulate this idea is the dwell

time approach. This approach has been studied in [4, 5]. For switched linear systems

of which all subsystems are Hurwitz stable, Morse [6] established the fact that the

switched system is asymptotically stable provided the dwell time is chosen to be larger

than a minimum dwell time τm. This result was also extended in [7] and [8] to relax

some restrictions on each subsystem.

Another well studied approach for stability analysis with constrained switching

is based on multiple Lyapunov functions (MLF) theory. Instead of finding a common

Lyapunov function that applies for all subsystems at all time, MLF approach requires

that each subsystem has its corresponding Lyapunov function combined with a bound-

ing condition at each switching interval. These functions only require non-positive

time derivatives along the state trajectories when corresponding subsystems are ac-

tive. There are several versions of MLF results in the literature. Branicky presented

a very intuitive MLF result in [9]. He showed that when all candidate Lyapunov-like

functions for each of the individual subsystems satisfy the following conditions, a)

each function does not increase when its corresponding subsystem is active, b) each
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function does not increase its value at each entering instant, the switched system

is stable in the sense of Lyapunov. Some other MLF approaches are discussed in

[10, 11, 12].

The intermittent integral control system belongs to a class of switched systems

that switch between controllers in the presence of constant disturbances or reference

signals or other predictable disturbances. Unless all the controllers have the same

gain at zero frequency, they will not share the same equilibrium point preventing

direct application of existing results. We extend the results in [9] by replacing the

constraint that all Lyapunov functions have negative derivatives when their corre-

sponding subsystems are active with a bounding constraint on those that do not

satisfy this stability condition. This allows some of the subsystems to not share a

common equilibrium point or even be unstable. Although the phrase “system sta-

bility” is used sometimes, strictly speaking, it refers to the stability of a system’s

equilibrium point. The origin is defined as a not stable equilibrium point if it is

either unstable or not an equilibrium point. So by expanding the classes of systems

from stable and unstable as in [8] to stable and not stable, we can allow our not stable

systems to be active for arbitrarily long. Further, all the aforementioned MLF ap-

proaches deal with switched systems that have been defined such that all subsystems

have the same states. This unnecessary condition is also dropped to include systems

that switch between controllers having different dimensions or state vectors.

This chapter is organized as follows: First, the intermittent integral control
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system is introduced in Section 3.2. A stability theorem for switched systems based

on MLF is developed in Section 3.3. In Section 3.4, a switched system model of the

intermittent integral control system is established, followed by a stability theorem. A

numerical example of the intermittent integral control and its performance evaluation

is presented in Section 3.5, followed by the conclusion and future work in Section 3.6.

The proofs of the stability theorems are given in the appendices. The work in this

paper is based on preliminary work previously presented at several American Control

Conferences [1, 2, 13, 14].

3.2 Intermittent Integral Control System

The overall intermittent integral control system is shown in Fig. 3.1, where the

plant L(s) generally includes a standard wideband controller, such as a proportional

controller. The integral controller has a time-varying integral gain with K̇i(t) =

−KdKi(t), with Kd and the opening and closing of switch S defined in Table 3.1.

(Note Ki(t) = 0 is equivalent to switch being open, and Ki(t) 6= 0 implies switch is

closed.)

The switching mechanisms of this intermittent integral controller are as follows.

Initially, the controller begins as open loop control (S open, i.e., Ki(t) = 0), and the

integral controller is initialized with a nominal offset xo(t0). The integrated error xe

is monitored. When xe exceeds a threshold xu at time t, the integral controller is

turned on by setting Ki(t) = K∗
i , and xo is simultaneously augmented by xe scaled
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Figure 3.1: Block diagram of an intermittent integral control system

Table 3.1: Definition of parameters for intermittent integral control

If Then
Ki(t) = 0 and Ki(t

+) = K∗
i ,

|xe(t)| > xu xo(t
+) = xo(t) +

K∗

i xe(t)

max(1,Ks(t−tl))

0 < Ki(t) ≤ Kl
i Ki(t

+) = 0, xe(t) = 0, tl = t
|e(t)| ≥ eu Kd = 0
|e(t)| < eu Kd = Kdecay

by the time spent reaching the threshold as given by

Ki(t
+) = K∗

i (3.1)

xo(t
+) = xo(t) +

K∗
i xe(t)

max(1, Ks(t− tl))
(3.2)

where Ks is a scaling factor and the max operation guarantees no division by zero

issues. tl is the last time the integral controller is turned off or the initial time t0.

The integral controller remains active as long as the error e(t) is excessive. Once the

error is not significant, i.e., |e(t)| < eu, the integral control action is removed in a
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smooth manner. This is achieved by setting Kd = Kdecay, the value of the integral

gain Ki(t) decays exponentially. This smooth removal of the integral action prevents

the phenomenon called chattering. When the integral gain becomes insignificant, i.e.,

Ki(t) = Kl
i , then Ki(t) is set to zero. Integral action is thus completely turned off

(S open). xe is reset to 0, and tl is set to t. Table 3.2 gives reasonable methods of

choosing those additional parameters listed in Table 3.1 when the design goals are

fast response and maximum disturbance attenuation.

Table 3.2: Guidelines for parameter selections

K∗
i Can be chosen slightly larger than that for traditional PI control.
eu Closed-loop level of noise and disturbance gives a reasonable value for eu.
xu eu value multiplied by the desired response time.

Kl
i Between 0.1K∗

i and 0.25K∗
i .

Kdecay Can be chosen to satisfy requirements of Theorem 3.2, or 0.5 to 5 times
the reciprocal of the closed-loop rise time.

Ks Can be chosen slightly smaller than the product of K∗
i and the plant

DC gain

In [1], this intermittent integral control strategy has been shown a 10% reduction

in the disturbance response than traditional PI control on plants with infrequent step

changes in set-point or load. It also remains well behaved at those operating points

where PI control system went unstable. By observing its switching mechanisms, this

control system can be modelled as a switched system. Therefore, stability analysis

approaches for switched systems can be applied to this system. However, unlike most

switched systems, the equilibrium points of this switched system cannot be guaranteed
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to be identical or even bounded prior to establishing stability of the system.

3.3 Multiple Lyapunov Functions Based Stability

Theory

For a switched system, its switching signal σ(t) is defined as a piecewise right contin-

uous constant function of time with σ(t) ∈ {1, 2, · · · ,M}, where M is the number of

subsystems. It is assumed that there are finite number of switches in any finite time

interval. Let set {tj} represent the switching times with j being positive integer num-

bers and tj ≤ tj+1. We also define pairs of subsets of {tj} for any q ∈ {1, 2, · · · ,M}

as follows,

{t̄q,k} = {tj |when subsystem q is switched on};

{tq,k} = {tj |when subsystem q is switched off}

with t̄q,k < tq,k. Let S be a switching sequence associated with the switched system.

The interval completion I(S|q) is defined as the completion of the set of time intervals

during which subsystem q is active, i.e., I(S|q) =
⋃
k

[
t̄q,k, tq,k

]
.

For a switched system that has different state vectors for each of the individual

subsystems, its dynamics can be described as

ẋq = fq
(
xq(t)

)
, t ∈ I(S|q) (3.3)
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xq(tj) = Hq,p
(
xp(tj)

)
(3.4)

where xq ∈ R
nq , and q, p ∈ {1, 2, · · · ,M}, (q 6= p), and σ(tj) = p, σ(tj+1) =

q. Functions Hq,p are mappings from R
np to R

nq , and satisfy ‖Hq,p
(
xp(tj)

)
‖ ≤

C1‖xp(tj)‖, with C1 being a constant. From (3.3), it can be seen that each state

vector is only required to be defined on its corresponding interval completion. Also

note that switching instant tj in (3.4) is both the switch-off time of subsystem p and

switch-on time of subsystem q. In this chapter, the norm of a vector x is referring

to the Euclidean norm, ‖x‖ =
√
xTx, and the norm of a matrix A is referring to the

induced norm, ‖A‖ = max‖x‖=1 ‖Ax‖. It is not required that each subsystem in (3.3)

has the same equilibrium point and each state vector needs only to be defined over

its corresponding interval completion.

Since each subsystem has its own state vector, the traditional definition of

Lyapunov stability needs to be modified. For dynamical system (3.3) and (3.4), when

fq(0) = 0, we say the origin of subsystem q is stable in the sense of Lyapunov if for

each ε > 0, there exist C2, δ(ε) > 0, such that if ‖xq(t0)‖ < δ, ‖xσ(t)(t)‖ < C2ε

for all t > t0, and ‖xq(t)‖ < ε for all t ∈ I(S|q), and t > t0. In addition, we can

say the origin is an asymptotically stable equilibrium point for the switched system

if ‖xσ(t)(t)‖ → 0 as t→ ∞, and the origin is stable in the sense of Lyapunov for one

subsystem q.

Since we do not require fq(0) = 0 for all q, it will not be possible to find
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Lyapunov functions for all of the subsystems. But it is still possible to construct

energy-like functions for those not stable subsystems in a similar way as to Lyapunov

functions. These energy-like functions preserve the positive definite and continuously

differentiable properties of Lyapunov functions. But their derivatives along the solu-

tions of the system can be positive. Despite the signs of their derivatives, together

with Lyapunov functions, these energy-like functions are called candidate Lyapunov-

like functions in this paper. Note that the definition of Lyapunov function requires the

origin to be an equilibrium point, but this is not required for candidate Lyapunov-like

functions.

An MLF based theorem for the stability of switched systems:

Theorem 3.1. For a switched system described by (3.3) and (3.4), suppose we have

candidate Lyapunov-like functions Vq for each of the individual subsystems. Let Π be

the set of all switching sequences associated with the system, and Ξ be a subset of Π.

If for each S ∈ Ξ, the following conditions are satisfied,

1. There exists at least one Vi, i ∈ {1, 2, · · · ,M}, such that

(a) V̇i(xi(t)) ≤ 0, for all t ∈ I(S|i);

(b) Vi(xi(t̄i,k+1)) ≤ Vi(xi(t̄i,k)), ∀k, where t̄i,k, t̄i,k+1 are two consecutive

switch-on instants of subsystem i;

2. For all other Vq’s, (q 6= i),
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(a) xq does not have finite escape time, and is guaranteed to enter subsystem

i; or the system can be guaranteed to enter subsystem i prior to entering

subsystem q;

(b) there exists a positive constant m, such that |Vq(xq(t))| ≤ m|Vi(xi(t̄∗i ))|,

for t̄q,j ≤ t ≤ tq,j, where interval [t̄q,j , tq,j ] is a subset of I(S|q) for all j,

and t̄∗i = maxk{t̄i,k|t̄i,k < t̄q,j},

the switched system (3.3), (3.4) is stable in the sense of Lyapunov for all switches in

Ξ. Furthermore, if V̇i(xi(t)) < 0, and one of the following two conditions is satisfied,

• the sequence {Vi(xi(t̄i,k))} converges to zero as k → +∞;

• {t̄i,k} is a finite sequence and the system stays in subsystem i after the last

switching,

the switched system is asymptotically stable.

Proof of this theorem is given in Appendix A.

3.4 Switched System Model and Stability

Theorem

Let

ẋ = Ax+Bxo
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y = Cx (3.5)

be a state space representation of L(s) shown in Fig. 3.1 , where x ∈ R
n. From Fig.

3.1, we have

e = r − y = r − Cx (3.6)

ẋo = Ki(t)e = −Ki(t)Cx+Ki(t)r (3.7)

By letting z = [xo x
T ]T , z ∈ R

n+1, the intermittent integral control system can be

expressed as

ż =



ẋo

ẋ


 =



0 −Ki(t) C

B A






xo

x


+



Ki(t)

0


 r

:= Aσ(t)z +Bσ(t)r (3.8)

y =

[
0 C

]


xo

x


 (3.9)

where Aσ(t) ∈ R
(n+1)×(n+1), Bσ(t) ∈ R

(n+1)×1. The initial condition is given as

z(t0) = z0. As described in (3.2), xo is augmented when the integral controller is

turned on.

By observing the switching mechanisms, this intermittent integral control sys-

tem can be modelled as a switched linear system consisting of two subsystems. The
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switching signal σ(t) is defined as

σ(t) =






1, if Ki(t) ∈ (Kl
i , K

∗
i ]

2, if Ki(t) ∈ [0, Kl
i ]

(3.10)

Matrices Aσ(t), Bσ(t) can be written as follows,

A1(t) =



0 −K∗

i exp(
∫ t
t̄1,k

−Kddτ)C

B A


 , B1(t) =



K∗
i exp(

∫ t
t̄1,k

−Kddτ)

0


 (3.11)

A2(t) =



0 0

B A


 , B2(t) =



0

0


 (3.12)

with t ≥ t̄1,k in (3.11). Pair
(
A1(t), B1(t)

)
describes the closed-loop control subsystem

with integral action, and
(
A2(t), B2(t)

)
describes the open loop control subsystem

without integral action. For the switched linear system (3.8), (3.9), we have the

following lemma from [15],

Lemma: If the time-varying system ż(t) = A1(t)z(t) satisfies the following:

1. The function t→ A1(t) is a matrix-valued piecewise continuous function bounded

on R+, i.e., supt≥0 ‖A1(t)‖ := α1 <∞;

2. There exists a positive constant µ1 such that every point-wise eigenvalue of

A1(t) satisfies Re
[
eigi[A1(t)]

]
≤ −2µ1, ∀i, ∀t ≥ 0;
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3. supt≥0 ‖Ȧ1(t)‖ := β satisfies β ≤ µ21/m
4
1, where m1 = Rd(

Rd
2 + α1)

2/µ31, and

Rd ≥ 2
∣∣eigi[A1(t)]

∣∣, ∀i, ∀t ≥ 0,

the equilibrium of the system is uniformly exponentially stable.

To simplify the analysis, the modification of xo when subsystem 2 is switched

on is ignored by letting Ks be infinity. We then have the following theorem,

Theorem 3.2. If K∗
i , K

l
i , and Kdecay are chosen such that the following assumptions

are satisfied,

1. The equilibrium of subsystem 1 is uniformly exponentially stable, i.e., there

exist finite positive constants γ1, λ1, such that ‖Φ1(t, τ)‖ ≤ γ1e
−λ1(t−τ), where

Φ1(t, τ) is the transition matrix of subsystem 1;

2. There exists a constant µ2 > 0, such that each eigenvalue of A satisfies Re[eigi(A)] ≤

−µ2;

3. The minimum active time of subsystem 1, τ1m, given by τ1m = ln(K∗
i /K

l
i)/Kdecay,

satisfies τ1m ≥ ln
(
γ21γ3

√
α1/λ1

)
/λ1, where γ3 is a positive constant defined in

proof,

the intermittent integral control system (3.8), (3.9) is stable in the sense of Lyapunov.

Note that assumption 1 is true if all conditions of either the Lemma or Theorem

7.4 in [16] are satisfied. The latter requires the existence of a symmetric matrix Q1(t)

with bounding conditions.
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The proof of Theorem 3.2 is given in Appendix B.

In Fig. 3.1, the constant reference/disturbance signal r(t) is assumed to have

infrequent step changes. Let the amplitude of the first step be 1, and the second

step be Rs. The first step occurs at t0 = 0, and the second step occurs at ts. From

assumption 1 of Theorem 3.2, we have ‖z(t)‖ ≤ γ1e
−λ1t, for all t ∈ I(S|1) and

t ∈ [0, ts]. After the second step, this inequality becomes ‖z(t)‖ ≤ Rsγ1e
λ1(t−ts),

for all t ∈ I(S|1) and t ≥ ts. Let t̄1,k be the first switch-on time of subsystem 1

after the second step change of r(t). In order to maintain stability, condition (1.b) of

Theorem 3.1 needs to be modified as: ts is lower bounded such that V1
(
z(t̄1,k+1)

)
≤

V1
(
z(t̄1,k−1)

)
. The lower bound of ts is a function of Rs.

3.5 A Numerical Example

In order to demonstrate the performance of the intermittent integral control system,

a numerical example is given below that shows the benefits achieved relative to simple

feedback control and a state feedback control with an augmented integrator which is

presented in [17]. We consider a simple second order plant given by

ẋp =



−0.8 −1

1 0


 xp +



1

0


 u (3.13)

y =

[
1
3 1

]
xp (3.14)
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Step responses of systems with state feedback control, state feedback control with

augmented integrator, and the intermittent integral control are simulated. In order to

understand both steady state behaviour and transient behaviour, the reference signal

r(t) is chosen to have a step change from 0 to 1 at t = 50, which is the midpoint of

the simulation. A white Gaussian noise n(t) with zero mean and standard deviation

σ = 0.2 is added as the wideband disturbance to the system.

To evaluate the benefits of intermittent integral control, the controller design

is formulated as stochastic optimal linear regulator problems with the presence of

wideband disturbances. The optimization criterion is defined as follows,

J = E
{

lim
tf→∞

tf∫

t0

[y2(t) + uT (t)Ru(t)]dt
}

(3.15)

where R is a weighting matrix.

3.5.1 Controller 1

By implementing linear quadratic regulator (LQR) design method, the optimal state

feedback controller gain is [18]

K = −R−1BT
p P, (3.16)
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where P is the solution to the algebraic Riccati equation (ARE),

AT
p P + PAp − P (BpR

−1BT
p )P + CT

p Cp = 0 (3.17)

and (Ap, Bp, Cp) is a state representation of the plant. A smaller weighting ofR results

in larger absolute values of K, which gives faster response and smaller overshoot. But

the trade-off is a greater variance in the steady state error. With the choice of R = 0.5,

the optimal state feedback gain for controller 1 is K = [−0.7252, −0.7321].

3.5.2 Controller 2

An augmentation method is implemented for the design of an optimal state feedback

controller with integral action. An additional state xo, given as the integral of the

difference between the output and reference signal, is added to the plant. The LQR

design is then applied to the augmented system to obtain an optimal state feedback

gain Ke. Note the third value of this vector is the integral gain K∗
i . For design

purposes only, the optimization criterion is J = E{
∫∞
t0

(y2 + ρx2o +Ru2)dt}, where ρ

is the weighting on the state xo. When the value of ρ is zero, the augmented system

is not observable. As ρ approaches zero, the controller converges to the proportional

controller and step response becomes unacceptably slow. With the choice of ρ = 0.4,

which is explained in next subsection, the optimal state feedback gain for controller

2 is Ke = [−1.2079, −1.2866, 0.8944], and K∗
i = 0.8944.
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3.5.3 Intermittent integral controller

In this example, L(s) in Fig. 3.1 is designed as the combination of the plant and

controller 1 obtained earlier. K∗
i is the gain for the augmented state xo obtained

from controller 2 above. Since the response with controller 1 has standard deviation

σ1 = 0.005 and rise time tr = 1.24, according to the guidelines in Table 3.2, we choose

the parameters of the intermittent integral controller as follows, eu = 4σ1 = 0.02,

xu = eutr = 0.025, Ks = 0.8, Kl
i = 0.1 ∗K∗

i , and Kdecay = 0.25. From hereinafter,

intermittent integral controller is also referred to as controller 3.

In order to verify the assumptions of Theorem 3.2, two positive definite sym-

metric matrices Q1 and Q2, corresponding to the two subsystems, are calculated by

solving corresponding Lyapunov equations. According to Theorem 7.4 in [16], the

existence of these two matrices can guarantee assumptions 1 and 2. For subsystem

1, we obtain Q1 by solving the Lyapunov equation AT
1 (t)Q1 + Q1A1(t) = −I at

t = 0, i.e., Ki(t) = K∗
i . For all Ki(t) ∈ [Kl

i , K
∗
i ], we verified that Q1 satisfies

AT
1 (t)Q1 + Q1A1(t) ≤ −νI, where ν is a positive constant. Since matrix A is time

invariant, Q2 can be simply obtained by solving equation ATQ2 +Q2A = −I.

Q1 =




1.9784 −0.5 −1.1907

−0.5 1.018 0.9035

−1.1907 0.9035 2.3391



, Q2 =



0.5171 0.2887

0.2887 1.3359




The existence of these two matrices justifies the first two assumptions of Theorem
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3.2. Consequently, following parameter values from Appendix B can be calculated,

λ1 = 0.5, γ1 = 2, α1 = 2.7115, µ2 = 0.7626, γ2 = 1.4755, α2 = 2.4104, and

γ3 = 2.9133. Thus the lower bound of the minimum active time of subsystem 1 is

ln(γ21γ3
√
α1/λ1)/λ1 = 6.6018. The minimum active time is τ1m = ln(K∗

i /K
l
i)/Kdecay =

9.2103 > 6.6018. Assumption 3 of Theorem 3.2 is satisfied.

Cost functions are calculated using the following formula for different values of

ρ and shown in Table 3.3,

J =

tf∫

0

(e2(t) + u2(t)R)dt (3.18)

where tf = 100. To distinguish between the transient performance and noise rejection

capability of the approach, the cost is broken into two time periods, 0 ≤ t ≤ 50 where

the cost Js is driven by the additive noise, and 50 < t ≤ 100 where the cost Jt

is primarily a function of the step response. It can be seen that as ρ increases,

for controller 2, Js increases and Jt decreases. To achieve better constant reference

tracking, the integral controller must trade off its wideband disturbance attenuation

performance. For controller 3, since the optimal state feedback gain K, which is

independent of ρ, does not change, Js remains unchanged. However, as ρ increases,

Jt decreases first and increases after reaching its minimum value at ρ = 0.4.

To illustrate the step response performances of the controllers, we choose ρ = 0.4

for the following results. Thus the state feedback gain and integral gain for controller
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Table 3.3: Cost function values of controller 2 & controller 3’s step responses

ρ K∗
i controller 2 controller 3

Js Jt Js Jt
0.2 0.6325 0.00222 0.9738 0.00186 0.7495
0.3 0.7746 0.00230 0.9072 0.00186 0.7055
0.4 0.8944 0.00238 0.8668 0.00186 0.6912
0.6 1.0954 0.00250 0.8177 0.00186 0.6991
0.7 1.1832 0.00256 0.8010 0.00186 0.7121
1.0 1.4142 0.00271 0.7659 0.00186 0.7711

3 are K = [−0.7252, −0.7321], and K∗
i = 0.8944. Fig. 3.2 shows the intermittently

invoked integral control action of controller 3. After the first switch-on, the integral

control is at its full strength with maximum integral gain K∗
i because the tracking

error is excessive. When the tracking error decreases below the threshold eu, the

integral gain starts to decay exponentially. When Ki(t) decays to about 0.86 at

t = 52, the effects of the noise cause |e(t)| to be greater than eu again. According

to the switching mechanisms defined in Table 3.1, Kd = 0 when |e(t)| > eu, which

means Ki(t) stops decaying and keeps its value as it is. At about t = 54, the condition

|e(t)| < eu is satisfied again, Ki(t) continues its decaying and stops decreasing again

between t = 54.4 and t = 56.9. It is then set to zero when the lower bound Kl
i is

reached. This process is also shown in the inset plot. Note there remains a small

residual error in the system that results in the integrator again being invoked at

about t = 67. The integral gain immediately starts to decrease because the tracking

error has already decreased below the threshold. There remains an exponentially

decreasing residual error between the set point and the system output that continues



89

to cause the integral action to be invoked. However, the time between invocations

increases exponentially.
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Figure 3.2: Integral gain of the intermittent integral control system

The top plot in Fig. 3.3 shows the tracking errors of the three controllers’ step

responses. The bottom plot shows the control signals during the transient period.

The steady state control signals of controller 2 and controller 3 are plotted in Fig.

3.4. The variance of controller 3’s control signal is 1.32× 10−5, which is a significant

improvement than that of controller 2 (3.46× 10−5).

Compared with the costs of controller 2 and 3 for ρ = 0.4, the costs of con-

troller 1 is Js = 0.00186, and Jt = 9.3588. As we can see, in steady state, when
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Figure 3.3: Tracking errors and control signals of the three control systems

the parameter eu is larger than the steady state noise, performance equivalent to

optimal control without integral action is achieved. Further the switching mechanism

successfully allows the system to perfectly reject constant disturbances and perfectly

follow infrequent step changes in set points with minimal increase in costs during the

transient.

3.6 Conclusions

A new control strategy that combines the benefits of closed-loop control with open

loop control of predictable disturbances is presented. A tool that can be used to test
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Figure 3.4: Comparison of steady state control signals of controller 2 & controller 3

for stability of the resulting system is also presented. This tool can then be used to

assist in selecting the switching parameters. Due to the intermittent control fashion

of the integral action, a feedback system with the intermittent integral controller

can be modelled as a switched system with two constituent systems. Since the two

subsystems do not share common equilibrium point, and have different state variables,

existing approaches can not be applied to the intermittent integral control system

directly. By extending the MLF result in [9], a new MLF theorem is developed

with relaxations on the constraints on constituent systems. The intermittent integral

control system is proved to be stable in the sense of Lyapunov by applying this new
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MLF theorem. A numerical example shows that the intermittent integral control

system improves the reference tracking and disturbance rejection performance than

traditional state feedback control systems with or without integral control.

This intermittent integral control approach is capable of cancelling constant

disturbances and attenuating unpredictable disturbances. But for systems subject

to narrowband disturbances and unpredictable disturbances, this approach has its

limitations. In [2], the concept of integral control was extended to deal with any

predictable disturbances using Internal Model Principle (IMP) controller. This con-

trol strategy is known as Intermittent Cancellation Control (ICC). However, ICC is

restricted to plants that have infrequent changes in set point or disturbance charac-

teristics, and the period of the predictable disturbance is required a priori. As of our

future work, we will extend the IMP controller in the ICC approach to an adaptive

IMP control algorithm, developed by Brown and Zhang [19]. The adaptive IMP feed-

back loop is invoked to identify and cancel the predictable disturbances. Once the

predictable disturbances are cancelled, the feedback loop is opened creating an open

loop controller. The main challenge will be finding a switching sequence to stabilize

the switched system.

Appendix A Proof of Theorem 3.1

Proof : The proof follows directly the proof of Theorem 2.3 in [9]. We do the proof

for the case of M = 2. It can be easily extended to the case of M > 2.
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Assume V1(x1(t)), V2(x2(t)) are two candidate Lyapunov-like functions cor-

responding to subsystem 1 and 2 respectively. x1 and x2 are corresponding state

vectors. V1(x1(t)) satisfies condition 1 of the theorem, and V2(x2(t)) satisfies condi-

tion 2. There is no requirement on the sign of time derivative of V2(x2(t)). As shown

in Fig. 3.5, V2(x2(t)) may increase or decrease its value during active time intervals.

In this figure, ti’s are switching instants. If V̇2(x2(t)) ≤ 0, this theorem is equivalent

to Theorem 2.3 in [9]. We consider the worst case of V̇2(x2(t)) > 0 in the proof.

At initial time, either subsystem could be active. If subsystem 2 is active initially,

V2(x2(t)) can only reach a finite value when subsystem 1 is switched on in finite time

because of condition (2.b).

mV1(t1)

V1(x1):
V2(x2):

t0     t1       t2           t3        t4         t5       t6       t7      t8       t9

mV1(t3)

mV1(t5)

mV1(t7)

Vq(xq)

t

Figure 3.5: Multiple Lyapunov functions stability

Let Sp(r), B(r) represent the sphere, and ball of Euclidean radius r about the

origin respectively. Let mini(r) denote the minimum value of Vi(xi(t)) on Sp(r).

During time interval [t1, t2], subsystem 1 is active. For any given R1, we can pick a
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r1 ∈ (0, R1), such that in B(r1), we have V1(x1(t)) < min1(R1). This is achievable

via the continuity of V1(x1(t)). Then if x1(t1) starts in B(r1), x1(t) will stay in B(R1)

during this interval.

At t2, subsystem 2 is switched on. Since V2(x2(t)) is upper bounded by

mV1(x1(t1)) from condition (2.a), we let this bound be the minimum value of V2(x2(t))

on a sphere of radius R21, i.e., min2(R21) = mV1(x1(t1)). Then during time interval

[t2, t3], x2(t) will move away from the origin, but is confined within B(R21).

From condition (1.b), we know that V1(x1(t3)) ≤ V1(x1(t1)), which means if

x1(t1) starts in B(r1), x1(t3) starts in B(r1). Then x1(t) stays in B(R1) during

interval [t3, t4]. Therefore, if x1(t1) starts in B(r1), x1(t) will stay in B(R1) during

every time interval when subsystem 1 is active.

Because V1(x1(t3)) ≤ V1(x1(t1)), the upper bounds on V2(x2(t)) also have

the relationship mV1(x1(t3)) ≤ mV1(x1(t1)). If we let min2(R22) = mV1(x1(t3)),

the radius R22 of B(R22) is no larger than R21. Then during time intervals when

subsystem 2 is active, x2(t) is always confined within B(R21).

As depicted in Fig. 3.6, for any given R1, we can always find a r1 and a R21,

such that if x1(t) starts in B(r1), x1(t) stays in B(R1) when subsystem 1 is active,

and x2(t) stays in B(R21) when subsystem 2 is active. This proves that the switched

system is stable in the sense of Lyapunov.

If V̇1(x1(t)) < 0, when subsystem 1 is active, x1(t) will approach its equilibrium

point at the origin as time elapses. First, if the switching sequence {tj} is infinite,
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Figure 3.6: Switched system with different equilibria

and the sequence {V1(x1(t1)), V1(x1(t3)), · · · , V1(x1(t̄1,k)), · · · } converges to zero as

k → ∞, x1(t) approaches the origin. The upper bounds on V2(x2(t)) also converges

to zero under this condition. Thus x2(t) is confined within a ball that is getting

smaller and smaller every time subsystem 2 is active, and eventually, this ball will

shrink to the origin as k → ∞. Therefore, state trajectory x1(t) approaches its

equilibrium points at the origin, and x2(t) approaches the origin as well. Second, if

the sequence {t1, t3, t5, · · · , t̄1,k, · · · } is finite and after the last switching, the system

stays in subsystem 1, which is asymptotically stable, x1(t), which is now the state

of the switched system, will approach its equilibrium point at the origin. In both

circumstances, the switched system’s state trajectories approach the origin. This

proves the asymptotic stability of the switched system.

Appendix B Proof of Theorem 3.2

Proof : By studying the structure of the system matrices (3.11) and (3.12), Theorem

3.1 developed in Section 3.3 can be applied for the stability analysis of system (3.8),
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(3.9). In order to apply Theorem 3.1, each subsystem is analysed so that correspond-

ing candidate Lyapunov-like functions can be constructed.

Analysis of Subsystem 1

It can be seen from (3.11) to (3.12) that subsystem 1 is linear time-varying (LTV),

while subsystem 2 is linear time invariant (LTI). The equilibrium of subsystem 1 is

at the origin.

Since all entries in A1(t) are bounded for all t > 0, there exists α1 > 0 such

that ‖A1(t)‖ ≤ α1. From Theorem 7.8 in [16], matrix

Q1(t) =

∞∫

t

ΦT
1 (σ, t)Φ1(σ, t)dσ (3.19)

satisfies

1

2α1
≤ ‖Q1(t)‖ ≤ γ21

2λ1
(3.20)

We can pick a candidate Lyapunov-like function for subsystem 1 as V1
(
z(t)

)
=

zTQ1(t)z. Then we have

1

2α1
‖z‖2 ≤ V1(z(t)) ≤

γ21
2λ1

‖z‖2 (3.21)
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and

V̇1 = zT [AT
1 (t)Q1(t) + Q1(t)A1(t)]z + zT Q̇1(t)z = −‖z‖2 (3.22)

Analysis of Subsystem 2

The state-space equations of subsystem 2 are

ẋo = 0 (3.23)

ẋ = Ax+Bxo (3.24)

Since xo remains constant when subsystem 2 is active, subsystem 2 can be considered

as a forced linear system with reduced number of states. As expressed in (3.24), the

state xo in subsystem 1 can be seen as a constant input to (3.24). The number of

states for (3.24) is n, while subsystem 1 has (n+ 1) states.

Since Re[eigi(A)] ≤ −µ2 from assumption 2, the state transition matrix of A

satisfies

‖eA(t−τ)‖ ≤ γ2e
−µ2(t−τ) (3.25)
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where constant γ2 can be derived following the Lemma in [20]. For n× 1 matrix

Q2 =

∞∫

0

eA
T τ eAτdτ, (3.26)

it satisfies

1

2α2
≤ ‖Q2‖ ≤ γ22

2µ2
(3.27)

where α2 is an upper bound of ‖A‖. We can pick a candidate Lyapunov-like function

for subsystem 2, V2(x(t)) = xTQ2x. Then we have

1

2α2
‖x(t)‖2 ≤ V2(x(t)) ≤

γ22
2µ2

‖x(t)‖2 (3.28)

The complete solution of (3.24) is

x(t) = eA(t−t̄2,k)x(t̄2,k) +

t∫

t̄2,k

eA(t−σ)Bxodσ (3.29)

with switch-on time at t̄2,k. Therefore, for all t, τ , such that t̄2,k ≤ τ < t ≤ t2,k,



xo(t)

x(t)


 =




1 0

∫ t
τ e

A(t−σ)Bdσ eA(t−τ)






xo(τ)

x(τ)


 := eA2(t−τ)



xo(τ)

x(τ)


 (3.30)

Let w be partitioned as [ws, w
T
v ]

T , where ws is a scalar, and wv is an n × 1 vector.
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We have

eA2(t−τ)w =




ws

∫ t
τ e

A(t−σ)Bdσws + eA(t−τ)wv


 (3.31)

Thus

‖eA2(t−τ)w‖ =

√√√√√w2
s + ‖

t∫

τ

eA(t−σ)Bdσws + eA(t−τ)wv‖2

≤

√√√√√w2
s + 2‖

t∫

τ

eA(t−σ)Bdσ‖2w2
s + 2‖eA(t−τ)wv‖2 (3.32)

Let wvm be the vector that maximizes ‖eA(t−τ)wv‖, i.e.,

‖eA(t−τ)‖ = max
‖wv‖=1

‖eA(t−τ)wv‖ = ‖eA(t−τ)wvm‖ (3.33)

Clearly, vector w that maximizes (3.32) is of the form

w =




α

√
1− α2wvm


 , (0 ≤ α ≤ 1) (3.34)

Since B is known, and from (3.25), we have

‖
t∫

τ

eA(t−σ)Bdσ‖ ≤
t∫

τ

‖eA(t−σ)‖dσ‖B‖
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≤
t∫

τ

γ2e
−µ2(t−σ)dσ‖B‖

=
γ2
µ2

(1− e−µ2(t−τ))‖B‖

≤ γ2
µ2

‖B‖ (3.35)

Inequality (3.32) can be further simplified as

‖eA2(t−τ)w‖ ≤
√(

1 +
2γ22
µ22

‖B‖2
)
α2 + 2(1− α2)γ22 (3.36)

‖eA2(t−τ)w‖ takes maximum value when α = 0 or 1. Thus

‖eA2(t−τ)‖ ≤ max
{√

1 +
2γ22
µ22

‖B‖2,
√
2γ2

}
:= γ3 (3.37)

Analysis of the Overall Control System

For switched system (3.8), its switching signal σ(t) ∈ {1, 2}. {A1, A2} in (3.11)-

(3.12) constitute a family of matrices describing the subsystems. As stated in Section

3.2, initially, the switched system begins with open loop control, i.e., subsystem 2

is active initially. Let N be the number of switches over the interval (t0, t) with set

{t1, t2, · · · , tN} representing the switching times. The switching on and off time sets

for the two subsystems are

{t̄1,k} = {t1, t3, · · · , tN}; {t1,k} = {t2, t4, · · · , tN−1}; (3.38)



101

{t̄2,k} = {t2, t4, · · · , tN−1}; {t2,k} = {t3, t5, · · · , tN}. (3.39)

The interval completions for the two subsystems are

I (S|1) = [t1, t2]
⋃

[t3, t4]
⋃

· · ·
⋃

[tN , t] (3.40)

I (S|2) = [t0, t1]
⋃

[t2, t3]
⋃

· · ·
⋃

[tN−1, tN ] (3.41)

Note that the initial time t0 and final time t are not considered as switching times,

but they are included in the interval completions.

In Subsection 3.6, candidate Lyapunov-like function V1(z(t)) has been shown to

satisfy condition (1.a) of Theorem 3.1 in (3.22). Since there are only two subsystems

and the switching sequence is minimal, for any four consecutive switching times,

tk−1, tk, tk+1, tk+2,

z(tk+2) = eA2(tk+2−tk+1)z(tk+1) = eA2(tk+2−tk+1)Φ1(tk+1, tk)z(tk) (3.42)

where it is assumed that subsystem 1 is switched on at tk and tk+2, and subsystem

2 is switched on at tk−1 and tk+1.

From assumption 1 of Theorem 3.2 and (3.37), we have

‖z(tk+2)‖ ≤ ‖eA2(tk+2−tk+1)‖ · ‖Φ1(tk+1, tk)‖ · ‖z(tk)‖ ≤ γ1γ3e
−λ1τk‖z(tk)‖

(3.43)
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where τk = tk+1 − tk is the active time of subsystem 1 between the two consecutive

switches.

Since subsystem 1 switches to subsystem 2 when Ki(t) decays to its lower bound

Kl
i , the minimum active time for subsystem 1 can be obtained as,

τ1m =
1

Kd
ln
K∗
i

Kl
i

(3.44)

Considering assumption 3 of Theorem 3.2, which can also be written as

γ21γ3√
2λ1

e−λ1τ1m ≤ 1√
2α1

(3.45)

Inequality (3.43) is then equivalent to

γ1√
2λ1

‖z(tk+2)‖ ≤ γ21γ3√
2λ1

e−λ1τ1m‖z(tk)‖ ≤ 1√
2α1

‖z(tk)‖ (3.46)

or

γ21
2λ1

‖z(tk+2)‖2 ≤ 1

2α1
‖z(tk)‖2 (3.47)

Considering the upper and lower bounds on V1(z(t)) in (3.21), we have

V1
(
z(tk+2)

)
≤ γ21

2λ1
‖z(tk+2)‖2 ≤ 1

2α1
‖z(tk)‖2 ≤ V1

(
z(tk)

)
(3.48)
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which means that at tk+2, V1 is no greater than its value last time when subsystem

1 is switched on at tk. Thus condition (1.b) of Theorem 3.1 is verified.

At tk+1,

‖z(tk+1)‖2 = ‖xo(tk+1)‖2 + ‖x(tk+1)‖2 ≥ ‖x(tk+1)‖2 (3.49)

During interval [tk+1, tk+2], subsystem 2 is active, so for all t ∈ [tk+1, tk+2]

‖xo(t)‖ = ‖xo(tk+1)‖

‖x(t)‖ ≤ γ2e
−µ2(t−tk+1)‖x(tk+1)‖

and from (3.28),

V2(x(t)) ≤
γ22
2µ2

‖x(t)‖2 ≤ γ42
2µ2

exp(−2µ2(t− tk+1))‖x(tk+1)‖2 ≤ γ42
2µ2

‖x(tk+1)‖2

(3.50)

From (3.49) and (3.50), we have

V1(z(tk+1)) ≥
1

2α1
‖z(tk+1)‖2 ≥ 1

2α1
‖x(tk+1)‖2 ≥ µ2

α1γ
4
2

V2(x(t)) (3.51)

Since during [tk, tk+1], V̇1 < 0, we have V1(z(tk)) ≥ V1(z(tk+1)), which gives

V2(x(t)) ≤
α1γ

4
2

µ2
V1(z(tk)) (3.52)
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for all t ∈ [tk+1, tk+2].

All conditions of Theorem 3.1 are thus satisfied. Therefore, the switched system

(3.8) is stable in the sense of Lyapunov, which proves Theorem 3.2.
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Chapter 4

A Combination of Open and Closed-loop

Control for Disturbance Rejection 3

4.1 Introduction

Disturbance rejection is a major control issue in control systems which has been

studied for several decades. In general, disturbances can be categorized into two

types: predictable and unpredictable. Predictable disturbances are also referred to as

narrowband disturbances, which include sinusoidal or sum of sinusoidal signals. Un-

predictable disturbances include white or colored noises which have wide bandwidth

in frequency domain. For these two types of disturbances, two different controllers

can be designed with their own attempts to achieve best performance.

A popular technique for predictable disturbance rejection is based on the In-

ternal Model Principle (IMP) proposed by Francis and Wonham in 1976. The main

3. A version of this chapter has been submitted for publication.
J. Lu and L. J. Brown, “ A Combination of Open and Closed-loop Control for Disturbance
Rejection”, 24th Canadian Conference on Electrical and Computer Engineering, December,
2010
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idea of IMP is that a suitably reduplicated model of the dynamic structure of the

disturbance or reference should be incorporated in a stable feedback loop for perfect

disturbance cancellation or reference tracking. The purpose of the IMP controller is

to supply right-half plane closed-loop transmission zeros to cancel the unstable poles

of exogenous signals [1]. The IMP approach requires the knowledge of the disturbance

a priori. The accuracy of regulation depends on the fidelity of the IMP controller.

If the frequencies of the predictable signals drift over time or are unknown,

the traditional IMP approach cannot achieve perfect or possibly acceptable rejection.

There are many algorithms that can identify or estimate unknown parameters of

predictable disturbances to achieve perfect rejection. These algorithms include higher

harmonic control [2], LMS adaptive feedforward filtering [3], adaptive feedforward

cancellation (AFC) [4], and adaptive IIR notch filter [5].

In [6, 7], an IMP based adaptive algorithm was developed to identify and cancel

quasi-periodic or narrowband disturbances with uncertain frequencies. According to

the IMP, for a sinusoidal disturbance with frequency ωc, the IMP controller must

have a pair of marginally stable poles at s = ±jωc. Since ωc is unknown, a standard

IMP controller is implemented through a block diagonal state space model, in which

the best estimate of the frequency is used. A simple mapping from the states of

the IMP controller to the errors in the frequency estimates was developed. This

“measurement” of the frequency error is then used in the adaptation of the IMP

controller parameters, so that these parameters converge to their true values. When
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this adaptive IMP controller is placed into a feedback loop, the resulting closed-loop

system produces zero steady state error for sinusoidal disturbances with unknown

frequencies. Periodic or quasi-periodic disturbances that consist of multiple sinusoidal

components, can also be perfectly cancelled by placing a number of these adaptive

modules in parallel. Since adaptation is always present, this method is able to track

slow variations in frequency, causing it to have almost perfect rejection for narrowband

and sums of narrowband signals.

However, when a system is subject to both predictable and unpredictable dis-

turbances, the presence of an IMP controller introduces a phase lag at relevant fre-

quencies which will limit the wideband disturbance controller’s capabilities for com-

pensating unpredictable disturbance. This limitation can be resolved by using the

intermittent cancellation control technique introduced by Brown et al. in [8, 9]. A

simple implementation of this techniques is introduced in [10], where the predictable

disturbance is constant. The constant disturbance is rejected using an integral con-

troller, which is one of the simplest IMP controllers. When the error between output

and disturbance signal is excessive, the integral control action is fully engaged with

the maximum gain by design. When the error is not significant, the input to the

integral controller is removed and the control action is maintained. A standard wide-

band disturbance controller is used to achieve desirable performance for unpredictable

disturbances. Since the integral controller is not always present, this wideband dis-

turbance controller can be made more aggressive while maintaining stability margins
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and/or control actions at similar levels.

As an extension to the intermittent integral control, this chapter considers peri-

odic signals with unknown frequencies as predictable disturbance. An adaptive IMP

controller will be used to identify the unknown frequency and cancel the sinusoid. The

input to the IMP controller is connected intermittently as to allow a wideband dis-

turbance controller to minimize the unpredictable disturbance more efficiently. This

chapter is organized as follows. The intermittent cancellation control strategy is dis-

cussed in Section 4.2. A switched system model of the intermittent control is derived

followed by a stability theorem in Section 4.3. Numerical examples are presented in

Section 4.4, followed by some concluding remarks in Section 4.5.

4.2 Open and Closed-Loop Control Strategy

The block diagram of the proposed control system is shown in Fig. 4.1. The block

L(s) generally includes both the process to be controlled with a standard wideband

disturbance controller. The sinusoidal disturbance is r(t) = a sin(ωct + φ), where

its parameters a, ωc, φ are all unknown. The unpredictable disturbance n(t) is an

additive white Gaussian noise.

According to [6], a state space representation of the adaptive IMP controller
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Figure 4.1: Block diagram of open and closed-loop control system

M(s) is given by,



ẋ1

ẋ2


 =




0 ω

−ω 0






x1

x2


+




0

f(t)


 e (4.1)

u =

[
K1 K2

]


x1

x2


 (4.2)

ω̇ =






Kω
ex1

x2
1
+x2

2

, if (x21 + x22) ≥ x̄u

0, if (x21 + x22) < x̄u

(4.3)

where K1, K2 are two tuning gains of the IMP controller. Normally, the scalar

function f(t) takes its value at 0 or 1, where the 0 state represents the switch S

in Fig. 4.1 being open. Although the true frequency of the sinusoid ωc is unknown,

according to the certainty equivalence principle, it can be replaced by its best estimate

ω as shown in (4.1). This estimated frequency ω is then updated in (4.3) with an
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adaptation gain Kω, and is proved to converge to the true frequency in [6]. In order

to avoid noise issues related to dividing a small number by another small number,

the frequency adaptation is stopped when the squared norm of the two states is less

than a threshold x̄u.

The tracking error e(t) is the input to the IMP controller, and is connected

intermittently with the opening and closing of the switch S. The switching control

of S is based on two monitored signals: e(t) and xm(t), where xm =
√
x2m1 + x2m2,

and xm1, xm2 are the states of a monitored internal model given by



ẋm1

ẋm2


 =




0 ω

−ω 0






xm1

xm2


+



0

1


 e (4.4)

Correspondingly, there are two predefined thresholds eu and xu for the switching

control.

The system begins as open loop control (S open, i.e., f(t) = 0) with the

adaptive IMP controller being initialized. When the monitored signal xm exceeds the

threshold xu at time t, the closed-loop control is switched on by setting f(t) to its

maximum value 1. The states of the IMP controller are also modified,

f(t+) = 1 (4.5)

xj(t
+) = xj(t) +

xm,j(t)

Ks(t− tl)
, j ∈ {1, 2} (4.6)
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where Ks is a scaling factor, and tl is the last time the IMP controller is turned off or

the initial time t0. In (4.6), the IMP controller’s states are augmented by the states of

monitored internal model which are scaled by the time spent reaching the threshold

xu. With this modification to the states, the transient period can be reduced once

the IMP controller is switched on for fast convergence.

The adaptive IMP controller remains active as long as the error e(t) is excessive.

Once the error is insignificant, the value of f(t) starts to decrease as described by

ḟ(t) = −Kd(t)f(t) (4.7)

Kd(t) =





Kdecay, |e(t)| < eu &
∣∣e(t− T

4 )
∣∣ < eu

0, otherwise

Since with a sinusoidal disturbance, the absolute error goes through zero every half

cycle, the insignificance of e(t) cannot be determined by condition |e(t)| < eu alone.

In addition, the error value at (t− T
4 ) should also be compared with eu, where T = 2π

ω

is the estimated period of the sinusoid. If the error is less than the threshold at both

time instants, f(t) is then reduced exponentially at a rate of Kdecay. This smooth

removal of f(t) is adopted to avoid the phenomenon called chattering. Once f(t) is

reduced to insignificance, as measured by f l, it is set to zero. The IMP controller

stops the adaptation of the estimated frequency. With no input, a fixed sinusoid is

cancelled via an open loop mechanism. If perfect cancellation is not achieved, the
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states of the monitored marginally stable internal model will grow linearly and will

eventually cause the switch S to close again. tl is set to current time t.

Table 4.1 lists reasonable methods of choosing related parameters for fast re-

sponse and maximum disturbance attenuation.

Table 4.1: Guidelines for parameter selections

K1, K2 Must be chosen such that the phase of the IMP controller plus
the phase of L(s) at ω is between −45◦ and −135◦.

eu Closed-loop level of noise and disturbance gives a reasonable
value for eu.

xu eu value multiplied by the desired response time.

f l Between 0.05 and 0.2.
Kdecay Can be chosen up to 5 times the reciprocal of the closed-loop

rise time.
Kω Can be chosen that the dominant closed-loop poles are at least

twice faster than the frequency adaptation speed.

4.3 Switched System Model and Stability

Analysis

Let

ẋ = Ax+Bu (4.8)

y = Cx (4.9)
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be a state space representation of L(s) shown in Fig. 4.1, where x ∈ R
n. From (4.1)-

(4.2) and (4.8)-(4.9), by letting z = [xT , x1, x2]
T , z ∈ R

n+2, the overall intermittent

control system shown in Fig. 4.1 can be expressed as

ż =




A BK1 BK2

0 0 ω

−f(t)C −ω 0



z +




0

0

f(t)



r(t)

:= Aσ(t)z +Bσ(t)r(t) (4.10)

y =

[
C 0 0

]
z (4.11)

Based on the switching mechanisms described in Section 4.2, this intermittent

control system can be modelled as a switched system with two subsystems. The

switching signal σ(t) is defined as

σ(t) =





1, if f(t) ∈ (f l, 1]

2, if f(t) = 0

(4.12)

Let set {ti} represent the switching time instants with i being positive integer numbers

and ti ≤ ti+1. We also define pairs of subsets of {ti} for any q ∈ {1, 2} as follows

{t̄q,k} = {ti|when subsystem q is switched on},

{tq,k} = {ti|when subsystem q is switched off}
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with t̄q,k < tq,k. Let S be a switching sequence associated with the switched system.

The interval completion I(S|q) is defined as the completion of the set of time intervals

during which subsystem q is active, i.e., I(S|q) =
⋃
k

[
t̄q,k, tq,k

]
.

Matrices Aσ(t), Bσ(t) can be written as

A1(t) =




A BK1 BK2

0 0 ω

−exp(
∫ t
t̄1,k

−Kddτ )C −ω 0



, (4.13)

B1(t) =




0

0

exp(
∫ t
t̄1,k

−Kddτ)



, (4.14)

A2 =




A BK1 BK2

0 0 ω

0 −ω 0



, (4.15)

B2 =




0

0

0



, (4.16)

with t̄1,k ≤ t ≤ t1,k. Pair
(
A1(t), B1(t)

)
describes the closed-loop control subsystem

with adaptive frequency estimation, and
(
A2, B2

)
describes the open loop control

subsystem without frequency adaptation.

For simplicity, analysis of the algorithm has been performed with Ks set to
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infinity. Under this condition, for the switched system described by (4.10) and (4.11),

we have

Theorem 4.1. If K1, K2, f
l, and Kdecay are chosen such that the following as-

sumptions are satisfied,

1. The equilibrium of subsystem 1 is uniformly exponentially stable, i.e., there

exist finite positive constants γ1, λ1, such that ‖Φ1(t, τ)‖ ≤ γ1e
−λ1(t−τ), where

Φ1(t, τ) is the transition matrix of subsystem 1;

2. There exists a constant µ2 > 0, such that each eigenvalue of A satisfies Re[eig(A)] ≤

−µ2;

3. The minimum active time of subsystem 1, τ1m, given by τ1m = − ln(f l)/Kdecay,

satisfies τ1m ≥ τs, where τs is dependent on Aσ(t),

the switched system (4.10), (4.11) is stable in the sense of Lyapunov.

The proof of this theorem is based on a multiple Lyapunov functions approach

developed in [11], and is similar to the proof of Theorem 1 in [10], thus is omitted

here. Note assumption 1 is guaranteed if the time derivative of matrix A1(t) is

upper bounded by the condition given in [12]. This condition is always satisfiable for

sufficiently small Kdecay.
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4.4 Simulation Results

The performance of the intermittent cancellation control strategy is demonstrated via

two examples.

4.4.1 Example 1

A simple second order plant given by

ẋp =



−1 −1

1 0


 xp +



1

0


u+



1 0

0 1


n(t) (4.17)

y =

[
1
3 1

]
xp (4.18)

is considered. As shown in Fig. 4.1, the disturbance consists of a sinusoidal signal,

r(t) = 1.5 sin(0.6t), and a vector of Gaussian noise n(t) with zero mean and standard

deviation 0.05. With this noise level, the standard deviation of the open loop system

output is 0.0037. The goal of this example is to design a wideband disturbance

controller and an adaptive internal model principle controller to identify the sinusoidal

frequency and minimize both disturbance components. This design is based on two

non-intermittent controllers which are introduced first.
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4.4.1.1 Controller 1

This controller is a wideband disturbance controller and is designed using linear

quadratic regulator (LQR) method. The optimization criterion is defined as

J =

tf∫

ti

(y2 + uTRu)dt (4.19)

where R is a weighting matrix, ti, tf = ∞ are the initial and final times respectively.

The optimal state feedback gain is given by [13]

Km = −R−1BT
p P, (4.20)

where P is the solution to the algebraic Riccati equation (ARE),

AT
p P + PAp − P (BpR

−1BT
p )P + CT

p Cp = 0 (4.21)

and (Ap, Bp, Cp) is a state representation of the plant, such as those given in (4.17)-

(4.18). By choosing the weighting matrixR = 0.2, we obtainKm = [−1.1106, −1.4495].

4.4.1.2 Controller 2

In order to reject the sinusoidal disturbance with unknown frequency, we need to tune

the adaptive IMP controller described by (4.1)-(4.3). Using the augmenting method

presented in [14], we can treat the two states of the IMP controller as additional
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states together with the plant states to implement LQR method. The state equations

of this augmented system are




ẋp

ẋ1

ẋ2



= Ae




xp

x1

x2



+Beu+Wen(t) (4.22)

y = Ce




xp

x1

x2




(4.23)

where

Ae =




Ap 0 0

0 0 ω

−Cp −ω 0



, Be =




Bp

0

0



,

Ce =

[
Cp 0 0

]
, We =




1 0

0 1

0 0

0 0




.
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The optimization criterion (4.19) is then written as

J =

tf∫

ti

(y2 + ρ1x
2
1 + ρ2x

2
2 + uTRu)dt (4.24)

for this augmented system. Note that weight must be applied to an augmented state

to satisfy the observability requirement of LQR control. The weighting R is the

same as in controller 1’s design. ρ1, ρ2 are two weightings on the IMP controller

states. For the choice of ρ1 = 0, ρ2 = 0.3, we obtain the optimal state feedback

gain for the augmented system as Ke = [−1.5708, −2.1427, −0.4159, 1.1520]. The

dominant closed-loop poles are−0.254±j0.539. The adaptation gain for the estimated

frequency is chosen as Kω = −0.1, such that the dominant poles are 2.5 times faster

than the adaptation speed.

4.4.1.3 Intermittent cancellation controller

In this example, L(s) in Fig. 4.1 is designed as the combination of the plant and

controller 1. Thus a state representation of L(s) is given by (Ap + BpKm, Bp, Cp),

with the same Km value as for controller 1. We take the same gain for the adaptive

IMP controller M(s) as in controller 2, which are K1 = −0.4159, K2 = 1.1520,

and Kω = −0.1. The standard deviation of the tracking error and the rise time

of the closed-loop system are measured as σ1 = 0.004 and tr = 25. According to

the guidelines in Table 4.1, corresponding parameters for the intermittent control are

chosen as f l = 0.1, eu = 0.01, xu = 0.25, Ks = 20, and Kdecay = 0.1. The initial
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value of the estimated frequency is chosen as 0.5 rad/s.

The simulation was run for a total of 800 time units. The sinusoidal compo-

nent r(t) is only present between 199 and 612 while the Gaussian noise n(t) is always

present. To better demonstrate the disturbance rejection performance of the inter-

mittent control, we compare its optimization cost function values with controller 1

and controller 2. The cost functions are calculated using the following criterion

J =

tf∫

0

[y(t)− r(t)]2 + [u(t)− uss(t)]
2Rdt (4.25)

where uss(t) is the steady state control signal, and tf is the simulation time. Since

the frequency response of the plant at ω = 0.6 rad/s is G(jω) = 1.1625∠ − 31.84◦,

in steady state, between t = 199 and t = 612, uss(t) = 1.2903 sin(0.6t + 31.84◦),

otherwise it is zero. For controller 1, uss(t) = 0.9794 sin(0.6t+173.47◦) for 199 < t <

612 and is zero otherwise. To distinguish between the transient response performance

and disturbance rejection capability of the approaches, the costs are broken into five

time intervals as follows.

(I) 0 ≤ t ≤ 199, only the additive Gaussian noise is present.

(II) 199 < t ≤ 250, transient period after the sinusoidal disturbance is introduced

at t = 199.

(III) 250 < t ≤ 612, steady state period after the sinusoid is introduced.

(IV) 612 < t ≤ 640, transient period after the sinusoid is removed at t = 612.
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(V) 640 < t ≤ 800, steady state period after the sinusoid is removed.

The costs of the controllers are listed In Table 4.2 and Table 4.3. The inter-

mittent cancellation controller is referred to as controller 3. The costs of controller

2 and controller 3 in Table 4.2 are calculated with frequency adaptation. In Table

4.3, the costs are calculated when the frequency adaptation was turned off for both

controllers. In this case, the sinusoid’s frequency is known. Since there is no IMP

control in controller 1, the costs for both cases are the same.

Table 4.2: Costs of disturbance rejection performance with frequency adaptation

Interval Controller 1 Controller 2 Controller 3
I 0.0034 0.0041 0.0034
II 9.9529 13.9305 5.7661
III 71.1713 0.0186 0.0174
IV 0.0160 3.7715 3.7128
V 0.0029 0.0043 0.0036

Table 4.3: Costs of disturbance rejection performance without frequency adaptation

Interval Controller 2 Controller 3
I 0.0042 0.0034
II 4.1699 3.6713
III 0.0125 0.0115
IV 3.7875 3.7462
V 0.0039 0.0030

Compared to controller 2, controller 3 has 20% improvements during intervals

I and V. During transient interval II, controller 3 has a significant 1.4 times improve-

ment. The improvement of controller 3 during interval III is not significant, because
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the algorithm has not completely converged. If the simulation time was extended, we

could get similar percentage improvements as during intervals I and V. From both

tables, we can see controller 3 has less costs than the other two controllers during each

time interval. Both controller 2 and controller 3 have less costs when the frequency

adaptation is turned off compared to unknown frequency case.
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Figure 4.2: Intermittent IMP control and tracking error

The intermittent IMP control action is illustrated in the top plot of Fig. 4.2 by

showing the value of f(t) of the adaptive IMP controller. The tracking error e(t) is

shown in the bottom plot. The estimated disturbance frequency is shown in the top

plot of Fig. 4.3. Before the sinusoidal disturbance is introduced, the frequency stays



126

0 100 200 300 400 500 600 700 800

0.1

0.2

0.3

0.4

0.5

0.6

Time

ω
 (

ra
d/

s)

Frequency Estimation

 

 

Controller 3
Controller 2

250 300 350 400 450 500 550 600
0.598

0.599

0.6

0.601

0.602

Time

ω
 (

ra
d/

s)

 

 
Controller 3
Controller 2

Figure 4.3: Frequency estimation of the intermittent and non-intermittent control

at its initial value 0.5 rad/s. When the monitored signal xm(t) is greater than the

threshold xu after the sinusoid is introduced at t = 199, the IMP controller is turned

on by setting f(t) = 1. The adaptation of the disturbance frequency starts. In the

mean time, the plant output starts to track the sinusoidal disturbance.

When the tracking error e(t) is less than eu at both the current instant and

one quarter period earlier as defined in section 4.2, f(t) starts to decay exponentially

with a rate of Kdecay. When f(t) decreases to the lower threshold f l, the input

to the adaptive IMP controller e(t) is removed by setting f(t) = 0. The estimated

frequency stops updating until next switch-on of the controller. This can be seen in
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Figure 4.4: Tracking error during transient periods

the bottom plot of Fig. 4.3, where the estimated frequency using controller 2 is also

plotted for comparison. In Fig. 4.2, f(t) starts to decrease immediately after the

second switch-on of the controller which indicates the insignificance of the tracking

error. There remains an exponentially decaying residue error that continues to cause

the IMP controller to be invoked.

One of the stability requirements for controller 2 is that a predictable component

exists. However, this assumption is violated when t < 199 and t > 612. As a result,

controller 2’s frequency estimation changes drastically when t < 199 and t > 612,

which is shown in the top plot of Fig. 4.3. The abrupt removal of the sinusoidal
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disturbance introduces a decaying exponential term in the output. Mathematically,

this can be modelled as a complex frequency with zero real part. The adaptive IMP

control algorithm ‘perceives’ this and responds by having the identified frequency

converge to zero. Controller 3 automatically avoids this by disabling the IMP control

when the predictable component is absent. As a result, the frequency stops adaptation

and stays as it is, which is shown in the top plot of Fig. 4.3. From this plot, it can

also be seen that estimated frequency of controller 2 decays towards zero, i.e. the

IMP controller becomes an integral controller. If the wideband disturbance controller

included in L(s) contains integral action, the two parallel integral controllers can lead

to stability problems. Controller 3 provides a major improvement to avoid this issue.

The tracking error of controller 3 during transient periods, during which the sinusoid

is added and removed, are shown in Fig. 4.4 together with controller 2’s performance

for comparison.

4.4.2 Example 2

In this example, a periodic disturbance with two sinusoidal components is considered.

That is

r(t) = 1.5 sin(0.6t) + sin(t+ 0.2)

The standard deviation of the zero mean Gaussian noise vector n(t) is 0.1, which

results in a standard deviation of 0.0071 for the open loop system output. The
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same plant as in Example 1 is considered. The open loop system controller is

exactly the same as in previous example, which has the state feedback gain as

Km = [−1.1106,−1.4495].

4.4.2.1 Controller 2

Since there are two sinusoidal components in the disturbance, two corresponding

adaptive IMP controllers need to be designed for estimating both frequencies. Fol-

lowing the same augmentation method used in Example 1, a state representation of

the augmented system can be obtained as




ẋp

ẋ11

ẋ12

ẋ21

ẋ22




= Ae




xp

x11

x12

x21

x22




+Beu+Wen(t) (4.26)

y = Ce




xp

x11

x12

x21

x22




(4.27)
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where x11, x12 and x21, x22 are the states of the two IMP controllers, ω1, ω2 are

estimates of the two sinusoids frequencies, and

Ae =




Ap 0 0 0 0

0 0 ω1 0 0

−Cp −ω1 0 0 0

0 0 0 0 ω2

−Cp 0 0 −ω 0




, Be =




Bp

0

0

0

0




,

Ce =

[
Cp 0 0 0 0

]
, We =




1 0

0 1

0 0

0 0

0 0

0 0




.

The optimization criterion is

J =

tf∫

ti

(y2 + ρ11x
2
11 + ρ12x

2
12 + ρ21x

2
21 + ρ22x

2
22 + uTRu)dt (4.28)



131

for this augmented system with corresponding weightings. By choosing ρ11 = ρ21 = 0,

ρ12 = 0.3, ρ22 = 0.2, the optimal state feedback gain is

Ke = [−1.8657,−2.6591,−0.6941,−1.0091,−0.0527,−0.9986]

4.4.2.2 Intermittent cancellation controller

For the two adaptive IMP controllers, their gains are the same as those of controller

2, which are K11 = −0.6941, K12 = −1.0091, K21 = −0.0527, K22 = −0.9986. The

initial estimates of the two frequencies are 1.2 rad/s and 0.8 rad/s respectively. The

frequency adaptation gain for both controllers is Kω = 0.05. The two IMP controllers

also share the same set of parameters for intermittent control, which are f l = 0.1,

xu = 0.25, eu = 0.01, Ks = 20, and Kdecay = 0.05.

The simulation was run for 800 time units for both controller 2 and the inter-

mittent cancellation controller (controller 3). The disturbance r(t) is present from

t = 98.37, and the Gaussian noise is present for the whole time. Using the same

criterion as in (4.25), cost functions are calculated over three time intervals: (I)

0 ≤ t ≤ 98.37, (II) 98.37 < t ≤ 200, and (III) 200 < t ≤ 800. The steady state

control signal for this example is calculated as

uss(t) = 1.2903 sin(0.6t+ 31.84◦) + 0.9487 sin(t+ 71.57◦)
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for t > 98.37, otherwise it is zero. For controller 1, the steady state control signal is

uss(t) = 0.9794 sin(0.6t+ 173.47◦) + 0.7132 sin(t+ 161.94◦)

t > 98.37, otherwise it is zero.

Table 4.4 gives the costs of the three controllers’ rejection performance during

different time intervals. When the periodic disturbance r(t) is not present, controller

Table 4.4: Costs of rejection of multiple sinusoids

Interval Controller 1 Controller 2 Controller 3
I 0.0053 0.0082 0.0053
II 67.4366 11.7477 6.9143
III 419.7938 2.2155 2.1941

3 has over 54% improvement than controller 2. Controller 3 has almost 70% less cost

than controller 2 during the transient after r(t) is introduced. After the transient dies

out, controller 3 still has less cost than that of controller 2.

Fig. 4.5 shows the intermittent control actions of the two IMP controllers,

where f1(t), f2(t) are the same functions as in (4.1) for the two IMP controllers,

respectively. The two estimated frequencies are shown in Fig. 4.6 . For comparison,

controller 2’s frequency estimates are also plotted. It can be seen that controller

2’s estimated frequencies decay towards zero when r(t) is absent, while controller 3’s

estimates stay at their initial values. The tracking errors of the two controllers during

the transient period are shown in Fig. 4.7.
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Figure 4.5: Intermittent IMP control action

4.5 Conclusions

A control strategy is presented for cancelling disturbances with both predictable and

unpredictable components. By intermittently connecting the input to an adaptive

IMP controller, which can cancel the predictable component (sinusoidal signal), the

control system operates between open and closed-loop control modes. In closed-loop

mode, the IMP controller can identify the unknown frequency of the sinusoid using

an adaptive algorithm. In open loop mode, a state feedback controller is imple-
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Figure 4.6: Frequency estimation using adaptive IMP algorithm

mented to minimize the unpredictable component (white Gaussian noise). With the

IMP controller being turned off, the state feedback controller can be made more ag-

gressive while maintaining stability margin and control actions. The advantage of

the intermittent control strategy is demonstrated through numerical examples. This

intermittent control system is modelled as a switched system for stability analysis,

which is based on an extended multiple Lyapunov functions approach developed in

[11]. One of the main difficulties of safely implementing the algorithm in [7] is the re-

quirement of perfect knowledge of the number of sinusoids to be tracked or cancelled.
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This switching algorithm can be used to eliminate that requirement.
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Chapter 5

Conclusions

5.1 Summary

Two advanced applications of the internal model principle control theory are discussed

in this thesis.

First, as a signal processing problem, an IMP based adaptive algorithm is devel-

oped for the identification of exponentially damped sinusoidal signals with unknown

parameters. Estimation of the two key parameter, damping factor and frequency, is

the focus of this algorithm. This algorithm is developed in discrete time based on

its continuous time version presented in [2]. A state space representation of the sig-

nal model in terms of estimated parameters is derived. The differences between the

parameter estimations and their true values can be described in terms of the model

state variables and the tracking error. By using integral controllers, the two param-

eter estimation errors can be eliminated asymptotically. Local exponential stability

and convergence of this adaptive algorithm is proved using a two time scale averaging

theory developed in [3].
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Simulation results in the MATLAB/Simulink environment show that this algo-

rithm can not only identify constant parameters, but also track slowly time-varying

parameters of the EDS signal. By constructing a series of IMP controllers in parallel,

the adaptive feedback system can identify a signal composed of a sum of EDS modes,

with each IMP controller corresponding to one EDS mode. From the simulation re-

sults, this algorithm has shown its functionality despite the limitation that the slow

system shall be slower than the fast system. In order to speed up the algorithm, the

closed-loop poles can be placed closer to the origin by tuning the function L(z).

The second advance in IMP control theory is its application in switched systems.

For a system subjected to a disturbance with both predictable and unpredictable

components, two disturbance controllers need to be designed with their own attempts

to achieve best performance. An IMP controller is a perfect candidate for cancelling

the narrowband disturbance. A state feedback controller is designed using the LQR

method to minimize the white noise. But when both controllers are present in a

feedback system, they affect each other’s rejection capabilities. Especially, the state

feedback controller’s capability of minimizing the white noise is limited due to the

phase lag introduced by the IMP controller.

In order to achieve an optimal disturbance rejection performance, a combination

of open and closed-loop control strategy is presented. When the narrowband distur-

bance is significant, both controllers are active, in a closed-loop mode, to achieve fast

rejection. The system switches to open loop control mode when the narrowband dis-



140

turbance is cancelled within an acceptable range. In this control mode, the input to

the IMP controller, which is the tracking error, is disconnected. The IMP controller’s

output is maintained. Thus the state feedback controller is made more aggressive in

minimizing the white noise while maintaining the stability margins and control ac-

tions. Depending on the level of the tracking error, the IMP controller’s input may be

connected intermittently. Simulation results confirm the performance improvement of

this control strategy compared with two other controllers, a state feedback controller

and an augmented state feedback controller with IMP control action.

In this thesis, two types of narrowband signals are considered, constant and

periodic with unknown frequencies. For a constant disturbance, a simple IMP con-

troller, integrator, is used. For the periodic case, traditional adaptive IMP controllers

are used to first identify the unknown frequencies before the periodic disturbance

can be cancelled. If the periodic signal contains multiple sinusoidal components with

unknown frequencies, the same number of adaptive IMP controllers need to be placed

in parallel.

Due to its intermittent control fashion, this control strategy is modelled as a

switched system for stability analysis. Since existing stability analysis techniques

cannot be applied directly, an extended multiple Lyapunov functions approach is

developed to relax some constraints.



141

5.2 Concluding Remarks

Internal model principle control theory has drawn many researchers’ attention in the

area of output regulation. The adaptive IMP control algorithm developed in [1] is

capable of estimating frequencies of periodic or quasi-periodic signals to achieve zero-

error regulation. The advantages of applying this algorithm include its ability of

online real time fast estimation and low computational cost.

However, two of the main drawbacks of this approach is the requirement to

design stabilizing feedback gains and the need for a priori knowledge of the number

of signals to be cancelled. Note that the feedback design problem becomes increasingly

difficult and even infeasible as the number of frequencies increases.

By integrating the intermittent control to the adaptive IMP control algorithm,

the number of sinusoids to be cancelled is not necessarily required. Based on the

level of tracking error, the switching control mechanism determines the number of

adaptive IMP controllers to be turned on. This switching control thus makes the

feedback design feasible even with a large number of sinusoids.

This control strategy can also relax two design constraints in linear control,

which are the trade-off between response speed and noise rejection ability, as well

as the trade-off between the speed and actuator control effort. This improvement is

demonstrated through the simulation results in Chapter 3 and Chapter 4.
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5.3 Future Work

Active acoustic noise control is an important area in many applications. The acoustic

noise can be cancelled using speakers. Due to the nature of some applications, such

as rotating electric fans, we know the noise signals are periodic but their frequencies

are uncertain. It will be of our interest to build a model of such application and

to implement the adaptive IMP control algorithm for identifying and cancelling the

noise.

From the simulation results in Chapter 2, we notice that the estimation per-

formance of the proposed adaptive algorithm degrades as the number of EDS modes

increases. It will be worthy investigating the estimation performance by combining

the intermittent control with the adaptive IMP control for EDS signals. And ap-

ply this approach to real musical signals, which have more complicated spectrum

contents. This would be a possible future work in this area.
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